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Abstract

Corrosion of the reinforcing steel arising from contamination by chloride ions from de-icing
salt is the primary cause of deterioration of concrete bridges in the UK and many parts of the
world. Those elements of structures exposed to cyclic wetting and drying have already proven
the most vulnerable to corrosion damage. Chloride ions penetrate the concrete, resulting in
deterioration (cracking, spalling due to reinforcement corrosion).

Currently, the existing methods such as lon-Selective Electrode (ISE), Electrical Resistivity,
and Optical Fibre Sensor to detect the chloride level in marine concrete structures are
destructive, time-consuming, and unable to analyse large structures. This investigation aims to
use a non-destructive electromagnetic (EM) wave technique to determine the chloride level in

maritime concrete structures early to prevent the corrosion of the reinforcement developing.

An experimental programme was conducted to understand better the effect of different
saltwater concentrations in concrete samples. The described Electromagnetic (EM) wave
sensor operates at the frequency range between 2-13 GHz and a power of 0dBm using a Rohde
Schwarz ZVL13 Vector Network Analyser (VNA). The sensor was positioned in front of the
concrete specimens to determine chloride ions in the substantial sample. Finally, the graphical
interface package LabVIEW was used to control the sensor's frequency sweep and capture the

data from the sensor.

The experimental data obtained was analysed by the WEKA workbench tool to classify the
most critical frequency point to detect the level of chloride ions in concrete. The input
parameter was Sp1 measurements of one single frequency that has been selected by the
classification algorithm decision tree (J48). After selecting the most critical frequency point,
the Artificial Neural Network (ANN) models were trained by electromagnetic (EM) waves and
chloride profile experiments. The outcome results demonstrated that electromagnetic waves
have a response to saltwater concentrations. Therefore, the validation model was developed
using the ANN method, which exhibited an excellent capability of the microwave sensors to
validate the percentage of chloride ions per weight of cement with R?v (Validation) =0.986709
and root mean square error of validation (RMSEV)=0.000120.
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Chapter One: Introduction

1.1 Research background

Reinforced concrete (RC) is the main element within infrastructure worldwide due to its high
compressive and tensile strength and cost-effectiveness [1]. Its relative cheapness is because
of raw material availability; its versatility allows a broad range of applications and forms, and
with proper design and execution, its durability can be impressive. However, RC can be used
to construct docks, bridges, piers, floating platforms, and has many other kinds of marine
applications, both offshore and along coastlines. The primary cause of deterioration in
structures constructed of reinforced concrete is when the embedded steel corrodes due to
exposure to marine-type environments or salts used for de-icing; this is because of the actions
of chloride. The reinforcement steel provides the tensile strength; however, this may weaken
due to corrosion over time. Deteriorating strength occurs in a more pronounced way in
structures that are in industrial or marine environments [2]. As well as the reinforcement
corrosion, other kinds of deterioration mechanisms can occur in RC structures such as, for
example, freezing and thawing, acid attack, erosion/abrasion, mechanical loading, and alkali-
silica reaction (ASR) [3].

However, the principal, most common deterioration mechanism is reinforcement steel
corrosion [4]. Steel corrosion in concrete has two main causes, i.e., carbonation and chloride
attack. There is a reduction in the pH level of concrete due to carbon dioxide and chloride
penetration and the effects of moisture and oxygen. Tuutti’s (1982) classic model notes that it
can identify two periods of reinforced concrete service life, i.e., the initiation and propagation.
The initiation period is defined as that phase before the detection of steel depassivation. For
proper design in this phase, there is a need for information about the rate of chloride ingress
and critical depassivation condition. The period known as the propagation phase calls for
knowledge concerning the corrosion rate to make predictions regarding structural integrity [5].

1.1.1 Problems and processes in chloride-induced corrosion

Problems associated with corrosion that chlorides have induced within the steel reinforcement
within bridges are not just an issue in the UK, but it is a phenomenon worldwide that has serious
implications for both safety and economies. In 2002, a report was presented to Congress in the

United States on the costs of corrosion and strategies for prevention. According to the report
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by the Federal Highway Administration (FHWA), highway bridge corrosion has a cost to the
US economy of approximately £8.3 billion every year. In addition, there was an outlay
estimated for the following ten years of £3.8 billion for the replacement of structurally deficient
bridges, and £2 billion for maintenance and capital costs for superstructures (minus decks) and
substructures, as well as £0.5 billion for costs of painting to maintain steel bridges [6]. It was
stated by the American Society of Civil Engineers (ASCE) in 2009 that there was a need for
investment of £2.2trillion over five years to enhance structures in America to conditions that
were appropriate [7]. In Europe, more recently, a lot of the infrastructure related to transport
within the Atlantic area has an age of greater than fifty years. Many of the structures are in
severe deterioration as marine environments can be highly aggressive [8]. In Denmark, for
example, the costs of damage, down to programs for maintenance and delays in traffic, can

reach a level of between 15% and 40% of construction costs [9].

In the latter half of the twentieth century, since chloride could cause significant corrosion of
the steel in RC structures, a great deal of research effort began to occur. In fact, over the last
50 years, many papers have been published that presented critical chloride content (Cerit) values
within reinforced concrete [10-17]. The process of penetration of chloride and carbonation is
shown in Figure 1.1[18]. There are chlorides present in potable water; as such, one should
never use potable water with significant chloride content within the mixing of concrete.
However, chlorides may build up within the lifespan of a structure due to environmental
factors. If, for instance, there is the exposure of a building to salty seawater or de-icing salts,
there can be a much quicker accumulation of the chlorides experienced. With the reaching of
a threshold chloride concentration value for the steel bars, there can be chloride-induced
corrosion, which destroys thin passive layers in construction products. If there is high concrete
alkalinity during the construction phase, the steel bars can be corrosion protection. However,
carbonation can occur when the carbon dioxide within the environment is involved in a reaction
with the alkaline constituents, which results in pH reduction around the steel. The corrosion
rate for reinforcement steel is raised significantly through both carbonation and chloride attacks
[19].

2|Page



oxygen,
chlorides

e

Carbon
dioxide

RN -

4

Figure 1.1: Process of penetration of chloride and carbonation within concrete [18]

Reinforced concrete durability is mainly affected by aggressive substances penetrating the
concrete and degrading the concrete and the reinforcement. The environmental load that is most
critical for structures within a marine environment is chlorides since they cause serious damage

through corrosion [20].

1.1.2 Different exposure conditions for maritime-related concrete structures

To investigate practices for addressing corrosion-related deterioration as well as bridge
maintenance and repair, it has been noted that the construction of pier columns, being in a
coastal area, leads to them experiencing a constantly changing climate [18]. Chloride attack is
a preliminary problem for bridges because it leads to concrete reinforcement corrosion in parts
of RC structures. Since columns are load-carrying elements in bridges, they are essential.
However, columns are frequently exposed to chloride ions due to salt utilised in removing ice
or splashing of water or marine waters [21]. There can normally be the categorisation of
material strength and quality by considering the ratio of water to cement (w/c) and the
associated porosity ratio. The smallest degree of pore porosity is an indication of less contact.
As regards the association of the permeability with the porous structure, moisture loss increases
along with porosity. A high level of porosity results in the transfer of water inside the concrete
more easily and faster [22]. Furthermore, in the context of melted ice and snow due to salts for
de-icing, as along roadways, the presence of chloride ions can lead to concrete becoming
contaminated. A corrosive deterioration process can be persistent because of the presence of
such chloride ions along with the availability of moisture, carbon dioxide, and oxygen [23].
The exposure conditions in marine environments are highly aggressive for reinforced concrete
structures, and reinforcement corrosion is the most significant deterioration mechanism.

Corrosion of reinforcement causes the concrete cover to crack and delaminate, resulting in a
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reduction in the cross-section of the reinforcement [24]. When that happens, the load-bearing
capacity within the structural elements can be reduced very significantly. The corrosion starts
as a result of the penetration of chloride at the reinforcement level or through the carbonation
of the concrete cover [25].

The majority of structures made using RC are designed in such a way that their performance is
good enough during their construction life due to their careful fabrication. However, RC can,
as in the case of steel, be severely impacted through environmental attack; corrosion of steel
reinforcement is considered the main reason for RC structure deterioration in marine
environments. Carbonation occurs because of the entry of air-based CO- into the concrete and
the consequent reaction with the hydroxides present, such as, for instance, calcium hydroxide,
which leads to carbonate formation. Calcium carbonate production occurs when there is a

reaction with the carbon dioxide as shown in the equation [24]:-
Ca(OH)2 + CO; — CaCOs + H20 Eq [1]

In response to the reaction, the pH of the concrete decreases to perhaps 8.5, and, consequently,
there is a lack of steadiness in the passive film on the steel. With carbonation of good quality
steel, the process mentioned above is somewhat slower, with a rate of carbonation proceeding
at maybe 1mm per year penetrated in concrete. Concrete carbonation may be affected
significantly by low content of cement, low strength of concrete, and high water to cement
ratio. Salt and moisture ingress into concrete can all be permitted if there are quality control
problems such as any construction defects, e.g. an inadequate cover depth, or issues of structure
age, or high permeability of the concrete. When salt and moisture concentrations are high, there
can be an acceleration of the reinforcing steel corrosion and major deterioration of the concrete
structure. The category of exposure is very apparent for concrete structures in marine
environments, an example being those bridge elements that are part of the substructure [26].
There are three distinct areas of concrete structure concerning corrosion that can be identified

in marine environments, i.e.

1. The submerged zone (parts always lying beneath the seawater surface).
2. Tidal movement and splashing (parts that are wet and dry intermittently).
3. The atmospheric zone (those parts well above the mean of the high tide that are only

infrequently wetted) [27].

4|Page



There is the most rapid deterioration in the splash zone because both moisture and oxygen
are available. Corrosion rates are also high in the tidal zone at rates higher than those for
the atmospheric or submerged zones; those zones are often critical in the construction of
concrete. Generally, the corrosion rate is lower in fully immersed zones with less oxygen

availability [27]. Corrosion zones related to steel piles are shown below in Figure 1.2 [28].
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Figure 1.2: Corrosion zones in steel Piles [28]

1.1.3 Electromagnetic (EM) waves compared with different methods to determine the
chloride level in concrete structures.

Many existing methods have been employed as non-destructive and destructive techniques in
detecting free chloride ions within concrete structures. Conventional methods for determining
chloride ion levels within concrete have included, for example, the test for rapid chloride
permeability. Nowadays, destructive techniques are applied worldwide to detect chloride
levels. However, there is broad recognition that they time-consuming procedures and it would
improve assessment methodologies appreciably if a non-destructive technique could provide
the information during testing [29].

Non-destructive techniques have also been employed in the investigation of levels of chloride
ion penetration within concrete. There has been classification of non-destructive methods into
three primary groups [30] ion-selective electrodes (ISE) [31, 32], electrical resistivity (ER) [33,
34], and optical fibre sensors (OFS) [35, 36]. Each technique has its particular advantages and

disadvantages; all the techniques are described in further detail within the review of the
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literature in Chapter 2. Imaging through magnetic resonance is an appropriate technique for
profiling the distribution of chloride and sodium within cement-based materials [37].
Nevertheless, nuclear magnetic resonance (NMR) can determine the presence and
concentrations of chloride in principle. For NMR, the low sensitivity of detection of chloride
makes its discovery tough, therefore, demanding the use of MRI systems with high-field
superconducting magnets to increase signal intensity. This restricts the use of MRI in studying
cement-based materials because these kinds of MRI systems are costly and not widely
available [38]. Currently, there has been a focus of study upon applying the method of
ultrasound (US) for assessing concrete deterioration and strength. Also, the use of radar that
is ground penetrating is a non-destructive method for investigation of chloride ions’ presence
and their ingress within concrete structures [39-42]. Since existing techniques for measuring
chloride ions have their limitations, further investigations are undertaken within this research.
As such, positive study results can provide the industry with a less time-consuming technique,
with lower cost, and non-destructive nature for determining the level of chloride ions within
the highway and marine concrete structures. Generally, electromagnetic (EM) sensors are
employed in various industrial processes, especially those working at microwave or radio
frequencies such as in chemical processing [43], in medicine [44], and within the analysis of
civil engineering materials [45]. The potential of using microwave sensors for the detection of
moisture content within concrete structures was demonstrated by researchers based in the
institute of Built Environment and Sustainable Technologies (BEST) within Liverpool John
Moores University (LIMU) [46].

The purpose of this project is to determine the level of chloride ions in industrial concrete
structures. Therefore, this research has investigated whether electromagnetic waves can detect
the amount of chloride in different saltwater concentrations at various depths through the use
of a set horn antenna. However, in principle, the EM sensor can detect the level of chloride
based upon the operating frequency; this will be shown in chapter 6. Combining the EM waves
technique and artificial neural network (ANN) analysis contributes to new knowledge since it
experimentally demonstrates the use of microwave sensors at a frequency range of 2-12 GHz
for monitoring and determining the level of chloride ions within the concrete. The advantages
of using Electromagnetic (EM) waves are a high penetration depth and relatively lower cost,
allowing for a flexible sensor design and providing non-destructive measurement in a real-time

manner.
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1.2 Aim

This research aims to investigate and validate to use of Electromagnetic (EM) waves as a non-

destructive technique to determine the chloride level in reinforced concrete structures.

1.3 Objectives

The specific objectives of the research are as follows:

X/
X4

To investigate the effect of chloride attack and problems associated with chloride

L)

presence in steel-reinforced concrete structures.

%+ To evaluate the current state-of-the-art techniques for the determination of the level of
chloride ions content and moisture content of concrete structures.

% To determine the chloride ions level in concrete samples under various saltwater
concentrations at different concrete depths using other techniques.

% To apply the artificial neural network ANN technique to evaluate the performance of
the proposed EM technique in comparison to the chlorimeter tool, commonly used as a

gold standard in the industry.

1.4 Novelty

For the first time, this thesis demonstrated the combination of an electromagnetic wave as a
non-destructive technigue with an application of an artificial neural network ANN to determine
chloride concentration in concrete. The detected level is below the currently used gold standard
techniques and, therefore, can transform the early detection of deterioration in steel-reinforced
concrete structures. ANN was used to analyse the microwave wave signal to validate the level

of chloride ions in the concrete samples.

1.5 Overview of the Thesis

The thesis is divided into seven chapters to achieve the goal and objectives of this research
project. Chapter 1 has discussed the industry's major issues in relation to chloride-exposed
reinforced concrete. Chloride attack is a preliminary problem for bridges because it leads to
concrete reinforcement corrosion in parts of RC structures. However, due to salt used in
removing ice or splashing water or in maritime conditions, columns are regularly exposed to

chloride ions.
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Chapter 2 will start a literature review by focusing on the impact of the chloride ion attack
mechanism and evaluate the current commercially available techniques to measure the level of
chloride ions in the concrete structures used in the field. Moreover, it covers the recent research
carried out to develop non-destructive techniques to detect the level of chloride ions at the early
stages before reaching the rebars and corrosion commencing. This will focus on the need to
investigate electromagnetic wave sensors to develop a non-destructive method for determining

the level of chloride ions in concrete structures.

Chapter 3 reviews literature on the ANN concept and the proposed use of the Levenberg-
Marquardt (LM) training algorithm. Additionally, a literature review on the machine learning
algorithm concept such as classification will be discussed. In Chapter 4, the theory of
electromagnetic waves will introduce the microwave sensing technique as a proposed system
to detect moisture content and saltwater concentration in the concrete samples. Different types
of horn antennas and their advantages will describe and compare their features to select the
most suitable sensors for this project and the associated investigation. In addition, this chapter
will represent the skin depth of the electromagnetic waves to penetrate the concrete sample
according to civil engineering requirements in detail. Chapter 5 discusses the research
methodology and experimental techniques followed in the study. The chapter provides a flow
chart indicative of the research methodology. The final section in this chapter will define the
data processing and the development of the validation models. Chapter 6 covers the results and
discussion of the microwave horn antenna used to determine the level of chloride ions in the
samples. Also, the superiority of the LM algorithm and WEKA workbench classification has
been demonstrated in this chapter by validation of results using an unseen data set with targeted
values obtained by the chlorimeter tool currently used as a gold standard method.

Chapter 7 includes the concluding summary of the current study. Research limitations and

recommendations for further investigation are also provided in this final chapter.
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Chapter Two: Literature Review

In this chapter, the literature review will focus on chloride attacks and the problems associated
with chloride present in concrete structures. Then follows a critical review of current
measurement instruments for the detection of chloride levels. Lastly, there is a provision of a
summary of the main findings within this review of the literature and a discussion over the

need for a new approach in determining chloride concentrations.
2.1 Factors affecting reinforced concrete durability

The primary factors having a bearing on reinforced concrete (RC) structures, whilst
experiencing exposure to aggressive and corrosive environments, are i) practices in design and

construction and ii) factors that are environmentally related.
2.1.1 Design and construction practices

The construction practice and the design choice significantly affect the durability of reinforced
concrete structures exposed to a very aggressive environment, such as that with chloride
contamination. The selection of nominal concrete cover thickness, appropriate values for water
to cement ratio (w/c), and compressive strength of concrete during the design combined with
efficiency during construction, such as casting and proper curing, iS paramount to ensure
durability for reinforced concrete ( RC) structures [47, 48]. For example, three days of concrete
curing period with a 0.4 wi/c ratio used and a 30 mm cover thickness of the concrete sample
reduced chloride ingress more effectively than with a 0.5 w/c ratio and one day of curing period
with the same cover thickness [49]. Concerning design considerations, the time needed for
corrosion of a steel bar to begin increases with greater cover. However, higher concrete
strength, by lower w/c ratio and the addition of certain admixtures, also reduce the ingress of
chloride, moisture, and oxygen rates of diffusion within concrete. However, a lower w/c
proportion in concrete allows for the formation of honeycombs and flaws in the surface,
allowing aggressive agents like 02, Cl—, CO and H>O to penetrate more easily [50].
Construction practices define important concrete properties such as porosity, permeability, etc.,
that dictate durability. For example, an unsuitable curing process increases the permeability,
which describes the physical characteristics of the concrete matrix against chloride ingress.
[51]. Furthermore, the circumstances at the surface of reinforcing steel have a significant
impact on behaviour with respect to the initiation of corrosion [52]. Some studies have looked

into the possibility of finding points of higher activity on rough steel surfaces (as opposed to
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smooth ones); processes of corrosion may be quicker on rough steel surfaces. Also, with rebars
with mill scales, corrosion is much faster than with polished treatment [53]. Finally, because
of the casting direction, the corrosion process was increased by the presence of gaps inside the
concrete-steel interface [53].

On the whole, planning for durable structures of RC may be progressed through consistency
for the conditions presented, i.e., cement substance, the proportion of wi/c, admixture
utilisation, increased cover thickness, and so on. From the viewpoint of preparation for
construction, there can be a reduction in chloride ingress and harm from corrosion by
undertaking specific activities such as ensuring appropriate curing, control of chlorides within
the water, total washing of aggregate, etc. Finally, other factors such as structural member
complexity and execution quality influence the feasible cover thickness by extending or
shortening the corrosion initiation stage. Figure 2.1 below shows the impact of chloride ingress
and processes of corrosion within structures of reinforced concrete.

For the reinforced concrete design, a few key points need to be brought to the reader’s attention
while the reinforcement is embedded in the concrete up to a particular distance from the
member’s face [54] [55]:

» Protects corrosion enhancement.

» To provide reinforcement resistance against fire.

» To provide adequate embedded depth to develop the required stress by the
reinforcement.

This distance is measured differently and is known by several names:

» The nominal cover: It is the distance between the surface of the reinforcement and the
exposed concrete surface (which can be the main bar, longitudinal bar or stirrups). But
the nominal cover should not be less than the diameter of the bar.

» Clear cover: It is the distance from the member’s face to the reinforcement outermost
side, including the shear or torsion Stirrups.

» Effective Cover: is the distance between the exposed concrete surface to the centroid
of the main reinforcement.

However, the skin depth is a measure of how closely electromagnetic waves can penetrate
along the material's surface. The skin depth depends on current /signal frequency and material

resistivity. It is inversely proportional to the frequency and directly related to resistivity.
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Enhancing the permeability and conductivity of a given material can significantly increase the
absorption of EM [56] [57].
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2.1.2 Environmental factors

The corrosion rate of reinforced concrete is also affected by the standard test conditions. For
chloride ingress, there is a dependence on surface chloride concentration and upon other
conditions such as temperature and relative humidity [58]. As such, higher temperatures and
relative humidity that is ideal lead to an acceleration of the processes of chloride penetration
and propagation of corrosion according to the BS 8500-2:2006+A1:2012 [59]. Corrosion
processes are significantly influenced by the presence of water, such as through seawater
exposure and cycles of drying and wetting that increase the entry of chloride and corrosion
volumes [60]. As a consequence, procedures of deterioration will vary in their kinematics
depending on the micro-environment (atmospheric, splash, tidal, or submerged conditions
within marine environments) or macro-environment (environmental conditions specific to a

particular place) [61].

Further significant environmental factors are the presence of gaseous contaminants that are
acidic such as nitrogen oxides, carbon dioxide and sulphur dioxide [62, 63]. Such acidic
compounds, produced through urban activity and industrial processes, can transfer to concrete
matrices through wet or dry deposition. Entrance is usually from the concrete surface and
mainly depends upon the concrete structure's penetrability. It has been noted that sulphates,
when present, may improve the conditions of concrete resistance against chloride ingress
during early exposure. However, it can also increase the penetration of chloride during
exposure at later stages. Also, whilst there is a presence of water within the concrete and once
polluting sulphates have managed to reach reinforcement, the consequent reduction in pH leads

to an acceleration of the corrosion processes [64].

2.2 Infrastructure in aggressive environments

Environmental exposure conditions for concrete structures are separated into five areas, with
severity levels ranging from mild to moderate through severe, very severe, and extreme.
However, where structures are constructed in different conditions and experience other effects,
measures need to be taken to protect the structures, particularly those under severe to extreme
conditions. The different environmental exposure conditions and their impact on structures are

shown in the following Table 2.1.
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According to the European Standard EN206-1, published in 2005, exposure classes are

categorised based on different degradation mechanisms. The details of the European

exposure classes demonstrated in Table 2.2 are divided into the following six major categories

[59, 65]:

XO - No risk of attack or corrosion;

XC - Corrosion risk induced by carbonation;

XD - Corrosion risk induced by chloride(s) (other than by seawater);

XS - Corrosion risk induced by chloride(s) (seawater).

XF- Risk of attack from freezing and thawing;

XA- Chemical attack;

These categories are further sub-divided into sub-classes, totalling about 18. Table 2.2 includes

typical examples explaining different sub-classes.

Table 2.1: Severity of environmental exposure conditions [66]

Environment

Exposure conditions

Factors

Mild Concrete surfaces are protected against aggressive conditions or weather,
except those situated in coastal areas.

Moderate Concrete surfaces sheltered from freezing and severe rain whilst wet,
concrete exposed to condensation and rain, concrete continuously
underwater; concrete in contact with, or buried under, non-aggressive
soil/groundwater; concrete surfaces sheltered from saturated salt air in
the coastal area.

Severe Concrete surfaces exposed to severe rain, other wetting and drying or

occasional freezing whilst wet or severe condensation, concrete
completely immersed in seawater; concrete exposed to the coastal
environment.

Very Severe

Wet concrete surfaces exposed to seawater spray, corrosive exhausts, or
extreme freezing conditions, concrete in touch with soil, or concrete
submerged beneath aggressive subsoil and groundwater

Extreme

Members in the tidal zone's surface, as well as members in direct touch
with liquid and solid harsh chemicals.

Table 2.2: Exposure classes [59, 65, 66]

Class designation Description of the Informative examples
environment applicable in the United
Kingdom
a) No risk of corrosion or attack
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X0 For the concrete without This is for concrete inside
reinforcement or any embedded | the building with very low
metal: all exposures except air humidity.
where it is freeze-thaw, abrasion
or chemical attack
For concrete with reinforcement
or embedded metal: very dry
b) Corrosion made by carbonation
XC1 Dry or permanently wet Concrete inside buildings
with low air humidity
Concrete permanently
submerged in water
XC2 Wet, rarely dry Concrete surfaces subject to
long term water contact
Many foundations
XC3 Moderate humidity Concrete inside buildings
with moderate or high air
humidity
External concrete sheltered
from rain
XC4 Cyclic wet and dry Concrete surfaces subjected
to water contact, not within
exposure class XC2
c) Corrosion made by chlorides
XD1 Moderate humidity Concrete surfaces exposed
to airborne chlorides
XD2 Wet and rarely dry Swimming pools
Concrete Components
exposed to industrial waters
containing chlorides
XD3 Dry and wet cyclic Parts of bridges exposed to
spray containing chlorides
Pavements
Car park slabs
d) Corrosion induced by chlorides from seawater
XS1 Exposed to airborne salt but not For those structures quite
direct contact with seawater close to the coastal area
XS2 Permanently submerged Parts of marine concrete
structures
XS3 Tidal, Splash and Spray zone Pars of the marine concrete
structures
e) Freeze/ thaw attack with or without de-icing salts
XF1 Moderate water saturation, Vertical concrete surfaces
without de-icing agents exposed to rain and freezing
XF2 Moderate water saturation, with Vertical concrete surfaces
de-icing agents of road structures exposed
to freezing and airborne de-
icing agents
XF3 High water saturation, without | Horizontal concrete surfaces

de-icing agents

exposed to rain and freezing
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XF4 High water saturation, with de- Road and bridge decks
icing agents or seawater exposed to de-icing agents.
Concrete surfaces exposed
to direct spray containing
de-icing agents and
freezing. Splash zones of
marine structures exposed
to freezing

f) Chemical attack

XAl Slightly aggressive chemical
environment according to Table
2.1
XA2 Moderately aggressive chemical
environment according to Table
2.1
XA3 Highly aggressive environment

according to Table 2.1

The primary cause of deterioration within reinforced concrete marine structures because of

chloride ion ingress is discussed below in Section 2.3.
2.3 Chloride attack

The corrosion of reinforcements in RC structures in the presence of chlorides is a crucial issue
of durability that has been observed worldwide. Reinforcement corrosion affects many kinds
of RC infrastructure, mainly the kinds of structures exposed to marine-type conditions [67].
Primarily, there are two kinds of corrosion of reinforcement steel, i.e. usual corrosion and
pitting corrosion. Because of the presence of a layer of passivation upon the steel surface of
the two kinds of corrosion, the pitting kind is the more rapid and harmful [68]. Structures such
as bridges are prone to pitting corrosion if located by the sea; the most critical area in these
structures is the splash zone near the air and water interface. Because there is an abundance of
chloride in the water and oxygen in the surrounding air, the cell processes of electrochemical
corrosion are accelerated [19]. Of the two kinds, normal corrosion is of lesser criticality as the
steel is protected from more deterioration by a film of passivation. There is a breakage of the
passivation film if the chloride ion number exceeds a certain threshold, leading to pitting
corrosion. The deterioration noted above and shown in Figure 2.2; indicates that a significant

degree of corrosion leads to detachment of the concrete cover in the splash zone area.
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Splash zone

De-icing salt is dispensed along
the road to melt ice during winter

Figure 2.2: (a) The splash zone of the concrete bridge pillar [69][61]; (b) Concrete bridge cover
deterioration [70], permission to reproduce this figure has been granted by John Broomfield; (c)
Pitting corrosion to the reinforcing bar (16 mm), permission to reproduce this figure has been granted
by Dieter Friede; (d) Salt for de-icing is dispensed along the road [71].

If such deterioration happens, structures may collapse if delays occur in providing appropriate
maintenance, leading to human casualties. On the other hand, if maintenance work is

unnecessary, there may be financial cost implications and other pointless CO2 emissions [72].

2.4 Chloride ingress within concrete

The presence of ions of chloride in concrete can hail from sources that are both internal and
external. External sources could be salts used in de-icing roads or melting ice on bridges, and
the salt within seawater that impacts structures within a marine environment; see Figure 2.3
[73]. Moreover, concrete surfaces can have chloride ions deposited upon them from the air, as
a turbulent sea and a strong wind can carry them a distance and deposit them. Airborne
chlorides can travel considerable distances; a distance of 2 km is recorded [74], though greater
distances are possible depending on geography and wind speed. On the other hand, internal
chloride ion sources come from the salts present within the aggregates and mixtures when the
casting of the concrete occurs [75]. A typical profile for chloride ingress can be seen in Figure
2.3, illustrating various exposure times [76]. The chloride diffusion happens within the concrete
in wet conditions. Then, upon drying, the chloride remains inside the concrete; therefore,

specific content along with the depth of concrete cover is considered.
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6 - Grade 40 70/30 Portland cement/fly ash moist-cured concrete
- Chloride content measured after 2 years exposure to marine
5 J tidal zone
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Depth into concrete from surface (mm)

Figure 2.3: Chloride ion concentration compared to the depth of
cover for different exposure times [70]

2.5 Steel corrosion within concrete

Steel reinforcement is associated with the nurturing alloy consisting of iron, a little carbon, and
different trace parts. For steel corrosion within the concrete to be initiated, there need to be the

following conditions:

1) Facilitation of a cathode and anode couple with some steel parts working as the
anode.

2) An electrical circuit is maintained.

3) Oxygen presence

4) Moisture presence.

However, two key processes join in the corrosive attack upon the steel within concrete
structures, i.e. pitting corrosion with the presence of a certain level of ions of chloride and
reactions from carbonation; see Figure 2.4 for a schematic representation [77]. Many additional
energies are applied to the mineral to rework steel during the manufacturing process, and
corrosion involves a tendency for steel to rework into a thermodynamically stable original state
[78]. Corrosion of metals is associated with nurturing chemical science method, which suggests
that it happens not by direct chemical reaction of the metal with its setting, but instead through

coupled chemical science half-cell reactions involving the passage of electrical charge. The
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chemical reactions that occur when steel is in a neutral or alkalescent solution are generally
relevant [79].

The anodic reaction for iron dissolution is represented in Eq. 2.1 [79]:
Fe - Fe?* + 2e” Eq (2.1)

Chemical reactions occur between the electrode and the metal surface at a rate that is consistent

across the metal surface. Eq. 2.2 shows a balanced type of response [79]:

2Fe + 0, + H,0 +4e~ — 2Fe(OH), Eq (2.2)
Where rust hydrated ferric oxide is the final reaction product.

With carbonation present, contamination begins at the concrete surface and moves gradually
towards inner zones. Concrete alkalinity may be neutralised by CO2 in the atmosphere, with
the level of pH in the concrete structure pore liquid reducing to about 9-8 where there is no
more extended stability of the passive film. However, chloride ions from an aggressive
environment may penetrate the concrete to the point where it reaches the reinforcement; if
chloride concentration amounts at the reinforcement surface reach a critical level, then there

may be local destruction of the passive film that was protecting the steel surface [19].

When the concrete has exposure to air, there is a reaction of the calcium hydroxide with the

carbon dioxide within the air with water, as represented in Eq. 2.3:
Ca(OH), + CO, — CaCO; + H,0 Eq (2.3)

Thus, carbonation has the effect of lowering the pH value in the concrete cover layer to less
than 8.3; this pH is, therefore, sufficient to cause the reinforcement rebar passive layer to be
more unstable [80]. Chlorides, on the other hand, cause localised breakdown unless they are

present in significant quantities. As a result, it is possible to state that:

a. Corrosion caused by carbonation may occur at the entire reinforcement surface that is
in contact with carbonated concrete.
b. Corrosion caused by chloride (pitting corrosion) is localised as the chloride penetrates

and attacks specific areas surrounding uncorroded areas.

There can be the destruction of the passive film over broad reinforcement areas whilst there

are very high chloride levels on the rebar surface [80].
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Figure 2.4: Schematic diagram showing corrosion that has been induced by carbonation and chloride
[74]

2.6 Localised corrosion

Passive film flexibility for shielding the metal is known to be potentially compromised when
different halides or chlorides are present [81] [82] [79]. Those aggressive ions produce a
passive film breakdown area that accelerates the dissolution of the underlying steel alloy. If the
attack starts upon a concave surface, it is known as corrosion; if impeded, it is known as crevice
type corrosion [79] [82]. Once it has started, an attack has similar characteristics geometrically,
i.e. a pit. There is no clear understanding of the mechanisms involved in a breakdown initiation

in an otherwise protective kind of passive film. However, various theories have been put
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forward to break down the passive film and the initiation of pitting [83]. Figure 2.5 shows pit

propagation for steel within the concrete in the presence of chloride ions [83].

Concrete 0,
o OH l
Passive film Cathodic reaction:

0,+H,0+4e 5 CH

Porous cap of H'  C

corrosion products Fe¥ H,0 o
Fe

Steel Anodic reaction:

Fe > Fe”' +2¢

Figure 2.5: Propagation stage of the pitting of steel embedded within concrete [77]

The steel area unprotected by the passive film may start to act as forms of anodes when there
has been the initiation of pitting corrosion upon steel embedding within the concrete, whilst
passive areas nearby remain passive. They may begin to act as forms of the cathode, and they
are sites where oxygen is reduced [84]. When chlorides are present in sufficient concentration
above the critical level, the passive layer on the surface of steel bars is destroyed, causing
localised deterioration on the surface of the steel. This type of deterioration is known as pitting
corrosion, in which the anodic zones are concentrated in those pits [79]. The result is that the
accumulated metal ions can endure the chemical reaction. There is a development of an acidic
area within the pitting region that makes the surroundings very aggressive. Finally, to account
for charge neutrality, there is the migration of chloride ions across to pit electrolytes from the
majority of the solution. Pitting corrosion is typically seen on passive metals and alloys such
as aluminium alloys, stainless steels, and stainless alloys when chemically or mechanically
damaged and not immediately re-passivated by the ultra-thin passive film [79]. The standard
potential is between the passive steel as a natural anode, typically with -200 to -500 mV (SCE)
[85].

