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Abstract 
 

Corrosion of the reinforcing steel arising from contamination by chloride ions from de-icing 

salt is the primary cause of deterioration of concrete bridges in the UK and many parts of the 

world. Those elements of structures exposed to cyclic wetting and drying have already proven 

the most vulnerable to corrosion damage. Chloride ions penetrate the concrete, resulting in 

deterioration (cracking, spalling due to reinforcement corrosion).  

Currently, the existing methods such as Ion-Selective Electrode (ISE), Electrical Resistivity, 

and Optical Fibre Sensor to detect the chloride level in marine concrete structures are 

destructive, time-consuming, and unable to analyse large structures. This investigation aims to 

use a non-destructive electromagnetic (EM) wave technique to determine the chloride level in 

maritime concrete structures early to prevent the corrosion of the reinforcement developing.  

An experimental programme was conducted to understand better the effect of different 

saltwater concentrations in concrete samples. The described Electromagnetic (EM) wave 

sensor operates at the frequency range between 2-13 GHz and a power of 0dBm using a Rohde 

Schwarz ZVL13 Vector Network Analyser (VNA). The sensor was positioned in front of the 

concrete specimens to determine chloride ions in the substantial sample. Finally, the graphical 

interface package LabVIEW was used to control the sensor's frequency sweep and capture the 

data from the sensor. 

The experimental data obtained was analysed by the WEKA workbench tool to classify the 

most critical frequency point to detect the level of chloride ions in concrete. The input 

parameter was S21 measurements of one single frequency that has been selected by the 

classification algorithm decision tree (J48).  After selecting the most critical frequency point, 

the Artificial Neural Network (ANN) models were trained by electromagnetic (EM) waves and 

chloride profile experiments. The outcome results demonstrated that electromagnetic waves 

have a response to saltwater concentrations. Therefore, the validation model was developed 

using the ANN method, which exhibited an excellent capability of the microwave sensors to 

validate the percentage of chloride ions per weight of cement with R2v (Validation) =0.986709 

and root mean square error of validation (RMSEV)=0.000120. 



 

iv | P a g e  
 

Acknowledgements 

I would like to express my true gratitude and appreciation to my supervisory team that includes 

the Director of studies (DoS)- Prof.Michael Riley, Dr. Patryk Kot, Dr. Bill Atherton and Prof. 

Andy Shaw, for their support and help in the overall enhancement of this project by their review 

process and constant guidance and encouragement throughout the completion of my Ph.D.  

Also, I would like to thank the entire RF and Microwave research group and members of the 

Built Environment and Sustainable Technologies (BEST) Research Institute, Especially Dr. 

Steve Wylie, Dr. Magomed Muradov, Dr. Jeff Cullen and Dr. Alex Teng for providing me with 

technical assistance to help with the project within the laboratory as required. 

I would like to extend thanks to the technical staff of the Civil Engineering Department 

especially Malcolm Feegan, who provided great assistance and expertise for the experimental 

program of work. I would like to thank Dr. Mawada Abdellatif and Dr. Ahmed Zia Japeri for 

sharing their knowledge and experience with me during my data analysis. 

I wish to express my extreme love and appreciation to my beloved family, particularly my 

brother Gaffor Omer, for his continuous encouragement and motivation during my study. Last 

but not least, I would like to express my thanks to my lovely wife Mrs. Hazha Bushir 

Mohammed and my lovely daughter Hava, as without their understanding, patience and 

continued encouragement it would have been very hard for me to successfully finish my Ph.D 

thesis. 

 

 

 

 

 

 

 

 



 

v | P a g e  
 

Table of Contents 
Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... iv 

List of Figures ......................................................................................................................................... ix 

List of Tables ......................................................................................................................................... xv 

List of Abbreviations ........................................................................................................................... xvii 

List of Symbols ...................................................................................................................................... xix 

Chapter One:  Introduction ................................................................................................................. 1 

1.1 Research background ................................................................................................................. 1 

1.1.1 Problems and processes in chloride-induced corrosion .................................................... 1 

1.1.2 Different exposure conditions for maritime-related concrete structures ........................ 3 

1.1.3 Electromagnetic (EM) waves compared with different methods to determine the 

chloride level in concrete structures. ........................................................................................... 5 

1.2 Aim ............................................................................................................................................... 7 

1.3 Objectives..................................................................................................................................... 7 

1.4 Novelty ......................................................................................................................................... 7 

1.5 Overview of the Thesis ................................................................................................................ 7 

Chapter Two: Literature Review ........................................................................................................ 9 

2.1 Factors affecting reinforced concrete durability ...................................................................... 9 

2.1.1 Design and construction practices ...................................................................................... 9 

2.1.2 Environmental factors ....................................................................................................... 12 

2.2 Infrastructure in aggressive environments ............................................................................. 12 

2.3 Chloride attack .......................................................................................................................... 15 

2.4 Chloride ingress within concrete ............................................................................................. 16 

2.5 Steel corrosion within concrete ................................................................................................ 17 

 .......................................................................................................................................................... 19 

2.6 Localised corrosion ................................................................................................................... 19 

2.7 Concentrations of chloride ....................................................................................................... 20 

2.7.1 The potentiometric sensor or ion-selective electrode ...................................................... 21 

2.7.2 Electrical resistivity............................................................................................................ 22 

2.7.3 Optical fibre sensors .......................................................................................................... 24 

2.7.4 Ground-penetrating radar ................................................................................................ 25 

2.7.5 Chlorimeter tool ................................................................................................................. 27 

2.8 Corrosion potential ................................................................................................................... 27 

2.8.2 Ultrasonic Pulse Velocity ................................................................................................... 28 

2.9 Summary .................................................................................................................................... 31 



 

vi | P a g e  
 

Chapter Three:  Use of Artificial Neural Networks ......................................................................... 32 

3.1 Introduction ............................................................................................................................... 32 

3.2 ANN model design ..................................................................................................................... 33 

3.2.1 Activation or transfer functions ........................................................................................ 35 

3.3. Neurons ................................................................................................................................. 37 

3.3.1 The Single-layer feed-forward network. .......................................................................... 37 

3.3.2 The multilayer feed-forward networks ............................................................................ 38 

3.3.3 Recurrent network ............................................................................................................. 40 

3.4 The error back-propagation algorithm ................................................................................... 40 

3.4.1 The algorithm for back-propagation ................................................................................ 42 

3.5 The training algorithm of Levenberg-Marquardt ................................................................. 43 

3.5.1 Determination of the Levenbverg- Marquardt ............................................................... 47 

3.6 The training process ................................................................................................................. 47 

3.6.1 The selection of model and estimation of performance .................................................. 47 

3.6.2 Testing process ................................................................................................................... 49 

3.7. Classification ............................................................................................................................ 51 

3.7.1 Classification techniques ................................................................................................... 52 

3.7.2 Methods ............................................................................................................................... 53 

3.7.3 Statistical chi-squared method .......................................................................................... 57 

3.8 Related studies ........................................................................................................................... 58 

3.9 Summary .................................................................................................................................... 60 

Chapter Four: Electromagnetic Waves and Microwave Sensor .................................................... 61 

4.1 Background ............................................................................................................................... 61 

4.2. Dielectric properties of concrete at microwave frequency ................................................... 63 

4.2.1 The working principle of microwave sensors technology ............................................... 64 

4.3 Maxwell equation relation with electromagnetic waves ........................................................ 67 

4.4 Frequency and electromagnetic wave ..................................................................................... 68 

4.5 Frequency, wave velocity, and speed ....................................................................................... 69 

4.6 Scattering parameters .............................................................................................................. 70 

4.7 RF or microwaves and the concrete sample ........................................................................... 71 

4.8 Antenna ...................................................................................................................................... 73 

4.8.1 Aperture antennas.............................................................................................................. 73 

4.9 Design consideration for horn antenna ................................................................................... 75 

4.10 Skin depth of concrete ............................................................................................................ 76 

4.10.1 Rectangular waveguide used with different bands ....................................................... 77 

4.10.2 Used electromagnetic sensor working principle. ........................................................... 78 



 

vii | P a g e  
 

 .......................................................................................................................................................... 79 

4.11 Summary .................................................................................................................................. 79 

Chapter Five: Experimental Work ................................................................................................... 81 

5.1 Introduction ............................................................................................................................... 81 

5.2 Research methodology .............................................................................................................. 81 

5.3 Overall experimental regime (preliminary and primary tests) ............................................ 85 

5.3.1 Initial surface absorption test (permeability test) ............................................................... 87 

5.3.2 Proof of concept experiment ............................................................................................. 88 

5.3.3 Preliminary experimentation with the horn antenna ..................................................... 95 

5.4 Electromagnetic wave sensor test procedure .......................................................................... 97 

5.4.1 Initial experiment ............................................................................................................... 97 

5.4.2 Preparing the concrete mix design ................................................................................... 99 

5.4.3 Curing process experimental measurement .................................................................. 103 

5.4.4 Measurements of the drying-off process in the laboratory .......................................... 103 

5.4.5 Drying measurements of samples with two rebars ....................................................... 104 

5.5 Experiments under various salt-water concentrations ........................................................ 106 

5.5.1 Concrete Sample .............................................................................................................. 106 

5.5.2 Chloride Content .............................................................................................................. 107 

5.5.3  Five concrete samples were tested with varying saltwater concentrations ................ 108 

5.5.4 Chlorimeter tool ............................................................................................................... 110 

5.6 Data processing and validation models ................................................................................. 112 

5. 6.1 Validation techniques include machine learning and artificial neural networks (ANN)

 .................................................................................................................................................... 113 

5.6.2 ANN Training ................................................................................................................... 114 

5.7 Summary .................................................................................................................................. 114 

Chapter Six: Results and Discussion ............................................................................................... 116 

6.1 Results of the initial surface absorption test (permeability test) ........................................ 116 

6.2 Initial measurement results .................................................................................................... 117 

6.3 Curing process experimental measurement ......................................................................... 122 

6.4 Data analysis of drying process.............................................................................................. 128 

6.5 Data analysis of drying process (two rebars) ........................................................................ 137 

6.6 Data analysis of 5 concrete samples with 5 different saltwater concentrations................. 145 

6.6.1 Variables selected for neural networks .......................................................................... 151 

6.6.2 The developed ANN model made use of electromagnetic wave sensor data ............... 156 

6.6.3 Error calculations using the chi-squared method ......................................................... 157 



 

viii | P a g e  
 

6.6.4 Comparison of actual value and confirmed chloride ion percentages at 5.42 GHz 

frequency ................................................................................................................................... 161 

6.6.5 ANN was used to analyse and validate five different saltwater concentrations ......... 163 

6.7 ANN was used to repeat the analysis of two different saltwater concentrations ............... 168 

6.7.1 Comparison of % chloride ion between actual values and validated values .............. 176 

6.7.2 ANN was used to analyse and validate two different saltwater concentrations ......... 178 

6.8 Summary .................................................................................................................................. 182 

Chapter Seven: Conclusions and Recommendations..................................................................... 184 

7.1 Conclusions .............................................................................................................................. 184 

7.2 Recommendations for future work ....................................................................................... 187 

References:......................................................................................................................................... 188 

Appendices ......................................................................................................................................... 201 

Appendix A: % MATLAB code was used to run the LM method for all ANN produced models, 

including the optimal number of hidden layers and the data division process for each sub-set. .... 201 

Appendix B: A MATLAB Neural Network Function, comprising optimum connection weights and 

magnitude data values for five different salt water concentrations per weight of cement model 

trained, validated, and tested and targeted to three different depths. .............................................. 203 

Appendix C: Determinate the value of mean square error statistic and Value of Coefficient of 

Determination statistic between the actual values and the validated values obtained from the ANN 

trained per weight of cement. .......................................................................................................... 205 

Appendix D: ................................................................................................................................... 206 

(a) The raw data from the concrete sample experiment with single rebar. ......................... 206 

(b) The raw data from the concrete sample experiment with crossing rebars. ................... 211 

(c)  The raw data from the concrete sample experiment with mesh rebars ........................ 216 

Appendix E: Select the other frequency point based on data analysis of five concrete samples with 

five different saltwater concentrations. ........................................................................................... 221 

Publications: ...................................................................................................................................... 235 

 

 

 

 

 

 

 

 



 

ix | P a g e  
 

List of Figures 
Figure 1.1: Process of penetration of chloride and carbonation within concrete [18] ........................... 3 

Figure 1.2: Corrosion zones in steel Piles [28] ...................................................................................... 5 

 
Figure 2.1: Factors influencing chloride ingress and the process of corrosion in reinforced concrete 

structures ............................................................................................................................................... 11 

Figure 2.2: (a) The splash zone of the concrete bridge pillar [69][61]; (b) Concrete bridge cover 

deterioration [70], permission to reproduce this figure has been granted by John Broomfield; (c) 

Pitting corrosion to the reinforcing bar (16 mm), permission to reproduce this figure has been granted 

by Dieter Friede; (d) Salt for de-icing is dispensed along the road [71]. .............................................. 16 

Figure 2.3: Chloride ion concentration compared to the depth of cover for different exposure times 

[70] ........................................................................................................................................................ 17 

Figure 2.4: Schematic diagram showing corrosion that has been induced by carbonation and chloride 

[74] ........................................................................................................................................................ 19 

Figure 2.5: Propagation stage of the pitting of steel embedded within concrete [77].......................... 20 

Figure 2.6: Block diagram based upon the ISE method [87] ............................................................... 22 

Figure 2.7: Techniques based on ER method (a) Wenner array, (b) Multi-electrode resistivity probes 

[91] ........................................................................................................................................................ 24 

Figure 2.8:  Optical fibre sensor diagram [100]. .................................................................................. 24 

Figure 2.9: GPR scanning on a concrete bridge deck and a possible path of EM waves penetrating the 

concrete cover [105]. ............................................................................................................................ 26 

Figure 2.10: Chlorimeter tool for the chloride field test system [106] ................................................ 27 

Figure 2.11: A potential technique for half-cell measurement [112] ................................................... 28 

Figure 3.1: Schematic structure of ANN model inputs and output variables ...................................... 34 

Figure 3.2: Procedures of the commonly used ANN transfer functions .............................................. 36 

Figure 3.3: Schematic diagram of a perceptron neuron ....................................................................... 37 

Figure 3.4: Single-layer feed-forward network design ........................................................................ 38 

Figure 3.5: Multi-layer feed-forward network structure ...................................................................... 39 

Figure 3.6: The Back-propagation algorithm error steps ..................................................................... 43 

Figure 3.7: Flow chart of the ANN algorithm ..................................................................................... 50 

Figure 3.8: Schematic for machine learning techniques. ..................................................................... 51 

Figure 4.1: Electromagnetic waves with their full frequencies and wavelengths [160] ...................... 61 

Figure 4.2: Microwave resonance curves, resonance curves in the air (solid line), resonance curve in 

wet material (dash line) [220]. .............................................................................................................. 66 

Figure 4.3: Microwave sensor technique. ............................................................................................ 66 

Figure 4.4: Electromagnetic waves components [222] ........................................................................ 67 

Figure 4.5:  Microwave penetration and reflection are demonstrated using a schematic design ......... 72 

Figure 4.6: Pyramidal horn antenna [LJMU Lab sensor] .................................................................... 74 

Figure 4.7: The shape of rectangular waveguide ................................................................................. 78 

Figure 4.8: The experimental set-up for microwave sensing ............................................................... 79 

Figure 4.9: (a) Sensor Schematic, (b) Sensor Prototype ...................................................................... 79 

Figure 4.1: Electromagnetic waves with their full frequencies and wavelengths [160] ...................... 61 

Figure 4.2: Microwave resonance curves, resonance curves in the air (solid line), resonance curve in 

wet material (dash line) [220]. .............................................................................................................. 66 

Figure 4.3: Microwave sensor technique. ............................................................................................ 66 

Figure 4.4: Electromagnetic waves components [222] ........................................................................ 67 

Figure 4.5:  Microwave penetration and reflection are demonstrated using a schematic design ......... 72 

Figure 4.6: Pyramidal horn antenna [LJMU Lab sensor] .................................................................... 74 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350139
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350140
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350141
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350141
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350143
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350143
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350144
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350144
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350145
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350146
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350147
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350147
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350150
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350174
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350175
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350176
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350177
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350178
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350179
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350181
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350190
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350192
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350194
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350195
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350196
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350197
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350198
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350199
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350201
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350203
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350204


 

x | P a g e  
 

Figure 4.7: The shape of rectangular waveguide ................................................................................. 78 

Figure 4.8: The experimental set-up for microwave sensing ............................................................... 79 

Figure 4.9: (a) Sensor Schematic, (b) Sensor Prototype ...................................................................... 79 

 
Figure 5.1: Overview of research methodology .................................................................................. 84 

Figure 5.2: The experiment set-up of the permeability test ................................................................. 88 

Figure 5.3: Experimental set-up with RC Waveguide ......................................................................... 90 

Figure 5.4: A dielectric permittivity of concrete samples dry, wet with tap water and 3.5% NaCl  

inserted into three different bands respectively with a temperature of  ± 21 C .................................... 91 

Figure 5.5: Lost tangent concrete samples dry, wet with tap water and 3.5% NaCl inserted into three 

different bands respectively with a temperature of ± 21 C ................................................................... 92 

Figure 5.6: (a) Presented the skin depth and (b) attenuation constant of dry, and wet with tap water 

and salt water, concrete data measurements from three different bands. .............................................. 93 

Figure 5.7: Experimental set-up for both single horn antenna & two horn antennas to measure S-

parameter............................................................................................................................................... 95 

Figure 5.8: (a) S21 measurement, (b) S11 measurement. ....................................................................... 96 

Figure 5.9: The experimental setup is illustrated schematically .......................................................... 97 

Figure 5.10: (a) Dry concrete paving sample being weighed. (b) The sample was submerged in tap 

water for 24 hours. (c) Using a scale to weigh the wet sample after submerged in tap water .............. 98 

Figure 5.11: An experimental set-up ................................................................................................... 98 

Figure 5.12: (a) Mould with rebars, (b) Mixed concrete ratio (1:1.82:3.69:0.4) ............................... 100 

Figure 5.13: The concrete samples immersed in tap water and salt water for 28 days ...................... 101 

Figure 5.14: An experimental set-up for curing process over 28 days .............................................. 102 

Figure 5.15: The drying off  a measurement is carried out on both samples for 72 hours after the 

curing procedure is completed. ........................................................................................................... 104 

Figure 5.16: An illustration of the experimental setup ...................................................................... 105 

Figure 5.17: An experimental set-up for both samples' drying processes with reinforcement .......... 106 

Figure 5.18: Concrete samples submerged into different saltwater concentrations for up to 5 days . 108 

Figure 5.19: Presents the experimental set-up and LabVIEW interface for data acquisition ............ 110 

Figure 5.20: Drilling the sample to collect 3 grams of dust at 3 different depths .............................. 111 

Figure 5.21: Presents (A) calibration device and (B) Chloride measurement taken .......................... 112 

Figure 5.22: The Neural Net fitting was selected from MATLAB (LJMU Library) ......................... 113 

Figure 5.23: The Flow diagram of the training process of an ANN .................................................. 114 

Figure 6.1: The nomogram for the concrete quality class .................................................................. 117 

Figure 6.2: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), Tap water ............................................................................................... 119 

Figure 6.3: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15 

GHz are presented (Tap water) ........................................................................................................... 119 

Figure 6.4: The electromagnetic wave sensor: measurements are taken in the frequency range (2-12 

GHz) .................................................................................................................................................... 120 

Figure 6.5: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), (Salt water) ............................................................................................ 120 

Figure 6.6: Microwave sensor measurements were taken every one hour in the frequency range (2-6 

GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15 GHz are presented 

(Salt water). ......................................................................................................................................... 121 

Figure 6.7: S21 measurement comparison between two plain concrete samples ................................ 121 

Figure 6.8: The electromagnetic measurements were taken every 15 minutes in the frequency range 

(2-12 GHz), (Salt water) ..................................................................................................................... 124 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350205
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350206
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88350207
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424940
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424941
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424945
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424945
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424946
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424946
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424947
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424948
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424949
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424949
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424950
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424951
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424952
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424953
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424954
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424954
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424956
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424957
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424958
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424959
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424960
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424962
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424963
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424965
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424965
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424965
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424966
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424966
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424967
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424967
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424968
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424968
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424968
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424969
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424970
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424970


 

xi | P a g e  
 

Figure 6.9: S21 measuments from the electromagnetic wave sensor were taken every 15 minutes in the 

frequency range (2-12 GHz), but for clarity data from 2.5-3 GHZ is presented with measurements 

from 24 hour intervals (Salt water) ..................................................................................................... 124 

Figure 6.10: Readings from the electromagnetic wave sensor; measurements were taken every15 

minute for 28 days in the frequency range (2-12 GHz) (Tapwater).................................................... 125 

Figure 6.11: S21 measurements were made every 15 minutes for 28 days in the frequency range (2-12 

GHz), although data measurements at 24 hour intervals and from 2.5-3.0 GHz are shown for clarity 

(Tapwater) ........................................................................................................................................... 125 

Figure 6.12: Transmitted power S21measurements using microwave sensor for the full range of 

frequencies (2-12 GHz) were taken every15 minute for 28 days (Tapwater) ..................................... 126 

Figure 6.13: The microwave sensor measurements were taken every15 minute for 28 days in the 

frequency range (2-12 GHz), but for clarity, data measurements from 24-hour intervals and 2.5-3.0 

GHz are presented (Tapwater) ............................................................................................................ 126 

Figure 6.14: At 2.709 GHz, the microwave signal begins to alter at an early age ............................. 127 

Figure 6. 15: At 2.709 GHz, the microwave signal begins to alter at an early age ............................ 127 

Figure 6.16: Transmitted power S21 measurements electromagnetic wave sensor were taken every 

hour in the frequency range (2-13 GHz), salt water............................................................................ 129 

Figure 6.17: Readings from the electromagnetic wave sensor: measurements were taken every hour 

in the frequency range (2-13 GHz), but for clarity, data from 2.5-3 GHz are presented (Salt water). 129 

Figure 6.18: Readings of reflected power S11 measurements using microwaves were taken per hour 

for the full range of frequencies, 2-12 GHz (Salt water) .................................................................... 130 

Figure 6.19: Reflected power S11 measurements of the material response to the microwaves were at 

the frequency 2.5-3 GHz are presented (Salt water) ........................................................................... 130 

Figure 6.20: Transmitted power readings S21 measurements using the electromagnetic wave sensor; 

were taken every hour in the frequency range (2-12 GHz) (Tap water) ............................................. 131 

Figure 6.21: Transmitted power S21 measurments were taken every hour using electromagnetic wave 

sensor for the entire frequency range (2-12 GHz), but for clarity data from 2.5-3 GHz are presented 

(Tap water) .......................................................................................................................................... 131 

Figure 6.22: Readings of reflected power S11 measurements using microwaves were taken per hour 

for the full range of frequencies, 2-12 GHz (Tap water) .................................................................... 132 

Figure 6.23: Reflected power S11 measurements using microwaves were taken per hour for the entire 

of frequencies, 2-12 GHz, but for clarity data from 2.5-3 GHz are presented (Tap water) ................ 132 

Figure 6.24: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum .............................................................................................................................................. 135 

Figure 6.25: Polynomial correlation coefficient best fit between weight loss and S21 change at 

2.709GHz, with R2 =0.91, for salt water sample and R2=0.97 for tap water sample .......................... 135 

Figure 6.26: R2 between both concrete sample weight loss and S11 change across the full frequency 

spectrum .............................................................................................................................................. 136 

Figure 6.27: Polynomial correlation coefficient best-fit weight loss and S11 change at 2.709 GHz, 

with R2=0.96, for saltwater sample and R2=0.92 for tap water sample .............................................. 136 

Figure 6.28: Transmitted power S21 measurements using microwave were taken every one minute for 

the full range of frequencies, 2-12 GHz (Tap water) .......................................................................... 138 

Figure 6.29: Readings of transmitted power S21 measurements responses of the concrete using 

microwave were taken per minute for the full range of frequencies (2-12 GHz), but for clarity, data 

measurements from 3.45-3.55 GHz are presented (Tap water). ......................................................... 138 

Figure 6.30: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) ............................................................................................... 139 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424971
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424971
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424971
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424972
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424972
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424973
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424973
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424973
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424983
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424983
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424983
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424986
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424986
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424987
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424987
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424988
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424988
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424992
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424992
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424992


 

xii | P a g e  
 

Figure 6.31: Readings of transmitted power S21 measurements using microwave were taken everyone 

minute for the full range of frequencies, 2-12 GHz (Salt water) ........................................................ 139 

Figure 6.32 Microwave measurements of transmitted power S21 were taken every minute over the 

entire range of frequencies (2-12 GHz), but clarity data readings from every hour intervals and 3.45-

3.55 GHz are presented (Salt water) ................................................................................................... 140 

Figure 6.33: Readings of transmitted power S21 measurements of the response concrete using 

microwaves were taken per minute for the full range of frequencies (2-12 GHz), but for clarity data 

measurements from every hour intervals and 4.2-4.6 GHz are presented (Salt water) ....................... 140 

Figure 6.34: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum .............................................................................................................................................. 141 

Figure 6.35: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482 

GHz, with R2 =0.77, for salt water sample and R2=0.90 for tap water sample ................................... 142 

Figure 6.36: Polynomial correlation coefficient best fit between weight loss and S11 change at 4.42 

GHz, with R2 =0.71, for salt water sample and R2=0.89 for tap water sample ................................... 142 

Figure 6.37: Transmitted power S21 measurements of concrete sample drying off without 

reinforcement for the full range of frequencies, 2-12 GHz (Tap water) ............................................. 143 

Figure 6.38: Transmitted power S21 measurements of concrete sample drying off with reinforcement 

for the full range of frequencies, 2-12 GHz (Tap water) .................................................................... 144 

Figure 6.39: Comparison between concrete samples with and without reinforcement ..................... 144 

Figure 6.40: The microwave horn antenna; the measurements were taken for the frequency range 2-

12 GHz. ............................................................................................................................................... 146 

Figure 6.41: Flow diagram of data processed with machine learning classification. ........................ 147 

Figure 6.42: Indicates the classification of algorithm J48 decision tree graphic ............................... 148 

Figure 6.43: Readings from the microwave horn antenna; measurements were taken for the frequency 

range 2-12 GHz, but for clarity data from the 5.4-5.6 GHz is presented ............................................ 150 

Figure 6.44: The characteristic structure of the ANN model inputs and output variables for a single 

frequency (5.42GHz) .......................................................................................................................... 153 

Figure 6.45: The error generated by different numbers of neurons ................................................... 154 

Figure 6.46: The % chloride per weight of cement............................................................................ 155 

Figure 6.47: Validated % chloride per weight of cement obtained from the ANN model for 5 different 

saltwater concentrations and taken at 3 different depths using the selected single frequency. ........... 157 

Figure 6.48: The comparison between actual and validated values of % chloride per weight of cement 

at one single frequency (5.42 GHz) .................................................................................................... 162 

Figure 6.49: The corrosion risk determined on the UK bridges plotted as a function of chloride 

content according to BS EN 206.1 [291] ............................................................................................ 163 

Figure 6.50: Best validation performance in Artificial Neural Network Model; Per weight of cement

 ............................................................................................................................................................ 164 

Figure 6.51: The gradient and maximum validation checks for the LM trained network; per weight of 

cement. ................................................................................................................................................ 165 

Figure 6.52: The plot of error histogram (EH) for the LM algorithm; per weight of cement. ........... 166 

Figure 6.53: The regression graphs of the experimental results against the validated %Chloride ions 

per weight of cement ........................................................................................................................... 167 

Figure 6.54: The measurement of microwaves horn antenna; for clarity, data from the 5.4-5.6 GHz is 

presented (Tap water & Salt water) .................................................................................................... 169 

Figure 6.55: The characteristic structure of ANN model inputs and output variables for a single 

frequency (5.42GHz) .......................................................................................................................... 171 

Figure 6.56: The % chloride per weight of cement............................................................................ 172 

Figure 6.57: The validated value of percent chloride per (weight of cement) at various depths at a 

single frequency (5.42 GHz) ............................................................................................................... 174 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424997
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424997
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424998
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88424998
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425002
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425002
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425003
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425004
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425007
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425010
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425010
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425012
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425012
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425013
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425013
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425014
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425015
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425015


 

xiii | P a g e  
 

Figure 6.58:  The comparison between actual and validated values of % chloride per weight of 

cement at one single frequency (5.42 GHz). ....................................................................................... 177 

Figure 6.59: The performance plot of the LM algorithm for the concrete developed model during the 

training process; Per weight of cement. .............................................................................................. 179 

Figure 6.60: The gradient and maximum validation checks for the LM trained network; Per weight of 

cement ................................................................................................................................................. 180 

Figure 6.61: The plot of error histogram (EH) for the LM algorithm; Per weight of cement ........... 180 

Figure 6. 62: The regression graphs of the experimental results against the validated %Chloride ions 

per weight of cement ........................................................................................................................... 181 

Figure 7.2: Transmitted power S21 measurements response from the concrete using microwave sensor 

were taken per minute for the full range of frequencies, (2-12 GHz), but for clarity data from every 

hour interval and 3.45-3.55 GHz are presented (Salt water) ............................................................... 206 

Figure 7.1: Transmitted power S21 measurements using microwave sensor were taken everyone 

minute in the frequency range (2-12 GHz), Salt water ....................................................................... 206 

Figure 7.4: Microwave sensor measurements were taken every one minute in the frequency range (2-

12 GHz), Tap water ............................................................................................................................. 207 

Figure 7.3: Transmitted power S21 measurements using microwave sensor were taken per minute for 

the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals 

and 4.2-4.6 GHz are presented (Salt water) ........................................................................................ 207 

Figure 7.5: Transmitted power S21 measurements were taken per minute for the full range of 

frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 3.45-3.55 

GHz are presented (Tap water) ........................................................................................................... 208 

Figure 7.6: Transmitted power S21 measurements using microwave were taken per minute for the full 

range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 4.2-4.6 GHz are 

presented (Tap water) ......................................................................................................................... 208 

Figure 7.8: Polynomial correlation coefficient best fit between weight loss and S21 change at 

3.482GHz, with R2 =0.87, for saltwater sample and R2=0.94 for tap water sample ........................... 209 

Figure 7.7: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum .............................................................................................................................................. 209 

Figure 7.9: Polynomial correlation coefficient best fit between weight loss and S21 change at 

4.42GHz, with R2 =0.93, for salt water sample and R2=0.86 for tap water sample ............................ 210 

Figure 7.10: Transmitted power S21 using microwave sensor measurements were taken every one 

minute in the frequency range (2-12 GHz), Salt water ....................................................................... 211 

Figure 7.11: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 3.45-3.55GHz 

are presented (NaCl) ........................................................................................................................... 211 

Figure 7.12: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies (2-12 GHz), but for clarity, data measurements from every hour intervals and 

4.2-4.6 GHz are presented (NaCl) ...................................................................................................... 212 

Figure 7.13: The electromagnetic wave sensor: S21 Measurement were taken every one minute in the 

frequency range (2-12 GHz), Tap water ............................................................................................. 212 

Figure 7.14: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measuments from every hour intervals and 

3.45-3.55 GHz are presented (Tap water) ........................................................................................... 213 

Figure 7.15: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) ............................................................................................... 213 

Figure 7.16: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum .............................................................................................................................................. 214 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425021
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425021
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425022
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425022
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425023
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425024
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425024
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425025
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425025
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425025
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425026
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425026
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425027
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425027
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425028
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425028
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425028
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425029
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425029
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425029
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425030
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425030
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425030
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425031
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425031
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425032
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425032
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425033
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425033
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425034
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425034
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425035
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425035
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425035
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425037
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425037
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425038
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425038
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425038
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425039
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425039
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425039
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425040
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425040


 

xiv | P a g e  
 

Figure 7.17: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482 

GHz, with R2 =0.88, for salt water sample and R2=0.87 for tap water sample ................................... 214 

Figure 7.18: Polynomial correlation coefficient best fit between weight loss and S21 change at 4.428 

GHz, with R2 =0.90, for salt water sample and R2=0.93 for tap water sample ................................... 215 

Figure 7.19: The electromagnetic wave sensor: S21 measurements were taken every one minute in the 

frequency range (2-12 GHz), NaCl. .................................................................................................... 216 

Figure 7.20: Tranmitted power S21 measurements using microwave sensor were taken per minute for 

the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals 

and 3.45-3.55 GHz are presented (NaCl) ............................................................................................ 216 

Figure 7.21: Microwave measurements of transmitted power S21 were taken every minute for the 

complete range of frequencies (2-12 GHz), although data from every hour intervals and 4.42-4.6 GHz 

are presented for clarity, (NaCl) ......................................................................................................... 217 

Figure 7.22: S21 measurement was taken every minute in the frequency range (2-12 GHz) using the 

electromagnetic wave sensor, Tapwater ............................................................................................. 217 

Figure 7.23: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

3.45-3.55 GHz are presented (Tap water) ........................................................................................... 218 

Figure 7.24: Microwave measurements of transmitted power S21 were taken every minute over the 

whole frequency range (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) ............................................................................................... 218 

Figure 7.25:  R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum .............................................................................................................................................. 219 

Figure 7.26: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482 

GHz, with R2 =0.93, for salt water sample and R2=0.98 for tap water sample ................................... 219 

Figure 7.27: Polynomial correlation coefficient best fit between weight loss and S21 change at 4.428 

GHz, with R2 =0.96, for salt water sample and R2=0.97 for tap water sample ................................... 220 

Figure 7.28: The microwave horn antenna; S21 measurements were taken for the frequency range 2-

12 GHz. ............................................................................................................................................... 221 

Figure 7.29: Using microwave horn antenna, S21 measurements were taken for the frequency range 2-

12 GHz, but for clarity data (a) from the 2.5-3 GHz (b) from the 4-4.5 GHz are presented .............. 222 

Figure 7.30: Indicates the classification of algorithm J48 decision tree graphic; selected frequency 

point (a) 2.5-3 GHz (b) 4-4.5GHz....................................................................................................... 223 

Figure 7.31: The actual of % chloride per weight of cement ............................................................. 227 

Figure 7.32: Validated percent chloride per weight of cement obtained from the ANN model for five 

different saltwater concentrations and three different depths using a single frequency (2.57 GHz) .. 228 

