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To  overcome  the  shortcomings  of  the conventional  trial  and  error  mode  for  new  material

development, a full-process collaborative design platform for steel rolling is developed based on

an industrial internet of things (IIoT) system in this study. Equipment, process and product entities

are  modeled  in  both  the  physical  domain  and  the  cyber  domain.  A systematic  data-driven

Mamdani-type  fuzzy  modelling  methodology  is  proposed  to  map  the  relationship  between

material  chemical  compositions,  organizational  structures,  process  parameters  and  mechanical

performances.  The  proposed  methodology  employs  a  random forest  (RF)  algorithm to  select

important  parameters  from  mechanism  models,  simulation  models  and  production  process

variables,  utilizes  a  K-means  algorithm  to  merge  diverse  steel  grades  into  sub-clusters,  and

implements a multi-objective particle swarm optimization (MOPSO) algorithm to further improve

the fuzzy model in terms of both the structure and the membership function parameters. A dataset

of 3,500 steel coils collected by the prototype platform built in a large hot rolling mill is used to

evaluate the performance of the proposed approach. Experiment results show that the proposed

methodology performs well in predicting the yield strength, tensile strength and elongation, with

the coverage probability over 90% under 10% deviation and about 70% under 5% deviation on

average. 

Keywords: new material development,  collaborative design platform, mechanical performance

prediction, Mamdani-type fuzzy modelling, industrial internet of things (IIoT)

1. Introduction

The  development  of  new  materials  is  to  determine  the  chemical  compositions  and  process

parameters of each production step to yield the final mechanical and physical properties, such as

the tensile strength, yield strength, elongation, hardness and corrosion behavior [1]. In the field of

material  science,  the  conventional  product  design  process  includes  several  stages,  namely,

requirements collection, discovery, small batch production, property optimization, manufacturing,

deployment and so on [2]. This trial and error development mode is not only very time-consuming

and  costly,  but  also  highly  depending  upon  engineer  experience  accumulated  from  previous



projects.  Due  to  the  multidisciplinary  and  highly  contextual  nature  of  engineering  design,

engineering or scientific teams from different institutions require some mechanisms of knowledge

sharing  and  effective  collaboration  [3][4].  Thus,  how  to  quickly  design  or  adjust  chemical

compositions and key processes of materials according to customer needs is an urgent problem in

both industry and academia.

The booming of modern information technologies, especially high performance computing, big

data and artificial intelligence, have greatly accelerated the new material development process [5]

[6]. The Materials Genome Initiative (MGI), laid out by US President Barack Obama in 2011,

fueled the integration of machine learning methods and material design and discovery [7]. Shen et

al.  [8] applied  the  least  squares  regression  method  to  predict  the  electrical  performance  of

nanocomposites  materials  based  on  high-throughput  simulations  and  proposed  a  theoretical

framework for the design of high-density energy storage materials.  Lu et al.  [1] established a

structure-property mapping relationship between hybrid organic-inorganic perovskites  (HOIPs)

bandgap and material features, such as iron radii, tolerance factor and so on. Two lead-free HOIPs

with proper bandgap and excellent environmental stability are discovered from 5,158 unexplored

candidates for solar cells. Wan et al. [9] established a PSO-BP artificial neural network model to

predict the hot deformation behaviors of Zr-4 alloy. 

Since the development of  new materials involves the collaboration of  multiple  processes  and

departments, how to integrate mechanism and process knowledge between different disciplines

has become a crucial problem. Based on the newly rising cyber physical systems (CPS) [10][11], a

collaborative design  platform for  new alloy material  development is  introduced in  this  study,

which is composed of the physical domain, the cyber domain and the data domain. In the cyber

domain,  a  multiscale,  multidisciplinary  digital  mapping  of  physical  process  is  built,  and  the

simulation and optimization of production through data analysis and decision-making are realized.

Product-related requirements, production, testing, and usage data are automatically collected into

the data domain with the help of an IIoT system. Through design knowledge management, product

quality  tracking  and  design  optimization,  and  full-process  design  process  visualization,  the

digitization and intelligence of material development is realized. As the core part of the product

quality tracking, the material mechanical performance prediction based on data, mechanism model

and domain knowledge is presented in detail.

At present, there are two main approaches to establish the structure and mechanical performance

prediction model [12]. One is to build the strengthening mechanism mathematical models based

on the simulation and laboratory experimental results, such as Nitride precipitation and austenite

transformation  [13]. Li et al.  [14] established a temperature-dependent quantitative relationship

between yield strength and Young’s modulus as well as Poisson’s ratio for the metallic materials

based on the equivalence between heat energy and distortional strain energy. Bambacha et al. [15]

created the grain size calculation and mathematical stability model for the multi-pass hot rolling

processes, which determines the product properties from the micro level. Shao et al. [16] studied

the  changes  of  microstructures  and  tensile  properties  of  medium-Mn  steel  in  hot  rolling  at

different critical annealing temperatures by trial production experiments. The other type is to use

machine  learning  algorithms  to  establish  black-box  models  of  the  relation  between  process

parameters and performances after collecting a large amount of historical production data  [17].