2.7 Concentrations of chloride

Critically for chloride ions, a particular concentration is needed for the destruction of the steel

surface passive film for the steel embedded within concrete, and it is dependent mainly on the
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pore solution pH; a higher level of ions of OH- within concrete initiates an increase in corrosion
[86]. The problem of chloride attack usually increases when the chloride ions ingress from
outside. Two significant sources of chloride ions are de-icing salt and seawater in contact with
concrete. A more common transport method is absorption. As a concrete surface is exposed to
the environment, it will undergo wetting and drying cycles. When water, probably containing
chlorides, encounters a dry surface, it will be drawn into the pore structure through capillary
pressure. A researcher has shown that limits on the total chloride ion content in reinforced
concrete should be 0.4% by mass of cement; see Figure 2.3 in Section 2.4 above [75]. There
needs to be penetration of chloride, however, for corrosion to start. The half-cell and associated
measurements are the most common method for determining steel corrosion potential within
reinforced concrete without destroying the specimen structure [87]. The transport rate of
chloride ions within a concrete structure is mainly defined by the concrete porosity, which
depends upon void and compaction volume. The degree of moisture and the wi/c ratio have
significantly impacted capillaries' presence and pores' structure. As a result, a rise in the w/c
ratio leads to a non-linear increase in permeability, especially for w/c values greater than 0.5
[86]. The test for initial surface absorption (ISAT) was originally developed for the measure
concrete porosity [88]. The concrete cover, however, affects the rate of transportation. The
ultrasonic pulse velocity (UAPV) is used on concrete as a non-destructive test to assess the
integrity and homogeneity of the concrete. If there is a low velocity of ultrasonic pulse and
high porosity, then the transportation rate will take place more quickly [89].

Several recent studies have investigated various modern techniques for monitoring the attack
of chloride on structures built from reinforced concrete within various industries; the

limitations and advantages of different approaches are discussed in detail in the section below.

2.7.1 The potentiometric sensor or ion-selective electrode

The potentiometric sensor or ion-selective electrode (ISE) can determine free chloride ions and,
as such, it is possible to avoid destructive and chemical tests. When used in the field, the device
has embedded sensors to detect chloride concentration amounts by the rebar in a way that does
not change the surrounding environment. If chemical and practical factors are considered, there
certainly are some advantages to ISE. For instance, ISE shows chemical stability in aggressive
environments, and it is easy to fabricate through electrochemical processes. It is possible to
adapt to other kinds of sensors to measure different parameters such as temperature and the

presence of ions [90]. However, it should be noted that it may induce measurement errors;
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therefore, due consideration needs to be given to temperature, alkalinity, presence of electric
fields, and the previously made calibration. High temperatures may lead to shifts in
measurement [90]. High pore solution alkalinity may interfere with the ISE potentiometric
response, mainly with low chloride concentrations [91]. The presence of an electrical field
because of corrosion, extraction of chloride, and the cathodic protection for other sensors
produce shifts in the probable measurements of difference. Lastly, since RE (reference
electrode) is required, it has to show stability over the long term; this cannot be done, however,
except under strict experimental conditions [92]. Figure 2.6 illustrates that for the electrical
potential difference to be measured, there is a need for the ISE to be complemented by a

reference electrode (RE) which is usually a calomel type [93].

ISE

Sample H

Figure 2.6: Block diagram based upon the ISE method [87]

2.7.2 Electrical resistivity

The electrical resistivity (ER) has been linked to RC corrosion and moisture and heat transfer
in the concrete and, more recently, to chloride ion presence [94]. The technique of ER has a
link to chloride ingress as chloride presence can increase electrical current and result in a
concrete resistivity reduction [95]. So, ER may be employed in estimating the profile of
chloride by determining the coefficients of chloride diffusion. The method entails applying a
voltage to measure current flow, followed by determining electrical resistance using Ohm's

law's proportionality for electrical resistivity, as shown in Eq [96].

V=1IR

p Eq (2.4)

— 1>
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were

| is the electrical current, A the surface area through which the current passes m?, p Electrical

resistivity, R Electrical resistance, V Potential difference, and the length m.

Electric current: is defined as the rate at which charge flows through a surface (the cross-

section of a wire, for example).
Cross-section area A: is the amount of charge passing through a surface.

Electrical resistivity: is unique to every material, which is essential to understand before
creating and designing electrical and electronic systems.

Resistance (R): is a property of a material used for describing the opposition provided to the
flow of current. The higher the resistance provided by a material, the lower the flow of electrons

or current through the material.

Potential difference: is the amount of energy that charge carriers have between two points in

a circuit.

[ the length; is the electrical resistance of a wire, would be expected to be greater for a longer
wire, less for a wire of larger cross-sectional area, and would be expected to depend upon the

material out of which the wire is made.

The unique characteristic of electrical resistivity is inherent for every material, dependent upon
experimental conditions. Figure 2.7 shows two techniques for the resistivity measurement to
assess the corrosion through the use of a Wenner array [96]. Due to concerns of geometrical
position, electrode contact number, and the space between them and the distance to the rebar,
we did not propose to utilise it for chloride measurement [97]. Another proposed device is
multi-electrode resistivity, a device comprising of two probes with one mobile and the other
embedded. The method is effective, as is the Wenner array technique; it does need, however,
moisture to improve measurements [98]. According to the research results, the method may
only be employed in the exploration of the diffusivity of chloride, and resistivity depends upon
cement type and degree of hydration. For most ER techniques, concrete surfaces have to be
wet as the conductivity of dry concrete is zero. Furthermore, for repeatability and accuracy to

be ensured, calibration ought to be discovered for various moisture levels. Measurements also
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rely upon the reinforcing geometry and structure; however, the method has extreme sensitivity

to moisture content within the elements of the building and is easy and quick to undertake [99].

/7.\7 Mobile

S— surface
Embedded

probe
s 7/

Current
flow lines

Figure 2.7: Techniques based on ER method (a) Wenner array, (b) Multi-
electrode resistivity probes [91]

2.7.3 Optical fibre sensors

There are several advantages to the optical fibre sensors (OFS) method compared to some other
methods. Since it has a higher degree of sensitivity to low chloride concentrations, it saves
energy, and the presence of fields of electromagnetism do not influence the measurements [35].
Also, sensor sharing is more convenient in larger structural applications due to the long and
thin geometry and capacity for coping with surroundings. The outcome is that, as each fibre
segment may perform as a sensor, there can be the detection of slight defects for any part of
the structure [100]. Figure 2.8 shows an analyser of the optical spectrum giving the spectra of

transmission employed in estimating the refractive index.

Optical Spectrum PC
Light Analyzer 3
Source

Tested Solution D
Cable

Conection l l
A /

Transmission

'Navelenght'()\)

Figure 2.8: Optical fibre sensor diagram [100].
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There are, however, essential considerations if seeking to make measurements that are reliable
and accurate. For instance, adequate optical fibre protection needs to be done to prevent
breakage during casting or service life. The protection needs to permit light transmission
without obstruction or bending of optical fibre since that would lead to data being missed [101].

2.7.4 Ground-penetrating radar

Ground penetration radar GPR is a technique closer to ultrasonic pulse-echo methods and
microwave spectroscopy, differing only by the kind of energy used and single frequency. In
simple terms, the antenna sends short electromagnetic energy pulses of the high nominal centre
frequency (0.5-2GHz) into the ground (pulse systems). Depending on the application, they may
represent any medium to air, such as natural ground, concrete structures, masonry structures,
pavement or bridge decks [102]. The antenna represents a transition device between a guided
wave and a free space wave. The transmission line transports electromagnetic energy to or from
the antenna. In the first case, it works as a transmitter and in the second as a receiver. When
the dielectric properties of two consecutive layers produce enough contrast, the transmitted
energy is partially reflected at the boundary surface. The remainder is transmitted and refracted
at the same interface before continuing propagation through the next layer until it finds a new
interface, at which point the process is repeated.

GPR has proved to be a powerful tool in investigating a wide range of applications, particularly
as an NDT technique, using high-resolution antennas (> 500MHz). Radar has had varying
levels of success in locating and detecting reinforced bars, metallics, and plastics, detecting
moisture and voids, detecting chlorides, estimating pavement and structural thickness, and
identifying building details. A maximum frequency should be proposed in GPR surveys to
prevent clutter. It suggests that the wavelength should be ten times larger than the characteristic
dimension for geological materials [103]. Figure 2.9 shows the possible path of the radar wave
emitted from the GPR antenna. This demonstrates that some of the electromagnetic EM wave's
energy passes through the asphalt and deck concrete layers. In contrast, the remaining EM
waves are reflected from the boundary at different permittivity. Hence, the reflected EM wave
is detected by the receiving antenna of the GPR system and stored for data analysis. Therefore,
the reflected EM wave analysis detects underground cavities, layer thickness, and rebar
location [104]. The method is based on the principle that deteriorated concrete with higher

water content and chloride concentration would exhibit higher energy attenuation than the
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sound area. Many researchers have verified that the in-situ testing method is effective in
assessing the condition of concrete bridge decks[105] [106] [107]. Moreover, several
researchers have demonstrated the feasibility of GPR as an in-situ NDE method to evaluate the

depth of chloride-induced deterioration of concrete in bridge decks [108].

However, this technique has limitations to be considered, which probably explains why radar
has not had success in many applications; limitations such as it requires considerable personnel
expertise to operate the equipment; interpretations of data are still in many cases comparative
in nature, often necessitating visual inspection and drilling, coring excavation; frequently
requires sophisticated signal processing when the data present high noise level or complex
signatures [40, 109]. The signal does not always improve the results significantly and thus is
not always economically justifiable. The commercial systems available are still quite
expensive, restricting their availability as an NDT technique for most potential users in the civil
engineering field. The radiated energy is not like a laser beam, and it diverges with angles

depending on the electrical properties of the medium [110].
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Figure 2.9: GPR scanning on a concrete bridge deck and a possible path of EM waves penetrating the
concrete cover [105].
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2.7.5 Chlorimeter tool

The tool known as the chlorimeter is a gold standard technique with the now-common use of
model no. C-CL-3000 within the industry is a kind of destructive method for detecting chloride
amounts within concrete samples. The system of chlorimeter testing offers an accurate and fast
way of determining the total content of chloride within concrete. One can undertake the test to
detect chloride ion presence within the concrete and the respective penetration of ions.
Chlorimeter tool accuracy has a broad range per unit weight from 0.002% - 2% chloride. The
device limitations are that a partially destructive drill hole is required during the testing, it is
time-consuming, there is a high cost to the chloride liquid used, repair and maintenance are

needed, and the main concrete quality will decrease. Figure 2.10 shows a chlorimeter kit [111].

Figure 2.10: Chlorimeter tool for the chloride field test system [106]

2.8 Corrosion potential

The following test is used to measure the corrosion potential of reinforced concrete.

2.8.1 Half-cell potential

Reinforcing steel corrosion is an electrochemical process. The behaviour of the steel can be
assessed using a half-cell potential measurement, the higher the potential, the higher the danger
of corrosion. Several components may affect resulting accuracy and should follow many steps
and procedures to acquire correct readings. There then needs to be careful concrete cover
removal over the bar in question followed by a half-cell connection with a reinforcing bar using
a digital voltmeter. This is an NDT method; as preparation is needed, it can be problematic,
and the testing itself can be time-consuming, and there can be a lack of accuracy in the results.

The basic measurement elements are shown in Figure 2.11 [112]
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Figure 2.11: A potential technigue for half-cell measurement [112]

Table 2.3: Corrosion probability under half-cell reading [112]

Half-cell potential reading, Vs.Cu/cuSos Corrosion activity
Less negative than -0.200V 90% Probability of no corrosion
Between -0.200V and -0.350V An increasing probability of corrosion
More negative than -0.350V 90% probability of corrosion

2.8.2 Ultrasonic Pulse Velocity

The ultrasonic pulse velocity (UPV) method may be employed in concrete testing to determine
concrete uniformity and the voids, cracks, and cavities present. Material pulse velocity depends
upon its elastic properties and density, and these are related to the compressive strength and
quality of the concrete. UPV also has applicability concerning the indication of changes in
concrete properties. The UPV test can also detect physical deterioration of the concrete
structural capabilities. However, the method is limited in that the wave is unable to transmit
through a gap [113]. A transmitting transducer is used to create ultrasonic waves, and a
receiving transducer is used to receive these waves. The travel time of these waves from one
point to another point is measured. The distance measured between these points plays a vital

role in the case of the indirect method of transmission.

Table 2.4 shows electromagnetic (EM) waves compared to the current techniques used to detect
the level of chloride in concrete structures, with the advantages and limitations of each
technique briefly described
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Table 2.4: EM techniques in comparison to state-of-the-art techniques to monitor chloride level

Parameter Measured

Detection Methods

Advantages

Limitation

Principle

Determined free
chloride in concrete
structures

lon Selective electrode
(ISE),[94]

It shows chemical stability in the aggressive
environment; the fabrication is easy, through an
electrochemical process, it can be adapted to
other sensors for measuring other parameters (
e.g., temperature, ions presence)

The accuracy of this method is
dependent on various factors
such as temperature, alkalinity,
and electric field presence.

The device is inserted near the
rebar. Therefore, this is a
partially destructive method
requiring drilling into the
concrete sample

Electrical Resistivity (ER)
[95, 99]

This method can be used to estimate the
chloride profiles by determining the chloride
diffusion coefficient.

The measurements are
sensitive to the moisture
content, which affects the
accuracy of the results.

The device is inserted near the
rebar. Therefore, this is a
partially destructive method
requiring drilling into the
concrete sample.

Optical Fibre Sensor [101,
114]

It is energy saving. It is very sensitive to small
chloride concentrations, but the measurements
are not affected by the electromagnetic field.
The sensor is better applicable to large
structural applications.

Optical fibre needs adequate
protection to prevent its
breakage during casting or
service life. Temperature
variation can affect accuracy.

This method involves
detecting the refractive index
shift due to the chloride
presence that changes light
behaviour. This sensor is
embedded into the structure
for continuous monitoring.

Corrosion rate,
percentage of
corrosion, corrosion
progress

Half-cell potential [114]

The simple, portable device, which produces
chloride concentration contour mapping via the
data logger.

Needs preparation, a saturation
of the concrete surface
required along with the
electrical connection to the
steel reinforcement, It is not
very accurate and is time-
consuming

The electric potential of the
rebar is measured by half-cell
and indicates the probability
of corrosion.

Permeability test

Initial Surface Absorption Test
(ISAT) [88]

Simple interpretation and moderate cost

The accuracy results are
affected by moisture content,
Concrete mix, aggregate, age
of concrete, cracking, water
type curing, and temperature.

The technique is based on the
measurement of volume flow
into a test specimen with
known surface area.

Compressive strength,
permeability surface
hardness, adhesion

Ultrasonic Pulse Velocity
(UPV) [113]

Quick, portable larger penetration depth, simple
interpretation, and moderate cost.

Not very reliable, because the
wave cannot transmit through
the gaps and the presence of
reinforcement can affect
results

Ultrasonic wave velocity and
its attenuation
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Determine of location
reinforcement,
moisture content,
location of chloride,

Ground penetrating radar
(GPR) [40, 115]

It can be used to survey large areas rapidly for
locating reinforcement, voids, and cracks.

It is capable of detecting several parameters in
reinforced concrete structures: location of the
reinforcement, the depth of cover, the location of
cracks, moisture content, and variations

Results must be correlated to
test results on samples
obtained. Any features
screened by steel
reinforcement will not be
recorded. With increasing
depth, low-level signals from
small targets are harder to
detect due to signal
attenuation. It is expensive to
use and uneconomical for
surveying small areas.

Radiofrequency waves (0.5 to
2GHz) from the radar
transmitter are directed into
the material. The waves
propagate through the material
until a boundary of different
electrical characteristics is
encountered. Then part of the
incident energy is reflected
and the remainder travels
across the boundary at a new
velocity. The reflected (echo)
wave is picked up by a
receiver. The transducer is
drawn over a surface and
forms a continuous profile of
the material condition below.
The equipment consists of a
radar console, a graphic
scanning recorder, and a
combined transmitting and
receiving transducer.

Determine of chloride,
Partial destructive

Chlorimeter device [111]

The Chlorimeter test system offers a fast and
accurate determination of the total chloride
content in concrete. Only a small area of the
concrete can be tested

Need preparation, during the
test, time-consuming, high cost
of extraction chloride liquid

The device is a partially
destructive method requiring
drilling into the concrete
sample.

Determine of chloride,
Non-destructive
method

Electromagnetic (EM) wave
methods

Electromagnetic (EM) wave has high
penetration, is a relatively low cost, it’s got a
very good flexible sensor design to suit the
application and <1 minute time-consuming.

Not used for detecting chloride
ions in the industry yet

The device is providing a non-
destructive measurement
method in a real-time manner.
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2.9 Summary

Within Chapter 2, a literature review has detailed studies into chloride content level within
concrete structures. The choice of design and the practice in construction have a significant
bearing on the level of durability for structures of reinforced concrete that have exposure to
very aggressive environments such as with contamination from chlorides. Deterioration
because of chloride is one of the two primary types of corrosion for reinforcement, i.e. typical
corrosion and pitting corrosion. Structures such as bridges are prone to pitting corrosion when
located close to exposure to seawater. If there is a splash zone close to the interface between
air and water, the splash zone is, in fact, very critical for the safety of such structures. Corrosion
of rebar within a concrete structure is a time-consuming chemical process. It suggests that it
occurs indirectly through coupled half-cells and chemical science reactions involving the
passage of electrical charge rather than directly through the metal having a chemical reaction

with its surroundings.

Chloride ions initiate the corrosion process upon the steel through their localisation at a
specific steel part and then depletion at the steel surface because of the concrete's aggressive
environment. The problem of chloride attack usually increases when the chloride ions ingress
from outside. Two critical sources of chloride ions are de-icing salt and seawater in contact
with concrete. The aggressive ions produce a breakdown area in the passive film that leads to
the dissolution of metal that underlies it in an accelerated way. If such an attack is impeded, it
is known as crevice corrosion. The presence of chloride ions in concrete may hail from both
internal and external sources. External sources may include salts used for de-icing, i.e. melting
ice on roads and bridges, and salts within seawater if a structure is located in a marine
environment. Several methods of NDT are currently available that can be employed in
detecting chloride levels and corrosion within steel-reinforced concrete. Limitations and
advantages of a number of the current techniques have been described briefly here within this
chapter. Based on the limitations of existing approaches, there must be further development.
This research aims to address those limitations using a novel technique of EM waves for the
determination of chloride ion levels within concrete structures with different concentrations of

salt water in a way that is reliable, real-time, and non-destructive.
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Chapter Three: Use of Artificial Neural Networks

This chapter will begin by focusing on an Artificial Neural Network ANN method in general.
Then, concentrate on the ANN model design and activation and transfer function in detail ,
followed by a further critical review of the use of a single-layer feed-forward network and
multilayer feed-forward networks. This chapter will introduce classification techniques used
such as the WEKA method in detail, followed by a further critical review of related studies of
ANNs used and classifications approaches in different contexts, including the numerous
geotechnical engineering specialities areas. Finally, a summary of the key findings of the

literature review will be provided.

3.1 Introduction

Acrtificial neural networks (ANNSs) are computational models, which attempt to represent the
biological structures of the human brain and its nervous system. It is possible to track composite
structures using damage assessment techniques, detect and localise possible imperfections in
curtain wall systems, and monitor structural health through damage-induced changes with the
cooperation of ANNSs. They have the potential to properly implement difficult tasks, such as
function approximation and classification and pattern recognition [116]. ANNSs comprise
interconnected processing elements (PES). The PEs receive input indicators (Xi 1, Xi-2,.....Xi-
n) (see Figure 3.1) from either external sources or perhaps adjacent PEs, then transfer these to
blinkers in the next layer by the method of an activation feature (AF). A vector of IVs could
represent the layer input. In an attempt to fix problems, the proposed unit should be trained.
The strategies of training might generally be categorised into two types: supervised and non-

supervised.

The supervised training model is based on a comparison between the selected input variables
and the output model. This learning method is usually formulated when the mistake feature,
such as the mean square error between the measured and the expected values, is summed over
all available data. In contrast, the non-supervised type is entirely dependent on the correlations
among entering data. Throughout the learning process, the i" level outputs are multiplied by
an optimised vector, the so-called link weight (wij). Subsequently, the newest is added in and
together they have a threshold bias and are later summarised before being used as inputs to the
following PE within the next i level. The PEs in hidden layers and the output layers will be

identified using an activation feature, which is brought to the input and creates the valuation of
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the i processing aspect in the output layer. It should say that a bias doesn't include an
activation function and has a specific value-driven value throughout the training process along
with the importance value of the synaptic interconnection weights [117]. Both the wij and the
biases are kept up to date during the learning process, reducing the overall error between the
actual and predicted values. An essential fact of significant importance is that these layers'
optimum setup is calculated using a range of steps. More precisely, these phases may be

summarised as:

1) The variety of input model parameters.

2) The maximum number of hidden layers.
3) The number of unit outputs.

4) The number of processing elements (PEs).
5) The computing performance indicator.

6) The set of activation functions (linear or non-linear).

The type of training algorithm is one of the most important features that play a crucial role in
the performance of ANNSs [118]. Indeed, following the model's configuration, other essential
aspects need to be specified, such as the standardisation mechanism and the data set division
process, to prevent over-fitting and ensure the trained network's strong generalisation capability
[119]. It is notable that Rumelhart et al. (1986) initially introduced a definition of ANN [120].

3.2 ANN model design

The framework of the ANN has been discussed by many researchers [121] [122] [123]. ANNs
consist of a variety of artificial neurons known differently as processing elements nodes (PEs).
In the multilayer perceptron (MLP) approach, which is the most frequently utilised ANN in the
field of geotechnical engineering, usually, processing components are assembled in layers.
These consist of an output layer and an input layer and one or perhaps more intermediate layers
identified as hidden layers as exposed in Figure 3.1.
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Figure 3.1: Schematic structure of ANN model inputs and output variables

The scalar weights figure out the strength of the contact between interconnected nodes [124].
An individual processing unit sums its weighted input connections and applies a bias or a
threshold device. However, reducing the percentage of error between the validated value and
the target values of the neural training network that the bias unit, generally provides to scale
the input to a value range to improve convergence properties. The put together values of the
independent variables (IVs) processed out of the very first level are then passed by way of a
transfer function (TF) to create the output of the processing component. The TF maps a set of
(IVs) to a finite output range. The process described is summarised in Equations 3.1 and 3.2,

respectively.
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l = 2P wiIVi & b Eq (31)
y=3L, w?l+ b® Eq(3.2)

Were

n is the number of independent variables, I; the node activation level, the factors b®and wi(jl)

are the weights and biases from the input and output of the hidden layer, b® and wj(z) are the

weight and the bias for the second layer.

3.2.1 Activation or transfer functions

Transfer functions (TFs) can have a selection of forms. The logarithmic, hyperbolic tangent
sigmoid (tansig), sigmoid (logsig), bipolar sigmoid, and radial basis (radbas) transfer operators
are in most cases commonly utilised transfer operators in artificial neural networks. The
primary key objective would be to transfer the weighted value of all signals hitting the
processing component to determine its firing intensity [125]. The log-sigmoid transfer
functionality is generally utilised once the desired production values are to the caps of zero and
+1. In contrast, the tan-sigmoid is usually used when the selected paper values are between -1
and +1 [126]. The hyperbolic tangent and the logistic sigmoid transfer capabilities are seen in
Figure 3.2, the process described in Equations 3.3-3.5, respectively.

1

fAj) =——m Eq (3.3)
1+e “J
ap_,-dp
) = Eq (3.4)
y =2, wf(1,) £ b® Eq (3.5)
Were,

£(1,) transfer function, b®and w” artificial connections bias and weights between the input

values and output values (hidden) layer.

A transfer function: Represents the relationship between the output signal of a control system

and the input signal, for all possible input values.

Bias: Bias is used for shifting the activation function towards left or right, it can be referred to

as a y-intercept in the line equation.
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a) Log-Sigmoid b) Tan-Sigmoid c) Linear

Figure 3.2: Procedures of the commonly used ANN transfer functions

For the purposes of used ANNSs, the following definitions need to be considered:

(1) Inputs: An input vector is one input to the system usually written as vector X where X;
=one element, I = (1,.....,m).

(2) Weights: wij is the weighted connection between nodes | and j. Modelled after synapses
in a nervous system and arranged as matrix w.

(3) Outputs: An output vector y is the output vector yi = one element, j = (1,....,n), formally
y(x,w) since the vector is a function of x and w.

(4) Hidden layer: A hidden layer in an artificial neural network is a layer in between input
layers and output layers, where artificial neurons take in a set of weighted inputs and
produce an output through an activation function.

(5) Targets: A target vector t contains extra data needed for supervised learning — contains
the “correct” or training data. Note that tj = one element, j = (1,.....,n).

(6) Activation function: A mathematical function, usually given as g() for gain or
conductance, describes the neuron's firing in response to the weighted inputs. Often a
simple binary decision or threshold. If the sum of wijxi coming to node y; exceeds a
threshold, provide output = 1; else, output = 0. Formally, A = f(x,w).

(7) Error: Usually a function, E, computes the network'’s inaccuracies as a function of

targets t and output y; that is, E= f(t,y).
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3.3. Neurons

Neurons are the most precise units of processing within an ANN. The perceptron is an example
of a model of a neuron put forward in 1958 by Rosenblatt; thought of as the model of neurons
that brought about the development of ANNs [127]. The general structure for the perceptron is
shown in Figure 3.3.

.,

Figure 3.3: Schematic diagram of a perceptron neuron

y= @(Zﬁ:l Wy . Xy + b) Eq (36)
where,

(Xn) input values, (Wn) weights and (b) bias values, () the activation function, and (y) the
output value.

Equation 3.6 shows the activation function or transfer for a perceptron. A perceptron initially
performs a linear input value combination (X») and the weights and bias (3)) value. Then, the
activation function (o) is applied to the linear combination (}’) results to obtain (y) (the output
value). Nonetheless, there are currently many different functions of activation put forward for
the implementation of perceptrons, such as sigmoid functions, saturating functions, and linear
functions [128].

3.3.1 The Single-layer feed-forward network.

In this particular type of ANN structure, a neural network encompasses just one layer of
computational processing element (PE) If no feedback is received from the neurons’ outputs to
inputs across the network, the network is referred to as a single layer feed-forward network. A
set of nodes creates an input layer that acts as a middleman between the single layer of neurons
and the input layer sources in the surrounding environment to provide these PEs with their
input signals. It's essential to emphasise that absolutely no computations are applied in input

nodes [130]. Within this network type, there is the availability of two types of neurons as shown
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in Figure 3.4, a single layer fully connected feed-forward neural network is displayed. As
shown in Figure 3.4, only two kinds of neurons are available in this network: input neurons
that send input signals to the output layer and output neurons that use the same transfer function
to compute their outputs. However, the input layer does not count because there are no
computations performed in that layer. Input signals transmit via weights to the output layer,
and the neurons in the output layer compute output signals [131] [132]. As such, both the
transfer and input functions flow just one way; this is why this kind of application of ANN
structure may strictly only be of the forward type, beginning from input nodes in the direction
of the network output [133].

Input layer > Output layer

Figure 3.4: Single-layer feed-forward network design

3.3.2 The multilayer feed-forward networks

Multilayer feedforward networks are utilised to overcome computational boundaries and
knowledge limitations within a single layer network [129]. The architecture of these networks
is such that it is just an extension updated from the previous artificial structure for the neural
network. There is an introduction of more layers between the input and output layers. Those
layers are hidden, and so they are known, unsurprisingly, as hidden layers. The introduction of
hidden layers leads to neural networks being superior to most algorithms of machine learning.
Just one hidden layer brings a sufficiency for most problems. Usually, the same neuron number

is contained in each of the hidden layers. The presence of one or more hidden layers helps the
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network to collect statistics of a higher order. There is only one hidden layer for the example
given in Figure 3.5, and the network is referred to as a 5-10-3 network because there are five
input neurons, ten hidden neurons, and three output neurons. The networks are fully connected
in both Figure 3.4 and Figure 3.5 because, in the following forward layer, every neuron in each

layer connects to each other’s neurons.

The network would be known as partially connected if some of the synaptic connections were
missing. A multilayer perceptron is a class of feedforward artificial neural networks. The term
MLP or particular layer nodes is used ambiguously [134]. Generally, the function of activation
is non-linear within the units of the practically hidden layer. As such, about high-level kinds of
interaction between input parameter signals, the non-linearity between dependents and
independents is allowed [135] [136]. In Figure 3.5, a multilayer neural feedforward network
with one hidden layer is seen. There is at least one layer of hidden neurons between the input
and output layers instead of a single layer network. According to Haykin (1999), the role of
hidden neurons is to interfere in some useful manner between the external input and the
network output [137] [132].

Hidden Layer
Input Laver EEEE— Output Layer

Figure 3.5: Multi-layer feed-forward network structure
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3.3.3 Recurrent network

In the case of a single-layer feedforward ANN, a recurrent network usually is introduced if the
output signals feedback as an input that replaces part or all of the input signals [126]. This
could also be extended to include feedforward multilayer networks. Simply put, a recurrent
ANN incorporates neurons feeding the output of their outputs again to function as new inputs
to randomly selected neurons or maybe themselves [138]. Self-feedback can happen when the
output layer of a particular node is fed back to the same node. Feedback loops improve with
postponing components because of the nodes' nonlinear surroundings, resulting in a nonlinear
dynamic behaviour. The inputs model as well as output signals in a recurrent ANN system are
provided as x(n) and also y(n) respectively to be able to reflect the simple fact of being features

of discrete period variables n [139].

3.4 The error back-propagation algorithm

The error back-propagation is one of the most popular and robust artificial neural network
configurations [140] [141] [142]. The feed-forward error back-propagation technique is highly
effective in modelling nonlinear relationships [135] [122]. The algorithm for back-propagation
(BP) seeks the minimum error function value for weight space through a technique known as
gradient descent or the delta rule. Weights that lead to the minimisation of the error function
are considered then as solutions to the problem of learning. The back-propagation algorithm is
a prevalent kind of ANN algorithm. It was stated by Rojas (2005) that the BP algorithm may
be split into four key steps. The algorithm splits down, then, into the four steps of [143]:

a) Feed-forward type of computation.
b) BP to the output layer.

c) BP to the hidden layer

d) Updates to weight.

For forwarding propagation of the operating signal, the input signal is propagation to an output
layer from an input layer via a hidden layer. The algorithm is halted when the error function
value is sufficiently small. The system of error feed-forward BP has shown itself to be a tool
with excellent efficiency in the modelling of relationships that are non-linear [135]. The ANN
is creating; therefore, it is a technique that fully links each element processing within a precise
layer to the layer next to it. As a result, every neuron in the input layer sends output to every

neuron in the model output layer, and every node in the input layer sends output to every neuron
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in the middle layer [144]. The network's weight value and offset value are kept constant
through the operating signal forward propagation. Each neuron layer status only exerts an effect

upon that of the neuron's next layer.

Consequently, there cannot be the achievement of predictable output within the output layer —
it may switch into the error signal back-propagation. For error signal back-propagation, the
error signal can be defined as the variance between actual output and the network's expected
output. Within error signal back-propagation, the error signal is propagated layer by layer from
the end of output to the layer of input. Therefore, whilst the error signal back-propagation is
done, the error feedback regulates the network weight value. However, continuous offset value
and weight value modification are applied for the real network output to make it a lot closer to
the one expected [145].

There is an assumption that all weighted Synaptics of the network are fixed whilst the forward
step takes place. During the backward pass, the weighted synaptic of the network is adjusted
under the updated error. During the training process, the iteration procedure repeats the error
term required to change weight until a connection weight is set with the output/input mapping
containing the minimum error value provided by the trained network. The ANN learning
method for multilayer back-propagation consists of two processing elements that pass through
the different network layers: a forward and backward pass, by measuring the gradient for each
connection weight and bias using the chain rule, as seen in Figure 3.6. The synaptic network
weights are fixed during the forward phase, yet they're adjusted based on an updated error. This
iteration method repeats during the training cycle, which propagates the error period needed
for weight adjustment until the trained network can give a collection of link weights, which has
the input/output mapping that provides the minimum value for errors. Among the changes that
have been made to the error back-propagation algorithm, one approach includes the use of the
learning rate. The learning rate parameter (1) can be considered as the factor that initiates the
step size the ANN takes in negative through the weight spaces to minimise the training error
magnitude. Another factor that is considered in any training process of ANN is the term of
momentum (o). Momentum may speed training up within error surface regions that are very

flat as well as suppress weight oscillation within ravines or steep valleys [146].
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3.4.1 The algorithm for back-propagation

The back-propagation equations provide a manner of computing the loss function gradient.
Also, the following equations are used by the MATLAB algorithm to calculate the hidden
neuron output, output layer through the combination of weight calculations and back-
propagation during the whole training process. The values that are obtained through the sensors
used as input data, and the target values collected from the alternative method will be validated
through the ANN MATLAB algorithm. This can be expressed explicitly as an algorithm form
by [140]:

i) Initialise the weight of the network connection between the values measured and the values

predicted.
ii) Repeat the steps below until all conditions are met.

i) Summarise weighted inputs and use the transfer function to calculate the hidden layer
output.

Where,

(h;) hidden neuron output, (w;;); connection weight between input neuron i and hidden neuron

j, (x;) The input signal is, (6;) bias on a hidden neuron, (f) activation function.

iv) Summarise the output weighted by the hidden layer and apply the activation function to

calculate the output layer.

vi = f 21 (h wik) + 6% Eq (3.8)

Where,
(¥x) independent output, (w;,) connection of weight between the hidden nodes j and k.
v) Back-propagation combinations
Ok = (dx — yi)f~ (X jhjwii + 0y) Eq (3.9)
Where,

d;, the desired output of the neuron, (f ~) the activation function derivation;
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vi) Weight calculation

Awj (n) = négh; + aAwj,(n — 1) Eq (3.10)
Where,

Awjy (n) is an adjustment on connection weight between nodes j and k;(n) the rates of learning,
(a) term momentum, (h;)the actual output of the hidden neuron, () the error back-

propagation, Awj,(n — 1). The earlier weight correction.
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Figure 3.6: The Back-propagation algorithm error steps

3.5 The training algorithm of Levenberg-Marquardt

One aspect of the artificial intelligence (Al) principle is the Levenberg-Marquardt (LM)

training algorithm. The LM approach is well known for achieving dramatically higher
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performance by making training 10 to 100 times more effective, quicker, safer and more
frequently converging. The cycle of optimisation and training means defining the optimal
parameters of the ANN model, which are the relation bias, weights, number of hidden layers,
and the maximum number of hidden neurons. It should be noted that the key objective behind
the LM algorithm implemented is to minimise the error value between the expected and target
value by changing the connection weights most contributing to the error [147]. The error
function is typically a non-linear function for multi-layer feed forwards. Therefore, it cannot
force an empirical approach to minimise the error percentage to its lowest value. Alternatively,
it's essential to find an algorithm that requires a search through the spaces of weight consisting

of a sequence of the form steps:
Wii1 = Wi + AWk Eq (311)
Where,

W41 1S the weight value at a certain iteration, wy the value of the same weight at the previous

step k, Awy is the increase of the weight vector.