Figure 7.33: Validated percent chloride per weight of cement obtained from the ANN model for five 

different saltwater concentrations and three different depths using a single frequency (4.25 GHz) .. 228 

Figure 7.34: Best validation performance in Artificial Neural Network Model at one single frequency 

point; Per weight of cement of (a) 2.57 GHz and (b) 4.25 GHz ......................................................... 230 

Figure 7.35: The gradient and maximum validation checks for the LM trained network for one single 

frequency; per weight of cement. (a0 2.57 GHz and (b) 4.25 GHz .................................................... 231 

Figure 7.36: The plot of error histogram (EH) for the LM algorithm; per weight of cement. (a) 2.57 

GHz and (b) 4.25 GHz ........................................................................................................................ 232 

Figure 7.37: The regression graphs of the experimental results against the validated %Chloride ions 

per weight of cement, (a) 2.57 GHz and (b) 4.25 GHz ....................................................................... 233 

 

 

file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425041
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425041
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425043
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425043
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425044
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425044
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425044
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425046
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425046
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425047
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425047
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425047
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425048
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425048
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425048
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425049
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425049
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425050
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425050
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425052
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425052
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425053
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425053
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425054
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425054
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425055
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425056
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425056
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425057
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425057
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425058
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425058
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425059
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425059
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425060
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425060
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425061
file:///C:/Users/hava/Desktop/Preparing%20PHD%20viva%20presenation%20for-06-05-2020/My%20Final%20PhD%20Thesis%20for%20resubmission%2006-042021/Re-Examination%20recomen-comments-29-06-2021/Final%20check%2023-09-2021/LJMU%20My%20Final%20Thesis%20Goran%20Omer-1.docx%23_Toc88425061


 

xv | P a g e  
 

List of Tables 
Table 2.1:  Severity of environmental exposure conditions [66] ......................................................... 13 

Table 2.2: Exposure classes [59, 65, 66] .............................................................................................. 13 

Table 2.3: Corrosion probability under half-cell reading [112] ........................................................... 28 

Table 2.4: EM techniques in comparison to state-of-the-art techniques to monitor chloride level ..... 29 

Table 5.1: The number of concrete samples exposed to microwave sensors ....................................... 85 

Table 5.2: Demonstrated the main characteristics of each group of concrete samples ........................ 86 

Table 5.3: Classification of the quality of the concrete cover according to KT [256] .......................... 88 

Table 5.4: The concrete composition with OPC [259] ......................................................................... 89 

Table 5.5: Demonstrated the percentage of moisture absorption and evaporation, ............................. 98 

Table 5.6: The conductivity measurement test results obtained. ......................................................... 99 

Table 5.7: The concrete composition with OPC [259] [59] ............................................................... 101 

Table 5.8: Demonstrate how much moisture is absorbed and evaporated. ........................................ 105 

Table 5.9: Presents the concrete composition with OPC (CEM II 32.5R)-Kg [46] ........................... 107 

Table 5.10: Conductivity measurements of five saltwater concentrations ......................................... 108 

Table 6.1:Shows the permeability results obtained ............................................................................ 117 

Table 6.2:The weight value of the sample before and after wetting .................................................. 133 

Table 6.3: Results obtained for different classifiers from the Weka workbench ............................... 146 

Table 6.4: The confusion matrix for the leave-one-out validation of classification .......................... 149 

Table 6.5: The Percentage of chloride per weight of 3 grams of dust in five different saltwater 

concentrations at three different depths (destructive method) ............................................................ 151 

Table 6.6: The Input and output parameters of the ANN at one single frequency (5.42GHz) .......... 153 

Table 6.7: The %chloride per weight of cement in five different saltwater concentrations at three 

different depths. .................................................................................................................................. 155 

Table 6.8: The ANN model's summary findings ............................................................................... 156 

Table 6.9: Validated percentages of chloride per weight of cement .................................................. 156 

Table 6.10: Data on the observed value obtained from the (chlorimeter tool) .................................. 158 

Table 6.11: The expected value is derived from the total number of observed values. ..................... 158 

Table 6.12: The total Chi-Squared calculation values ....................................................................... 159 

Table 6.13: Chi-Square and P-Value are displayed. .......................................................................... 159 

Table 6.14: The total Chi-Squared values and %of error ................................................................... 160 

Table 6.15: The results for the observed data target and output values ............................................. 168 

Table 6.16: The Percentage of chloride per weight of 3 grams of dust in 2 different saltwater 

concentrations at 2 different depths .................................................................................................... 169 

Table 6.17: The input and output parameters of ANN at one single frequency (5.42GHz) .............. 171 

Table 6.18: The %chloride per weight of concrete in different concentrations at 2 different depths 172 

Table 6.19: Indicates the summary results of the ANNs model ......................................................... 173 

Table 6.20: The validated values of %chloride per weight of cement ............................................... 174 

Table 6.21: Observed values obtained from the laboratory ............................................................... 175 

Table 6.22: Expected values obtained from the calculation ............................................................... 175 

Table 6.23: Shows the total CHI Squared calculation values ............................................................ 175 

Table 6.24: The final chi-squared and P-value .................................................................................. 176 

Table 6.25: The total Chi-Squared values and %of error ................................................................... 176 

Table 6.26:Presents the resulting data for the observed data target and validated values .................. 182 

 

Table 7.1: Results obtained for different classifiers from the Weka workbench at (2.5-3 GHz) ....... 224 

Table 7.2: Results obtained for different classifiers from the Weka workbench at (4-4.5 GHz) ....... 224 



 

xvi | P a g e  
 

Table 7.3: The confusion matrix for the leave-one-out validation of classification for frequency rang 

(2.5-3GHz) .......................................................................................................................................... 225 

Table 7.4: The confusion matrix for the leave-one -out validation of classification for frequency rang 

(4-4.5GHz) .......................................................................................................................................... 225 

Table 7.5: The Input and output parameters of the ANN at one single frequency (GHz) ................. 226 

Table 7.6: The ANN model's summary findings at one single frequency (2.57 GHz) ...................... 226 

Table 7.7: The ANN model's summary findings at one single frequency (4.25 GHz) ...................... 227 

Table 7.8: The total Chi-Squared calculation values at (2.57 GHz) .................................................. 229 

Table 7.9: The total Chi-Squared calculation values at (4.25 GHz) .................................................. 229 

Table 7.10: The total Chi-Squared values and %of error ................................................................... 229 

Table 7. 11: The results for the observed data target and output values at 2.57 GHz ........................ 234 

Table 7.12: The results for the observed data target and output values at 4.25 GHz ......................... 234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvii | P a g e  
 

List of Abbreviations 

Letters 

 

Names 

  

ASCE American Society of Civil Engineers 

ANNs Artificial Neural Network Analyse 

ASR Alkali-Silica Reaction 

ARFF Attribute Relation File Format 

AI   Artificial intelligence 

b bias 

BEST Built Environment and Sustainable 

Technologies 

BP Back Propagation 

CD Coefficient of determination 

Ca(OH)2 Calcium Hydroxide 

CaCO3 Calcium Carbonate 

Ccrit Critical Chloride Content 

CL Chloride Ion 

CI Computational Intelligence 

CO2 Carbon dioxide 

DAQ Data Acquisition 

EM Electromagnetic Waves 

ER Electrical Resistivity 

E Photon energy 

Fe Ion 

f Frequency 

Fe(OH)2 Hydrated ferric oxide (rust) 

FHWA Federal Highway Administration 

GPR Ground-penetrating radar 

GNI General Public License 

GUI Graphical User Interface 

H2O   Water   

HPC High-performance concrete 

HCFA High Calcium Fly Ash 

IVs Independent variables 

ISAT Initial Surface Absorption Test 

ISE Ion-Selective Electrodes 

IG Info Gain Attribute Eval 

KNN K-Nearest Neighbour 

LJMU Liverpool John Moors University 

LM Levenberg-Marquardt 

MAE Mean Absolute Error 

MLP Multilayer Perceptron 

MRI Magnetic Resonance Imaging 

MSE Mean Square Error 

MUT Material under test 

ML Machine Learning 

ɳ Impedance 

NaCl Sodium Chloride 

NAE Normalised Absolute Error 



 

xviii | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

NDT Non-destructive test method 

NI National Instrument 

OFS Optical Fibre Sensors 

OPC Ordinary Portland Cement 

PEs Processing elements 

R2 Correlation Coefficient 

RBF Radial-Basis Function 

RC Reinforced Concrete 

RMSE Root Mean Square Error 

RF Radio Frequency 

SWR Standing Wave Ratio 

TF Transfer function 

TM Transverse magnetic 

TE Transverse electric 

TPT  Torrent permeability tester 

UPV 

US                                                                                                                                                                                                                                          

Ultrasonic Pulse Velocity 

Ultrasound 

VNA Vector Network Analyser 

VSWR Voltage Standing Wave Ratio 

W/C Water Cement Ratio 

WW2 Second World War 

XO No risk of attack or corrosion; 

XC Corrosion risk induced by carbonation 

XD Corrosion risk induced by chloride(s) (other 

than by seawater); 

XS Corrosion risk induced by chloride(s) 

(seawater). 

XF Risk of attack from freezing and thawing 

XA Chemical attack 

  



 

xix | P a g e  
 

List of Symbols 
 

Symbols                                                      Name 

 

A                                                           The surface through which the current pass 

α                                                  Momentum 

C                                                          Speed of light 

Ei                                                  Expected value 

hi                                                          Hidden neuron output 

I                                                            Electrical current 

IJ                                                   Node activation 

JTJ                                                  Hessian matrix 

J                                                  Jacobian matrix 

KT                                                  Permeability coefficient 

Oi                                                  Observation 

R                                                           Electrical resistance 

R2                                                  Correlation Coefficients 

S11                                                                             Reflected Coefficient 

S21                                                         Transmitted Coefficient 

Tanδ                                                      Loss Tangent 

wij                                                         Weight 

Wn                                                        Weights 

xn                                                          Input values 

x2                                                  Chi-square 

y                                                            Output values 

σ                                                  Conductivity 

ρ                                                   Density of the volume charge 

ε∗                                                           Complex permittivity 

𝜀 ′                                                            The real part of the complex permittivity 

𝜀 ′′                                                           The imaginary part of the complex permittivity 

ε0                            Permittivity of the free space 

εr
'                            Relative permittivity known as dielectric constant 

εr''                  Imaginary part of the relative permittivity (loss factor) 

μo                            Air permeability 

v                                                   Velocity 

λ                                                             Wavelength 

φ                                                            Activation function 

ɳ                                                    Impedance 

θj                                                   Bias on hidden neuron 

δk                                                    Error back-propagation 

∑                                                    Sum 

Г                   Reflection coefficient 

δ                   Skin depth 

x                   Distance from the surface 

α                   Attenuation 

ω                                                            Angular frequency 
 



 

1 | P a g e  
 

Chapter One:  Introduction 

 

1.1 Research background 

Reinforced concrete (RC) is the main element within infrastructure worldwide due to its high 

compressive and tensile strength and cost-effectiveness [1]. Its relative cheapness is because 

of raw material availability; its versatility allows a broad range of applications and forms, and 

with proper design and execution, its durability can be impressive. However, RC can be used 

to construct docks, bridges, piers, floating platforms, and has many other kinds of marine 

applications, both offshore and along coastlines. The primary cause of deterioration in 

structures constructed of reinforced concrete is when the embedded steel corrodes due to 

exposure to marine-type environments or salts used for de-icing; this is because of the actions 

of chloride. The reinforcement steel provides the tensile strength; however, this may weaken 

due to corrosion over time. Deteriorating strength occurs in a more pronounced way in 

structures that are in industrial or marine environments [2]. As well as the reinforcement 

corrosion, other kinds of deterioration mechanisms can occur in RC structures such as, for 

example, freezing and thawing, acid attack, erosion/abrasion, mechanical loading, and alkali-

silica reaction (ASR) [3]. 

However, the principal, most common deterioration mechanism is reinforcement steel 

corrosion [4]. Steel corrosion in concrete has two main causes, i.e., carbonation and chloride 

attack. There is a reduction in the pH level of concrete due to carbon dioxide and chloride 

penetration and the effects of moisture and oxygen. Tuutti’s (1982) classic model notes that it 

can identify two periods of reinforced concrete service life, i.e., the initiation and propagation. 

The initiation period is defined as that phase before the detection of steel depassivation. For 

proper design in this phase, there is a need for information about the rate of chloride ingress 

and critical depassivation condition. The period known as the propagation phase calls for 

knowledge concerning the corrosion rate to make predictions regarding structural integrity [5]. 

 

1.1.1 Problems and processes in chloride-induced corrosion  

Problems associated with corrosion that chlorides have induced within the steel reinforcement 

within bridges are not just an issue in the UK, but it is a phenomenon worldwide that has serious 

implications for both safety and economies. In 2002, a report was presented to Congress in the 

United States on the costs of corrosion and strategies for prevention. According to the report 
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by the Federal Highway Administration (FHWA), highway bridge corrosion has a cost to the 

US economy of approximately £8.3 billion every year. In addition, there was an outlay 

estimated for the following ten years of £3.8 billion for the replacement of structurally deficient 

bridges, and £2 billion for maintenance and capital costs for superstructures (minus decks) and 

substructures, as well as £0.5 billion for costs of painting to maintain steel bridges [6]. It was 

stated by the American Society of Civil Engineers (ASCE) in 2009 that there was a need for 

investment of £2.2trillion over five years to enhance structures in America to conditions that 

were appropriate [7].  In Europe, more recently, a lot of the infrastructure related to transport 

within the Atlantic area has an age of greater than fifty years. Many of the structures are in 

severe deterioration as marine environments can be highly aggressive [8]. In Denmark, for 

example, the costs of damage, down to programs for maintenance and delays in traffic, can 

reach a level of between 15% and 40% of construction costs [9]. 

In the latter half of the twentieth century, since chloride could cause significant corrosion of 

the steel in RC structures, a great deal of research effort began to occur. In fact, over the last 

50 years, many papers have been published that presented critical chloride content (Ccrit) values 

within reinforced concrete [10-17]. The process of penetration of chloride and carbonation is 

shown in Figure 1.1[18].  There are chlorides present in potable water; as such, one should 

never use potable water with significant chloride content within the mixing of concrete. 

However, chlorides may build up within the lifespan of a structure due to environmental 

factors. If, for instance, there is the exposure of a building to salty seawater or de-icing salts, 

there can be a much quicker accumulation of the chlorides experienced.  With the reaching of 

a threshold chloride concentration value for the steel bars, there can be chloride-induced 

corrosion, which destroys thin passive layers in construction products. If there is high concrete 

alkalinity during the construction phase, the steel bars can be corrosion protection. However, 

carbonation can occur when the carbon dioxide within the environment is involved in a reaction 

with the alkaline constituents, which results in pH reduction around the steel. The corrosion 

rate for reinforcement steel is raised significantly through both carbonation and chloride attacks 

[19]. 

 



 

3 | P a g e  
 

 

 

Reinforced concrete durability is mainly affected by aggressive substances penetrating the 

concrete and degrading the concrete and the reinforcement. The environmental load that is most 

critical for structures within a marine environment is chlorides since they cause serious damage 

through corrosion [20]. 

 

1.1.2 Different exposure conditions for maritime-related concrete structures 

To investigate practices for addressing corrosion-related deterioration as well as bridge 

maintenance and repair, it has been noted that the construction of pier columns, being in a 

coastal area, leads to them experiencing a constantly changing climate [18]. Chloride attack is 

a preliminary problem for bridges because it leads to concrete reinforcement corrosion in parts 

of RC structures. Since columns are load-carrying elements in bridges, they are essential. 

However, columns are frequently exposed to chloride ions due to salt utilised in removing ice 

or splashing of water or marine waters [21]. There can normally be the categorisation of 

material strength and quality by considering the ratio of water to cement (w/c) and the 

associated porosity ratio. The smallest degree of pore porosity is an indication of less contact. 

As regards the association of the permeability with the porous structure, moisture loss increases 

along with porosity. A high level of porosity results in the transfer of water inside the concrete  

more easily and faster [22]. Furthermore, in the context of melted ice and snow due to salts for 

de-icing, as along roadways, the presence of chloride ions can lead to concrete becoming 

contaminated. A corrosive deterioration process can be persistent because of the presence of 

such chloride ions along with the availability of moisture, carbon dioxide, and oxygen [23]. 

The exposure conditions in marine environments are highly aggressive for reinforced concrete 

structures, and reinforcement corrosion is the most significant deterioration mechanism. 

Corrosion of reinforcement causes the concrete cover to crack and delaminate, resulting in a 

Figure 1.1: Process of penetration of chloride and carbonation within concrete [18] 
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reduction in the cross-section of the reinforcement [24]. When that happens, the load-bearing 

capacity within the structural elements can be reduced very significantly. The corrosion starts 

as a result of the penetration of chloride at the reinforcement level or through the carbonation 

of the concrete cover [25].  

The majority of structures made using RC are designed in such a way that their performance is 

good enough during their construction life due to their careful fabrication. However, RC can, 

as in the case of steel, be severely impacted through environmental attack; corrosion of steel 

reinforcement is considered the main reason for RC structure deterioration in marine 

environments. Carbonation occurs because of the entry of air-based CO2 into the concrete and 

the consequent reaction with the hydroxides present, such as, for instance, calcium hydroxide, 

which leads to carbonate formation. Calcium carbonate production occurs when there is a 

reaction with the carbon dioxide as shown in the equation [24]:- 

Ca(OH)2 + CO2 → CaCO3 + H2O                                                                                      Eq [1] 

In response to the reaction, the pH of the concrete decreases to perhaps 8.5, and, consequently, 

there is a lack of steadiness in the passive film on the steel. With carbonation of good quality 

steel, the process mentioned above is somewhat slower, with a rate of carbonation proceeding 

at maybe 1mm per year penetrated in concrete. Concrete carbonation may be affected 

significantly by low content of cement, low strength of concrete, and high water to cement 

ratio. Salt and moisture ingress into concrete can all be permitted if there are quality control 

problems such as any construction defects, e.g. an inadequate cover depth, or issues of structure 

age, or high permeability of the concrete. When salt and moisture concentrations are high, there 

can be an acceleration of the reinforcing steel corrosion and major deterioration of the concrete 

structure. The category of exposure is very apparent for concrete structures in marine 

environments, an example being those bridge elements that are part of the substructure [26]. 

There are three distinct areas of concrete structure concerning corrosion that can be identified 

in marine environments, i.e. 

1. The submerged zone (parts always lying beneath the seawater surface). 

2. Tidal movement and splashing (parts that are wet and dry intermittently).  

3. The atmospheric zone (those parts well above the mean of the high tide that are only 

infrequently wetted) [27].  
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There is the most rapid deterioration in the splash zone because both moisture and oxygen 

are available. Corrosion rates are also high in the tidal zone at rates higher than those for 

the atmospheric or submerged zones; those zones are often critical in the construction of 

concrete. Generally, the corrosion rate is lower in fully immersed zones with less oxygen 

availability [27]. Corrosion zones related to steel piles are shown below in Figure 1.2 [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3 Electromagnetic (EM) waves compared with different methods to determine the 

chloride level in concrete structures.  

Many existing methods have been employed as non-destructive and destructive techniques in 

detecting free chloride ions within concrete structures. Conventional methods for determining 

chloride ion levels within concrete have included, for example, the test for rapid chloride 

permeability. Nowadays, destructive techniques are applied worldwide to detect chloride 

levels. However, there is broad recognition that they time-consuming procedures and it would 

improve assessment methodologies appreciably if a non-destructive technique could provide 

the information during testing [29].  

Non-destructive techniques have also been employed in the investigation of levels of chloride 

ion penetration within concrete. There has been classification of non-destructive methods into 

three primary groups [30] ion-selective electrodes (ISE) [31, 32], electrical resistivity (ER) [33, 

34], and optical fibre sensors (OFS) [35, 36]. Each technique has its particular advantages and 

disadvantages; all the techniques are described in further detail within the review of the 

Figure 1.2: Corrosion zones in steel Piles [28] 
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literature in Chapter 2. Imaging through magnetic resonance is an appropriate technique for 

profiling the distribution of chloride and sodium within cement-based materials [37]. 

Nevertheless, nuclear magnetic resonance (NMR) can determine the presence and 

concentrations of chloride in principle. For NMR, the low sensitivity of detection of chloride 

makes its discovery tough, therefore, demanding the use of MRI systems with high-field 

superconducting magnets to increase signal intensity. This restricts the use of MRI in studying 

cement-based materials because these kinds of MRI systems are costly and not widely 

available [38].  Currently, there has been a focus of study upon applying the method of 

ultrasound (US) for assessing concrete deterioration and strength. Also, the use of radar that 

is ground penetrating is a non-destructive method for investigation of chloride ions’ presence 

and their ingress within concrete structures [39-42]. Since existing techniques for measuring 

chloride ions have their limitations, further investigations are undertaken within this research. 

As such, positive study results can provide the industry with a less time-consuming technique, 

with lower cost, and non-destructive nature for determining the level of chloride ions within 

the highway and marine concrete structures. Generally, electromagnetic (EM) sensors are 

employed in various industrial processes, especially those working at microwave or radio 

frequencies such as in chemical processing [43], in medicine [44], and within the analysis of 

civil engineering materials [45]. The potential of using microwave sensors for the detection of 

moisture content within concrete structures was demonstrated by researchers based in the 

institute of Built Environment and Sustainable Technologies (BEST) within Liverpool John 

Moores University (LJMU) [46].  

The purpose of this project is to determine the level of chloride ions in industrial concrete 

structures. Therefore, this research has investigated whether electromagnetic waves can detect 

the amount of chloride in different saltwater concentrations at various depths through the use 

of a set horn antenna. However, in principle, the EM sensor can detect the level of chloride 

based upon the operating frequency; this will be shown in chapter 6. Combining the EM waves 

technique and artificial neural network (ANN) analysis contributes to new knowledge since it 

experimentally demonstrates the use of microwave sensors at a frequency range of 2-12 GHz 

for monitoring and determining the level of chloride ions within the concrete. The advantages 

of using Electromagnetic (EM) waves are a high penetration depth and relatively lower cost, 

allowing for a flexible sensor design and providing non-destructive measurement in a real-time 

manner.  
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1.2 Aim  

This research aims to investigate and validate to use of Electromagnetic (EM) waves as a non-

destructive technique to determine the chloride level in reinforced concrete structures.  

1.3 Objectives  

The specific objectives of the research are as follows: 

 To investigate the effect of chloride attack and problems associated with chloride 

presence in steel-reinforced concrete structures. 

 To evaluate the current state-of-the-art techniques for the determination of the level of 

chloride ions content and moisture content of concrete structures. 

 To determine the chloride ions level in concrete samples under various saltwater 

concentrations at different concrete depths using other techniques.  

 To apply the artificial neural network ANN technique to evaluate the performance of 

the proposed EM technique in comparison to the chlorimeter tool, commonly used as a 

gold standard in the industry.  

1.4 Novelty  

For the first time, this thesis demonstrated the combination of an electromagnetic wave as a 

non-destructive technique with an application of an artificial neural network ANN to determine 

chloride concentration in concrete. The detected level is below the currently used gold standard 

techniques and, therefore, can transform the early detection of deterioration in steel-reinforced 

concrete structures. ANN was used to analyse the microwave wave signal to validate the level 

of chloride ions in the concrete samples.  

 

1.5 Overview of the Thesis 
 

The thesis is divided into seven chapters to achieve the goal and objectives of this research 

project. Chapter 1 has discussed the industry's major issues in relation to chloride-exposed 

reinforced concrete. Chloride attack is a preliminary problem for bridges because it leads to 

concrete reinforcement corrosion in parts of RC structures. However, due to salt used in 

removing ice or splashing water or in maritime conditions, columns are regularly exposed to 

chloride ions. 
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Chapter 2 will start a literature review by focusing on the impact of the chloride ion attack 

mechanism and evaluate the current commercially available techniques to measure the level of 

chloride ions in the concrete structures used in the field. Moreover, it covers the recent research 

carried out to develop non-destructive techniques to detect the level of chloride ions at the early 

stages before reaching the rebars and corrosion commencing. This will focus on the need to 

investigate electromagnetic wave sensors to develop a non-destructive method for determining 

the level of chloride ions in concrete structures. 

Chapter 3 reviews literature on the ANN concept and the proposed use of the Levenberg-

Marquardt (LM) training algorithm. Additionally, a literature review on the machine learning 

algorithm concept such as classification will be discussed. In Chapter 4, the theory of 

electromagnetic waves will introduce the microwave sensing technique as a proposed system 

to detect moisture content and saltwater concentration in the concrete samples. Different types 

of horn antennas and their advantages will describe and compare their features to select the 

most suitable sensors for this project and the associated investigation. In addition, this chapter 

will represent the skin depth of the electromagnetic waves to penetrate the concrete sample 

according to civil engineering requirements in detail. Chapter 5 discusses the research 

methodology and experimental techniques followed in the study. The chapter provides a flow 

chart indicative of the research methodology. The final section in this chapter will define the 

data processing and the development of the validation models. Chapter 6 covers the results and 

discussion of the microwave horn antenna used to determine the level of chloride ions in the 

samples. Also, the superiority of the LM algorithm and WEKA workbench classification has 

been demonstrated in this chapter by validation of results using an unseen data set with targeted 

values obtained by the chlorimeter tool currently used as a gold standard method. 

Chapter 7 includes the concluding summary of the current study. Research limitations and 

recommendations for further investigation are also provided in this final chapter. 
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Chapter Two: Literature Review 
 

In this chapter, the literature review will focus on chloride attacks and the problems associated 

with chloride present in concrete structures. Then follows a critical review of current 

measurement instruments for the detection of chloride levels. Lastly, there is a provision of a 

summary of the main findings within this review of the literature and a discussion over the 

need for a new approach in determining chloride concentrations. 

2.1 Factors affecting reinforced concrete durability 
 

The primary factors having a bearing on reinforced concrete (RC) structures, whilst 

experiencing exposure to aggressive and corrosive environments, are i) practices in design and 

construction and ii) factors that are environmentally related. 

2.1.1 Design and construction practices 

 

The construction practice and the design choice significantly affect the durability of reinforced 

concrete structures exposed to a very aggressive environment, such as that with chloride 

contamination. The selection of nominal concrete cover thickness, appropriate values for water 

to cement ratio (w/c), and compressive strength of concrete during the design combined with 

efficiency during construction, such as casting and proper curing, is paramount to ensure 

durability for reinforced concrete ( RC) structures [47, 48]. For example, three days of concrete 

curing period with a 0.4 w/c ratio used and a 30 mm cover thickness of the concrete sample 

reduced chloride ingress more effectively than with a 0.5 w/c ratio and one day of curing period 

with the same cover thickness [49].  Concerning design considerations, the time needed for 

corrosion of a steel bar to begin increases with greater cover. However, higher concrete 

strength, by lower w/c ratio and the addition of certain admixtures, also reduce the ingress of 

chloride, moisture, and oxygen rates of diffusion within concrete. However, a lower w/c 

proportion in concrete allows for the formation of honeycombs and flaws in the surface, 

allowing aggressive agents like O2, Cl−, CO2, and H2O to penetrate more easily [50]. 

Construction practices define important concrete properties such as porosity, permeability, etc., 

that dictate durability. For example, an unsuitable curing process increases the permeability, 

which describes the physical characteristics of the concrete matrix against chloride ingress. 

[51]. Furthermore, the circumstances at the surface of reinforcing steel have a significant 

impact on behaviour with respect to the initiation of corrosion [52]. Some studies have looked 

into the possibility of finding points of higher activity on rough steel surfaces (as opposed to 
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smooth ones); processes of corrosion may be quicker on rough steel surfaces. Also, with rebars 

with mill scales, corrosion is much faster than with polished treatment [53].  Finally, because 

of the casting direction, the corrosion process was increased by the presence of gaps inside the 

concrete-steel interface [53]. 

On the whole, planning for durable structures of RC may be progressed through consistency 

for the conditions presented, i.e., cement substance, the proportion of w/c, admixture 

utilisation, increased cover thickness, and so on. From the viewpoint of preparation for 

construction, there can be a reduction in chloride ingress and harm from corrosion by 

undertaking specific activities such as ensuring appropriate curing, control of chlorides within 

the water, total washing of aggregate, etc. Finally, other factors such as structural member 

complexity and execution quality influence the feasible cover thickness by extending or 

shortening the corrosion initiation stage. Figure 2.1 below shows the impact of chloride ingress 

and processes of corrosion within structures of reinforced concrete.  

For the reinforced concrete design, a few key points need to be brought to the reader’s attention 

while the reinforcement is embedded in the concrete up to a particular distance from the 

member’s face [54] [55]: 

 

 Protects corrosion enhancement. 

 To provide reinforcement resistance against fire. 

 To provide adequate embedded depth to develop the required stress by the 

reinforcement. 

This distance is measured differently and is known by several names: 

 

 The nominal cover: It is the distance between the surface of the reinforcement and the 

exposed concrete surface (which can be the main bar, longitudinal bar or stirrups). But 

the nominal cover should not be less than the diameter of the bar. 

 Clear cover: It is the distance from the member’s face to the reinforcement outermost 

side, including the shear or torsion Stirrups. 

 Effective Cover: is the distance between the exposed concrete surface to the centroid 

of the main reinforcement. 

 However, the skin depth is a measure of how closely electromagnetic waves can penetrate 

along the material's surface. The skin depth depends on current /signal frequency and material 

resistivity. It is inversely proportional to the frequency and directly related to resistivity. 
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Enhancing the permeability and conductivity of a given material can significantly increase the 

absorption of EM [56] [57]. 
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Mixture Design 

 W/C ratio 

 Size of aggregate and grading 

 Type of cement 

 Cover thickness 

 Surface conditions of rebar 

 Chemical composition of reinforcing steel 

Construction practices 

 Cover thickness 

 curing 

 Direction casting 

Environmental conditions 

 Relative humidity 

 Temperature 

 Rain 

 Wet and drying cycles 

 Chloride ions presence 

 Oxygen availability 

RC properties and conditions related to durability 

 Concrete permeability 

 Concrete porosity 

 Water content in concrete 

 Rebar passivation 

 Steel concrete interface 

RC behaviour against chloride ingress and 

corrosion 

Figure 2.1: Factors influencing chloride ingress and the process of corrosion in 

reinforced concrete structures 



 

12 | P a g e  
 

 

2.1.2 Environmental factors 

 

The corrosion rate of reinforced concrete is also affected by the standard test conditions. For 

chloride ingress, there is a dependence on surface chloride concentration and upon other 

conditions such as temperature and relative humidity [58]. As such, higher temperatures and 

relative humidity that is ideal lead to an acceleration of the processes of chloride penetration 

and propagation of corrosion according to the BS 8500-2:2006+A1:2012 [59]. Corrosion 

processes are significantly influenced by the presence of water, such as through seawater 

exposure and cycles of drying and wetting that increase the entry of chloride and corrosion 

volumes [60]. As a consequence, procedures of deterioration will vary in their kinematics 

depending on the micro-environment (atmospheric, splash, tidal, or submerged conditions 

within marine environments) or macro-environment (environmental conditions specific to a 

particular place) [61]. 

Further significant environmental factors are the presence of gaseous contaminants that are 

acidic such as nitrogen oxides, carbon dioxide and sulphur dioxide [62, 63]. Such acidic 

compounds, produced through urban activity and industrial processes, can transfer to concrete 

matrices through wet or dry deposition. Entrance is usually from the concrete surface and 

mainly depends upon the concrete structure's penetrability. It has been noted that sulphates, 

when present, may improve the conditions of concrete resistance against chloride ingress 

during early exposure. However, it can also increase the penetration of chloride during 

exposure at later stages. Also, whilst there is a presence of water within the concrete and once 

polluting sulphates have managed to reach reinforcement, the consequent reduction in pH leads 

to an acceleration of the corrosion processes [64]. 

2.2 Infrastructure in aggressive environments  

Environmental exposure conditions for concrete structures are separated into five areas, with 

severity levels ranging from mild to moderate through severe, very severe, and extreme. 

However, where structures are constructed in different conditions and experience other effects, 

measures need to be taken to protect the structures, particularly those under severe to extreme 

conditions. The different environmental exposure conditions and their impact on structures are 

shown in the following Table 2.1.  
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According to the European Standard EN206-1, published in 2005, exposure classes are 

categorised based on different degradation mechanisms. The details of the European  

exposure classes demonstrated in Table 2.2 are divided into the following six major categories 

[59, 65]: 

XO - No risk of attack or corrosion; 

XC - Corrosion risk induced by carbonation;  

XD - Corrosion risk induced by chloride(s) (other than by seawater); 

XS - Corrosion risk induced by chloride(s) (seawater). 

XF- Risk of attack from freezing and thawing; 

XA- Chemical attack; 

These categories are further sub-divided into sub-classes, totalling about 18. Table 2.2 includes 

typical examples explaining different sub-classes. 

Table 2.1:  Severity of environmental exposure conditions [66] 

Environment 

Factors 

Exposure conditions 

Mild Concrete surfaces are protected against aggressive conditions or weather, 

except those situated in coastal areas. 

Moderate Concrete surfaces sheltered from freezing and severe rain whilst wet, 

concrete exposed to condensation and rain, concrete continuously 

underwater; concrete in contact with, or buried under, non-aggressive 

soil/groundwater; concrete surfaces sheltered from saturated salt air in 

the coastal area. 

Severe Concrete surfaces exposed to severe rain, other wetting and drying or 

occasional freezing whilst wet or severe condensation, concrete 

completely immersed in seawater; concrete exposed to the coastal 

environment. 

Very Severe Wet concrete surfaces exposed to seawater spray, corrosive exhausts, or 

extreme freezing conditions, concrete in touch with soil, or concrete 

submerged beneath aggressive subsoil and groundwater 

Extreme Members in the tidal zone's surface, as well as members in direct touch 

with liquid and solid harsh chemicals. 

