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Abstract

Customer relationship management is of high importance as it strength-
ens customer satisfaction. Providing consistent customer service cultivates
customer retention and brand loyalty. This paper examines a new customer-
oriented routing problem, the Consistent Vehicle Routing Problem with het-
erogeneous fleet. The objective is to create cost-efficient routing plans, util-
ising a fixed fleet of vehicles with heterogeneous operational characteristics,
variable and fixed costs, while providing consistent customer service over
multiple periods. Service consistency consists in person and visiting time
consistency. A mathematical model capturing all the attributes of the prob-
lem is developed and utilised to solve small-scale instances to optimality.
To address larger instances, a hierarchical Tabu Search framework is pro-
posed. The proposed metaheuristic utilises an upper-level Tabu Search and
an underlying Variable Neighbourhood Descent algorithm. Computational
experiments conducted on existing and new benchmark instances show the
flexibility, effectiveness and efficiency of the proposed framework. Various
managerial insights are derived by examining the cost of imposing customer
service consistency as well as customer-vehicle incompatibility constraints.
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1. Introduction

Services offered by numerous companies at the customer’s location require
that service providers, such as drivers, sales representatives, technicians and
medical personnel, visit customers on a regular basis. Customer retention is
one of the most important challenges organisations are facing, as customer ac-
quisition is around five to six times more expensive, and long-term customers
tend to generate higher profits. Providing consistent service with respect to
the visiting service provider and the time of visit is a highly desirable feature,
leading to increased customer satisfaction and customer retention as it allows
the company’s employees to build up a rapport with the customers. In addi-
tion, consistent service has been shown to increase operational efficiency by
enhancing the service providers’ familiarity with the customers’ environment
and decreasing service times. As a result, in recent years, there has been a
heightened interest in providing consistent customer-oriented services as it
allows companies to stand out from their competitors.

In recent years, customer-oriented Vehicle Routing Problems (VRPs) with
consistency features have received significant attention due to their practical
importance. Three types of consistency are found in the literature; (i) visiting
time consistency, (ii) person consistency and (iii) quantity consistency. VRPs
with consistency attributes have been used to model various real-life applica-
tions, such as parcel delivery (Groër et al., 2009), home healthcare (Rusell et
al., 2011), the transportation of disabled (Feillet et al., 2014) and elderly peo-
ple (Braekers and Kovacs, 2016), pharmaceutical distribution (Campelo et
al., 2019), home meal delivery (Hewitt et al., 2015), home groceries delivery
(Song et al., 2020), retail distribution (Ulmer et al., 2020), soft drinks dis-
tribution (Rodŕıguez-Mart́ın et al., 2018), aircraft fleet scheduling (Ioachim
et al., 1999) as well as cleaning services (Tarantilis et al., 2012). The exist-
ing variants of VRPs with consistency considerations make the assumption
that an unlimited number of identical vehicles is available at a central depot.
However, this is not a realistic assumption as in most real-life cases a vehicle
fleet is likely to be heterogeneous and of limited/fixed size (Hoff et al., 2010;
Koç et al., 2016).

In practice, vehicle fleets are rarely homogeneous, with vehicles having
different operating, service and depreciation costs, as organisations procure
their fleet over a long period of time. Additionally, due to technology ad-
vancements, vehicles tend to possess different features and functionality. In
recent years, the development of alternative fuel and technology vehicles,
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such as hybrid or fully electric vehicles, has led to diverse fleet compositions
of battery-powered and conventional vehicles. There are also restrictions
imposed by the transportation network, customers or environmental regu-
lations. For example, in urban areas, city centres or old villages, narrow
streets make the use of smaller and more flexible vehicles necessary. More-
over, there may be cases where servicing a customer requires a vehicle with
special equipment (e.g. for loading and unloading). Furthermore, there are
special zones in urban areas, such as the ultra low emission zone in central
London, posing restrictions on the vehicles’ noise, gas and particle emis-
sions (Hoff et al., 2010; Vidal et al., 2020; Zbib and Laporte, 2020). All the
above highlight that in reality, organisations utilise a limited/fixed number
of vehicles with heterogeneous characteristics, such as capacity, speed and
operational cost. Therefore, operations managers have to develop routing
plans that make the best use of the available resources, i.e. the vehicle fleet,
whilst gaining a competitive advantage for their organisation.

To this end, this paper addresses a new VRP of practical importance, the
Consistent Vehicle Routing Problem with heterogeneous fleet (HConVRP).
The HConVRP aims to minimise overall transportation costs, utilising a
heterogeneous vehicle fleet of fixed size, offering consistent customer service
over a planning horizon of multiple periods. In the HConVRP context, con-
sistent customer service consists in imposing time and person consistency
constraints at the same time, i.e. for customers receiving service more than
once within the given planning horizon, the service is performed by the same
service provider at roughly the same time. The proposed problem relates
closely with the Consistent VRP (ConVRP) and the Heterogeneous VRP
(HVRP).

The contribution of this paper is threefold. First, it introduces and mod-
els a new VRP with multiple attributes, the HConVRP. This problem aims
to make the best use of the available heterogeneous vehicle fleet, while pro-
viding consistent customer service. The objective of the HConVRP is to
determine a set of cost-efficient routing plans, minimising the total trans-
portation cost, i.e. the fixed and variable cost. Second, a hierarchical Tabu
Search (TS) algorithm is developed, incorporating four user-defined parame-
ters. The proposed metaheuristic adopts a hierarchical bi-level search frame-
work that takes advantage of different search landscapes. At the upper level,
the solution space is explored on the basis of the customer assignment to
service providers/vehicles, using a TS method, while at the lower level the
routing of customers is optimised in terms of travelling distance via a Variable
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Neighbourhood Descent (VND) method. Third, an extensive set of computa-
tional experiments is reported. The proposed metaheuristic’s performance is
evaluated on existing ConVRP instances and proved competitive compared
to the state-of-the-art. After generating new benchmark instances for the
HConVRP, small-scale instances are solved to optimality. The proposed al-
gorithm obtained the optimal solutions in most cases (worst case performance
is 2.16%). Lastly, various managerial insights are discussed by examining the
trade-off between the transportation cost and consistent customer service as
well as customer-vehicle incompatibilities.

The remainder of the paper is organised as follows. Section 2 discusses the
relevant literature, followed by Section 3 that provides the necessary notation
and proposes a formal mathematical formulation for the HConVRP. Section 4
presents the proposed solution method. Computational results are presented,
discussed and analysed in Section 5. Finally, conclusions are drawn in Section
6.

2. Related works

2.1. Consistency routing

The concept of providing services in a consistent manner has been re-
cently studied in VRP literature. A seminal work in the field is that of
Groër et al. (2009) introducing the ConVRP. The ConVRP extends the tra-
ditional vehicle capacity and route duration VRP constraints, imposing that
the same driver visits the same customers (driver consistency) at approxi-
mately the same time on each day they require service (arrival time consis-
tency) over a planning horizon. A number of heuristics have been proposed
for addressing the ConVRP. Groër et al. (2009) develop a Record-to-Record
travel algorithm, utilising template routes. A template is a set of predeter-
mined artificial routes, containing only the customers with frequent visiting
requirements, i.e. requiring to be visited more than once within the planning
period, that are used as a guide to design the actual daily schedules. From
the algorithmic viewpoint, all the existing heuristics explicitly designed for
the ConVRP adopt the template route rationale. Tarantilis et al. (2012)
propose a two-level master-slave TS algorithm, in which template routes are
improved by TS at the master level, and then the actual daily schedules are
constructed and optimised by the slave TS. A fast template-based Adaptive
Large Neighbourhood Search algorithm (ALNS) is developed by Kovacs et
al. (2014b). ALNS is used to optimise the template routes, and then the
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actual routes are improved using a truncated 2-opt operator. Xu and Cai
(2018) present a two-stage template-based Variable Neighbourhood Search
solution framework (VNS), where template routes, including all customers,
are improved by VNS and an actual solution is produced if certain cost cri-
teria hold. Recently, a Cluster Column Generation method (CCG) has been
developed by Goeke et al. (2019), solving instances of up to 30 customers
optimally. The CCG method incorporates a Large Neighbourhood Search
(LNS-SP) to obtain upper bounds, which can also be used as a stand-alone
solution method for the ConVRP.