Mohanty et al.  [17] designed an online mechanical property prediction system for hot rolled IF

steel with a 22-input neural network. Xu et al.  [18] converted the chemical compositions and



processing parameters into two-dimension images to extract features and proposed a convolutional

neural  network  (CNN)-based  method to  predict  the  mechanical  properties of  hot  rolled  steel.

However, there are some drawbacks for both the mechanism models and the data-driven black-

box models. An accurate first-principles based mathematical model is difficult to establish, since

the rolling process is a very complex and dynamic nonlinear system. On the other hand, the black-

box NN models lack interpretability and the knowledge behind the models cannot be understood

fully. To better utilize the big data and expert knowledge, this paper proposes an optimized fuzzy

inference  model,  which  has  been  widely  used  for  modeling  complex  systems,  nonlinear

identification,  regression  and classification  tasks  [21],  to  predict  the  mechanical  properties  of

materials based on the collaborative product development platform. 

The rest of this paper is organized as follows. Section 2 introduces the proposed collaborative

design platform for new alloy material development, detailing the physical domain, cyber domain

and data domain. The parameters selection of computational models based on  a  random forest

(RF) algorithm  is  analyzed  and  described  in  Section  3.  Then  in  Section  4,  the  mechanical

properties prediction based on an optimized Mamdani fuzzy model is  presented, including the

grouping  of  steel  grades.  Finally  conclusions  are  drawn  in  Section  5,  together  with  some

discussion of potential future work.

2. Proposed collaborative design platform for new alloy material development

In the material collaborative design platform as shown in Figure 1, a full-process digital model is

established to interact with the physical entities (such as equipment, process, and product), with

the  help  of production and simulation data.  In  order to  meet users’ requirements  for material

performance  and  quality,  the  corresponding  relationship  between  material  compositions,

organizational structures, process parameters and material performances is explored in the cyber

domain, and the experiments and production verification are conducted in the physical domain.

Through  a  few  small-batch  trials  and  iterations,  the  optimized  compositions  and  process

parameters are obtained. The modules involved in the collaborative design platform are detailed

below.



Figure 1 Collaborative design platform for alloy material 

2.1Physical domain

Physical entities are the basis of the system, which include production processes, equipment and

various forms of steel products. Iron and steel-making is a typical process production, which is

characterized  by  heterogeneous,  dynamic  and  multi-scale.  The  production  equipment  covers

dozens  of  sub-processes,  from  coking,  ironmaking,  steelmaking  to  casting  and  rolling,  and

contains  a  variety  of  types,  including  machinery,  hydraulics,  instrumentation  and  control

equipment. Equipment has attributes such as health statuses, production capacities, and working

conditions, which are directly related to the product quality and output.

Production  processes  of  iron  and  steel-making  include  the  interconnection  and  cooperative

operation of material flow, energy flow, and information flow. The material flow such as the iron

undergoes a series of complex physical and chemical reactions to achieve the phase transformation

and  deformation  driven  by  the  energy  flow,  mainly  the  carbon,  ultimately  achieving  the

optimization  of  dissipation  under  specific  environmental  conditions.  Information  flow  is  the

carrier of characterization and production control of the material flow and energy flow during the

manufacturing process.

Products are generated at every stage of the steel production, including continuous casting billets,

slabs, hot-rolled strips, and cold-rolled strips.  According to different  usages and performances,

there are hundreds of types of products at each stage. The products of the upstream process will

have a genetic influence on the quality of the downstream process. For example, the crown and

crack of the hot rolling process have a direct effect on the shape and surface of the cold rolling

process. Therefore, it is necessary to establish a digital model of the whole production process at

different levels to achieve the synergy and optimal control of products, processes and quality.



2.2 Cyber domain

1) Three-dimensional visualization models

The three-dimensional visualization model can provide multi-dimensional, multi-temporal-scale

high-fidelity digital mapping for physical entities,  including 3D geometric  models,  kinematics

models, and dynamics models. The 3D geometric models display the static characteristics of the

actual physical objects, including the component parts, spatial structures, assembly relationship

and other attributes of the equipment.  It  is developed through 3D modeling software, such as

SolidWorks, 3DMAX, Pro, etc. The kinematic models reflect the motion characteristics of the

physical  objects,  including  attributes  such  as  control  logic  and  production  execution  actions.