 

Table 2.2: Exposure classes [59, 65, 66] 

Class designation Description of the 

environment 

Informative examples 

applicable in the United 

Kingdom 

a) No risk of corrosion or attack 
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X0 For the concrete without 

reinforcement or any embedded 

metal: all exposures except 

where it is freeze-thaw, abrasion 

or chemical attack 

For concrete with reinforcement 

or embedded metal: very dry 

This is for concrete inside 

the building with very low 

air humidity. 

b) Corrosion made by carbonation 
XC1 Dry or permanently wet Concrete inside buildings 

with low air humidity 

Concrete permanently 

submerged in water 

XC2 Wet, rarely dry Concrete surfaces subject to 

long term water contact 

Many foundations 

XC3 Moderate humidity Concrete inside buildings 

with moderate or high air 

humidity 

External concrete sheltered 

from rain 

XC4 Cyclic wet and dry Concrete surfaces subjected 

to water contact, not within 

exposure class XC2 

c) Corrosion made by chlorides 
XD1 Moderate humidity Concrete surfaces exposed 

to airborne chlorides 

XD2 Wet and rarely dry Swimming pools 

Concrete Components 

exposed to industrial waters 

containing chlorides 

XD3 Dry and wet cyclic Parts of bridges exposed to 

spray containing chlorides 

Pavements 

Car park slabs 

d) Corrosion induced by chlorides from seawater 

XS1 Exposed to airborne salt but not 

direct contact with seawater  

For those structures quite 

close to the coastal area 

XS2 Permanently submerged Parts of marine concrete 

structures 

XS3 Tidal, Splash and Spray zone Pars of the marine concrete 

structures 

e) Freeze/ thaw attack with or without de-icing salts 

XF1 Moderate water saturation, 

without de-icing agents 

Vertical concrete surfaces 

exposed to rain and freezing 

XF2 Moderate water saturation, with 

de-icing agents 

Vertical concrete surfaces 

of road structures exposed 

to freezing and airborne de-

icing agents 

XF3 High water saturation, without 

de-icing agents 

Horizontal concrete surfaces 

exposed to rain and freezing 
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XF4 High water saturation, with de-

icing agents or seawater 

Road and bridge decks 

exposed to de-icing agents. 

Concrete surfaces exposed 

to direct spray containing 

de-icing agents and 

freezing. Splash zones of 

marine structures exposed 

to freezing 

f) Chemical attack 

XA1 Slightly aggressive chemical 

environment according to Table 

2.1 

 

XA2 Moderately aggressive chemical 

environment according to Table 

2.1 

 

XA3 Highly aggressive environment 

according to Table 2.1 
 

 

The primary cause of deterioration within reinforced concrete marine structures because of 

chloride ion ingress is discussed below in Section 2.3. 

2.3 Chloride attack  

The corrosion of reinforcements in RC structures in the presence of chlorides is a crucial issue 

of durability that has been observed worldwide. Reinforcement corrosion affects many kinds 

of RC infrastructure, mainly the kinds of structures exposed to marine-type conditions [67]. 

Primarily, there are two kinds of corrosion of reinforcement steel, i.e. usual corrosion and 

pitting corrosion. Because of the presence of a layer of passivation upon the steel surface of 

the two kinds of corrosion, the pitting kind is the more rapid and harmful [68]. Structures such 

as bridges are prone to pitting corrosion if located by the sea; the most critical area in these 

structures is the splash zone near the air and water interface. Because there is an abundance of 

chloride in the water and oxygen in the surrounding air, the cell processes of electrochemical 

corrosion are accelerated [19]. Of the two kinds, normal corrosion is of lesser criticality as the 

steel is protected from more deterioration by a film of passivation. There is a breakage of the 

passivation film if the chloride ion number exceeds a certain threshold, leading to pitting 

corrosion. The deterioration noted above and shown in Figure 2.2; indicates that a significant 

degree of corrosion leads to detachment of the concrete cover in the splash zone area.  
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Figure 2.2: (a) The splash zone of the concrete bridge pillar [69][61]; (b) Concrete bridge cover 

deterioration [70], permission to reproduce this figure has been granted by John Broomfield; (c) 

Pitting corrosion to the reinforcing bar (16 mm), permission to reproduce this figure has been granted 

by Dieter Friede; (d) Salt for de-icing is dispensed along the road [71]. 

If such deterioration happens, structures may collapse if delays occur in providing appropriate 

maintenance, leading to human casualties. On the other hand, if maintenance work is 

unnecessary, there may be financial cost implications and other pointless CO2 emissions [72]. 

2.4 Chloride ingress within concrete 

The presence of ions of chloride in concrete can hail from sources that are both internal and 

external.  External sources could be salts used in de-icing roads or melting ice on bridges, and 

the salt within seawater that impacts structures within a marine environment; see Figure 2.3 

[73]. Moreover, concrete surfaces can have chloride ions deposited upon them from the air, as 

a turbulent sea and a strong wind can carry them a distance and deposit them.  Airborne 

chlorides can travel considerable distances; a distance of 2 km is recorded [74], though greater 

distances are possible depending on geography and wind speed. On the other hand, internal 

chloride ion sources come from the salts present within the aggregates and mixtures when the 

casting of the concrete occurs  [75]. A typical profile for chloride ingress can be seen in Figure 

2.3, illustrating various exposure times [76]. The chloride diffusion happens within the concrete 

in wet conditions. Then, upon drying, the chloride remains inside the concrete; therefore, 

specific content along with the depth of concrete cover is considered.   
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2.5 Steel corrosion within concrete 

Steel reinforcement is associated with the nurturing alloy consisting of iron, a little carbon, and 

different trace parts. For steel corrosion within the concrete to be initiated, there need to be the 

following conditions:  

1) Facilitation of a cathode and anode couple with some steel parts working as the 

anode. 

2) An electrical circuit is maintained. 

3) Oxygen presence 

4) Moisture presence. 

However, two key processes join in the corrosive attack upon the steel within concrete 

structures, i.e. pitting corrosion with the presence of a certain level of ions of chloride and 

reactions from carbonation; see Figure 2.4 for a schematic representation [77]. Many additional 

energies are applied to the mineral to rework steel during the manufacturing process, and 

corrosion involves a tendency for steel to rework into a thermodynamically stable original state 

[78]. Corrosion of metals is associated with nurturing chemical science method, which suggests 

that it happens not by direct chemical reaction of the metal with its setting, but instead through 

coupled chemical science half-cell reactions involving the passage of electrical charge. The 

Figure 2.3: Chloride ion concentration compared to the depth of 

cover for different exposure times [70] 
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chemical reactions that occur when steel is in a neutral or alkalescent solution are generally 

relevant [79]. 

The anodic reaction for iron dissolution is represented in Eq. 2.1 [79]: 

Fe →  Fe2+ + 2e−                                                                                                        Eq (2.1)  

Chemical reactions occur between the electrode and the metal surface at a rate that is consistent 

across the metal surface. Eq. 2.2 shows a balanced type of response [79]: 

2Fe + O2 + H2O + 4e−  →  2Fe(OH)2                                                                        Eq (2.2)  

Where rust hydrated ferric oxide is the final reaction product. 

With carbonation present, contamination begins at the concrete surface and moves gradually 

towards inner zones. Concrete alkalinity may be neutralised by CO2 in the atmosphere, with 

the level of pH in the concrete structure pore liquid reducing to about 9-8 where there is no 

more extended stability of the passive film. However, chloride ions from an aggressive 

environment may penetrate the concrete to the point where it reaches the reinforcement; if 

chloride concentration amounts at the reinforcement surface reach a critical level, then there 

may be local destruction of the passive film that was protecting the steel surface [19]. 

When the concrete has exposure to air, there is a reaction of the calcium hydroxide with the 

carbon dioxide within the air with water, as represented in Eq. 2.3: 

Ca(OH)2 + CO2 → CaCO3 + H2O                                                                                Eq (2.3) 

Thus, carbonation has the effect of lowering the pH value in the concrete cover layer to less 

than 8.3; this pH is, therefore, sufficient to cause the reinforcement rebar passive layer to be 

more unstable [80]. Chlorides, on the other hand, cause localised breakdown unless they are 

present in significant quantities. As a result, it is possible to state that:  

a. Corrosion caused by carbonation may occur at the entire reinforcement surface that is 

in contact with carbonated concrete. 

b. Corrosion caused by chloride (pitting corrosion) is localised as the chloride penetrates 

and attacks specific areas surrounding uncorroded areas. 

There can be the destruction of the passive film over broad reinforcement areas whilst there 

are very high chloride levels on the rebar surface [80]. 
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2.6 Localised corrosion 
 

Passive film flexibility for shielding the metal is known to be potentially compromised when 

different halides or chlorides are present [81] [82] [79]. Those aggressive ions produce a 

passive film breakdown area that accelerates the dissolution of the underlying steel alloy. If the 

attack starts upon a concave surface, it is known as corrosion; if impeded, it is known as crevice 

type corrosion [79] [82]. Once it has started, an attack has similar characteristics geometrically, 

i.e. a pit. There is no clear understanding of the mechanisms involved in a breakdown initiation 

in an otherwise protective kind of passive film. However, various theories have been put 

Figure 2.4: Schematic diagram showing corrosion that has been induced by carbonation and chloride 

[74] 
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forward to break down the passive film and the initiation of pitting [83]. Figure 2.5 shows pit 

propagation for steel within the concrete in the presence of chloride ions [83]. 

 

 

 

 

 

 

 

 

 

The steel area unprotected by the passive film may start to act as forms of anodes when there 

has been the initiation of pitting corrosion upon steel embedding within the concrete, whilst 

passive areas nearby remain passive. They may begin to act as forms of the cathode, and they 

are sites where oxygen is reduced [84]. When chlorides are present in sufficient concentration 

above the critical level, the passive layer on the surface of steel bars is destroyed, causing 

localised deterioration on the surface of the steel. This type of deterioration is known as pitting 

corrosion, in which the anodic zones are concentrated in those pits [79]. The result is that the 

accumulated metal ions can endure the chemical reaction. There is a development of an acidic 

area within the pitting region that makes the surroundings very aggressive. Finally, to account 

for charge neutrality, there is the migration of chloride ions across to pit electrolytes from the 

majority of the solution. Pitting corrosion is typically seen on passive metals and alloys such 

as aluminium alloys, stainless steels, and stainless alloys when chemically or mechanically 

damaged and not immediately re-passivated by the ultra-thin passive film [79]. The standard 

potential is between the passive steel as a natural anode, typically with -200 to -500 mV (SCE) 

[85].  

2.7 Concentrations of chloride 

Critically for chloride ions, a particular concentration is needed for the destruction of the steel 

surface passive film for the steel embedded within concrete, and it is dependent mainly on the 

Figure 2.5: Propagation stage of the pitting of steel embedded within concrete [77] 
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pore solution pH; a higher level of ions of OH- within concrete initiates an increase in corrosion 

[86]. The problem of chloride attack usually increases when the chloride ions ingress from 

outside.  Two significant sources of chloride ions are de-icing salt and seawater in contact with 

concrete. A more common transport method is absorption. As a concrete surface is exposed to 

the environment, it will undergo wetting and drying cycles. When water, probably containing 

chlorides, encounters a dry surface, it will be drawn into the pore structure through capillary 

pressure. A researcher has shown that limits on the total chloride ion content in reinforced 

concrete should be  0.4% by mass of cement; see Figure 2.3 in Section 2.4 above [75]. There 

needs to be penetration of chloride, however, for corrosion to start. The half-cell and associated 

measurements are the most common method for determining steel corrosion potential within 

reinforced concrete without destroying the specimen structure [87]. The transport rate of 

chloride ions within a concrete structure is mainly defined by the concrete porosity, which 

depends upon void and compaction volume. The degree of moisture and the w/c ratio have 

significantly impacted capillaries' presence and pores' structure. As a result, a rise in the w/c 

ratio leads to a non-linear increase in permeability, especially for w/c values greater than 0.5 

[86]. The test for initial surface absorption (ISAT) was originally developed for the measure 

concrete porosity [88]. The concrete cover, however, affects the rate of transportation. The 

ultrasonic pulse velocity (UAPV) is used on concrete as a non-destructive test to assess the 

integrity and homogeneity of the concrete. If there is a low velocity of ultrasonic pulse and 

high porosity, then the transportation rate will take place more quickly [89].  

Several recent studies have investigated various modern techniques for monitoring the attack 

of chloride on structures built from reinforced concrete within various industries; the 

limitations and advantages of different approaches are discussed in detail in the section below. 

 

2.7.1 The potentiometric sensor or ion-selective electrode  

The potentiometric sensor or ion-selective electrode (ISE) can determine free chloride ions and, 

as such, it is possible to avoid destructive and chemical tests. When used in the field, the device 

has embedded sensors to detect chloride concentration amounts by the rebar in a way that does 

not change the surrounding environment. If chemical and practical factors are considered, there 

certainly are some advantages to ISE. For instance, ISE shows chemical stability in aggressive 

environments, and it is easy to fabricate through electrochemical processes. It is possible to 

adapt to other kinds of sensors to measure different parameters such as temperature and the 

presence of ions [90]. However, it should be noted that it may induce measurement errors; 
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therefore, due consideration needs to be given to temperature, alkalinity, presence of electric 

fields, and the previously made calibration. High temperatures may lead to shifts in 

measurement [90]. High pore solution alkalinity may interfere with the ISE potentiometric 

response, mainly with low chloride concentrations [91]. The presence of an electrical field 

because of corrosion, extraction of chloride, and the cathodic protection for other sensors 

produce shifts in the probable measurements of difference. Lastly, since RE (reference 

electrode) is required, it has to show stability over the long term; this cannot be done, however, 

except under strict experimental conditions [92]. Figure 2.6 illustrates that for the electrical 

potential difference to be measured, there is a need for the ISE to be complemented by a 

reference electrode (RE) which is usually a calomel type [93]. 

 

 

 

 

 

 

2.7.2 Electrical resistivity  

The electrical resistivity (ER) has been linked to RC corrosion and moisture and heat transfer 

in the concrete and, more recently, to chloride ion presence [94]. The technique of ER has a 

link to chloride ingress as chloride presence can increase electrical current and result in a 

concrete resistivity reduction [95]. So, ER may be employed in estimating the profile of 

chloride by determining the coefficients of chloride diffusion. The method entails applying a 

voltage to measure current flow, followed by determining electrical resistance using Ohm's 

law's proportionality for electrical resistivity, as shown in Eq [96]. 

V = IR 

R =
A

l
ρ                                                                                                                  Eq (2.4) 

Figure 2.6: Block diagram based upon the ISE method [87] 
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were  

I is the electrical current, A the surface area through which the current passes m2, ρ Electrical 

resistivity, R Electrical resistance, V Potential difference, and the length m.  

Electric current:  is defined as the rate at which charge flows through a surface (the cross-

section of a wire, for example). 

Cross-section area A:  is the amount of charge passing through a surface. 

Electrical resistivity: is unique to every material, which is essential to understand before 

creating and designing electrical and electronic systems. 

Resistance (R): is a property of a material used for describing the opposition provided to the 

flow of current. The higher the resistance provided by a material, the lower the flow of electrons 

or current through the material. 

Potential difference:  is the amount of energy that charge carriers have between two points in 

a circuit. 

𝑙 the length; is the electrical resistance of a wire, would be expected to be greater for a longer 

wire, less for a wire of larger cross-sectional area, and would be expected to depend upon the 

material out of which the wire is made. 

The unique characteristic of electrical resistivity is inherent for every material, dependent upon 

experimental conditions. Figure 2.7 shows two techniques for the resistivity measurement to 

assess the corrosion through the use of a Wenner array [96].  Due to concerns of geometrical 

position, electrode contact number, and the space between them and the distance to the rebar, 

we did not propose to utilise it for chloride measurement [97].  Another proposed device is 

multi-electrode resistivity, a device comprising of two probes with one mobile and the other 

embedded. The method is effective, as is the Wenner array technique; it does need, however, 

moisture to improve measurements [98]. According to the research results, the method may 

only be employed in the exploration of the diffusivity of chloride, and resistivity depends upon 

cement type and degree of hydration. For most ER techniques, concrete surfaces have to be 

wet as the conductivity of dry concrete is zero. Furthermore, for repeatability and accuracy to 

be ensured, calibration ought to be discovered for various moisture levels. Measurements also 
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rely upon the reinforcing geometry and structure; however, the method has extreme sensitivity 

to moisture content within the elements of the building and is easy and quick to undertake [99]. 

 

 

 

 

 

 

 

2.7.3 Optical fibre sensors  

There are several advantages to the optical fibre sensors (OFS) method compared to some other 

methods. Since it has a higher degree of sensitivity to low chloride concentrations, it saves 

energy, and the presence of fields of electromagnetism do not influence the measurements [35]. 

Also, sensor sharing is more convenient in larger structural applications due to the long and 

thin geometry and capacity for coping with surroundings. The outcome is that, as each fibre 

segment may perform as a sensor, there can be the detection of slight defects for any part of 

the structure [100]. Figure 2.8 shows an analyser of the optical spectrum giving the spectra of 

transmission employed in estimating the refractive index. 

 

 

  

 

 

 

Figure 2.8:  Optical fibre sensor diagram [100]. 

Figure 2.7: Techniques based on ER method (a) Wenner array, (b) Multi-

electrode resistivity probes [91] 
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There are, however, essential considerations if seeking to make measurements that are reliable 

and accurate. For instance, adequate optical fibre protection needs to be done to prevent 

breakage during casting or service life. The protection needs to permit light transmission 

without obstruction or bending of optical fibre since that would lead to data being missed [101].  

 

2.7.4 Ground-penetrating radar  

Ground penetration radar GPR is a technique closer to ultrasonic pulse-echo methods and 

microwave spectroscopy, differing only by the kind of energy used and single frequency. In 

simple terms, the antenna sends short electromagnetic energy pulses of the high nominal centre 

frequency (0.5-2GHz) into the ground (pulse systems). Depending on the application, they may 

represent any medium to air, such as natural ground, concrete structures, masonry structures, 

pavement or bridge decks [102]. The antenna represents a transition device between a guided 

wave and a free space wave. The transmission line transports electromagnetic energy to or from 

the antenna. In the first case, it works as a transmitter and in the second as a receiver. When 

the dielectric properties of two consecutive layers produce enough contrast, the transmitted 

energy is partially reflected at the boundary surface. The remainder is transmitted and refracted 

at the same interface before continuing propagation through the next layer until it finds a new 

interface, at which point the process is repeated.  

GPR has proved to be a powerful tool in investigating a wide range of applications, particularly 

as an NDT technique, using high-resolution antennas (> 500MHz). Radar has had varying 

levels of success in locating and detecting reinforced bars, metallics, and plastics, detecting 

moisture and voids, detecting chlorides, estimating pavement and structural thickness, and 

identifying building details. A maximum frequency should be proposed in GPR surveys to 

prevent clutter. It suggests that the wavelength should be ten times larger than the characteristic 

dimension for geological materials [103]. Figure 2.9 shows the possible path of the radar wave 

emitted from the GPR antenna. This demonstrates that some of the electromagnetic EM wave's 

energy passes through the asphalt and deck concrete layers. In contrast, the remaining EM 

waves are reflected from the boundary at different permittivity. Hence, the reflected EM wave 

is detected by the receiving antenna of the GPR system and stored for data analysis. Therefore, 

the reflected EM wave analysis detects underground cavities, layer thickness, and rebar 

location [104]. The method is based on the principle that deteriorated concrete with higher 

water content and chloride concentration would exhibit higher energy attenuation than the 
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sound area. Many researchers have verified that the in-situ testing method is effective in 

assessing the condition of concrete bridge decks[105] [106] [107]. Moreover, several 

researchers have demonstrated the feasibility of GPR as an in-situ NDE method to evaluate the 

depth of chloride-induced deterioration of concrete in bridge decks [108]. 

However, this technique has limitations to be considered, which probably explains why radar 

has not had success in many applications; limitations such as it requires considerable personnel 

expertise to operate the equipment; interpretations of data are still in many cases comparative 

in nature, often necessitating visual inspection and drilling, coring excavation; frequently 

requires sophisticated signal processing when the data present high noise level or complex 

signatures [40, 109]. The signal does not always improve the results significantly and thus is 

not always economically justifiable. The commercial systems available are still quite 

expensive, restricting their availability as an NDT technique for most potential users in the civil 

engineering field. The radiated energy is not like a laser beam, and it diverges with angles 

depending on the electrical properties of the medium [110].  

Figure 2.9: GPR scanning on a concrete bridge deck and a possible path of EM waves penetrating the 

concrete cover [105]. 
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2.7.5 Chlorimeter tool 

The tool known as the chlorimeter is a gold standard technique with the now-common use of 

model no. C-CL-3000 within the industry is a kind of destructive method for detecting chloride 

amounts within concrete samples. The system of chlorimeter testing offers an accurate and fast 

way of determining the total content of chloride within concrete. One can undertake the test to 

detect chloride ion presence within the concrete and the respective penetration of ions. 

Chlorimeter tool accuracy has a broad range per unit weight from 0.002% - 2% chloride. The 

device limitations are that a partially destructive drill hole is required during the testing, it is 

time-consuming, there is a high cost to the chloride liquid used, repair and maintenance are 

needed, and the main concrete quality will decrease. Figure 2.10 shows a chlorimeter kit  [111]. 

2.8 Corrosion potential  

 

The following test is used to measure the corrosion potential of reinforced concrete. 

 

2.8.1 Half-cell potential 

Reinforcing steel corrosion is an electrochemical process. The behaviour of the steel can be 

assessed using a half-cell potential measurement, the higher the potential, the higher the danger 

of corrosion. Several components may affect resulting accuracy and should follow many steps 

and procedures to acquire correct readings. There then needs to be careful concrete cover 

removal over the bar in question followed by a half-cell connection with a reinforcing bar using 

a digital voltmeter. This is an NDT method; as preparation is needed, it can be problematic, 

and the testing itself can be time-consuming, and there can be a lack of accuracy in the results. 

The basic measurement elements are shown in Figure 2.11  [112] 

Figure 2.10: Chlorimeter tool for the chloride field test system [106] 
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. 

  

 

 

 

 

Figure 2.11: A potential technique for half-cell measurement [112] 

 

Table 2.3: Corrosion probability under half-cell reading [112] 

Half-cell potential reading, Vs.Cu/cuSo4 Corrosion activity 

Less negative than -0.200V 90% Probability of no corrosion 

Between -0.200V and -0.350V An increasing probability of corrosion 

More negative than -0.350V 90% probability of corrosion 

2.8.2 Ultrasonic Pulse Velocity  

The ultrasonic pulse velocity (UPV) method may be employed in concrete testing to determine 

concrete uniformity and the voids, cracks, and cavities present. Material pulse velocity depends 

upon its elastic properties and density, and these are related to the compressive strength and 

quality of the concrete. UPV also has applicability concerning the indication of changes in 

concrete properties. The UPV test can also detect physical deterioration of the concrete 

structural capabilities. However, the method is limited in that the wave is unable to transmit 

through a gap [113]. A transmitting transducer is used to create ultrasonic waves, and a 

receiving transducer is used to receive these waves. The travel time of these waves from one 

point to another point is measured. The distance measured between these points plays a vital 

role in the case of the indirect method of transmission. 

Table 2.4 shows electromagnetic (EM) waves compared to the current techniques used to detect 

the level of chloride in concrete structures, with the advantages and limitations of each 

technique briefly described
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Table 2.4: EM techniques in comparison to state-of-the-art techniques to monitor chloride level 

Parameter Measured Detection Methods Advantages Limitation Principle 

 

 

 

 

 

 

Determined free 

chloride in concrete 

structures 

Ion Selective electrode 

(ISE),[94]  

It shows chemical stability in the aggressive 

environment; the fabrication is easy, through an 

electrochemical process, it can be adapted to 

other sensors for measuring other parameters ( 

e.g., temperature, ions presence) 

The accuracy of this method is 

dependent on various factors 

such as temperature, alkalinity, 

and electric field presence. 

The device is inserted near the 

rebar. Therefore, this is a 

partially destructive method 

requiring drilling into the 

concrete sample 

Electrical Resistivity (ER)  

[95, 99]  

This method can be used to estimate the 

chloride profiles by determining the chloride 

diffusion coefficient. 

The measurements are 

sensitive to the moisture 

content, which affects the 

accuracy of the results. 

The device is inserted near the 

rebar. Therefore, this is a 

partially destructive method 

requiring drilling into the 

concrete sample. 

Optical Fibre Sensor [101, 

114] 

It is energy saving. It is very sensitive to small 

chloride concentrations, but the measurements 

are not affected by the electromagnetic field. 

The sensor is better applicable to large 

structural applications. 

Optical fibre needs adequate 

protection to prevent its 

breakage during casting or 

service life. Temperature 

variation can affect accuracy. 

This method involves 

detecting the refractive index 

shift due to the chloride 

presence that changes light 

behaviour. This sensor is 

embedded into the structure 

for continuous monitoring. 

Corrosion rate, 

percentage of 

corrosion, corrosion 

progress 

Half-cell potential [114]   The simple, portable device, which produces 

chloride concentration contour mapping via the 

data logger. 

Needs preparation, a saturation 

of the concrete surface 

required along with the 

electrical connection to the 

steel reinforcement, It is not 

very accurate and is time-

consuming 

The electric potential of the 

rebar is measured by half-cell 

and indicates the probability 

of corrosion. 

 

 

Permeability test 

Initial Surface Absorption Test 

(ISAT) [88]  

Simple interpretation and moderate cost The accuracy results are 

affected by moisture content, 

Concrete mix, aggregate, age 

of concrete, cracking, water 

type curing, and temperature. 

The technique is based on the 

measurement of volume flow 

into a test specimen with 

known surface area. 

Compressive strength, 

permeability surface 

hardness, adhesion 

Ultrasonic Pulse Velocity 

(UPV) [113] 

Quick, portable larger penetration depth, simple 

interpretation, and moderate cost. 

Not very reliable, because the 

wave cannot transmit through 

the gaps and the presence of 

reinforcement can affect 

results 

Ultrasonic wave velocity and 

its attenuation 
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Determine of location 

reinforcement, 

moisture content, 

location of chloride, 

 

 

 

 

 

 

 

Ground penetrating radar 

(GPR) [40, 115] 

It can be used to survey large areas rapidly for 

locating reinforcement, voids, and cracks. 

It is capable of detecting several parameters in 

reinforced concrete structures: location of the 

reinforcement, the depth of cover, the location of 

cracks, moisture content, and variations 

Results must be correlated to 

test results on samples 

obtained. Any features 

screened by steel 

reinforcement will not be 

recorded. With increasing 

depth, low-level signals from 

small targets are harder to 

detect due to signal 

attenuation. It is expensive to 

use and uneconomical for 

surveying small areas. 

Radiofrequency waves (0.5 to 

2GHz) from the radar 

transmitter are directed into 

the material. The waves 

propagate through the material 

until a boundary of different 

electrical characteristics is 

encountered. Then part of the 

incident energy is reflected 

and the remainder travels 

across the boundary at a new 

velocity. The reflected (echo) 

wave is picked up by a 

receiver. The transducer is 

drawn over a surface and 

forms a continuous profile of 

the material condition below. 

The equipment consists of a 

radar console, a graphic 

scanning recorder, and a 

combined transmitting and 

receiving transducer. 

Determine of chloride, 

Partial destructive 

Chlorimeter device [111] The Chlorimeter test system offers a fast and 

accurate determination of the total chloride 

content in concrete. Only a small area of the 

concrete can be tested 

Need preparation, during the 

test, time-consuming, high cost 

of extraction chloride liquid 

The device is a partially 

destructive method requiring 

drilling into the concrete 

sample. 

Determine of chloride, 

Non-destructive 

method 

Electromagnetic (EM) wave 

methods 

Electromagnetic (EM) wave has high 

penetration, is a relatively low cost, it’s got a 

very good flexible sensor design to suit the 

application and <1 minute time-consuming. 

Not used for detecting chloride 

ions in the industry yet  

The device is providing a non-

destructive measurement 

method in a real-time manner. 
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2.9 Summary 

Within Chapter 2, a literature review has detailed studies into chloride content level within 

concrete structures. The choice of design and the practice in construction have a significant 

bearing on the level of durability for structures of reinforced concrete that have exposure to 

very aggressive environments such as with contamination from chlorides. Deterioration 

because of chloride is one of the two primary types of corrosion for reinforcement, i.e. typical 

corrosion and pitting corrosion. Structures such as bridges are prone to pitting corrosion when 

located close to exposure to seawater. If there is a splash zone close to the interface between 

air and water, the splash zone is, in fact, very critical for the safety of such structures. Corrosion 

of rebar within a concrete structure is a time-consuming chemical process. It suggests that it 

occurs indirectly through coupled half-cells and chemical science reactions involving the 

passage of electrical charge rather than directly through the metal having a chemical reaction 

with its surroundings. 

 Chloride ions initiate the corrosion process upon the steel through their localisation at a 

specific steel part and then depletion at the steel surface because of the concrete's aggressive 

environment. The problem of chloride attack usually increases when the chloride ions ingress 

from outside.  Two critical sources of chloride ions are de-icing salt and seawater in contact 

with concrete. The aggressive ions produce a breakdown area in the passive film that leads to 

the dissolution of metal that underlies it in an accelerated way.  If such an attack is impeded, it 

is known as crevice corrosion. The presence of chloride ions in concrete may hail from both 

internal and external sources. External sources may include salts used for de-icing, i.e. melting 

ice on roads and bridges, and salts within seawater if a structure is located in a marine 

environment. Several methods of NDT are currently available that can be employed in 

detecting chloride levels and corrosion within steel-reinforced concrete. Limitations and 

advantages of a number of the current techniques have been described briefly here within this 

chapter. Based on the limitations of existing approaches, there must be further development. 

This research aims to address those limitations using a novel technique of EM waves for the 

determination of chloride ion levels within concrete structures with different concentrations of 

salt water in a way that is reliable, real-time, and non-destructive. 
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Chapter Three:  Use of Artificial Neural Networks 
 

This chapter will begin by focusing on an Artificial Neural Network ANN method in general. 

Then, concentrate on the ANN model design and activation and transfer function in detail , 

followed by a further critical review of the use of a single-layer feed-forward network and 

multilayer feed-forward networks. This chapter will introduce classification techniques used 

such as the WEKA method in detail, followed by a further critical review of related studies of 

ANNs used and classifications approaches in different contexts, including the numerous 

geotechnical engineering specialities areas. Finally, a summary of the key findings of the 

literature review will be provided. 

3.1 Introduction  

Artificial neural networks (ANNs) are computational models, which attempt to represent the 

biological structures of the human brain and its nervous system. It is possible to track composite 

structures using damage assessment techniques, detect and localise possible imperfections in 

curtain wall systems, and monitor structural health through damage-induced changes with the 

cooperation of ANNs. They have the potential to properly implement difficult tasks, such as 

function approximation and classification and pattern recognition [116].  ANNs comprise 

interconnected processing elements (PEs). The PEs receive input indicators (Xi 1, Xi-2,…..Xi-

n) (see Figure 3.1) from either external sources or perhaps adjacent PEs, then transfer these to 

blinkers in the next layer by the method of an activation feature (AF). A vector of IVs could 

represent the layer input. In an attempt to fix problems, the proposed unit should be trained. 

The strategies of training might generally be categorised into two types: supervised and non-

supervised. 

The supervised training model is based on a comparison between the selected input variables 

and the output model. This learning method is usually formulated when the mistake feature, 

such as the mean square error between the measured and the expected values, is summed over 

all available data. In contrast, the non-supervised type is entirely dependent on the correlations 

among entering data. Throughout the learning process, the ith level outputs are multiplied by 

an optimised vector, the so-called link weight (wij). Subsequently, the newest is added in and 

together they have a threshold bias and are later summarised before being used as inputs to the 

following PE within the next ith level. The PEs in hidden layers and the output layers will be 

identified using an activation feature, which is brought to the input and creates the valuation of 
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the ith processing aspect in the output layer.  It should say that a bias doesn't include an 

activation function and has a specific value-driven value throughout the training process along 

with the importance value of the synaptic interconnection weights [117]. Both the wij and the 

biases are kept up to date during the learning process, reducing the overall error between the 

actual and predicted values. An essential fact of significant importance is that these layers' 

optimum setup is calculated using a range of steps. More precisely, these phases may be 

summarised as: 

1) The variety of input model parameters. 

2)  The maximum number of hidden layers. 

3) The number of unit outputs. 

4) The number of processing elements (PEs). 

5) The computing performance indicator. 

6) The set of activation functions (linear or non-linear). 

The type of training algorithm is one of the most important features that play a crucial role in 

the performance of ANNs [118]. Indeed, following the model's configuration, other essential 

aspects need to be specified, such as the standardisation mechanism and the data set division 

process, to prevent over-fitting and ensure the trained network's strong generalisation capability 

[119]. It is notable that Rumelhart et al. (1986) initially introduced a definition of ANN [120]. 

3.2 ANN model design 

 

The framework of the ANN has been discussed by many researchers [121] [122] [123]. ANNs 

consist of a variety of artificial neurons known differently as processing elements nodes (PEs). 

In the multilayer perceptron (MLP) approach, which is the most frequently utilised ANN in the 

field of geotechnical engineering, usually, processing components are assembled in layers. 

These consist of an output layer and an input layer and one or perhaps more intermediate layers 

identified as hidden layers as exposed in Figure 3.1. 
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The scalar weights figure out the strength of the contact between interconnected nodes [124]. 

An individual processing unit sums its weighted input connections and applies a bias or a 

threshold device. However, reducing the percentage of error between the validated value and 

the target values of the neural training network that the bias unit, generally provides to scale 

the input to a value range to improve convergence properties. The put together values of the 

independent variables (IVs) processed out of the very first level are then passed by way of a 

transfer function (TF) to create the output of the processing component. The TF maps a set of 

(IVs) to a finite output range. The process described is summarised in Equations 3.1 and 3.2, 

respectively. 

 

Figure 3.1: Schematic structure of ANN model inputs and output variables 
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Ij = ∑ wij
(1)

IVi
n
i ± b(1)                                                                                                     Eq (3.1) 

y = ∑ wj
(2)

Ij
n
i=1 ± b(2)                                                                                                    Eq (3.2) 

Were 

n is the number of independent variables, IJ the node activation level, the factors  b(1)and wij
(1)

 

are the weights and biases from the input and output of the hidden layer, b(2) and wj
(2)

 are the 

weight and the bias for the second layer. 