The LM algorithm: is an iterative technique that locates the minimum of a function expressed
as the sum of squares of nonlinear functions. It has become a standard technique for nonlinear
least-squares problems and combines the steepest descent and the Gauss-Newton method.

The use of secondary algorithms, such as the LM algorithm, significantly increases the speed
of training [147, 148]. Through a combination of the Newton and EBP algorithms, the LM
algorithm ranks as a relatively efficient training algorithm for medium and small-sized patterns.
Usually, the error function is a function that is non-linear for the multilayer type of feedforward
networks. So, an analytical solution is impossible to implement to reduce the error percentage
to the lowest value. The method of LM has been put forward for overcoming the main problems
and limitations associated with conventional approaches and, in general, is often cited as being
a robust and well-organised training algorithm in all aspects of engineering [149]. Different
types of algorithms found in the related literature by several scholars include various techniques
for calculating the increase in weight vectors [139]. ANN implements the LM technique to
address the key disadvantages and weaknesses of conventional approaches and is widely cited
as efficient and reliable in all aspects of the engineering training algorithm [117, 150]. The
derivation of the LM algorithm will be presented in four parts. (1) Steepest descent algorithm
[151] (2) Newton’s method [151] (3) Gauss-Newton’s algorithm [152] (4) LM algorithm.
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However, this project focuses more on the Levenberg-Marquardt algorithm. The LM approach
offers additional approximation to Hessian Matrix J7J to ensure that the approximated Hessian
matrix J'J is invertible [153]:

The update of the Gauss-Newton algorithm is presented as:

Wir1 = Wi — Hi gk Eq (3.12)

Wis1 = Wi — (JeJi) ke Eq (3.13)

The Gauss-Newton algorithm is a commonly used iterative method for addressing nonlinear
least-squares problems. It is particularly well-suited to treat very large-scale variational data
assimilation problems that arise in the atmosphere and ocean forecasting.

The advantage of the Gauss-Newton algorithm over the standard Newton’s method equation
(3.12) is that the former does not require calculating the second-order derivatives of the total
error function by introducing Jacobian matrix J instead.

The LM scheme is an effective algorithm but a much more computationally intense model of
a version of back-propagation. This process was developed to enhance the Gauss-Newton
technique to remove the numerical uncertainty connected with the latter matrix inversion. This

particular technique will add another approximation to the Hessian matrix, H denoted as:

H~ T+ ul Eq (3.14)

Where,
u always positive, which is called combination coefficient, | is the identity matrix, J is the
Jacobian matrix, which could be determined using a less complicated back-propagation

technique than Hessian matrix computing.

H: is Hessian matrix of partial derivatives.

| an identity matrix: It is a square matrix with 1s on the main diagonal and Os on the rest of the
diagonal.

J Jacobian matrix: The Jacobian matrix is used to examine the system's small-signal stability.
Jacobian is the matrix of all the first-order derivatives of a function f(x1,x2,Xs,...... Xm) denoted

by: J(X1,X2,X3,...... xn) and is defined as:
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From the above equation (3.13), one may notice that the elements on the main diagonal of the
approximated Hessian matrix will be larger than zero. Therefore, with this approximation
equation (3.13), it can be sure that matrix H is always invertible.

We trained the LM algorithm in the current study with five input parameters and three outputs.
However, by combining the equations 3.13 and 3.14, the update rule of the Levenberg-

Marquardt (LM) algorithm can be presented as:

Wis1 = Wi — (il + 1D " Ykex Eq (3.16)

The Levenberg-Marquardt algorithm, a mixture of the steepest descent algorithm and the
Gauss-Newton algorithm, switches between the two algorithms during the training process.
While the combination coefficient u is minimal (nearly zero), equation 3.16 approaches
equation 3.13, and the Gauss-Newton algorithm is used. When the combination coefficient u

is huge, equation 3.16 approximates to equation (3.14), and the steepest descent method is used.

A symmetric matrix containing all of a multivariate function's second derivatives is the Hessian

matrix.

The following is the definition of a second partial derivative:

frij = % (g—;) Eq (3.17)

i

The symmetric matrix of the Hessian matrix is as follows:

e o [EE) 6 -
f fo oo Pl |2(Z) 2(Z) . (2

_ | 9x2 \0x1/  Ox2 \Oxz ?xz:ax” Eq (3.18)

HC) =

fr:ll fT:lZ frin ) (a_f) ) (a_f) 2 (a_f)

-axn axl axn axZ
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3.5.1 Determination of the Levenbverg- Marquardt

Determining the optimum ANN structure is one of the challenging tasks in network
advancement. It involves selecting the optimal number of layers, the most effective model input
parameters, the total number of hidden layers, and the total number of nodes in each layer.
There is currently no coherent theory to assess an optimal ANN topology [154]. There are
essentially two layers representing the input and output variables in every proposed network.
The researcher has reported that one hidden layer is satisfactory and can map any continuous

feature between model variables [155].

It should be remembered that adding more than one hidden layer leads to significant delays in
the training cycle and raises the chances of being stuck in local minima [156]. Trial and error
is the approach promoted [157], widely used to optimise hidden layers number and
connectivity. It has been recommended by [158] that the maximum number of nodes in a single
hidden layer might be considered as 2N+1, in which N is the number of independent variables.
Another method, recommended by [154] is that the top selection of the nodes used at the hidden
layer is a characteristic of mean square error (MSE) as well as correlation coefficient (R). When
the MSE is the minimum value and the R numerical value at its possible upper limit, it can

finalise the number of neurons.

3.6 The training process

3.6.1 The selection of model and estimation of performance

The performance of the ANN should be assessed once the successful completion of the training
process has taken place. The goal of the overall performance evaluation stage is to make sure
that the unit can be generalised to the overall performance analysis limits set by the program
information sufficiently, as would be expected [149]. The acceptable strategy frequently
implemented in the appropriate literature is testing the measuring operation of the trained
network on an assessment data subset [159]. The generalised model can be considered robust
if these output parameters are necessary. Many researchers have reported various measuring
performance indicators, such as the correlation coefficients (Pearson's R and p), root mean
square error (RMSE) and mean absolute error (MAE). The critical statistical performance is
usually measured mainly to assess the efficiency of the ANN model.
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The coefficient of determination (CD) value is used to determine the correlation and fitness
between the measured and the predicted value [160]. The simplest and most commonly used
method employed in ANN is the method of holdout cross-validation. There is a subdivision of
training data with this particular technique into sets of testing and training and validation. The
training set is used in the network training, whilst the validation set is utilised to evaluate the
network’s performance by estimating mean absolute error. There is the repetition of the process
for each type of network design, and the one that is selected as the best model of ANN is the
one that produces the lowest absolute error on average. The correlation coefficient, for the
measurement of performance denoted by (R), is a measure of the strength of the straight line
or linear relationship between two variables of 0.0 and 1.0, the index that follows was suggested
[161]:

|R| < 0.2 weak correlation in existence between two variable sets.
0.2 <|R| < 0.8 acorrelation is in existence between two variable sets.

|[R| > 0.8. there is the existence of a strong correlation between two variable sets.

Equation 3.16 shows the correlation coefficient (R) to determine the relative correlation

between two variable sets.

YL (Ti-T)(Pi—P7)

m“z YL (Pi-P)"2

The most flexible criterion for measuring error between predicted and measured values is the

R =

Eq (3.16)

RMSE which is beneficial because the more significant error value considers more than minor
errors. However, MSE removes emphasis placed on significant errors. Therefore, it ought to
be noted that both MSE and RMSE are desirable when there is a continuous result for assessed

data output. The equations that follow may be applied in the calculation of MSE and RMSE:-

RMSE = \/%zg;ln"i — P, Eq (3.17)
MSE = \/%Z?ﬂ(ﬂ — T2 Eq (3.18)
Where,
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N symbolises the number of data sets, Pi, and T is the computational and targeted value, and

T and P are the means of the targeted and predicted values.

3.6.2 Testing process

The trained network’s performance is assessed in the testing procedure by looking at the errors
on the training and validation sets and the test results. When the correlation coefficient (R) is
close to one, there is a significant connection between the intended and network outputs. In
contrast, when it is close to zero, it means the opposite. However, the best network is training
for measurement of network performance expressed in terms of R-value that, once more, uses
both validation and training sets as entire data for training. There is then an assessment of its
performance through the use of the testing data. A fully trained network ought to have the
ability to predict quickly from this unseen data set; its evaluation is done by measurement of
R-value. A flowchart presents the algorithm of ANN for the entire process mentioned above in

Figure 3.7.
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Figure 3.7: Flow chart of the ANN algorithm
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3.7. Classification

Classification is the most common form of the machine learning application. The goal of the
classification process is to discover a way of classifying unseen examples founded on the
knowledge extracted from a pre-classified set of instances provided. Sometimes the
classification is known as supervised. In a sense, a scheme operates under supervision by giving
an actual outcome for each training example in the training process. This outcome is, therefore,
called the example ‘class’. Achievement of learning of classification may include arbitration
through a trial of the learned explanation of the concept upon a set of independent test data, the
proper classification of which is known though not available for the machine. The rate of
success on the test data provides an objective measure dependent on how well the concept is

learning.

Algorithms for machine learning discover natural patterns within data to generate insights that
can help make better predictions and decisions—data used in machine learning to produce a
model for the performance of a particular task. Machine learning employs two techniques:
unsupervised learning, which tries intrinsic structures or hidden patterns within data input; and
supervised learning, which involves training a model on known output and input data to predict

future outputs. These techniques are presented in Figure 3.8.
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Figure 3.8: Schematic for machine learning techniques.
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Supervised learning

When there is uncertainty, supervised machine learning aims to build a model for predictions
based on evidence. An algorithm for supervised learning takes a known input data set and the
known responses for the output data. it trains a model for the generation of reasonable
predictions in response to the new data classification and regression techniques used in

supervised learning to develop predictive models.

3.7.1 Classification techniques

Classification models start the classification of data into various categories. Classification is a
fundamental task in data analysis that requires constructing a classifier, a function that assigns
a class label to instances within the set of attributes described. However, this thesis focuses on
the basic concept of the data mining technique of classification. For the classification of data
collection, Meta, Misc, Rules, and Trees classifiers are used. In the current study, the WEKA
tool is used to classify the database into different classes. WEKA is an abbreviation for Waikato
Environment for Knowledge Analysis. The full details of the WEKA are discussed in the next
section after the most significant frequency has been selected from the WEKA Workbench
classification technique as discussed in the next section. The level of chloride ions in concrete
structures was validated using an ANNs method in five different saltwater concentrations.
Based on five experimental data sets collected within five different saltwater concentrations,
the ANN model is applied to validate the level of chloride ions in the concrete structures. Data
was collected using a Rohde and Schwarz ZVL Vector Network Analyzer connected to a
microwave horn antenna with a frequency range of 2 to 12 GHz, with each sample measured
ten times. Then, the Chlorimeter tool method was used to measure the level of chloride ions in
different cover depths directly after the microwave sensor measurement was finished on each
sample. The model is developed, trained, validated and tested using a multi-layer back-
propagation method. The validated values compare with actual test results by applying the Chi-

squared technique to calculate the percentage error.

3.7.1.1 WEKA

Waikato University academics in New Zealand created the WEKA. The first implementation
of WEKA in its current form was in 1997. WEKA uses the Graphical User Interface (GNI)
and General Public License (GPL). The software is written in the JavaTM language and
comprises a GUI for data file interaction. There is no need for in-depth data mining knowledge

to operate WEKA, making WEKA a prevalent tool for mining data. Also, WEKA provides the
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users with a GUI and offers many facilities. WEKA is a state-of-the-art machine learning (ML)
technology and it is applied to real-world data mining issues. The data file that WEKA usually
uses is in ARFF or CSV file format. ARFF stands for Attribute Relation File Format, consisting
of unique tags showing distinction in the data set. WEKA implements pre-processing
algorithms for data, classification, clustering, regression, and association Rules of the

procedure [162].
3.7.2 Methods

This section describes the most critical classification techniques with their basic working and

the advantages and disadvantages of being used in this project.
3.7.2.1 Bayesian network

This type of algorithm refers to a graphical model for possible relationships between a set of
variables [163]. The advantages of this algorithm are presented in [164], including the flexible
applicability; this algorithm can resolve both classification issues and regression; smoothness
properties; minor changes in the Bayesian network model do not influence the system's
working. Handling missing data; this algorithm again has excellent capability to fill out missing
data by assimilating overall opportunities of the missing values. One of the problems with the
Bayesian networks classifier is that it usually requires continuous attributes to be discretized
[165].

3.7.2.2 K-Nearest neighbour

K Nearest Neighbour is a basic algorithm that maintains all available examples and classifies
new data or cases based on a similarity measure (KNN). It is often used to define a data point
based on how it ranks its neighbours [166]. This type of algorithm technique divides into two
categories: structure-based KNN and structureless KNN. The structure-based method deals
with the basic structures of the data where the system has less mechanism associated with
training data samples [167]. However, the entire data is categorised into sample data points and
training data in the structureless technique. The distance is calculated between sample points
and all training points. The points with smaller distances are known as the nearest neighbour.
[168].
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Advantages:

(1) One of the KNN algorithm's most notable benefits is that it works well with huge
training data sets and is unaffected by noisy data [169].

(2) No Training Period: Lazy Learner (Instance-based learning) is called KNN. In the
training phase, it does not learn anything. It does not derive any unfair function from
the data from the training. There is no preparation time for it, in other words. It stores
and learns from the training data set only at the moment of making predictions in real-
time. This makes the KNN algorithm much faster than other training algorithms, such
as SVM, Regression Linear, etc.

(3) Since the KNN algorithm needs no training before making predictions, it is possible to
seamlessly add new data that will not affect the algorithm's accuracy.

(4) KNN is very simple to implement. To implement KNN, only two parameters are
required, i.e. the value of K and the distance function.

(5) Quick calculation time.

(6) Versatile — useful for regression and classification.
Disadvantages:

(1) It doesn't work well with large data sets: the cost of measuring the distance between the
new point and each current issue is massive in large data sets, which degrades the
algorithm's efficiency.

(2) With high dimensional data, the KNN algorithm does not work well because it becomes
difficult to measure the distance in dimension with a large number of sizes.

(3) Accuracy depends on the quality of the data.

(4) Requires high memory-need to store all of the training data.

(5) Sensitive to noisy data input, missing values, and outliers: in the data set, KNN is noise
sensitive. Therefore, there is a need to assign missing values manually and delete
outliers [168].

3.7.2.3 Decision tree induction

Decision tree algorithms are the most commonly used algorithms in classification [170]. The
method of decision tree selects an attribute that maximises specific values and fixes the timing.

Then attribute values are divided recursively into several branches until the termination is
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reached [171]. The decision tree is a transparent mechanism that facilitates users to follow a
tree structure making it easier to see how it is made [172]. However, the main objective of the
decision tree is to create a model that evaluates the value of the required variable based on
numerous input variables [173]. C4.5 (J48) is a well-known algorithm for decision tree
production. C4.5 (J48) tries to delete data branches by swapping them with leaf nodes after the
tree has been constructed [174]. Thus the strengths of C4.5 are dealing with training data with
missing feature values and dealing with both discrete and continuous features [175, 176].

The weaknesses include that this algorithm is unsuitable for small data sets [175] and has a
higher processing time than other decision trees. The decision tree is created by picking a
function and dividing the supplied example set according to the values of that function in an
iterative process from a set of training examples. The algorithm REPTree is a fast decision tree
learner. RepTree uses the regression tree logic and creates multiple trees in different iterations.
After that, RepTree selects the best one from all generated trees. Reduced Error Pruning Tree
is a fast decision tree learning technique, and it builds a decision tree based on the information
gain variance, using reduced error [177]. Algorithm Random Tree is a supervised Classifier; it
is a band learning algorithm that produces many individual learners. A random tree is a
collection of tree predictors that is called a forest [177]. The algorithm Decision Stump is a
class for using and building a decision stump. This type of algorithm is always used in
conjunction with a boosting algorithm. The most critical issue is which characteristics are most
effective in deciding classification and should be selected first. Information gains choose the
most important, intuitively deemed the feature of probably the lowest entropy or perhaps the

highest information gain [178].

3.7.2.4 Info gain attribute eval

Info Gain Attribute Eval (1G) must use the Ranker search method from the Weka workbench
to select attributes to reduce the dimensionality of the data [179]. The selection of features is a
fundamental issue in many fields. All components may be necessary for some problems.
Feature selection decreases the dimensionality of the feature space and eliminates redundant,
obsolete, or noisy data so that a small subset of features is essential for particular goal
definitions. This method is selected because it can calculate the information gain for each
attribute for the output variable. Those traits that contribute more information have a higher
information gain value and can be chosen, while those that do not give much information have

a lower score and can be deleted [178].
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3.7.2.5 Meta classifier

Meta classifier includes a wide variety of classifications. The number of attributes and the
number of values per attribute determines the complexities of time and space. The first
approach is multi-scheme from meta-rule; this class selects a classifier from a set of many using
cross-validation on the training data. The training data's performance, which is assessed by
percent accuracy (classification) mean squared error. The second algorithm is Bagging, this
type of class is for bagging a classifier to reduce variance, and it can do classification and
regression depending on the base learner. The third algorithm, CVVParameterSelection, is a
meta-classifier that can optimise over an arbitrary number of parameters, with only one

drawback apart from the apparent explosion of possible parameter combinations [162].
3.7.2.6 Misc classifier

The category Misc contains only two classifiers unless additional corresponding WEKA
packages are enabled. The InputMappedClassifier is a wrapped classifier that addresses
incompatible training data by building a mapping between the training data that a classifier is
built with and the incoming test instance structure. The Serialised classifier loads and uses a
model that is serialised to a server for prediction. It has no impact to provide new training data

sets since it summarises a static model [162].
3.7.2.7 Rule classifier

The association rules are used to determine a correct link between all of the characteristics.
They usually can predict more than one outcome. However, the number of records to be
estimated correctly by an association rule is called coverage. Support is characterised as
coverage divided by several records in total [180]. The rules are easier to understand compared
to the giant trees. For every path from the root to the leaf, one root is created. Each pair of
attributes along the path is a conjuncture. The leaf holds the prediction of class. Rules are
mutually exclusive to each other. Each time a rule is learned, tuples remove from the rules.
OneR - This classifier will choose one characteristic and determine the optimal classification
rule based on that attribute. The rule will then predict the value of the target attribute based on
the value of this attribute for a specific instance. ZeroR-this is the simplest of the rule-based
classifiers and is the majority class classifier. The ZeroR rule classifier takes a look at the target
attribute and its possible values. Also, it will always output the value that is most commonly

found for the target attribute in the given data set [181].
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3.7.3 Statistical chi-squared method

A chi-square (x?) statistic is a test that evaluates how well a model compares to actual observed
data. However, the data used to calculate a chi-square must be random data, raw, mutually
exclusive, drawn from independent variables, and removed from a large enough sample. The
Chi-Square Goodness of fit test is a non-parametric test used to determine how significantly
the observed value of a process differs from the expected value. In the Chi-Squared goodness
test, the term goodness of fit equates the sample distribution observed with the expected
probability distribution. The x? statistic appears quite different from the other statistics, which
have been used in the previous hypotheses’ tests. It also appears to show little similarity to the
previously reported theoretical chi-square distribution. The chi-square statistic is the same for
both goodness of fit test and the test of independence. For each of these tests, all the data's
categories are used. The observed numbers of cases refer to the data received from the sample.
These are the frequency of occurrences for each of the data types. In the chi-square tests, the
null hypothesis states how many cases are to be expected in each category if this hypothesis is
correct. The chi-square test is based on the difference between the observed and the expected

values for each category [182].

Procedure for Chi-Square Goodness of Fit-Testing
Set up the hypothesis for the Chi-Square fitness test:

a) Null hypothesis: in the Chi-Square goodness test, the null hypothesis suggests no
substantial difference between the expected and the observed value.
b) Alternative hypothesis: in the Chi-Square goodness test, the alternative hypothesis

suggests a substantial difference between the observed and the expected value.

Calculate the value of the Chi-Square test using the following formula:

x? =3 QE) Eq (3.19)

Where
A chi-square (x?) a statistic is a test that measures how a model compares to actual observed
data.
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An observation (Oj) in statistics of cases in category i is a value of something of interest you're
measuring or counting during a study or experiment.

The expected value (Ei) is the expected number of instances in category i, and it is computed
by multiplying each potential result by the chance that each event will occur and then adding
all of those numbers.

The calculation shows that the Chi-Square statistic is based on the difference between observed
and predicted data if there were no links between the variables. This chi-square statistic is
calculated by subtracting the observed number of instances from each category's predicted
number of cases. This difference is squared and divided by the expected number of cases in
that category. These values are added for all the categories, and the total is referred to as the

chi-squared value.

Chi-square distribution

General chi-square tests for goodness of fit of an observed variable to a theoretical one, the
independence of two parameters for qualitative data classification, and confidence interval
estimation for a population standard deviation of a normal distribution from a sample standard
deviation using the chi-square distribution [183].

The reason for using a chi-squared test rather than other tests like T-test, is that a chi-square
test requires categorical variables, each of which may have any number of levels. But the T-
test requires two variables, one must be categorical and have exactly two levels, and the other

must be quantitative and be estimated by a mean.

3.8 Related studies

Recently, ANNs reported being a successful modelling technique in different contexts,
including numerous geotechnical engineering speciality areas. An ANN can deal with
complexity and record the non-linear functions adopting the substantial computer potential to
carry out very iterated work. An investigation conducted by [184] focused on the ANN as an
alternative approach to evaluating the chloride diffusivity of high-performance concrete
(HPC). The use of the ANN technique is described in [185] to analyse relationships between
several input parameters and observed corrosion-reinforcing damage. We have collected data
sets on the effects of environmental conditions, concrete structure and properties on the degree
of damage caused by steel corrosion on 11 concrete bridge structures in a Croatian moderate

continental climate. The primary causes of deterioration were chloride ions from de-icing salts
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and accelerated carbonation due to higher carbon dioxide concentration on highways and in
towns [185]. The ANN is defined in [186] as a tool for classifying damage and predicting the
expected future degree of damage. However, in further work [187] the author investigated the
Nord test method for rapid chloride permeability to determine the chloride ion penetration of
high-calcium fly ash (HCFA)-containing concrete for partial replacement of Portland cement.
The test results are used as a training set for generating rules describing the relationship
between material composition and chloride resistance. Multiple techniques for generating
rules have been used and compared. The rules of the WEKA workbench algorithm J48
provided the means for an adequate classification of plain concrete and concretes modified
with high calcium fly ash as components of good, unacceptable or acceptable resistance to
chloride penetration [187]. In [188] the researcher investigated rules for the automatic
categorisation of concrete quality using selected machine learning methods of artificial
intelligence. While many researchers highlighted the use of ANN in geotechnical engineering,
there are still significant gaps in the subject knowledge. The slow convergence rate, the need
to constantly change training, and getting stuck in the local minima are major drawbacks
associated with the conventional artificial neural network [188]. In practice, both supervised
classification and ANN techniques can provide good results to predict the outcome variable.
Researchers are interested in their modelling with many machine learning methods for the
prediction of different properties of concrete structures [189] [190] [191]. However, it utilised
ANN methods based on experimental data to estimate the chloride permeability of the
concrete [192]. It found that the ANN technique provided very accurate results for predicting

corrosion in concrete structures [193] [194].

Additionally, we chose the parameter for the input based on trial and error. In the current study,
a new methodology has been presented using concrete specimens in different saltwater
concentrations and exposed to microwave sensors. A chlorimeter tool was used as a partially
destructive method to determine the level of chloride in different depths. Then, the ANN
approach was used to evaluate between the microwave sensor data and the chlorimeter tool’s
experimental data. The choice of input parameter has been discussed using microwave sensor
data in five different saltwater concentrations to identify the most important frequency point to
determine the chloride ion level in concrete. The choice of output parameter was select using

the three different depths of chloride penetration experimental data work.
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3.9 Summary

The literature study's specifics are covered in this chapter to give the reader a quick assessment
of the viability of computational intelligence methods. The viability of computational
intelligence (CI) applications is highlighted and addressed. It could apply the CI methods
effectively to provide a predictive model when the relationships between model inputs and
outputs are nonlinear. The number of dependent and independent variables, number of neurons,
training system, and data set size are the key parameters influencing model convergence,
according to the topology and factors affecting the construction and training phase of the ANN
model. To avoid over-fitting and ensure the trained networks' good generalisation capability,
other essential aspects of the model must be defined after the model has been configured, such
as the standardisation mechanism and the data set division process. In addition, we discussed
the technique of feed-forward error back-propagation as a highly effective method in modelling
nonlinear relationships. Also, most of the equations used by the MATLAB algorithm to
calculate the hidden neuron output, output layer through the combination of weight calculations
and back-propagation during the whole training process were described. A root mean square
error (RMSE), mean absolute error (MAE), and determination coefficients (Pearson's R and P)
were chosen as the critical statistical measures for measuring the efficiency and generalisation
capabilities of the trained network. The back-propagation work and supervised LM employed
were also introduced and discussed. The algorithm of ANN for the entire process mentioned

above was presented by flowchart.

Moreover, the classification techniques used in these projects and WEKA workbench software
was discussed in detail. For data collection classification, Meta, Misc, Rules and Trees
classifiers were discussed in detail. Finally, studies of some related projects reported on

chloride ion penetration in concrete structures.
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Chapter Four: Electromagnetic Waves and Microwave Sensor

The electromagnetic waves, namely microwave sensing systems, will be introduced in this
chapter as a proposed technique for detecting the level of chloride ions in reinforced concrete.
This chapter will discuss various antenna types and evaluate their qualities for transmitting and
receiving microwave signals to identify the most appropriate antenna for this study. The
experimental work was carried out as preliminary work to select the optimal angular frequency.
This section of the experiment is conducted to see whether the S»1 and S11 parameters could be
used with concrete samples and if there was a link between skin depth and concrete penetration
depth. In terms of demonstrating the state of the art, those preliminary experiments were

utilised to improve the methodology and justify the rest of the experimental work.

4.1 Background

In general, microwave spectroscopy is defined as a study of those interactions between radio
waves and matter, of wavelengths between fractions of a millimetre and several metres [195].
In a massive theoretical development in 1873, James Clerk Maxwell proposed the presence of
electromagnetic waves and mathematically predicted their properties before anyone had ever
noticed such a phenomenon or even heard of it. Science and communications engineers have
since utilised this radiation for many different kinds of determination. EM waves can be defined
characteristically as having three types of physical property, i.e. wavelength (X), frequency (f),
and photon energy (E). Figure 4.1 shows the full spectrum of electromagnetic waves that cover
an entire span of visible and non-visible light signals comprising magnetic and electric fields
that are perpendicular to one another and perpendicular to the propagation direction with all
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their frequencies and wavelengths. During its early stages, microwave spectroscopy was

Figure 4.1: Electromagnetic waves with their full frequencies and wavelengths [160]

6l|Page



introduced to determine dielectric matter properties with experimentation carried out via
Hertzian waves. Microwaves are commonly classified as electromagnetic waves with a
frequency between 300 MHz and 300 GHz; the wavelength of these electromagnetic waves are
identified as well within the range varying from one metre to one millimetre [196].

Microwaves are used in many applications, but in 1934 the first use was as a microwave
radiotelephone network that worked at a frequency of 1.8 GHz between France and England.
The magnetron was invented in 1937 and used in a high power microwave generation device
currently used in microwave ovens [197]. Since the Second World War (WW?2), the utilisation
of microwave spectroscopy has had prominence with radar and various other technical
developments in techniques for the generation of microwaves. This technique is utilised in a
broad range and wide variety of applications such as food quality testing, milk quality, and
testing of pollutants in water [198] [199] [200] [201]. The author of [202] investigated chloride
ions in the hardened mortar by using microwave non-destructive testing. Drying structures
using high-frequency electromagnetic radiation or microwave technologies are gaining much
more use [203]. Electromagnetic sensing techniques help analyse civil infrastructures, such as
transportation, in terms of static and dynamic behaviour during, before, and after a disaster like
an earthquake. The technique of electromagnetic sensing provides knowledge about the
materials investigated in terms of the amplitude and phase of gathered signals, which in effect

consist of the materials’ electromagnetic properties [204].

The electromagnetic waves provide a fast and non-intrusive diagnosis that is useful at the
prevention level as a precautionary diagnosis of both strategic buildings and transportation
infrastructure and they can be a critical issue in seismic risk mitigation. Furthermore, they may
serve as a valuable tool for quickly mapping the damage to civil structures and facilities
(highways, bridges, and dams) during the crisis, allowing for preliminary estimates of which
areas are safe for rescuers [204] [205]. Therefore, the timely assessment, monitoring and
recovery of bridges may reduce overall direct costs and indirect costs in terms of the potential
destruction of property and life of the bridge. While we cannot avoid natural disasters, NDT
can greatly reduce the total direct and indirect costs associated with bridges’ destruction due to
internal flaws or design defects. The electromagnetic technique can also be used for detecting
the excess moisture content in building fabrics [207] [208], as well as in public health for
monitoring insecticide levels in developing countries [209]. The authors in [210] report that
microwave spectroscopy is used for non-destructive monitoring of meat drying and water

holding capacity.
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Microwave propagation within concrete depends upon dielectric properties that are, in turn, a
function of free water amounts that are present within the material. There is a significant
reduction in free water amounts during hydration, which makes methods for the absorption of
microwaves powerful as tools for monitoring that process of hydration. There are various
applications of microwave technology, such as determining water activity within fresh meat
within the food industry [211]. Microwaves are used within medicine for the determination of
breast cancer [212]. Within the water industry, microwaves can be used to detect underground
water leaks [213]. Microwave spectroscopy is a non-ionizing, low-cost, high-penetration
technology with considerable design flexibility, and it is a non-destructive, real-time

measurement approach.

4.2. Dielectric properties of concrete at microwave frequency

Concrete is defined as a dielectric material that will store energy when exposed to an
electromagnetic signal. Therefore, the concrete can be described by its dielectric properties
using the EM wave field. Exposure of a dielectric material (not a perfect conductor) to an
electromagnetic field, results in a change in the configuration of its microscopic electric dipole
composed of negative and positive charges, whose centres do not always coincide. Material
dielectric properties are associated with other material characteristics and can detect properties
such as bio content, bulk density, chemical concentration, and moisture content. When exposed
to an EM field, a change in the relative positions of the internal bound positive and negative
charges against regular molecular and atomic forces causes polarisation, storing electrical
energy [214]. The latter is represented by the real part of the material’s complex permittivity
or (dielectric constant). Whereas the (dielectric constant) real part reflects the amount of
material polarisation, the imaginary component or (loss factor) reflects the losses caused by
conductivity and water dipole relaxation. Hence a perfectly dry dielectric material with no

moisture would have an imaginary part of zero.

Two independent electromagnetic properties can be defined by a dielectric, namely complex
permittivity (¢*) and complex permeability (u*).

Definition of permittivity: The permittivity of a material is a property that quantifies the
resistance it generates when an electric field develops. It is explained as the ratio of the electric
displacement to the electric field intensity. The SI unit of permittivity is Farad per metre. The
vacuum has the lowest possible permittivity, which is approximate 8.85 x 10712 Farad/

metre.
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Definition of Permeability: Permeability is the property of the material which supports the
formation of the magnetic field. The temperature, field strength, field frequency and humidity
affect the permeability of the material. The material’s permeability is directly proportional to
the conduction of the magnetic force surfaces. Permeability is defined as the ratio of the flux
density to the material’s field strength. The permeability constant is the permeability of free

space. It is represented by o, and it is approximately equal to 47 x 10”7 Henry/metre

Nevertheless, most dielectric materials, including concrete and wood, are non-magnetic,
making the permeability very near free space permeability. The discussion is therefore limited

to the complex permittivity (¢*) this is defined as [215]:
e =& — je" Eq (4.1)

Where &' is the real part of the complex permittivity, € is the imaginary part of the complex

permittivity and j = v—1. Then the equation 4.1 divided by the permittivity of the free space

&, the property becomes dimensionless and relative to free space:

g =% =g — je Eq (4.2)

€o

Where &, is the real part of the relative permittivity known as dielectric constant and &, is the

imaginary part of the relative permittivity known as the loss factor.

However, the dielectric constant continuously measures how much energy is extracted by
material from an external electric field. The loss factor is a function of how dissipative material

is, due to current conduction to an external electrical field.

The ratio of the lost energy to the accumulated energy in materials is given as a loss tangent:

1

tans = Z—T, Eq (4.3)

Where tané is the loss tangent, loss tangents could change with temperature, moisture,
frequency and mixture, and compression [216] [217]. The following section defines the basic

working principle of the microwave sensors technique.

4.2.1 The working principle of microwave sensors technology
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Different forms of microwave sensors are being produced, and more developed. Most of their
principles are generally known, while some others are new. Microwave sensors use
electromagnetic fields and a device that internally operates at a frequency from 3 MHz to the
terahertz scale [218]. Microwave sensing technology is a widely used engineering method for
many different industrial applications, such as for non-destructive measurements in real-time.
This method’s theory is based on the interactions between microwaves and material under test
(MUT), which directly affects the speed of the signal, i.e., reflects the signal or attenuates it.
Because of this change, the material permittivity also varies, resulting in the incident
electromagnetic signal becoming attenuated or shifting frequency. By considering how the
reflected (S11) and transmitted (S21) microwave power differ at discrete frequency intervals, the
signal shift can be related to the composition of the object under test [219]. Buschmdller (2008)
explored microwave resonance technologies using the interaction between water molecules and

shifting electromagnetic fields.