Through the  analysis  of  real-time or  historical  production  data  by  the motion  state  observer,

combined with the automation control model, the kinematic models are driven to synchronize with

the production state of physical objects, including linear motion, rotary motion, and multi-axis

synchronized motion. The dynamic models describe the inherent characteristics of the physical

objects, including vibration and inertia, elastoplastic deformation (such as shape wave, bending,

and deviation), and potential interaction properties between different objects.

 

a) 3D visualization model of the rolling production line

 

b) Equipment model - finishing mill       c) Product model - digital coil

Figure 2 3D visualization model of an actual rolling factory

Figure 2 shows some 3D visualization models of an actual rolling factory. Figure 2a) displays the

rolling  production  line,  including  sub-processes  from  slab  storage,  heating  furnace  to  rough

rolling, finishing rolling, and crimping. In this process, the slab is finally processed into products

that  meet the quality  requirements,  mainly the  size,  temperature,  plate  shape,  surface,  etc.  In

addition to mapping the real-time status of production processes and materials, the rolling rhythm,

output, energy consumption of gas, water,  and electricity related to the production line are all



synchronized to the  3D visualization model.  Figure 2b) shows the visualization model of the

finishing roll equipment. Based on the historical data, the accuracy change and state evolution of

its service processes are monitored. Through the correlation analysis with process data such as

production  stability,  product  quality  and  control  accuracy,  the  influence  between  the  service

quality of equipment and production status are mined. Figure 2c) is a visualization model of the

steel coil. Process data, equipment data, operation records, energy consumption data, quality data,

cost data, and delivery data in the full life cycle of product production are integrated into the cyber

steel coils.

2) Computational models

The computational  models  are  the core of the  design platform,  including mechanism models,

simulation  models  and  data-driven  models.  Among  them,  mechanism  models  are  theoretical

formulas between the mechanical properties and internal structures of the strip steel as well as the

process parameters based on the law of organization evolution and strengthening mechanism in

the actual production process. Simulation models are combinations of mathematical modeling and

computing solution to simulate various physical and chemical processes, including mechanics,

fluids, thermodynamics, dynamics and other fields. The data-driven models build black-box or

grey-box models to establish the mapping relationship between inputs and outputs through the

learning of historical data.

Figure 3 Computational model of the rolling production

a) Mechanism models

Small and uniform crystal grains help stabilize the strength, plasticity and toughness of the metal.

As shown in Figure 3, in the heating process, the grain growth model and the microalloying re-

dissolution  model  lead  the  major  organization  evolution,  where  the  heating  temperature  and

holding time play a decisive role.  In the rolling process,  the recrystallization model is  mainly

considered, where the deformed metal is heated at a high temperature. The elongated and broken

crystal grains then re-nucleate and grow into new uniform and fine equiaxed crystals due to the



increased atomic diffusion capacity. After the deformed metal is recrystallized, the strength and

hardness of the metal are significantly reduced, while the plasticity  and toughness are greatly

improved. The cooling process is mainly related to the phase transition model, during which the

type, shape and distribution of precipitates have direct impacts on the strength and toughness of

the strip.

Taking the recrystallization during rough rolling as an example, dynamic recrystallization occurs

when the deformation in a single pass is greater than the critical strain. The percentage of dynamic

recrystallization X d can be expressed by the following formula.

X d=1−exp¿¿                (1)

where ε is the single pass strain,εc is the critical strain for dynamic recrystallization, ε p is the
peak strain at which the stress reaches the peak value, k ,  n,  a3 are material constants related to

the steel type. 

The grain size after dynamic recrystallization is:

d drx=a Zb                        (2)

where a  and b are material-related constants, Z  is Zener-Hollomon parameter which is calculated

as  (3),  in  which  Q1 is  dynamic  recrystallization  activation  energy,  T drx  is  deformation

temperature.

 Z=
˙

ε exp  (
Q1

RT drx

¿)¿                       (3)

b) Simulation models

As shown in Figure 3, simulation models in the rolling production mainly include the temperature

field, stress field, microstructure field and phase field model. Among them, the temperature field

and stress field are mainly simulated by the finite element method (FEM). The principle of FEM is

to discretize the solution domain of the continuum into several nodes and connect them to each

other through the nodes on their boundaries. According to the variational principle, finite element

equations  for  solving  the  unknown  variables  of  the  nodes  are  established.  Commonly  used

simulation software tools in material design include ABAQUS and MARC. The simulation of

microstructure field can be realized by FEM or cellular automata (CA). CA is a local dynamic

system with discrete time and space. By simply determining the interaction rules between adjacent

cells, complex evolutionary phenomena can be simulated. In the process of recrystallization, the

cell  transformation  rules  include  thermal  activation  mechanism,  grain  boundary  migration

mechanism and energy dissipation mechanism. Phase field simulation (PFS) reflects the phase

transitions,  transformations  and  microstructures  evolution.  It  bridges  the  gap  between atomic

simulations such as density functional  theory (DFT), molecular dynamics (MD), Monte Carlo