3.2.1 Activation or transfer functions 

Transfer functions (TFs) can have a selection of forms. The logarithmic, hyperbolic tangent 

sigmoid (tansig), sigmoid (logsig), bipolar sigmoid, and radial basis (radbas) transfer operators 

are in most cases commonly utilised transfer operators in artificial neural networks. The 

primary key objective would be to transfer the weighted value of all signals hitting the 

processing component to determine its firing intensity [125]. The log-sigmoid transfer 

functionality is generally utilised once the desired production values are to the caps of zero and 

+1. In contrast, the tan-sigmoid is usually used when the selected paper values are between -1 

and +1  [126].  The hyperbolic tangent and the logistic sigmoid transfer capabilities are seen in 

Figure 3.2, the process described in Equations 3.3-3.5, respectively. 

   𝑓(I𝑗) =
1

1+𝑒
−(𝐼𝑗)                                                                                                           Eq (3.3) 

𝑓(I𝑗) =
𝑒

(𝐼𝑗)
−𝑒

−(𝐼𝑗)

𝑒
(𝐼𝑗)

+𝑒
−(𝐼𝑗)                                                                                                           Eq (3.4) 

y = ∑ wi
(j)

𝑓(I𝑗)
n
i=1 ± b(j)                                                                                               Eq (3.5) 

Were, 

𝑓(I𝑗) transfer function, b(j)and wi
(j)

 artificial connections bias and weights between the input 

values and output values (hidden) layer. 

A transfer function: Represents the relationship between the output signal of a control system 

and the input signal, for all possible input values. 

Bias: Bias is used for shifting the activation function towards left or right, it can be referred to 

as a y-intercept in the line equation. 
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For the purposes of used ANNs, the following definitions need to be considered: 

(1) Inputs: An input vector is one input to the system usually written as vector x where xi 

= one element, I = (1,…..,m). 

(2) Weights: wij is the weighted connection between nodes I and j. Modelled after synapses 

in a nervous system and arranged as matrix w. 

(3) Outputs:  An output vector y is the output vector yi = one element, j = (1,….,n), formally 

y(x,w) since the vector is a function of x and w. 

(4) Hidden layer: A hidden layer in an artificial neural network is a layer in between input 

layers and output layers, where artificial neurons take in a set of weighted inputs and 

produce an output through an activation function. 

(5) Targets: A target vector t contains extra data needed for supervised learning – contains 

the “correct” or training data. Note that tj = one element, j = (1,…..,n). 

(6) Activation function: A mathematical function, usually given as g() for gain or 

conductance, describes the neuron's firing in response to the weighted inputs. Often a 

simple binary decision or threshold. If the sum of wijxi coming to node yj exceeds a 

threshold, provide output = 1; else, output = 0. Formally, A = f(x,w). 

(7) Error: Usually a function, E, computes the network's inaccuracies as a function of 

targets t and output y; that is, E= f(t,y). 
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a) Log-Sigmoid b) Tan-Sigmoid c) Linear 

Figure 3.2: Procedures of the commonly used ANN transfer functions 
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3.3. Neurons 

 

Neurons are the most precise units of processing within an ANN. The perceptron is an example 

of a model of a neuron put forward in 1958 by Rosenblatt; thought of as the model of neurons 

that brought about the development of ANNs [127]. The general structure for the perceptron is 

shown in Figure 3.3. 

 

 

 

 

 

 

 

y = φ(∑ wn
n
N=1 . xn + b)                                                                                           Eq (3.6)  

where, 

(Xn) input values, (Wn) weights and (b)  bias values, (φ) the activation function, and (y) the 

output value. 

Equation 3.6 shows the activation function or transfer for a perceptron. A perceptron initially 

performs a linear input value combination (Xn) and the weights and bias (∑) value. Then, the 

activation function (φ) is applied to the linear combination (∑) results to obtain (y) (the output 

value). Nonetheless, there are currently many different functions of activation put forward for 

the implementation of perceptrons, such as sigmoid functions, saturating functions, and linear 

functions [128]. 

3.3.1 The Single-layer feed-forward network. 

In this particular type of ANN structure, a neural network encompasses just one layer of 

computational processing element (PE) If no feedback is received from the neurons' outputs to 

inputs across the network, the network is referred to as a single layer feed-forward network. A 

set of nodes creates an input layer that acts as a middleman between the single layer of neurons 

and the input layer sources in the surrounding environment to provide these PEs with their 

input signals. It's essential to emphasise that absolutely no computations are applied in input 

nodes [130]. Within this network type, there is the availability of two types of neurons as shown 

Figure 3.3: Schematic diagram of a perceptron neuron 
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in Figure 3.4, a single layer fully connected feed-forward neural network is displayed. As 

shown in Figure 3.4, only two kinds of neurons are available in this network: input neurons 

that send input signals to the output layer and output neurons that use the same transfer function 

to compute their outputs. However, the input layer does not count because there are no 

computations performed in that layer. Input signals transmit via weights to the output layer, 

and the neurons in the output layer compute output signals [131] [132]. As such, both the 

transfer and input functions flow just one way; this is why this kind of application of ANN 

structure may strictly only be of the forward type, beginning from input nodes in the direction 

of the network output [133]. 

 

 

 

 

 

 

 

 

 

 

3.3.2 The multilayer feed-forward networks 

 

Multilayer feedforward networks are utilised to overcome computational boundaries and 

knowledge limitations within a single layer network [129]. The architecture of these networks 

is such that it is just an extension updated from the previous artificial structure for the neural 

network. There is an introduction of more layers between the input and output layers. Those 

layers are hidden, and so they are known, unsurprisingly, as hidden layers. The introduction of 

hidden layers leads to neural networks being superior to most algorithms of machine learning. 

Just one hidden layer brings a sufficiency for most problems. Usually, the same neuron number 

is contained in each of the hidden layers. The presence of one or more hidden layers helps the 

Figure 3.4: Single-layer feed-forward network design 
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network to collect statistics of a higher order. There is only one hidden layer for the example 

given in Figure 3.5, and the network is referred to as a 5-10-3 network because there are five 

input neurons, ten hidden neurons, and three output neurons. The networks are fully connected 

in both Figure 3.4 and Figure 3.5 because, in the following forward layer, every neuron in each 

layer connects to each other’s neurons. 

The network would be known as partially connected if some of the synaptic connections were 

missing. A multilayer perceptron is a class of feedforward artificial neural networks. The term 

MLP or particular layer nodes is used ambiguously [134]. Generally, the function of activation 

is non-linear within the units of the practically hidden layer. As such, about high-level kinds of 

interaction between input parameter signals, the non-linearity between dependents and 

independents is allowed [135] [136]. In Figure 3.5, a multilayer neural feedforward network 

with one hidden layer is seen. There is at least one layer of hidden neurons between the input 

and output layers instead of a single layer network. According to Haykin (1999), the role of 

hidden neurons is to interfere in some useful manner between the external input and the 

network output  [137] [132]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Multi-layer feed-forward network structure 
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3.3.3 Recurrent network  

In the case of a single-layer feedforward ANN, a recurrent network usually is introduced if the 

output signals feedback as an input that replaces part or all of the input signals [126]. This 

could also be extended to include feedforward multilayer networks. Simply put, a recurrent 

ANN incorporates neurons feeding the output of their outputs again to function as new inputs 

to randomly selected neurons or maybe themselves [138]. Self-feedback can happen when the 

output layer of a particular node is fed back to the same node. Feedback loops improve with 

postponing components because of the nodes' nonlinear surroundings, resulting in a nonlinear 

dynamic behaviour. The inputs model as well as output signals in a recurrent ANN system are 

provided as x(n) and also y(n) respectively to be able to reflect the simple fact of being features 

of discrete period variables n [139]. 

 

3.4 The error back-propagation algorithm   
 

The error back-propagation is one of the most popular and robust artificial neural network 

configurations [140] [141] [142]. The feed-forward error back-propagation technique is highly 

effective in modelling nonlinear relationships [135] [122]. The algorithm for back-propagation 

(BP) seeks the minimum error function value for weight space through a technique known as 

gradient descent or the delta rule. Weights that lead to the minimisation of the error function 

are considered then as solutions to the problem of learning. The back-propagation algorithm is 

a prevalent kind of ANN algorithm. It was stated by Rojas (2005) that the BP algorithm may 

be split into four key steps. The algorithm splits down, then, into the four steps of [143]: 

a) Feed-forward type of computation. 

b) BP to the output layer. 

c) BP to the hidden layer 

d) Updates to weight. 

For forwarding propagation of the operating signal, the input signal is propagation to an output 

layer from an input layer via a hidden layer. The algorithm is halted when the error function 

value is sufficiently small. The system of error feed-forward BP has shown itself to be a tool 

with excellent efficiency in the modelling of relationships that are non-linear [135]. The ANN 

is creating; therefore, it is a technique that fully links each element processing within a precise 

layer to the layer next to it. As a result, every neuron in the input layer sends output to every 

neuron in the model output layer, and every node in the input layer sends output to every neuron 
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in the middle layer  [144]. The network's weight value and offset value are kept constant 

through the operating signal forward propagation. Each neuron layer status only exerts an effect 

upon that of the neuron's next layer. 

Consequently, there cannot be the achievement of predictable output within the output layer – 

it may switch into the error signal back-propagation. For error signal back-propagation, the 

error signal can be defined as the variance between actual output and the network's expected 

output. Within error signal back-propagation, the error signal is propagated layer by layer from 

the end of output to the layer of input. Therefore, whilst the error signal back-propagation is 

done, the error feedback regulates the network weight value. However, continuous offset value 

and weight value modification are applied for the real network output to make it a lot closer to 

the one expected  [145].  

There is an assumption that all weighted Synaptics of the network are fixed whilst the forward 

step takes place. During the backward pass, the weighted synaptic of the network is adjusted 

under the updated error. During the training process, the iteration procedure repeats the error 

term required to change weight until a connection weight is set with the output/input mapping 

containing the minimum error value provided by the trained network. The ANN learning 

method for multilayer back-propagation consists of two processing elements that pass through 

the different network layers: a forward and backward pass, by measuring the gradient for each 

connection weight and bias using the chain rule, as seen in Figure 3.6. The synaptic network 

weights are fixed during the forward phase, yet they're adjusted based on an updated error. This 

iteration method repeats during the training cycle, which propagates the error period needed 

for weight adjustment until the trained network can give a collection of link weights, which has 

the input/output mapping that provides the minimum value for errors. Among the changes that 

have been made to the error back-propagation algorithm, one approach includes the use of the 

learning rate.    The learning rate parameter (η) can be considered as the factor that initiates the 

step size the ANN takes in negative through the weight spaces to minimise the training error 

magnitude. Another factor that is considered in any training process of ANN is the term of 

momentum (α). Momentum may speed training up within error surface regions that are very 

flat as well as suppress weight oscillation within ravines or steep valleys [146]. 
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3.4.1 The algorithm for back-propagation  

The back-propagation equations provide a manner of computing the loss function gradient. 

Also, the following equations are used by the MATLAB algorithm to calculate the hidden 

neuron output, output layer through the combination of weight calculations and back-

propagation during the whole training process. The values that are obtained through the sensors 

used as input data, and the target values collected from the alternative method will be validated 

through the ANN MATLAB algorithm. This can be expressed explicitly as an algorithm form 

by [140]: 

i) Initialise the weight of the network connection between the values measured and the values 

predicted.  

ii) Repeat the steps below until all conditions are met.  

iii) Summarise weighted inputs and use the transfer function to calculate the hidden layer 

output.  

 

ℎ𝑖 = 𝑓 ∑ (𝑥𝑖 𝑤𝑖𝑗) + 𝜃𝑗
𝑛
𝑖=1                                                                               Eq (3.7) 

Where, 

( ℎ𝑖) hidden neuron output, (𝑤𝑖𝑗); connection weight between input neuron i and hidden neuron 

j, (𝑥𝑖 ) The input signal is,  (𝜃𝑗) bias on a hidden neuron, (f)  activation function.  

 

iv) Summarise the output weighted by the hidden layer and apply the activation function to 

calculate the output layer.  

𝑦𝑘 = 𝑓 ∑ (ℎ𝑗 𝑤𝑗𝑘) + 𝜃𝑘
𝑛
𝑖=1                                                                              Eq (3.8) 

 

Where, 

(𝑦𝑘) independent output, (𝑤𝑗𝑘) connection of weight between the hidden nodes j and k.  

v)  Back-propagation combinations 

 

𝛿𝑘 = (𝑑𝑘 − 𝑦𝑘)𝑓
−(∑ 𝑗ℎ𝑗𝑤𝑗𝑘 + 𝜃𝑘)                                                                Eq (3.9) 

Where, 

 𝑑𝑘 the desired output of the neuron, (𝑓−) the activation function derivation;  
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vi)  Weight calculation 

 

∆𝑤𝑗𝑘(𝑛) = 𝜂𝛿𝑘ℎ𝑗 + 𝑎∆𝑤𝑗𝑘(𝑛 − 1)                                                              Eq (3.10) 

Where, 

 ∆𝑤𝑗𝑘(𝑛) is an adjustment on connection weight between nodes j and k;(η) the rates of learning, 

(𝑎) term momentum, (ℎ𝑗) the actual output of the hidden neuron, (𝛿𝑘) the error back-

propagation,  ∆𝑤𝑗𝑘(𝑛 − 1). The earlier weight correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 The training algorithm of Levenberg-Marquardt  

One aspect of the artificial intelligence (AI) principle is the Levenberg-Marquardt (LM) 

training algorithm. The LM approach is well known for achieving dramatically higher 

Figure 3.6: The Back-propagation algorithm error steps 
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performance by making training 10 to 100 times more effective, quicker, safer and more 

frequently converging. The cycle of optimisation and training means defining the optimal 

parameters of the ANN model, which are the relation bias, weights, number of hidden layers, 

and the maximum number of hidden neurons. It should be noted that the key objective behind 

the LM algorithm implemented is to minimise the error value between the expected and target 

value by changing the connection weights most contributing to the error [147]. The error 

function is typically a non-linear function for multi-layer feed forwards. Therefore, it cannot 

force an empirical approach to minimise the error percentage to its lowest value. Alternatively, 

it's essential to find an algorithm that requires a search through the spaces of weight consisting 

of a sequence of the form steps: 

wk+1 = wk + ∆wk                                                                                                       Eq (3.11) 

Where, 

wk+1 is the weight value at a certain iteration, wk the value of the same weight at the previous 

step k, ∆wk is the increase of the weight vector.  

 

The LM algorithm: is an iterative technique that locates the minimum of a function expressed 

as the sum of squares of nonlinear functions. It has become a standard technique for nonlinear 

least-squares problems and combines the steepest descent and the Gauss-Newton method. 

The use of secondary algorithms, such as the LM algorithm, significantly increases the speed 

of training [147, 148]. Through a combination of the Newton and EBP algorithms, the LM 

algorithm ranks as a relatively efficient training algorithm for medium and small-sized patterns. 

Usually, the error function is a function that is non-linear for the multilayer type of feedforward 

networks. So, an analytical solution is impossible to implement to reduce the error percentage 

to the lowest value. The method of LM has been put forward for overcoming the main problems 

and limitations associated with conventional approaches and, in general, is often cited as being 

a robust and well-organised training algorithm in all aspects of engineering [149]. Different 

types of algorithms found in the related literature by several scholars include various techniques 

for calculating the increase in weight vectors [139]. ANN implements the LM technique to 

address the key disadvantages and weaknesses of conventional approaches and is widely cited 

as efficient and reliable in all aspects of the engineering training algorithm [117, 150]. The 

derivation of the LM algorithm will be presented in four parts. (1) Steepest descent algorithm 

[151] (2) Newton’s method [151] (3) Gauss-Newton’s algorithm [152] (4) LM algorithm. 
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However, this project focuses more on the Levenberg-Marquardt algorithm.  The LM approach 

offers additional approximation to Hessian Matrix JTJ to ensure that the approximated Hessian 

matrix JTJ is invertible [153]: 

 

The  update of the Gauss-Newton algorithm is presented as: 

wk+1 = wk − H𝑘
−1gk                                                                                               Eq (3.12)  

   

wk+1 = wk − (Jk
TJk)

−1Jkek                                                                                     Eq (3.13)  

 

The Gauss-Newton algorithm is a commonly used iterative method for addressing nonlinear 

least-squares problems. It is particularly well-suited to treat very large-scale variational data 

assimilation problems that arise in the atmosphere and ocean forecasting. 

 The advantage of the Gauss-Newton algorithm over the standard Newton’s method equation 

(3.12) is that the former does not require calculating the second-order derivatives of the total 

error function by introducing Jacobian matrix J instead.  

The LM scheme is an effective algorithm but a much more computationally intense model of 

a version of back-propagation. This process was developed to enhance the Gauss-Newton 

technique to remove the numerical uncertainty connected with the latter matrix inversion.  This 

particular technique will add another approximation to the Hessian matrix, H denoted as: 

 

H ≈ JTJ + μI                                                                                                               Eq (3.14)  

 

Where, 

μ always positive, which is called combination coefficient, I is the identity matrix, J is the 

Jacobian matrix, which could be determined using a less complicated back-propagation 

technique than Hessian matrix computing. 

 

H: is Hessian matrix of partial derivatives. 

I an identity matrix: It is a square matrix with 1s on the main diagonal and 0s on the rest of the 

diagonal. 

J Jacobian matrix: The Jacobian matrix is used to examine the system's small-signal stability. 

Jacobian is the matrix of all the first-order derivatives of a function f(x1,x2,x3,……xm) denoted 

by: J(x1,x2,x3,……xn) and is defined as: 
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𝐽(𝜒) =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
…

𝜕𝑓𝑚

𝜕𝑥𝑛]
 
 
 

                                                                                                  Eq (3.15) 

  

From the above equation (3.13), one may notice that the elements on the main diagonal of the 

approximated Hessian matrix will be larger than zero. Therefore, with this approximation 

equation (3.13), it can be sure that matrix H is always invertible. 

We trained the LM algorithm in the current study with five input parameters and three outputs. 

However, by combining the equations 3.13 and 3.14, the update rule of the Levenberg-

Marquardt (LM) algorithm can be presented as:  

  

wk+1 = wk − (Jk
TJk + 𝜇𝐼)−1Jkek                                                                              Eq (3.16)  

The Levenberg-Marquardt algorithm, a mixture of the steepest descent algorithm and the 

Gauss-Newton algorithm, switches between the two algorithms during the training process. 

While the combination coefficient 𝜇 is minimal (nearly zero), equation 3.16 approaches 

equation 3.13, and the Gauss-Newton algorithm is used. When the combination coefficient 𝜇 

is huge, equation 3.16 approximates to equation (3.14), and the steepest descent method is used. 

A symmetric matrix containing all of a multivariate function's second derivatives is the Hessian 

matrix. 

The following is the definition of a second partial derivative: 

𝑓𝑥𝑖𝑗 =
𝜕

𝜕𝑥𝑖
 (

𝜕𝑓

𝜕𝑥𝑖
)                                                                                                                 Eq (3.17) 

The symmetric matrix of the Hessian matrix is as follows: 

𝐻(𝜒) =

[
 
 
 
 
𝑓11 𝑓12 … 𝑓1𝑛

𝑓21 𝑓22 … 𝑓2𝑛

⋮
⋮

𝑓𝑛1

⋮
⋮

𝑓𝑛2

⋮
⋮
…

⋮
⋮

𝑓𝑛𝑛]
 
 
 
 

=

[
 
 
 
 
 
 

𝜕

𝜕𝑥1
(

𝜕𝑓

𝜕𝑥1
)

𝜕

𝜕𝑥1
(

𝜕𝑓

𝜕𝑥2
) …

𝜕

𝜕𝑥1
(

𝜕𝑓

𝜕𝑥𝑛
)

𝜕

𝜕𝑥2
(

𝜕𝑓

𝜕𝑥1
)

𝜕

𝜕𝑥2
(

𝜕𝑓

𝜕𝑥2
) …

𝜕

𝜕𝑥2
(

𝜕𝑓

𝜕𝑥𝑛
)

⋮
⋮

𝜕

𝜕𝑥𝑛
(

𝜕𝑓

𝜕𝑥1
)

⋮
⋮

𝜕

𝜕𝑥𝑛
(

𝜕𝑓

𝜕𝑥2
)

⋮ ⋮
⋮ ⋮

…
𝜕

𝜕𝑥𝑛
(

𝜕𝑓

𝜕𝑥𝑛
)]
 
 
 
 
 
 

                     Eq (3.18) 
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3.5.1 Determination of the Levenbverg- Marquardt 

 

Determining the optimum ANN structure is one of the challenging tasks in network 

advancement. It involves selecting the optimal number of layers, the most effective model input 

parameters, the total number of hidden layers, and the total number of nodes in each layer. 

There is currently no coherent theory to assess an optimal ANN topology [154]. There are 

essentially two layers representing the input and output variables in every proposed network. 

The researcher has reported that one hidden layer is satisfactory and can map any continuous 

feature between model variables [155]. 

It should be remembered that adding more than one hidden layer leads to significant delays in 

the training cycle and raises the chances of being stuck in local minima [156]. Trial and error 

is the approach promoted [157], widely used to optimise hidden layers number and 

connectivity. It has been recommended by [158] that the maximum number of nodes in a single 

hidden layer might be considered as 2N+1, in which N is the number of independent variables. 

Another method, recommended by [154] is that the top selection of the nodes used at the hidden 

layer is a characteristic of mean square error (MSE) as well as correlation coefficient (R). When 

the MSE is the minimum value and the R numerical value at its possible upper limit, it can 

finalise the number of neurons. 

3.6 The training process 
 

3.6.1 The selection of model and estimation of performance  

The performance of the ANN should be assessed once the successful completion of the training 

process has taken place. The goal of the overall performance evaluation stage is to make sure 

that the unit can be generalised to the overall performance analysis limits set by the program 

information sufficiently, as would be expected [149]. The acceptable strategy frequently 

implemented in the appropriate literature is testing the measuring operation of the trained 

network on an assessment data subset [159]. The generalised model can be considered robust 

if these output parameters are necessary. Many researchers have reported various measuring 

performance indicators, such as the correlation coefficients (Pearson's R and p), root mean 

square error (RMSE) and mean absolute error (MAE). The critical statistical performance is 

usually measured mainly to assess the efficiency of the ANN model. 
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The coefficient of determination (CD) value is used to determine the correlation and fitness 

between the measured and the predicted value [160]. The simplest and most commonly used 

method employed in ANN is the method of holdout cross-validation. There is a subdivision of 

training data with this particular technique into sets of testing and training and validation. The 

training set is used in the network training, whilst the validation set is utilised to evaluate the 

network's performance by estimating mean absolute error. There is the repetition of the process 

for each type of network design, and the one that is selected as the best model of ANN is the 

one that produces the lowest absolute error on average. The correlation coefficient, for the 

measurement of performance denoted by  (R), is a measure of the strength of the straight line 

or linear relationship between two variables of 0.0 and 1.0, the index that follows was suggested 

[161]:  

|𝑅| ≤ 0.2 weak correlation in existence between two variable sets.  

0.2 < |𝑅| < 0.8  a correlation is in existence between two variable sets. 

|𝑅| ≥ 0.8. there is the existence of a strong correlation between two variable sets. 

Equation 3.16 shows the correlation coefficient (R) to determine the relative correlation 

between two variable sets. 

R =
∑ (Ti−T−)(Pi−P−)n

i=1

√∑ (Ti−Ti
−)n

i=1 ^2∑ (Pi−P−)^2n
i=1

                                                                                   Eq (3.16) 

The most flexible criterion for measuring error between predicted and measured values is the 

RMSE which is beneficial because the more significant error value considers more than minor 

errors. However, MSE removes emphasis placed on significant errors. Therefore, it ought to 

be noted that both MSE and RMSE are desirable when there is a continuous result for assessed 

data output. The equations that follow may be applied in the calculation of MSE and RMSE:- 

RMSE = √
1

𝑁
∑ |𝑇𝑖 − 𝑃𝑖|

𝑛
𝑖=1                                                                                           Eq (3.17) 

 

MSE = √
1

𝑁
∑ (𝑇𝑖 − 𝑇𝑖

−)^2𝑛
𝑖=1                                                                                      Eq (3.18) 

Where, 
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 𝑁 symbolises the number of data sets, 𝑃𝑖, and 𝑇 is the computational and targeted value, and 

𝑇 ̅ and 𝑃̅ are the means of the targeted and predicted values. 

 

3.6.2 Testing process 

The trained network's performance is assessed in the testing procedure by looking at the errors 

on the training and validation sets and the test results. When the correlation coefficient (R) is 

close to one, there is a significant connection between the intended and network outputs. In 

contrast, when it is close to zero, it means the opposite. However, the best network is training 

for measurement of network performance expressed in terms of R-value that, once more, uses 

both validation and training sets as entire data for training. There is then an assessment of its 

performance through the use of the testing data. A fully trained network ought to have the 

ability to predict quickly from this unseen data set; its evaluation is done by measurement of 

R-value. A flowchart presents the algorithm of ANN for the entire process mentioned above in 

Figure 3.7. 
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Figure 3.7: Flow chart of the ANN algorithm 
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3.7. Classification 

Classification is the most common form of the machine learning application. The goal of the 

classification process is to discover a way of classifying unseen examples founded on the 

knowledge extracted from a pre-classified set of instances provided. Sometimes the 

classification is known as supervised. In a sense, a scheme operates under supervision by giving 

an actual outcome for each training example in the training process. This outcome is, therefore, 

called the example ‘class’. Achievement of learning of classification may include arbitration 

through a trial of the learned explanation of the concept upon a set of independent test data, the 

proper classification of which is known though not available for the machine. The rate of 

success on the test data provides an objective measure dependent on how well the concept is 

learning. 

Algorithms for machine learning discover natural patterns within data to generate insights that 

can help make better predictions and decisions—data used in machine learning to produce a 

model for the performance of a particular task. Machine learning employs two techniques: 

unsupervised learning, which tries intrinsic structures or hidden patterns within data input; and 

supervised learning, which involves training a model on known output and input data to predict 

future outputs. These techniques are presented in Figure 3.8. 
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representation. 
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Figure 3.8: Schematic for machine learning techniques. 
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Supervised learning 

 When there is uncertainty, supervised machine learning aims to build a model for predictions 

based on evidence. An algorithm for supervised learning takes a known input data set and the 

known responses for the output data. it trains a model for the generation of reasonable 

predictions in response to the new data classification and regression techniques used in 

supervised learning to develop predictive models.  

3.7.1 Classification techniques  

Classification models start the classification of data into various categories. Classification is a 

fundamental task in data analysis that requires constructing a classifier, a function that assigns 

a class label to instances within the set of attributes described. However, this thesis focuses on 

the basic concept of the data mining technique of classification. For the classification of data 

collection, Meta, Misc, Rules, and Trees classifiers are used. In the current study, the WEKA 

tool is used to classify the database into different classes. WEKA is an abbreviation for Waikato 

Environment for Knowledge Analysis. The full details of the WEKA are discussed in the next 

section after the most significant frequency has been selected from the WEKA Workbench 

classification technique as discussed in the next section. The level of chloride ions in concrete 

structures was validated using an ANNs method in five different saltwater concentrations. 

Based on five experimental data sets collected within five different saltwater concentrations, 

the ANN model is applied to validate the level of chloride ions in the concrete structures. Data 

was collected using a Rohde and Schwarz ZVL Vector Network Analyzer connected to a 

microwave horn antenna with a frequency range of 2 to 12 GHz, with each sample measured 

ten times. Then, the Chlorimeter tool method was used to measure the level of chloride ions in 

different cover depths directly after the microwave sensor measurement was finished on each 

sample. The model is developed, trained, validated and tested using a multi-layer back-

propagation method. The validated values compare with actual test results by applying the Chi-

squared technique to calculate the percentage error.   

3.7.1.1 WEKA 

 

Waikato University academics in New Zealand created the WEKA. The first implementation 

of WEKA in its current form was in 1997. WEKA  uses the Graphical User Interface (GNI) 

and General Public License (GPL). The software is written in the JavaTM language and 

comprises a GUI for data file interaction. There is no need for in-depth data mining knowledge 

to operate WEKA, making WEKA a prevalent tool for mining data. Also, WEKA provides the 
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users with a GUI and offers many facilities. WEKA is a state-of-the-art machine learning (ML) 

technology and it is applied to real-world data mining issues. The data file that WEKA usually 

uses is in ARFF or CSV file format. ARFF stands for Attribute Relation File Format, consisting 

of unique tags showing distinction in the data set. WEKA implements pre-processing 

algorithms for data, classification, clustering, regression, and association Rules of the 

procedure [162]. 

3.7.2 Methods 

 

This section describes the most critical classification techniques with their basic working and 

the advantages and disadvantages of being used in this project.  

3.7.2.1 Bayesian network 

This type of algorithm refers to a graphical model for possible relationships between a set of 

variables [163]. The advantages of this algorithm are presented in [164], including the flexible 

applicability; this algorithm can resolve both classification issues and regression; smoothness 

properties; minor changes in the Bayesian network model do not influence the system's 

working. Handling missing data; this algorithm again has excellent capability to fill out missing 

data by assimilating overall opportunities of the missing values. One of the problems with the 

Bayesian networks classifier is that it usually requires continuous attributes to be discretized 

[165]. 

3.7.2.2 K-Nearest neighbour  

K Nearest Neighbour is a basic algorithm that maintains all available examples and classifies 

new data or cases based on a similarity measure (KNN). It is often used to define a data point 

based on how it ranks its neighbours [166]. This type of algorithm technique divides into two 

categories:  structure-based KNN and structureless KNN. The structure-based method deals 

with the basic structures of the data where the system has less mechanism associated with 

training data samples [167]. However, the entire data is categorised into sample data points and 

training data in the structureless technique. The distance is calculated between sample points 

and all training points. The points with smaller distances are known as the nearest neighbour. 

[168].  
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Advantages:  

(1) One of the KNN algorithm's most notable benefits is that it works well with huge 

training data sets and is unaffected by noisy data [169]. 

(2) No Training Period: Lazy Learner (Instance-based learning) is called KNN. In the 

training phase, it does not learn anything. It does not derive any unfair function from 

the data from the training. There is no preparation time for it, in other words. It stores 

and learns from the training data set only at the moment of making predictions in real-

time. This makes the KNN algorithm much faster than other training algorithms, such 

as SVM, Regression Linear, etc. 

(3) Since the KNN algorithm needs no training before making predictions, it is possible to 

seamlessly add new data that will not affect the algorithm's accuracy. 

(4) KNN is very simple to implement. To implement KNN, only two parameters are 

required, i.e. the value of K and the distance function. 

(5) Quick calculation time. 

(6) Versatile – useful for regression and classification. 

Disadvantages: 

(1) It doesn't work well with large data sets: the cost of measuring the distance between the 

new point and each current issue is massive in large data sets, which degrades the 

algorithm's efficiency. 

(2) With high dimensional data, the KNN algorithm does not work well because it becomes 

difficult to measure the distance in dimension with a large number of sizes. 

(3) Accuracy depends on the quality of the data. 

(4) Requires high memory-need to store all of the training data. 

(5) Sensitive to noisy data input, missing values, and outliers: in the data set, KNN is noise 

sensitive. Therefore, there is a need to assign missing values manually and delete 

outliers [168]. 

3.7.2.3 Decision tree induction 

Decision tree algorithms are the most commonly used algorithms in classification [170]. The 

method of decision tree selects an attribute that maximises specific values and fixes the timing. 

Then attribute values are divided recursively into several branches until the termination is 
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reached [171]. The decision tree is a transparent mechanism that facilitates users to follow a 

tree structure making it easier to see how it is made [172]. However,  the main objective of the 

decision tree is to create a model that evaluates the value of the required variable based on 

numerous input variables [173]. C4.5 (J48) is a well-known algorithm for decision tree 

production. C4.5 (J48) tries to delete data branches by swapping them with leaf nodes after the 

tree has been constructed [174]. Thus the strengths of C4.5 are dealing with training data with 

missing feature values and dealing with both discrete and continuous features [175, 176].  

The weaknesses include that this algorithm is unsuitable for small data sets [175] and has a 

higher processing time than other decision trees. The decision tree is created by picking a 

function and dividing the supplied example set according to the values of that function in an 

iterative process from a set of training examples. The algorithm REPTree is a fast decision tree 

learner. RepTree uses the regression tree logic and creates multiple trees in different iterations. 

After that, RepTree selects the best one from all generated trees. Reduced Error Pruning Tree 

is a fast decision tree learning technique, and it builds a decision tree based on the information 

gain variance, using reduced error [177]. Algorithm Random Tree is a supervised Classifier; it 

is a band learning algorithm that produces many individual learners. A random tree is a 

collection of tree predictors that is called a forest [177]. The algorithm Decision Stump is a 

class for using and building a decision stump. This type of algorithm is always used in 

conjunction with a boosting algorithm. The most critical issue is which characteristics are most 

effective in deciding classification and should be selected first. Information gains choose the 

most important, intuitively deemed the feature of probably the lowest entropy or perhaps the 

highest information gain [178].  

 

3.7.2.4 Info gain attribute eval 

 

Info Gain Attribute Eval (IG) must use the Ranker search method from the Weka workbench 

to select attributes to reduce the dimensionality of the data [179]. The selection of features is a 

fundamental issue in many fields. All components may be necessary for some problems. 

Feature selection decreases the dimensionality of the feature space and eliminates redundant, 

obsolete, or noisy data so that a small subset of features is essential for particular goal 

definitions. This method is selected because it can calculate the information gain for each 

attribute for the output variable. Those traits that contribute more information have a higher 

information gain value and can be chosen, while those that do not give much information have 

a lower score and can be deleted [178]. 
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3.7.2.5 Meta classifier 

Meta classifier includes a wide variety of classifications. The number of attributes and the 

number of values per attribute determines the complexities of time and space. The first 

approach is multi-scheme from meta-rule; this class selects a classifier from a set of many using 

cross-validation on the training data. The training data's performance, which is assessed by 

percent accuracy (classification) mean squared error. The second algorithm is Bagging, this 

type of class is for bagging a classifier to reduce variance, and it can do classification and 

regression depending on the base learner. The third algorithm, CVParameterSelection, is a 

meta-classifier that can optimise over an arbitrary number of parameters, with only one 

drawback apart from the apparent explosion of possible parameter combinations [162]. 

3.7.2.6 Misc classifier 

The category Misc contains only two classifiers unless additional corresponding WEKA 

packages are enabled. The InputMappedClassifier is a wrapped classifier that addresses 

incompatible training data by building a mapping between the training data that a classifier is 

built with and the incoming test instance structure. The Serialised classifier loads and uses a 

model that is serialised to a server for prediction. It has no impact to provide new training data 

sets since it summarises a static model [162]. 