In the ConVRP literature, various types of constraints have been adopted.
Harder types dictating both driver/carrier and visiting time consistency (Groër
et al., 2009; Stavropoulou et al., 2019; Zhen et al., 2020; Mancini et al., 2021),
as well as relaxed versions taking into account time consistency only (Feillet
et al., 2014) or versions aiming to limit the number of drivers that visit a
customer (Kovacs et al., 2015a; Luo et al., 2015; Braekers and Kovacs, 2016).
Additionally, in some ConVRP variants consistency is addressed in the ob-
jective function, instead of the problem constraints, either in an aggregated
form (Sungur et al., 2010; Kovacs et al., 2015a; Ulmer et al., 2020) or as
multiple objective functions (Smilowitz et al., 2013; Kovacs et al., 2015b;
Lian et al., 2016). Furthermore, Subramanyam and Gounaris (2016) present
the Consistent Traveling Salesman Problem (ConTSP), taking into account
time consistency constraints only, as a single vehicle is utilised. It is note-
worthy that relaxed versions allowing vehicle waiting either at the depot
or at customer locations are examined by Kovacs et al. (2014b) and Goeke
et al. (2019) and Subramanyam and Gounaris (2017) for the ConVRP and
the ConTSP, respectively. This paper adopts the hard types of consistency
constraints, dictating both driver and arrival time consistency, whilst vehi-
cles are not allowed to idle. A detailed survey on ConVRPs is presented by
Kovacs et al. (2014a).

2.2. Heterogeneous fleet routing

The HVRP is the extension of the VRP where additional decisions on
the fleet composition have to be made (Koç et al., 2016). Specifically, the
HVRP generalises the traditional VRP taking into consideration a heteroge-
neous fleet with various vehicle types of different operational characteristics
and costs. Two major HVRP variants with different fleet size considerations
are the Fleet Size and Mix VRP (FSM) and the Heterogeneous Fixed Fleet
VRP (HF). The FSM was introduced by Golden et al. (1984) and assumes
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an unlimited number of vehicles of each type, whereas Taillard (1999) pro-
posed the HF in which a limited number of vehicles of each type is available.
Another classification factor for HVRPs is whether their objective function
considers the minimisation of fixed or variable costs or their combination.
Thus, combining the two aforementioned criteria, HVRPs can be categorised
in five main groups: (a) the FSM with fixed and variable costs (FSM(F,V)),
(b) the FSM with fixed costs (FSM(F)), (c) the FSM with variable costs
(FSM(V)), (d) the HF with fixed and variable costs (HF(F,V)) and (e) the
HF with variable costs (HF(V)). It should be highlighted that the classifi-
cation and notation proposed by Koç et al. (2016) is followed. This paper
belongs to the fourth group, utilising a heterogeneous fleet of fixed size, with
the aim to minimise both fixed and variable costs.

HVRPs have been studied to a great extent for more than 30 years and
can be used to model a variety of applications mostly occurring in the ar-
eas of product delivery and distribution including the distribution of fresh
milk either to supermarkets/convenience stores or directly to customers, dis-
tribution of ready-made concrete to construction sites, furniture delivery to
customers, parcel collection and delivery, waste collection and carton pickup
and delivery to customers. It is worthwhile noting that HVRPs can also
be used to model problems related to the material flow within construction
projects (Koç et al., 2016). A number of papers present variants that in-
volve additional features of practical importance such as time windows (Liu
and Shen, 1999; Bräysy et al., 2008; Paraskevopoulos et al., 2008; Koç et
al., 2015), multiple depots (Salhi et al., 2014), demand uncertainty (Subra-
manyam et al., 2020), pickups and deliveries (Qu and Bard, 2014), multiple
trips (Wassan et al., 2017), multiple periods (Mancini, 2016), site depen-
dences (Chao et al., 1998), backhauls (Salhi et al., 2013), open routes (Li et
al., 2012), green routing (Koç et al., 2014), multiple stacks (Iori and Riera-
Ledesma, 2015), multi-compartment vehicles (Zbib and Laporte, 2020) and
split deliveries (Ceselli et al., 2009). However, to the best of the author’s
knowledge, there are no papers combining HVRPs and service consistency.
Literature reviews regarding the class of HVRPs can be found in Baldacci et
al. (2008), Baldacci et al. (2010), Irnich et al. (2014) and Koç et al. (2016).
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3. Problem definition and formulation

3.1. Problem definition

The HConVRP can be defined on a complete undirected graph G =
(N,E), where N = {0, 1, 2, . . . , n} is the node set and E = {(i, j) : i, j ∈
N, i ̸= j} is the edge set. The depot is located at node 0 and the set
of customers is denoted by Nc = N \ {0}. A non-negative distance dij is
associated with each edge (i, j) ∈ E, while the corresponding distance matrix
[dij] is symmetric, i.e. dij = dji, and the triangle inequality is satisfied. A
fixed fleet of heterogeneous depot-returning vehicles is available. This vehicle
fleet consists of H different vehicle types, with K = {1, . . . , H}. For each
vehicle type k ∈ K, a set M of hk identical vehicles are available, each having
a carrying capacity of Qk units, a maximum operation duration of T time
units and an average speed Bk. As each vehicle type k has a different speed,
a travelling time tkij = dij/Bk is defined. Each vehicle type is also associated
with a fixed cost Fk, which corresponds to the rental or capital amortisation
and insurance cost, and a variable cost Vk, which corresponds to the fuel,
driver and maintenance cost. The latter means that for each edge (i, j) ∈ E
there is a corresponding traversal cost ckij = dij × Vk associated with vehicle
type k. Moreover, there may be compatibility restrictions between a vehicle
type and an edge, denoted by uk

ij, i.e. u
k
ij = 1 if vehicle type k can be used on

edge (i, j) ∈ E and uk
ij = 0 otherwise. Each vehicle can perform one route

per period p ∈ P , where P is the set of periods P = {1, . . . , g}, starting and
ending at the depot, with a maximum duration T and accumulated load Qk.
Additionally, each customer i ∈ Nc poses specific service requirements wip for
each period p ∈ P , i.e. wip = 1 if customer i needs to be serviced in period
p and 0 otherwise. Each customer must be visited only once in the period
p ∈ P they need to be serviced. Furthermore, for each customer i ∈ Nc there
is a known service time sip and a positive demand qip. The customer set Nc

can be split into two non-overlapping subsets; the set of frequent customers
Nf and the set of non-frequent customers Nnf . Driver consistency imposes
that each frequent customer i ∈ Nf must be visited by the same vehicle
m ∈ M over all periods p ∈ P , whereas arrival time consistency dictates
that the difference between the earliest and latest vehicle arrival times to a
frequent customer i ∈ Nf must be at most L (it should be noted that vehicles
are not allowed to idle). For notational convenience, Ep denotes a reduced
set of edges, Ep = {(i, j) ∈ E : wipwjp = 1} and Np a reduced set of nodes,
Np = {i ∈ Nc : wip = 1} for each period p ∈ P .
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The objective is to determine a routing plan that minimises the total
transportation cost, i.e. the fixed and the variable costs of all utilised vehicles.

3.2. Mathematical formulation

In this paper, a five-index formulation is introduced. More specifically,
three groups of variables are utilised. Each binary variable xkm

ijp counts the
number of times edge (i, j) ∈ E is traversed in period p by vehicle m belong-
ing to vehicle type k, binary variables zmip indicate if customer i is serviced
by vehicle m in period p and continuous variables akmip depict the arrival
time of vehicle m belonging to vehicle type k to customer i in period p in
the optimal solution. Given the above representation, the HConVRP can be
mathematically depicted as follows:

min
∑
k∈K

∑
m∈M

∑
p∈P

∑
j∈Nc

Fkx
km
0jp +

∑
p∈P

∑
(i,j)∈E

∑
m∈M

∑
k∈K

ckijx
km
ijp (1)

Subject to ∑
m∈M

zmip = wip ∀p ∈ P, i ∈ Nc (2)

∑
i∈Np

∑
m∈M

xkm
i0p =

∑
j∈Np

∑
m∈M

xkm
0jp ≤ hk ∀k ∈ K, p ∈ P (3)

∑
j∈N

∑
k∈K

xkm
ijp =

∑
j∈N

∑
k∈K

xkm
jip = zmip ∀i ∈ N(i ̸= j), p ∈ P,m ∈M (4)

1−xkm
ijp−xkm

jip ≥ zmip−zmjp ∀(i, j) ∈ Np×Np : i ̸= j, k ∈ K,m ∈M, p ∈ P (5)∑
i∈N

∑
j∈Nc

qjpx
km
ijp ≤ Qk ∀m ∈M,k ∈ K, p ∈ P (6)

zm0p = 1 ∀m ∈M, p ∈ P (7)

akm0p = 0 ∀k ∈ K,m ∈M, p ∈ P (8)

akmip +xkm
ijp (sip+tkij)−(1−xkm

ijp )T ≤ akmjp ∀i ∈ N, j ∈ Nc, p ∈ P, k ∈ K,m ∈M
(9)

akmip +xkm
ijp (sip+tkij)+(1−xkm

ijp )T ≥ akmjp ∀i ∈ N, j ∈ Nc, p ∈ P, k ∈ K,m ∈M
(10)

akmip + wip(sip + tki0) ≤ wipT ∀i ∈ Nc, p ∈ P,m ∈M,k ∈ K (11)

|akmip − akmip′ | ≤ L ∀i ∈ Np ∩Np′ , p ∈ P, p′ ∈ P : p ̸= p′, k ∈ K,m ∈M (12)
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xkm
ijp ≤ uk

ij ∀(i, j) ∈ Ep, k ∈ K,m ∈M, p ∈ P (13)

zmip , x
km
ijp ∈ {0, 1}, akmip ≥ 0 ∀i, j ∈ N, k ∈ K,m ∈M, p ∈ P (14)

wipt
k
0i ≤ akmip ≤ T − sip − tki0 ∀i ∈ Nc, p ∈ P,m ∈M,k ∈ K (15)