(MC), etc., and macro continuum methods. Except for some commercial software packages, such

as  Thermo-calc,  more  and  more  open-source  software  packages  that  have  integrated  PFS

capabilities emerged, including MOOSE and PRISMS [25]. 

c) Data-driven models 

The expressions involved in the mechanism models and simulation models are usually complex,

and it is difficult to establish an accurate mathematical model of the organization evolution under

different  working  conditions.  Furthermore,  steel  production  has significant  nonlinearity,  time-



varying, strong coupling and multi-parameter characteristics. Since most variables in the model

cannot be detected in real time, necessary assumptions and simplifications are required, which will

inevitably lead to the modeling error. A large number of running logs and production data has

accumulated with big data characteristics such as multi-source heterogeneous, multi-time scale,

and multi-space-time time series correlation. A hybrid modeling method that combines mechanism

models and data models has become the frontier development direction of complex industrial

quality modeling and optimization control system.

As shown  in  Figure  3,  the  data  models  of  the  product  design platform include  performance

prediction model, steel grades merging model and association rule mining model. Among them,

the prediction model refers to the use of machine learning algorithms to establish a mathematical

model between performances and organizations or process parameters. There are hundreds of steel

grades in actual production, and some steel grades have less measured performance data. The

merging  model  is  used  to  cluster  different  steel  grades  to  improve  the  applicability  of  the

prediction model. The association rule model is to mine the parameters with the greatest impact on

product quality from thousands of process parameters, which improves the performance of the

prediction algorithm, and also facilitates the reverse optimization of the parameters.

2.3 Data domain

Figure 4 Data domain of the rolling factory

After  decades  of  development,  steel  industries  have  generally  formed  a  mature  five-level

information system, i.e., the equipment control system (L1), the process control system (L2), the

workshop level manufacturing execution (MES) system (L3), enterprise resource planning (ERP)

system (L4) and the inter-enterprise management decision support system (L5). In the production

and operation processes, the five-level systems continuously generate data, which differ greatly in

data  protocols,  data  types,  and  real-time  performance.  To  solve  the  problem  of  protocol



incompatibility  and  intercommunication  difficulty,  an  End-Edge-Cloud  collaborative  IIoT

platform (see Figure 4) to provide services for data collection and storage is established, which

supports  highly  reliable  equipment  interoperability  and  multi-source  heterogeneous  data

integration.  Industrial  field  devices  are  connected  to  the  edge  layer  of  the  platform through

industrial communication protocols such as industrial ethernet and buses, and wireless protocols

such as  4G/5G and  NB-IoT.  Regarding the  multi-source,  heterogeneous and multi-granularity

feature  of  industrial  data,  different  interface  protocols  are  adapted  through  plug-in  drivers.

Protocol parsing middleware technology is compatible with various protocols such as Modbus,

OPC, CAN, Profibus, and software communication interfaces are applied to achieve data format

conversion and unification. HTTP, MQTT and other protocols are used to transmit data from the

edge  to  the  cloud  to  achieve  remote  data  access.  Multi-source  heterogeneous  data  are  then

integrated into a hybrid cloud-based storage platform that supports stream computing, real-time

computing  and  offline  computing,  creating  a  global  data  space  for  the  collaborative  design

platform.

3. Parameters selection from computational models

This  paper  takes  the  CSP (Compact  Strip  Production)  production line  of  a  steel  plant  as  an

example, which is a cutting-edge rolling technology with the advantages of compact process, low

investment and low energy consumption. The chemical compositions, material parameters as well

as the process parameters are regarded as the design variables, and the mechanical properties are

optimized including yield strength (YS), tensile strength (TS) and elongation (ER). In addition to

the main chemical compositions - Fe,  the steel  product contains dozens of standing elements,

incidental elements, cryptic elements and alloying elements. Among them, C, N and Nb, Ti, V will

form compounds that inhibit the recrystallization of austenite, while P, Ca, and Si have the effect

of solid solution strengthening. As a good deoxidizer and desulfurizer, Mn will coarsen crystal

grains. The material parameters mainly include the slab thickness and the final strip thickness,

which are related to the reduction rate of finishing mill stand and indirectly affect the crystal

transformation.  To  meet  the  final  properties  performance,  the  chemical  compositions  has  to

cooperate with the appropriate process parameters. The reduction ratio, rolling temperature, and

rolling velocity of each pass are the key process parameters to ensure complete recrystallization,

while the cooling rate is significant for austenite transformation. 