3.7.2.7 Rule classifier 

 

The association rules are used to determine a correct link between all of the characteristics. 

They usually can predict more than one outcome. However, the number of records to be 

estimated correctly by an association rule is called coverage. Support is characterised as 

coverage divided by several records in total [180]. The rules are easier to understand compared 

to the giant trees.  For every path from the root to the leaf, one root is created. Each pair of 

attributes along the path is a conjuncture. The leaf holds the prediction of class. Rules are 

mutually exclusive to each other. Each time a rule is learned, tuples remove from the rules. 

OneR - This classifier will choose one characteristic and determine the optimal classification 

rule based on that attribute. The rule will then predict the value of the target attribute based on 

the value of this attribute for a specific instance. ZeroR-this is the simplest of the rule-based 

classifiers and is the majority class classifier. The ZeroR rule classifier takes a look at the target 

attribute and its possible values. Also, it will always output the value that is most commonly 

found for the target attribute in the given data set [181]. 
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3.7.3 Statistical chi-squared method 

 A chi-square (x2) statistic is a test that evaluates how well a model compares to actual observed 

data.  However, the data used to calculate a chi-square must be random data, raw, mutually 

exclusive, drawn from independent variables, and removed from a large enough sample. The 

Chi-Square Goodness of fit test is a non-parametric test used to determine how significantly 

the observed value of a process differs from the expected value. In the Chi-Squared goodness 

test, the term goodness of fit equates the sample distribution observed with the expected 

probability distribution. The x2 statistic appears quite different from the other statistics, which 

have been used in the previous hypotheses’ tests. It also appears to show little similarity to the 

previously reported theoretical chi-square distribution. The chi-square statistic is the same for 

both goodness of fit test and the test of independence. For each of these tests, all the data's 

categories are used. The observed numbers of cases refer to the data received from the sample. 

These are the frequency of occurrences for each of the data types. In the chi-square tests, the 

null hypothesis states how many cases are to be expected in each category if this hypothesis is 

correct. The chi-square test is based on the difference between the observed and the expected 

values for each category [182]. 

 

Procedure for Chi-Square Goodness of Fit-Testing 

Set up the hypothesis for the Chi-Square fitness test: 

a) Null hypothesis: in the Chi-Square goodness test, the null hypothesis suggests no 

substantial difference between the expected and the observed value. 

b) Alternative hypothesis: in the Chi-Square goodness test, the alternative hypothesis 

suggests a substantial difference between the observed and the expected value. 

Calculate the value of the Chi-Square test using the following formula: 

𝑥2 = ∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖
                                                                                                         Eq (3.19) 

 

Where 

A chi-square (𝑥2) a statistic is a test that measures how a model compares to actual observed 

data. 
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 An observation (Oi ) in statistics of cases in category i is a value of something of interest you're 

measuring or counting during a study or experiment. 

The expected value (Ei) is the expected number of instances in category i, and it is computed 

by multiplying each potential result by the chance that each event will occur and then adding 

all of those numbers. 

The calculation shows that the Chi-Square statistic is based on the difference between observed 

and predicted data if there were no links between the variables. This chi-square statistic is 

calculated by subtracting the observed number of instances from each category's predicted 

number of cases. This difference is squared and divided by the expected number of cases in 

that category. These values are added for all the categories, and the total is referred to as the 

chi-squared value.  

 

Chi-square distribution 

General chi-square tests for goodness of fit of an observed variable to a theoretical one, the 

independence of two parameters for qualitative data classification, and confidence interval 

estimation for a population standard deviation of a normal distribution from a sample standard 

deviation using the chi-square distribution [183]. 

The reason for using a chi-squared test rather than other tests like T-test,  is that a chi-square 

test requires categorical variables, each of which may have any number of levels. But the T-

test requires two variables, one must be categorical and have exactly two levels, and the other 

must be quantitative and be estimated by a mean. 

 

3.8 Related studies 

Recently, ANNs reported being a successful modelling technique in different contexts, 

including numerous geotechnical engineering speciality areas. An ANN can deal with 

complexity and record the non-linear functions adopting the substantial computer potential to 

carry out very iterated work. An investigation conducted by [184] focused on the ANN as an 

alternative approach to evaluating the chloride diffusivity of high-performance concrete 

(HPC). The use of the ANN technique is described in [185] to analyse relationships between 

several input parameters and observed corrosion-reinforcing damage. We have collected data 

sets on the effects of environmental conditions, concrete structure and properties on the degree 

of damage caused by steel corrosion on 11 concrete bridge structures in a Croatian moderate 

continental climate. The primary causes of deterioration were chloride ions from de-icing salts 
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and accelerated carbonation due to higher carbon dioxide concentration on highways and in 

towns [185]. The ANN is defined in [186] as a tool for classifying damage and predicting the 

expected future degree of damage. However, in further work [187] the author investigated the 

Nord test method for rapid chloride permeability to determine the chloride ion penetration of 

high-calcium fly ash (HCFA)-containing concrete for partial replacement of Portland cement. 

The test results are used as a training set for generating rules describing the relationship 

between material composition and chloride resistance. Multiple techniques for generating 

rules have been used and compared. The rules of the WEKA workbench algorithm J48 

provided the means for an adequate classification of plain concrete and concretes modified 

with high calcium fly ash as components of good, unacceptable or acceptable resistance to 

chloride penetration [187]. In [188] the researcher investigated rules for the automatic 

categorisation of concrete quality using selected machine learning methods of artificial 

intelligence. While many researchers highlighted the use of ANN in geotechnical engineering, 

there are still significant gaps in the subject knowledge. The slow convergence rate, the need 

to constantly change training, and getting stuck in the local minima are major drawbacks 

associated with the conventional artificial neural network [188]. In practice, both supervised 

classification and ANN techniques can provide good results to predict the outcome variable. 

Researchers are interested in their modelling with many machine learning methods for the 

prediction of different properties of concrete structures [189] [190] [191].  However, it utilised 

ANN methods based on experimental data to estimate the chloride permeability of the 

concrete [192]. It found that the ANN technique provided very accurate results for predicting 

corrosion in concrete structures [193]  [194]. 

Additionally, we chose the parameter for the input based on trial and error. In the current study, 

a new methodology has been presented using concrete specimens in different saltwater 

concentrations and exposed to microwave sensors. A chlorimeter tool was used as a partially 

destructive method to determine the level of chloride in different depths. Then, the ANN 

approach was used to evaluate between the microwave sensor data and the chlorimeter tool’s 

experimental data. The choice of input parameter has been discussed using microwave sensor 

data in five different saltwater concentrations to identify the most important frequency point to 

determine the chloride ion level in concrete. The choice of output parameter was select using 

the three different depths of chloride penetration experimental data work.  
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3.9 Summary 

The literature study's specifics are covered in this chapter to give the reader a quick assessment 

of the viability of computational intelligence methods. The viability of computational 

intelligence (CI) applications is highlighted and addressed. It could apply the CI methods 

effectively to provide a predictive model when the relationships between model inputs and 

outputs are nonlinear. The number of dependent and independent variables, number of neurons, 

training system, and data set size are the key parameters influencing model convergence, 

according to the topology and factors affecting the construction and training phase of the ANN 

model. To avoid over-fitting and ensure the trained networks' good generalisation capability, 

other essential aspects of the model must be defined after the model has been configured, such 

as the standardisation mechanism and the data set division process.  In addition, we discussed 

the technique of feed-forward error back-propagation as a highly effective method in modelling 

nonlinear relationships. Also, most of the equations used by the MATLAB algorithm to 

calculate the hidden neuron output, output layer through the combination of weight calculations 

and back-propagation during the whole training process were described. A root mean square 

error (RMSE), mean absolute error (MAE), and determination coefficients (Pearson's R and P) 

were chosen as the critical statistical measures for measuring the efficiency and generalisation 

capabilities of the trained network. The back-propagation work and supervised LM employed 

were also introduced and discussed. The algorithm of ANN for the entire process mentioned 

above was presented by flowchart. 

Moreover, the classification techniques used in these projects and WEKA workbench software 

was discussed in detail. For data collection classification, Meta, Misc, Rules and Trees 

classifiers were discussed in detail.  Finally, studies of some related projects reported on 

chloride ion penetration in concrete structures. 
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Chapter Four: Electromagnetic Waves and Microwave Sensor 
 

The electromagnetic waves, namely microwave sensing systems, will be introduced in this 

chapter as a proposed technique for detecting the level of chloride ions in reinforced concrete. 

This chapter will discuss various antenna types and evaluate their qualities for transmitting and 

receiving microwave signals to identify the most appropriate antenna for this study. The 

experimental work was carried out as preliminary work to select the optimal angular frequency. 

This section of the experiment is conducted to see whether the S21 and S11 parameters could be 

used with concrete samples and if there was a link between skin depth and concrete penetration 

depth. In terms of demonstrating the state of the art, those preliminary experiments were 

utilised to improve the methodology and justify the rest of the experimental work. 

4.1 Background 
 

 In general, microwave spectroscopy is defined as a study of those interactions between radio 

waves and matter, of wavelengths between fractions of a millimetre and several metres [195]. 

In a massive theoretical development in 1873, James Clerk Maxwell proposed the presence of 

electromagnetic waves and mathematically predicted their properties before anyone had ever 

noticed such a phenomenon or even heard of it.  Science and communications engineers have 

since utilised this radiation for many different kinds of determination. EM waves can be defined 

characteristically as having three types of physical property, i.e. wavelength (λ), frequency (f), 

and photon energy (E). Figure 4.1 shows the full spectrum of electromagnetic waves that cover 

an entire span of visible and non-visible light signals comprising magnetic and electric fields 

that are perpendicular to one another and perpendicular to the propagation direction with all 

their frequencies and wavelengths.  During its early stages, microwave spectroscopy was 

Figure 4.1: Electromagnetic waves with their full frequencies and wavelengths [160] 
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introduced to determine dielectric matter properties with experimentation carried out via 

Hertzian waves. Microwaves are commonly classified as electromagnetic waves with a 

frequency between 300 MHz and 300 GHz; the wavelength of these electromagnetic waves are 

identified as well within the range varying from one metre to one millimetre [196]. 

Microwaves are used in many applications, but in 1934 the first use was as a microwave 

radiotelephone network that worked at a frequency of 1.8 GHz between France and England. 

The magnetron was invented in 1937 and used in a high power microwave generation device 

currently used in microwave ovens [197]. Since the Second World War (WW2), the utilisation 

of microwave spectroscopy has had prominence with radar and various other technical 

developments in techniques for the generation of microwaves. This technique is utilised in a 

broad range and wide variety of applications such as food quality testing, milk quality, and 

testing of pollutants in water [198] [199] [200] [201]. The author of [202] investigated chloride 

ions in the hardened mortar by using microwave non-destructive testing. Drying structures 

using high-frequency electromagnetic radiation or microwave technologies are gaining much 

more use [203]. Electromagnetic sensing techniques help analyse civil infrastructures, such as 

transportation, in terms of static and dynamic behaviour during, before, and after a disaster like 

an earthquake. The technique of electromagnetic sensing provides knowledge about the 

materials investigated in terms of the amplitude and phase of gathered signals, which in effect 

consist of the materials’ electromagnetic properties [204].  

The electromagnetic waves provide a fast and non-intrusive diagnosis that is useful at the 

prevention level as a precautionary diagnosis of both strategic buildings and transportation 

infrastructure and they can be a critical issue in seismic risk mitigation. Furthermore, they may 

serve as a valuable tool for quickly mapping the damage to civil structures and facilities 

(highways, bridges, and dams) during the crisis, allowing for preliminary estimates of which 

areas are safe for rescuers [204] [205]. Therefore, the timely assessment, monitoring and 

recovery of bridges may reduce overall direct costs and indirect costs in terms of the potential 

destruction of property and life of the bridge. While we cannot avoid natural disasters, NDT 

can greatly reduce the total direct and indirect costs associated with bridges’ destruction due to 

internal flaws or design defects.  The electromagnetic technique can also be used for detecting 

the excess moisture content in building fabrics [207] [208], as well as in public health for 

monitoring insecticide levels in developing countries [209]. The authors in [210] report that 

microwave spectroscopy is used for non-destructive monitoring of meat drying and water 

holding capacity.  
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Microwave propagation within concrete depends upon dielectric properties that are, in turn, a 

function of free water amounts that are present within the material. There is a significant 

reduction in free water amounts during hydration, which makes methods for the absorption of 

microwaves powerful as tools for monitoring that process of hydration. There are various 

applications of microwave technology, such as determining water activity within fresh meat 

within the food industry [211]. Microwaves are used within medicine for the determination of 

breast cancer [212]. Within the water industry, microwaves can be used to detect underground 

water leaks [213]. Microwave spectroscopy is a non-ionizing, low-cost, high-penetration 

technology with considerable design flexibility, and it is a non-destructive, real-time 

measurement approach. 

4.2. Dielectric properties of concrete at microwave frequency 

Concrete is defined as a dielectric material that will store energy when exposed to an 

electromagnetic signal. Therefore, the concrete can be described by its dielectric properties 

using the EM wave field. Exposure of a dielectric material (not a perfect conductor) to an 

electromagnetic field, results in a change in the configuration of its microscopic electric dipole 

composed of negative and positive charges, whose centres do not always coincide. Material 

dielectric properties are associated with other material characteristics and can detect properties 

such as bio content, bulk density, chemical concentration, and moisture content. When exposed 

to an EM field, a change in the relative positions of the internal bound positive and negative 

charges against regular molecular and atomic forces causes polarisation, storing electrical 

energy [214]. The latter is represented by the real part of the material’s complex permittivity 

or (dielectric constant). Whereas the (dielectric constant) real part reflects the amount of 

material polarisation, the imaginary component or (loss factor) reflects the losses caused by 

conductivity and water dipole relaxation. Hence a perfectly dry dielectric material with no 

moisture would have an imaginary part of zero. 

Two independent electromagnetic properties can be defined by a dielectric, namely complex 

permittivity (𝜀∗) and complex permeability  (𝜇∗).   

Definition of permittivity: The permittivity of a material is a property that quantifies the 

resistance it generates when an electric field develops. It is explained as the ratio of the electric 

displacement to the electric field intensity. The SI unit of permittivity is Farad per metre. The 

vacuum has the lowest possible permittivity, which is approximate 8.85 × 10−12 Farad/

metre. 
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Definition of Permeability: Permeability is the property of the material which supports the 

formation of the magnetic field. The temperature, field strength, field frequency and humidity 

affect the permeability of the material. The material’s permeability is directly proportional to 

the conduction of the magnetic force surfaces. Permeability is defined as the ratio of the flux 

density to the material’s field strength. The permeability constant is the permeability of free 

space. It is represented by μ0, and it is approximately equal to 4𝜋 × 10−7 Henry/metre  

Nevertheless, most dielectric materials, including concrete and wood, are non-magnetic, 

making the permeability very near free space permeability. The discussion is therefore limited 

to the complex permittivity (𝜀∗)  this is defined as [215]:  

𝜀∗ = 𝜀′ − 𝑗𝜀′′                                                                                                                Eq (4.1) 

Where 𝜀′ is the real part of  the complex permittivity, 𝜀′′ is the imaginary part of the complex 

permittivity and 𝑗 = √−1. Then the equation 4.1 divided by the permittivity of the free space 

𝜀0 the property becomes dimensionless and relative to free space: 

𝜀𝑟 
∗ = 

𝜀∗

𝜀0
 = 𝜀𝑟

′ − 𝑗𝜀𝑟
′′                                                                                                    Eq (4.2) 

Where 𝜀𝑟
′   is the real part of the relative permittivity known as dielectric constant and 𝜀𝑟

′′ is the 

imaginary part of the relative permittivity known as the loss factor. 

However, the dielectric constant continuously measures how much energy is extracted by 

material from an external electric field. The loss factor is a function of how dissipative material 

is, due to current conduction to an external electrical field. 

The ratio of the lost energy to the accumulated energy in materials is given as a loss tangent: 

 𝑡𝑎𝑛𝛿 =
𝜀𝑟
′′

𝜀𝑟
′                                                                                                                          Eq (4.3) 

Where 𝑡𝑎𝑛𝛿 is the loss tangent, loss tangents could change with temperature, moisture, 

frequency and mixture, and compression [216] [217]. The following section defines the basic 

working principle of the microwave sensors technique. 

4.2.1 The working principle of microwave sensors technology 
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Different forms of microwave sensors are being produced, and more developed. Most of their 

principles are generally known, while some others are new. Microwave sensors use 

electromagnetic fields and a device that internally operates at a frequency from 3 MHz to the 

terahertz scale [218]. Microwave sensing technology is a widely used engineering method for 

many different industrial applications, such as for non-destructive measurements in real-time. 

This method’s theory is based on the interactions between microwaves and material under test 

(MUT), which directly affects the speed of the signal, i.e., reflects the signal or attenuates it.  

Because of this change, the material permittivity also varies, resulting in the incident 

electromagnetic signal becoming attenuated or shifting frequency. By considering how the 

reflected (S11) and transmitted (S21) microwave power differ at discrete frequency intervals, the 

signal shift can be related to the composition of the object under test [219]. Buschmüller (2008) 

explored microwave resonance technologies using the interaction between water molecules and 

shifting electromagnetic fields.  

The measuring frequency of the employed sensor is predetermined by the resonance 

wavelength of the microwave-induced resonator. However, the frequency of resonance 

depends on the geometries of the sensors employed. When the resonator is loaded with 

materials an increasing storage of electric field energy can be observed, resulting in a 

decreasing frequency of resonance. The permittivity, which is excited by the energy storage, 

significantly changes concerning the water content. Moreover, the wet material disposed of the 

resonator energy, which results in an increasing width of the resonance waves because 

resonators respond very sensitively, measurement accuracy can be high. Thus, water content 

leads to a decreasing frequency resonance; the frequency bandwidth increases simultaneously 

(see Figure 4.2).  The broadening of the observed resonance frequency band is induced by the 

moisture of the substance and the material load in the sensor's focus. By simultaneously 

considering frequency and bandwidth and comparing it to the unstressed resonator in air, two 

independent properties are available, which allow the determination of an MUT in terms of the 

moisture content. Hence, a material's moisture content can be obtained using microwave 

spectroscopy [220].  In using microwave sensors, the primary advantages are that there can be 

a broad range of applications that are cheap and non-destructive and yet effective whilst 

measuring in a non-invasive way from close by as the waves penetrate without the creation of 

any hazards to health [221].   
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Even though this microwave sensor type is at a lower range of frequency to a level of a few 

tens' worth of GHz, there are no hazards to health for either humans or animals. Furthermore, 

they may easily retrofit them to existing set-ups within the industry. 

 

 

 

 

 

 

 

 

Figure 4.2: Microwave resonance curves, resonance curves in the air (solid line), resonance curve in 

wet material (dash line) [220]. 

 

A typical microwave system comes in three parts: the graphical user interface (GUI), a vector 

network analyser (VNA), and a sensor. See Figure 4.3 for a block diagram of a microwave 

sensor network. VNA is a commonly used instrument for the design applications for Radio 

Frequency (RF). It allows the output of RF and microwave devices to define network scattering 

parameters or S-parameters. VNA data can be presented using complex data (real and 

imaginary), magnitude and phase. 

 

 

 

 

 

 

Initialising system 

Data collection 

Incident microwave signal 

Reflected microwave signal 

GUI 
VNA Sensor 

Figure 4.3: Microwave sensor technique. 
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The graphical user interface has complete control of the system. It initialises the VNA, 

configures the desired parameter (e.g. frequency range, S-parameters, etc.). Hence, it collects 

the most valuable information from a sensor via VNA, analyses data/reflected signal, and 

displays appropriate parameters/information on a laptop /PC screen (e.g. numeric data or 

expected measurement values / plotted). 

4.3 Maxwell equation relation with electromagnetic waves 

A nineteenth-century physicist named James Clerk Maxwell developed a theory that clarified 

the relationship between electricity and magnetism, stating that visible light makes up 

electromagnetic waves. Electromagnetic waves might exert forces on charges at a great 

distance from their source, making them detectable. There are two main components to EM 

waves, i.e., a magnetic field (H) and an electric field (E). As shown in Figure 4.4, these fields 

oscillate in phase in perpendicular ways to the energy propagation energy (z) and each other 

[212]. Within a vacuum, all EM waves travel at the speed of light. EM radiation is a repetitious 

periodic wave. Frequency relates to the repetitions per second for the waveform, the 

measurement of which is in Hertz (Hz). Wavelength (λ) refers to the distance travelled by a 

wave in one of its complete cycles. 

 

Figure 4.4: Electromagnetic waves components [222] 
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The distance travelled by a wave for completion of a single cycle is considered as the signal 

wavelength. If a  periodic signal has a frequency (f) travelling at the speed of light, shown as 

(c), then equation 4.4 gives the associated wavelength (λ)  [223] [224]. 

λ =
𝐜

𝐟
                                                                                                                            Eq (4.4)  

All kinds of EM waves travel at the same speed within a vacuum, i.e. the speed now known as 

the speed of light 2999792458 m/sec; Maxwell calculated that electromagnetic waves would 

propagate at speed given by the equation 4.5:  

 𝑐 =
1

√𝜀˳𝜇˳
                                                                                                                     Eq (4.5) 

Where c is the speed of light, dielectric air constant is represented by εo, with a value of  8.85 ×

10−12 Farad/metre and magnetic air permeability is represented by μo, with a value of  4π ×

10−7 Henry/meter. When travelling through other materials, however, the EM wave speed is 

reduced by a factor of √𝜀𝑟𝜇𝑟. Equation 4.6 shows the effect upon wavelength  [223, 224]. 

 

Speed of light c: A fundamental physical constant that is the speed at which electromagnetic 

radiation propagates in a vacuum has a value fixed by the international convention of 

299,792,458 metres per second. 

Dielectric air constant (εo): The dielectric constant is a measurement of the amount of electric 

potential energy stored in a particular volume of material under the action of an electric field 

in the form of induced polarisation. 

Magnetic air permeability (μo): The property of the material allows the magnetic line of force 

to pass through it. 

𝜆 =  
𝑐

√𝜀𝑟𝜇𝑟 𝑓 
                                                                                                                   Eq (4.6) 

 

4.4 Frequency and electromagnetic wave 

A wave transfers energy from one place to another without moving material between the two 

places, or a wave is a disturbance that carries energy from place to place. A typical example of 

a wave is a wave on the ocean, where they take energy, as they cause erosion on the shore. 

Still, material such as water cannot continuously transfer onto the shore. Therefore, 

electromagnetic waves do not require a medium to travel through. They transfer energy without 
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transferring particles and also travel by transferring energy between electric and magnetic 

fields. An electromagnetic wave transports its energy through a vacuum at a speed of 3.00 x 

108 m/s.  However, the propagation of an electromagnetic wave through a material medium 

occurs at a net speed that is less than 3.00 x 108 m/s.   Some waves must have a medium to 

move through; these are called mechanical waves [225]. The number of occurrences per unit 

of time of a repeating event in which a periodic function repeats the same sequence of values 

during a unit variation of the independent variable, namely temporal frequency. This confirms 

the disparity between spatial frequency and angular frequency; the period is an interval of one 

cycle in a repeating event. Thus it can be concluded that the frequency is the reciprocal of the 

period [226].  

Moreover, in the case of increasing frequency, the result is a shorter wavelength, whereas in 

the case of decreasing frequency, the wavelength will be longer, but at the same time, the 

resolution will change related to frequency. Therefore, the use of a high-frequency antenna will 

get high resolution but will achieve low depth. So, selecting an antenna is based on work 

conditions and requirements. If greater skin depth measurement is required, it will tend towards 

a low-frequency antenna and conversely [225]. The depth at which electromagnetic waves can 

be effective is the function of factors like water content, material conductivity, antenna gain 

and efficiency, receiver sensitivity, and transmitter pulse width [225]. Attenuation reduces 

signal strength during transmission, and attenuation is represented in decibels (dB). In the case 

of dB, it is ten times the logarithm of the input signal power divided by the signal power output 

of a unique medium. Consequently, positive attenuation causes signals to become weaker when 

travelling through the medium. 

4.5 Frequency, wave velocity, and speed 

Wave speed depends on the environment in which the wave is moving. It varies in solids, 

liquids, and gases. The distance a wave travels in each unit of time, such as the number of 

metres it travels each second, is known as wave speed. The following is a mathematical formula 

for calculating wave velocity: 

Wave speed = wavelength (metres) x frequency (Hz).  In many dry materials, such as concrete, 

sand, and soil, when small amounts of water are used in the mix, the dielectric of the wet 

material becomes higher and thus, the microwave velocity will decrease. For example, dry 

clayey soils have microwaves, which travel twice as fast as wet clayey soils [227]. The 

electromagnetic properties of the material govern the velocity of propagation in the material. 
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As a result, the signal speed is often reduced by the square root of the material's relative 

permittivity. Speed is described as a scalar quantity since it has magnitude but no direction. 

They have a magnitude and no specific direction, according to the definition of a scalar 

quantity. Speed has no defined direction and just one magnitude, making it a scalar quantity. 

Velocity is a quantity having magnitude and acting in a specific direction and is described as a 

vector.  Equation 4.7 shows the relation between the velocity and speed of light. 

𝑣 =
𝑐

√𝜀𝑟
                                                                                                                        Eq (4.7) 

4.6 Scattering parameters 

Return loss and insertion loss can also be specified using S-parameters. If a microwave signal 

is an incident on the sample's surface, some signals reflect and transmit through the sample. 

Therefore, the ratio of the reflected signal to the incident signal is the reflection coefficient. 

The ratio of the transmitted signal to the incident signal is the transmission coefficient. In 

section 4.7, Figure 4.5 demonstrates the transmission and reflection coefficients. However, the 

transmission and reflection coefficients are specified in both directions as follows: 

Port 1: Input Port 

Port 2: Output Port 

S11: Input reflection coefficient 

S12: Reverse transmission coefficient 

S21: Forward transmission coefficient 

S22: Output reflection coefficient 

S11 is the signal reflected at input port 1 as a ratio of the signal incident at input port 1. S12 is 

the signal output at port 1 as a ratio of the signal incident at port 2. S21 is the signal output at 

port 2 as a ratio of the signal incident at port 1. S22 is the signal reflected at port 2 as a ratio of 

the signal incident at the same port 2. Therefore, to measure S11 of a single horn antenna and 

S21 parameter between two antennas, experimental work was conducted to measure dry 

concrete samples, wet samples with tap water and salt water, and both parameters compared. 

S-parameters are used to describe how energy can propagate through material properties. S-

parameters describe the relationship between different ports when it becomes especially 
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important to describe a network in terms of amplitude and phase versus frequency, rather than 

voltages and currents.  The author of [228] demonstrated this in an experimental study using a 

GPR method as a transmitted and received signal for monitoring moisture and chloride ingress 

into concrete.  In [229] demonstrated this similarly in an experimental study using near and 

far-field microwave non-destructive methods for the determination of chloride content in 

concrete, citing the reflection (S11) and transmission  (S21) coefficients of a concrete planar 

sample [229].  Moisture content inside concrete structures can be studied from the data of their 

interactions with microwaves. This interaction can be revealed in the form of a unique signal 

spectrum known as reflection (S11) and transmission (S21) coefficients [230]. The authors 

demonstrated further similar findings in their study, using two horn antennas, and investigated 

the propagation of EM waves through the concrete blocks and their interaction with water. 

Therefore, based on this research, in this study, two horn antennas and microwaves were 

experimentally used to investigate the propagation of EM waves through the concrete samples 

and their contact with different saltwater concentrations. 

4.7 RF or microwaves and the concrete sample 

A microwave must travel across free space to reach the receiver and detector. However, some 

obstacles are commonly encountered within the propagation area, such as buildings, windows, 

bridges, metallic structures, fog, and walls. When an EM or radio wave comes across changes 

to a medium, some or all of it could propagate into the new kind of medium as refraction, 

dispersion or absorption, whilst the microwave remainder reflects. With the hitting of obstacles 

by microwaves, there is an irredeemable loss of energy; however, that fact means that precise 

detection of refracted or reflected microwave energy can provide valuable information 

concerning the character in electromagnetic terms ( ε2, μ2, σ2 ). The rules that govern the 

reflection of radio waves are, as with those that govern light waves, quite simple.  

Figure 4.5 illustrates three media with equivalent transmission lines that encounter 

characteristic impedance forms, respectively shown as Z1, Z2, and Z3. The representation of 

the thickness of the wall is shown by d. As a reflection occurs, the incidence angle, the 

representation of which is θi, has a value that is the same for both the incident and the reflected 

rays. Furthermore, absorption usually causes a degree of loss whilst the signal is a passage 

through the medium. In real transmission paths for radio waves, often there is a reflection by a 

variety of different surfaces. So, there are multiple reflections and transmissions at the 
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boundaries. There is a summarising of all reflected waves into the reflected wave, and all 

transmitted waves summarise into the transmitted wave [231]. 

 

 

             

 

 

 

 

 

 

 

 

In general, transmitted and reflected waves will change the amplitude and phase of the incident 

wave. Typically, the transmitter and the reflected wave frequency will be the same as the 

incident wave frequency. The phase and amplitude of the transmitted and reflected components 

are examined by the known related Fresnel coefficients, which are dependent on dielectric 

material characteristics and the microwave signal incidence angle to the material  [232]. S-

parameters are complex as they are both magnitude and phase. The outside wall reflects the 

wave, which represents loss from a receiver within the building. A further loss comes from the 

nature of the building material, which leads to transmitted wave attenuation because of 

absorption of the transmitted wave with its propagation through that material. The absorption 

causes ohmic heating, the absolute amount of which is extremely small because the radio signal 

energy flux is also extremely small; however, serious signal attenuation may be caused by the 

mechanism. Attenuation, calculated in decibels, has simple proportionality with a material 

depth that the signal propagates through. As such, total attenuation depends upon the radio 

wave incidence angle for the building material. 

The real part is the magnitude, and the imaginary part is the phase angle. Quite often, it is the 

case that more interest focuses on the magnitude, and there may only be references made to 

that. Both magnitude and phase change with load, input frequency, and sensor size alteration 

together with the source's impedance. In general, this research project was the only 

measurement of the S21 parameters; more discussion can be found within sections 4.6 and 4.7. 

d 

𝜃𝑖  

𝜃𝑡  

𝐸𝑖 

𝐸𝑟  
𝐸𝑡 

Medium 1 

Medium 2 

Medium 3 

Z1 Z2 Z3 

𝛆𝟏, 𝛍𝟏, 𝛔𝟏 
𝛆𝟐, 𝛍𝟐, 𝛔𝟐 𝛆𝟑, 𝛍𝟑, 𝛔𝟑 

𝜃𝑟  

Port 1(horn 

antenna) 

Port 2(horn 

antenna) 

S11 

𝞈 

Figure 4.5:  Microwave penetration and reflection are demonstrated using a schematic design 
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4.8 Antenna 

An antenna is completed by using a conductor, which is usually made of a rod or wire and is 

used to receive or transmit radio waves. The performance is through a transition structure 

between free space and a device for guiding, such as a transmission line. The transmitter 

radiates EM energy into free space from where the receiver collects it. The same design of 

antenna may be utilised for both transmission and reception. However, there is a certain degree 

of resistance to radiation for every antenna, referred to as antenna impedance. The impedance 

of the transmission line and radio must be adequately matched to the antenna's impedance in 

order for a radio (transmitter or receiver) to supply power to it. Voltage standing wave ratio 

VSWR and also referred to as Standing Wave Ratio (SWR). The parameter VSWR measures 

numerically describe how well the antenna impedance matches the radio or transmission line 

it connects to VSWR. It represents the power reflected from the antenna and is a function of 

the reflection coefficient. The following equation defines the VSWR if the reflection 

coefficient is supplied by (Г) [233]: 

𝑉𝑆𝑊𝑅 =
1+|Г|

1+|Г|
                                                                                                                Eq (4.8) 

S11 or return loss is another name for the reflection coefficient. Most antenna types have designs 

with an impedance of 50Ω; this is standard for microwave and RF systems. Most antennas are 

devices that are resonant and efficiently operate across the bandwidths of relative frequency. 

More ready radiation of power at high frequencies is comparable to the antenna dimensions 

and acceleration of charges to the maximum extent because the changes within an electric field 

are faster [234]. 

Antenna characteristics are determined by the type, shape, and size of the material employed. 

Various types of antenna can use for transmitting and receiving microwave signals; these are 

considered below, i.e. aperture antennas [235], microstrip antennas [236], wire antennas [236].  

 

4.8.1 Aperture antennas  

 

Several kinds of aperture antennas exist, such as the pyramidal horn, the conical horn, and the 

rectangular waveguide. Horn antennas come in various shapes and sizes, with examples 

including the pyramidal and conical types, the pectoral horn (H plane and E plane), the 

exponential horn, the ridged horn, the corrugated horn, the aperture-limited horn and the 

septum horn [237] [238] [239].  A horn antenna is a flared-out waveguide with better directivity 
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and less diffraction. However, a microwave horn antenna produces a phase front that is uniform 

with an aperture that is larger than the associated waveguide and has a greater degree of 

directivity. Pyramidal horn antennas flare on both of their sides. If flaring is undertaken to both 

walls (E plane and H plane) of a rectangular waveguide, it produces a pyramidal horn. Flaring 

aids in matching the impedance of antennas to the impedance of free space so that there is 

better radiation; with avoidance of standing wave ratio, greater directivity is provided along 

with the narrower width of the beam. Horn antenna flare angle is a key factor for consideration; 

if it is overly small, then the wave that results, instead of being planar, will be spherical, and 

the beam that radiates would not be directive [240]. 

Thus, the angle of the flare ought to have an optimum angle value that is related closely to its 

length. Horn antennae have the primary advantage, however, of providing very significant 

levels of gain and directivity. For greater gain levels, horn antennae ought to have larger 

apertures. Also, to achieve maximum gain for a particular size of the aperture, the taper ought 

to be longer for the wavefront phase to be almost as constant across the aperture as is possible 

[235].  The basic kind of pyramidal shape is shown in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

Horn antennas feature a directed radiation pattern with a high antenna gain, which may reach 

up to 25 dB in certain circumstances but is more common around 10-20 dB. Horn antennas 

have a wide impedance bandwidth, implying that the input impedance slowly varies over a 

wide frequency range (which also implies low values for S11). The bandwidth for practical horn 

antennas can be in the order of 20:1 (for instance operating from 1 GHz -20 GHz), with a 10:1 

bandwidth not being uncommon. Sometimes the gain of the horn antenna increases (and the 

beam diameter decreases) as the operating frequency increases. Because the horn aperture's 

size is often measured in wavelengths, the horn antenna is electrically larger at a higher 

Waveguide 

Coaxial cable 

Flared Horn 

Signal 

Figure 4.6: Pyramidal horn antenna [LJMU Lab sensor] 
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frequency and has a smaller wavelength.  The horn antenna is probably the most simple and 

most commonly used type of microwave antenna; it provides the transition between the 

propagation of waves within a line of transmission and radiating surface within free space. 