The objective function (1) minimises the total transportation cost. Con-
straints (2) ensure that customers are visited in each period they require
service. Constraints (3) impose that no more than hk vehicles of type k ∈ K
leave and return to the depot in every period. Constraints (4) ensure route
connectivity. Driver consistency constraints (5) impose that each frequent
customer is serviced by the same vehicle. Constraints (6) ensure the capacity
restrictions for each vehicle are respected, while all vehicles must start from
the depot, according to constraints (7). The vehicle arrival times to the de-
pot and to all serviced customers are calculated with constraints (8),(9),(10)
and (11). They constitute the Miller-Tucker-Zemlin (MTZ) constraints for
time duration and, thus, function also as subtour elimination constraints. It
should be noted that constraints (10) impose that there is no vehicle idling.
If we wanted to allow vehicle waiting at a location to provide arrival time
consistency, then constraints (10) should be removed. Arrival time consis-
tency ensures that the difference between the earliest and latest arrival time
to a frequent customer is at most L time units. This is modelled using con-
straints (12). Constraints (13) dictate that only compatible vehicle types
traverse the corresponding edges (i, j) ∈ E. Finally, the last sets impose
binary conditions to x and z variables as well as lower and upper bounds for
the continuous a-variables.

4. Solution Method

4.1. Basic Concept and Solution Framework

In broad terms, multi-period VRPs are routing problems in which vehicle
routes must be determined over a predefined planning horizon of p periods.
A common practice in literature is to decompose a multi-period VRP into |P |
separate VRPs and solve them individually. However, contrary to traditional
multi-period VRPs, the HConVRP cannot be decomposed into independent
VRPs, since the daily routing plans are closely interrelated due to the driver
and arrival time consistency constraints. Thus, two types of decisions have to
be made for this problem: first the customer-to-vehicle assignment and then
the customer sequencing within the different vehicle routes. The customer-to-
vehicle assignment decision is central to the HConVRP as this has to remain
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consistent throughout the planning horizon and subsequently affects all the
sequencing decisions, as well. Given that in the HConVRP the available
vehicles have different operational characteristics and costs, the customer-to-
vehicle assignment decisions become more complex. To this end, two search
landscapes are explored on the basis of the customer-to-vehicle assignment
and the customer sequencing decision sets. In order to provide a good distri-
bution of the search effort devoted to the aforementioned search landscapes, a
hierarchical solution framework with two levels was developed. On the upper
level, the customer-to-vehicle assignment decisions are first made and, given
these, then the lower level deals exclusively with the sequencing counterpart
of the problem.

From the algorithmic point of view, the proposed hierarchical TS (HTS)
can be seen as a multi-start trajectory local search approach, utilising a
short-term memory and multiple neighbourhood structures to allow a more
thorough exploration of the search space. An issue encountered by local
search methods is that they tend to limit themselves to a portion of the
search space. To overcome this problem, the proposed HTS, apart from
utilising a short-term memory, incorporates a multi-start mechanism and ex-
ploits a variety of neighbourhood structures to diversify the search process.
A greedy randomised constructive heuristic is employed to generate an ini-
tial solution, which is further improved by the HTS algorithm. In an effort
to deal with and achieve the desirable consistency in the routing plans the
concept of template routes was adopted to construct cost-efficient initial so-
lutions quickly. As reported in Stavropoulou et al. (2019), it is meaningful
to employ the template routes as an algorithmic component in frameworks
addressing VRPs with consistency considerations as frequent customer pairs
tend to appear in the same order in all common periods. For this reason, in
this paper, template routes, containing only frequent customers, are used to
create initial feasible solutions. A key element of the HTS solution frame-
work is that it operates on hierarchical levels. The HTS algorithm exploits
the upper level neighbourhood structures only, whereas, within the HTS al-
gorithm, a VND heuristic is employed to optimise the lower level sequencing
counterpart of the HConVRP.

The pseudocode of the proposed HTS metaheuristic is presented in Al-
gorithm 1. After determining the frequent and non-frequent customer sets
(Lines 2-3), a greedy randomised constructive heuristic is utilised to gener-
ate an initial feasible solution (Line 5). Then, HTS algorithm is triggered
to improve the initial solution (Line 6) and the best obtained solution s∗ is
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updated (Lines 7-9). The HTS solution framework terminates after Θ it-
erations (Line 4) (termination criterion) and the best encountered solution
s∗ is returned. Input parameters ITS and ωt control the termination condi-
tion for the HTS (number of iterations without observing any improvement)
and the tabu tenure (tabu list size), while β and γ control the deterministic
neighbourhood oscillation, respectively.

Algorithm 1: HTS solution framework

Input: ITS,ωt,β,γ
1 s, s∗ ← ∅
2 Nf ← Build set() // Frequent customers
3 Nnf ← Build set() // Non-Frequent customers
4 for i ← 1 to Θ do
5 s ← Constructive Heuristic(Nf ,Nnf )
6 s′ ← HTS(s,ITS,ωt,β,γ)
7 if f(s′) < f(s∗) then
8 s∗ ← s′

9 end if
10 end for

Output: s∗

4.2. Constructive heuristic

Initial feasible solutions are generated via a randomised insertion heuris-
tic in two phases. In the first phase, the template routes, including frequent
customers only, are constructed, providing the basis for the second phase.
In the second phase, for each day, partial vehicle routing schedules are de-
termined by removing the frequent customers that do not require service on
that day. Then, the non-frequent customers are routed, using a cheapest
insertion criterion, forming the initial routing plans. Algorithm 2 provides
an overview of the proposed constructive heuristic. The generated solutions
contain a list of daily schedules with the corresponding customers’ visiting
sequence.

Firstly, the frequent customers are sorted in random order (Line 3). For
each frequent customer all feasible template insertion positions are considered
and the least-cost one is selected (Lines 4-11). It is highlighted that each
position’s insertion cost is calculated taking into account the travelling cost
for all periods the customer under consideration requires service.
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Algorithm 2: Randomised constructive heuristic scheme

Input: Nf ,Nnf

1 s ← ∅ //Generate empty solution

2 TR ← ∅ //Generate an empty template route schedule

3 Randomly Sort Frequent Customers(Nf )
4 for i ← 1 to |Nf | do
5 for k ← 1 to H do
6 for m ← 1 to hk do
7 v ← Find Feasible Least-Cost Vehicle
8 end for
9 end for

10 TR ← Insert Customer(v) // Route customer to vehicle

11 end for
12 for p ← 1 to |P | do
13 dsp ← ∅ //Generate an empty daily schedule

14 dsp ← Initialisation(TR,p,Nf ) //Adaptation of template

15 Randomly Sort Non-Frequent Customers of Period p(Np
nf )

16 for i ← 1 to |Np
nf | do

17 for k ← 1 to H do
18 for m ← 1 to hk do
19 v ← Find Feasible Least-Cost Vehicle
20 end for
21 end for
22 dsp ← Insert Customer (v) // Route customer to vehicle

23 end for
24 s ← Add(dsp)
25 end for

Output: s

In the next stage, for each period of the planning horizon, partial vehicle
routes are created by adopting the template route schedule and removing
the frequent customers that do not require service in that period (Lines
12-14). Subsequently, the non-frequent customers requiring service in that
period are identified and sorted in random order (Line 15). Adopting the
same rationale discussed above, for each non-frequent customer all feasible
insertion positions are examined and the customer is inserted in the least
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cost one (Lines 16-23).
It is worth noting that the constructed template routes can be infeasible

in terms of the vehicle capacity and route duration overall as there might
be frequent customers that do not require visits on certain days. However,
infeasible daily routes are not allowed during the solution construction pro-
cedure in terms of vehicle capacity, route duration and service consistency.
In the case that customer-vehicle compatibility restrictions apply, customers
are only allowed to be inserted in compatible vehicle routes. The construc-
tive heuristic terminates after routing all non-frequent customers. It should
be noted that in this paper it is assumed that the available fleet is sufficient
to visit all customers.

4.3. Neighbourhood structures

The proposed framework relies on two different groups of neighbourhood
structures: the ones affecting the frequent customer-to-vehicle assignment
and the ones affecting the total travelling distance. The inter-route neigh-
bourhood structures of the first group, namely ChangeVehicle, SwapVehicle
and ChangeVehicleChain, change the decisions made regarding the vehicles
visiting frequent customers (Figures 1, 2, 3). The ChangeVehicle neighbour-
hood proposed by Stavropoulou et al. (2019) is adopted and the correspond-
ing move is presented in Figure 1. The ChangeVehicle consists of altering the
assignment of frequent customer i from vehicle ma to vehicle mb. In Figure
1, the vehicle assignment of customer 5 changes for all days of the planning
horizon from Vehicle 1 to Vehicle 2.