Table 1 A part of the selected variables

Variable

s
Unit Range Mean Description

Chemical

composition
C wt-%

0.02

2
0.204 0.073

N wt-% 0 0.053 0.005

Mn wt-%
0.08

6
1.5 0.157

S wt-% 0 0.018 0.003

Si wt-% 0.00 0.27 0.045



2

Material parameters
THK mm

54.1

2
90 67.82 Slab thickness

IRT ℃ 973 1203 1120 Initial rolling temperature

Process parameters

RV-F1 m/s
0.33

3
0.826 0.576 Rolling velocity of F1

RT-F1 ℃ 943 1098 1051 Rolling temperature of F1 

RDR-F4 % 16.1 42.3 32.6 Rack drop rate

CR ℃/s 5.34 65.4 28.9 Cooling Rate

AGS-F1 μm 20.3 81.7 29.4 Austenite grain size of F1

AGR-F4 % 20.8 54.6 43.1
Austenite grain growth rate –

F4

RR-F7 % 0.1 1 0.5 Recrystallization rate

Model parameter

FPTT ℃ 815 898 865
Ferrite phase transition

temperature

FVF % 5 100 90 Ferrite volume fraction

FAG μm 1.6 21 11 Ferrite grain size

Physical properties

YS MPa 194 504 307 Yield Strength

TS MPa 251 626 394 Tensile Strength

ER % 20.5 54.5 38 Elongation Rate

About 4,000 samples with more than 500 dimensions of parameters are collected by the IIoT

platform. Forty-two parameters are selected as inputs based on mechanism models and process

knowledge. Table 1 lists the value range and descriptions of key parameters. Figure 5 a) illustrates

the  closeness of  the correlation between various variables through the correlation matrix,  and

Figure 5 b) shows the distribution histogram of the sample's mechanical properties.

a)  Variable correlation matrix           b) Histogram of physical properties

Figure 5 Correlation analysis and properties distribution 



In order to further reduce the dimensionality of the data-driven model, this paper uses a random

forest (RF) algorithm to calculate the importance of features, which is measured by the impurity

index of each variable. The impurity of the dataset can be evaluated by the Gini coefficient, which

describes the uncertainty degree of a random variable, and has been used as an index for selecting

the optimal feature in a decision tree for classification problems. The Gini coefficient is expressed

by the following formula.

'

' 2

1 1

1
K K

m mk mk mk
k kk k

GI p p p
 

   
               (4)  

where GI m is the Gini  index of the feature m,  K  is the number of categories of feature m, and

pmk  is the proportion of category k  in feature m.

The importance of the j-th feature of the sample in the dataset can be represented by the amount of

change in the Gini index before and after the n-th node branch of the decision tree.

( )Gini
jn n l rVIM GI GI GI  

                  (5)

where GI l is the Gini index of the left node, and GI r is the Gini index of the right node after the

branch.

Figure 6 shows the feature importance of 42 parameters for YS, TS and ER. It can be seen that

different parameters have different effects on the three mechanical properties. In the performance

prediction algorithm, the corresponding high-importance parameters will  be selected for model

training according to the prediction index.

Figure 6 The feature importance for YS, TS and ER



4. Mechanical properties prediction based on the optimized fuzzy model

4.1   Grouping of steel grades

As described above, the establishment of a mapping relationship between mechanical properties

and chemical compositions as well as process parameters is the core of new material development.

A data-driven mechanical performance prediction model is designed by combining the mechanism

models and simulation models in the collaborative design platform. There are often hundreds of

different grades of steel in a steel industry, some of which have similar chemical compositions and

properties.  We  first  take  advantages  of  the clustering  method to  automatically  merge  diverse

grades  into  sub-clusters,  which  effectively  reduces  the  search  space  of  design  variables  and

facilitates flexible production of multiple varieties and small scales. In this paper, the K-means

algorithm is used to conduct steel merging on 4,000 samples covering 35 different grades of steel.

Calinski-Harabasz (CH) and Silhouette Coefficient (SC) are chosen as the evaluation indices to

determine the number of clusters. 

The  CH index  is  the  ratio  of  dispersity  to  closeness,  as  shown in  (6).  tr (B) represents  the

closeness within clusters and is calculated by the sum of distances between individual points in a

cluster and the center of the cluster, while tr (W ) represents the dispersity between clusters and is

calculated by the sum of the distances between the center point of each cluster and the center point

of the dataset. From the definition it can be drawn that a larger CH index means higher similarity

within the cluster and lower similarity between clusters, resulting in good clustering performance.