Horn antennas have very little loss, so the directivity of the horn antenna is roughly equal to its 

gain [241].  

 

The advantage of using a horn antenna, in terms of the EM waves, is that it has a higher gain 

and directivity, as mentioned before. This means it can penetrate further into the concrete 

compared to the other antennas, such as the patch antenna, which can only penetrate the 

samples a few centimetres and only provide the surface information; that is why the horn 

antenna is used in this project. However, the previous research [208] used a wide-band 2-18 

GHz pyramidal horn antenna to detect moisture content in the building fabric. The previous 

researcher used sensor technology to detect moisture levels in concrete structures. According 

to the findings, this technology can detect moisture. As a result, this technique will be used in 

this study to investigate the detection of chloride ions in concrete structures to determine 

whether they are also durable, as they can detect moisture. Due to its penetration depth 

capability, the preliminary usage of horn antennas allows us to measure the entire concrete 

sample rather than just the surface. Because the chloride level has a significant impact on the 

reinforcement concrete, it can induce corrosion depending on the amount and depth of 

penetration. As a result, the horn antenna had to monitor chloride ions at different penetration 

depths in this study. 

 

4.9 Design consideration for horn antenna 
 

Horn antennas are the simplest and most widely used microwave antennas, and they find 

applications in wireless communications, electromagnetic sensing RF heating [242]. Because 

the waveguide feeder has an impedance of 377 ohms and the horn antenna has a tapered or 

flared end, it may be used as an RF transformer or impedance match between it and free space. 

Horn antenna offers several benefits when employed. It helps inhibit signals travelling via 

undesirable modes in the waveguide from being radiated, providing a high amount of 

directivity and gains, and matching the guide's impedance to that of free space [243]. While it 

serves as an entry medium for signal interception for processing in receiving systems, it helps 

to clarify the dish antenna from its focal area in the case of transmitting, estimated from the 

parabolic dish's f/d parameters [244]. Dual-mode feed horns often provide excellent 
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performance over a wide range of microwave bands [245].  Conical and pyramid horn antennas 

are the two primary kinds of horn antennas.   It is very appropriate to have the correspondence 

of impedance with transmission lines of radiofrequency. Standing waves result in increased 

loss levels and frequently lead to failure of transmission [246]. The design has an optimal flare 

angle for various horns, which helps minimize all of the problems mentioned above. Horn 

antennae designed with consideration for the optimum flare angle is known as Optimum Horns 

[247]. 

 

4.10 Skin depth of concrete 

 

The penetration of a planar electromagnetic wave into a substance is defined as the skin depth. 

The field's magnitude in the material is proportional to 𝑒−𝑋 𝛿⁄  . Where δ = skin depth, x = 

distance into the material from the incident wave's surface. Skin depth is when the transverse 

electric and magnetic fields decay to 1/e of their amplitudes upon value entering the surface.  

The skin depth of EM waves is based upon the efficacy of the antenna radiation, the microwave 

foundation signal frequency, and the subsurface electrical characteristic. However, the skin 

depth is calculated from the real part of material permittivity and the loss tangent. The concrete 

or cement's loss tangent is illustrated by [56]:  

tanδ =
εr
′′

εr
′                                                                                                                       Eq (4.9)                                                            

There can be an expression of concrete skin depth with: 

σs =
𝟏

𝛂
 (m)                                                                                                                                               Eq (4.10)  

Where the constant of attenuation (𝛼) can be provided by: 

α =
ω

c∗√2
∗ √εr

′μr
′  ∗ √√1 + tan2δ − 1                                                                                       Eq (4.11)  

Where c equates to a speed of light, 𝜀𝑟
′  is the relative concrete permittivity, 𝜇𝑟

′  is the relative 

concrete permeability set to equal 1 for concrete, and ω is the angular frequency. 

Speed of light c: Light waves travel at various speeds through different materials. The speed 

of light in a vacuum, in particular, is 299,792,458 metres per second. 

Relative permittivity 𝜀𝑟
′ : Relative permittivity is the factor that determines how much the 

electric field between charges reduces in comparison to the vacuum. The relative permittivity 

of concrete typically varies from 6 for naturally dry concrete to 12 for saturated concrete. 
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Relative permeability 𝜇𝑟
′ : The simplicity with which a fluid may pass through a porous 

substance is referred to as permeability. 

Angular frequency ω: The angular frequency is defined as the angular displacement of any 

wave constituent per unit time. 

There is a need to calculate attenuation constants and the skin depth for both dry and wet 

samples of concrete. So that there was an independent note of response to the electromagnetic 

field to both dry and wet types of concrete, for this study, the magnetic and dielectric properties 

were derived from S-parameter measurements upon representative samples placed within the 

waveguides [248, 249] and use of the algorithm of Baker-Jarvis [250]. The skin depth for the 

dielectric property of the electromagnetic wave signal for the marine concrete structure has 

been suggested, with the nominal cover ranging between 55-75 mm in terms of the civil 

engineering requirement. Therefore, the skin depth for the EM waves point of view has been 

selected and applied to satisfy the requirement from civil engineering for measuring the 

nominal and effective cover.  This technology can be used in the civil engineering field for 

more inspection purposes. Also, more details about the skin depth, the nominal cover has been 

provided in chapter two, Literature review section 2.11. Because our focus was initially on the 

marine concrete structures, this parameter needs to be taken into consideration, but this could 

be further investigated for other civil engineering applications like bridges on a motorway, 

where the skin depth has to be 35 to 45 mm according to the BS EN 1992-2:2005 [65]. 

4.10.1 Rectangular waveguide used with different bands 

 

Rectangular waveguides are one of the earliest types of transmission lines. They are used in 

many applications. Many components such as isolators, detectors, attenuators, couplers and 

slotted lines are available for various standard waveguide bands from 1 GHz to above 220 GHz 

[251]. The fields in a rectangular waveguide consist of several propagating modes that depend 

on the waveguide's electrical dimensions. These modes are broadly classified as either 

transverse magnetic (TM) or transverse electric (TE). The shape of the rectangular waveguide 

is as shown in Figure 4.7.  A material with permeability and permittivity fills the inside of the 

conductor. However, a rectangular waveguide can't propagate below certain frequencies; this 

frequency is the cut-off frequency [252]. A rectangular waveguide is a structure that guides 

waves, such as electromagnetic waves or sounds, by limiting energy transmission to one 

direction, with little energy loss. 
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In this project, three different bands are used, and only the dimensions of these three bands are 

changing and the frequency range because this project requires the establishment of a frequency 

for the operational use of the sensor. The purpose is to investigate the microwave signal 

reaction over various frequencies to the concrete structure with various chloride levels. The 

bands used in this project ranged from 2.35 GHz to 2.85 GHz within the S-band, 4 GHz to 7 

GHz within the C - band and 8 GHz to 12 GHz within the X - band. A rectangular waveguide 

has different cross-sections based on various bands, such as the S-band of WR340 with 

dimensions of 86.36 mm by 43.18 mm, the C-band of WR159 with dimensions of 40.38 mm 

by 20.19 mm and the X-band of WR90 with dimensions of 22.86 mm by 10.16 mm. Chapter 

5, section 5.3.2 explains the experiment as a Proof-of-Concept work with these different bands, 

and the findings are discussed in detail.  

4.10.2 Used electromagnetic sensor working principle. 

 

The primary principle of the horn antenna, operating at radio wave or microwave frequency 

range, is founded on signal interaction with a material sample medium under examination with 

various concentrations of salt water. Interactions between medium materials and the 

microwave signal may take the form of a phase shift or amplitude attenuation, and it determines 

the relative permittivity with moisture content and different saltwater concentrations. Figure 

4.8 shows an experimental set-up involving a microwave horn antenna connected to a vector 

network analyser by Rohde and Schwarz and a PC that collected raw data and stored it through 

software developed within LabVIEW. The schematic diagram is presented in Figure 4.9 (a), 

and the developed sensor is shown in Figure 4.9 (b). 

Figure 4.7: The shape of rectangular waveguide 
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Also, a sample of wet concrete was monitored upon a scale to measure the lost weight due to 

drying whilst the experiments were undertaken. Because the microwave signal spread from the 

edge of the horn antennas, the microwave sensor was set 20 mm from the sample's surface to 

avoid monitoring any other items adjacent to the concrete sample during the experimental test. 

The surface of the scale was metal, and it is a good wave reflector.  

 

 

 
 

4.11 Summary  

This chapter introduced the electromagnetic waves, which could potentially measure moisture 

and chloride ion levels in concrete. As part of electromagnetic waves, the microwave spectrum 

was highlighted as the most suitable frequency range for this investigation, mainly the 2-12 

GHz frequency range. According to the previous study, it explained the concepts and theory 

Figure 4.8: The experimental set-up for microwave sensing 

Figure 4.9: (a) Sensor Schematic, (b) Sensor Prototype 
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for the most common electromagnetic sensors. Microwave sensing technology is a widely used 

engineering method for many different industrial applications (see section 4.2 for more details). 

Concrete is defined as a dielectric material, which will store energy when exposed to an 

electromagnetic signal. Therefore, the concrete can be described by its dielectric properties 

using the field method of electromagnetic waves. A dielectric material can define two 

independent electromagnetic properties: complex permittivity (ε*) and complex permeability 

(μ*). These definitions are well explained in section 4.2.1.  S-parameters describe the 

relationship between different ports when it becomes essential to describe a network in terms 

of amplitude and phase versus frequencies, rather than voltages and currents. Moisture content 

inside concrete structures can be studied from the results of their interactions with microwaves. 

This interaction can be revealed in the form of a unique signal spectrum known as the reflection 

coefficient (S11) and the transmission coefficient (S21) (see section 4.6). 

The pyramidal horn antenna was chosen as the most suitable type and structure of the current 

sensors due to its capability, low cost of  production, and, most importantly, high penetration 

compared to other antennas due to higher gain and directivity and its design flexibility. The 

advantages of using horn antennae and their selection in this project are explained in sections 

4.8.1 and 4.9. The skin depth of EM waves is based on the antenna radiation's efficacy, the 

microwave foundation signal frequency, and the subsurface electrical characteristic. The skin 

depth for the dielectric property of the marine concrete structure's electromagnetic wave signal 

has been suggested. According to the Eurocode, the nominal cover ranges between 55-75 mm 

in terms of the civil engineering requirements. A rectangular waveguide measures the concrete 

samples' skin depth, one of the earliest transmission lines. They are used in many applications. 

In this project, three different bands are utilised, the only experimental variations for the 

waveguides. Therefore, the operational frequency changes as well. The research methodology 

is described in greater detail in the following chapter: the sample preparation, experiment set-

up, data analysis, and a description of how the sensor data was validated with the collected data 

using a partially destructive approach and an ANN model. 
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Chapter Five: Experimental Work 
 

5.1 Introduction 

This research aims to investigate and validate the use of Electromagnetic (EM) waves as a non-

destructive technique to determine the chloride level in reinforced concrete structures. This 

chapter will describe the introduction, namely, the research methodology, the overall 

experimental regime (preliminary and primary tests), concrete mix design preparation, initial 

surface absorption test, experimental approaches, and data analysis. However, the chapter will 

start with section 5.2, the research methodology and provide the flow diagram of the research 

methodology. Then, section 5.3 will introduce the overall experimental regime including 

preliminary and primary tests, and Table 5.2 contains the number of samples and purpose of 

use in this research. This chapter will provide, in sections 5.4.1 and 5.4.2, the first 

measurements taken after the preliminary test and preparation of concrete mix design, in detail. 

Section 5.4.3-5.4.5 will demonstrate the experimental set-up of the continuous monitoring of 

the curing and drying process approach undertaken in this investigation. Section 5.5.1 will 

present the experimental set-up under various salt-water concentrations. Section 5.5.2 and 5.5.3 

will introduce the chloride content preparation to submerge the concrete samples individually 

and demonstrate measurements taken of 5 water concentrations. Section 5.5.4 will show the 

chlorimeter tool as a partially destructive method to detect chloride levels in concrete. Then we 

will discuss Finlay, section 5.6, techniques for data processing, and the development of 

validation models based on collected data. 

 

5.2 Research methodology 
 

Develop the approach outlined below to meet the goal and objectives outlined in Chapter 

One: 

 The first stage of this investigation was understanding the essential principles of the 

mechanism of chloride ion attack and the problems associated with chlorides present 

in concrete structures. Studied the theory to provide an understanding of the corrosion 

process and some electrochemical corrosion rate measurement techniques; also, an 

understanding of the impact of chloride content, moisture, and temperature on the 

dielectric constant of the concrete structures.  We have carried out a literature review 

to understand the existing NDT technologies for detecting the level of chlorides in 
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concrete structures and EM theory, including waveguides and antennas. The literature 

review established that a commercially available technique to detect the chloride level 

in a concrete sample is time-consuming, high cost, and mainly destructive. In 

addition, there are revised new techniques for chloride ions detection. However, they 

still have not met the industrial requirements, and some of the methods were more 

costly than the current state of the art, and others were unworkable due to sampling 

preparation requirements of the techniques.  A previous researcher has reported that 

the electromagnetic wave sensor could be used as an alternative non-destructive 

method for identifying water content in concrete structures [253]. Journal papers, 

conference papers, and textbooks are used as the primary sources of background 

information. A flow diagram of the research methodology is presented in Figure 5.1. 

 The next stage was to experimentally test a system with moisture and chloride detection 

to determine the signal spectrum. It was necessary to select the optimised angle of horn 

antennas as a transmitter and receiver system operating when the concrete sample was 

under the sensor involved optimising parameters, including the substantial sample size 

depending on the horn antenna surface. The sweet number point, frequency range, and 

power electronic (dBm) are linked by a coaxial wire and interfaced to a PC or laptop 

running National Instruments (NI) LabVIEW software to show the signal spectrum. 

 A preliminary test of the concrete paving slabs submerged in water and salt water was 

carried out. Each concrete slab was immersed in salt water and tap water for 24 hours, 

then underwent a drying process, and the concrete samples were monitored every 

minute for 24 hours. The initial findings show that there are some differences and 

noticeable changes in the microwave signal. Still, it is significant enough to continue 

performing more experiments to understand further what changes can be seen in the 

electromagnetic wave signal. 

 An experiment was constructed that utilised previously observed parameters to 

investigate changes of EM waves at microwave frequency with tap water and salt water 

in the paving slabs in an hour. It is also necessary to know the age of the concrete 

structures to check the propagation of EM waves through typical constructions. The 

main constructions that were studied in this project were concrete samples with and 

without reinforcement. The previous related studies recommended using two horn 

antennas. Therefore, in the current study, two horn antennas have been used to 

investigate the moisture content and level of chloride in the concrete samples. The first 

horn antenna transmits the waves, and the second one receives the signal reflected from 
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the studied material. The frequency range utilised in these investigations was 2 to 12 

GHz. A machine learning technique in the new area of artificial intelligence aims to 

develop patterns to explain engineering applications. Hence, the developed design 

would be able to generalise the behaviour of complex engineering systems [254]. Over 

the last few decades, many machine-learning methods have been present. To validate 

the results of the electromagnetic sensor and the gold standard approach, we will 

combine the WEKA workbench classification and ANN methodology with each other.  
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Figure 5.1 A flow diagram illustrating the methodology development. 

 

  

Figure 5.1: Overview of research methodology 
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5.3 Overall experimental regime (preliminary and primary tests) 

This section demonstrated the number of samples that were prepared and used in preliminary 

and primary tests. Each section will discuss the experimental work and set-up on each of the 

groups separately.  Table 5.1 indicates all the samples that were used for the test during this 

project. However, Table 5.2 indicates the main characteristics of each group of the concrete 

samples. 

 

Table 5.1: The number of concrete samples exposed to microwave sensors 

Group Number 

of 

samples 

Size of samples 

(mm) 

Purpose  

 

A 

 

3 

 

150 x 150 x 150 

These three samples used to determine the permeability 

of the concrete and compressive strength.  

 

 

B 

 

 

4 

 

 

250 x 250 x 60 

These samples used as a preliminary test to measure the 

skin depth of the EM waves that need to penetrate the 

concrete blocks according to the civil engineering 

requirement; used three different bands of rectangular 

waveguide. In addition, using these samples was to 

establish the angular frequency between the two-horn 

antenna for the rest of the experimental work. Hence,  

these experimental set-ups and results are discussed in 

the following section 5.3.1in detail. 

 

C 

 

2 

 

600 x 600 x 40 

These two pavement slabs use as a preliminary 

experimental test to determine the effect of chloride 

ions and moisture on electromagnetic waves. The 

results of this test are shown in Chapter 6, section 6.2. 

 

 

 

D 

 

 

 

10 

 

 

 

250 x 250 x 60 

Then, following the same process as the three trial cubes 

in the lab, ten concrete slab combinations with and 

without reinforcement were made and cast. The 

electromagnetic waves are reflected by the reinforced 

concrete and varied reinforcement areas inside the 
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Table 5.2: Demonstrated the main characteristics of each group of concrete samples 

 

 

concrete samples.  In Chapter 6, the findings of two 

concrete samples without reinforcement after curing 

and drying are discussing. In addition, chapter 6 

discusses two of the examples that have two rebars. 

Appendices D show the raw data results of six samples 

with reinforcement rebar at various saltwater 

concentrations. 

 

 

 

 

E 

 

 

 

 

5 

 

 

 

 

300 x 300 x 150 

Five unreinforced concrete slabs were mixed and 

poured. The proportions 1:1.5:3:0.7 kg were used in the 

standard concrete mix, which is more typical in 

European countries. The data from these five samples 

was used to determine the skin depth and reinforcement 

depth concerning the access depth reinforcement 

required for maritime concrete structures, ranging from 

70mm to over 100mm depending on the concrete mix 

design. In Chapter 6, the results of all five samples with 

five different saltwater concentrations are discussed. 

Group The weight proportion 

of concrete mix design 

Kg/m3 

Compressive 

strength Mpa, after  

The dry 

density of 

concrete 

Kg/m3 

Superplasticizer 

kg 

7 days 28 days 

A  

1:1.80:3.71:0.4 

 

26.29 

 

39.86 

 

2416 

 

0.032 

B 1:1.82:3.69:0.4 = = 2347 0.126 

C n/a n/a n/a 2216 - 

D 1:1.82:3.69:0.4 

 
= = 2349 0.0126 

E 1:1.5:3:0.7 n/a n/a 2592 - 
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5.3.1 Initial surface absorption test (permeability test) 
 

This test was undertaken to ascertain the permeability of the concrete samples and how fast 

they absorbed the water and salt water during the curing process. For experimental 

investigations on the air permeability of construction materials, surface layers, mainly concrete, 

the Torrent Permeability Tester (TPT) made by a Swiss company, Proceq, was used. The TPT 

is a modern device that is applicable for a non-destructive determination of the concrete air 

permeability. The equipment is used in conjunction with a vacuum pump for on-site and 

laboratory measurements. The basic parts of the device are a two-chambered vacuum cell and 

pressure regulator that regulates the air flowing into the internal chamber located perpendicular 

to the concrete surface. A further component of the measuring device is an indicator with a 

liquid crystal display, permitting data recording for up to 200 measurements. The initial surface 

absorption test (ISAT) is standardised in Great Britain as in BS 1881:208 [255] [256].  Under 

a pressure head of 200 mm, movement down a capillary tube attached to a cup monitors the 

rate at which water absorbs into the concrete. 

When water comes into contact with dry concrete, it is absorbed via capillary action at a rapid 

pace at first, then at a slower rate as the water fills the capillary's length. The basis of initial 

surface absorption, is defined as the rate at which water flows into concrete per unit area at a 

stated interval from the start of the test at a constant applied head at room temperature.  The 

measuring method relies on calculating both the permeability coefficient KT and length L 

constants and is performed with numerical integration and derivation using an indicator tool. 

The issue is to establish the constant open concrete porosity, which is different for various 

concrete types. The developer of the TPT device and a team of co-workers established the 

measurement limits (see Table 5.3), based on comprehensive permeability tests conducted.  

The air permeability factor KT calculations with the TPT used the mean value of  open porosity 

= 0.15, that was measured by the developer from a comprehensive set of tests[257]. However, 

three trial cubes of 150 × 150 × 150 mm with 10 mm limestone aggregate and 0.4 w/c ratios 

for the compressive strength and initial surface absorption test (permeability test) were 

prepared. Therefore, experimental work was further conducted with two concrete samples to 

conduct permeability testing in this project. The reason for doing this test in this project was to 

show how fast the water and salt water will penetrate the concrete sample, based on the porosity 

of the concrete. Figure 5.2 shows the experimental work of permeability testing. The 

experiment results are explained in chapter 6, section 6.1. 
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Table 5.3: Classification of the quality of the concrete cover according to KT [256] 

Classification of the concrete cover quality KT Measured at 28 days [e-16 m2] 

1 Very good KT < 0.01 

2 good 0.01 < KT < 0.1 

3 normal 0.1 < KT < 1.0 

4 bad 1.0 < KT < 10 

5 Very bad KT > 10 

 

 

 

5.3.2 Proof of concept experiment  

Experiments were conducted to determine the imaginary and complex relative permittivity of 

dry and wet concrete samples with water and salt water. The measurement of S-parameters 

through reflection and the transmission of three different band frequencies is mentioned in 

section 4.10.1. Two concrete specimens (250 mm x 250 mm x 60 mm), were prepared, both 

with water-cement ratio w/c 0.4, produced using tap water and Ordinary Portland Cement type 

II. These specimens were then left in the hydration room for 24 hours and left to cure, one in 

tap water and the other in a saltwater solution of 3.5% for 7 days.  Table 5.4 shows the specific 

2 Concrete samples 
Motor engine 

Hose 

Display record monitor 

Figure 5.2: The experiment set-up of the permeability test 
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gravity of the components and the specifications of the mixed proportions of the concrete. 

Using limestone aggregate in the concrete mixtures of this experimental work is due to some 

benefits of the aggregate, such as the low possibility of an alkali-silica reaction, good strength, 

and, more importantly, decreasing the drying shrinkage in concrete [258]. After 7 days of 

curing, the samples were cut very carefully to make sure they fit within the S, C and X band 

waveguides without leaving any gaps. The samples are cut into the following: a) 101.52 mm 

length that fitted into the section of S-band waveguide, b) 120.87 mm length that fitted into the 

section of C-band waveguide, c) 40.75 mm length that fitted into the section of X-band 

waveguide. 

Table 5.4: The concrete composition with OPC [259] 

Material used Kg Specific gravity 

(g/cc) 

Ordinary Portland cement OPC (CEM II) 3.10 3.12 

Fine aggregate 5.66 2.65 

Coarse aggregate size (10 mm) 11.48 2.70 

water 1.24 1.0 at 4C° 

Superplasticizer 24.8 grams 1.19-1.24 at 25C° 

 

However, whilst cutting the samples, a slight excess remained on the cross-sectional area 

affecting the sectional fit in the metal waveguide, as nearly all samples were chipped away 

during their cutting.  The air gaps are a primary reason for inaccuracies within such 

measurements [260]. Figure 5.3 shows the experimental set-up for the 3 different bands. 
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Figure 5.3: Experimental set-up with RC Waveguide 

 

The data presented in [56] refers to the imaginary and real parts of the complex permittivity for 

the hardened concrete. The complex permittivity data characteristics for varied water-cement 

ratios and water volume absorption situations are recorded. There was a recording of the results 

at 24 GHz, 9 GHz and 3 GHz.  In the compelling case of when concrete may be considered dry 

or as having a tiny amount of water content, the imaginary part and the complex permittivity 

are found to be between 0.1 and 0.7.  The real component discoveries range from 5.0 to 7.0. 

Also, concrete that may be considered fully saturated or wet, the imaginary part of complex 

permittivity can vary from 1.5 to 2.9 and the real part from 9.0 to 20.0 [261, 262]. Figure 5.4 

and Figure 5.5 (a, b & c) show concrete permittivity, and the loss tangent (tanδ) and the real 

part (𝜀𝑟
′ ) in the selected bands; see equation 4.2 in chapter 4 section 4.2.1 for definition.  Also, 

as the evaporation process in the saltwater-soaked samples continues, the salinity of the 

remaining solution increases. At 2.35 -12 GHz, the dielectric properties of salt water are 

markedly different from tap water. It can be seen from the figures that tanδ and 𝜀𝑟
′  for the 

concrete begin to fall as the frequency rises, a type of behaviour that is well-recognised for 

polar dielectrics such as with water  [260]. The relative permittivity of tap water is only slightly 

higher than that of salt water with 3.5% NaCl. However, the loss tangent of salt water with 

3.5% NaCl is significantly higher than tap water. These differences get larger as long as the 

NaCl solution of water increases and as more pore liquid evaporates. 
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Figure 5.4: A dielectric permittivity of concrete samples dry, wet with tap water and 3.5% NaCl  

inserted into three different bands respectively with a temperature of  ± 21 C 
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Figure 5.5: Lost tangent concrete samples dry, wet with tap water and 3.5% NaCl inserted into three 

different bands respectively with a temperature of ± 21 C 
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a

b

Figure 5.6: (a) Presented the skin depth and (b) attenuation constant of dry, and wet with tap water 

and salt water, concrete data measurements from three different bands. 
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In Figure 5.6 above, a) refers to the skin depth for concrete with tap water, salt water and dry 

samples within the 3 different bands, i.e. S-band, C-band and X-band, with the waveguide 

holder of the sample as a frequency function.  Previous research has calculated the attenuation 

constant for concrete samples and the skin depth at different humidity levels [56]. The data for 

this investigation for dry and wet concrete do align, therefore, to previous research. For the 

aims established for this experimental undertaking, it has been necessary to discover to what 

depth the electromagnetic wave propagation needs to penetrate through the slabs of concrete 

for the detection of ions of chloride. However, for condition XS3 of marine exposure, the rule 

for the standard depth for reinforced concrete for chloride detection within the field of civil 

engineering is around 70 mm.  

As a result, the optimum angle between both horn antennas determines using these civil 

engineering requirements for concrete structures exposed to chloride ion conditions and skin 

depth calculations. Also, if the reinforced concrete has light aggregate within it, the cover depth 

should increase to 80mm due to the increase in porosity. Furthermore, the goal of the cover 

thickness is not just to protect the reinforcement but also to ensure concrete and composite 

structural action of steel and provide fire protection and resistance to abrasion. In practical 

terms, the cover thickness should not exceed 80-100 mm [263]. This research has considered 

concrete as a dielectric material with both real complex permittivity and effective conductivity.  

Figure 5.6 (b) clearly shows the calculated skin depth of dry and wet concrete samples from 

the measurements of the C-band waveguide, which enables EM wave propagation in concrete 

at 5.42GHz for up to 70mm-80mm. Figure 5.5 (a) shows the frequency curve of the attenuation 

constants for dry and wet concrete samples (a). The constants of attenuation for concrete 

samples are determined by the loss tangent and complex relative permittivity; if the loss tangent 

increases, the attenuation increases with a higher frequency because they are directly related. 

Whilst there is an increase in the attenuation, the skin depth begins to fall with increased 

frequency due to the inverse proportionality of skin depth to the constant of attenuation, as in 

equation 4.6 section 4.10 in chapter 4. 
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5.3.3 Preliminary experimentation with the horn antenna 

 

This section did this experimental work as preliminary work to see if the S21 and S11 parameters 

could be used with concrete samples and to see if there was a relationship between the skin 

depth and the concrete penetration depth. In demonstrating the state of the art, those 

preliminary experiments are utilised to improve the methodology and justify the rest of the 

experimental work.  Figure 5.7 shows a set of horn antennas and one single horn antenna via 

which the microwave signals are reflected and transmitted while penetrating the concrete 

sample in both directions. 

Figure 5.8 (a and b) demonstrates the comparisons of S21 of a set horn antenna and S11 of single 

horn antenna measurements at a distance of 2cm from the surface of the concrete block, taken 

every one minute with five repetitions. The effects of microwave contact on chloride ions and 

moisture content inside concrete structures can be investigated. This interaction can be 

described as being in the form of a unique signal spectrum known as a reflection coefficient 

(S11) and the transmission coefficient (S21) [230]. It can be seen there is a noticeable change in 

the EM wave’s signature. The amount of water and salt water is assumed to decrease or 

evaporate during the drying process, causing the change. Therefore, the figure clearly shows a 

Figure 5.7: Experimental set-up for both single horn antenna & two horn antennas to measure S-

parameter 
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steady amplitude shift at the frequency between 2-12 GHz. The relative permittivity of tap 

water is slightly higher than the samples with salt water with 3.5% NaCl and dry concrete. 

However, the relative loss factor of salt water is significantly higher than that of tap water. The 

value of S21 with the same distance, 2 cm, from the concrete surface is more elevated than -60 

dB, which can still be detected by a VNA. Therefore, the peaks on both figures represent the 

amount of water, salt water and material properties in the concrete specimens, which 

significantly influences the microwave signal. However, the method will be used for further 

examination in this research project to evaluate the level of chloride ions in concrete structures, 

based on previous research results and this preliminary experimental work on a set of horn 

antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Figure 5.8: (a) S21 measurement, (b) S11 measurement. 
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5.4 Electromagnetic wave sensor test procedure 

 

5.4.1 Initial experiment 

 In this test, a square pavement limestone aggregate concrete slab with dimensions 600 x 600 

x 40 mm is used as the sample material. Figure 5.9 shows an experimental set-up diagram. 

Figure 5.10 shows a weighted and submerged sample in water, and Figure 5.11 shows an 

experimental set-up. The frequency is set to between 2 - 12 GHz due to the horn antenna limits 

on operational frequency.  The microwave sensor was placed 2cm in front of the concrete 

paving to avoid monitoring any other items around the sample during the test. The signal 

radiated from the side of the horn antenna and the horn antenna was directly connected to the Rohde 

& Schwarz Vector Network analyser (VNA) and a PC. The VNA was connected to the PC via a 

crossover Ethernet cable. The remaining moisture content in the concrete samples was calculated by 

using equation 5.1 [262]. The equation used the weight of the dried samples before being 

submerged into the solutions and wet samples after being taken out of the solutions. Table 5.5 

presents the calculations related to moisture in the paving slab concrete. 

 

 

Figure 5.9: The experimental set-up is illustrated schematically 
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M = (
Wwet−𝑊𝑑𝑟𝑦

Wdry
) × 100                                                                                                 Eq (5.1) 

Where Wwet
 = mass of specimens at the time of measurements 

Wdry = dried sample  
 

Table 5.5: Demonstrated the percentage of moisture absorption and evaporation,  

Type of water The original 

weight of the 

dry sample 

(Kg) 

Weight of 

wet sample 

(Kg) 

Weight of 

sample after 

drying off 

(Kg) 

Amount of 

water 

absorption by 

sample (%) 

Amount of 

water 

evaporated 

after 

24hours 

(%) 

Fresh Water 31.92 32.58 32.08 2.068 1.56 

Salt water 32.20 32.48 32.26 0.870 0.682 

 

 

 

Figure 5.10: (a) Dry concrete paving sample being weighed. (b) The sample was submerged in 

tap water for 24 hours. (c) Using a scale to weigh the wet sample after being submerged in tap 

water 

Figure 5.11: An experimental set-up 
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The second preliminary test was conducted for the pavement slab concrete submerged in the 

saltwater solution for 24 hours with 2.53% salinity (in this stage, table salt (NaCl) has been 

used). The conductivity meter (Hanna Instruments) was used to measure the electrical 

conductivity of the solution. It is commonly used in freshwater systems to monitor the amount 

of salt in the water. The amount of table salt added into the tap water to simulate seawater's 

conductivity was measured, approximately  50 mS/cm [264]. Table 5.6 shows the results of the 

conductivity test obtained for tap water and mixed with salt. The purpose of this table is to 

show how much salt was added to the 500 ml tap water to simulate the conductivity of seawater. 

In these quick tests, there are only 26 grams of salt added to one litre of tap water with a 

measured conductivity of 40.22 mS/cm, which is below the conductivity of seawater, which is 

approximately 50mS/cm, to see how this rate of salt affected the electromagnetic waves. To 

reach the conductivity of seawater, it needs 35 grams of salt to be added to one litre of tap water 

because the seawater contains 35 grams of NaCl in one litre. But in this experiment  only 26 

grams of NaCl was added into one litre of tap water; this is shown in further experimental work. 

Table 5.6: The conductivity measurement test results obtained. 

Amount of NaCl (gram) Conductivity test, (mS/cm) 

0 0.018 

3 8.20 

5 15.08 

5 16.92 

Total salt (26) in one Litre 40.22 

Seawater contains (35) in one litre 50 

 

 

5.4.2 Preparing the concrete mix design 

Mix design prepared three trial cubes of 150 x 150 x 150 mm for the compressive strength and 

initial surface absorption test (permeability test). Hence, the cubes must be fully compacted. 

After 24 hours, the cubes were taken from the moulds and immersed in tap water at ambient 

room temperature (20±1C°) for 7 or 28 days to test cubes in saturated and dry surface 

conditions. Then 10 concrete slab mixtures of size 250 x 250 x 60 mm with and without 

reinforcement were prepared and cast, using the same procedure for preparing the three trial 

cubes in the lab according to British standard BS 8500-1:2006 [59]. The rebar size used in these 

concrete slabs was 6 mm. Hence, we selected the size of rebar to add to the concrete slab 

because of the thickness.  A water-cement ratio (w/c) of 0.4 was used, and the detailed mixture 

proportions of the concrete studied, and the specific gravity of materials is given in Table 5.7. 
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Specimens were exposed to several curing solutions procedures to acquire varying levels of 

water absorption: 

Curing a:    Four specimens, one cast with one rebar, one with two rebars, one with crossing 

rebars and one with mesh rebars, were submerged in regular tap water at the ambient room 

temperature (20±1C°) for 28 days. 