In a similar manner, the SwapVehicle neighbourhood consists of inter-
changing the assignment of frequent customers i and j between vehicles ma

and mb (Figure 2). As shown in Figure 2, frequent customer 5 is serviced by
Vehicle 1 and customer 8 is serviced by Vehicle 2, before applying the cor-
responding SwapVehicle move, while afterwards Vehicle 1 services customer
8 and Vehicle 2 services customer 5, respectively. It is noteworthy that the
frequent customers under consideration do not have to have the same visiting
frequency. In this example, customer 8 needs to be visited every day of the
planning horizon, whereas customer 5 requires to be visited only twice.

Finally, a compound move neighbourhood structure is introduced, the
ChangeVehicleChain that reassigns frequent customer i from vehicle ma to
vehicle mb, while at the same time removing frequent customer j from vehicle
mb and assigning them to vehicle mc, creating a relocation chain (Figure
3). In Figure 3, customer 5 is assigned from Vehicle 1 to Vehicle 2, while
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Figure 1: ChangeVehicle move

Figure 2: SwapVehicle move

simultaneously customer 8 is moved from Vehicle 2 to Vehicle 3. Following
the same rationale as in the SwapVehicle neighbourhood, the considered
customers do not need to have the same visiting frequencies.

For the routing counterpart of the HConVRP, traditional edge-exchange
neighbourhood structures are adopted, namely intra- and inter-route 2-Opt,
Shift(1,0) and Swap(1,1) (Penna et al., 2019). It should be highlighted that
when the driver consistency constraints are active, the inter-route neigh-
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Figure 3: ChangeVehicleChain move

bourhoods apply to non-frequent customers only, as the frequent customers’
assignment to vehicles has to remain consistent throughout the planning
horizon.

From the implementation point of view, the advantage of the proposed
neighbourhood structures is that they are simple, flexible and easy to imple-
ment. A lexicographic search is followed for their evaluation, focusing only
on feasible neighbours and not considering infeasible ones. Emphasis is given
on direct feasibility gains to accelerate the evaluation process. For example,
subsets of moves are filtered out in advance on the basis of being infeasible
in terms of vehicle capacity.

4.4. Hierarchical Tabu Search

The HTS algorithm is used to further improve the initial solutions gen-
erated by the randomised constructive heuristic. The proposed HTS imple-
mentation is presented in Algorithm 3. HTS performs search trajectories by
moving iteratively from a solution s to the best admissible solution s′ of a
subset Φy(s) of a given neighbourhood structure y. During the search, solu-
tions are allowed to deteriorate to escape from local optima, while the most
recently encountered solutions’ characteristics are recorded in a short-term
memory, known as tabu list, to avoid cycling. The size ωt of tabu list is called
tabu tenure (Lines 5-12). The tabu status of a neighbouring solution is over-
ridden if certain aspiration criteria hold, i.e. when a new local optimum is
obtained (Line 14-15). The overall procedure iterates until a maximum num-
ber of iterations ITS, without observing any further improvement, is reached
(Line 4) and the best encountered solution s∗ is returned.
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Algorithm 3: HTS algorithm

Input: s,ITS,ωt,β,γ
//Set of neighbourhood moves, y = 1, 2, . . . , ymax//

1 TM ← ∅ //Generate an empty tabu moves set

2 s∗ ← s
3 s ← VND(s) //Distance minimisation

4 for z ← 1 to ITS do
5 y ← 1
6 if z % β ==0 then
7 y ← 2
8 if z % γ ==0 then
9 y ← ymax

10 Φy(s) ← Build Allowed Set(s, y)//Neighbourhood evaluation

11 s ← arg mins′∈Φy(s){f(s′)}
12 TM ← Update Tabu List(s,y,ωt)
13 s ← VND(s) //Distance minimisation

14 if f(s) < f(s∗) then
15 z ← 0, s∗ ← s
16 else
17 z ← z+1
18 end if
19 end for

Output: s∗

As far as the neighbourhood oscillation is concerned, a deterministic ap-
proach is followed, as neighbourhoods are explored in a predefined order
and a best-accept strategy is adopted. The ChangeVehicle neighbourhood
is mainly exploited, as it is the quickest to evaluate, and the SwapVehicle
and the ChangeVehicleChain neighbourhoods are explored every β and γ
iterations, respectively (Lines 5-9), in an effort to diversify local search by
exploring larger and more complex neighbourhoods. In this paper, β = 50
and γ = 75. If no feasible neighbours exist in the ChangeVehicle neighbour-
hood exploration then the next available neighbourhood, i.e. the SwapVehi-
cle, is searched and if it is not possible to obtain a feasible neighbour in the
SwapVehicle neighbourhood then the ChangeVehicleChain neighbourhood is
explored. If there are no feasible neighbours in any of the explored neigh-
bourhood structures then HTS terminates. It is noteworthy that at each

16



HTS iteration the VND algorithm is applied to improve the routing of the
customers and to “polish” the current solution in terms of the total travelling
distance (Line 13).

4.5. Variable Neighbourhood Descent

The VND algorithm is used to reduce the total travelling cost of a given
solution s. In broad terms, this algorithm follows a deterministic search
framework that explores a set of ordered neighbourhood structures of in-
creasing cardinality. The rationale of this framework is to apply a search
strategy by systematically changing neighbourhood structures. VND seeks
to explore the solution space by starting from a predefined neighbourhood
y and moving from a solution s to the best improving solution s′ of neigh-
bourhood Φy(s) (Lines 4-5). If the travelling cost of solution s′ is a new local
optimum, then the local optimum s∗ is updated and y is re-initialised (Lines
6-7). Otherwise, y is incremented and the corresponding neighbourhood is
evaluated (Lines 8-9). The algorithm terminates if no improving solution can
be obtained when exploring the last neighbourhood ymax (Line 3).

Algorithm 4: VND algorithm

Input: s
//Set of neighbourhood moves, y = 1, 2, . . . , ymax//

1 s∗ ← ∅
2 s∗ ← s
3 for y ← 1 to ymax do
4 Φy(s) ← Build Allowed Set(s, y)//Neighbourhood evaluation

5 s ← arg mins′∈Φy(s){f(s′)}
6 if f(s∗) > f(s) then
7 y ← 1, s∗ ← s
8 else
9 y ← y+1

10 end if
11 end for

Output: s∗

From the implementation viewpoint, neighbourhood change and selec-
tion is applied to the following order: 2-Opt, Swap(1,1) and Shift(1,0). It is
worth highlighting that in order to reduce computational effort of the neigh-
bourhood evaluation, only the necessary move combinations are evaluated.
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Specifically, since VND is mostly applied after HTS has performed a chosen
move to a solution, this means that at most three vehicles will have been
altered. Thus, it is necessary to evaluate the move combinations that involve
the modified routes only.

5. Computational Results

For the evaluation of the proposed metaheuristic a number of computa-
tional experiments were carried out utilising existing and newly generated
benchmark datasets. More specifically, to evaluate the robustness of the de-
veloped solution approach, the existing ConVRP benchmark instances were
used. Moreover, to further test the performance of the HTS algorithm, 11
new small-scale instances for the HConVRP were generated and solved to
optimality using the proposed mathematical model. Lastly, new medium
and large-scale HConVRP instances for algorithmic component testing and
managerial insight analysis were created.

The proposed HTS framework incorporates four input parameters, i.e. ωt

(tabu list size), ITS (HTS algorithm termination condition) and β and γ
(HTS neighbourhood oscillation parameters). A rich scientific literature is
devoted to TS algorithm (Gendreau and Potvin, 2019; Vela et al., 2020;
Mathlouthi et al., 2021); thus standard settings in the VRP literature are
used for the HTS with ωt = 50 and ITS = 30000, providing a good balance
between effectiveness and computational time consumption. Moreover, β
and γ are set to 50 and 75, respectively, as discussed in section 4.4. As far
as the multi-start mechanism parameter Θ is concerned, the formula n

10
is

utilised, where n is the number of customers of the instance (Stavropoulou
et al., 2019).

All experimental results reported in the following sections consider the
aforementioned fixed parameter settings over five runs (apart from section 5.2
in which 10 runs were conducted for fairness in comparison). The average
and best results of these runs are reported, denoted as TTavg and TTmin

respectively, along with the average computational times, denoted as CT. The
proposed metaheuristic was coded in Java and all computational experiments
were performed on a 3.30 GHz Intel Core i5-4590 PC over a single thread.