( ) / ( 1)
( )

( ) / ( )

tr B K
CH K

tr W N K




                       (6) 

where 

2

1

( )
k

j
j

tr B z z


 
, 

2

1

( )
i

k

k

i j
j x z

tr W x z
 

  
, z  is the mean of the entire dataset, jz

 is the

mean of the j-th cluster, N is the number of samples, and K represents the number of clusters.

The SC index is calculated as (7):

1

1

max( , )

N
i i

i ii

b a
SC

N a b


 

                         (7)

where ia  represents the average distance between sample i and other samples in its cluster, while

ib  is the average distance between sample i and samples in other clusters.



Figure 7 Index values of different cluster number

Figure 7 shows the change curve of the two index values when the number of clusters ranges from

2 to 14. It  can be seen from the figure that when the number of clusters is  5, the clustering

performance corresponding to the two indexes are both optimal. Table 2 lists the representative

steel types and the number of steel grades in individual clusters when 35 steel types are grouped

into 5 clusters.

Table 2 Steel grades merging results 

Group ID Number of steel grades Representative steel grade

A 10 SAE1006B，SPHC2, SPHC-YH

B 5 SPA-H,

C 8 Q235B，

D 9 Q345B-L, SAPH440-P1

E 3 Q235B-L

4.2   Mamdani fuzzy model optimized by MOPSO

1) Mamdani based fuzzy inference

The Mamdani fuzzy inference is the most commonly used fuzzy modeling method, in which the

fuzzy implication is carried out by the minimum operator and the rule aggregation is implemented

by the maximum operator.

The Mamdani rules can be represented as follows:

R1:  if x1 is 
~
A1  and x2 is 

~
B1 ，then y is 

~
C1

R2:  if x1 is 
~
A2 and x2 is 

~
B 2，then y is 

~
C 2

Where R1 and R2 are different rules, 
x1

 and 
x2

 are inputs, 
y

 is the output, ~
A1

, ~
A2

, ~
B1

, ~
B2

, ~
C1

,



~
C 2

 is fuzzy subset of the domain of input and output variables, respectively. The fuzzy subset F is

described by its membership function  
μF (U )

, which maps each element in the domain U to a

value on [0,1]. The membership function can be in different forms such as trigonometric function,

sigmoid function, and Gaussian function.

Assume that there is a precondition: if  x1 is  
~
A¿  and  x2 is  

~
B¿ , then we can get the new fuzzy

subset of the domain y 
~
C ¿  according to (8). The reasoning process of Mamdani fuzzy inference is

shown in Figure 8. 

μ~C ¿( z )=V ¿ x ∈ X ¿
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Figure 8 Example of the Mamdani fuzzy reasoning process

2) Model structure and parameters optimized by MOPSO

It can be seen from the foregoing that the number of rules obtained by the fuzzy inference system

is positively correlated with the dimensionality of the input variables and the number of fuzzy sets.

The increase in the number of rules can improve the accuracy of model prediction. However,

excessive  amounts  of  rules  and  the  number  of  antecedents  in  each  rule  will  reduce  the

interpretability for human beings and increase the inconvenience for system control. In addition,



the exponentially increasing model complexity requires extremely high computing resources and

cost, which also limits the applicability of the model in industrial sites. Therefore, how to balance

the accuracy and complexity of the model is a difficult problem that the fuzzy inference system

needs to solved [26]. We use the MOPSO algorithm to simultaneously optimize the structure and

parameters of the Mamdani fuzzy system, of which the former includes the number of rules and

the antecedents of the rules, while the latter is mainly the mean and variance of the Gaussian

membership function.

Figure 9  Flowchart of the optimized Mamdani fuzzy model

Figure 9 shows the optimization process of Mamdani fuzzy inference system using the MOPSO

algorithm. The position of each particle in MOPSO contains structure and parameter information

of the fuzzy model. Each particle will determine the direction and adjust the corresponding speed

and position according to the fitness value until  the predetermined accuracy is reached. In the

multi-objective algorithm, the particles will update iteratively based on the dominance of different

fitness values, resulting in a set of Pareto solutions approaching the optimal frontier. The objective

function of this subject includes the following:

2

1

( ( ) ( ))
1 ( , )

n

i

Y i y i
obj RMSE Y n

n



 


                 (9)

' '
2

Nrule Nset
obj

Nrule Nset
 

                       (10)

where  obj1  is  the  root  mean  square  error  of  the  fuzzy  model,  'Nrule  and  'Nset  in  obj2

represent the number of fuzzy rules and the number of fuzzy sets, respectively. 