The measuring frequency of the employed sensor is predetermined by the resonance
wavelength of the microwave-induced resonator. However, the frequency of resonance
depends on the geometries of the sensors employed. When the resonator is loaded with
materials an increasing storage of electric field energy can be observed, resulting in a
decreasing frequency of resonance. The permittivity, which is excited by the energy storage,
significantly changes concerning the water content. Moreover, the wet material disposed of the
resonator energy, which results in an increasing width of the resonance waves because
resonators respond very sensitively, measurement accuracy can be high. Thus, water content
leads to a decreasing frequency resonance; the frequency bandwidth increases simultaneously
(see Figure 4.2). The broadening of the observed resonance frequency band is induced by the
moisture of the substance and the material load in the sensor's focus. By simultaneously
considering frequency and bandwidth and comparing it to the unstressed resonator in air, two
independent properties are available, which allow the determination of an MUT in terms of the
moisture content. Hence, a material's moisture content can be obtained using microwave
spectroscopy [220]. In using microwave sensors, the primary advantages are that there can be
a broad range of applications that are cheap and non-destructive and yet effective whilst
measuring in a non-invasive way from close by as the waves penetrate without the creation of
any hazards to health [221].
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Even though this microwave sensor type is at a lower range of frequency to a level of a few
tens' worth of GHz, there are no hazards to health for either humans or animals. Furthermore,

they may easily retrofit them to existing set-ups within the industry.

sensor signal

g
frequency

Figure 4.2: Microwave resonance curves, resonance curves in the air (solid line), resonance curve in
wet material (dash line) [220].

A typical microwave system comes in three parts: the graphical user interface (GUI), a vector
network analyser (VNA), and a sensor. See Figure 4.3 for a block diagram of a microwave
sensor network. VNA is a commonly used instrument for the design applications for Radio
Frequency (RF). It allows the output of RF and microwave devices to define network scattering
parameters or S-parameters. VNA data can be presented using complex data (real and
imaginary), magnitude and phase.

VNA Sensor
GUI
~ Initialising system Incident microwave signal
0 oo @
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RE Out REIn : mal
Data collection Reflected microwave signal

e

Figure 4.3: Microwave sensor technique.

66 | Page



The graphical user interface has complete control of the system. It initialises the VNA,
configures the desired parameter (e.g. frequency range, S-parameters, etc.). Hence, it collects
the most valuable information from a sensor via VNA, analyses data/reflected signal, and
displays appropriate parameters/information on a laptop /PC screen (e.g. numeric data or

expected measurement values / plotted).
4.3 Maxwell equation relation with electromagnetic waves

A nineteenth-century physicist named James Clerk Maxwell developed a theory that clarified
the relationship between electricity and magnetism, stating that visible light makes up
electromagnetic waves. Electromagnetic waves might exert forces on charges at a great
distance from their source, making them detectable. There are two main components to EM
waves, i.e., a magnetic field (H) and an electric field (E). As shown in Figure 4.4, these fields
oscillate in phase in perpendicular ways to the energy propagation energy (z) and each other
[212]. Within a vacuum, all EM waves travel at the speed of light. EM radiation is a repetitious
periodic wave. Frequency relates to the repetitions per second for the waveform, the
measurement of which is in Hertz (Hz). Wavelength (L) refers to the distance travelled by a

wave in one of its complete cycles.

Electrie field

Figure 4.4: Electromagnetic waves components [222]
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The distance travelled by a wave for completion of a single cycle is considered as the signal
wavelength. If a periodic signal has a frequency (f) travelling at the speed of light, shown as
(c), then equation 4.4 gives the associated wavelength (A) [223] [224].

A=1 Eq (4.4)

All kinds of EM waves travel at the same speed within a vacuum, i.e. the speed now known as
the speed of light 2999792458 m/sec; Maxwell calculated that electromagnetic waves would

propagate at speed given by the equation 4.5:

Eq (4.5)

Where c is the speed of light, dielectric air constant is represented by €o, with a value of 8.85 x
10712 Farad/metre and magnetic air permeability is represented by o, with a value of 4m x
1077 Henry/meter. When travelling through other materials, however, the EM wave speed is

reduced by a factor of /e,.p,.. Equation 4.6 shows the effect upon wavelength [223, 224].

Speed of light ¢: A fundamental physical constant that is the speed at which electromagnetic
radiation propagates in a vacuum has a value fixed by the international convention of
299,792,458 metres per second.

Dielectric air constant (go): The dielectric constant is a measurement of the amount of electric
potential energy stored in a particular volume of material under the action of an electric field
in the form of induced polarisation.

Magnetic air permeability (uo): The property of the material allows the magnetic line of force

to pass through it.

_ c
A= = Eq (4.6)

4.4 Frequency and electromagnetic wave

A wave transfers energy from one place to another without moving material between the two
places, or a wave is a disturbance that carries energy from place to place. A typical example of
a wave is a wave on the ocean, where they take energy, as they cause erosion on the shore.
Still, material such as water cannot continuously transfer onto the shore. Therefore,

electromagnetic waves do not require a medium to travel through. They transfer energy without
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transferring particles and also travel by transferring energy between electric and magnetic
fields. An electromagnetic wave transports its energy through a vacuum at a speed of 3.00 x
108 m/s. However, the propagation of an electromagnetic wave through a material medium
occurs at a net speed that is less than 3.00 x 108 m/s. Some waves must have a medium to
move through; these are called mechanical waves [225]. The number of occurrences per unit
of time of a repeating event in which a periodic function repeats the same sequence of values
during a unit variation of the independent variable, namely temporal frequency. This confirms
the disparity between spatial frequency and angular frequency; the period is an interval of one
cycle in a repeating event. Thus it can be concluded that the frequency is the reciprocal of the
period [226].

Moreover, in the case of increasing frequency, the result is a shorter wavelength, whereas in
the case of decreasing frequency, the wavelength will be longer, but at the same time, the
resolution will change related to frequency. Therefore, the use of a high-frequency antenna will
get high resolution but will achieve low depth. So, selecting an antenna is based on work
conditions and requirements. If greater skin depth measurement is required, it will tend towards
a low-frequency antenna and conversely [225]. The depth at which electromagnetic waves can
be effective is the function of factors like water content, material conductivity, antenna gain
and efficiency, receiver sensitivity, and transmitter pulse width [225]. Attenuation reduces
signal strength during transmission, and attenuation is represented in decibels (dB). In the case
of dB, it is ten times the logarithm of the input signal power divided by the signal power output
of a unique medium. Consequently, positive attenuation causes signals to become weaker when

travelling through the medium.

4.5 Frequency, wave velocity, and speed

Wave speed depends on the environment in which the wave is moving. It varies in solids,
liquids, and gases. The distance a wave travels in each unit of time, such as the number of
metres it travels each second, is known as wave speed. The following is a mathematical formula

for calculating wave velocity:

Wave speed = wavelength (metres) x frequency (Hz). In many dry materials, such as concrete,
sand, and soil, when small amounts of water are used in the mix, the dielectric of the wet
material becomes higher and thus, the microwave velocity will decrease. For example, dry
clayey soils have microwaves, which travel twice as fast as wet clayey soils [227]. The

electromagnetic properties of the material govern the velocity of propagation in the material.
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As a result, the signal speed is often reduced by the square root of the material's relative
permittivity. Speed is described as a scalar quantity since it has magnitude but no direction.
They have a magnitude and no specific direction, according to the definition of a scalar
quantity. Speed has no defined direction and just one magnitude, making it a scalar quantity.
Velocity is a quantity having magnitude and acting in a specific direction and is described as a

vector. Equation 4.7 shows the relation between the velocity and speed of light.

v=—= Eq (4.7)

4.6 Scattering parameters

Return loss and insertion loss can also be specified using S-parameters. If a microwave signal
is an incident on the sample's surface, some signals reflect and transmit through the sample.
Therefore, the ratio of the reflected signal to the incident signal is the reflection coefficient.
The ratio of the transmitted signal to the incident signal is the transmission coefficient. In
section 4.7, Figure 4.5 demonstrates the transmission and reflection coefficients. However, the
transmission and reflection coefficients are specified in both directions as follows:

Port 1: Input Port

Port 2: Output Port

S11: Input reflection coefficient

S12: Reverse transmission coefficient

S»1: Forward transmission coefficient
S22: Output reflection coefficient

S11 is the signal reflected at input port 1 as a ratio of the signal incident at input port 1. S12 is
the signal output at port 1 as a ratio of the signal incident at port 2. Sz1 is the signal output at
port 2 as a ratio of the signal incident at port 1. Sz, is the signal reflected at port 2 as a ratio of
the signal incident at the same port 2. Therefore, to measure S11 of a single horn antenna and
S21 parameter between two antennas, experimental work was conducted to measure dry
concrete samples, wet samples with tap water and salt water, and both parameters compared.
S-parameters are used to describe how energy can propagate through material properties. S-

parameters describe the relationship between different ports when it becomes especially
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important to describe a network in terms of amplitude and phase versus frequency, rather than
voltages and currents. The author of [228] demonstrated this in an experimental study using a
GPR method as a transmitted and received signal for monitoring moisture and chloride ingress
into concrete. In [229] demonstrated this similarly in an experimental study using near and
far-field microwave non-destructive methods for the determination of chloride content in
concrete, citing the reflection (S11) and transmission (S21) coefficients of a concrete planar
sample [229]. Moisture content inside concrete structures can be studied from the data of their
interactions with microwaves. This interaction can be revealed in the form of a unique signal
spectrum known as reflection (Si11) and transmission (S21) coefficients [230]. The authors
demonstrated further similar findings in their study, using two horn antennas, and investigated
the propagation of EM waves through the concrete blocks and their interaction with water.
Therefore, based on this research, in this study, two horn antennas and microwaves were
experimentally used to investigate the propagation of EM waves through the concrete samples

and their contact with different saltwater concentrations.

4.7 RF or microwaves and the concrete sample

A microwave must travel across free space to reach the receiver and detector. However, some
obstacles are commonly encountered within the propagation area, such as buildings, windows,
bridges, metallic structures, fog, and walls. When an EM or radio wave comes across changes
to a medium, some or all of it could propagate into the new kind of medium as refraction,
dispersion or absorption, whilst the microwave remainder reflects. With the hitting of obstacles
by microwaves, there is an irredeemable loss of energy; however, that fact means that precise
detection of refracted or reflected microwave energy can provide valuable information
concerning the character in electromagnetic terms ( €, 4,, 0, ). The rules that govern the

reflection of radio waves are, as with those that govern light waves, quite simple.

Figure 4.5 illustrates three media with equivalent transmission lines that encounter
characteristic impedance forms, respectively shown as Z1, Z2, and Z3. The representation of
the thickness of the wall is shown by d. As a reflection occurs, the incidence angle, the
representation of which is 0j, has a value that is the same for both the incident and the reflected
rays. Furthermore, absorption usually causes a degree of loss whilst the signal is a passage
through the medium. In real transmission paths for radio waves, often there is a reflection by a

variety of different surfaces. So, there are multiple reflections and transmissions at the
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boundaries. There is a summarising of all reflected waves into the reflected wave, and all

transmitted waves summarise into the transmitted wave [231].

€5, U, 02 €3, 13,03

P / Medium 3
< Medium 2

d E,

Port 1(horn
antenna)

Medium 1 <w

Port 2(horn
antenna)

Z1 Z> Z3

Figure 4.5: Microwave penetration and reflection are demonstrated using a schematic design

In general, transmitted and reflected waves will change the amplitude and phase of the incident
wave. Typically, the transmitter and the reflected wave frequency will be the same as the
incident wave frequency. The phase and amplitude of the transmitted and reflected components
are examined by the known related Fresnel coefficients, which are dependent on dielectric
material characteristics and the microwave signal incidence angle to the material [232]. S-
parameters are complex as they are both magnitude and phase. The outside wall reflects the
wave, which represents loss from a receiver within the building. A further loss comes from the
nature of the building material, which leads to transmitted wave attenuation because of
absorption of the transmitted wave with its propagation through that material. The absorption
causes ohmic heating, the absolute amount of which is extremely small because the radio signal
energy flux is also extremely small; however, serious signal attenuation may be caused by the
mechanism. Attenuation, calculated in decibels, has simple proportionality with a material
depth that the signal propagates through. As such, total attenuation depends upon the radio
wave incidence angle for the building material.

The real part is the magnitude, and the imaginary part is the phase angle. Quite often, it is the
case that more interest focuses on the magnitude, and there may only be references made to
that. Both magnitude and phase change with load, input frequency, and sensor size alteration
together with the source's impedance. In general, this research project was the only

measurement of the Sy; parameters; more discussion can be found within sections 4.6 and 4.7.
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4.8 Antenna

An antenna is completed by using a conductor, which is usually made of a rod or wire and is
used to receive or transmit radio waves. The performance is through a transition structure
between free space and a device for guiding, such as a transmission line. The transmitter
radiates EM energy into free space from where the receiver collects it. The same design of
antenna may be utilised for both transmission and reception. However, there is a certain degree
of resistance to radiation for every antenna, referred to as antenna impedance. The impedance
of the transmission line and radio must be adequately matched to the antenna's impedance in
order for a radio (transmitter or receiver) to supply power to it. Voltage standing wave ratio
VSWR and also referred to as Standing Wave Ratio (SWR). The parameter VSWR measures
numerically describe how well the antenna impedance matches the radio or transmission line
it connects to VSWR. It represents the power reflected from the antenna and is a function of
the reflection coefficient. The following equation defines the VSWR if the reflection
coefficient is supplied by (I') [233]:

_ 10
VSWR = Eq (4.8)

S11 or return loss is another name for the reflection coefficient. Most antenna types have designs
with an impedance of 50Q; this is standard for microwave and RF systems. Most antennas are
devices that are resonant and efficiently operate across the bandwidths of relative frequency.
More ready radiation of power at high frequencies is comparable to the antenna dimensions
and acceleration of charges to the maximum extent because the changes within an electric field
are faster [234].

Antenna characteristics are determined by the type, shape, and size of the material employed.
Various types of antenna can use for transmitting and receiving microwave signals; these are

considered below, i.e. aperture antennas [235], microstrip antennas [236], wire antennas [236].

4.8.1 Aperture antennas

Several kinds of aperture antennas exist, such as the pyramidal horn, the conical horn, and the
rectangular waveguide. Horn antennas come in various shapes and sizes, with examples
including the pyramidal and conical types, the pectoral horn (H plane and E plane), the
exponential horn, the ridged horn, the corrugated horn, the aperture-limited horn and the
septum horn [237] [238] [239]. A horn antenna is a flared-out waveguide with better directivity
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and less diffraction. However, a microwave horn antenna produces a phase front that is uniform
with an aperture that is larger than the associated waveguide and has a greater degree of
directivity. Pyramidal horn antennas flare on both of their sides. If flaring is undertaken to both
walls (E plane and H plane) of a rectangular waveguide, it produces a pyramidal horn. Flaring
aids in matching the impedance of antennas to the impedance of free space so that there is
better radiation; with avoidance of standing wave ratio, greater directivity is provided along
with the narrower width of the beam. Horn antenna flare angle is a key factor for consideration;
if it is overly small, then the wave that results, instead of being planar, will be spherical, and
the beam that radiates would not be directive [240].

Thus, the angle of the flare ought to have an optimum angle value that is related closely to its
length. Horn antennae have the primary advantage, however, of providing very significant
levels of gain and directivity. For greater gain levels, horn antennae ought to have larger
apertures. Also, to achieve maximum gain for a particular size of the aperture, the taper ought
to be longer for the wavefront phase to be almost as constant across the aperture as is possible

[235]. The basic kind of pyramidal shape is shown in Figure 4.6.

Flared Horn

Coaxial cable

Figure 4.6: Pyramidal horn antenna [LIMU Lab sensor]

Horn antennas feature a directed radiation pattern with a high antenna gain, which may reach
up to 25 dB in certain circumstances but is more common around 10-20 dB. Horn antennas
have a wide impedance bandwidth, implying that the input impedance slowly varies over a
wide frequency range (which also implies low values for S11). The bandwidth for practical horn
antennas can be in the order of 20:1 (for instance operating from 1 GHz -20 GHz), with a 10:1
bandwidth not being uncommon. Sometimes the gain of the horn antenna increases (and the
beam diameter decreases) as the operating frequency increases. Because the horn aperture's
size is often measured in wavelengths, the horn antenna is electrically larger at a higher
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frequency and has a smaller wavelength. The horn antenna is probably the most simple and
most commonly used type of microwave antenna; it provides the transition between the
propagation of waves within a line of transmission and radiating surface within free space.
Horn antennas have very little loss, so the directivity of the horn antenna is roughly equal to its
gain [241].

The advantage of using a horn antenna, in terms of the EM waves, is that it has a higher gain
and directivity, as mentioned before. This means it can penetrate further into the concrete
compared to the other antennas, such as the patch antenna, which can only penetrate the
samples a few centimetres and only provide the surface information; that is why the horn
antenna is used in this project. However, the previous research [208] used a wide-band 2-18
GHz pyramidal horn antenna to detect moisture content in the building fabric. The previous
researcher used sensor technology to detect moisture levels in concrete structures. According
to the findings, this technology can detect moisture. As a result, this technique will be used in
this study to investigate the detection of chloride ions in concrete structures to determine
whether they are also durable, as they can detect moisture. Due to its penetration depth
capability, the preliminary usage of horn antennas allows us to measure the entire concrete
sample rather than just the surface. Because the chloride level has a significant impact on the
reinforcement concrete, it can induce corrosion depending on the amount and depth of
penetration. As a result, the horn antenna had to monitor chloride ions at different penetration
depths in this study.

4.9 Design consideration for horn antenna

Horn antennas are the simplest and most widely used microwave antennas, and they find
applications in wireless communications, electromagnetic sensing RF heating [242]. Because
the waveguide feeder has an impedance of 377 ohms and the horn antenna has a tapered or
flared end, it may be used as an RF transformer or impedance match between it and free space.
Horn antenna offers several benefits when employed. It helps inhibit signals travelling via
undesirable modes in the waveguide from being radiated, providing a high amount of
directivity and gains, and matching the guide's impedance to that of free space [243]. While it
serves as an entry medium for signal interception for processing in receiving systems, it helps
to clarify the dish antenna from its focal area in the case of transmitting, estimated from the
parabolic dish's f/d parameters [244]. Dual-mode feed horns often provide excellent
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performance over a wide range of microwave bands [245]. Conical and pyramid horn antennas
are the two primary kinds of horn antennas. It is very appropriate to have the correspondence
of impedance with transmission lines of radiofrequency. Standing waves result in increased
loss levels and frequently lead to failure of transmission [246]. The design has an optimal flare
angle for various horns, which helps minimize all of the problems mentioned above. Horn
antennae designed with consideration for the optimum flare angle is known as Optimum Horns
[247].

4.10 Skin depth of concrete

The penetration of a planar electromagnetic wave into a substance is defined as the skin depth.
The field's magnitude in the material is proportional to e™*/% . Where & = skin depth, x =
distance into the material from the incident wave's surface. Skin depth is when the transverse
electric and magnetic fields decay to 1/e of their amplitudes upon value entering the surface.
The skin depth of EM waves is based upon the efficacy of the antenna radiation, the microwave
foundation signal frequency, and the subsurface electrical characteristic. However, the skin
depth is calculated from the real part of material permittivity and the loss tangent. The concrete

or cement's loss tangent is illustrated by [56]:

II

tand = i—‘; Eq (4.9)
There can be an expression of concrete skin depth with:

o5 =~ (M) Eq (4.10)

Where the constant of attenuation () can be provided by:

a=ﬁ§*\/£;p’r sV + tanZs — 1 Eq (4.11)

Where ¢ equates to a speed of light, &, is the relative concrete permittivity, u,. is the relative

concrete permeability set to equal 1 for concrete, and w is the angular frequency.

Speed of light c: Light waves travel at various speeds through different materials. The speed

of light in a vacuum, in particular, is 299,792,458 metres per second.

Relative permittivity &,.: Relative permittivity is the factor that determines how much the
electric field between charges reduces in comparison to the vacuum. The relative permittivity
of concrete typically varies from 6 for naturally dry concrete to 12 for saturated concrete.
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Relative permeability u,: The simplicity with which a fluid may pass through a porous

substance is referred to as permeability.

Angular frequency w: The angular frequency is defined as the angular displacement of any

wave constituent per unit time.

There is a need to calculate attenuation constants and the skin depth for both dry and wet
samples of concrete. So that there was an independent note of response to the electromagnetic
field to both dry and wet types of concrete, for this study, the magnetic and dielectric properties
were derived from S-parameter measurements upon representative samples placed within the
waveguides [248, 249] and use of the algorithm of Baker-Jarvis [250]. The skin depth for the
dielectric property of the electromagnetic wave signal for the marine concrete structure has
been suggested, with the nominal cover ranging between 55-75 mm in terms of the civil
engineering requirement. Therefore, the skin depth for the EM waves point of view has been
selected and applied to satisfy the requirement from civil engineering for measuring the
nominal and effective cover. This technology can be used in the civil engineering field for
more inspection purposes. Also, more details about the skin depth, the nominal cover has been
provided in chapter two, Literature review section 2.11. Because our focus was initially on the
marine concrete structures, this parameter needs to be taken into consideration, but this could
be further investigated for other civil engineering applications like bridges on a motorway,
where the skin depth has to be 35 to 45 mm according to the BS EN 1992-2:2005 [65].

4.10.1 Rectangular waveguide used with different bands

Rectangular waveguides are one of the earliest types of transmission lines. They are used in
many applications. Many components such as isolators, detectors, attenuators, couplers and
slotted lines are available for various standard waveguide bands from 1 GHz to above 220 GHz
[251]. The fields in a rectangular waveguide consist of several propagating modes that depend
on the waveguide's electrical dimensions. These modes are broadly classified as either
transverse magnetic (TM) or transverse electric (TE). The shape of the rectangular waveguide
is as shown in Figure 4.7. A material with permeability and permittivity fills the inside of the
conductor. However, a rectangular waveguide can't propagate below certain frequencies; this
frequency is the cut-off frequency [252]. A rectangular waveguide is a structure that guides
waves, such as electromagnetic waves or sounds, by limiting energy transmission to one

direction, with little energy loss.
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Figure 4.7: The shape of rectangular waveguide
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In this project, three different bands are used, and only the dimensions of these three bands are
changing and the frequency range because this project requires the establishment of a frequency
for the operational use of the sensor. The purpose is to investigate the microwave signal
reaction over various frequencies to the concrete structure with various chloride levels. The
bands used in this project ranged from 2.35 GHz to 2.85 GHz within the S-band, 4 GHz to 7
GHz within the C - band and 8 GHz to 12 GHz within the X - band. A rectangular waveguide
has different cross-sections based on various bands, such as the S-band of WR340 with
dimensions of 86.36 mm by 43.18 mm, the C-band of WR159 with dimensions of 40.38 mm
by 20.19 mm and the X-band of WR90 with dimensions of 22.86 mm by 10.16 mm. Chapter
5, section 5.3.2 explains the experiment as a Proof-of-Concept work with these different bands,

and the findings are discussed in detail.
4.10.2 Used electromagnetic sensor working principle.

The primary principle of the horn antenna, operating at radio wave or microwave frequency
range, is founded on signal interaction with a material sample medium under examination with
various concentrations of salt water. Interactions between medium materials and the
microwave signal may take the form of a phase shift or amplitude attenuation, and it determines
the relative permittivity with moisture content and different saltwater concentrations. Figure
4.8 shows an experimental set-up involving a microwave horn antenna connected to a vector
network analyser by Rohde and Schwarz and a PC that collected raw data and stored it through
software developed within LabVIEW. The schematic diagram is presented in Figure 4.9 (a),

and the developed sensor is shown in Figure 4.9 (b).
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Also, a sample of wet concrete was monitored upon a scale to measure the lost weight due to
drying whilst the experiments were undertaken. Because the microwave signal spread from the
edge of the horn antennas, the microwave sensor was set 20 mm from the sample's surface to
avoid monitoring any other items adjacent to the concrete sample during the experimental test.

The surface of the scale was metal, and it is a good wave reflector.

Figure 4.9: (a) Sensor Schematic, (b) Sensor Prototype

4.11 Summary

This chapter introduced the electromagnetic waves, which could potentially measure moisture
and chloride ion levels in concrete. As part of electromagnetic waves, the microwave spectrum
was highlighted as the most suitable frequency range for this investigation, mainly the 2-12

GHz frequency range. According to the previous study, it explained the concepts and theory
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for the most common electromagnetic sensors. Microwave sensing technology is a widely used
engineering method for many different industrial applications (see section 4.2 for more details).
Concrete is defined as a dielectric material, which will store energy when exposed to an
electromagnetic signal. Therefore, the concrete can be described by its dielectric properties
using the field method of electromagnetic waves. A dielectric material can define two
independent electromagnetic properties: complex permittivity (¢*) and complex permeability
(u*). These definitions are well explained in section 4.2.1. S-parameters describe the
relationship between different ports when it becomes essential to describe a network in terms
of amplitude and phase versus frequencies, rather than voltages and currents. Moisture content
inside concrete structures can be studied from the results of their interactions with microwaves.
This interaction can be revealed in the form of a unique signal spectrum known as the reflection

coefficient (S11) and the transmission coefficient (S21) (see section 4.6).

The pyramidal horn antenna was chosen as the most suitable type and structure of the current
sensors due to its capability, low cost of production, and, most importantly, high penetration
compared to other antennas due to higher gain and directivity and its design flexibility. The
advantages of using horn antennae and their selection in this project are explained in sections
4.8.1 and 4.9. The skin depth of EM waves is based on the antenna radiation's efficacy, the
microwave foundation signal frequency, and the subsurface electrical characteristic. The skin
depth for the dielectric property of the marine concrete structure's electromagnetic wave signal
has been suggested. According to the Eurocode, the nominal cover ranges between 55-75 mm
in terms of the civil engineering requirements. A rectangular waveguide measures the concrete
samples' skin depth, one of the earliest transmission lines. They are used in many applications.
In this project, three different bands are utilised, the only experimental variations for the
waveguides. Therefore, the operational frequency changes as well. The research methodology
is described in greater detail in the following chapter: the sample preparation, experiment set-
up, data analysis, and a description of how the sensor data was validated with the collected data

using a partially destructive approach and an ANN model.
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Chapter Five: Experimental Work

5.1 Introduction

This research aims to investigate and validate the use of Electromagnetic (EM) waves as a non-
destructive technique to determine the chloride level in reinforced concrete structures. This
chapter will describe the introduction, namely, the research methodology, the overall
experimental regime (preliminary and primary tests), concrete mix design preparation, initial
surface absorption test, experimental approaches, and data analysis. However, the chapter will
start with section 5.2, the research methodology and provide the flow diagram of the research
methodology. Then, section 5.3 will introduce the overall experimental regime including
preliminary and primary tests, and Table 5.2 contains the number of samples and purpose of
use in this research. This chapter will provide, in sections 5.4.1 and 5.4.2, the first
measurements taken after the preliminary test and preparation of concrete mix design, in detail.
Section 5.4.3-5.4.5 will demonstrate the experimental set-up of the continuous monitoring of
the curing and drying process approach undertaken in this investigation. Section 5.5.1 will
present the experimental set-up under various salt-water concentrations. Section 5.5.2 and 5.5.3
will introduce the chloride content preparation to submerge the concrete samples individually
and demonstrate measurements taken of 5 water concentrations. Section 5.5.4 will show the
chlorimeter tool as a partially destructive method to detect chloride levels in concrete. Then we
will discuss Finlay, section 5.6, techniques for data processing, and the development of

validation models based on collected data.

5.2 Research methodology

Develop the approach outlined below to meet the goal and objectives outlined in Chapter
One:

%+ The first stage of this investigation was understanding the essential principles of the
mechanism of chloride ion attack and the problems associated with chlorides present
in concrete structures. Studied the theory to provide an understanding of the corrosion
process and some electrochemical corrosion rate measurement techniques; also, an
understanding of the impact of chloride content, moisture, and temperature on the
dielectric constant of the concrete structures. We have carried out a literature review

to understand the existing NDT technologies for detecting the level of chlorides in
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concrete structures and EM theory, including waveguides and antennas. The literature
review established that a commercially available technique to detect the chloride level
in a concrete sample is time-consuming, high cost, and mainly destructive. In
addition, there are revised new techniques for chloride ions detection. However, they
still have not met the industrial requirements, and some of the methods were more
costly than the current state of the art, and others were unworkable due to sampling
preparation requirements of the techniques. A previous researcher has reported that
the electromagnetic wave sensor could be used as an alternative non-destructive
method for identifying water content in concrete structures [253]. Journal papers,
conference papers, and textbooks are used as the primary sources of background
information. A flow diagram of the research methodology is presented in Figure 5.1.
The next stage was to experimentally test a system with moisture and chloride detection
to determine the signal spectrum. It was necessary to select the optimised angle of horn
antennas as a transmitter and receiver system operating when the concrete sample was
under the sensor involved optimising parameters, including the substantial sample size
depending on the horn antenna surface. The sweet number point, frequency range, and
power electronic (dBm) are linked by a coaxial wire and interfaced to a PC or laptop
running National Instruments (NI) LabVIEW software to show the signal spectrum.

A preliminary test of the concrete paving slabs submerged in water and salt water was
carried out. Each concrete slab was immersed in salt water and tap water for 24 hours,
then underwent a drying process, and the concrete samples were monitored every
minute for 24 hours. The initial findings show that there are some differences and
noticeable changes in the microwave signal. Still, it is significant enough to continue
performing more experiments to understand further what changes can be seen in the
electromagnetic wave signal.
An experiment was constructed that utilised previously observed parameters to
investigate changes of EM waves at microwave frequency with tap water and salt water
in the paving slabs in an hour. It is also necessary to know the age of the concrete
structures to check the propagation of EM waves through typical constructions. The
main constructions that were studied in this project were concrete samples with and
without reinforcement. The previous related studies recommended using two horn
antennas. Therefore, in the current study, two horn antennas have been used to
investigate the moisture content and level of chloride in the concrete samples. The first

horn antenna transmits the waves, and the second one receives the signal reflected from
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the studied material. The frequency range utilised in these investigations was 2 to 12
GHz. A machine learning technique in the new area of artificial intelligence aims to
develop patterns to explain engineering applications. Hence, the developed design
would be able to generalise the behaviour of complex engineering systems [254]. Over
the last few decades, many machine-learning methods have been present. To validate
the results of the electromagnetic sensor and the gold standard approach, we will

combine the WEKA workbench classification and ANN methodology with each other.
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Figure 5.1 A flow diagram illustrating the methodology development.
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5.3 Overall experimental regime (preliminary and primary tests)

This section demonstrated the number of samples that were prepared and used in preliminary

and primary tests. Each section will discuss the experimental work and set-up on each of the

groups separately. Table 5.1 indicates all the samples that were used for the test during this

project. However, Table 5.2 indicates the main characteristics of each group of the concrete

samples.

Table 5.1: The number of concrete samples exposed to microwave sensors

Group

Number
of
samples

Size of samples
(mm)

Purpose

150 x 150 x 150

These three samples used to determine the permeability

of the concrete and compressive strength.

250 x 250 x 60

These samples used as a preliminary test to measure the
skin depth of the EM waves that need to penetrate the
concrete blocks according to the civil engineering
requirement; used three different bands of rectangular
waveguide. In addition, using these samples was to
establish the angular frequency between the two-horn
antenna for the rest of the experimental work. Hence,
these experimental set-ups and results are discussed in

the following section 5.3.1in detail.

600 x 600 x 40

These two pavement slabs use as a preliminary
experimental test to determine the effect of chloride
ions and moisture on electromagnetic waves. The

results of this test are shown in Chapter 6, section 6.2.

10

250 x 250 x 60

Then, following the same process as the three trial cubes
in the lab, ten concrete slab combinations with and
without reinforcement were made and cast. The
electromagnetic waves are reflected by the reinforced

concrete and varied reinforcement areas inside the
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concrete samples. In Chapter 6, the findings of two
concrete samples without reinforcement after curing
and drying are discussing. In addition, chapter 6
discusses two of the examples that have two rebars.
Appendices D show the raw data results of six samples
with  reinforcement rebar at various saltwater

concentrations.

Five unreinforced concrete slabs were mixed and
poured. The proportions 1:1.5:3:0.7 kg were used in the
standard concrete mix, which is more typical in
European countries. The data from these five samples
was used to determine the skin depth and reinforcement

E 300 x 300 x 150 . .
depth concerning the access depth reinforcement
required for maritime concrete structures, ranging from
70mm to over 100mm depending on the concrete mix
design. In Chapter 6, the results of all five samples with
five different saltwater concentrations are discussed.
Table 5.2: Demonstrated the main characteristics of each group of concrete samples
Group The weight proportion Compressive The dry | Superplasticizer
of concrete mix design | strength Mpa, after | density of
concrete kg
Kg/m? 7 days 28 days
Kg/m?
A
1:1.80:3.71:0.4 26.29 39.86 2416 0.032
B 1:1.82:3.69:0.4 = = 2347 0.126
C n/a n/a n/a 2216 -
D 1:1.82:3.69:0.4 = = 2349 0.0126
E 1:1.5:3:0.7 n/a n/a 2592 -
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5.3.1 Initial surface absorption test (permeability test)

This test was undertaken to ascertain the permeability of the concrete samples and how fast
they absorbed the water and salt water during the curing process. For experimental
investigations on the air permeability of construction materials, surface layers, mainly concrete,
the Torrent Permeability Tester (TPT) made by a Swiss company, Proceq, was used. The TPT
is a modern device that is applicable for a non-destructive determination of the concrete air
permeability. The equipment is used in conjunction with a vacuum pump for on-site and
laboratory measurements. The basic parts of the device are a two-chambered vacuum cell and
pressure regulator that regulates the air flowing into the internal chamber located perpendicular
to the concrete surface. A further component of the measuring device is an indicator with a
liquid crystal display, permitting data recording for up to 200 measurements. The initial surface
absorption test (ISAT) is standardised in Great Britain as in BS 1881:208 [255] [256]. Under
a pressure head of 200 mm, movement down a capillary tube attached to a cup monitors the
rate at which water absorbs into the concrete.

When water comes into contact with dry concrete, it is absorbed via capillary action at a rapid
pace at first, then at a slower rate as the water fills the capillary's length. The basis of initial
surface absorption, is defined as the rate at which water flows into concrete per unit area at a
stated interval from the start of the test at a constant applied head at room temperature. The
measuring method relies on calculating both the permeability coefficient Ky and length L
constants and is performed with numerical integration and derivation using an indicator tool.
The issue is to establish the constant open concrete porosity, which is different for various
concrete types. The developer of the TPT device and a team of co-workers established the
measurement limits (see Table 5.3), based on comprehensive permeability tests conducted.
The air permeability factor Kt calculations with the TPT used the mean value of open porosity
= 0.15, that was measured by the developer from a comprehensive set of tests[257]. However,
three trial cubes of 150 x 150 x 150 mm with 10 mm limestone aggregate and 0.4 w/c ratios
for the compressive strength and initial surface absorption test (permeability test) were
prepared. Therefore, experimental work was further conducted with two concrete samples to
conduct permeability testing in this project. The reason for doing this test in this project was to
show how fast the water and salt water will penetrate the concrete sample, based on the porosity
of the concrete. Figure 5.2 shows the experimental work of permeability testing. The

experiment results are explained in chapter 6, section 6.1.
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Table 5.3: Classification of the quality of the concrete cover according to Ky [256]

Classification of the concrete cover quality

Kt Measured at 28 days [e1° m?]