5.1. Benchmark datasets

The existing ConVRP benchmark dataset (Dataset A) consists of 12
medium and large-scale problem instances, containing 50 to 199 customers,
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divided into two groups. The first group contains seven problem instances,
considering vehicle capacity constraints only. The second group includes both
vehicle capacity and route duration constraints. A 5-day planning horizon
with an unlimited fleet size is assumed. It should be highlighted that the ob-
jective function values refer to the sum of travelling distance and customer
service times, i.e. the total en route time. To follow the proposed algorithm’s
rationale, one vehicle type was assumed, i.e. H = 1, with F1 = 0, V1 = 1 and
B1 = 1. The available fleet size h1 was set equal to the fleet size reported in
Tarantilis et al. (2012). To be consistent with the literature practice and to
ensure a fair comparison with the state-of-the-art, the maximum arrival time
difference limit L was bounded based on the results of Groër et al. (2009).

To generate the HConVRP benchmark instances, the existing ConVRP
instances were adapted. The small-scale ConVRP instances contain up to 12
customers. A 3-day planning horizon is assumed and vehicle capacity and
route duration are constrained. The number of available vehicles is unlimited,
therefore, a fleet size and composition was defined experimentally. Addition-
ally, in some instances, a few frequent customers became non-frequent, as the
initial number of non-frequent customers was too small. Lastly, the small-
scale instances set was enriched by generating larger instances including 18
customers, adopting the same rules (Dataset B).

Following the same process, the medium and large-scale HConVRP bench-
mark instances were created (Dataset C). The fleet size and composition was
determined experimentally and the number of non-frequent customers were
altered accordingly. Thus, the medium and large-scale HConVRP benchmark
instances are grouped into three different sets according to the percentage
of non-frequent customers they include. The first set contains the smallest
percentage of non-frequent customers (15%)(set 1), in the second set 25% of
customers are non-frequent (set 2) whilst the third set contains the largest
percentage of non-frequent customers (50%)(set 3). As far as the fleet compo-
sition is concerned, the same rationale as in Duhamel et al. (2011) regarding
the correlation between capacity and fixed and variable costs was followed.
In this case, the vehicle capacities are uncorrelated to vehicle costs. For ex-
ample, the larger fixed costs to purchase a hybrid vehicle are offset by smaller
operating costs.

Lastly, to create the customer-vehicle incompatible HConVRP bench-
mark instances (Dataset D), the aforementioned medium and large-scale
HConVRP benchmark instances were modified. In particular, a scenario
where 25% of the customers require to be serviced by vehicles of a certain
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type was adopted. The remaining customers do not have any requirements,
hence they can be visited by any vehicle type. In the adopted scenario, 50%
of the customers imposing vehicle type compatibility constraints require to
be visited by smaller vehicles (i.e. the vehicle type with the smallest capac-
ity), while the remaining 50% require to be visited by larger vehicles (i.e. the
vehicle type with the largest capacity). Customers that need to be serviced
by smaller vehicles could be customers located in urban areas with narrow
streets and limited parking space, whilst customers that need to be serviced
by larger vehicles could be commercial customers demanding large delivery
quantities located in suburban areas.

5.2. Results for ConVRP benchmark instances (Dataset A)

This section presents the results obtained from the proposed algorithm on
the Dataset A instances of Groër et al. (2009) and compares them with the
state-of-the-art. Table 1 shows the corresponding results and computational
times (in seconds). As there is a number of metaheuristics that have been
used to tackle the ConVRP instances and due to lack of space, HTS algo-
rithm is compared with the two best-performing approaches, i.e. the LNS-SP
metaheuristic of Goeke et al. (2019) and the VNS metaheuristic of Xu and
Cai (2018). For each algorithm and each instance, the best and the aver-
age result obtained in 10 runs for the LNS-SP and the proposed HTS are
reported, denoted as TTmin and TTavg respectively. It is noteworthy that as
far as the VNS approach is concerned, the authors report only the average
results obtained in 10 runs. Therefore, the results presented in this table
are denoted as TTavg. The best-known solution in the literature is denoted
as BKS, the percentage gap of the best solution found by each algorithm to
BKS is denoted as ∆za, the percentage gap of the reported average solution
value to the BKS is denoted as ∆zb, and the average computational time in
seconds is denoted as CT. The average results over all instances are given in
the last row of the table. The best-known solutions are indicated in bold.

As illustrated in Table 1, the proposed HTS algorithm performed well,
compared to the state-of-the-art, and found one best-known solution. As far
as the computational time is concerned, the HTS framework required a com-
petitive computational time, proving its efficiency. According to Cordeau et
al. (2002), VRP heuristics should possess or be compared using four criteria:
accuracy, speed, simplicity and flexibility. Accuracy refers to the gap between
the obtained heuristic solution and optimal value (if existing) or best-known
solutions, simplicity refers to the ease of implementation related to a low
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Table 1: Comparative analysis on ConVRP instances
LNS-SP VNS HTS

# BKS TTmin TTavg CT1 ∆za ∆zb TTavg CT2 ∆zb TTmin TTavg CT3 ∆za ∆zb
P1 2121.84 2124.21 2128.46 40.50 0.11 0.31 2125.29 8.02 0.16 2135.70 2135.70 23.81 0.65 0.65
P2 3481.72 3494.77 3508.93 86.90 0.37 0.78 3529.01 11.23 1.36 3481.72 3489.48 83.49 0.00 0.22
P3 3278.36 3278.36 3296.87 195.30 0.00 0.56 3299.85 26.76 0.66 3308.50 3332.76 124.16 0.92 1.66
P4 4355.47 4410.68 4464.36 369.70 1.27 2.50 4433.74 42.51 1.80 4406.30 4434.55 175.19 1.17 1.82
P5 5480.00 5485.78 5581.53 477.60 0.11 1.85 5570.81 72.71 1.66 5529.40 5562.36 310.25 0.90 1.50
P6 4051.48 4051.48 4051.48 31.70 0.00 0.00 4051.48 8.12 0.00 4051.65 4051.65 16.36 0.00 0.00
P7 6645.05 6645.05 6645.05 73.60 0.00 0.00 6667.12 14.22 0.33 6652.06 6660.50 57.35 0.11 0.23
P8 7094.05 7094.05 7119.16 145.50 0.00 0.35 7132.48 28.25 0.54 7105.90 7116.65 102.85 0.17 0.32
P9 10318.99 10329.99 10371.52 367.60 0.11 0.51 10389.90 53.40 0.69 10341.26 10356.49 189.85 0.22 0.36
P10 12839.78 12839.78 12968.06 467.00 0.00 1.00 12927.80 85.68 0.69 12862.32 12886.59 231.68 0.18 0.36
P11 4447.45 4447.45 4493.58 227.10 0.00 1.04 4454.47 57.83 0.16 4458.48 4470.35 108.03 0.25 0.51
P12 3416.08 3416.08 3427.97 125.90 0.00 0.35 3489.07 16.41 2.14 3421.89 3431.60 95.69 0.17 0.45

Average 5627.52 5634.81 5671.41 217.37 0.16 0.77 5672.59 35.43 0.85 5646.27 5660.72 126.56 0.39 0.68
1 AMD FX-6300 3.50 GHz
2 Intel Core i5-6500 3.40 GHz
3 Intel Core i5-4590 3.30 GHz

number of parameters and flexibility is related to the ability of an algorithm
to accommodate various side constraints. As far as accuracy and speed are
concerned, the proposed metaheuristic provides a very good combination of
solution quality and speed. In terms of simplicity, HTS is a simple and easy
to implement framework as it incorporates only four user-defined parameters
and many deterministic components with randomness deriving only from
the solution construction heuristic, while both LNS-SP and VNS utilise a
number of parameters and several algorithmic components that introduce
randomness. Last, HTS is a flexible metaheuristic, accommodating various
side constraints, as shown in the computational experiments presented be-
low. All the above indicate that the HTS is a competitive solution method
for the ConVRP.

5.3. Results for HConVRP benchmark instances

In this section all the computational results obtained on the new small,
medium and large-scale benchmark instances for the HConVRP are dis-
cussed. In particular, Dataset B instances are solved to optimality using
a commercial solver and the proposed algorithm’s results are compared to
the optimal solutions. Moreover, Dataset C instances are used to test the
efficiency of the developed algorithmic components as well as to examine the
trade-off between the total transportation cost and the service consistency
constraints and customer-vehicle compatibility constraints. In the latter ex-
periments, apart from the total transportation cost, the focus is on the pro-
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vided service level, i.e. the maximum arrival time difference (Lmax), as low
values of this metric result in “more consistent” daily schedules.

5.3.1. Small-scale instances (Dataset B)

To further test the performance of the proposed metaheuristic, the gener-
ated Dataset B instances were solved to optimality, using a commercial solver
(ILOG CPLEX 12.7). Table 2 shows the optimal solutions and the results
obtained by the HTS framework. The optimal objective function value (TT),
the root node, the computational time in seconds (CT) and the number of
nodes examined during the CPLEX execution are reported for each optimal
solution. The best and average obtained objective function value over five
runs, denoted TTmin and TTavg, respectively, are reported for the proposed
metaheuristic. The percentage gap of the best and average objective function
values obtained by HTS compared to the optimal values, i.e. ∆za and ∆zb
respectively, are calculated. In all cases HTS took less than a second to find
the presented solutions, thus the corresponding computational times are not
reported.