Curing b:    Four specimens, one cast with one rebar, one with two rebars, one with crossing 

rebars and one with mesh rebars, were immersed in a saltwater solution (NaCl) with 3.5% 

salinity at average room temperature for 28 days, to investigate how much electromagnetic 

wave energy is absorbed by adding a different amount of salt into the tap water. The other two 

plain concrete slabs were separately submerged in their respective solutions to within 3.2 mm 

of their top surface and were used as reference test specimens for monitoring the effects of the 

tap water and rock saltwater solution during the curing period for 28 days. Figure 5.12 shows 

the preparation of 10 concrete sample castings. Figure 5.13 shows the submerged concrete 

samples in different saltwater concentrations. Figure 5.14 shows the experimental set-up for 

the curing process for over 28 days.  

 

 

 

 

(a) Mould with rebars (b) Mixed concrete 

Figure 5.12: (a) Mould with rebars, (b) Mixed concrete ratio (1:1.82:3.69:0.4) 
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Table 5.7: The concrete composition with OPC [259] [59] 

 

Constituent used  Concrete Mix 

Design_(Kg) 

Specific Gravity 

(g/cc) 

Ordinary Portland Cement 

OPC (CEM II) 

15.5 3.12 

Fine aggregate (saturated 

surface dry) 

28.3 2.65 

Coarse aggregate size (10 mm) 57.4 2.70 

Water 6.2 1.0 at 4Co 

Superplasticizer 0.124 1.19-1.24 at 25Co 

 

 

 

 

 

 

 

 

 

Figure 5.13: The concrete samples immersed in tap water and saltwater for 28 days 
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Step 1: Experimental set-

up. 

Step 2: Using both tap and salt water to fill the containers. 

Step 3: The surface of the concrete samples was exposed to the microwave 

sensors as a dry during the measurement. 

Step 4: After evaporations, both containers were refilled. 

Figure 5.14: An experimental set-up for curing process over 28 days 
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5.4.3 Curing process experimental measurement 

The curing experiment was undertaken for two concrete samples without reinforcement out of 

the 10 concrete samples.  For 28 days, one sample was immersed in tap water and the other in 

salt water. This curing test aimed to determine how the concrete samples absorbed the tap water 

and salt water by monitoring them using a microwave sensor for 28 days. The microwave 

sensor was placed 20mm from the top surface of each slab. For this experiment, the operating 

frequency was set between 2 and 12 GHz. The sensor was connected directly to the Vector 

Network Analyser and laptop, which obtained and stored data via software developed in 

LabVIEW, as shown in Figure 5.14. The results show that both samples have a very significant 

effect on the microwave signal. As described in section 5.4.4, the drying-off method will be 

the next experimental operation performed on these two samples. 

 

5.4.4 Measurements of the drying-off process in the laboratory 

This experiment is conducted to monitor the water content and salt-water solutions in the 

concrete affecting the electromagnetic wave signal during the 72- hour drying off period. The 

initial experiment mentioned shows some differences in the microwave signal, so further 

investigations on the drying off process are significant for better understanding the material's 

properties. 

In addition, wet concrete sample monitors were placed on a scale to measure the weight lost 

during drying off for over 72 hours. The microwave sensor was placed 20mm above the 

sample's top surface. The operating frequency was set to between 2 and 12 GHz for this 

experiment. Over 72 hours, the data are recorded every minute. The surface of the scale was 

metal, and it was a good wave reflector and the horn antenna was directly connected to the 

Rohde & Schwarz Vector Network analyser (VNA) and a PC. The VNA was connected to the 

PC via a crossover Ethernet cable, as shown in Figure 5.15. The concrete sample was not 

moved during the experimental work, and all other conditions such as temperature and light 

remained technically the same during the test procedure. The test was conducted in the small 

chamber structure, which was initially made for a different purpose;  the subsequent 

experimental work was carried out with two concrete samples containing two rebars described 

in section 5.4.5. 
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5.4.5 Drying measurements of samples with two rebars  

 

Experimental work was carried out for two concrete slabs with the same size and material 

properties, with two rebars included, to investigate the different effects of tap water and 

saltwater solutions on concrete with reinforcement rebars and how the rebars in concrete 

structures affect the electromagnetic wave signal. As a result, due to the varying dielectric 

characteristics and texturing of the measured objects, changes in the microwave spectrum can 

be observed. Also, the sensor will enable the investigation of the location of the rebar in the 

concrete structure. The test set-up is presented in Figure 5.16. The microwave sensor was 

Figure 5.15: The drying off  a measurement is carried out on both samples for 72 hours after the 

curing procedure is completed. 



 

105 | P a g e  
 

placed 20 mm from the top surface of the concrete slab. The sensor is directly connected to the 

Vector Network Analyser (VNA) and PC, which captured and stored data via software 

developed in LabVIEW as demonstrated in Figure 5.17. Before and after being submerged in 

tap water and salt water, each slab's moisture percentage was calculated using Equation 1. 

Table 5.8 shows the percentages of moisture absorption and evaporation. 

 

Table 5.8: Demonstrate how much moisture is absorbed and evaporated. 

Type of 

water 

The 

original 

weight of 

the dry 

sample 

(Kg) 

Weight of 

wet 

sample 

(Kg) 

Weight of 

sample 

after 

drying off 

(Kg) 

Amount of 

water 

absorption 

by sample 

(%) 

Amount of 

water 

evaporated 

after 

24hours 

(%) 

Fresh Water 9.05 9.29 9.21 2.66 0.81 

Salt water 

(3.5%) 

9.30 9.47 9.42 1.88 0.53 

 

 

 

Figure 5.16: An illustration of the experimental set-up 
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5.5 Experiments under various salt-water concentrations 
 

5.5.1 Concrete Sample 

 

Five concrete slabs of size 300 x 300 x 150 mm without any reinforcement were prepared and 

cast. The standard concrete mix ratio used was in proportions 1:1.5:3:0.7 Kg, which is more 

common in European countries.  The concrete was mixed correctly using tap water and filled 

the concrete mould in three layers in which each of the layers was compacted 25 times. This 

mix design used a limestone aggregate to compare how the different saltwater concentrations 

penetrated the concrete samples. Each of these samples was submerged into 5 different 

saltwater concentrations to detect the level of chloride by using microwave spectroscopy at the 

2-12 GHz frequency range. Table 5.9 shows the concrete composition with OPC. The data for 

these five samples were collected to define the skin depth to the required reinforcement depth 

for marine concrete structures, which can range from 70mm to over 100mm depending on the 

concrete mix design. 

Figure 5.17: An experimental set-up for both samples' drying processes with reinforcement 

(a) Salt water (b) Tap water 

(c) Scale  

(d) VNA  (e) PC For collect data  
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Table 5.9: Presents the concrete composition with OPC (CEM II 32.5R)-Kg [46] 

 

Constituent used Concrete Mix design 
(kg) 

 

Specific gravity (g/cc) 

Type of cement (OPC) CEM II - 

Cement dosage 

Ordinary Portland Cement 

35.48 3.12 

Fine aggregate 53.22 2.65 

Coarse aggregate size 

(10mm) 

106.44 2.70 

W/C 0.7 1.0 at 4C0 

 

 

5.5.2 Chloride Content 

 

Five different saltwater concentrations were prepared to submerge the concrete samples 

individually for 5 days at the ambient room temperature. A plastic sheet covered the containers 

with different saltwater concentrations to avoid water evaporation during the curing process. 

The samples submerged in tap water and saltwater solutions are indicated in Figure 5.18.  

Sodium (Na+) and Chloride (CL-) was selected and mixed with the tap water from (0.0%, 

0.5%, 1.5%, 2.5% and 3.5%).   Every kilogram of (one litre by volume) of salt water has 

approximately 5 grams of dissolved NaCl. The tap water had an initial conductivity of 0.176 

mS/cm,  but the conductivity of the tap water was raised once the salt was added, and stirred 

to ensure that it was dissolving. Conductive readings were then taken for each saltwater 

concentration with a Hanna Instruments HI933000 conductivity meter at various points to 

ensure that the NaCl dissolved well and the estimated conductivity was correct across the 

saltwater concentration. For comparison, normal conductivity levels in drinking water are 

limited by legislation to 0.25 mS/cm, and seawater has a conductivity of roughly 50 mS/cm. 

The conductivity measurements with different saltwater concentrations are indicated in Table 

5.10. 
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Table 5.10: Conductivity measurements of five saltwater concentrations 

Saltwater concentration % Conductivity reading (mS/cm) 

(One litre of water has 0.0) 0.176 

(One litre of water has 0.5) 9.40 

(One litre of water has 1.5) 26.6 

(One litre of water has 2.5) 43.1 

(One litre of water has 3.5) 50.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.3  Five concrete samples were tested with varying saltwater concentrations 

 

Experimental work was conducted in a laboratory environment. An electromagnetic sensor was 

positioned 20 mm from the concrete sample surface to perform non-destructive testing to 

determine chloride content at various penetration depths. In total, we prepared 5 concrete 

specimens and repeated each configuration 3 times.  In addition, the concrete specimens were 

examined during the drying off period to understand the relationship between moisture content 

and the electromagnetic spectrum concerning the chloride concentration. Each concrete sample 

Salt water Tap Water 

Conductivity meter 

Temperature kit 

Figure 5.18: Concrete samples submerged into different saltwater concentrations for up to 5 days 
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was also weighed continuously during the experiment to establish a consistent mass indicating 

equilibrium moisture content conditions [207, 208, 265]. The experimental set-up contained a 

weigh scale under the concrete specimen, a vector network analyser (VNA), and a computer 

running LabVIEW software to continuously collect data every 15 minutes. The parameter (S21) 

was detected from the transmitted and received horn antennas connected to the VNA. The 

experimental set-up is shown in Figure 5.19.  

The concrete sample was not moved during the experimental work, and all other conditions such 

as temperature and light remained technically the same during the test procedure. Because of the 

difference in concrete thickness and curing time, measurements were taken every 15 or 30 

minutes. Because water and salt water evaporate slowly, measurements can be made every 30 

minutes to an hour if the concrete depth is greater. 

 However, if the sample thickness is lower, the weight of the sample drops rapidly in the first few 

hours, and the sample loses its integrity and the weight drops steadily after that. Essentially, the 

concrete sample loses weight faster due to its lower thickness. It is necessary to monitor the data 

more frequently to analyse and establish the relationship between the operation and the 

electromagnetic signal.  

The wet concrete sample is monitored on the scale during the drying process to measure the 

weight loss for up to 24 hours or 72 hours. Usually, the water and salt water do not evaporate 

very fast from the concrete; therefore, the microwave signal continuously remains the same until 

the samples' amount of water is reduced. In addition, the water can evaporate from the first layer 

of the concrete quite fast. However, while the water ingress continued to greater depths, it took 

time to evaporate through the pores, depending on the concrete water-cement ratio and 

permeability. 
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5.5.4 Chlorimeter tool 

The Chlorimeter tool is the gold standard technique, and a model number C-CL-3000 is used 

as a partially destructive method to detect the amount of chloride in the concrete sample. The 

Chlorimeter test system offers a fast and accurate determination of the total chloride content in 

concrete. The test was carried out to determine the presence of chloride ions in the concrete 

and their penetration. The samples were immersed subsequently in 5 different solutions for 5 

days. The concentration of the NaCl solution was kept constant during the time of immersion. 

It was necessary to drill to three different levels of the concrete sample to obtain a chloride 

profile. All five samples were drilled at three different depths, namely 18, 40 and 70 mm. The 

chosen depths of sampling aimed to incorporate a suitable range to allow interpolation and 

prediction between commonly used nominal depths of cover under various exposure 

conditions, for instance, near the top surface, a little deeper and very close to the rebar position. 

The 3 grams of dust were collected separately at three depths (18mm, 40mm and 70 mm). The 

Figure 5.19: Presents the experimental set-up and LabVIEW interface for data acquisition 
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3 grams of dust were weighed using the digital scale provided in the kit. The device needs 

calibration before performing any chloride tests. The kit contains the five different percentage 

solutions used to calibrate the instrument. This calibration can hold only for 2 hours.  After 

collecting the 3 grams of dust from each hole separately, the 3-gram dust test sample was 

slowly added into the 20ml of chloride extraction liquid in stages to avoid excessive fizzing 

from the limestone present in concrete.  

After mixing well, the plastic jar lid was opened and the probe was put into the liquid to read 

the chloride percentage. This measurement takes up to 2 to 3 minutes to display the percentage 

of chloride on the chlorimeter screen. The probe should be washed well with deionised water 

for every measure and then used for another measurement to avoid reading errors. The accuracy 

of this chlorimeter tool covers a wide range from 0.002% to 2% chloride per weight. This 

procedure was repeated for all the samples after completing the drying off and recorded all the 

results during the experiments to measure the level of chloride ions in the concrete blocks. 

Figure 5.20 indicates the masonry drill used to collect the 3 grams of dust. Figure 5.21 displays 

the chlorimeter calibration tool and chloride measurement experimental set-up.   

 

Figure 5.20: Drilling the sample to collect 3 grams of dust at 3 different depths 
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5.6 Data processing and validation models 

The initial preliminary experiment was conducted for a pavement slab in different saltwater 

concentrations and tap water to identify the drying process and the amount of salt penetrating 

the pavement slabs on the electromagnetic wave signal. According to the data obtained from 

this initial experiment, it is shown that the EM signal can interact with concrete exposed to salt 

water and tap water predictably. During the data processing, the most important task was 

selecting the optimum correlation between the transmitted signal and changes in the concrete 

sample, such as weight loss, with the spectrum containing 4,000 sweep points. The data is 

provided in detail in chapter 6, section 6.2. 

The final stage of this project is a comparison of this non-destructive technique with gold 

standard techniques, which are commonly used in the industry. However, to compare these 

techniques, we must process the data via machine learning and an Artificial Neural Network 

(ANN) to create a validation model. The ANN technique was selected for this data inspection 

due to its ability to handle many input variables and multiple outcomes simultaneously. 

Figure 5.21: Presents (A) calibration device and (B) Chloride measurement taken 
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5. 6.1 Validation techniques include machine learning and artificial neural networks 

(ANN) 

 

One of the main aims of this research is to develop and train a consistent validation model 

using the Levenberg-Marquardt (LM) algorithm to fully capture the percentage of chloride at 

three different depths of penetration with high efficiency. For this reason, back-propagation is 

possibly the most used algorithm in ANNs. Still, the Levenberg-Marquardt (LM) method is 

known to attain a much-improved performance by converging more often and making training 

much faster.  The planned training algorithm is a data-driven computing tool, which can be 

used when the relationship between model input and output parameters is complex [266]. Also, 

the LM algorithm can capture the nonlinear functions and the substantial computer capacity 

can be applied to implement extremely iterated work [267].  

One of the understandable advantages of the LM method is that no internal training parameters 

are required to be modified during the training process. This avoids many complications and 

barriers noted in using the classical algorithms, such as the slow rate of convergence, learning 

rate, and local minima and correcting learning epochs [268].  

 

The ANN analysis was carried out using the MATLAB R2019a software. To conduct the 

analysis, the neural network fitting was selected; Figure 5.22 shows the search path of 

MATLAB. 

 

Figure 5.22: The Neural Net fitting was selected from MATLAB (LJMU Library) 
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5.6.2 ANN Training 

Throughout the training process, data sets are handed to the input layer and then passed from 

layer to layer, upholding the system of the forward pass. However, in this type of system, each 

neuron in the hidden layer receives inputs from input layer neurons, which are already being 

multiplied using the adjacent weight, after which they are then summed up. In some cases, it is 

modified by using adding bias. After that, the inputs pass through the transfer function and 

provide values for the output layer.  

Errors are calculated by comparing the target and output values. In addition, errors are 

minimized with iteration, and just in case of back-propagation, these propagate backwards to 

regulate or update the weight for higher accuracy. The following Figure 5.23 flow diagram 

shows the entire process summarised. 

 

 

  

 

 

 

 

 

 
 

5.7 Summary 
 

This chapter defined the research methodology design process, which will be used to complete 

this research project. Several approaches will be used in this study. The first will be numerical 

calculations to select the optimum angle and frequency between the two horn antennas to 

monitor the concrete samples. This portion can be completed after determining the skin depth 

that the electromagnetic wave must penetrate in the concrete samples. In section 4.10 of 

Chapter 4, we defined the skin depth. The initial surface absorption testing findings are shown 

in chapter 6, section 6.1, to determine the permeability of the concrete samples and how quickly 

they absorbed water and salt water throughout the curing process. The preliminary 

Target 
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Figure 5.23: The Flow diagram of the training process of an ANN 
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experimental work aimed to decide whether or not we should use S21 or S11 characteristics with 

concrete samples. This experiment works to establish the relationship between the skin depth 

and the penetration depth of the concrete, thus demonstrating the state of the art.  

This study used three bands with different frequencies ranging from 2.35 GHz to 2.85 GHz in 

the S-band, 4 GHz to 7 GHz in the C-band, and 8 GHz to 12 GHz X-band to determine the 

attenuations and skin depth of EM waves. Therefore, preliminary experimentation was used to 

improve the methodology for the rest of the experimental work. After the preliminary testing, 

the initial experimental work was conducted with square pavement limestone aggregate 

concrete slabs with dimensions 600 x 600 x 40 mm. This experiment aimed to see how the 

reduction of water and salt water affects the microwave signal when using pavement slabs that 

were just 40mm thick. Following that, 10 concrete slabs with and without reinforcement, size 

250 x 250 x 60mm, were constructed and cast using the same technique as the three trial 

samples, under BS 8500-1:2006. These ten samples were tested independently for drying time 

and how electromagnetic waves reflect the concrete's reinforcement and the various 

reinforcement areas inside the concrete. After the concrete samples were constructed, the 

curing process was tested in two different saltwater concentrations for up to 28 days without 

reinforcing. The purpose of this curing process test is to determine when the concrete sample 

has gained sufficient strength, is fully saturated, and how quickly water and salt water enter 

into the concrete after 28 days. Then, the expanded experiment included monitoring the amount 

of water and saltwater solutions in the concrete and how they altered the electromagnetic signal 

during the 72-hour drying off period.  

Two concrete samples with mesh rebar were subjected to an experiment. This experiment 

aimed to see how different solutions of tap water and salt water affect concrete with 

reinforcement rebars and how rebars in concrete structures affect electromagnetic signals. The 

final experiment used five concrete slabs with 300 x 300 x 150 mm and no reinforcing. The 

data from these five samples was used to determine the skin depth and establish a reinforcement 

depth to determine the depth of reinforcement required for maritime concrete structures. 

However, it illustrated the comparison between the data processing and validation procedures 

employed in this study. Finally, the data generated from the microwave sensor and the partially 

destructive chlorimeter tool approach were compared using ANN, which revealed no 

significant difference between the two methods. 
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Chapter Six: Results and Discussion 
 

This chapter will demonstrate the experimental results using horn antennas to monitor the level 

of chloride ions in the concrete samples during the curing and drying processes. In addition, a 

chlorimeter tool is used as a gold standard method to detect the level of chloride in concrete 

and is compared with a microwave technique as a non-destructive method. The supervised LM 

algorithm, trained via multilayer feed-forward back-propagation, has been developed and 

applied in the present study. This sort of ANN comprises fully interconnected parallel neurons 

or processing elements (PEs), which are connected in three layers, following the order: the 

input layer, the hidden layer and finally, the output layer. Results obtained from all the 

experimental work will be processed, plotted, and analysed using an artificial neural network 

(ANN) to develop a validation model for monitoring chloride ions in different saltwater 

concentrations and at different depths during the curing process drying off.  

6.1 Results of the initial surface absorption test (permeability test) 

The initial surface absorption test is the most commonly used non-destructive test for 

evaluating primary concrete durability factors like absorption, permeability (air, gas, and 

water), and migration-related concerns. The permeability coefficient is calculated using the 

assumption of unidirectional airflow. The coefficient permeability of each sample shows in 

Table 6. 1. This method's readings frequently show an explicit reliance on the current wetness 

of the surface layer being investigated, which must be observed simultaneously. However, this 

technique is used to assess the concrete cover's resistance to infiltration by various aggressive 

agents' methods and determine the age of concrete constructions. The concrete cover's air 

permeability coefficient is directly connected to the pressure rise rate, Pi (measurement starts 

at t = 60 s). This approach has the advantage of being speedier and fully non-destructive. The 

value of the KT is used to determine the quality of the concrete cover (coefficient of 

permeability). This study shows that the measured permeability is lower in the case of wet 

concrete, indicating that the concrete quality appears to be too good. The purpose of this test is 

to determine the permeability of the concrete. The coefficient of permeability is lower, 

indicating that fluids (water or other chemical substances/chloride) cannot easily travel through 

the pores of the concrete. However, this low permeable concrete was exposed to a microwave 

horn antenna to test the sensor's accuracy. Microwave sensors successfully detect chloride ions 

in concrete structures. Figure 6.1 [271] shows the concrete quality class defined by KT in a 
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nomogram. If the permeability coefficient is less than 0.01x10-16 m2, the quality of the concrete 

cover is excellent. 

Table 6.1:Shows the permeability results obtained 

Concrete 

sample 

Time 

(second) 

Pi (mbar) KT(10-16 

m2) 

Length 

(mm) 

Permeability 

1 720 26 0.017 11 Very low 

2 720 24 0.11 11 Low 

 

Where, Pi is the pressure rise in the inner cell (mbar), KT; is the coefficient of air permeability 

(m2). 

 

 

 

 

 

 

 

 

 

 

 

     [269] 

 
 

6.2 Initial measurement results 

For both samples, measurements of the S21 parameter are taking over the complete spectrum 

range of the VNA and sensor frequencies between (2 GHz and 6 GHz). It was found that there 

was a change in the response for pavement samples with different saltwater concentrations at 

the same frequencies of the S21 parameter. Areas of interest for further analysis are highlighted 

in both Figure 6.2 and Figure 6.4. Zoomed in the regions highlighted in Figure 6.2 and Figure 

Figure 6.1: The nomogram for the concrete quality class  
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6.4  for the S21 signal, identified frequencies of 3.6 GHz and 4.15 GHz, as seen in Figure 6.3 

and Figure 6.5, respectively. The reason for choosing the lower frequency region for the 

microwave response was to avoid complex signals with higher-order modes and measurement 

complexities at high frequencies, more suitable for industrial use.  There is a noticeable change 

in EM signature appearing after the concrete absorbed water and salt water, particularly at the 

3.6 GHz and 4.15 GHz frequency range. According to this experimental data, the change is 

caused by the concrete's decreasing amount of water and salt water. 

During the experimental work, the sample was not touched or moved, and all other conditions, 

such as temperature and light, remained consistent during the test. Water absorbs 

electromagnetic waves very well because water has a high dielectric value, which enables the 

observation of changes in the microwave spectrum. After all, any minor change in water 

content could significantly impact the electromagnetic wave response curve (see Figure 6.3). 

In addition, the changes in electromagnetic waves are caused by differences in chloride ions 

concentration in the concrete.  When the concrete samples are exposed to the microwave 

sensors, the result of sample S21 measurements in Figure 6.3 compares to the sample S11 

measurements in Figure 6.4. It can be seen that there is a significant steady amplitude shift at 

the frequency ranges 2 GHz-12 GHz and 2 GHz and 6 GHz. The decrease in the amount of 

water in the concrete samples strongly influences the microwave response when the samples 

start drying off, hence a significant shift. However, for the S21 parameter of the concrete 

sample, this was best detected in the range of 3.6 GHz to 4.15 GHz; the change in amplitude 

increased from -40 dB to -34 dB as the moisture content decreased. However, when the 

moisture content decreased, the amplitude of the S11 parameter of the concrete sample 

illustrated in Figure 6.4 decreased from -5 dB to-9 dB in the same region. The S21 parameter 

was chosen for use in the entire experiment due to these findings and previous research. 
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Figure 6.2: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), Tap water 

 

 

 

 

Figure 6.3: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15 

GHz are presented (Tap water) 

Area of interest to be zoomed over 

the full range of spectrum  
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Figure 6.5 shows that the amplitude measurement of the microwave signal changes depending 

on the material properties, environmental influence and the amount of water and salt absorbed 

by the concrete over 24 hours. Data analyses allow the identification of the level of chloride 

ions in the concrete specimens during the experiment.  

Area of interest to be zoomed over the 

full range of spectrum  

Figure 6.4: The electromagnetic wave sensor: measurements are taken in the frequency range (2-12 

GHz) 

Figure 6.5: The electromagnetic wave sensor: measurements were taken every one hour in the 

frequency range (2-6 GHz), (Salt water) 
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Figure 6.6: Microwave sensor measurements were taken every one hour in the frequency range (2-6 

GHz), but for clarity data measurements from 6 hour intervals and from 3.6-4.15 GHz are presented 

(Saltwater). 

Figure 6.7: S21 measurement comparison between two plain concrete samples 
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In Figure 6.7, the legend shows both concrete samples with different saltwater concentrations 

after passing 18 hours of drying off. Since water has a high dielectric value, any slight change 

in its amount could significantly impact the microwave response curve. The above Figure 6.7 

shows a steady amplitude shift in the frequency between 3.6 and 4.15 GHz. Noticeable changes 

of microwave signal power levels between the 3.6 and 4.15 GHz frequency range can easily be 

observed after the 18 hours drying process. However, these changes in the spectrum were 

caused by the dielectric properties of the water and salt water, and when the amount of water 

is reduced, then less EM energy is absorbed; this technique can identify the state of the water 

content and amount of salt during the drying process. From Figure 6.7, it can easily be seen 

that the spectrum changes between both samples, with tap water and salt water after the 18-

hour drying process. After the water has evaporated, the sample containing NaCl absorbs more 

EM wave energy because of the amount of salt remaining inside the sample. It can be noticed 

in these initial results that the horn antenna could identify different saltwater concentration 

ingress in the concrete samples under test, hence providing the proof of concept. 

6.3 Curing process experimental measurement 

The experiment curing process was demonstrated in Chapter 5 Table 5.1 using two concrete 

samples without reinforcement out of ten concrete samples (Group D). Both concrete samples 

were measured for S21 and S11 parameters over the complete spectrum range of the VNA, 

between 2 GHz and 12 GHz. The reason for commencing the test from 2 GHz is due to the 

horn antenna limitation and non-response zones within the spectrum, with higher noise levels 

found below 2 GHz.  The results of both S21 and S11   measurements are shown in Figure 6.8, 

Figure 6.10, and Figure 6.12, respectively. The spectrums were carefully examined to identify 

the change of the magnitude in the full range to investigate the condition of the concrete 

samples with different saltwater concentrations in terms of the microwave signals. It was found 

that there was a change in the frequency response of concrete samples with varying 

concentrations of salt water at the same frequencies for the S21 and S11 parameters. Areas of 

interest for further investigation are highlighted in Figure 6.8, Figure 6.10 and Figure 6.12 and 

zoomed in the highlighted areas for the S21 and S11 parameters, identified in the frequency 

range of 2.5 GHz -3 GHz. It can be seen in Figure 6.9, Figure 6.11, and Figure 6.13 that there 

is a noticeable change in the EM signature between the frequency range 2.5 GHz and 3 GHz, 

especially at a frequency of 2.7096 GHz. The change is affected by the amount of water and 

salt water absorbed in the concrete sample during the 28-days curing period. Because moisture 

and chloride are two constituents that have the most prominent effect on the dielectric 
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properties of concrete, while the volumetric content of water in a concrete mixture is small, it 

has a very important bearing on the velocity and attenuation of electromagnetic waves in the 

concrete. Owing to water having a high dielectric property, microwave signal changes and 

electromagnetic (EM) wave absorption are very dependent on the water salinity and 

temperature. Because the dielectric characteristics of water and the concrete mixture as a whole 

are affected only by the chlorides present in solution at any particular time, dissolved chlorides 

start to reduce the real part of the complex dielectric permittivity of water, which directly 

affects the microwave velocity and greatly increases the imaginary part, affecting the 

attenuation of microwave signal waves.  The sample was not touched or moved during the 

experimental work, and all other conditions such as temperature and light nominally remained 

the same during the test. When both concrete samples were placed under the sensors, increasing 

storage of electric field energy can be observed, which leads to a decreasing resonance 

frequency. While the concrete sample started to absorb the water and salt water, the amplitude 

increased simultaneously.   

The speed of the EM waves is higher than that of sound waves and strongly depends on the 

permeability(μ)the permittivity (ε), the conductivity (σ) and the density of the volume charge 

(ρ) [270]. In addition, these parameters change with the type of water, so the wave propagation 

speed varies. It was also taken into account that seawater's dielectric constant changed with 

changes in frequency, temperature, and salinity [271] [272]. High attenuation due to water 

conductivity is the crucial problem with underwater communication using electromagnetic 

waves. As the frequency increases, this attenuation increases as well  [273]. 

 An experimental investigation was conducted to determine the skin depth of the penetration 

of electromagnetic waves into the concrete samples with different saltwater concentrations. 

The results and discussion were presented in detail in Chapter 5, Section 5.3.2. 
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Figure 6.9: S21 measuments from the electromagnetic wave sensor were taken every 15 minutes in the 

frequency range (2-12 GHz), but for clarity data from 2.5-3 GHZ is presented with measurements 

from 24 hour intervals (Saltwater) 

Figure 6.8: The electromagnetic measurements were taken every 15 minutes in the frequency 

range (2-12 GHz), (Saltwater) 
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Figure 6.11: S21 measurements were made every 15 minutes for 28 days in the frequency range (2-12 

GHz), although data measurements at 24 hour intervals and from 2.5-3.0 GHz are shown for clarity 

(Tapwater) 

Figure 6.10: Readings from the electromagnetic wave sensor; measurements were taken every15 

minute for 28 days in the frequency range (2-12 GHz) (Tapwater) 
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Figure 6.12: Transmitted power S21measurements using microwave sensor for the full range of 

frequencies (2-12 GHz) were taken every15 minute for 28 days (Tapwater) 

 

Figure 6.13: The microwave sensor measurements were taken every15 minute for 28 days in the 

frequency range (2-12 GHz), but for clarity, data measurements from 24-hour intervals and 2.5-3.0 

GHz are presented (Tapwater) 
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The results also show that the saltwater-soaked samples gained more in mass per unit volume 

as a function of the increasing number of cycles. This is due to two main factors: a) More salt 

is deposited into the concrete slabs through the pores after each soaking cycle. b) Adding salt 

to the pores decreases the speed at which liquid water evaporates from concrete slabs. 

 

Figure 6.14: At 2.709 GHz, the microwave signal begins to alter at an early stage 

 
Figure 6. 15: At 2.709 GHz, the microwave signal begins to alter at an early stage 
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 The above Figure 6.14 and Figure 6.15 show that the microwave signal starts to change at the 

early age of curing until the concrete gets fully saturated because concrete strength increases 

with age as moisture and a favourable temperature are present for cement's hydration. 

Therefore, it can easily be seen that the microwave power level rate of change differed at 14 

days for both concrete samples curing in normal tap water and salt water. 

 

6.4 Data analysis of drying process  

The experimental work was undertaken with a set of horn antennas to monitor the drying 

process of both concrete samples with two different saltwater concentrations. Measurements 

of both concrete samples were via the S21 and S11 parameters. In the first instance, readings 

were captured over the full spectrum range of the VNA between the 2 GHz and 12 GHz 

frequency range. Figure 6.16, Figure 6.18, Figure 6.20, and Figure 6.22 illustrate the S21 and 

S11 measurements taken every minute during the 72 hours. In addition, they were taking the 

measures of the weight loss of both the concrete samples simultaneously for 72 hours. The 

spectrums were carefully examined to identify the resonant frequency wave in the full range to 

study the response of saltwater concentration ingresses into the samples compared to the 

microwave signals. The microwave frequency response at the same S21 and S11 parameters 

changed with varying saltwater contents in both samples. Areas of interest for further analysis 

are highlighted in Figure 6.16, Figure 6.18, Figure 6.20, and Figure 6.22, then zoomed in the 

highlighted areas for the S21 and S11 parameters, identified in the frequency range of 2.5 GHz 

-3 GHz; this can be seen in Figure 6.17, Figure 6.19, Figure 6.21, and Figure 6.23. The reason 

for selecting the microwave response region in this frequency range is that in Figure 6.17, 

Figure 6.19, Figure 6.21, and Figure 6.23, there is a noticeable change in EM signal in both 

samples. The amplitude decreases as the moisture content of the concrete sample decreases; 

additionally, the data obtained from this experimental work can demonstrate that in the 

concrete sample submerged in salt water. The amplitude does not drop rapidly because there is 

still salt inside the concrete after the water has evaporated from the specimen's surface. 
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Figure 6.16: Transmitted power S21 measurements from electromagnetic wave sensor were taken 

every hour in the frequency range (2-13 GHz), salt water 

 

Figure 6.17: Readings from the electromagnetic wave sensor: measurements were taken every hour 

in the frequency range (2-13 GHz), but for clarity, data from 2.5-3 GHz are presented (Salt water). 
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Figure 6.18: Readings of reflected power S11 measurements using microwaves were taken per hour 

for the full range of frequencies, 2-12 GHz (Salt water) 

Figure 6.19: Reflected power S11 measurements of the material response to the microwaves were at 

the frequency 2.5-3 GHz are presented (Salt water) 
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Figure 6.20: Transmitted power readings S21 measurements using the electromagnetic wave sensor; 

were taken every hour in the frequency range (2-12 GHz) (Tap water) 

 

 

Figure 6.21: Transmitted power S21 measurements were taken every hour using electromagnetic wave 

sensor for the entire frequency range (2-12 GHz), but for clarity data from 2.5-3 GHz are presented 

(Tap water) 
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Figure 6.22: Readings of reflected power S11 measurements using microwaves were taken per hour 

for the full range of frequencies, 2-12 GHz (Tap water) 

 

Figure 6.23: Reflected power S11 measurements using microwaves were taken per hour for the entire 

of frequencies, 2-12 GHz, but for clarity data from 2.5-3 GHz are presented (Tap water) 
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Table 6.2:The weight value of the sample before and after wetting 

Concrete 

Samples 

without 

Rebar 

Different 

water 

concentration 

Weight 

samples before 

submerged in 

different water 

concentrations 

(Kg) 

Weight 

samples after 

28 days cured 

in different 

water 

concentrations 

(Kg) 

Weight of 

sample 

after 

drying off 

72 hours 

(Kg) 

Amount of 

water 

absorbed 

by the 

sample 

(%) 

Amount of 

water& salt 

water loss 

over 72 

hours (%) 

Amount of 

remaining 

water in the 

sample after 

72 hours (%) 

Sample 1 Fresh water 8.96 9.06 8.98 1.11 0.89 0.22 

Sample 2 Salt water 8.99 9.28 9.18 3.22 1.09 2.13 

 

Chloride penetrates concrete by the ingress of water containing the salts and by diffusion of 

the water's ions and absorption. This results in a high concentration of chloride ions at the 

surface of the concrete, which can ingress with time to reach the reinforcing steel. Chloride can 

ingress to a considerable depth while the concrete is permanently submerged, but there will be 

no corrosion unless oxygen is present in the cathode area. If the concrete is sometimes exposed 

to seawater and is occasionally dry, then salt ingress is progressive. In this experiment, both 

samples were not fully submerged in tap water and salt water. However, both the concrete 

samples were immersed in their respective solutions within (6 mm) of their top surface. Water 

and seawater was absorbed or evaporated from the edge of the concrete sample to the middle 

after 10 days of curing.  