1 Very good Kr<0.01
2 good 0.01<Kr<0.1
3 normal 0.1<Kr<10
4 bad 1.0<Kr<10
5 Very bad Kr>10

.....

5.3.2 Proof of concept experiment

2 Concrete samples

[

Figure 5.2: The experiment set-up of the permeability test

Experiments were conducted to determine the imaginary and complex relative permittivity of

dry and wet concrete samples with water and salt water. The measurement of S-parameters

through reflection and the transmission of three different band frequencies is mentioned in

section 4.10.1. Two concrete specimens (250 mm x 250 mm x 60 mm), were prepared, both

with water-cement ratio w/c 0.4, produced using tap water and Ordinary Portland Cement type

I1. These specimens were then left in the hydration room for 24 hours and left to cure, one in

tap water and the other in a saltwater solution of 3.5% for 7 days. Table 5.4 shows the specific
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gravity of the components and the specifications of the mixed proportions of the concrete.
Using limestone aggregate in the concrete mixtures of this experimental work is due to some
benefits of the aggregate, such as the low possibility of an alkali-silica reaction, good strength,
and, more importantly, decreasing the drying shrinkage in concrete [258]. After 7 days of
curing, the samples were cut very carefully to make sure they fit within the S, C and X band
waveguides without leaving any gaps. The samples are cut into the following: a) 101.52 mm
length that fitted into the section of S-band waveguide, b) 120.87 mm length that fitted into the
section of C-band waveguide, c) 40.75 mm length that fitted into the section of X-band

waveguide.
Table 5.4: The concrete composition with OPC [259]
Material used Kg Specific gravity
(g/cc)
Ordinary Portland cement OPC (CEM 1) 3.10 3.12
Fine aggregate 5.66 2.65
Coarse aggregate size (10 mm) 11.48 2.70
water 1.24 1.0 at 4C
Superplasticizer 24.8 grams 1.19-1.24 at 25C°

However, whilst cutting the samples, a slight excess remained on the cross-sectional area
affecting the sectional fit in the metal waveguide, as nearly all samples were chipped away
during their cutting. The air gaps are a primary reason for inaccuracies within such

measurements [260]. Figure 5.3 shows the experimental set-up for the 3 different bands.
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Frea (8.0<12.0GHz)

Figure 5.3: Experimental set-up with RC Waveguide

The data presented in [56] refers to the imaginary and real parts of the complex permittivity for
the hardened concrete. The complex permittivity data characteristics for varied water-cement
ratios and water volume absorption situations are recorded. There was a recording of the results
at 24 GHz, 9 GHz and 3 GHz. In the compelling case of when concrete may be considered dry
or as having a tiny amount of water content, the imaginary part and the complex permittivity
are found to be between 0.1 and 0.7. The real component discoveries range from 5.0 to 7.0.
Also, concrete that may be considered fully saturated or wet, the imaginary part of complex
permittivity can vary from 1.5 to 2.9 and the real part from 9.0 to 20.0 [261, 262]. Figure 5.4
and Figure 5.5 (a, b & ¢) show concrete permittivity, and the loss tangent (tand) and the real
part (&) in the selected bands; see equation 4.2 in chapter 4 section 4.2.1 for definition. Also,
as the evaporation process in the saltwater-soaked samples continues, the salinity of the
remaining solution increases. At 2.35 -12 GHz, the dielectric properties of salt water are
markedly different from tap water. It can be seen from the figures that tané and &, for the
concrete begin to fall as the frequency rises, a type of behaviour that is well-recognised for
polar dielectrics such as with water [260]. The relative permittivity of tap water is only slightly
higher than that of salt water with 3.5% NaCl. However, the loss tangent of salt water with
3.5% NacCl is significantly higher than tap water. These differences get larger as long as the

NaCl solution of water increases and as more pore liquid evaporates.
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Figure 5.4: A dielectric permittivity of concrete samples dry, wet with tap water and 3.5% NacCl
inserted into three different bands respectively with a temperature of +21 C
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Figure 5.6: (a) Presented the skin depth and (b) attenuation constant of dry, and wet with tap water

and salt water, concrete data measurements from three different bands.
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In Figure 5.6 above, a) refers to the skin depth for concrete with tap water, salt water and dry
samples within the 3 different bands, i.e. S-band, C-band and X-band, with the waveguide
holder of the sample as a frequency function. Previous research has calculated the attenuation
constant for concrete samples and the skin depth at different humidity levels [56]. The data for
this investigation for dry and wet concrete do align, therefore, to previous research. For the
aims established for this experimental undertaking, it has been necessary to discover to what
depth the electromagnetic wave propagation needs to penetrate through the slabs of concrete
for the detection of ions of chloride. However, for condition XS3 of marine exposure, the rule
for the standard depth for reinforced concrete for chloride detection within the field of civil

engineering is around 70 mm,

As a result, the optimum angle between both horn antennas determines using these civil
engineering requirements for concrete structures exposed to chloride ion conditions and skin
depth calculations. Also, if the reinforced concrete has light aggregate within it, the cover depth
should increase to 80mm due to the increase in porosity. Furthermore, the goal of the cover
thickness is not just to protect the reinforcement but also to ensure concrete and composite
structural action of steel and provide fire protection and resistance to abrasion. In practical
terms, the cover thickness should not exceed 80-100 mm [263]. This research has considered

concrete as a dielectric material with both real complex permittivity and effective conductivity.

Figure 5.6 (b) clearly shows the calculated skin depth of dry and wet concrete samples from
the measurements of the C-band waveguide, which enables EM wave propagation in concrete
at 5.42GHz for up to 70mm-80mm. Figure 5.5 (a) shows the frequency curve of the attenuation
constants for dry and wet concrete samples (a). The constants of attenuation for concrete
samples are determined by the loss tangent and complex relative permittivity; if the loss tangent
increases, the attenuation increases with a higher frequency because they are directly related.
Whilst there is an increase in the attenuation, the skin depth begins to fall with increased
frequency due to the inverse proportionality of skin depth to the constant of attenuation, as in

equation 4.6 section 4.10 in chapter 4.
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5.3.3 Preliminary experimentation with the horn antenna

This section did this experimental work as preliminary work to see if the Sy and S11 parameters
could be used with concrete samples and to see if there was a relationship between the skin
depth and the concrete penetration depth. In demonstrating the state of the art, those
preliminary experiments are utilised to improve the methodology and justify the rest of the
experimental work. Figure 5.7 shows a set of horn antennas and one single horn antenna via
which the microwave signals are reflected and transmitted while penetrating the concrete

sample in both directions.

One single horn antenna
Transmitter & Receiver (Sn)

Concrete sample with
copper behind
X ROHDE&ASCHWARZ I AL TWORK ANAL Y2 ‘6o

'

a -

@ | .

' - W ’ . )
a3 J

5]
=
=)

Il

Figure 5.7: Experimental set-up for both single horn antenna & two horn antennas to measure S-
parameter

Figure 5.8 (a and b) demonstrates the comparisons of Sz1 of a set horn antenna and Si1 of single
horn antenna measurements at a distance of 2cm from the surface of the concrete block, taken
every one minute with five repetitions. The effects of microwave contact on chloride ions and
moisture content inside concrete structures can be investigated. This interaction can be
described as being in the form of a unique signal spectrum known as a reflection coefficient
(S11) and the transmission coefficient (S21) [230]. It can be seen there is a noticeable change in
the EM wave’s signature. The amount of water and salt water is assumed to decrease or

evaporate during the drying process, causing the change. Therefore, the figure clearly shows a
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steady amplitude shift at the frequency between 2-12 GHz. The relative permittivity of tap
water is slightly higher than the samples with salt water with 3.5% NaCl and dry concrete.
However, the relative loss factor of salt water is significantly higher than that of tap water. The
value of Sz; with the same distance, 2 cm, from the concrete surface is more elevated than -60
dB, which can still be detected by a VNA. Therefore, the peaks on both figures represent the
amount of water, salt water and material properties in the concrete specimens, which
significantly influences the microwave signal. However, the method will be used for further
examination in this research project to evaluate the level of chloride ions in concrete structures,
based on previous research results and this preliminary experimental work on a set of horn

antennas.
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Figure 5.8: (a) S21 measurement, (b) S11 measurement.



5.4 Electromagnetic wave sensor test procedure

5.4.1 Initial experiment

In this test, a square pavement limestone aggregate concrete slab with dimensions 600 x 600
X 40 mm is used as the sample material. Figure 5.9 shows an experimental set-up diagram.
Figure 5.10 shows a weighted and submerged sample in water, and Figure 5.11 shows an
experimental set-up. The frequency is set to between 2 - 12 GHz due to the horn antenna limits
on operational frequency. The microwave sensor was placed 2cm in front of the concrete
paving to avoid monitoring any other items around the sample during the test. The signal
radiated from the side of the horn antenna and the horn antenna was directly connected to the Rohde
& Schwarz Vector Network analyser (VNA) and a PC. The VNA was connected to the PC via a
crossover Ethernet cable. The remaining moisture content in the concrete samples was calculated by
using equation 5.1 [262]. The equation used the weight of the dried samples before being
submerged into the solutions and wet samples after being taken out of the solutions. Table 5.5

presents the calculations related to moisture in the paving slab concrete.

= Horn antenna

Concrete

i 4~ sample

PC - llecti
C=damcoliection Vector Network Analyser (VNA)

Figure 5.9: The experimental set-up is illustrated schematically
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C

Figure 5.10: (a) Dry concrete paving sample being weighed. (b) The sample was submerged in
tap water for 24 hours. (¢) Using a scale to weigh the wet sample after being submerged in tap

water

Figure 5.11: An experimental set-up

M = (e « 100 Eq (5.1)
dry
Where Wwe: = mass of specimens at the time of measurements
Wary = dried sample
Table 5.5: Demonstrated the percentage of moisture absorption and evaporation,
Type of water | The original Weight of Weight of Amount of | Amount of
weight of the | wet sample | sample after water water
dry sample (Kg) drying off | absorption by | evaporated
(Kg) (Kg) sample (%) after
24hours
(%)
Fresh Water 31.92 32.58 32.08 2.068 1.56
Salt water 32.20 32.48 32.26 0.870 0.682
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The second preliminary test was conducted for the pavement slab concrete submerged in the
saltwater solution for 24 hours with 2.53% salinity (in this stage, table salt (NaCl) has been
used). The conductivity meter (Hanna Instruments) was used to measure the electrical
conductivity of the solution. It is commonly used in freshwater systems to monitor the amount
of salt in the water. The amount of table salt added into the tap water to simulate seawater's
conductivity was measured, approximately 50 mS/cm [264]. Table 5.6 shows the results of the
conductivity test obtained for tap water and mixed with salt. The purpose of this table is to
show how much salt was added to the 500 ml tap water to simulate the conductivity of seawater.
In these quick tests, there are only 26 grams of salt added to one litre of tap water with a
measured conductivity of 40.22 mS/cm, which is below the conductivity of seawater, which is
approximately 50mS/cm, to see how this rate of salt affected the electromagnetic waves. To
reach the conductivity of seawater, it needs 35 grams of salt to be added to one litre of tap water
because the seawater contains 35 grams of NaCl in one litre. But in this experiment only 26
grams of NaCl was added into one litre of tap water; this is shown in further experimental work.

Table 5.6: The conductivity measurement test results obtained.

Amount of NaCl (gram) Conductivity test, (mS/cm)
0 0.018
3 8.20
5 15.08
5 16.92
Total salt (26) in one Litre 40.22
Seawater contains (35) in one litre 50

5.4.2 Preparing the concrete mix design

Mix design prepared three trial cubes of 150 x 150 x 150 mm for the compressive strength and
initial surface absorption test (permeability test). Hence, the cubes must be fully compacted.
After 24 hours, the cubes were taken from the moulds and immersed in tap water at ambient
room temperature (20+£1C°) for 7 or 28 days to test cubes in saturated and dry surface
conditions. Then 10 concrete slab mixtures of size 250 x 250 x 60 mm with and without
reinforcement were prepared and cast, using the same procedure for preparing the three trial
cubes in the lab according to British standard BS 8500-1:2006 [59]. The rebar size used in these
concrete slabs was 6 mm. Hence, we selected the size of rebar to add to the concrete slab
because of the thickness. A water-cement ratio (w/c) of 0.4 was used, and the detailed mixture

proportions of the concrete studied, and the specific gravity of materials is given in Table 5.7.
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Specimens were exposed to several curing solutions procedures to acquire varying levels of
water absorption:

Curing a:  Four specimens, one cast with one rebar, one with two rebars, one with crossing
rebars and one with mesh rebars, were submerged in regular tap water at the ambient room

temperature (20+1C°) for 28 days.

Curing b:  Four specimens, one cast with one rebar, one with two rebars, one with crossing
rebars and one with mesh rebars, were immersed in a saltwater solution (NaCl) with 3.5%
salinity at average room temperature for 28 days, to investigate how much electromagnetic
wave energy is absorbed by adding a different amount of salt into the tap water. The other two
plain concrete slabs were separately submerged in their respective solutions to within 3.2 mm
of their top surface and were used as reference test specimens for monitoring the effects of the
tap water and rock saltwater solution during the curing period for 28 days. Figure 5.12 shows
the preparation of 10 concrete sample castings. Figure 5.13 shows the submerged concrete
samples in different saltwater concentrations. Figure 5.14 shows the experimental set-up for

the curing process for over 28 days.

(a) Mould with rebars

Figure 5.12: (a) Mould with rebars, (b) Mixed concrete ratio (1:1.82:3.69:0.4)
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(a) 5 samples submerged in NaCl (b) 5 samples submerged in Tapwater

Figure 5.13: The concrete samples immersed in tap water and saltwater for 28 days

Table 5.7: The concrete composition with OPC [259] [59]

Constituent used Concrete Mix Specific Gravity
Design_(Kg) (g/cc)
Ordinary Portland Cement 15.5 3.12
OPC (CEM 1)
Fine aggregate (saturated 28.3 2.65
surface dry)
Coarse aggregate size (10 mm) 57.4 2.70
Water 6.2 1.0 at 4C°
Superplasticizer 0.124 1.19-1.24 at 25C°
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Step 3: The surface of the concrete samples was exposed to the microwave
sensors as a dry during the measurement.

Figure 5.14: An experimental set-up for curing process over 28 days
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5.4.3 Curing process experimental measurement

The curing experiment was undertaken for two concrete samples without reinforcement out of
the 10 concrete samples. For 28 days, one sample was immersed in tap water and the other in
salt water. This curing test aimed to determine how the concrete samples absorbed the tap water
and salt water by monitoring them using a microwave sensor for 28 days. The microwave
sensor was placed 20mm from the top surface of each slab. For this experiment, the operating
frequency was set between 2 and 12 GHz. The sensor was connected directly to the Vector
Network Analyser and laptop, which obtained and stored data via software developed in
LabVIEW, as shown in Figure 5.14. The results show that both samples have a very significant
effect on the microwave signal. As described in section 5.4.4, the drying-off method will be

the next experimental operation performed on these two samples.

5.4.4 Measurements of the drying-off process in the laboratory

This experiment is conducted to monitor the water content and salt-water solutions in the
concrete affecting the electromagnetic wave signal during the 72- hour drying off period. The
initial experiment mentioned shows some differences in the microwave signal, so further
investigations on the drying off process are significant for better understanding the material's
properties.

In addition, wet concrete sample monitors were placed on a scale to measure the weight lost
during drying off for over 72 hours. The microwave sensor was placed 20mm above the
sample's top surface. The operating frequency was set to between 2 and 12 GHz for this
experiment. Over 72 hours, the data are recorded every minute. The surface of the scale was
metal, and it was a good wave reflector and the horn antenna was directly connected to the
Rohde & Schwarz Vector Network analyser (VNA) and a PC. The VNA was connected to the
PC via a crossover Ethernet cable, as shown in Figure 5.15. The concrete sample was not
moved during the experimental work, and all other conditions such as temperature and light
remained technically the same during the test procedure. The test was conducted in the small
chamber structure, which was initially made for a different purpose; the subsequent
experimental work was carried out with two concrete samples containing two rebars described

in section 5.4.5.
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Figure 5.15: The drying off a measurement is carried out on both samples for 72 hours after the
curing procedure is completed.

5.4.5 Drying measurements of samples with two rebars

Experimental work was carried out for two concrete slabs with the same size and material
properties, with two rebars included, to investigate the different effects of tap water and
saltwater solutions on concrete with reinforcement rebars and how the rebars in concrete
structures affect the electromagnetic wave signal. As a result, due to the varying dielectric
characteristics and texturing of the measured objects, changes in the microwave spectrum can
be observed. Also, the sensor will enable the investigation of the location of the rebar in the

concrete structure. The test set-up is presented in Figure 5.16. The microwave sensor was
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placed 20 mm from the top surface of the concrete slab. The sensor is directly connected to the
Vector Network Analyser (VNA) and PC, which captured and stored data via software
developed in LabVIEW as demonstrated in Figure 5.17. Before and after being submerged in

tap water and salt water, each slab's moisture percentage was calculated using Equation 1.

Table 5.8 shows the percentages of moisture absorption and evaporation.

Table 5.8: Demonstrate how much moisture is absorbed and evaporated.

Port 1

Type of The Weight of | Weight of | Amount of | Amount of
water original wet sample water water
weight of sample after absorption | evaporated
the dry (Kg) drying off | by sample after
sample (Kg) (%) 24hours
(Kg) (%)
Fresh Water 9.05 9.29 9.21 2.66 0.81
Salt water 9.30 9.47 9.42 1.88 0.53
(3.5%)
Sensor

Figure 5.16: An illustration of the experimental set-up

105 | Page



Figure 5.17: An experimental set-up for both samples' drying processes with reinforcement

5.5 Experiments under various salt-water concentrations
5.5.1 Concrete Sample

Five concrete slabs of size 300 x 300 x 150 mm without any reinforcement were prepared and
cast. The standard concrete mix ratio used was in proportions 1:1.5:3:0.7 Kg, which is more
common in European countries. The concrete was mixed correctly using tap water and filled
the concrete mould in three layers in which each of the layers was compacted 25 times. This
mix design used a limestone aggregate to compare how the different saltwater concentrations
penetrated the concrete samples. Each of these samples was submerged into 5 different
saltwater concentrations to detect the level of chloride by using microwave spectroscopy at the
2-12 GHz frequency range. Table 5.9 shows the concrete composition with OPC. The data for
these five samples were collected to define the skin depth to the required reinforcement depth
for marine concrete structures, which can range from 70mm to over 100mm depending on the

concrete mix design.
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Table 5.9: Presents the concrete composition with OPC (CEM 1l 32.5R)-Kg [46]

Constituent used Concrete Mix design | Specific gravity (g/cc)
(kg)

Type of cement (OPC) CEM I -

Cement dosage 35.48 3.12

Ordinary Portland Cement

Fine aggregate 53.22 2.65

Coarse aggregate size 106.44 2.70
(10mm)
wi/C 0.7 1.0 at 4C°

5.5.2 Chloride Content

Five different saltwater concentrations were prepared to submerge the concrete samples
individually for 5 days at the ambient room temperature. A plastic sheet covered the containers
with different saltwater concentrations to avoid water evaporation during the curing process.
The samples submerged in tap water and saltwater solutions are indicated in Figure 5.18.
Sodium (Na+) and Chloride (CL-) was selected and mixed with the tap water from (0.0%,
0.5%, 1.5%, 2.5% and 3.5%). Every kilogram of (one litre by volume) of salt water has
approximately 5 grams of dissolved NaCl. The tap water had an initial conductivity of 0.176
mS/cm, but the conductivity of the tap water was raised once the salt was added, and stirred
to ensure that it was dissolving. Conductive readings were then taken for each saltwater
concentration with a Hanna Instruments HI933000 conductivity meter at various points to
ensure that the NaCl dissolved well and the estimated conductivity was correct across the
saltwater concentration. For comparison, normal conductivity levels in drinking water are
limited by legislation to 0.25 mS/cm, and seawater has a conductivity of roughly 50 mS/cm.
The conductivity measurements with different saltwater concentrations are indicated in Table
5.10.
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Table 5.10: Conductivity measurements of five saltwater concentrations

Saltwater concentration % Conductivity reading (mS/cm)
(One litre of water has 0.0) 0.176
(One litre of water has 0.5) 9.40
(One litre of water has 1.5) 26.6
(One litre of water has 2.5) 43.1
(One litre of water has 3.5) 50.2

Salt water Temperature kit QP 1o Water

3

= é *_Conductivity meter

>

[ 5

-

.
{ s
-t -
: oY
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Figure 5.18: Concrete samples submerged into different saltwater concentrations for up to 5 days

5.5.3 Five concrete samples were tested with varying saltwater concentrations

Experimental work was conducted in a laboratory environment. An electromagnetic sensor was
positioned 20 mm from the concrete sample surface to perform non-destructive testing to
determine chloride content at various penetration depths. In total, we prepared 5 concrete
specimens and repeated each configuration 3 times. In addition, the concrete specimens were
examined during the drying off period to understand the relationship between moisture content

and the electromagnetic spectrum concerning the chloride concentration. Each concrete sample
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was also weighed continuously during the experiment to establish a consistent mass indicating
equilibrium moisture content conditions [207, 208, 265]. The experimental set-up contained a
weigh scale under the concrete specimen, a vector network analyser (VNA), and a computer
running LabVIEW software to continuously collect data every 15 minutes. The parameter (S21)
was detected from the transmitted and received horn antennas connected to the VNA. The

experimental set-up is shown in Figure 5.19.

The concrete sample was not moved during the experimental work, and all other conditions such
as temperature and light remained technically the same during the test procedure. Because of the
difference in concrete thickness and curing time, measurements were taken every 15 or 30
minutes. Because water and salt water evaporate slowly, measurements can be made every 30

minutes to an hour if the concrete depth is greater.

However, if the sample thickness is lower, the weight of the sample drops rapidly in the first few
hours, and the sample loses its integrity and the weight drops steadily after that. Essentially, the
concrete sample loses weight faster due to its lower thickness. It is necessary to monitor the data
more frequently to analyse and establish the relationship between the operation and the

electromagnetic signal.

The wet concrete sample is monitored on the scale during the drying process to measure the
weight loss for up to 24 hours or 72 hours. Usually, the water and salt water do not evaporate
very fast from the concrete; therefore, the microwave signal continuously remains the same until
the samples' amount of water is reduced. In addition, the water can evaporate from the first layer
of the concrete quite fast. However, while the water ingress continued to greater depths, it took
time to evaporate through the pores, depending on the concrete water-cement ratio and

permeability.
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Figure 5.19: Presents the experimental set-up and LabVIEW interface for data acquisition

5.5.4 Chlorimeter tool

The Chlorimeter tool is the gold standard technique, and a model number C-CL-3000 is used
as a partially destructive method to detect the amount of chloride in the concrete sample. The
Chlorimeter test system offers a fast and accurate determination of the total chloride content in
concrete. The test was carried out to determine the presence of chloride ions in the concrete
and their penetration. The samples were immersed subsequently in 5 different solutions for 5
days. The concentration of the NaCl solution was kept constant during the time of immersion.
It was necessary to drill to three different levels of the concrete sample to obtain a chloride
profile. All five samples were drilled at three different depths, namely 18, 40 and 70 mm. The
chosen depths of sampling aimed to incorporate a suitable range to allow interpolation and
prediction between commonly used nominal depths of cover under various exposure
conditions, for instance, near the top surface, a little deeper and very close to the rebar position.

The 3 grams of dust were collected separately at three depths (18mm, 40mm and 70 mm). The
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3 grams of dust were weighed using the digital scale provided in the kit. The device needs
calibration before performing any chloride tests. The kit contains the five different percentage
solutions used to calibrate the instrument. This calibration can hold only for 2 hours. After
collecting the 3 grams of dust from each hole separately, the 3-gram dust test sample was
slowly added into the 20ml of chloride extraction liquid in stages to avoid excessive fizzing

from the limestone present in concrete.

After mixing well, the plastic jar lid was opened and the probe was put into the liquid to read
the chloride percentage. This measurement takes up to 2 to 3 minutes to display the percentage
of chloride on the chlorimeter screen. The probe should be washed well with deionised water
for every measure and then used for another measurement to avoid reading errors. The accuracy
of this chlorimeter tool covers a wide range from 0.002% to 2% chloride per weight. This
procedure was repeated for all the samples after completing the drying off and recorded all the
results during the experiments to measure the level of chloride ions in the concrete blocks.
Figure 5.20 indicates the masonry drill used to collect the 3 grams of dust. Figure 5.21 displays

the chlorimeter calibration tool and chloride measurement experimental set-up.

- ) y

‘;:v‘, -

- ) Y P

-~ Masonry Drill to
== hole the samples

Lt
F W 12w ; ; = Scale to weigh

dust
3-gram dust collected in each hole

ZX-650

g8

Figure 5.20: Drilling the sample to collect 3 grams of dust at 3 different depths
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Figure 5.21: Presents (A) calibration device and (B) Chloride measurement taken

5.6 Data processing and validation models

The initial preliminary experiment was conducted for a pavement slab in different saltwater
concentrations and tap water to identify the drying process and the amount of salt penetrating
the pavement slabs on the electromagnetic wave signal. According to the data obtained from
this initial experiment, it is shown that the EM signal can interact with concrete exposed to salt
water and tap water predictably. During the data processing, the most important task was
selecting the optimum correlation between the transmitted signal and changes in the concrete
sample, such as weight loss, with the spectrum containing 4,000 sweep points. The data is

provided in detail in chapter 6, section 6.2.

The final stage of this project is a comparison of this non-destructive technique with gold
standard techniques, which are commonly used in the industry. However, to compare these
techniques, we must process the data via machine learning and an Artificial Neural Network
(ANN) to create a validation model. The ANN technique was selected for this data inspection

due to its ability to handle many input variables and multiple outcomes simultaneously.
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5. 6.1 Validation techniques include machine learning and artificial neural networks
(ANN)

One of the main aims of this research is to develop and train a consistent validation model
using the Levenberg-Marquardt (LM) algorithm to fully capture the percentage of chloride at
three different depths of penetration with high efficiency. For this reason, back-propagation is
possibly the most used algorithm in ANNSs. Still, the Levenberg-Marquardt (LM) method is
known to attain a much-improved performance by converging more often and making training
much faster. The planned training algorithm is a data-driven computing tool, which can be
used when the relationship between model input and output parameters is complex [266]. Also,
the LM algorithm can capture the nonlinear functions and the substantial computer capacity

can be applied to implement extremely iterated work [267].

One of the understandable advantages of the LM method is that no internal training parameters
are required to be modified during the training process. This avoids many complications and
barriers noted in using the classical algorithms, such as the slow rate of convergence, learning
rate, and local minima and correcting learning epochs [268].

The ANN analysis was carried out using the MATLAB R2019a software. To conduct the
analysis, the neural network fitting was selected; Figure 5.22 shows the search path of
MATLAB.

Figure 5.22: The Neural Net fitting was selected from MATLAB (LIJMU Library)
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5.6.2 ANN Training

Throughout the training process, data sets are handed to the input layer and then passed from
layer to layer, upholding the system of the forward pass. However, in this type of system, each
neuron in the hidden layer receives inputs from input layer neurons, which are already being
multiplied using the adjacent weight, after which they are then summed up. In some cases, it is
modified by using adding bias. After that, the inputs pass through the transfer function and
provide values for the output layer.

Errors are calculated by comparing the target and output values. In addition, errors are
minimized with iteration, and just in case of back-propagation, these propagate backwards to
regulate or update the weight for higher accuracy. The following Figure 5.23 flow diagram

shows the entire process summarised.

ANN

including
Input connection
(weights)

between
neurons
/\\

Compare

Regulate Error .
Weights computation

Figure 5.23: The Flow diagram of the training process of an ANN

5.7 Summary

This chapter defined the research methodology design process, which will be used to complete
this research project. Several approaches will be used in this study. The first will be numerical
calculations to select the optimum angle and frequency between the two horn antennas to
monitor the concrete samples. This portion can be completed after determining the skin depth
that the electromagnetic wave must penetrate in the concrete samples. In section 4.10 of
Chapter 4, we defined the skin depth. The initial surface absorption testing findings are shown
in chapter 6, section 6.1, to determine the permeability of the concrete samples and how quickly
they absorbed water and salt water throughout the curing process. The preliminary
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experimental work aimed to decide whether or not we should use Sz1 or Sy1 characteristics with
concrete samples. This experiment works to establish the relationship between the skin depth
and the penetration depth of the concrete, thus demonstrating the state of the art.

This study used three bands with different frequencies ranging from 2.35 GHz to 2.85 GHz in
the S-band, 4 GHz to 7 GHz in the C-band, and 8 GHz to 12 GHz X-band to determine the
attenuations and skin depth of EM waves. Therefore, preliminary experimentation was used to
improve the methodology for the rest of the experimental work. After the preliminary testing,
the initial experimental work was conducted with square pavement limestone aggregate
concrete slabs with dimensions 600 x 600 x 40 mm. This experiment aimed to see how the
reduction of water and salt water affects the microwave signal when using pavement slabs that
were just 40mm thick. Following that, 10 concrete slabs with and without reinforcement, size
250 x 250 x 60mm, were constructed and cast using the same technique as the three trial
samples, under BS 8500-1:2006. These ten samples were tested independently for drying time
and how electromagnetic waves reflect the concrete's reinforcement and the various
reinforcement areas inside the concrete. After the concrete samples were constructed, the
curing process was tested in two different saltwater concentrations for up to 28 days without
reinforcing. The purpose of this curing process test is to determine when the concrete sample
has gained sufficient strength, is fully saturated, and how quickly water and salt water enter
into the concrete after 28 days. Then, the expanded experiment included monitoring the amount
of water and saltwater solutions in the concrete and how they altered the electromagnetic signal
during the 72-hour drying off period.

Two concrete samples with mesh rebar were subjected to an experiment. This experiment
aimed to see how different solutions of tap water and salt water affect concrete with
reinforcement rebars and how rebars in concrete structures affect electromagnetic signals. The
final experiment used five concrete slabs with 300 x 300 x 150 mm and no reinforcing. The
data from these five samples was used to determine the skin depth and establish a reinforcement
depth to determine the depth of reinforcement required for maritime concrete structures.
However, it illustrated the comparison between the data processing and validation procedures
employed in this study. Finally, the data generated from the microwave sensor and the partially
destructive chlorimeter tool approach were compared using ANN, which revealed no

significant difference between the two methods.
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Chapter Six: Results and Discussion

This chapter will demonstrate the experimental results using horn antennas to monitor the level
of chloride ions in the concrete samples during the curing and drying processes. In addition, a
chlorimeter tool is used as a gold standard method to detect the level of chloride in concrete
and is compared with a microwave technique as a non-destructive method. The supervised LM
algorithm, trained via multilayer feed-forward back-propagation, has been developed and
applied in the present study. This sort of ANN comprises fully interconnected parallel neurons
or processing elements (PEs), which are connected in three layers, following the order: the
input layer, the hidden layer and finally, the output layer. Results obtained from all the
experimental work will be processed, plotted, and analysed using an artificial neural network
(ANN) to develop a validation model for monitoring chloride ions in different saltwater

concentrations and at different depths during the curing process drying off.

6.1 Results of the initial surface absorption test (permeability test)

The initial surface absorption test is the most commonly used non-destructive test for
evaluating primary concrete durability factors like absorption, permeability (air, gas, and
water), and migration-related concerns. The permeability coefficient is calculated using the
assumption of unidirectional airflow. The coefficient permeability of each sample shows in
Table 6. 1. This method's readings frequently show an explicit reliance on the current wetness
of the surface layer being investigated, which must be observed simultaneously. However, this
technique is used to assess the concrete cover's resistance to infiltration by various aggressive
agents' methods and determine the age of concrete constructions. The concrete cover's air
permeability coefficient is directly connected to the pressure rise rate, Pi (measurement starts
at t = 60 s). This approach has the advantage of being speedier and fully non-destructive. The
value of the Kt is used to determine the quality of the concrete cover (coefficient of
permeability). This study shows that the measured permeability is lower in the case of wet
concrete, indicating that the concrete quality appears to be too good. The purpose of this test is
to determine the permeability of the concrete. The coefficient of permeability is lower,
indicating that fluids (water or other chemical substances/chloride) cannot easily travel through
the pores of the concrete. However, this low permeable concrete was exposed to a microwave
horn antenna to test the sensor's accuracy. Microwave sensors successfully detect chloride ions

in concrete structures. Figure 6.1 [271] shows the concrete quality class defined by Kt in a
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nomogram. If the permeability coefficient is less than 0.01x1071® m?, the quality of the concrete

cover is excellent.

Table 6.1:Shows the permeability results obtained

Concrete Time Pi (mbar) | Kr(106 Length Permeability
sample (second) m?) (mm)
1 720 26 0.017 11 Very low
2 720 24 0.11 11 Low

Where, Pi is the pressure rise in the inner cell (mbar), Kr; is the coefficient of air permeability

(m?).
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Figure 6.1: The nomogram for the concrete quality class [269]

6.2 Initial measurement results

For both samples, measurements of the S»; parameter are taking over the complete spectrum
range of the VNA and sensor frequencies between (2 GHz and 6 GHz). It was found that there
was a change in the response for pavement samples with different saltwater concentrations at
the same frequencies of the S»1 parameter. Areas of interest for further analysis are highlighted
in both Figure 6.2 and Figure 6.4. Zoomed in the regions highlighted in Figure 6.2 and Figure
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6.4 for the Sz1 signal, identified frequencies of 3.6 GHz and 4.15 GHz, as seen in Figure 6.3
and Figure 6.5, respectively. The reason for choosing the lower frequency region for the
microwave response was to avoid complex signals with higher-order modes and measurement
complexities at high frequencies, more suitable for industrial use. There is a noticeable change
in EM signature appearing after the concrete absorbed water and salt water, particularly at the
3.6 GHz and 4.15 GHz frequency range. According to this experimental data, the change is
caused by the concrete's decreasing amount of water and salt water.