Table 2: Comparative analysis on HConVRP small-scale instances
CPLEX HTS

# TT Root Node CT # Nodes TTmin TTavg ∆za ∆zb
P1 1162.16 1041.77 15.00 7392 1162.19 1170.94 0.00 0.76
P2 1115.06 1004.32 183.47 97921 1115.06 1116.51 0.00 0.13
P3 1028.34 912.96 97.47 54181 1028.34 1029.65 0.00 0.13
P4 1182.40 1097.07 37.19 11744 1182.40 1182.40 0.00 0.00
P5 1113.27 1002.85 277.72 108571 1113.27 1118.95 0.00 0.51
P6 1258.32 1039.43 771.17 227460 1258.65 1267.79 0.03 0.75
P7 1076.83 963.91 219.49 111977 1076.83 1080.92 0.00 0.38
P8 1101.50 1036.44 60.38 24232 1101.50 1120.82 0.00 1.75
P9 1240.51 1110.10 114.59 57719 1246.30 1252.46 0.47 0.96
P10 1169.56 1020.06 173.06 59797 1187.24 1194.85 1.51 2.16
P11 1183.45 1087.50 284770.64 64930379 1193.62 1200.53 0.86 1.44

Average 1148.31 1028.76 26065.47 5971943 1151.40 1157.80 0.26 0.82

As shown in Table 2, the proposed HTS framework managed to acquire
high quality solutions. Specifically, it obtained six optimal solutions, while
its average deviation from the optimal objective function values was 0.26%
(worst case performance is 1.51%). As far as its average performance is
concerned, the proposed solution method obtained an average deviation from
the optimal values of 0.82%, with a worst case performance of 2.16%.

Apart from solving the HConVRP version, different scenarios with dif-
ferent combinations of constraints were executed to further evaluate the ef-

22



fectiveness of the proposed metaheuristic, as well as examining the trade-off
of service consistency constraints (discussed in section 5.4). In particular,
three scenarios were adopted. The first scenario, shown in Table 3, imposes
only driver consistency constraints, whereas the second scenario, presented
in Table 4, assumes only arrival time consistency constraints. In the third
scenario, reported in Table 5, all service consistency constraints are inac-
tive; in this case the HConVRP is reduced to a multi-period HVRP. The
aforementioned tables use the same notation discussed in Table 2.

As far as the first scenario is concerned, constraints (12) of the mathe-
matical model, i.e. the constraints dictating arrival time consistency, became
inactive. Table 3 shows that HTS found the optimal solution in 9 out of 11
cases, with an average deviation from the optimal objective function values
of 0.25% (worst case performance is 2.79%). In addition, concerning the pro-
posed metaheuristic’s average performance, it obtained five optimal solutions
and an average deviation from the optimal values of 0.53%, with a worst case
performance of 4.4%.

Table 3: Comparative analysis on HConVRP small-scale instances(only driver consistency)

CPLEX HTS
# TT Root Node CT # Nodes TTmin TTavg ∆za ∆zb
P1 1162.16 1041.77 31.42 23137 1162.19 1162.19 0.00 0.00
P2 1114.83 1004.32 239.91 275888 1114.83 1116.69 0.00 0.17
P3 1023.26 912.96 32.08 23494 1051.85 1068.72 2.79 4.40
P4 1182.40 1097.06 112.59 61379 1182.40 1182.40 0.00 0.00
P5 1108.61 1002.85 195.44 102297 1108.61 1118.58 0.00 0.90
P6 1257.97 1039.43 1386.69 940462 1257.97 1258.05 0.00 0.01
P7 1076.79 963.91 313.26 217746 1076.79 1076.79 0.00 0.00
P8 1100.45 1036.44 73.36 52129 1100.45 1100.45 0.00 0.00
P9 1236.86 1110.10 1768.94 831942 1236.86 1240.39 0.00 0.29
P10 1151.82 1020.06 141.44 112973 1151.82 1151.82 0.00 0.00
P11 1181.94 1087.50 561827.75 181146805 1181.94 1181.94 0.00 0.00

Average 1145.19 1028.76 51465.72 16708022.91 1147.79 1150.73 0.25 0.53

In the second scenario, constraints (5) of the mathematical model, i.e.
the driver consistency constraints, were inactive. As shown in Table 4, the
proposed HTS framework managed to acquire three optimal solutions, while
its average deviation from the optimal objective function values was 0.36%
(worst case performance is 1.1%). As far as its average performance is con-
cerned, the proposed solution method obtained an average deviation from
the optimal values of 0.66%, with a worst case performance of 1.36%. It
should be noted that, in this scenario, CPLEX was unable to find the op-
timal solution for P11. Thus, the objective function value reported for P11
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(highlighted with an asterisk) is the MIP solution obtained by CPLEX, with
an optimality gap of 8.28%. For this reason, the objective function value of
the corresponding HTS solution is lower than the one obtained by CPLEX.
It is worth mentioning that ∆za and ∆zb for P11 are not included in the
average deviation calculation presented in the last row of Table 4.

Table 4: Comparative analysis on HConVRP small-scale instances(only arrival consis-
tency)

CPLEX HTS
# TT Root Node CT # Nodes TTmin TTavg ∆za ∆zb
P1 1133.09 1033.25 24.08 15075 1137.28 1140.13 0.37 0.62
P2 1091.88 1004.32 239.91 275888 1096.95 1106.69 0.46 1.36
P3 986.31 902.98 55.30 34165 991.48 992.43 0.52 0.62
P4 1164.28 1090.42 1557.51 676967 1164.28 1172.72 0.00 0.73
P5 1104.53 1001.17 7872.77 3126817 1110.45 1111.72 0.54 0.65
P6 1238.65 1033.12 11496.25 4142312 1252.24 1253.99 1.10 1.24
P7 1050.86 954.55 350.51 173024 1050.86 1052.26 0.00 0.13
P8 1094.89 1025.54 1312.97 619065 1094.89 1094.89 0.00 0.00
P9 1219.30 1104.06 5431.05 2948275 1226.08 1231.42 0.56 0.99
P10 1158.09 1010.91 8439.44 4747064 1158.73 1160.68 0.06 0.22
P11 1228.74∗ 1068.72 394482.91 73767236 1192.23 1204.27 (-2.97) (-1.99)

Average 1133.69 1020.82 39205.70 8229626.18 1134.13 1138.29 0.36 0.66

In the last scenario, constraints (5) and (12) of the mathematical model,
i.e. both the driver and arrival time consistency constraints, became inac-
tive. Table 5 shows that HTS found six optimal solutions, with an average
deviation from the optimal objective function values of 0.22% (worst case
performance is 0.87%). In addition, concerning the proposed metaheuristic’s
average performance, it obtained five optimal solutions and an average de-
viation from the optimal values of 0.47%, with a worst case performance of
2.2%.

All the aforementioned results demonstrate the effectiveness of the pro-
posed HTS framework and its flexibility to adapt to different combinations
of service consistency constraints.

5.3.2. Medium and large-scale instances (Dataset C)

As shown above, the computational time for solving instances of realistic
size to optimality is excessive. For this reason, larger instances were solved
using the HTS metaheuristic framework. A number of computational exper-
iments were carried out on these instances to test the performance of the
proposed algorithmic mechanisms.
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Table 5: Comparative analysis on multi-period HVRP small-scale instances
CPLEX HTS

# TT Root Node CT # Nodes TTmin TTavg ∆za ∆zb
P1 1132.60 1073.73 1.55 3368 1132.60 1132.60 0.00 0.00
P2 1089.39 1003.82 795.84 740291 1094.97 1094.97 0.51 0.51
P3 980.72 921.45 7.50 11534 980.72 1002.28 0.00 2.20
P4 1159.82 1098.49 5.20 6597 1159.82 1159.82 0.00 0.00
P5 1064.67 1017.88 9.47 14609 1073.04 1076.14 0.79 1.08
P6 1236.00 1033.12 22892.20 24859699 1238.24 1240.76 0.18 0.39
P7 1050.86 972.91 11.94 14156 1050.86 1050.86 0.00 0.00
P8 1087.01 1034.54 10.66 12201 1087.01 1087.01 0.00 0.00
P9 1214.08 1104.06 42.03 50261 1214.08 1214.08 0.00 0.00
P10 1141.54 1030.06 29.69 37555 1151.46 1151.46 0.87 0.87
P11 1168.47 1068.72 459788.73 159011177 1168.82 1169.62 0.03 0.10

Average 1120.47 1032.62 43963.16 16796495.27 1122.87 1125.42 0.22 0.47

Initially, the contribution of the hierarchical scheme is examined in terms
of the effectiveness (obtained solution quality), service consistency and effi-
ciency (required computational effort). More specifically, various computa-
tional experiments were conducted without invoking the VND algorithm to
perform the lower level search, aiming to optimise the routing of the cus-
tomers (denoted as HTS-noVND). Additionally, the proposed deterministic
oscillation of neighbourhoods of the HTS algorithm is compared to the “com-
mon” random oscillation of neighbourhood structures adopted in most TS
implementations (denoted as TS). It is worth highlighting that both HTS-
noVND and TS use the same fixed parameter settings with HTS to ensure
fairness in their comparison. Moreover, it is noteworthy that in all the ex-
periments presented in this section, L is not bounded. The corresponding
computational results are summarised in Table 6. For each algorithm and
each instance, the average total transportation cost (TTavg), the average
maximum arrival time difference (Lmax) and the average computational time
in seconds (CT) over five runs are reported. Finally, the %Gap between
HTS framework and HTS-noVND version, denoted as %Gap1, along with
the %Gap between HTS algorithm and TS algorithm, denoted as %Gap2,
were calculated.