Fuzzy rules and fuzzy sets merging are also key steps in the model optimization. It is necessary to



merge similar fuzzy rules and delete contradictory fuzzy rules, in which the similarity of two

fuzzy rules is defined as the multiplicative of the similarity of the antecedents. 

1 2 1 2 2 2
1 1 1 2 1 2

1
( , ) ( , )

1 ( ) ( )

m m

i i
i i i i i i

SIM R R SIM A A
c c d d 

 
   

 
   (11)

where  1 2( , )SIM R R is  the  similarity between  rule  R1  and  R2,  1 2( , )i iSIM A A  is  the  similarity

between fuzzy set 1iA  and 2iA , m is the antecedent number of the fuzzy rule, 1ic
, 2ic

, 1id
, 2id

 is

the mean value and variance of the two fuzzy subsets, respectively. 

4.3  Experimental results

In order to verify the effectiveness of the proposed approach, the data of 3,500 coils  of steel

collected by the collaborative design platform built in a large hot rolling mill is used for training

and testing. As mentioned above, each roll of steel has 45-dimensional variables, of which 42-

dimensional  is  input,  including  15-dimensional  chemical  compositions,  14-dimensional

mechanism model parameters, and 13-dimensional process parameters. First, we use the K-means

clustering algorithm described in  Section  4.1  to  merge steel  types.  Among them,  1,127  coils

belong to class A, 735 coils belong to class B, 863 coils belongs to class C, 420 coils belongs to

class D, and 355 coils belong to class E. 75% of the data is used for training, 10% of the data is

used for validation and the remaining 15% is used for final testing. To verify the improvement

effect of the optimization algorithm on fuzzy system, the original Mamdani-type fuzzy modeling

method  (FM)  and  the  optimized  fuzzy  system (FM-MOPSO)  are  both  implemented  for  the

performance prediction of YS, TS and ER. To compare the prediction accuracy improvement of

the steel type merging approach, the mechanical performance prediction model is also established

in each cluster of the steel group. Since the collaborative design platform can supplement the data

model with the help of mechanism and simulation models, we also establish a 28-dimensional

fuzzy prediction model in each cluster without the mechanism model. The parameter configuration

of MOPSO is illustrated in Table 3, which was inspired from suggestions included in  [26]. The

experiments were carried over for 30 runs. One set of results  out of the 30 runs is  randomly

selected and shown in the following figures.

Table 3 Parameters configuration of MOPSO

Parameter Value

Number of particles Nump=30

Acceleration factor
c1=1.5,c2=1.5

Scaling factor
k1=0.5,k2=1.5

Velocity boundary Vmax=0.5*L

Error limitation Error=1e-4



Figure 10 shows the distribution of the membership functions of the two inputs (x1 and x15) of the

initial model and the two optimized models. It is obvious that the initial model has 20 fuzzy sets,

some  of  which  has  a  high  degree  of  similarity.  The  mean  and  variance  of  the  optimized

membership function are selected from all Pareto solutions with 12 rules and 8 rules, respectively.

It can be seen that the membership function of x1 is mainly concentrated in the two intervals [120

130] and [180 190], while x15 is [1 1.5] and [3.5 4]. For different optimized models, more rules

and fuzzy sets will bring higher accuracy, while models with fewer rules and parameters have a

simpler structure and better interpretability.

(a) the initial model

(b) an optimized model with 12 rules

(c) an optimized model with 8 rules

Figure 10 The fuzzy models’ membership functions

Since customers’ requirements for mechanical properties of steel products are usually put forward

in the form of intervals, we take prediction interval coverage probability (PICP) as one of the

performance  evaluation  indicators  for  prediction  algorithm,  which  is  the  probability  that  the

targets lie within the constructed intervals. We calculated the PICP of the 10% and 5% deviation

intervals respectively. Figure 11 illustrates the 10% deviation intervals of testing samples’ actual

value and the predicted values of the FM-MOPSO and the FM algorithm. It can be seen that most

of the predicted values of the two algorithms lie the 10% deviation intervals, and the FM-MOPSO

algorithm has obvious advantages over the FM algorithm.