During the experimental work, the sample was not touched or moved, and all other conditions,
such as temperature and light, remained consistent during the test. Water absorbs
electromagnetic waves very well because water has a high dielectric value, which enables the
observation of changes in the microwave spectrum. After all, any minor change in water
content could significantly impact the electromagnetic wave response curve (see Figure 6.3).
In addition, the changes in electromagnetic waves are caused by differences in chloride ions
concentration in the concrete. When the concrete samples are exposed to the microwave
sensors, the result of sample S>: measurements in Figure 6.3 compares to the sample Si1
measurements in Figure 6.4. It can be seen that there is a significant steady amplitude shift at
the frequency ranges 2 GHz-12 GHz and 2 GHz and 6 GHz. The decrease in the amount of
water in the concrete samples strongly influences the microwave response when the samples
start drying off, hence a significant shift. However, for the S,; parameter of the concrete
sample, this was best detected in the range of 3.6 GHz to 4.15 GHz; the change in amplitude
increased from -40 dB to -34 dB as the moisture content decreased. However, when the
moisture content decreased, the amplitude of the Si:1 parameter of the concrete sample
illustrated in Figure 6.4 decreased from -5 dB t0-9 dB in the same region. The Sy; parameter

was chosen for use in the entire experiment due to these findings and previous research.
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Figure 6.2: The electromagnetic wave sensor: measurements were taken every one hour in the
frequency range (2-6 GHz), Tap water
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Figure 6.3: The electromagnetic wave sensor: measurements were taken every one hour in the
frequency range (2-6 GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15
GHz are presented (Tap water)

119 |Page



= Measured-S11-(2cm)-dry concrete = Measured-S11-(2cm)-wet concrete (Tap water) = Measured-$11-(2cm)-wet concrete -(NaCl)

0
9 \ V< a tf" \n L “I \

10 b A 1’( f h ﬁ "I| T~[¢ '\I “I‘ V

\ ‘ h [  , ‘

20 b ' / \ "’h
‘l

30 ~

-40 |

8y, - (dB)

h
=

2 25 3 3.5 4 4.5 5 55 6 6.5 7 7.5 8 8.5 9 9.5 10 105 11 115 12
Frequency (GHz)

Figure 6.4: The electromagnetic wave sensor: measurements are taken in the frequency range (2-12
GHz)

Figure 6.5 shows that the amplitude measurement of the microwave signal changes depending
on the material properties, environmental influence and the amount of water and salt absorbed
by the concrete over 24 hours. Data analyses allow the identification of the level of chloride

ions in the concrete specimens during the experiment.
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Figure 6.5: The electromagnetic wave sensor: measurements were taken every one hour in the
frequency range (2-6 GHz), (Salt water)
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Figure 6.6: Microwave sensor measurements were taken every one hour in the frequency range (2-6
GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15 GHz are presented
(Saltwater).
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Figure 6.7: S;1 measurement comparison between two plain concrete samples
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In Figure 6.7, the legend shows both concrete samples with different saltwater concentrations
after passing 18 hours of drying off. Since water has a high dielectric value, any slight change
in its amount could significantly impact the microwave response curve. The above Figure 6.7
shows a steady amplitude shift in the frequency between 3.6 and 4.15 GHz. Noticeable changes
of microwave signal power levels between the 3.6 and 4.15 GHz frequency range can easily be
observed after the 18 hours drying process. However, these changes in the spectrum were
caused by the dielectric properties of the water and salt water, and when the amount of water
is reduced, then less EM energy is absorbed; this technique can identify the state of the water
content and amount of salt during the drying process. From Figure 6.7, it can easily be seen
that the spectrum changes between both samples, with tap water and salt water after the 18-
hour drying process. After the water has evaporated, the sample containing NaCl absorbs more
EM wave energy because of the amount of salt remaining inside the sample. It can be noticed
in these initial results that the horn antenna could identify different saltwater concentration

ingress in the concrete samples under test, hence providing the proof of concept.

6.3 Curing process experimental measurement

The experiment curing process was demonstrated in Chapter 5 Table 5.1 using two concrete
samples without reinforcement out of ten concrete samples (Group D). Both concrete samples
were measured for Sp; and Si1 parameters over the complete spectrum range of the VNA,
between 2 GHz and 12 GHz. The reason for commencing the test from 2 GHz is due to the
horn antenna limitation and non-response zones within the spectrum, with higher noise levels
found below 2 GHz. The results of both S»1 and S11 measurements are shown in Figure 6.8,
Figure 6.10, and Figure 6.12, respectively. The spectrums were carefully examined to identify
the change of the magnitude in the full range to investigate the condition of the concrete
samples with different saltwater concentrations in terms of the microwave signals. It was found
that there was a change in the frequency response of concrete samples with varying
concentrations of salt water at the same frequencies for the S;; and Si1 parameters. Areas of
interest for further investigation are highlighted in Figure 6.8, Figure 6.10 and Figure 6.12 and
zoomed in the highlighted areas for the S21 and S11 parameters, identified in the frequency
range of 2.5 GHz -3 GHz. It can be seen in Figure 6.9, Figure 6.11, and Figure 6.13 that there
iS a noticeable change in the EM signature between the frequency range 2.5 GHz and 3 GHz,
especially at a frequency of 2.7096 GHz. The change is affected by the amount of water and
salt water absorbed in the concrete sample during the 28-days curing period. Because moisture
and chloride are two constituents that have the most prominent effect on the dielectric
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properties of concrete, while the volumetric content of water in a concrete mixture is small, it
has a very important bearing on the velocity and attenuation of electromagnetic waves in the
concrete. Owing to water having a high dielectric property, microwave signal changes and
electromagnetic (EM) wave absorption are very dependent on the water salinity and
temperature. Because the dielectric characteristics of water and the concrete mixture as a whole
are affected only by the chlorides present in solution at any particular time, dissolved chlorides
start to reduce the real part of the complex dielectric permittivity of water, which directly
affects the microwave velocity and greatly increases the imaginary part, affecting the
attenuation of microwave signal waves. The sample was not touched or moved during the
experimental work, and all other conditions such as temperature and light nominally remained
the same during the test. When both concrete samples were placed under the sensors, increasing
storage of electric field energy can be observed, which leads to a decreasing resonance
frequency. While the concrete sample started to absorb the water and salt water, the amplitude

increased simultaneously.

The speed of the EM waves is higher than that of sound waves and strongly depends on the
permeability(u)the permittivity (€), the conductivity (o) and the density of the volume charge
(p) [270]. In addition, these parameters change with the type of water, so the wave propagation
speed varies. It was also taken into account that seawater's dielectric constant changed with
changes in frequency, temperature, and salinity [271] [272]. High attenuation due to water
conductivity is the crucial problem with underwater communication using electromagnetic

waves. As the frequency increases, this attenuation increases as well [273].

An experimental investigation was conducted to determine the skin depth of the penetration
of electromagnetic waves into the concrete samples with different saltwater concentrations.

The results and discussion were presented in detail in Chapter 5, Section 5.3.2.
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Figure 6.8: The electromagnetic measurements were taken every 15 minutes in the frequency
range (2-12 GHz), (Saltwater)
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Figure 6.9: Sz measuments from the electromagnetic wave sensor were taken every 15 minutes in the
frequency range (2-12 GHz), but for clarity data from 2.5-3 GHZ is presented with measurements
from 24 hour intervals (Saltwater)
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Figure 6.10: Readings from the electromagnetic wave sensor; measurements were taken every15
minute for 28 days in the frequency range (2-12 GHz) (Tapwater)
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Figure 6.11: Sy; measurements were made every 15 minutes for 28 days in the frequency range (2-12
GHz), although data measurements at 24 hour intervals and from 2.5-3.0 GHz are shown for clarity
(Tapwater)
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Figure 6.12: Transmitted power Szimeasurements using microwave sensor for the full range of
frequencies (2-12 GHz) were taken everyl15 minute for 28 days (Tapwater)
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Figure 6.13: The microwave sensor measurements were taken everyl5 minute for 28 days in the
frequency range (2-12 GHz), but for clarity, data measurements from 24-hour intervals and 2.5-3.0
GHz are presented (Tapwater)
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The results also show that the saltwater-soaked samples gained more in mass per unit volume
as a function of the increasing number of cycles. This is due to two main factors: a) More salt
is deposited into the concrete slabs through the pores after each soaking cycle. b) Adding salt
to the pores decreases the speed at which liquid water evaporates from concrete slabs.
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Figure 6.14: At 2.709 GHz, the microwave signal begins to alter at an early stage
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Figure 6. 15: At 2.709 GHz, the microwave signal begins to alter at an early stage

127 |Page



The above Figure 6.14 and Figure 6.15 show that the microwave signal starts to change at the
early age of curing until the concrete gets fully saturated because concrete strength increases
with age as moisture and a favourable temperature are present for cement's hydration.
Therefore, it can easily be seen that the microwave power level rate of change differed at 14

days for both concrete samples curing in normal tap water and salt water.

6.4 Data analysis of drying process

The experimental work was undertaken with a set of horn antennas to monitor the drying
process of both concrete samples with two different saltwater concentrations. Measurements
of both concrete samples were via the Sy; and Si1 parameters. In the first instance, readings
were captured over the full spectrum range of the VNA between the 2 GHz and 12 GHz
frequency range. Figure 6.16, Figure 6.18, Figure 6.20, and Figure 6.22 illustrate the S»; and
S11 measurements taken every minute during the 72 hours. In addition, they were taking the
measures of the weight loss of both the concrete samples simultaneously for 72 hours. The
spectrums were carefully examined to identify the resonant frequency wave in the full range to
study the response of saltwater concentration ingresses into the samples compared to the
microwave signals. The microwave frequency response at the same Sz1 and Si1 parameters
changed with varying saltwater contents in both samples. Areas of interest for further analysis
are highlighted in Figure 6.16, Figure 6.18, Figure 6.20, and Figure 6.22, then zoomed in the
highlighted areas for the Sy and S11 parameters, identified in the frequency range of 2.5 GHz
-3 GHz; this can be seen in Figure 6.17, Figure 6.19, Figure 6.21, and Figure 6.23. The reason
for selecting the microwave response region in this frequency range is that in Figure 6.17,
Figure 6.19, Figure 6.21, and Figure 6.23, there is a noticeable change in EM signal in both
samples. The amplitude decreases as the moisture content of the concrete sample decreases;
additionally, the data obtained from this experimental work can demonstrate that in the
concrete sample submerged in salt water. The amplitude does not drop rapidly because there is

still salt inside the concrete after the water has evaporated from the specimen's surface.
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Figure 6.16: Transmitted power Sz measurements from electromagnetic wave sensor were taken
every hour in the frequency range (2-13 GHz), salt water
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Figure 6.17: Readings from the electromagnetic wave sensor: measurements were taken every hour
in the frequency range (2-13 GHz), but for clarity, data from 2.5-3 GHz are presented (Salt water).
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Figure 6.18: Readings of reflected power S11 measurements using microwaves were taken per hour
for the full range of frequencies, 2-12 GHz (Salt water)
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Figure 6.19: Reflected power Si1: measurements of the material response to the microwaves were at
the frequency 2.5-3 GHz are presented (Salt water)
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Figure 6.20: Transmitted power readings Sz measurements using the electromagnetic wave sensor;
were taken every hour in the frequency range (2-12 GHz) (Tap water)
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Figure 6.21: Transmitted power Sz measurements were taken every hour using electromagnetic wave
sensor for the entire frequency range (2-12 GHz), but for clarity data from 2.5-3 GHz are presented
(Tap water)
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Figure 6.22: Readings of reflected power Si; measurements using microwaves were taken per hour
for the full range of frequencies, 2-12 GHz (Tap water)
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Figure 6.23: Reflected power S11 measurements using microwaves were taken per hour for the entire
of frequencies, 2-12 GHz, but for clarity data from 2.5-3 GHz are presented (Tap water)
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Table 6.2:The weight value of the sample before and after wetting

Concrete Different Weight Weight Weight of | Amount of | Amount of Amount of
Samples water samples before | samples after sample water water& salt remaining
without concentration submerged in 28 days cured after absorbed water loss water in the
Rebar different water in different drying off by the over 72 sample after
concentrations water 72 hours sample hours (%) 72 hours (%)
(Kg) concentrations (Kg) (%)
(Kg)
Sample 1 Fresh water 8.96 9.06 8.98 1.11 0.89 0.22
Sample 2 Salt water 8.99 9.28 9.18 3.22 1.09 2.13

Chloride penetrates concrete by the ingress of water containing the salts and by diffusion of
the water's ions and absorption. This results in a high concentration of chloride ions at the
surface of the concrete, which can ingress with time to reach the reinforcing steel. Chloride can
ingress to a considerable depth while the concrete is permanently submerged, but there will be
no corrosion unless oxygen is present in the cathode area. If the concrete is sometimes exposed
to seawater and is occasionally dry, then salt ingress is progressive. In this experiment, both
samples were not fully submerged in tap water and salt water. However, both the concrete
samples were immersed in their respective solutions within (6 mm) of their top surface. Water
and seawater was absorbed or evaporated from the edge of the concrete sample to the middle

after 10 days of curing.

Dry concrete takes in salt water by absorption and, under some conditions, may continue to do
so until the concrete has become fully saturated. If the external conditions then change to dry,
the direction of movement of water becomes reversed, and water evaporates from the ends of
capillary pores open to the ambient air. However, it is only pure water that evaporates, the salts
being left behind. Consequently, the concentration of salts in the water left behind increases
near the surface of the concrete. It can be seen that as an outcome, the salt moves inward, and
the water moves outward. Then the next cycle of wetting with salt water will bring more salt
present in solution into the capillary pores [274]. Nevertheless, if the wetting duration is short
and the drying restarts very quickly, the ingress of salt water will carry the salts well into the
interior of the concrete. Subsequently, drying concrete will get rid of pure water, leaving salts
behind.

The ingress of salt water depends on the length of the wetting and drying durations. Also, it
should remember that the wetting occurs very rapidly with salt water, but the drying is slower.
Hence, the interior of the concrete never dries out, and it should also be noted that the diffusion

of ions during the wet periods is relatively slow [263].
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Table 6.2 shows the percentage of remaining moisture and salt water in both concrete samples.
The concrete sample submerged in salt water still has 2.13% moisture remaining after 72 hours
drying off; in comparison, the other sample submerged in tap water has only 0.22% moisture
remaining after 72 hours drying off. The reasons for 2.13% remaining in the concrete sample
depend on the duration of the drying period and the external relative humidity. It is likely for
most of the water in the outer zone of the concrete to evaporate. The water remaining in the

internal area will become saturated with salt, and the excess salt will quickly form as crystals.

Where the salt water penetrated more extensively into the concrete sample, the conductivity of
the sample increased, which led to the decrease of the penetration ability of the microwave
signal. Thus, the sensitivity of the measurement was decreased. Figure 6.24 and Figure 6.26
present the correlation coefficient (R?) between weight loss and Sz1 and Si1 parameters change
across the entire frequency spectrum, i.e. from 2 GHz to 12 GHz frequency range. R?, the
correlation between every single frequency point from 2 to 12 GHz compared to the second
parameter, which could be either the amount of moisture lost or the amount of chloride
concentration, was displayed using the LabVIEW software. LabVIEW generates a graph
ranging from 0 to 1, with O representing no correlation and 1 representing a strong correlation,
and 2.709 GHz presenting the highest correlation. The strongest (polynomial) correlation
coefficient determined between S# and S*! where it changes at 2.709 GHz for weight loss, with
R?=0.91 and R? = 0.96 for the saltwater sample and R? = 0.97 and R? = 0.92 for the tap water

sample, as shown in Figures 6.25 and 6.27.
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Figure 6.24: R? between both concrete sample weight loss and Sz change across the full frequency
spectrum
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Figure 6.25: Polynomial correlation coefficient best fit between weight loss and S»; change at
2.709GHz, with R? =0.91, for salt water sample and R?=0.97 for tap water sample
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Figure 6.26: R? between both concrete sample weight loss and S11 change across the full frequency
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Figure 6.27: Polynomial correlation coefficient best-fit weight loss and Si11 change at 2.709 GHz,
with R?=0.96, for saltwater sample and R?=0.92 for tap water sample
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Absorption is driven by moisture gradients [275]. Furthermore, the durability of concrete is
mainly dependent on the capacity of a fluid to penetrate the concrete structure, which is known
as permeability. High permeability leads to the introduction of molecules that react and destroy
the structure’s chemical stability [276]. Moreover, the low permeability of concrete can
improve resistance to the penetration of water, sulphate ions, chloride ions, alkali ions, and
other harmful substances which cause chemical attack [277]. Chloride ions can be absorbed
quickly but not as rapidly as moisture; moisture always comes first, followed by chloride. This
is due to the difference in dynamic viscosity between water and salt water; salt water's viscosity
is substantially higher and denser than water without salt [278]. Therefore, the data analysis
from the drying process experiment has proven that the sample containing only moisture was
drying off much faster than the concrete sample containing chloride ions which were always
last because of the crystals of salt that blocked the water from escaping from the surface of the
concrete. Hasted (1948) conducted an experimental study on the dielectric properties of
saltwater solutions and observed a dielectric decrement with salt concentration. That means the
addition of sodium chloride to water results in a drop in electrical permittivity.

6.5 Data analysis of drying process (two rebars)

An experiment was carried out using two concrete slabs of the same size and the material
properties that contained two rebars. These represented two samples out of 10 samples (group
D) see Table 5.1 in Chapter 5. The details of the concrete properties are mentioned in Chapter
5, Section 5.4.2. We investigated the difference between tap water and saltwater solutions on
the concrete with reinforcement and how the rebars in concrete structures affect the microwave
signal. As aresult, it is possible to observe changes in the microwave spectrum due to measured
objects' different dielectric properties and textures. In the first instance, we took measurements
of both concrete samples for the S;1 parameter, and all samples were captured over the full
spectrum range of the VNA between 2 GHz and 12 GHz. across the VNA's complete spectrum
range between 2 GHz and 12 GHz. Figure 6.28 and Figure 6.31 illustrate the S, measurements,
which were taken every minute for 24 hours, taking the weight loss measurements of both the
concrete samples simultaneously for 24 hours. The spectrums were carefully examined to
identify the resonant frequency wave in the full range, to study the response of saltwater
concentration ingresses into the samples compared to the microwave signals and to study the
response of saltwater concentration ingress to the microwave signal. The microwave frequency
response at the same S1 parameters changed with varying saltwater contents in both samples.

Areas of interest for further analysis are highlighted in Figure 6.28 and Figure 6.31, then
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zoomed in the highlighted areas for the S1 parameters, identified in the frequency range of
3.45-3.55 GHz and 4.2 GHz — 4.6 GHz, for both concentrations of salt water respectively and
can be seen in Figure 6.29, Figure 6.30, Figure 6.32 and Figure 6.33.
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Figure 6.28: Transmitted power S;; measurements using microwave were taken every one minute for
the full range of frequencies, 2-12 GHz (Tap water)
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Figure 6.29: Readings of transmitted power Sz measurements responses of the concrete using
microwave were taken per minute for the full range of frequencies (2-12 GHz), but for clarity, data
measurements from 3.45-3.55 GHz are presented (Tap water).
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Figure 6.30: Transmitted power Sz; measurements using microwave were taken per minute for the
full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and
4.2-4.6 GHz are presented (Tap water)
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Figure 6.31: Readings of transmitted power S;1 measurements using microwave were taken every one
minute for the full range of frequencies, 2-12 GHz (Salt water)
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Figure 6.32 Microwave measurements of transmitted power Sy; were taken every minute over the
entire range of frequencies (2-12 GHz), but clarity data readings from every hour intervals and 3.45-
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Figure 6.33: Readings of transmitted power Sz measurements of the response concrete using
microwaves were taken per minute for the full range of frequencies (2-12 GHz), but for clarity data

measurements from every hour intervals and 4.2-4.6 GHz are presented (Salt water)
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The conductivity of the concrete sample increased as the salt water penetrated further into the
concrete, which contributed to a decrease in the microwave signal’s penetration power. Thus,
the measurement sensitivity decreases. The linear association (R?) between weight loss and the
S21 parameter varies over the entire frequency spectrum, i.e. the frequency ranges from 2 GHz
to 12 GHz, as shown in Figure 6.34. In comparison with the second parameter, the LabVIEW
program was used to display the R? value that is the correlation between every single frequency
point from 2-12 GHz. This could be either the amount of moisture lost or chloride
concentration, and LabVIEW produces a graph between 0-1, where 0 is not correlated, and 1
is the strong correlation. It shows about 3.482 GHz and 4.42 GHz with the highest correlations.
The strongest (polynomial) correlation coefficient association between S»; shifts at 3.482 GHz

and weight loss, with R? = 0.78 with the salt water and R? = 0.90 of the sample with tap water,

water, can be seen in Figure 6.36.
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Figure 6.34: R? between both concrete sample weight loss and Sz change across the full frequency
spectrum
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Figure 6.35: Polynomial correlation coefficient best fit between weight loss and Sz1 change
at 3.482 GHz, with R? =0.77, for salt water sample and R?=0.90 for tap water sample
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Figure 6.36: Polynomial correlation coefficient best fit between weight loss and Si1 change at

4.42 GHz, with R2 =0.71, for salt water sample and R?=0.89 for tap water sample
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Collecting the signature of the microwave spectrum was necessary to recognise the
characteristics of the concrete structure. Therefore, measurements taken with and without
reinforcement for the concrete samples can be seen in Figures 6.37 and Figure 6.38. Both
sensors were located 20 mm from the measured area surface, and data was collected over 24
hours during the concrete sample drying off period. The S;1 parameter was used for the
measurements, and the plots indicate the reflected amplitude signal from the measured material
properties. Data illustrated in Figure 6.37 shows that microwave attenuation changes because
the moisture content in the concrete sample is reducing. This experiment is to confirm that the
concrete sample without the reinforcement has its specific pattern. The second experiment also
showed this for the concrete sample with two reinforcements, where data sets were collected
with the two horn antennas. Figure 6.38 shows results from the sensor. The antenna was
arranged in the same parameter Sz; configuration and placed at the same distance from the
surface of the concrete samples. The identical concrete pattern remains constant at the rebar
location before the sensor position is adjusted. The unique signal starts to change due to
reducing water and the dielectric properties of the steel rebar. The role and form of the material
inside the concrete structure can be identified using these phenomena.
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Figure 6.37: Transmitted power Sz measurements of concrete sample drying off without
reinforcement for the full range of frequencies, 2-12 GHz (Tap water)
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Figure 6.38: Transmitted power S;; measurements of concrete sample drying off with reinforcement
for the full range of frequencies, 2-12 GHz (Tap water)

A comparison between two concrete samples with reinforcement and without reinforcement
has been shown in Figure 6.39. Sensors were put in the middle of the sample from the start of
the measurements. In comparison, results observed that the specific microwave configuration
shifted to the left, and the amplitude level of the microwave signal has also changed due to the
presence of the steel rebar. Concrete samples absorb different amounts of microwave energy
without reinforcement. Appendix D contains the raw data results for the remaining samples

with one rebar, crossing rebars, and mesh rebars.
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Figure 6.39: Comparison between concrete samples with and without reinforcement
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6.6 Data analysis of 5 concrete samples with 5 different saltwater concentrations

Figure 6.40 illustrates the S21 measurements of the reflected signal for five concrete samples.
The measurements shown in the figure were taken every 15 minutes for 48 hours. The change
of the antenna response is thought to be caused by the different saltwater concentrations from
(0.0%, 0.5%, 1.5%, 2.5% and 3.5%). The data was processed in two steps to select the optimum
electromagnetic frequency for chloride ion concentrations test in concrete samples. The first
step used an Info Gain Attribute Eval, which employs the Ranker search method from the Weka
workbench select attribute to reduce the dimensionality of the data from 4,001 features to 3,003
features based on the five different classes such as (0.0%, 0.5%, 1.5%, 2.5%, and 3.5%)
saltwater concentrations [179]. The selected method is able to calculate the information gain
for each attribute for the output variable. Those attributes that contribute more information
have a higher information gain value and can be picked, while those that don't give much
information have a lower score and can be eliminated. The second step applied 10 machine
learning algorithms in four different classifiers (Meta, Misc, Rules, and Tress). These methods
and associated algorithms have been described in detail in Chapter 3 Section 3.7.2. The final
algorithm, J48, is the Class for generating an unpruned or pruned C4.5 decision tree. The
knowledge model depends on how the classifier is constructed, and it can be represented by
classification rules algorithms AQ21 [279], decision trees e.g algorithm C4.5 [280] or many
other representations. Table 6.3 presents the set of algorithms that have been previously
described above within various classifiers having less mean square error and a higher
percentage of accuracy to establish the most important frequency across the Class of five
different saltwater concentrations. This research concentrated on the most popular decision tree
classifiers, the algorithm J48 of the last publicly available version of the C4.5 method
developed by J.Rose Quinlan [280]. This algorithm was compared to selected algorithms
available in Weka workbench [281]. Figure 6. 41 shows the procedures for collecting and

processing the data.
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Table 6.3: Results obtained for different classifiers from the Weka workbench

The different classifier Accuracy Means Root means
has been used for these (%0), Absolute error | square error
algorithms (%) (%)
MultiScheme 20 0.3 0.4
Bagging 20 0.32 0.4002
CVParameterSelection 20 0.32 0.4
InputMappedClassifier 20 0.32 0.4
OneR 20 0.32 0.5657
ZeroR 20 0.32 0.4
REPTree 20 0.32 0.4
RandomTree 72 0.112 0.2366
DecisionStump 40 0.24 0.3464
J48 86 0.056 0.2266
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Figure 6.40: The microwave horn antenna; the measurements were taken for the frequency
range 2-12 GHz.

The best accuracy equalling 86% and least means absolute error and root mean square error
was obtained utilising the J48 algorithm. The decision tree generated by the J48 algorithm is
illustrated in Figure 6.42, which shows the most crucial frequency point for the different
saltwater concentrations. The first number in brackets indicates the number of examples from
the training set covered by a select leaf; the second value directly after the sign (10,0) reflects
the number of incorrectly categorised (see Figure 6.42) created by the Weka workbench

algorithm. These numbers are based on the frequency values indicated in Figure 6.41. The trees
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generated by algorithm J48 show the frequency point that is the most significant point

determining the level of chloride ions in the concrete samples.

1- Data collecting
from sensors for
research purposes

2- Based on ten repetitions,
4001-point raw data was
used.

J

v

-~

3-The raw data was organised
based on five various saltwater
concentrations.

Y

4-To identify a
single frequency,
the data was
analysed using a
two-step feature
selection technique.

5- Based on the ranked search
approach from Weka
workbench, the first step was
to apply information gain
evaluation to reduce the
dimensionality of the data from
4001 to 3003 feature

6- In the second step,
ten machine learning

algorithms were

applied to four different

classifiers.

v

7-The trees generated by the
Weka workbench algorithm
J48 were then utilised to
discover the most significant
frequencies for determining
chloride ions in concrete.

8-The findings show that the
greatest results on the EM
method sensor are at 5.42GHz
frequency.

v

9-This frequency was used to

validate the sensors against
the gold standard method
using the ANN algorithm.

'

Finaly- To ensure that the
output findings from the
supervised machine learning
ANN were accurate, the
statistical chi-squared
approach was employed.

Figure 6.41: Flow diagram of data processed with machine learning classification.
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Figure 6.42: Indicates the classification of algorithm J48 decision tree graphic

The obtained decision tree can be easily transformed into the following rules:

Salt concentration = 0.0%, 05%, 1.5%, 2.5% and 3.5%

Rule 1 [freq (5518379520 <= -19.555298)] and [5420855296>-20.030178]: p=10,n=0
Rule 2 [freq (5518379520 <= -19.555298)] and [5420855296<=-20.030178]: p = 10,n =0
Rule 3 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732]: p=10,n=0

Rule 4 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732] and
[5418354688<=-19.267565]: p =10, n =0

Rule 5 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732] and
[5418354688<=-19.267565]: p=10,n=0

Where p denotes the number of positive examples covered by the rule and n denotes the number
of negative ones. The obtained decision rules determine that at 5.42 GHz frequency the best
results are obtained for the sensor that has been used in this project. The number of test
examples is equal to 50 (n = 50). The accuracy classification obtained was equal to 86%. The
results obtained from a test set are often displayed as a two-dimensional matrix with a column
and row for each class. Each matrix element shows the number of test examples for which the

actual class is the row, and the predicted class is the column. In addition, the sum of the
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numbers from down the main diagonal of the confusion matrix with a red arrow divided by the
total number of test examples determines the classification accuracy. Table 6.4 presents the

confusion matrix of the solved problem.

Table 6.4: The confusion matrix for the leave-one-out validation of classification

Classified as | 0.0% NacCl 0.5% NaCl 1.5% NaCl 2.5% NaCl 3.5% NaCl
Added added added added added
0.0% NaCl & 0 0 1 0
0.5% NaCl 0 8 0 0 2
1.5% NaCl 2 0 8 0 0
2.5% NaCl 0 2 0 8 0
3.5% NaCl 0 0 0 0 \Q‘)

Figure 6.43 illustrates the S21 measurements taken for the frequency range 2-12 GHz, but for
clarity, data from 5.4-5.6 GHz is presented after the trees generated by algorithm J48 from the
WEKA workbench. The frequency point 5.42 GHz is the most significant point determining
the level of chloride ions in the concrete sample. The reason for choosing the 5.42 GHz
frequency point was the skin depth EM wave calculation for marine concrete cover depths up
to 70 mm. In terms of civil engineering requirements, the skin depth for the dielectric property
of the electromagnetic wave signal for the maritime concrete structure has been suggested, with
the nominal cover ranging 55-75 mm. As a result, the skin depth for the EM waves point of
view was chosen and applied to meet the civil engineering requirement for assessing the
nominal and effective cover. This technology could be utilised in civil engineering to do
additional inspections. However, because our initial focus was on maritime concrete structures,
this parameter should be taken into account. However, this criterion can still apply to other
civil engineering applications, such as motorways and pavement where the skin depth must be
between 35 and 45 mm, per BS EN 1992-2:2005. As demonstrated in Figure 6.41, other
potential frequencies can be employed to determine the concentration of chloride ions. A
decision tree constructed by the J48 algorithm was used to choose these frequencies, as shown
in Figure 6.42. Weka workbench algorithm J48 has been used to select the other frequency
point based on five different saltwater concentrations, allowing us to narrow down the
frequency range. Appendix E contains the results of the WEKA workbench and the ANN

techniques.
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Based on the readings from the microwave horn antenna, the measurements were taken for the
full frequency range 2-12 GHz, however, data from 5.4-5.6 GHz is given in Figure 6.43 for
clarity. After the full data set of frequency analysis through the algorithm for the Weka
workbench classification and via the trees produced by algorithm J48, a different frequency
point has been selected and shown in Figure 6.42. However, each single frequency point is
significant to determine the level of chloride ions in the concrete samples. The skin depth
calculations and theory shown in Chapter 5 section 5.3.1, along with the ANN technique used
to analyse the sensor data, has selected the most significant frequency (5.42 GHz).

In addition, at this frequency point, the EM wave enables penetration of the concrete sample
up to 70 mm skin depth. Therefore, after selecting the most significant frequency point, there
is a need to compare with the gold standard chlorimeter tool (destructive method) by applying
the ANN technique to evaluate this frequency. The frequency chosen from algorithm J48 was
compared to the target value determined from chlorimeter tool data gathered during the
experiment. In addition, the single frequency point was used as input, and the chloride data at
three different depths such as 18, 40 and 70 mm were collected from the chlorimeter tool and

used as output.

Frequency (GHz)
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Figure 6.43: Readings from the microwave horn antenna; measurements were taken for the frequency
range 2-12 GHz, but for clarity data from the 5.4-5.6 GHz is presented
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Firstly, the full data spectrum was analysed by the WEKA workbench classification method
and the most significant frequency point was selected. Then, based on the outcome of results
generated from the decision tree J48 algorithm shown in Figure 6.42, the area of interest for
the full spectrum needed to be zoomed in on, shown in Figure 6.43. Thus, the differences
between each concrete sample, based on five different saltwater concentrations, especially
between 5.4-5.47 GHz, are shown in Figure 6.43.

Table 6.5 demonstrates the percentage of chloride ions that have been collected from the
laboratory work undertaken by the destructive method (chlorimeter tool) at three different

depths in five different saltwater concentrations.

Table 6.5: The Percentage of chloride per weight of 3 grams of dust in five different saltwater
concentrations at three different depths (destructive method)

5 samples with 5 different percentages of saltwater
concentration. Chloride content per weight of 3-gram dust
3varying depths | 0.0% NaCl | 0.5% NaCl | 1.5% NaCl | 2.5% NaCl | 3.5% NacCl
of cover (mm) added added added added added
18 0.03% 0.85% 0.94% 1.18% 1.65%
40 0.02% 0.66% 0.81% 0.92% 0.48%
70 0.02% 0.62% 0.72% 0.76% 0.40%

6.6.1 Variables selected for neural networks

Following the selection of the most significant frequency by the WEKA workbench algorithm
J48, supervised machine learning classification methods were employed to detect the level of
chloride ions in specimens. Therefore, this frequency point was selected for the determination
of chloride ions’ content in the concrete samples. The selected single frequency data sets were
used in the ANN method to validate the sensors and the gold standard method as commonly
used in industry. In this research, ANN was developed and performed under MATLAB
programming. To simplify the back-propagation (BP) neural network's learning process and
reduce the time required for training, the learning algorithm adopted to train the network model
in this study was the Levenberg—Marquardt algorithm [144]. The ANN model was developed,
trained, tested, and validated using 50 data sets. To assess the reliability and accuracy of the
models, 70% of the 50 data sets were randomly selected as training sets, 15% of the 50 data
sets selected for testing and 15% selected for validation. For modelling, data on the level of

chloride ions in the specimen at three different depths is interpreted as output.
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In addition, the raw data of electromagnetic waves for concrete samples in 5 different saltwater
concentrations were considered as input parameters. The data was formatted into a 5x3 matrix
to fit the ANN model. Table 6.6 gives the list of the ANN inputs and outputs. The supervised
machine-learning algorithm used in the study was gradient descent with adaptive learning
back-propagation. This network training function updates weight and bias values according to
gradient descent with an adaptive learning rate. The error incurred during the learning process
was expressed in terms of mean squared error (MSE). Many researchers have described the
structures of the ANN [282] [283] [194].