As far as the contribution of the hierarchical search framework is con-
cerned, in all cases the proposed HTS algorithm proved superior compared
to the corresponding single-level HTS-noVND scheme (without the VND
component). In particular, the HTS metaheuristic outperformed the HTS-
noVND algorithm in terms of the obtained solutions’ objective function
value, with an average deviation of 12.26%, achieving improvements of up
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Table 6: Results on HConVRP medium and large-scale instances
HTS HTS-noVND TS

# TTavg Lmax CT TTavg Lmax CT TTavg Lmax CT %Gap1 %Gap2
P1 11417.35 134.99 46.20 11841.84 134.70 32.46 11518.38 87.02 687.39 -3.72 -0.88
P2 11338.74 168.22 115.68 12659.15 160.85 151.33 11366.00 213.98 358.83 -11.65 -0.24
P3 10722.74 129.80 133.39 11358.74 126.48 231.95 10503.93 310.47 3492.12 -5.93 2.04
P4 15840.05 136.74 210.30 16646.72 135.70 248.40 15473.77 157.58 1240.39 -5.09 2.31
P5 19867.96 98.98 504.57 20891.16 119.77 373.76 19859.19 267.23 7162.74 -5.15 0.04
P6 12096.82 245.77 63.94 12675.80 225.74 16.51 12238.79 140.82 514.74 -4.79 -1.17
P7 12735.75 260.07 118.17 13067.09 218.53 99.78 12016.62 474.49 995.72 -2.60 5.65
P8 10712.07 265.69 151.68 11356.33 249.31 441.50 11001.62 250.13 8164.84 -6.01 -2.70
P9 14665.99 278.57 649.68 15749.04 245.55 1201.65 15005.47 280.10 4714.78 -7.38 -2.31
P10 19563.84 277.40 1345.24 20544.80 236.68 813.55 19414.82 353.34 5926.73 -5.01 0.76
P11 13787.72 205.18 434.77 15081.97 212.93 602.94 13929.81 221.45 6337.08 -9.39 -1.03
P12 13462.23 128.12 207.46 14430.29 135.34 282.42 13518.29 238.18 1159.56 -7.19 -0.42

Average(set 1) 13850.94 194.13 331.76 14691.91 183.47 374.69 13820.56 249.57 3396.24 -6.16 0.17
P13 9628.27 123.42 16.06 10219.27 145.50 17.54 9647.58 226.17 301.60 -6.14 -0.20
P14 10995.86 169.39 101.40 11813.62 152.38 47.91 10885.61 232.98 874.18 -7.44 1.00
P15 9873.55 141.49 61.12 10403.28 145.48 127.75 9901.57 273.04 2002.68 -5.37 -0.28
P16 14518.13 136.22 409.48 15571.73 158.29 563.56 14612.74 252.08 6591.88 -7.26 -0.65
P17 17889.12 124.61 1052.83 19286.04 150.29 1184.74 17846.94 311.71 12552.35 -7.81 0.24
P18 10035.62 224.21 34.81 11041.55 206.57 17.28 10076.87 251.23 289.75 -10.02 -0.41
P19 11078.79 233.46 129.69 13006.85 221.98 58.19 11025.67 240.49 473.95 -17.40 0.48
P20 10572.45 264.94 225.61 11678.05 230.80 304.22 10408.36 308.65 1006.40 -10.46 1.55
P21 14204.24 239.30 627.21 15382.26 213.85 1060.88 14155.24 319.89 9507.97 -8.29 0.34
P22 18063.81 251.77 1549.95 20630.05 241.91 1937.02 18217.70 362.56 12260.48 -14.21 -0.85
P23 11625.48 234.99 400.90 13665.89 195.37 310.08 11290.49 1064.35 2370.56 -17.55 2.88
P24 12973.11 153.30 144.54 14034.27 126.07 84.94 12841.18 302.95 940.77 -8.18 1.02

Average(set 2) 12621.54 191.43 396.13 13894.41 182.38 476.18 12575.83 345.51 4097.71 -10.01 0.43
P25 9094.71 127.24 21.87 10178.14 171.92 3.64 9094.80 564.11 178.85 -11.91 0.00
P26 9810.23 184.60 77.85 11236.92 174.98 11.14 9897.76 358.03 637.24 -14.54 -0.89
P27 7933.24 145.67 85.09 9311.37 175.16 31.53 8223.13 347.91 532.46 -17.37 -3.65
P28 11794.33 149.28 315.39 13473.98 197.16 85.65 12031.97 408.79 2778.97 -14.24 -2.01
P29 14361.33 120.59 998.28 16654.13 159.51 527.06 14446.67 293.70 5670.96 -15.97 -0.59
P30 8086.79 180.49 45.78 11206.00 174.40 7.85 8639.76 329.63 45.37 -38.57 -6.84
P31 9324.83 207.73 54.04 11931.87 183.82 28.42 9873.35 325.20 58.74 -27.96 -5.88
P32 8546.57 251.94 72.24 10078.29 272.66 68.25 9084.90 504.04 1094.39 -17.92 -6.30
P33 11660.87 231.94 290.17 14758.12 199.39 395.07 11735.59 356.77 1326.92 -26.56 -0.64
P34 14174.31 246.12 467.61 17178.95 217.76 344.13 14131.08 737.71 5393.03 -21.20 0.30
P35 10374.90 232.63 274.63 12601.46 226.26 84.42 10541.72 607.17 701.53 -21.46 -1.61
P36 10684.56 159.60 65.82 12787.91 187.17 26.21 10628.45 397.51 334.68 -19.69 0.53

Average(set 3) 10487.22 186.49 230.73 12616.43 195.02 134.45 10694.10 435.88 1562.76 -20.62 -2.30
Average 12319.90 190.68 319.54 13734.25 186.95 328.44 12363.50 343.65 3018.91 -12.26 -0.57

to 38.57%. The highest average deviation was observed in the problem set
with the highest percentage of non-frequent customers (set 3). This demon-
strates that the routing counterpart of the HConVRP becomes more crucial
as the number of non-frequent customers increases. Thus, a strategy of ef-
fectively routing the customers within the daily schedules can lead to high
quality solutions. As shown in Table 6, both algorithms obtained similar
service consistency, i.e. in terms of the average Lmax, and required compara-
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ble computational times, with the HTS being faster than the HTS-noVND.
All the aforementioned demonstrate that the contribution of the proposed
hierarchical search framework is major, improving significantly the overall
performance and expediting the overall search process in terms of computa-
tional times.

Another interesting point of investigation is the oscillation of neighbour-
hood structures within the HTS component implementation. In the proposed
HTS algorithm, the neighbourhood oscillation is deterministic, while TS algo-
rithm implementations commonly adopt a random oscillation of neighbour-
hood structures. For this reason, several computational experiments were
performed to evaluate both implementations. All in all, comparable results
were obtained by the HTS and TS frameworks, indicating the effectiveness
of the proposed HTS metaheuristic. Specifically, HTS obtained slightly bet-
ter solutions in terms of the average objective function value than the TS
algorithm, with improvements of up to 6.84%. Furthermore, HTS was much
faster than the TS algorithm, requiring 10 times less computational time to
acquire its solutions. The above indicate that even though, in the case of TS,
more computational time was devoted in terms of exploring more complex
neighbourhoods, the acquired results did not reflect this. These findings are
in line with the literature. Penna et al. (2019) developed a hybrid heuristic
to solve a broad class of HVRPs and reported that optimising systematically
the vehicle assignment decisions, in combination with changes of sequences,
did not yield large solution improvements, as one might have expected. Thus,
a more intensive search on classical neighbourhoods seems to be more effi-
cient than an extensive search for alternative fleet assignment in the HVRP
context. Finally, the HTS solutions were “more consistent” than the TS
ones by 80.22%. This is due to the fact that if the routing and the vehicle
assignment of a number of frequent customers is constantly altered, without
restraining L, then the daily schedules become “less consistent” in terms of
the average obtained Lmax. Overall, it can be concluded that the hierarchical
design of the proposed framework, incorporating a number of deterministic
components, guides and accelerates the search process towards high quality
solutions.