(a) the FM model

(b) the FM-MOPSO model

Figure 11 The predicted values and the 10% deviation intervals

Table  4 lists  the evaluation index results  of  the  four  types  of  algorithms to  predict  the  three

mechanical properties. It can be seen that the fuzzy model after steel classification and parameter

optimization has the best prediction performance. The root mean square error (RMSE) of YS is

reduced  by  10.2% on  average  compared  with  the  FM-MOPSO  algorithm without  steel  type

merging,  and  reduced  by  30.6%  compared  with  the  FM  algorithm,  and  reduced  by  24.9%

compared with the FM-MOPSO algorithm without mechanism model data. Among different steel

grade types, the prediction effect of class C is the best, with the 10% PICP of YS reaches 98%,

and the 10% PICP of TS reaches 99%. This is mainly attributed to the fact that class C is mainly

composed of Q235B steel grade, which is the most stable product produced by steel mills and has

a large number of sample data. On the contrary, due to the small number of samples, the prediction

effect of class D and class E are worse than other steel grades, with most of the 5% PICP less than

70%. At the same time, we can see that the mechanism model data has improved the algorithm

more than the  steel  grade  merging,  which can illustrate  the effectiveness  of the  collaborative

design platform. In terms of different mechanical properties, TS has the best predictive effect, YS

the second, and ER the worst. 



Table 4 Performance evaluation indicators for different prediction algorithms

YS TS ER

RMSE
10

%
5%

RMS

E

10

%
5% RMSE

10

%
5%

FM-MOPSO

Cluster A 18.89 0.93 0.72 19.23 0.94
0.8

3
2.80 0.90 0.78

Cluster B 17.65 0.96 0.74 19.11 0.96
0.8

2
2.71 0.91 0.79

Cluster C 15.90 0.98 0.78 17.62 0.99
0.8

6
2.46 0.93 0.76

Cluster D 21.04 0.89 0.63 22.87 0.91
0.6

9
3.13 0.85 0.64

Cluster E 20.50 0.90 0.71 21.14 0.93
0.7

4
2.99 0.88 0.67

FM-MOPSO

without

mechanism data

Cluster A 25.36 0.83 0.65 24.09 0.89
0.6

8
3.49 0.79 0.59

Cluster B 23.64 0.84 0.67 23.76 0.90
0.6

9
3.55 0.76 0.58

Cluster C 18.91 0.94 0.75 19.93 0.97
0.8

2
2.75 0.91 0.73

Cluster D 28.24 0.80 0.60 28.79 0.86
0.6

8
3.31 0.81 0.60

Cluster E 29.05 0.77 0.61 30.12 0.85
0.6

9
4.09 0.81 0.60

FM-MOPSO without

clustering
20.92 0.92 0.71 21.45 0.94 0.75 2.98 0.88 0.69

FM 27.08 0.81 0.63 26.67 0.88 0.70 3.45 0.83 0.61

Figure 12 Response surfaces of the optimized 12-rule YS prediction model

In  order  to  verify  the  effectiveness  of  the  developed model  from the perspective of  physical

interpretation, Figure 12 shows the three-dimensional response surface (RS) of the YS prediction

model under optimized 12-rule model. The RS is drawn where the output variable changes to

some input variables while keeping the others unchanged. The left figure is the RS of YS with the

chemical content C and Ca, while the right is the RS between YS and the thickness of the slab and



the initial heating temperature. The figures are consistent with those variable effect graphs in,

which  have  been  confirmed  to  follow  the  expected  behavior  predicted  by  theory  or  expert

knowledge.

5. Conclusion and future work

In  this  study,  a  full-process  collaborative  design platform  is  established  to  accelerate  the

development of new alloy materials. Based on the mechanism models,  simulation models and

data-driven  models  in  the  platform,  a  systematic  data-driven  Mamdani-type  fuzzy  modelling

methodology  is  proposed  to  map  the  relationship  between  material  chemical  compositions,

organizational structures,  process parameters and material mechanical performances.  Forty-two

parameters are selected as input from more than 500 dimensional variables using a random forest

(RF) algorithm, while the YS, TS and ER are chosen as the output parameters.  The  K-means

algorithm is utilized to merge 35 different steel grades into 5 groups. Taking both the RMSE and

the number of fuzzy rules and fuzzy sets as objective values, the MOPSO algorithm is developed

to further improve the fuzzy model in terms of both the structure and the membership function

parameters. The effectiveness of the proposed approach was verified on the data of 3,500 coils of

steel collected from a large hot rolling mill. Results show that the proposed 12-rules FM-MOPSO

with mechanism data and steel grades merging performs the best in the coverage probability and

RMSE. Among the results, the prediction effect of Q235B is the best, with the 10% PICP of YS

reaches 98%, and the 10% PICP of TS reaches 99%.

Since this study focuses on the prediction of the mechanical properties of steel products and the

analysis  of  influencing  factors,  the  reverse  design  and  optimization  of  the  components  and

parameters are still lacking. In future research, we will conduct research on process design and

adjustment based on the digital twin platform, combining experimental results and user feedback

information. In addition, we will also combine the quality control system to further analyze the

factors that affect product quality from different dimensions, such as surface defects, size, and

shape.
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