To determine and validate the percentage of chloride ions in the concrete samples, five different
saltwater concentrations are used as input layer neurons: 0.0% NaCl, 0.5% NaCl, 1.5% NacCl,
2.5% NaCl and 3.5% NaCl. Measurements of chloride ions’ content via chlorimeter tools at
three different depths were used as the output layer neurons. However, there is no rule currently
for determining the optimal number of neurons in the hidden layer or the number of hidden
layers, except through experimentation [284]. The number of hidden layers in a Feedforward
Neural Network (FNN) design is the most significant factor to consider. A single hidden layer
is very satisfactory for many problems. A single hidden layer for FNNs is sufficiently close to
the corresponding outputs desired by the approximation theorem. Increasing the number of
hidden layers may increase the accuracy in the test set. This can causes the network to overfit
the training set, that is, it will learn the training data. However, the analysis also verifies that
the complex non-linear problem at hand can be solved with a single hidden layer, so there is
no substantial need for two or more layer architectures [285]. The architecture of the validation
model for the percentage of chloride ions in the concrete sample consists of three layers as

shown in Figure 6.44.
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Table 6.6: The Input and output parameters of the ANN at one single frequency (5.42GHz)

Input Variable Target (output)

5 different percentages of Averaged (10) % of Chloride ion per weight of cement
salt water concentration Number of Sz at
(5.42GHz), (dB)

18mm 40mm 70mm

depth depth depth

0.0% added (NacCl) -19.78067 (Stdev) 0.0059 0.0047 0.0039

0.5% added (NaCl) -19.21289 (Stdev) 0.1667 0.1291 0.1222

1.5% added (NaCl) -20.07625 (Stdev) 0.1855 0.1589 0.1421

2.5% added (NacCl) -19.38039 (Stdev) 0.2316 0.1821 0.1506

3.5% added (NaCl) -18.93071 (Stdev) 0.3256 0.0952 0.0786

Input Laver Hidden Laver

QOutput Laver

>
0
@
e

q— Back Propagations

Figure 6.44: The characteristic structure of the ANN model inputs and output variables for a single
frequency (5.42GHz)
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The most challenging part is selecting the number of neurons in the hidden layer in the total
network development process. Therefore, neural networks were trained with different hidden
layer neurons to determine the optimal number of hidden layer nodes. Thus, the data from the
training set were used to determine the number of neurons in the hidden layer, which resulted
in the most negligible error between the neural network output and the experimental data. The
hidden layer neuron number was varied, and the resulting mean square errors (MSESs) between
the network outputs and the corresponding experimental outputs were determined and plotted
in Figure 6.45. It can be shown that when the number of neurons is 10, the error is the lowest.

0.06
0.05
0.04
0.03

0.02

Mean Square Error (MSE)

0.01

0 2 4 6 8 10 12 14 16
Number of hidden neurons

Figure 6.45: The error generated by different numbers of neurons

Table 6.7 demonstrates the % of chloride per weight of cement and concrete at different depths
using the destructive method (chlorimeter) as per equation (6.2) [75, 286]. Table 6.7 indicates

the percentage of chloride per weight of cement.

_ Wex%Cls

%CLPer WCement — Wg Eq (62)

Where; W, represent the weight of cement per sample, Cl; 4, represents the percentage of

chloride per weight of 3-gram dust, W, is the weight of dust per hole.

We used Equation 6.2 to determine the amount of chloride per weight of cement for each
sample in different saltwater concentrations and at different cover depths.
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Table 6.7: The %chloride per weight of cement in five different saltwater concentrations at three
different depths.

5 samples with 5 different percentages of saltwater concentration.
% Chloride content per weight of Cement
3 varying depths 0.0% NaCl 0.5% NacCl 1.5% NaCl | 2.5% NaCl 3.5% NaCl
of cover (mm) added added added added added
18 0.006 0.167 0.185 0.232 0.326
40 0.005 0.129 0.159 0.182 0.095
70 0.004 0.122 0.142 0.151 0.079
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Figure 6.46: The % chloride per weight of cement

Chloride penetration at various concentrations reduces as the concrete cover increases, as seen

in Figure 6.46. This is due to the saltwater concentration's viscosity, the concrete's

permeability, and the fact that it was compacted well during the casting process. Furthermore,

as the water drained through the concrete's surface, the salt stayed inside the concrete and

formed a crystal, inhibiting capillary absorption and allowing the solution to reach the

reinforcement and begin the corrosion process.
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6.6.2 The developed ANN model made use of electromagnetic wave sensor data

Table 6.8 shows a summary of model output for optimisation of a single frequency for chloride
prediction. A total of 50 data samples were employed in the ANN model training (70%),
validation (15%), and testing (5%). (15% ). The results compared model findings with those
acquired using the destructive approach and correlated with predicted and measured values

(chlorimeter tool).

Table 6.8: The ANN model's summary findings

Per weight of cement

Parameter Samples MSE R?
Training (70%) 34 2.22469x107 0.99984
Validation (15%) 8 5.00873x10® 0.999557
Testing (15%) 8 1.49404x10° 0.999814

Table 6.9 presents the validation percentage measurement of chloride per weight of cement in

the concrete specimens using electromagnetic (EM) wave spectroscopy.

Table 6.9: Validated percentages of chloride per weight of cement

The percent chloride per weight of cement was validated
at a single frequency (5.42GHz)
3 varying depths of | 0.0% NaCl | 0.5% NaCl | 1.5%NaCl | 2.5% NaCl | 3.5% NacCl
cover (mm) added added added added added
18 0.006 0.167 0.185 0.232 0.326
40 0.005 0.129 0.159 0.182 0.095
70 0.004 0.122 0.142 0.151 0.079

Figure 6.47 demonstrates the validated chloride per weight of cement that was obtained by
using the ANN technique. The validation values obtained using the ANN for the testing
percentage of chloride in different saltwater concentrations at three different depths per weight
of cement are listed in Table 6.9. The Chi-squared test can be used to determine the relative
error between the validation values and the measured chloride percentage values using the gold
standard chlorimeter tool. The following procedure has been carried out to calculate the Chi-
squared value and the P_Value, confirm the validation values obtained through the developed

ANN model, and use the Hypotheses test to verify the significance. That means the null
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hypothesis was accepted, and the H1 hypothesis was rejected because it can be seen that there
is no significant difference between the validation values and target values. The following
section describes more about the Chi-Squared statistical method and the calculation technique

to determine the Chi-Squared value

0.350 B 0.0% NaCl_validated
b — 0, g ali
g 0.300 0.5% NaCl_validated
3 1.5% NacCl_validated
3 0.250
= B2.5% NaCl_validated
=
= 0.200 ®3.5% NaCl_validated
2
=i
5 0.150
g
=)
= 0.100
3
S
2 0.050
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18 40

varying depths of cover on each sample (mm)

Figure 6.47: Validated % chloride per weight of cement obtained from the ANN model for 5 different
saltwater concentrations and taken at 3 different depths using the selected single frequency.

6.6.3 Error calculations using the chi-squared method

The Chi-square test is based on a statistic that calculates the difference between the observed
results and the values expected under the null hypothesis of no correlation. It involves
calculating the expected values based on the results. The observed values used were taken from
the data collected from the laboratory testing. Then the expected values were calculated from
the observed value.

Table 6.10 and Table 6.11 show the total observed values obtained from the laboratory and

calculated expected values.
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Chi-squared test

Table 6.10: Data on the observed value obtained from the (chlorimeter tool)

Observed | Actual percentages of chloride content per weight of cement
Varying 0.0% 0.5% 1.5% 2.5% 3.5% Total
depths of NaCl NaCl NaCl NaCl NaCl
cover added added added added added
(mm)
18 0.005913 | 0.166747 | 0.185471 | 0.231593 | 0.325609 | 0.9153324
40 0.004730 | 0.129101 | 0.158863 | 0.182120 | 0.095199 | 0.5700132
70 0.003942 | 0.122202 | 0.142109 | 0.150584 | 0.078643 | 0.4974804
Total 0.014585 | 0.418049 | 0.486443 | 0.564297 | 0.499451 | 1.9828260

The following calculation demonstrates how to obtain the expected value:
0%NaCl at 18 mm = (0.014585 *0.9153324)/(1.9828260) = 0.0067331
0%NaCl at 40 mm = (0.014585 *0.5700132)/(1.9828260) = 0.0041929
0%NaCl at 70 mm = (0.014585 *0.4974804)/(1.9828260) = 0.0036594

Same method used for the rest of (0.5%NaCl, 1.5%NaCl, 2.5%NaCl and 3.5%NacCl) to
obtained expected value.

Table 6.11: The expected value is derived from the total number of observed values.

Expected
value
Varying 0.0% NaCl | 0.5% NaCl | 1.5% NaCl | 2.5% NaCl | 3.5% NacCl
depths of added added added added added
cover (mm)
18 0.0067331 0.1929841 0.2245567 0.2604967 0.2305619
40 0.0041929 0.1201787 0.1398402 0.1622215 0.1435799
70 0.0036594 0.1048863 0.1220459 0.1415792 0.1253097

The following equation has been used to find out the Chi-Squared:

x2 — Z (Oi_Ei)2

E;

The calculation shows Chi-squared for (0%NaCl)

0% NaCl at 18 mm

X

2— Z (0.005913-0.0067331 )2

0.0067331

=0.000101
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(0.004730 —0.0041929 )2
0.0041929

0% NaCl at 40 mm X?=y =0.000070

(0.003942 —0.0036594 )2

0% NacCl at 70 mm
0.0036594

X?=y =0.000022

The same method was used for the rest of (0.5% NaCl, 1.5% NaCl, 2.5% NaCl and 3.5% NacCl)

to obtain Chi-Squared. Table 6.12 shows the total Chi-Squared calculation values for 5

different saltwater concentrations at three different depths.

Table 6.12: The total Chi-Squared calculation values

Chi-Squared
Varying depths of 0.0% NaCl 0.5% NaCl 1.5% NaCl 2.5% NaCl 3.5% NacCl

cover added added added added added
18 0.000101 0.003568 0.006799 0.003208 0.039174
40 0.000070 0.000663 0.002586 0.002441 0.016299
70 0.000022 0.002859 0.003297 0.000573 0.017375

Total 0.099

P_Value 0.99999

In statistical research, under the assumption that the null hypothesis is correct, the p-value is
the probability of obtaining test results at least as extreme as the findings observed. Therefore,
a very small p-value (P < 0.05) means that the test hypothesis is false or should be rejected. If
(p > 0.05), this means the probability is that the null hypothesis is true. The reason why this
test was carried out was to find out any significant difference between the actual data values

achieved from the laboratory and the validated trained data from the ANN technique.

Degree of freedom (df) (number of rows — 1) x (number of columns — 1) = (3-1) x (5-1) = 8.
Table 6.13 shows the critical values of the chi-square distribution with degrees of freedom and

95 % confidence ranges.

Table 6.13: Chi-Square and P-Value are displayed.

X2 0.0990338
Df 8
x 2 critical 15.51
P value 0.999999759 > 0.05
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Chi-squared is one of the statistical tests widely used to compare quantities and define if
observed values differ from those expected under a specific hypothesis. It was used to check
(HO) and (H1)

H1 = there is a difference between the age range years for the three options (alternate

hypothesis). HO = when there’s no dissimilarity (Null Hypothesis)

0.099 < 15.51; therefore, Rejected H1 and accepted HO. The chi-squared value needed to reject
the (hypothesis) rises because it is shown there is no significant change between the Observed

value and Expected value.

The same method is used to calculate the Chi-Squared %chloride per weight of cement and the
predicted %chloride per weight of cement. Table 6.14 indicates the final calculations of chi-
squared values for the predicted percentage of chloride ions in five different saltwater
concentrations specimens at three different depths. The results demonstrate that the
electromagnetic (EM) wave spectroscopy can suitably predict the chloride ion content across
the range of values investigated and the percentage error in relation to the destructive method

(chlorimeter tool) as a gold standard in the industry is 0.034%.

Table 6.14: The total Chi-Squared values and %of error

Parameter % of Chloride Chi-Squared % Error
Chlorimeter Tool per weight of cement 0.099000000
Microwave per weight of cement @ 5.42GHz | 0.099033791 0.034
spectroscopy_

According to the CHI Squared calculation, there is no significant change between observed
and expected values. It can be seen in Table 6.14 that the % of error is calculated with the CHI
Squared values. The following equation is used to calculate the percentage error.

(0.09900000—-0.099033791)

* 100 =0.034
(0.099000000)

Per weight of cement @ 5.42GHz — %Error =
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6.6.4 Comparison of actual value and confirmed chloride ion percentages at 5.42 GHz
frequency

Figure 6.48 demonstrates the % of chloride per weight of cement in different saltwater
concentrations at three various depths. The Chlorimeter tool is used as the gold standard
method to measure chloride ions at three different depths. The accuracy of this Chlorimeter
tool covers a wide range from 0.002% to 2% chloride per weight. It can be seen in both figures
that the penetration of chloride increased with the increased percentage of salt water at the 18
mm depth. But after the cover depth increased, the chloride penetration decreased because of
the material properties such as less permeability, being well compacted, the high viscosity of

the solution, and the water-cement ratio.

In the case of chloride intrusion, chloride ions have only a small influence on the pH of the
pore solution. Nevertheless, when the chloride content in the pore solution exceeds a critical
value (chloride threshold), it can destroy the passive layer. However, it has proved rather
difficult to establish a threshold chloride concentration below which there is no risk of
corrosion as it depends on numerous factors, including [287]: a) The concentration of hydroxyl
ions in the pore solution and pH of concrete. Therefore, above a critical ratio of chloride and
hydroxy ions, corrosion can take place. Husman suggested 0.6 as the critical ratio [10]. In
addition, the hydroxyl ion concentration in the pore solution mainly depends on the type of
cement and additives. (b) The number of voids at the concrete reinforcement interface generally
depends on the workability of the fresh concrete and the compacting procedure. Therefore, this

may weaken the cement products deposited at the concrete reinforcement because of the voids.

However, the data analysis obtained on bridge structures in the UK, suggested that the level of
chloride below 0.2% by weight of cement represents minimal risk of corrosion, while levels of
chloride above 1.5% represent a very high risk as can be seen in Figure 6.49 [288]. The
outcomes of similar work on U.S. bridges recommended a range between 0.17 and 1.4% (by
weight of cement), on Danish bridges 0.3% and 0.7% (by weight of cement), while especially
high threshold levels (from 1.8 to 2.2% by weight of cement) were reported in one survey of
Austrian bridges [288].

Concrete cover specification according to the British standard BS EN 206-1 is the thickness of
concrete cover based on the weather condition in which the structure is constructed. In addition
the concrete strength and quality of concrete is dependent on cement and water-cement ratio
[289].
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According to the Complementary British Standard to BS EN 206 and European Committee for
Concrete, for the limitation of the amount of chloride ion per weight of cement, there is a trigger
point that should be 0.4%. Therefore, the proposed electromagnetic spectroscopy has
determined the level below the critical level of chloride ion in the concrete structure.
Consequently, the data demonstrated that the microwave sensor detects values below 0.4% per
weight of cement, which means we can use this technology to predict when the structure is at
the critical point for the repair [59] [290].
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Figure 6.48: The comparison between actual and validated values of % chloride per weight of cement
at one single frequency (5.42 GHz)
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Figure 6.49: The corrosion risk determined on the UK bridges plotted as a function of chloride
content according to BS EN 206.1 [291]

The chloride threshold value as a general rule for structures exposed to the atmosphere is
assumed to be in the range of 0.4 to 1% by weight of cement, such values may significantly
change, depending on the above parameters. For instance, the high degree of moisture content
in the concrete leads to low oxygen content and a low value of the electrochemical potential of
steel, in the submerged part of a marine structure. Therefore the chloride threshold is increased
significantly [292].

6.6.5 ANN was used to analyse and validate five different saltwater concentrations

This section of the project presents and discusses the performance of the trained LM algorithm
using the standard measuring performance indicator: mean square error (MSE), correlation
coefficients (R?). As previously demonstrated, the developing LM algorithm was considered a
regularisation back-propagation scheme to train and develop the network due to its advantages
over conventional methods. The neural network training stops when the error falls below a
user-specified level or when the user-defined number of training iterations has been reached.
In this case, 1,000 iterations were planned for the final training process, while it was found to

be adequate in a series of test runs.

The validation performance and mean square error of the network starting at a large value and
reducing to a small value is shown in Figure 6.50. A result is generated via the use of the

software. The plot consists of three lines for three different steps of training, validation, and
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test. The training process on the training vectors continues until the model gets to the point
where the training decreases the network error on the validation vectors, leading to avoiding
the over-fitting of the data sets. As shown in Figure 6.50, the best validation efficiency occurs
at epoch 5, and the process stopped at epoch 11 after 6 error repetitions. The results shown in
Figure 6.50 illustrate the same ones as in Figure 6.51. The MSE value is 5.0087x10 of the
data per weight of cement and stopped the training of the neural network. The training state for
an Artificial Neural Network model is shown in Figure 6.50. As it is illustrated in the figure,
the errors are repeated 6 times after epoch 5, and the test stopped at epoch 11. The error repeats
starting at epoch 6 demonstrated over-fitting of the data. Therefore, epoch 5 is selected as the
base, and its weights are chosen as the final weights. Moreover, because the errors are
replicated 6 times before stopping the operation, the validation check is equivalent to 6. Figure
6.51 shows that at an epoch of 11, the error gradient was 7.04131x10"%, while the mu factor

and validation check were 1x1079-08,

Best Validation performance is 5.0087x10™" at epoch 5
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Figure 6.50: Best validation performance in Artificial Neural Network Model; Per weight of
cement
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Figure 6.51: The gradient and maximum validation checks for the LM trained network; per
weight of cement.

A further useful picture of the network profile can be seen in the error histogram (EH), as
shown in Figure 6.52. Therefore, it is of value to see that the performance of the proposed
algorithm can be very much affected by the presence of outliers. Figure 6.52 presents the error
histogram with 20 bins for the three training, validation, and test steps in an Artificial Neural
Network modelling. As is shown in Figure 6.52, the zero error is illustrated with a yellow line
in the middle with 5 instances in the training set. Consequently, the training process is stopped
straight away once the validation error starts to increase. Also, it can be shown that most data
coincide with the zero-error line in the central bins of -0.00049 and 9.44x107°. However, the
ANN technique generated the results from Figure 6.50 to Figure 6.52, with the data used of
%chloride/weight of cement content from the microwave sensor. Also, this software calculated
values based on the amount of data and matrix added into the software, and then the software

algorithm started to calculate the values.
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Figure 6.52: The plot of error histogram (EH) for the LM algorithm; per weight of
cement.

The developed regression calibration plot for the training, testing and validation of all data sets
to compare the measured and the validated percentage of chloride in three various depths, as
demonstrated in Figure 6.53. The experimental results (Target) are shown on the horizontal
axis and the output results on the vertical axis. There is an excellent correlation between the
experimental and output values for the complete data set. The general equation of a straight
line is y=mx+c, where m is the gradient and y=c is the value where the line cut the y-axis. Also,
this number c is called the intercept on the y-axis. However, these equations are linked to those
related to the LM algorithm used in ANN techniques that were discussed more in chapter 3.
Figure 6.53 (a, b, ¢ & d) represents the plots of coincidence between the target and output
variables for training, validation, testing, and all our data steps, respectively. The “Target”
values imply the “Measured Level of chloride ions from the concrete sample” and the “Output”
values imply the “Validated level of chloride ions by MATLAB Software”. The dashed line in
each plot represents the perfect result outputs = targets. Also, the solid line represents the best
fit linear regression line between outputs and targets. The term “R” value is obtained by
MATLAB Software which demonstrates the model efficiency. In Figure 6.53 (a, b, c & d) “R”

confirms acceptable accuracies of the model in all the training, validation, and testing steps. If
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R =1, this indicates an exact linear relationship between outputs and targets. If R is close to

zero then there is no linear relationship between outputs and targets.

The points in all subdivisions (training, testing, and validation) are located close to the best
line of equality (validated %chloride ions= B * measured actual value of %chloride ions+ o)
with the high coefficients of determination of 0.99998, 0.99956, 0.9991, and 0.99992 for
training, validation, testing and all data of the %Wt-cement. For this experimental work, the
training data indicates a good fit. Also, the validation and test results show R values greater
than 0.9. The results demonstrated that the ANN model is successful in learning the relationship
between the different input and output parameters and show the ability of the network to
validate the influence of varying saltwater concentrations on the microwave sensor in the

concrete with different depths. The MATLAB code for those graphs has been shown in
Appendix A, B and C.
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Figure 6.53: The regression graphs of the experimental results against the validated %Chloride ions
per weight of cement
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Furthermore, the performance of the LM algorithm is further examined using the target values
versus the predicted values, as shown in Table 6.15. According to the results, the significant
agreement can be observed between the targets measured versus predicted values with a Value
of Normalised Absolute Error statistic (NAE), Value of Root Mean Square Error statistic
(RMSE), and Value correlation coefficients (R2) with the amount of %chloride per weight of
cement at three different depths being (0.000256, 0.000120 and 0.986709). The results have
demonstrated that microwave spectroscopy can determine varying concentrations of NaCl in
the concrete specimens at different depths. The single frequency can be ascertained by using
classification feature selection and indicated a frequency of 5.42 GHz as a durable predictor

for level chloride ions.

Table 6.15: The results for the observed data target and output values

%Chloride per weight of cement
Varying depths of NAEs RMSE R?
cover (mm)
18 0.000211 0.000135 0.960388
40 0.000303 0.000122 0.960397
70 0.000283 0.000106 0.960395
Total of three depth 0.000256 0.000120 0.986709

6.7 ANN was used to repeat the analysis of two different saltwater concentrations

An experiment was undertaken for two concrete slabs with the same size 250 x 250 x 60 mm
and the same material properties with reinforced rebars to investigate the difference between
tap water and saltwater solutions on the concrete with reinforcement rebar and how they affect
microwave signal. Figure 6.54 shows the S1 measurements of the concrete slabl and slab2
taken every minute over 24 hours to monitor the concrete drying off. It can be seen in Figure
6.54 that visible changes are appearing in the electromagnetic (EM) wave signature during the
drying process of the concrete slabl and slab2 while submerged in the salt water and tap water
for 24 hours. The change is thought to be caused by the decreasing amount of water and the
remaining salt in the concrete sample. There is a linear correlation R? value between the Sz
change and weight loss across the full frequency spectrum ranges (2-12 GHz), but for clarity,

data measurements shown in 5.4-5.6 GHz are presented in Figure 6.54. The same procedure of
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classification was applied to this experimental data work to identify the important frequency

points. Then the ANN method was used to validate the data obtained from the sensor at 5.42

GHz frequency and compared with the gold standard method.

Then the destructive method (chlorimeter tool) was used as the gold standard method to
measure the number of chloride ions at two different depths on both samples. Table 6.16

indicates the average of chloride ions in 3 grams of dust collected in three holes at the same

depth of the concrete surface.
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Figure 6.54: The measurement of microwaves horn antenna; for clarity, data from the 5.4-5.6 GHz is

presented (Tap water & Salt water)

Table 6.16: The Percentage of chloride per weight of 3 grams of dust in 2 different saltwater
concentrations at 2 different depths

2 samples with two different saltwater concentration, chloride
content per weight of 3-gram dust

2 varying depths of cover

0.09% NaCl added

2.53% NaCl added

(mm)
18 0.03% 0.55%
40 0.00% 0.00%
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The sample depth chosen was intended to include an acceptable range to allow interpolation
and estimation between the commonly used nominal depth of cover under different exposure
conditions, such as near the top surface, a little deeper, and very close to the rebar position. But
for this experimental work, only two different depths have been selected because of the

thickness of the concrete sample.

Also, because the surface of the concrete is usually flaky, the first 2-3 mm is easily removed
due to the high-water content at the surface, so the 18 mm depth was chosen. As a result of the
concrete cover's weakness and evaporation at the surface, 20 mm of cover is effectively reduced
to 17-18 mm.

The variable selected for the Artificial Neural Network (ANN) technique was used to validate
the amount of chloride in the concrete sample at different depths in different saltwater
concentrations. Therefore, to visualize the performance of the Artificial Neural Network
(ANN) models graphically, the measured values obtained from the laboratory measurement
and its predicted values resulting from 5.4-5.6 GHz and only one single frequency are plotted
and displayed in Figure 6.55. The ANN model exhibited a great capability to predict a level of
chloride output with R? = 0.99 and with Mean Square Error of prediction very low.
Furthermore, in order to approximate the number of hidden nodes in the hidden layer, neural
networks were trained with different numbers of hidden layer neurons. Thus, the data from the
training set was used to determine the number of neurons in the hidden layer, which resulted
in the least error between the neural network output and the experimental data. See section
6.6.1 and Figure 6.45.
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Figure 6.55: The characteristic structure of ANN model inputs and output variables for a single

frequency (5.42GHz)

In addition, the raw data of electromagnetic waves on concrete samples in two different

saltwater concentrations were considered as input parameters. The data was formatted into a

2x2 matrix to fit the ANN model. Table 6.17 gives the list of the ANN inputs and outputs.

Table 6.17: The input and output parameters of ANN at one single frequency (5.42GHz)

Input variables Target (Output)
2 different Averaged (10) %Chloride Per weight of
percentages of Number of Sx1 cement
saltwater (5.42GHz), (dB)
concentration 18mm depth | 40mm depth
0.0% NaCl added -27.246 (Stdev) 0.0017 0.0013
2.53% NacCl added -25.2545 (Stdev) 0.0282 0.0130
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As declared in the experimental data collection, that destructive method was used to detect the
level of chloride in two different depths by extracting using the drill press. Table 6.18 indicates
the percentage of chloride per weight of cement. Moreover, in order to define the profile of
penetration of chlorides, as shown in Figure 6.56, samples from different depths were extracted

using a drill press.

Table 6.18: The %chloride per weight of concrete in different concentrations at 2 different depths

Actual value %chloride per weight of cement
2 varying depths of cover 0.0% NaCl added 2.53% NaCl added
(mm)
18 0.002 0.028
40 0.001 0.013

The above equation 6.2 was used to calculate the amount of chloride per weight of each
concrete sample in different saltwater concentrations at two different depths shown in the above

section 6.6.1.

m0.0% NacCl
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m2.53% NaCl
0.025 [
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Figure 6.56: The % chloride per weight of cement
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Figure 6.56 shows clearly that the transmission of chloride at different concentrations
decreases by increasing the concrete cover. This is due to the salt water's high viscosity, the
concrete's decreased permeability, and the fact that it was compacted thoroughly during the
casting process. Moreover, while the water evaporated through the surface of the concrete, the
salt remained inside the concrete and created a crystal, and it blocked the capillary absorption

to let more penetration of the solution deeper to reach the reinforcement and start corrosion.

In Table 6.19, the description of the model performance for optimization of the best single
frequency for chloride validation is presented. The ANN model divided the total data into three
subsets of training, validation, and test. The proportion of training, validation, and testing are
characterized based on the fact that the general structure of the model is constructed based on
the training data set. The ANN model was developed, trained, tested, and validated using 20
data sets. To assess the reliability and accuracy of the models, 70% of the 20 data sets were
randomly selected as training sets, 15% of the 20 data sets selected for testing and 15% selected
for validation. Within minimizing the criteria function, the training process included iterative
measurements of the weight coefficients. The network validated the outputs after each iteration
use and validation. When the validation record's misclassification rate began to vary from the

training record's misclassification rate, the training was stopped to avoid overfitting.

Table 6.19: Indicates the summary results of the ANNs model

Per weight of cement

Parameter Samples MSE R?
Training (70%) 14 1.16923x102 0.999999
Validation (15%o) 3 4.09133x10 0.999993
Testing (15%) 3 8.26223x103 0.999999

Table 6.20 presents the validated percentage of chloride per weight of cement in the concrete
specimens using an electromagnetic (EM) waves sensor at microwave frequency. The
difference between Table 6.20 and Table 6.18 is that the values in Table 6.18 were obtained
from the measured chloride ion level directly from the concrete samples with the destructive
method (Chlorimeter tool). But the values in Table 6.20 were obtained from the validated level

of chloride ions from the ANN algorithm.
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Table 6.20: The validated values of %chloride per weight of cement

percentage of chloride per weight of cement that has been
validated throughout a single frequency range (5.42 GHz)
2 varying depths | 0.0% NaCl added_ 2.53% NaCl added_
of cover(mm) validated validated
18 0.0016907 0.0282383
40 0.0013456 0.0129729

Figure 6.57 demonstrates the validated chloride per weight of cement obtained from using the
artificial neural network (ANN) technique after gaining the validated values of % chloride per
weight of cement in two different saltwater concentrations at two different depths. The reason
for choosing only two different depths was because the size of the concrete sample used was
250 x 250 x 60 mm in this experimental work. Then these results obtained need to prove that
there are no significant differences between the results obtained by the chlorimeter tool as a
destructive method and the microwave sensor as a non-destructive method by using the
statistical technique called a Chi-Squared test. The statistical chi-squared approach was used
to produce Chi-Squared values, P- values, and the hypothesis test to verify the data is more

significant, in order to demonstrate the accuracy of the predicted model developed algorithm.

0.030 m 0.0% NaCl_validated

0.025 - H2.53% NaCl _validated
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0.015 -
0.010 -

0.005 F

% Chloride per weight of cement
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18 40
varying depths of cover on each sample (mm)

Figure 6.57: The validated value of percent chloride per (weight of cement) at various depths at a
single frequency (5.42 GHz)
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Chi-squared test

The Chi-Squared test is used to determine the Chi-Squared values and then can calculate the
percentage of error within one single frequency point. The following Table 6.21, Table 6.22,

and Table 6.23 show the observed, expected, and total Chi-squared values.

Table 6.21: Observed values obtained from the laboratory

Observed values Actual percentages of chloride content per
weight of cement
2 varying depths of | 0.0% NaCl 2.53% NaCl Total
cover (mm) added added
18 0.0016905 0.0282383 0.0299288
40 0.0013455 0.0129720 0.0143175
Total 0.0030360 0.0412103 0.0442463

Table 6.22: Expected values obtained from the calculation

Expecting values
2 varying depths of 0.0% NaCl added 2.53% NaCl added

cover (mm)
18 0.0020536 0.0278752
40 0.0009824 0.0133351

Table 6.23: Shows the total CHI Squared calculation values

Chi-Squared
varying depths of cover 0.0% NaCl added 0.5% NaCl
(mm) added
18 0.00004701 0.0000336
40 0.00009932 0.0000709
Total Chi-squared 0.00021296
P Value 0.988356615

Degree of freedom (df) (number of rows — 1) x (number of columns — 1) = (2-1) x (2-1) = 1.
Table 6.24 shows the critical values of the chi-square distribution with degrees of freedom and
95 % confidence ranges.
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Table 6.24: The final chi-squared and P-value

X2 0.00021296
Df 1
X2 critical 3.841
P_value 0.988356615 > 0.05

In this case, H1 indicates that there is a variation in age between the three possibilities (alternate
hypothesis). Ho indicates that there is no variation (Null Hypothesis).

0.0002 < 3.841, therefore, we rejected Hy and accepted Ho. The chi-squared value needed to
reject the (hypothesis) rises because it is shown there is no significant change between the
Observed value and Expected value.

The same method is used to calculate the Chi-Squared % chloride per weight of cement and
the predicted % chloride per weight of concrete and cement. The following Table 6.25 indicates
the final calculation of chi-squared values for the predicted percentage of chloride ions in two

different saltwater concentration specimens at two different depths.

Table 6.25: The total Chi-Squared values and %of error

Parameter % Chloride Chi-Squared % Error
Chlorimeter Tool _ per weight of cement 0.0002130084
(Destructive method)
per weight of cement @ 0.0002129655 0.020
Microwave spectroscopy 5.42 GHz

According to the Chi-Squared calculation, there is no significant change between the observed
values and expected values. The percentage error at the frequency point is very low. This means

the relations between the predictions and actual values are very close to each other.

6.7.1 Comparison of % chloride ion between actual values and validated values

Figure 6.58 illustrates the comparison between the percentage of chloride per weight of cement
in two different saltwater concentrations and at two different depths. Thus, the actual values
of % chloride ions were collected by using the chlorimeter tools as a gold standard method at
two different depths. It can be seen in Figure 6.58 that the penetration of chloride was increased
with the increased percentage of salt water at the first 18 mm layer depth. The rate of chloride
penetration in concrete in the marine environment depends mainly on the exposure situation

that varies with the regular variation of the tide level. However, most of the concrete structures
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exposed to the tidal environment are in a non-saturated state, and also chloride ion transport is
driven both by diffusion through concentration gradient through continuous pore water channel
and convection via moisture through non-saturated pores. It also decreases the penetration of
chloride ions into the concrete by increasing the concrete cover depth and using a lower water-
cement ratio, being well compacted during casting, and high viscosity of the solution. Figure
6.58 presents the skin depth of electromagnetic waves and the ability to penetrate the concrete
sample to validate the level of chloride ions with different saltwater concentrations at different

cover depths.
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Figure 6.58: The comparison between actual and validated values of % chloride per weight of

cement at one single frequency (5.42 GHz).

In general, the threshold chloride value for an exposed structure is assumed to be in the range
of 0.4 to 1% by weight of cement. Still, such values may significantly change, depending on
the parameters. For instance, the high degree of moisture content in the concrete leads to low
oxygen content and a low value of the electrochemical potential of steel in the submerged part

of a marine structure. Therefore, the chloride threshold is increased significantly [292].

However, according to the data set produced in this study, the microwave sensor can identify
the level of chloride ions in the structure at different depths with different saltwater
concentrations below the trigger point of 0.4%. This means that the technique can be used to

predict when a structure's maintenance is at a critical stage.
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In this experimental work, only two different saltwater concentrations are used to investigate
how saltwater concentrations have affected the electromagnetic wave signal. The microwave
signal has changed due to the variant level of saltwater concentrations. Therefore, we carried

out further experimental work with five different concentrations of salt water.