5.4. Cost of service consistency

In this section, the price of service consistency is discussed based on com-
putational results using the generated Dataset B and Dataset C instances.
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More specifically, the optimal total transportation costs for the Dataset B in-
stances following different scenarios with different combinations of constraints
are presented in section 5.4.1 to examine the cost of service consistency.

Moreover, the trade-off of service consistency is further evaluated utilising
the Dataset C instances. In particular, the effect of decreasing the maximum
arrival time difference, i.e. providing more consistent customer service, on
the total transportation cost, the fixed cost and the variable cost is examined.
Thus, various computational experiments were carried out limiting the value
of L. To determine reasonable values for L, HTS was run on each instance
without constraining L. The vector of Lmax found during the aforementioned
runs is indicated as L1. The vectors corresponding to the reduced L values
are indicated as L0.8, L0.6, L0.4 and L0.2 and are computed by multiplying L1

by 0.8, 0.6, 0.4 and 0.2, respectively. It should be highlighted that in this
paper no idling is allowed either at the depot or at any customer’s location.
Thus, tightening the arrival time difference cannot be overcome by shifting
the vehicles’ departure times or by increasing the number of vehicles, since
the fleet size is fixed, as in Kovacs et al. (2014b), resulting in a cost increase,
presented in section 5.4.2.

5.4.1. Small-scale instances

To initially evaluate the trade-off of service consistency, different sce-
narios with different combinations of constraints were solved to optimality.
Figure 4 shows the obtained computational results. As expected, impos-
ing consistency constraints results in an increase of the total transportation
cost. In particular, when applying arrival time consistency constraints there
is a 0.76% increase in the total transportation cost compared to the cost of
multi-period HVRP, whereas when imposing driver consistency constraints
the increase in the total transportation cost is 2.32%. Finally, when combin-
ing both arrival time and driver consistency constraints, i.e. in the HConVRP
version, the cost increase rises to 2.61%. It is noteworthy that in the scenario
that only driver consistency constraints are active, a minimal difference from
the HConVRP solution cost is observed. This is due to the fact that driver
consistency leads to solutions following the template route rationale. There-
fore, the solutions obtained by imposing only driver consistency constraints
are quite similar to the ones obtained when both driver and arrival time
consistency constraints are followed.
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Figure 4: Cost of service consistency - small-scale instances

5.4.2. Cost of arrival time consistency

After analysing the effect of the different consistency constraints to the
total transportation cost using the Dataset B instances, a number of com-
putational experiments were conducted utilising the Dataset C instances.
Figures 5, 6 and 7 present the obtained computational results.

Figure 5 summarises the effect of decreasing L on the average objective
function value, i.e. the total transportation cost. As expected, restricting
the value of L leads to increased transportation costs. As depicted in Figure
5, decreasing L by 60% results in an average transportation cost increase of
1.27%, whereas further decreasing L by 20% leads to a further cost increase
of 4.04%. This means that improving service consistency by 60% costs 1.27%
in the total transportation costs, while improving service consistency by 80%
costs 5.31% in the total transportation costs.

Figure 6 illustrates the effect of offering better service consistency on
the average fixed costs. It is clear that constraining the value of L leads to
increased fixed costs. In particular, Figure 6 indicates that decreasing L by
60% causes an average increase of 0.42% in the fixed costs, while decreasing
L by 80% causes an average increase of 1.22%. This means that improving
the offered service consistency by 60% is followed by an increase of 0.42%
in fixed costs, whereas improving service consistency by 80% costs 1.22% in
fixed costs. It should be highlighted that the results concerning L0.6 and L0.4
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Figure 5: Effect of L value on the total transportation cost

Figure 6: Effect of L value on the fixed cost

demonstrate a smaller increase in the fixed costs compared to the L0.8 results.
This is due to the fact that by further constraining the arrival time, more
customers have been grouped and assigned to specific vehicles, resulting in
the utilisation of fewer vehicles on certain days of the planning horizon. For
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this reason, the increase of the fixed costs was smaller in these cases.

Figure 7: Effect of L value on the variable cost

Figure 7 depicts the impact of improving service consistency on the av-
erage variable costs. Following the same trend as the total transportation
costs, limiting L by 60% results in an average increase of 1.95% in the vari-
able costs, whilst limiting L by 80% results in an average increase of 8.53%.
In other words, an improvement on service consistency of 60% costs 1.95%
in variable costs, whereas improving service consistency by 80% costs 8.53%
in variable costs.

These findings agree with the literature. According to Emadikhiav et al.
(2020), more consistent schedules can be obtained with a modest increase
in transportation costs (increase from 1% up to 2.2%). Stavropoulou et al.
(2019) study the ConVRP with profits and report that improving arrival
time consistency by 60% results in an average increase of 6.18% in the trav-
elling costs. Subramanyam and Gounaris (2016) demonstrate that in order
to provide consistent service in the ConTSP context, cost is increased by
1.31% on average. Additionally, while examining the multi-objective version
of the ConVRP, Kovacs et al. (2015b) showed that improving arrival time
consistency by 70% leads to an average increase in the travelling distance of
2.43%.

Overall, the findings presented above indicate that decision-makers should
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carefully consider the service consistency level that will be offered to cus-
tomers as this can have an impact on overall transportation costs, imposing
a negative effect on profitability.

5.5. Cost of customer-vehicle incompatibility

In this section, the cost of customer-vehicle incompatibility constraints is
examined. In particular, the effect of imposing customer-vehicle incompati-
bility restrictions on the total transportation cost, the variable cost, the fixed
cost and Lmax is discussed. Therefore, several computational experiments
were performed, utilising the generated Dataset D instances. Since these
instances reflect the scenario that certain customers require to be serviced
only by specific vehicle types, this resulted in cases where the constructive
heuristic was unable to find an initial solution. For this reason, the construc-
tive heuristic was modified to prioritise the routing of the customers with
compatibility constraints. However, for some instances this was still insuf-
ficient and the fleet size had to be increased. It should be highlighted that
both driver and arrival time consistency constraints were active for these ex-
periments. The obtained computational results are summarised in Table 7.
Specifically, Table 7 presents the % Gap between the solutions obtained by
HTS on the Dataset C and Dataset D instances in terms of the average total
transportation cost (TT), the average variable cost (VC), the average fixed
cost (FC) and the average Lmax.

Table 7: Cost of customer-vehicle incompatibility

% Diff from Dataset C instances
TT VC FC Lmax

set 1 5.63 10.39 -0.33 -4.72
set 2 7.87 12.79 1.84 -2.12
set 3 3.74 4.36 2.89 -1.72

Overall 5.85 9.42 1.31 -2.88

As expected, dictating customer-vehicle compatibility restrictions leads to
increased transportation costs. As shown in Table 7, the average total trans-
portation cost is increased by 5.85%, the average variable cost by 9.42%,
whereas the average fixed cost is increased by 1.31%. However, customer-
vehicle restrictions seem to produce “more consistent” solutions, since the
obtained average Lmax is decreased by 2.88%. This is due to the fact that by
imposing customer-vehicle compatibility constraints, more customers have
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been grouped and assigned to specific vehicles, resulting in producing “more
consistent” solutions. For the same reason, fewer vehicles were utilised on
certain days of the planning horizon, leading to the average fixed cost de-
creasing by 0.33% in set 1.

6. Conclusions

Customer relationship management is key as it enhances customer sat-
isfaction and retention. Thus, companies focus on providing consistent cus-
tomer service in an attempt to form long-term relationships with their cus-
tomers and cultivate brand loyalty.

A new customer-oriented routing problem was introduced, the Consis-
tent Vehicle Routing Problem with heterogeneous fleet (HConVRP), taking
into account a fixed fleet with heterogeneous characteristics, along with per-
son and arrival time consistency. A mathematical model capturing all the
attributes of the problem was developed and utilised to solve small-scale in-
stances to optimality. For addressing larger instances, a hierarchical Tabu
Search (HTS) framework was proposed, utilising an upper-level Tabu Search
and an underlying Variable Neighbourhood Descent algorithm, exploiting
different search landscapes. For the performance evaluation of the proposed
framework, existing and newly generated benchmark instances were utilised,
proving its flexibility, effectiveness and efficiency. Overall, it was shown that
the hierarchical design of the HTS framework, incorporating a number of
deterministic components, guides and accelerates the search process towards
high quality solutions.

Our computational study indicates that improving the offered arrival time
consistency by 80% leads to an increase of 5.31% in the total transportation
cost, an increase of 1.22% in fixed costs and an increase of 8.53% in variable
costs on average. Furthermore, when customers impose vehicle compatibility
constraints, the total transportation cost is increased by 5.85%, the variable
cost by 9.42%, whereas the fixed cost is increased by 1.31% on average. All
these are valuable managerial insights demonstrating that decision-makers
should consider carefully the level of service consistency offered to customers
as this may have a negative impact on the costs.

One research direction worth pursuing would be further enriching the
problem by incorporating additional realistic attributes, such as dynamic
customer requests and stochastic demand or time-dependent travel times.
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