6.7.2 ANN was used to analyse and validate two different saltwater concentrations

This section presents and discusses the performance of the trained LM algorithm using the
standard measuring performance indicator: mean square error (MSE), correlation coefficients
(R?). Considering the analytical mechanism during the training process is vital for successful
modelling. Figure 6.59 demonstrates the procedure of the training LM through the three stages
testing, training, and validations. The epochs are one complete sweep of training, testing, and
validation. The performance plot shows MSE in training, testing, and validation data. The MSE
plot in the training data has a lower curve and has an upper curve invalidation data set. The

network with minimum MSE invalidation is called the trained ANN model.

The training automatically stops when the validation error stops improving, as indicated by an
increase in the MSE of the validation data samples. The results illustrate that the training
process terminated when the validation errors number exceeded the allowed numbers. The
technique of the training LM via the three stages of testing, training, and validations is
represented in Figure 6.59. The epochs represent a whole training, testing, and validation cycle.

MSE in training, testing, and validation data is shown in the performance plot.

From Figure 6.59, it can be seen that after 11 repetitions of the network training, the value of
MSE had reduced to the specified level of 4.0913x107* of the data per weight of cement, then
the training of the neural network was automatically stopped.
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Best Validation Performance is 4.0913x10'* at epoch 11
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Figure 6.59: The performance plot of the LM algorithm for the concrete developed model
during the training process; Per weight of cement.

Furthermore, the equivalent change of gradient and the Marquardt adjustment factor (mu)
shows an important role in decreasing the mean square error percentage. As discovered in
Figure 6.60, the gradient error decreases and reaches 4.8858x10%, Significantly, the mu factor
is decreased to a negligible value 1x10™* after a few epochs, and the validation doesn’t change
at an epoch of 11. Additionally, Figure 6.61 demonstrates the error histogram (EH) plot to
obtain further efficiency validation of network performance. Also, the EH can indicate outliers
data features that appear to be inconsistent with other subsets observations [142]. Therefore, it
is of value to see that the performance of the proposed algorithm can be very much affected by
the presence of outliers. Consequently, the training process is stopped straightway once the
validation error starts to increase. Also, it can be shown that the majority of data coincides with

the zero-error line in the two central bins (-1.2x10°7 and 4.93x10%).
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Figure 6.60: The gradient and maximum validation checks for the LM trained network; Per
weight of cement
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Figure 6.61: The plot of error histogram (EH) for the LM algorithm; Per weight of cement
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Figure 6. 62: The regression graphs of the experimental results against the validated %Chloride
ions per weight of cement

Further useful figures concerning the correlation between the measured and the computational
values such as training, testing, validation, and all data can be experiential in the regression
plot of Figure 6.62 (a, b, ¢, & d). This Figure illustrates the relationship between the target and
output variables for training, validation, and testing steps, respectively. The target values
indicate the percentage of chloride ions in the concrete sample, and output values indicate the
predicted percentage of chloride ions from the ANN algorithm in MATLAB Software. The
points in all subdivisions (training, testing, and validation) are located close to the best line of
equality (predicted %chloride ions= § * measured actual value of %chloride ions+a) with the
high coefficients of determination of 1,1,1 and 1 for training, validation, testing and all data of
the %Wt-cement. The term R is obtained by MATLAB Software which demonstrates the

model efficiency. The MATLAB code for those graphs has been shown in Appendix A, B and
C.

Furthermore, the performance of the LM algorithm is further examined using the target values
versus the predicted values, as shown in Table 6.26. According to the results, the significant

agreement can be observed between the targets measured versus predicted values with a Value
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of Normalised Absolute Error statistic (NAE), Value of Root Mean Square Error statistic
(RMSE), and Value correlation coefficients (R?) with the amount of %chloride per weight of
cement at three different depths being (0.000138, 0.000272 and 0.9983905). According to the
findings, microwave spectroscopy can assess variable amounts of NaCl in concrete samples at
various depths. Furthermore, using supervised machine learning classification feature
selection, a single frequency of 5.42GHz was identified as the most significant predictor for

chloride ions.

Table 6.26:Presents the resulting data for the observed data target and validated values

%Chloride per weight of cement
Varying depth of NAEs RMSE R?
cover (mm)
18 0.000101 0.000212 0.997883
40 0.000215 0.000332 0.998898
Total both depth 0.000138 0.000272 0.9983905
6.8 Summary

The first experiment demonstrates that there is a considerable shift in the electromagnetic (EM)
wave signature once the concrete absorbs water and salt water, notably at the 3.6 GHz and 4.1
GHz frequency range. The second experimental curing process was carried out for up to 28
days on two concrete samples of the same size and material properties. There is a noticeable
change in EM signature between frequency range 2 GHz and 3 GHz, especially at frequency
2.7096 GHz. The change is affected by the amount of tap water and salt water absorbed in the
concrete sample during the 28-days curing period. This is due to water's high dielectric
property, which causes a microwave signal to change and electromagnetic (EM) wave
absorption to depend highly on water salinity and temperature. However, the microwave signal
changes early in the curing process and continues until the concrete is fully saturated. The third
experiment used a set of horn antennae to monitor the drying process of both concrete samples
with two different saltwater concentrations. There is a noticeable change occurring in the
electromagnetic (EM) signal in both samples. Chose the frequency range of 2.5 GHz to 3.0

GHz because 2.709 GHz demonstrated the strongest linear correlation between the change in

182 | Page



attenuation and weight loss of both concrete samples. The strongest linear correlation was
found between Sy1 change at 2.709 GHz and weight, with R? = 0.89 for the saltwater sample
and R? = 0.88 for the tap water sample. The fourth and fifth experiments used five concrete
samples in five different saltwater concentrations. This study used two methods to detect the
level of chloride ions in concrete samples based on the saltwater concentration. The first
method employed an electromagnetic wave sensor, while the second, known as the chlorimeter
tool, was used as the gold standard method to determine the amount of chloride in various
cover depths.

In this project, we decided to use the Weka workbench to determine the most significant
frequency point to investigate the level of chloride. The J48 algorithm, which displays the most
important frequency point to detect the level of chloride ions in five different saltwater
concentrations, obtained the best accuracy of 86 percent. Following the classification method's
selection of a single frequency point, ANN prediction was used to analyse and develop the
model. In addition, the Chi-squared, P-values, and error % between the actual and validated
values of chloride ions were determined using the statistical Chi-squared test. According to the
Chi-squared test, the percentage error between the actual and validated values per weight of
cement is 0.036%. On the other hand, the ANN model accurately validated the level of chloride
ions in five concrete samples at three different depths, with NAE = 0.000256 and R? =
0.986709, respectively.

Nevertheless, this study aims to see if electromagnetic (EM) waves could be used as a non-
destructive method for determining chloride levels in reinforced concrete structures. The
findings showed that the microwave sensor could detect chloride ions at different depths in
concrete samples with saltwater concentrations less than the limited requirement of 0.4%

chloride ion in the concrete structure.
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Chapter Seven: Conclusions and Recommendations

7.1 Conclusions

R/
L X4

The presence of chloride ions in concrete structures is a significant source of reinforced
steel corrosion, which leads to degradation. According to the present state-of-the-art
limits, there is room for improvement since there is currently no easy-to-use yet strong
technology to help in the NDT process. The most advanced field methods are
destructive or somewhat destructive, limiting their continual usage by industry and
requiring the extraction of the concrete pore solution. As a result, the researcher has
been motivated to continue to study the application of innovative sensing technologies
to create non-destructive ways for predicting the proportion of chloride ions in concrete
buildings. A non-destructive measuring approach is required for real-time, consistent,
and continuous monitoring of chloride-based degradation.

Using microwave frequency and a horn antenna to detect chloride ions during the curing
phase and drying process of concrete has been successfully tested and established.
According to the literature study, horn antennas satisfied all of the design criteria for
microwave sensors, including cost, flexibility, simplicity, and repeatability of results.
As a result, the horn antenna was chosen for future research.

The preliminary work began with the study of electromagnetic waves and the various
types of microwave sensors used in different applications. This study selected two types
of microwave sensors, the rectangular waveguide and the horn antenna, as possible
sensing platforms to detect the amount of chloride ions in RC concrete structures. On
the other hand, the dielectric property experiments were carried out to determine the
imaginary and complex relative permittivity for concrete samples, both dry and wet,
with fresh and salt water. To reach this conclusion, the S-parameters were measured by
reflection and transmission using three different frequencies of rectangular waveguide
bands. In Chapter 4, section 4.10.1, the bands utilised in this project are described and
discussed.

Due to the aims of this experiment, it was essential to find out how deep the
electromagnetic wave propagation needed to go to detect chloride ions. However, the
usual depth of reinforced concrete for chloride detection in the field of civil engineering
is about 70mm for condition XS3, which involves exposure to salt water. Using civil

engineering requirements for concrete structures exposed to chloride ion conditions and
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calculations of skin depth, the optimum angle between the two horn antennas was
determined. It was then decided that the Sz; and S11 parameters could be utilised with
concrete samples and that there was a link between the skin depth of the concrete
samples and the penetration depth.

Based on a literature review and preliminary experimental testing, a set of horn
antennas were used in the lab.

» The first experiment used the transmitter and receiver horn antennas in the
frequency range of 2 GHz and 12 GHz, respectively. Every hour for 24 hours,
the S»1 of wet processing pavement concrete was measured. A substantial shift
in EM appears after both concrete samples absorbed water and salt water,
particularly at the 3.6 GHz and 4.1 GHz frequency ranges. The changes are
induced by a decrease in the amount of water and salt water in the concrete
samples.

> In the second experiment, a 28-day curing process was carried out with a set of
horn antennas. Measurements were collected every 15 minutes for 28 days
while the concrete samples were immersed in both tap water and salt water.
Especially around 2.709 GHz, there is a notable shift in the EM signature
between the 2.5 GHz and 3 GHz range. The quantity of water and salt absorbed
in the concrete samples throughout the 28-day curing period influences the EM
wave changes. Results from the experimental curing procedure show that the
microwave signal begins to alter at an early stage of curing and continues to do
so until the concrete is fully saturated.

» Szrand Si1 measurements of the drying process of both concrete samples in two
different saltwater concentrations were taken after the curing process was
complete. In both experiments, the EM signal shows a noticeable shift. There
was a significant polynomial connection between the reflected signal and
weight loss of both concrete samples and changes in the S»1 parameter
measurement at 2.709 GHz, with R? = 0.91 for the sample with salt water and
R2 = 0.97 for the sample with tap water for the transmitter and receiver sensors.
At 2.709 GHz, the S11 parameter measurement changes from R? = 0.96 for the
sample containing salt water and R? = 0.92 for the sample containing tap water.

» Two concrete slabs containing two rebars of the same size and material
characteristics were compared in the fourth experiment. Figure 6.35 shows the
greatest (polynomial) correlation coefficient between Sp; shifts at 3.482 GHz
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and weight loss, with R? = 0.78 for the saltwater sample and R? = 0.90 for the
tap water sample. Figure 6.36 shows the greatest (polynomial) relationship
between Sz shifts at 4.42 GHz and weight reduction, with R? = 0.71 for the
saltwater sample and R? = 0.89 for the tap water sample.

» The fifth experimental investigation, conducted between 2-12 GHz frequencies,
used five concrete samples with five different saltwater contents. According to
the data, the proportion of chloride ions at the concrete's surface was
significantly greater, and it dropped as the concrete's cover increased. They have
combined the data from both techniques to create a model for the percentage of
chloride ions per weight of cement at three depths. It was found that the J48
algorithm provided the greatest accuracy of 86% and the lowest mean absolute
error and the root mean square error. As shown in Figure 6.42, the decision tree
created by the J48 algorithm is dependent on the varied saltwater
concentrations. We used the ANN approach to analyse and construct the model
once the most significant frequency point was selected. For the transmitter and
receiver sensors, a single frequency point of 5.42 GHz was chosen to develop
the validation model. The Chi-squared test was used to determine the Chi-
squared value and percentage of error.

» Additionally, the error % found was 0.034 per weight of cement. ANN model
summary results show that the MSE and R? of the 70% training were
2.22469x107 and 0.99984 per weight of cement, respectively. For training,
validation, testing, and the entire data set of the study, the coefficients of
determination are 0.99998, 0.99956, 0.9991, and 0.99992, which are all high
(per weight of cement). By using values for Normalised Absolute Error (NAE),
Root Mean Square Error (RMSE), and Value Correlation coefficients (R?). A
significant agreement was found between the measured and validated values for
the percent chloride per weight of cement at three different depths (0.000256,
0.000120 and 0.986709).

+«+ Electromagnetic waves enable the measurement of chloride levels at different depths at
a single frequency, and the findings achieved in this study were promising (5.42 GHz).
There is, therefore, a requirement to create a portable sensor with a set of horn antennas
as a transmitter and receiver that operates at a single frequency to employ this
technology as an NDT technique for the large majority of prospective civil engineering

users. A non-destructive method for determining chloride content in concrete structures
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was evaluated for the first time in this study using electromagnetic waves. When
compared to existing industry gold standards, this novel approach may change the early
detection of deterioration in steel-reinforced concrete structures. Because the
microwave sensor detects values below 0.4% as a trigger threshold, this technology
could be utilised to determine when concrete structures are at the critical point for
repair, based on the data collected in this project. In order to confirm the amount of
chloride ions in concrete samples, ANN was successfully utilised to analyse the
microwave data and validate the results obtained.

7.2 Recommendations for future work

In light of results reported in this study and based on the experience gained during the research,

several possible future studies are recommended as follows:

Further work can be conducted to further test a larger number of laboratory concrete
specimens to further validate the prediction model.

The system can be taken to the marine environment to verify the technique on various
structures with different chloride levels and depths of penetration.

Incorporating this technology could enable the assessment of repairs to marine
structures.

Using this technology to detect the carbonation of concrete and reduce Ph levels could
also be beneficial.

Based on the findings and possible application, it is suggested to design a portable
sensor device operating at 5.42GHz, including the VNA system for evaluation, all in
one hand-held unit.
The development of a mobile tool machine learning algorithm will provide further

support for service life prediction.
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Appendices

Appendix A: % MATLAB code was used to run the LM method for all ANN produced
models, including the optimal number of hidden layers and the data division process for
each sub-set.

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app

% Created 08-Jul-2019 18:53:15

%

% This script assumes these variables are defined:

%

% data - input data.

% data_1 - target data.

X = data’;
t=data_ 1"

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm’; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess
net.input.processkcns = (‘removeconstantrows','mapminmax’);
net.output.processFcns = (‘removeconstantrows’,'mapminmax’);

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivision
net.divideFcn = 'dividerand’; % Divide data randomly
net.divideMode = 'sample’; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse’; % Mean Squared Error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform’,'plottrainstate’, ploterrhist, ...
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‘plotregression’, 'plotfit'};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1},

valTargets =t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.
%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, ploterrhist(e)

%figure, plotregression(t,y)

%figure, plotfit(net,x,t)

% Deployment
% Change the (false) values to (true) to enable the following code blocks.
% See the help for each generation function for more information.
if (false)
% Generate MATLAB function for neural network for application
% deployment in MATLAB scripts or with MATLAB Compiler and Builder
% tools, or simply to examine the calculations your trained neural
% network performs.
genFunction(net,myNeuralNetworkFunction’);
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,’myNeuralNetworkFunction',' MatrixOnly','yes");
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net); end
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Appendix B: A MATLAB Neural Network Function, comprising optimum connection
weights and magnitude data values for five different salt water concentrations per
weight of cement model trained, validated, and tested and targeted to three different
depths.

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app

% Created 08-Jul-2019 22:52:49

%

% This script assumes these variables are defined:

%

% data - input data.

% data_2 - target data.

X = data’;
t = data 2"

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm’; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess
net.input.processkFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows',' mapminmax'};

% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivision
net.divideFcn = 'dividerand'’; % Divide data randomly
net.divideMode = 'sample’; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse’; % Mean Squared Error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {'plotperform’,'plottrainstate’,'ploterrhist’, ...
‘plotregression’, 'plotfit'};
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% Train the Network
[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1},

valTargets =t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.
%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, ploterrhist(e)

%figure, plotregression(t,y)

%figure, plotfit(net,x,t)

% Deployment
% Change the (false) values to (true) to enable the following code blocks.
% See the help for each generation function for more information.
if (false)
% Generate MATLAB function for neural network for application
% deployment in MATLAB scripts or with MATLAB Compiler and Builder
% tools, or simply to examine the calculations your trained neural
% network performs.
genFunction(net,myNeuralNetworkFunction’);
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,’myNeuralNetworkFunction',' MatrixOnly','yes");
y = myNeuralNetworkFunction(x);
end
if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net); end
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Appendix C: Determinate the value of mean square error statistic and Value of
Coefficient of Determination statistic between the actual values and the validated values
obtained from the ANN trained per weight of cement.

n=length(obs);

format long

B = (sum(pred - obs))/n;

NAE = (sum(abs(pred - obs)))/(sum(obs));
pbar = mean(pred)

obar = mean(obs)

stddevpbar = std(pred)

stddevobar = std(obs)

p2 = pred-pbar

obs2 = obs-obar

numPA = p2'*obs2

denoPA = (n-1)*stddevpbar*stddevobar’;
PA = numPA/denoPA

numer = (pred - pbar)*(obs - obar);
denor = stddevpbar*stddevobar";

RSQ = (numer/(n*denor))"2;

SSR = (pred - obar)*(pred - obar)

SSE = (obs - pred)*(obs - pred)

SST =SSR + SSE

RSQ1 = SSR/SST

RMSE1 = (pred - obs)*(pred - obs);
RMSE2 = sum(RMSEL);

RMSE3 = RMSE2/(n-1);

RMSE = sqrt(RMSE3);

numd = (pred-obs)™*(pred-obs);

denold = abs(pred-obar);

deno2d = abs(obs-obar);

sumdeno3d = denold + deno2d;
sgsumdeno4d = sumdeno3d*sumdeno3d;
IA = 1-(numd/sqsumdeno4d);

fprintf("VValue of Normalised Absolute Error statistic is %f \n',NAE)
fprintf("Value of Root Mean Square Error statistic is %f \n',RMSE)
fprintf('VValue of Index of Agreement statistic is %f\n',1A)
fprintf("VValue of Prediction Accuracy statistic is %f \n',PA)
fprintf('VValue of Coefficient of Determination statistic is %f \n',RSQ),
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Appendix D:
(a) The raw data from the concrete sample experiment with single rebar.
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Figure 7.2: Transmitted power Sz1 measurements using microwave sensor were taken everyone
minute in the frequency range (2-12 GHz), Saltwater
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Figure 7.1: Transmitted power S;» measurements response from the concrete using microwave sensor
were taken per minute for the full range of frequencies, (2-12 GHz), but for clarity data from every
hour interval and 3.45-3.55 GHz are presented (Saltwater)
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Figure 7.4: Transmitted power Sy measurements using microwave sensor were taken per minute for
the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals
and 4.2-4.6 GHz are presented (Saltwater)
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Figure 7.3: Microwave sensor measurements were taken every one minute In the tfrequency range (2-
12 GHz), Tap water
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Figure 7.5: Transmitted power Sy measurements were taken per minute for the full range of
frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 3.45-3.55

GHz are presented (Tap water)
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Figure 7.6: Transmitted power S;; measurements using microwave were taken per minute for the full
range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 4.2-4.6 GHz are

presented (Tap water)
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Figure 7.7: Polynomial correlation coefficient best fit between weight loss and S.: change at
3.482GHz, with R?=0.87, for saltwater sample and R?=0.94 for tap water sample
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Figure 7.9: Polynomial correlation coefficient best fit between weight loss and Sz change at

4.42GHz, with R?=0.93, for salt water sample and R?=0.86 for tap water sample
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(b) The raw data from the concrete sample experiment with crossing rebars.
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Figure 7.10: Transmitted power Sz; using microwave sensor measurements were taken every one
minute in the frequency range (2-12 GHz), Saltwater
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Figure 7.11: Transmitted power S;; measurements using microwave were taken per minute for the
full range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 3.45-3.55GHz
are presented (NaCl)
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Figure 7.12: Transmitted power Sz; measurements using microwave were taken per minute for the
full range of frequencies (2-12 GHz), but for clarity, data measurements from every hour intervals and

$,1 (dB)

4.2-4.6 GHz are presented (NaCl)
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Figure 7.13: The electromagnetic wave sensor: S;; Measurement were taken every one minute in the

frequency range (2-12 GHz), Tap water
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Figure 7.14: Transmitted power Sz; measurements using microwave were taken per minute for the
full range of frequencies, (2-12 GHz), but for clarity data measuments from every hour intervals and
3.45-3.55 GHz are presented (Tap water)
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Figure 7.15: Transmitted power Sz measurements using microwave were taken per minute for the
full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and
4.2-4.6 GHz are presented (Tap water)
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Figure 7.16: R? between both concrete sample weight loss and S change across the full frequency
spectrum
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Figure 7.17: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482
GHz, with R? =0.88, for salt water sample and R?=0.87 for tap water sample
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Figure 7.18: Polynomial correlation coefficient best fit between weight loss and Sz; change at 4.428
GHz, with R?=0.90, for salt water sample and R?=0.93 for tap water sample
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(c) The raw data from the concrete sample experiment with mesh rebars.
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Figure 7.19: The electromagnetic wave sensor: S;; measurements were taken every one minute in the
frequency range (2-12 GHz), NaCl.
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Figure 7.20: Tranmitted power Sz measurements using microwave sensor were taken per minute for
the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals
and 3.45-3.55 GHz are presented (NaCl)
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Figure 7.21: Microwave measurements of transmitted power S,; were taken every minute for the
complete range of frequencies (2-12 GHz), although data from every hour intervals and 4.42-4.6 GHz
are presented for clarity, (NaCl)
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Figure 7.22: S;1 measurement was taken every minute in the frequency range (2-12 GHz) using the
electromagnetic wave sensor, Tapwater
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Figure 7.23: Transmitted power S; measurements using microwave were taken per minute for the
full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and
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3.45-3.55 GHz are presented (Tap water)
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Figure 7.24: Microwave measurements of transmitted power S21 were taken every minute over the
whole frequency range (2-12 GHz), but for clarity data measurements from every hour intervals and

4.2-4.6 GHz are presented (Tap water)
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Figure 7.25: RZbetween both concrete sample weight loss and Sz: change across the full frequency
spectrum
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Figure 7.26: Polynomial correlation coefficient best fit between weight loss and Sz: change at 3.482
GHz, with R?=0.93, for salt water sample and R?=0.98 for tap water sample
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Figure 7.27: Polynomial correlation coefficient best fit between weight loss and S,; change at 4.428

GHz, with R? =0.96, for salt water sample and R?=0.97 for tap water sample
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Appendix E: Select the other frequency point based on data analysis of five concrete

samples with five different saltwater concentrations.

The complete technique of this section was covered in detail in Chapter 6, Section 6.6.

Furthermore, using the same classification and analysis data, the same technology was used to

detect chloride ions in five different saltwater concentrations at three different depths. Fig. 7.28

illustrates the area of interest to zoom in over the range of frequency spectrums. Additionally,

the complete spectrum was divided into three parts from 2.5-3 GHz, 4-4.5 GHz, and 5.4-5.6

GHz, as shown in Figure 7.29 (a and b). Other significant frequency spots were selected using

the WEKA workbench classification. Chapter 6, section 6.6 shows the real outcome results for

the frequency range of 5.4-5.6 and a single frequency 5.42 GHz.
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Figure 7.28: The microwave horn antenna; Sy measurements were taken for the frequency range 2-

12 GHz.
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Figure 7.29: Using microwave horn antenna, S;1 measurements were taken for the frequency range 2-
12 GHz, but for clarity data (a) from the 2.5-3 GHz (b) from the 4-4.5 GHz are presented

It was found that the J48 algorithm had the best accuracy of 90 percent and 92 percent for least
means absolute error and root mean square error. J48 algorithm decision tree is shown in Figure
7.30 (a and b), which illustrates the other possible significant frequency point for the different

saltwater concentration levels.
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Figure 7.30: Indicates the classification of algorithm J48 decision tree graphic; selected
frequency point (a) 2.5-3 GHz (b) 4-4.5GHz.

Tables 7.1 and 7.2 show the set of techniques previously described in Chapter 3 inside various

classifiers with a lower mean square error and a more significant percentage of accuracy to

determine the most critical possible frequency across five different saltwater concentration

classes. The focus of this study was on the most popular decision tree classifier, the algorithm

J48.
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Table 7.1: Results obtained for different classifiers from the Weka workbench at (2.5-3 GHz)

The different classifier Accuracy Means Root means
has been used for these (%0), Absolute error | square error
algorithms (%) (%)
MultiScheme 20 0.32 0.4
Bagging 20 0.33 0.4005
CVParameterSelection 20 0.32 0.4
InputMappedClassifier 20 0.32 0.4
OneR 41 0.23 0.4632
ZeroR 20 0.33 0.4
REPTree 20 0.32 0.4
RandomTree 78 0.125 0.2266
DecisionStump 56 0.154 0.2664
J48 92 0.032 0.1789

Table 7.2: Results obtained for different classifiers from the Weka workbench at (4-4.5 GHz)

The different classifier Accuracy Means Root means
has been used for these (%), Absolute error | square error
algorithms (%) (%)
MultiScheme 20 0.32 0.4
Bagging 20 0.32 0.4005
CVParameterSelection 20 0.32 0.4
InputMappedClassifier 20 0.32 0.4
OneR 20 0.32 0.5658
ZeroR 20 0.33 0.4
REPTree 20 0.32 0.4
RandomTree 78 0.125 0.2266
DecisionStump 40 0.24 0.3464
J48 90 0.04 0.2

The generated decision rules determine that other frequency points, such as 2.57 GHz and 4.25
GHz, can be used to detect chloride ions in concrete structures for the sensor used in this
project. The total number of test cases is 50 (n = 50). The classification accuracy was 92% and
90%, respectively. A two-dimensional matrix containing a column and row for each class is
frequently used to display the results of a test set. The number of test samples for which the
actual class is the row, and the predicted class is the column is shown in each matrix element.
Each row and column in the matrix represent the number of test samples for which the actual
class is the row, and the projected class in the column, respectively. In addition, the

classification accuracy is determined by dividing the total number of test examples by the sum
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of the numbers from the major diagonal of the confusion matrix with a red arrow. The

confusion matrix for the solved problem is shown in Tables 7.3 and 7.4..

Table 7.3: The confusion matrix for the leave-one-out validation of classification for frequency rang

(2.5-3GHz)

Classified as | 0.0% NaCl 0.5% NaCl 1.5% NaCl 2.5% NaCl 3.5% NaCl

added added added added added
0.0% NaCl (10— 0 0 1 0
0.5% NaCl 0 9 0 0 2
1.5% NaCl 2 0 | 0 0
2.5% NaCl 0 2 0 o 0
3.5% NaCl 0 0 0 0 \@

Table 7.4: The confusion matrix for the leave-one -out validation of classification for frequency rang

(4-4.5GHz)
Classified as 0.0% NacCl 0.5% NaCl 1.5% NaCl 2.5% NacCl 3.5% NacCl
added added added added added
0.0% NaCl [9— 0 0 1 0
0.5% NaCl 0 9 0 0 2
1.5% NacCl 2 0 T 0 0
2.5% NaCl 0 2 0 | 0
3.5% NaCl 0 0 0 0 \@

>

A Selection of Variables for the Neural Network.

To detect chloride ions in specimens, supervised applied machine learning classification
methods after determining the most critical frequency using the WEKA workbench algorithm
J48. In addition, the chloride ion content in concrete samples was also determined using these
other frequency points from the WEKA classification. Fed the single frequency data sets into
the ANN algorithm to evaluate the sensors against the gold standard approach typically used
in industry. The ANN technique was constructed and tested using MATLAB programming in
this research. Additional, input parameters depended on the raw data of electromagnetic waves
for concrete samples in five different saltwater concentrations. An ANN model fitted using a
5x3 matrix of data that had been prepared to fit the data. The ANN inputs and outputs are listed
in Table 7.5
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Table 7.5: The Input and output parameters of the ANN at one single frequency (GHz)

Input Variable Target (output)
5 different Averaged (10) Averaged (10) % of Chloride ion per weight of
percentages of salt Number of Szzat | Number of Sz at cement
water concentration | (2.572 GHz), (dB) (4.258 GHz),

(dB) 18mm 40mm 70mm

depth depth depth

0.0% NaCl added -15.51739 (Stdev) | -27.09047 (Stdev) 0.0059 0.0047 0.0039

0.5% NaCl added -16.52751 (Stdev) | -28.36107 (Stdev) 0.1667 0.1291 0.1222

1.5% NaCl added -16.19105 (Stdev) | -29.31408 (Stdev) 0.1855 0.1589 0.1421

2.5% NaCl added -16.00162 (Stdev) | -26.60306 (Stdev) 0.2316 0.1821 0.1506

3.5% NaCl added -15.69473 (Stdev) | -26.27971 (Stdev) 0.3256 0.0952 0.0786

The ANN model was built using data from electromagnetic wave sensors

It's been shown in Table 7.6 and Table 7.7 how to optimise one single frequency for chloride

prediction based on model output. A total of 50 data samples were used for ANN model training

(70%), validation (15%) and testing (15%), respectively. There was a very strong correlation

between the predicted and measured values when comparing the model results with those

obtained using the destructive approach (chlorimeter tool).

Table 7.6: The ANN model's summary findings at one single frequency (2.57 GHz)

Per weight of cement

Parameter Samples MSE R?
Training (70%) 34 4.37485x101° 0.99994
Validation (15%) 8 1.68219x10° 0.99757
Testing (15%) 8 1.51784x10 0.999814
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Table 7.7: The ANN model's summary findings at one single frequency (4.25 GHz)

Per weight of cement

Parameter Samples MSE R?
Training (70%) 34 8.73909x107 0.99994
Validation (15%) 8 2.66048x10°® 0.99677
Testing (15%0) 8 1.59637x10° 0.99916

0.35

0.30

0.25

0.20

0.15

0.10

0.05

%chloride content per weight of cement

0.00

- 0.185
0.167

18

0.326

40

m 0.0% NaCl

0.5% NacCl

@ 1.5% NaCl

W 2.5% NacCl

m3.5% NacCl

0.151

0.142
0.122

70

varying depths of cover on each sample (mm)

Figure 7.31: The actual of % chloride per weight of cement
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Figure 7.32: Validated percent chloride per weight of cement obtained from the ANN model for five
different saltwater concentrations and three different depths using a single frequency (2.57 GHz)
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Figure 7.33: Validated percent chloride per weight of cement obtained from the ANN model for five
different saltwater concentrations and three different depths using a single frequency (4.25 GHz)
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Error Calculations Using the Chi-Squared Method.

Table 7.8 and Table 7.9 shows the total Chi-Squared calculation values for 5 different saltwater
concentrations at three different depths for the single frequency (2.57 GHz and 4.25 GHz). The
Chi-squared calculation procedure is discussed in Chapter 6.

Table 7.8: The total Chi-Squared calculation values at (2.57 GHz)

Chi-Squared
Different depth (mm) | 0.0% added NaCl | 0.5%NaCl | 1.5%NaCl 2.5%NaCl 3.5%NacCl
18 0.0003 0.0034 0.0069 0.0031 0.0385
40 0.0001 0.0006 0.0026 0.0024 0.0158
70 0.0002 0.0028 0.0032 0.0005 0.0170
Total 0.097
P_Value 0.99999
Table 7.9: The total Chi-Squared calculation values at (4.25 GHz)
Chi-Squared
Different depth (mm) | 0.0% added NaCl | 0.5%NaCl | 1.5%NaCl 2.5%NaCl 3.5%NacCl
18 0.00011 0.00364 0.00634 0.00337 0.03895
40 0.00008 0.00075 0.00205 0.00271 0.01606
70 0.00002 0.00277 0.00356 0.00054 0.01757
Total 0.099
P_Value 0.99999

The resulting chi-squared values and percentages of error for the validated percentage of

chloride ions in five different saltwater concentrations specimens at three different depths on

both single frequency points are shown in Table 7.10.

Table 7.10: The total Chi-Squared values and %of error

Parameter % of Chloride Chi-Squared % Error
Chlorimeter Tool per weight of cement 0.099000000
per weight of cement @ 2.57 GHz | 0.099136649 0.138
Microwave
spectroscopy_
per weight of cement @ 4.25 GHz | 0.098917182 0.083
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ANN was used to analyse and validate five different saltwater concentrations.

The performance of the trained LM algorithm is discussed and presented in this section of the
project using standard performance indicators such as mean square error (MSE) and correlation
coefficients (R?). Figure 7.34 (a and b) shows the network's validation performance and mean

square error from a high value to a low value.
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Figure 7.34: Best validation performance in Artificial Neural Network Model at one single frequency
point; Per weight of cement of (a) 2.57 GHz and (b) 4.25 GHz
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Figure 7.35: The gradient and maximum validation checks for the LM trained network for one single

frequency; per weight of cement. (a0 2.57 GHz and (b) 4.25 GHz
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Figure 7.36: The plot of error histogram (EH) for the LM algorithm; per weight of
cement. (a) 2.57 GHz and (b) 4.25 GHz
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Figure 7.37: The regression graphs of the experimental results against the validated
%Chloride ions per weight of cement, (a) 2.57 GHz and (b) 4.25 GHz

233 |Page



Table 7. 11: The results for the observed data target and output values at 2.57 GHz

%Chloride per weight of cement
Depth (mm) NAEs RMSE R?
18 0.000321 0.000126 0.951387
40 0.000342 0.000156 0.960058
70 0.000274 0.000114 0.951586
Total of three depth 0.000312 0.000132 0.954343

Table 7.12: The results for the observed data target and output values at 4.25 GHz

%Chloride per weight of cement
Depth (mm) NAEs RMSE R?
18 0.000245 0.000156 0.970456
40 0.000326 0.000112 0.982097
70 0.000269 0.000101 0.960298
Total of three depth 0.000266 0.000123 0.970950

There's also an additional comparison between target and validated values, as illustrated in
Table 7.11 and Table 7.12. There was a significant agreement between the measured and
predicted values with a Value of Normalised Absolute Error statistic (NAE), Value of Root
Mean Square Error statistic (RMSE), and Value correlation coefficients (R?), with the amount
of percent chloride per weight cement at three different depths from 2.57 GHz (0.000312,
0.000132 and 0.954343) and 4.25 GHz (0.000266, 0.000123 and 0.970950). The findings show
that microwave spectroscopy can be utilised to assess variable NaCl contents in concrete
specimens at various depths. The other possible single frequency was discovered using
classification feature selection, and it showed a frequency of 2.57 GHz and 4.25 GHz as a
significant predictor of level chloride ions.
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