Dry concrete takes in salt water by absorption and, under some conditions, may continue to do 

so until the concrete has become fully saturated. If the external conditions then change to dry, 

the direction of movement of water becomes reversed, and water evaporates from the ends of 

capillary pores open to the ambient air. However, it is only pure water that evaporates, the salts 

being left behind.  Consequently, the concentration of salts in the water left behind increases 

near the surface of the concrete. It can be seen that as an outcome, the salt moves inward, and 

the water moves outward. Then the next cycle of wetting with salt water will bring more salt 

present in solution into the capillary pores [274]. Nevertheless, if the wetting duration is short 

and the drying restarts very quickly, the ingress of salt water will carry the salts well into the 

interior of the concrete. Subsequently, drying concrete will get rid of pure water, leaving salts 

behind. 

The ingress of salt water depends on the length of the wetting and drying durations. Also, it 

should remember that the wetting occurs very rapidly with salt water, but the drying is slower. 

Hence, the interior of the concrete never dries out, and it should also be noted that the diffusion 

of ions during the wet periods is relatively slow [263]. 
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Table 6.2 shows the percentage of remaining moisture and salt water in both concrete samples. 

The concrete sample submerged in salt water still has 2.13% moisture remaining after 72 hours 

drying off; in comparison, the other sample submerged in tap water has only 0.22% moisture 

remaining after 72 hours drying off. The reasons for 2.13% remaining in the concrete sample 

depend on the duration of the drying period and the external relative humidity. It is likely for 

most of the water in the outer zone of the concrete to evaporate. The water remaining in the 

internal area will become saturated with salt, and the excess salt will quickly form as crystals. 

Where the salt water penetrated more extensively into the concrete sample, the conductivity of 

the sample increased, which led to the decrease of the penetration ability of the microwave 

signal. Thus, the sensitivity of the measurement was decreased. Figure 6.24 and Figure 6.26 

present the correlation coefficient (R2) between weight loss and S21 and S11 parameters change 

across the entire frequency spectrum, i.e. from 2 GHz to 12 GHz frequency range. R2, the 

correlation between every single frequency point from 2 to 12 GHz compared to the second 

parameter, which could be either the amount of moisture lost or the amount of chloride 

concentration, was displayed using the LabVIEW software. LabVIEW generates a graph 

ranging from 0 to 1, with 0 representing no correlation and 1 representing a strong correlation, 

and 2.709 GHz presenting the highest correlation. The strongest (polynomial) correlation 

coefficient determined between S21 and S11 where it changes at 2.709 GHz for weight loss, with 

R2 = 0.91 and R2 = 0.96 for the saltwater sample and R2 = 0.97 and R2 = 0.92 for the tap water 

sample, as shown in Figures 6.25 and 6.27. 
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Figure 6.24: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum 

Figure 6.25: Polynomial correlation coefficient best fit between weight loss and S21 change at 

2.709GHz, with R2 =0.91, for salt water sample and R2=0.97 for tap water sample 



 

136 | P a g e  
 

 

 

Figure 6.27: Polynomial correlation coefficient best-fit weight loss and S11 change at 2.709 GHz, 

with R2=0.96, for saltwater sample and R2=0.92 for tap water sample 

 

 

 

Figure 6.26: R2 between both concrete sample weight loss and S11 change across the full frequency 

spectrum 
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Absorption is driven by moisture gradients [275]. Furthermore, the durability of concrete is 

mainly dependent on the capacity of a fluid to penetrate the concrete structure, which is known 

as permeability. High permeability leads to the introduction of molecules that react and destroy 

the structure’s chemical stability [276]. Moreover, the low permeability of concrete can 

improve resistance to the penetration of water, sulphate ions, chloride ions, alkali ions, and 

other harmful substances which cause chemical attack [277]. Chloride ions can be absorbed 

quickly but not as rapidly as moisture; moisture always comes first, followed by chloride. This 

is due to the difference in dynamic viscosity between water and salt water; salt water's viscosity 

is substantially higher and denser than water without salt [278].  Therefore, the data analysis 

from the drying process experiment has proven that the sample containing only moisture was 

drying off much faster than the concrete sample containing chloride ions which were always 

last because of the crystals of salt that blocked the water from escaping from the surface of the 

concrete. Hasted (1948) conducted an experimental study on the dielectric properties of 

saltwater solutions and observed a dielectric decrement with salt concentration. That means the 

addition of sodium chloride to water results in a drop in electrical permittivity. 

6.5 Data analysis of drying process (two rebars) 

 

An experiment was carried out using two concrete slabs of the same size and the material 

properties that contained two rebars. These represented two samples out of 10 samples (group 

D) see Table 5.1 in Chapter 5.  The details of the concrete properties are mentioned in Chapter 

5, Section 5.4.2. We investigated the difference between tap water and saltwater solutions on 

the concrete with reinforcement and how the rebars in concrete structures affect the microwave 

signal. As a result, it is possible to observe changes in the microwave spectrum due to measured 

objects' different dielectric properties and textures. In the first instance, we took measurements 

of both concrete samples for the S21 parameter, and all samples were captured over the full 

spectrum range of the VNA between 2 GHz and 12 GHz. across the VNA's complete spectrum 

range between 2 GHz and 12 GHz. Figure 6.28 and Figure 6.31 illustrate the S21 measurements, 

which were taken every minute for 24 hours, taking the weight loss measurements of both the 

concrete samples simultaneously for 24 hours. The spectrums were carefully examined to 

identify the resonant frequency wave in the full range, to study the response of saltwater 

concentration ingresses into the samples compared to the microwave signals and to study the 

response of saltwater concentration ingress to the microwave signal. The microwave frequency 

response at the same S21 parameters changed with varying saltwater contents in both samples. 

Areas of interest for further analysis are highlighted in Figure 6.28 and Figure 6.31, then 
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zoomed in the highlighted areas for the S21  parameters, identified in the frequency range of 

3.45-3.55 GHz and 4.2 GHz – 4.6 GHz, for both concentrations of salt water respectively and 

can be seen in Figure 6.29, Figure 6.30, Figure 6.32 and Figure 6.33. 

 

Figure 6.28: Transmitted power S21 measurements using microwave were taken every one minute for 

the full range of frequencies, 2-12 GHz (Tap water) 

 Figure 6.29: Readings of transmitted power S21 measurements responses of the concrete using 

microwave were taken per minute for the full range of frequencies (2-12 GHz), but for clarity, data 

measurements from 3.45-3.55 GHz are presented (Tap water). 
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Figure 6.31: Readings of transmitted power S21 measurements using microwave were taken every one 

minute for the full range of frequencies, 2-12 GHz (Salt water) 

 

 

 

Figure 6.30: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) 
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Figure 6.32 Microwave measurements of transmitted power S21 were taken every minute over the 

entire range of frequencies (2-12 GHz), but clarity data readings from every hour intervals and 3.45-

3.55 GHz are presented (Salt water) 

 

 

Figure 6.33: Readings of transmitted power S21 measurements of the response concrete using 

microwaves were taken per minute for the full range of frequencies (2-12 GHz), but for clarity data 

measurements from every hour intervals and 4.2-4.6 GHz are presented (Salt water) 
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The conductivity of the concrete sample increased as the salt water penetrated further into the 

concrete, which contributed to a decrease in the microwave signal’s penetration power. Thus, 

the measurement sensitivity decreases. The linear association (R2) between weight loss and the 

S21 parameter varies over the entire frequency spectrum, i.e. the frequency ranges from 2 GHz 

to 12 GHz, as shown in Figure 6.34. In comparison with the second parameter, the LabVIEW 

program was used to display the R2 value that is the correlation between every single frequency 

point from 2-12 GHz. This could be either the amount of moisture lost or chloride 

concentration, and LabVIEW produces a graph between 0-1, where 0 is not correlated, and 1 

is the strong correlation. It shows about 3.482 GHz and 4.42 GHz with the highest correlations. 

The strongest (polynomial) correlation coefficient association between S21 shifts at 3.482 GHz 

and weight loss, with R2 = 0.78 with the salt water and R2 = 0.90 of the sample with tap water, 

can be seen in Figure 6.35. The strongest (polynomial) association between S21 shifts at 4.42 

GHz and weight loss, with R2 = 0.71 with the saltwater and R2 = 0.89 of the sample with tap 

water, can be seen in Figure 6.36.  

 

Figure 6.34: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum 
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Figure 6.36: Polynomial correlation coefficient best fit between weight loss and S11 change at 

4.42 GHz, with R2 =0.71, for salt water sample and R2=0.89 for tap water sample 

Figure 6.35: Polynomial correlation coefficient best fit between weight loss and S21 change 

at 3.482 GHz, with R2 =0.77, for salt water sample and R2=0.90 for tap water sample 
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Collecting the signature of the microwave spectrum was necessary to recognise the 

characteristics of the concrete structure. Therefore, measurements taken with and without 

reinforcement for the concrete samples can be seen in Figures 6.37 and Figure 6.38. Both 

sensors were located 20 mm from the measured area surface, and data was collected over 24 

hours during the concrete sample drying off period. The S21  parameter was used for the 

measurements, and the plots indicate the reflected amplitude signal from the measured material 

properties. Data illustrated in Figure 6.37 shows that microwave attenuation changes because 

the moisture content in the concrete sample is reducing.  This experiment is to confirm that the 

concrete sample without the reinforcement has its specific pattern. The second experiment also 

showed this for the concrete sample with two reinforcements, where data sets were collected 

with the two horn antennas. Figure 6.38 shows results from the sensor. The antenna was 

arranged in the same parameter S21 configuration and placed at the same distance from the 

surface of the concrete samples. The identical concrete pattern remains constant at the rebar 

location before the sensor position is adjusted. The unique signal starts to change due to 

reducing water and the dielectric properties of the steel rebar. The role and form of the material 

inside the concrete structure can be identified using these phenomena. 

 

 

Figure 6.37: Transmitted power S21 measurements of concrete sample drying off without 

reinforcement for the full range of frequencies, 2-12 GHz (Tap water) 
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Figure 6.38: Transmitted power S21 measurements of concrete sample drying off with reinforcement 

for the full range of frequencies, 2-12 GHz (Tap water) 

 

A comparison between two concrete samples with reinforcement and without reinforcement 

has been shown in Figure 6.39. Sensors were put in the middle of the sample from the start of 

the measurements. In comparison, results observed that the specific microwave configuration 

shifted to the left, and the amplitude level of the microwave signal has also changed due to the 

presence of the steel rebar. Concrete samples absorb different amounts of microwave energy 

without reinforcement. Appendix D contains the raw data results for the remaining samples 

with one rebar, crossing rebars, and mesh rebars. 

Figure 6.39: Comparison between concrete samples with and without reinforcement 
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6.6 Data analysis of 5 concrete samples with 5 different saltwater concentrations 

 

Figure 6.40 illustrates the S21 measurements of the reflected signal for five concrete samples. 

The measurements shown in the figure were taken every 15 minutes for 48 hours. The change 

of the antenna response is thought to be caused by the different saltwater concentrations from 

(0.0%, 0.5%, 1.5%, 2.5% and 3.5%). The data was processed in two steps to select the optimum 

electromagnetic frequency for chloride ion concentrations test in concrete samples. The first 

step used an Info Gain Attribute Eval, which employs the Ranker search method from the Weka 

workbench select attribute to reduce the dimensionality of the data from 4,001 features to 3,003 

features based on the five different classes such as (0.0%, 0.5%, 1.5%, 2.5%, and 3.5%) 

saltwater concentrations [179]. The selected method is able to calculate the information gain 

for each attribute for the output variable. Those attributes that contribute more information 

have a higher information gain value and can be picked, while those that don't give much 

information have a lower score and can be eliminated. The second step applied 10 machine 

learning algorithms in four different classifiers (Meta, Misc, Rules, and Tress). These methods 

and associated algorithms have been described in detail in Chapter 3 Section 3.7.2. The final 

algorithm, J48, is the Class for generating an unpruned or pruned C4.5 decision tree. The 

knowledge model depends on how the classifier is constructed, and it can be represented by 

classification rules algorithms AQ21 [279], decision trees e.g algorithm C4.5 [280] or many 

other representations. Table 6.3 presents the set of algorithms that have been previously 

described above within various classifiers having less mean square error and a higher 

percentage of accuracy to establish the most important frequency across the Class of five 

different saltwater concentrations. This research concentrated on the most popular decision tree 

classifiers, the algorithm J48 of the last publicly available version of the  C4.5 method 

developed by J.Rose Quinlan [280]. This algorithm was compared to selected algorithms 

available in Weka workbench [281].  Figure 6. 41 shows the procedures for collecting and 

processing the data. 

 

 

 

 

 



 

146 | P a g e  
 

Table 6.3: Results obtained for different classifiers from the Weka workbench 

 

 

 

 

 

 

 

 

 

The best accuracy equalling 86% and least means absolute error and root mean square error 

was obtained utilising the J48 algorithm. The decision tree generated by the J48 algorithm is 

illustrated in Figure 6.42, which shows the most crucial frequency point for the different 

saltwater concentrations. The first number in brackets indicates the number of examples from 

the training set covered by a select leaf; the second value directly after the sign (10,0) reflects 

the number of incorrectly categorised (see Figure 6.42) created by the Weka workbench 

algorithm. These numbers are based on the frequency values indicated in Figure 6.41. The trees 

The different classifier 

has been used for these 

algorithms  

Accuracy 

(%),  

Means 

Absolute error 

(%) 

Root means 

square error 

(%) 

MultiScheme 20 0.3 0.4 

Bagging 20 0.32 0.4002 

CVParameterSelection 20 0.32 0.4 

InputMappedClassifier 20 0.32 0.4 

OneR 20 0.32 0.5657 

ZeroR 20 0.32 0.4 

REPTree 20 0.32 0.4 

RandomTree 72 0.112 0.2366 

DecisionStump 40 0.24 0.3464 

J48 86 0.056 0.2266 

Figure 6.40: The microwave horn antenna; the measurements were taken for the frequency 

range 2-12 GHz. 
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generated by algorithm J48 show the frequency point that is the most significant point 

determining the level of chloride ions in the concrete samples. 

 

 

 

 

Figure 6.41: Flow diagram of data processed with machine learning classification. 
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The obtained decision tree can be easily transformed into the following rules: 

Salt concentration = 0.0%, 05%, 1.5%, 2.5% and 3.5% 

Rule 1 [freq (5518379520 <= -19.555298)] and [5420855296>-20.030178]: p = 10, n = 0 

Rule 2 [freq (5518379520 <= -19.555298)] and [5420855296<=-20.030178]: p = 10, n = 0 

Rule 3 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732]: p = 10, n = 0 

Rule 4 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732] and 

[5418354688<=-19.267565]: p =10, n = 0 

Rule 5 [freq (5518379520 > -19.555298)] and [5418354688<=-19.427732] and 

[5418354688<=-19.267565]: p = 10, n = 0 

Where p denotes the number of positive examples covered by the rule and n denotes the number 

of negative ones. The obtained decision rules determine that at 5.42 GHz frequency the best 

results are obtained for the sensor that has been used in this project. The number of test 

examples is equal to 50 (n = 50). The accuracy classification obtained was equal to 86%. The 

results obtained from a test set are often displayed as a two-dimensional matrix with a column 

and row for each class. Each matrix element shows the number of test examples for which the 

actual class is the row, and the predicted class is the column. In addition, the sum of the 

Figure 6.42: Indicates the classification of algorithm J48 decision tree graphic 
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numbers from down the main diagonal of the confusion matrix with a red arrow divided by the 

total number of test examples determines the classification accuracy. Table 6.4 presents the 

confusion matrix of the solved problem. 

Table 6.4: The confusion matrix for the leave-one-out validation of classification 

Classified as 0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

0.0% NaCl 9 0 0 1 0 

0.5% NaCl 0 8 0 0 2 

1.5% NaCl 2 0 8 0 0 

2.5% NaCl 0 2 0 8 0 

3.5% NaCl 0 0 0 0 10 

 

Figure 6.43 illustrates the S21 measurements taken for the frequency range 2-12 GHz, but for 

clarity, data from 5.4-5.6 GHz is presented after the trees generated by algorithm J48 from the 

WEKA workbench. The frequency point 5.42 GHz is the most significant point determining 

the level of chloride ions in the concrete sample. The reason for choosing the 5.42 GHz 

frequency point was the skin depth EM wave calculation for marine concrete cover depths up 

to 70 mm. In terms of civil engineering requirements, the skin depth for the dielectric property 

of the electromagnetic wave signal for the maritime concrete structure has been suggested, with 

the nominal cover ranging 55-75 mm. As a result, the skin depth for the EM waves point of 

view was chosen and applied to meet the civil engineering requirement for assessing the 

nominal and effective cover. This technology could be utilised in civil engineering to do 

additional inspections. However, because our initial focus was on maritime concrete structures, 

this parameter should be taken into account. However, this criterion can still apply to other 

civil engineering applications, such as motorways and pavement where the skin depth must be 

between 35 and 45 mm, per BS EN 1992-2:2005. As demonstrated in Figure 6.41, other 

potential frequencies can be employed to determine the concentration of chloride ions. A 

decision tree constructed by the J48 algorithm was used to choose these frequencies, as shown 

in Figure 6.42. Weka workbench algorithm J48 has been used to select the other frequency 

point based on five different saltwater concentrations, allowing us to narrow down the 

frequency range. Appendix E contains the results of the WEKA workbench and the ANN 

techniques. 
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Based on the readings from the microwave horn antenna, the measurements were taken for the 

full frequency range 2–12 GHz, however, data from 5.4–5.6 GHz is given in Figure 6.43 for 

clarity. After the full data set of frequency analysis through the algorithm for the Weka 

workbench classification and via the trees produced by algorithm J48, a different frequency 

point has been selected and shown in Figure 6.42. However, each single frequency point is 

significant to determine the level of chloride ions in the concrete samples. The skin depth 

calculations and theory shown in Chapter 5 section 5.3.1, along with the ANN technique used 

to analyse the sensor data, has selected the most significant frequency (5.42 GHz). 

In addition, at this frequency point, the EM wave enables penetration of the concrete sample 

up to 70 mm skin depth. Therefore, after selecting the most significant frequency point, there 

is a need to compare with the gold standard chlorimeter tool (destructive method) by applying 

the ANN technique to evaluate this frequency. The frequency chosen from algorithm J48 was 

compared to the target value determined from chlorimeter tool data gathered during the 

experiment.  In addition, the single frequency point was used as input, and the chloride data at 

three different depths such as 18, 40 and 70 mm were collected from the chlorimeter tool and 

used as output. 

 

 

Figure 6.43: Readings from the microwave horn antenna; measurements were taken for the frequency 

range 2-12 GHz, but for clarity data from the 5.4-5.6 GHz is presented 
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Firstly, the full data spectrum was analysed by the WEKA workbench classification method 

and the most significant frequency point was selected. Then, based on the outcome of results 

generated from the decision tree J48 algorithm shown in Figure 6.42, the area of interest for 

the full spectrum needed to be zoomed in on, shown in Figure 6.43. Thus, the differences 

between each concrete sample, based on five different saltwater concentrations, especially 

between 5.4-5.47 GHz, are shown in Figure 6.43.  

Table 6.5 demonstrates the percentage of chloride ions that have been collected from the 

laboratory work undertaken by the destructive method (chlorimeter tool) at three different 

depths in five different saltwater concentrations. 

 

Table 6.5: The Percentage of chloride per weight of 3 grams of dust in five different saltwater 

concentrations at three different depths (destructive method) 

 

6.6.1 Variables selected for neural networks 

 

Following the selection of the most significant frequency by the WEKA workbench algorithm 

J48, supervised machine learning classification methods were employed to detect the level of 

chloride ions in specimens. Therefore, this frequency point was selected for the determination 

of chloride ions’ content in the concrete samples. The selected single frequency data sets were 

used in the ANN method to validate the sensors and the gold standard method as commonly 

used in industry. In this research, ANN was developed and performed under MATLAB 

programming. To simplify the back-propagation (BP) neural network's learning process and 

reduce the time required for training, the learning algorithm adopted to train the network model 

in this study was the Levenberg–Marquardt algorithm [144]. The ANN model was developed, 

trained, tested, and validated using 50 data sets. To assess the reliability and accuracy of the 

models, 70% of the 50 data sets were randomly selected as training sets, 15% of the 50 data 

sets selected for testing and 15% selected for validation. For modelling, data on the level of 

chloride ions in the specimen at three different depths is interpreted as output. 

  5 samples with 5 different percentages of saltwater 

concentration. Chloride content per weight of 3-gram dust 

3 varying depths 
of cover (mm) 

0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

18 0.03% 0.85% 0.94% 1.18% 1.65% 

40 0.02% 0.66% 0.81% 0.92% 0.48% 

70 0.02% 0.62% 0.72% 0.76% 0.40% 



 

152 | P a g e  
 

 In addition, the raw data of electromagnetic waves for concrete samples in 5 different saltwater 

concentrations were considered as input parameters. The data was formatted into a 5x3 matrix 

to fit the ANN model. Table 6.6 gives the list of the ANN inputs and outputs. The supervised 

machine-learning algorithm used in the study was gradient descent with adaptive learning 

back-propagation. This network training function updates weight and bias values according to 

gradient descent with an adaptive learning rate. The error incurred during the learning process 

was expressed in terms of mean squared error (MSE). Many researchers have described the 

structures of the ANN [282] [283] [194].  

To determine and validate the percentage of chloride ions in the concrete samples, five different 

saltwater concentrations are used as input layer neurons: 0.0% NaCl, 0.5% NaCl, 1.5% NaCl, 

2.5% NaCl and 3.5% NaCl.  Measurements of chloride ions’ content via chlorimeter tools at 

three different depths were used as the output layer neurons. However, there is no rule currently 

for determining the optimal number of neurons in the hidden layer or the number of hidden 

layers, except through experimentation [284]. The number of hidden layers in a Feedforward 

Neural Network (FNN) design is the most significant factor to consider. A single hidden layer 

is very satisfactory for many problems. A single hidden layer for FNNs is sufficiently close to 

the corresponding outputs desired by the approximation theorem. Increasing the number of 

hidden layers may increase the accuracy in the test set. This can causes the network to overfit 

the training set, that is, it will learn the training data. However, the analysis also verifies that 

the complex non-linear problem at hand can be solved with a single hidden layer, so there is 

no substantial need for two or more layer architectures [285]. The architecture of the validation 

model for the percentage of chloride ions in the concrete sample consists of three layers as 

shown in Figure 6.44.  
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Table 6.6: The Input and output parameters of the ANN at one single frequency (5.42GHz) 

Input Variable Target (output) 

5 different percentages of 

salt water concentration 

 

Averaged (10) 

Number of S21 at 

(5.42GHz), (dB) 

 

% of Chloride ion per weight of cement 

18mm 

depth 

40mm 

depth 

70mm 

depth 

0.0% added (NaCl) 

 

-19.78067 (Stdev) 

 

0.0059 

 

0.0047 

 

0.0039 

 

0.5% added (NaCl) 

 

-19.21289 (Stdev) 

 

0.1667 0.1291 0.1222 

1.5% added (NaCl) 

 

-20.07625 (Stdev) 

 

0.1855 0.1589 0.1421 

2.5% added (NaCl) 

 

-19.38039 (Stdev) 

 

0.2316 0.1821 0.1506 

3.5% added (NaCl) 

 

-18.93071 (Stdev) 

 

0.3256 0.0952 0.0786 

 

 

 

 

 

 

 

 

 

Figure 6.44: The characteristic structure of the ANN model inputs and output variables for a single 

frequency (5.42GHz) 
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The most challenging part is selecting the number of neurons in the hidden layer in the total 

network development process. Therefore, neural networks were trained with different hidden 

layer neurons to determine the optimal number of hidden layer nodes. Thus, the data from the 

training set were used to determine the number of neurons in the hidden layer, which resulted 

in the most negligible error between the neural network output and the experimental data. The 

hidden layer neuron number was varied, and the resulting mean square errors (MSEs) between 

the network outputs and the corresponding experimental outputs were determined and plotted 

in Figure 6.45. It can be shown that when the number of neurons is 10, the error is the lowest. 

 

 

Table 6.7 demonstrates the % of chloride per weight of cement and concrete at different depths 

using the destructive method (chlorimeter) as per equation (6.2) [75, 286]. Table 6.7 indicates 

the percentage of chloride per weight of cement.  

%CLPer WCement =
𝑊𝑐×%𝐶𝑙3

𝑊𝑑
                                                                                           Eq (6.2) 

 Where; 𝑊𝑐 represent the weight of cement per sample, 𝐶𝑙3𝑔𝑟𝑎𝑚 represents the percentage of 

chloride per weight of 3-gram dust, 𝑊𝑑  is the weight of dust per hole.  

We used Equation 6.2 to determine the amount of chloride per weight of cement for each 

sample in different saltwater concentrations and at different cover depths. 

Figure 6.45: The error generated by different numbers of neurons 
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Table 6.7: The %chloride per weight of cement in five different saltwater concentrations at three 

different depths. 

  5 samples with 5 different percentages of saltwater concentration. 

% Chloride content per weight of Cement 

3 varying depths 

of cover (mm) 

0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

18 0.006 0.167 0.185 0.232 0.326 

40 0.005 0.129 0.159 0.182 0.095 

70 0.004 0.122 0.142 0.151 0.079 

 

 

Figure 6.46: The % chloride per weight of cement 

 

Chloride penetration at various concentrations reduces as the concrete cover increases, as seen 

in Figure 6.46. This is due to the saltwater concentration's viscosity, the concrete's 

permeability, and the fact that it was compacted well during the casting process. Furthermore, 

as the water drained through the concrete's surface, the salt stayed inside the concrete and 

formed a crystal, inhibiting capillary absorption and allowing the solution to reach the 

reinforcement and begin the corrosion process. 
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6.6.2 The developed ANN model made use of electromagnetic wave sensor data 

Table 6.8 shows a summary of model output for optimisation of a single frequency for chloride 

prediction. A total of 50 data samples were employed in the ANN model training (70%), 

validation (15%), and testing (5%). (15% ). The results compared model findings with those 

acquired using the destructive approach and correlated with predicted and measured values 

(chlorimeter tool). 

Table 6.8: The ANN model's summary findings 

 

 

Table 6.9 presents the validation percentage measurement of chloride per weight of cement in 

the concrete specimens using electromagnetic (EM) wave spectroscopy. 

 
 

Table 6.9: Validated percentages of chloride per weight of cement 

 

 

 

 

Figure 6.47 demonstrates the validated chloride per weight of cement that was obtained by 

using the ANN technique.  The validation values obtained using the ANN for the testing 

percentage of chloride in different saltwater concentrations at three different depths per weight 

of cement are listed in Table 6.9. The Chi-squared test can be used to determine the relative 

error between the validation values and the measured chloride percentage values using the gold 

standard chlorimeter tool.  The following procedure has been carried out to calculate the Chi-

squared value and the P_Value, confirm the validation values obtained through the developed 

ANN model, and use the Hypotheses test to verify the significance. That means the null 

  Per weight of cement 

Parameter Samples MSE R2 

Training (70%) 34 2.22469x10-7 0.99984 

Validation (15%) 8 5.00873x10-6 0.999557 

Testing (15%) 8 1.49404x10-6 0.999814 

 
The percent chloride per weight of cement was validated 

at a single frequency (5.42GHz) 
3 varying depths of 

cover (mm) 

0.0% NaCl 

added 

0.5% NaCl 

added 

1.5%NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

18 0.006 0.167 0.185 0.232 0.326 

40 0.005 0.129 0.159 0.182 0.095 

70 0.004 0.122 0.142 0.151 0.079 
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hypothesis was accepted, and the H1 hypothesis  was rejected because it can be seen that there 

is no significant difference between the validation values and target values. The following 

section describes more about the Chi-Squared statistical method and the calculation technique 

to determine the Chi-Squared value 

 

Figure 6.47: Validated % chloride per weight of cement obtained from the ANN model for 5 different 

saltwater concentrations and taken at 3 different depths using the selected single frequency. 

 

6.6.3 Error calculations using the chi-squared method 

  

The Chi-square test is based on a statistic that calculates the difference between the observed 

results and the values expected under the null hypothesis of no correlation. It involves 

calculating the expected values based on the results. The observed values used were taken from 

the data collected from the laboratory testing. Then the expected values were calculated from 

the observed value. 

 Table 6.10 and Table 6.11 show the total observed values obtained from the laboratory and 

calculated expected values. 
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Chi-squared test 

 

Table 6.10: Data on the observed value obtained from the (chlorimeter tool) 

Observed Actual percentages of chloride content per weight of cement  

Varying  

depths of 

cover 

(mm) 

0.0% 

NaCl 

added 

0.5% 

NaCl 

added 

1.5% 

NaCl 

added 

2.5% 

NaCl 

added 

3.5% 

NaCl 

added 

Total 

18 0.005913 0.166747 0.185471 0.231593 0.325609 0.9153324 

40 0.004730 0.129101 0.158863 0.182120 0.095199 0.5700132 

70 0.003942 0.122202 0.142109 0.150584 0.078643 0.4974804 

Total 0.014585 0.418049 0.486443 0.564297 0.499451 1.9828260 

 

The following calculation demonstrates how to obtain the expected value: 

0%NaCl at 18 mm = (0.014585 *0.9153324)/(1.9828260) = 0.0067331 

0%NaCl at 40 mm = (0.014585 *0.5700132)/(1.9828260) =  0.0041929 

0%NaCl at 70 mm = (0.014585 *0.4974804)/(1.9828260) =  0.0036594 

Same method used for the rest of (0.5%NaCl, 1.5%NaCl, 2.5%NaCl and 3.5%NaCl) to 

obtained expected value. 

 

Table 6.11: The expected value is derived from the total number of observed values. 

Expected 

value 

     

Varying 

depths of 

cover (mm) 

0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

18 0.0067331 0.1929841 0.2245567 0.2604967 0.2305619 

40 0.0041929 0.1201787 0.1398402 0.1622215 0.1435799 

70 0.0036594 0.1048863 0.1220459 0.1415792 0.1253097 

 

 

The following equation has been used to find out the Chi-Squared:  

 

 𝑥2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 

 

 

The calculation shows Chi-squared for (0%NaCl) 
 
 

0% NaCl at 18 mm              X2= ∑
(𝟎.𝟎𝟎𝟓𝟗𝟏𝟑−𝟎.𝟎𝟎𝟔𝟕𝟑𝟑𝟏 )𝟐

𝟎.𝟎𝟎𝟔𝟕𝟑𝟑𝟏 
= 𝟎. 𝟎𝟎𝟎𝟏𝟎𝟏 
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0% NaCl at 40 mm              X2= ∑
(𝟎.𝟎𝟎𝟒𝟕𝟑𝟎 −𝟎.𝟎𝟎𝟒𝟏𝟗𝟐𝟗 )𝟐

𝟎.𝟎𝟎𝟒𝟏𝟗𝟐𝟗 
= 𝟎. 𝟎𝟎𝟎𝟎𝟕𝟎 

 

0% NaCl at 70 mm              X2= ∑
(𝟎.𝟎𝟎𝟑𝟗𝟒𝟐 −𝟎.𝟎𝟎𝟑𝟔𝟓𝟗𝟒 )𝟐

𝟎.𝟎𝟎𝟑𝟔𝟓𝟗𝟒 
= 𝟎. 𝟎𝟎𝟎𝟎𝟐𝟐 

 

The same method was used for the rest of (0.5% NaCl, 1.5% NaCl, 2.5% NaCl and 3.5% NaCl) 

to obtain Chi-Squared. Table 6.12 shows the total Chi-Squared calculation values for 5 

different saltwater concentrations at three different depths. 

 

Table 6.12: The total Chi-Squared calculation values 

Chi-Squared 
     

Varying depths of 

cover 

0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

18 0.000101 0.003568 0.006799 0.003208 0.039174 

40 0.000070 0.000663 0.002586 0.002441 0.016299 

70 0.000022 0.002859 0.003297 0.000573 0.017375 

Total 0.099 

P_Value 0.99999 

 

In statistical research, under the assumption that the null hypothesis is correct, the p-value is 

the probability of obtaining test results at least as extreme as the findings observed. Therefore, 

a very small p-value (P < 0.05) means that the test hypothesis is false or should be rejected. If 

(p > 0.05), this means the probability is that the null hypothesis is true. The reason why this 

test was carried out was to find out any significant difference between the actual data values 

achieved from the laboratory and the validated trained data from the ANN technique. 

Degree of freedom (df) (number of rows – 1) x (number of columns – 1) = (3-1) x (5-1) = 8. 

Table 6.13 shows the critical values of the chi-square distribution with degrees of freedom and 

95 % confidence ranges. 

Table 6.13: Chi-Square and P-Value are displayed. 

 

 

X2 0.0990338 

Df 8 

𝒙 2 critical 15.51 

P_value 0.999999759 > 0.05 
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Chi-squared is one of the statistical tests widely used to compare quantities and define if 

observed values differ from those expected under a specific hypothesis. It was used to check 

(H0) and (H1) 

H1 = there is a difference between the age range years for the three options (alternate 

hypothesis). H0 = when there’s no dissimilarity (Null Hypothesis)  

0.099 < 15.51; therefore, Rejected H1 and accepted H0. The chi-squared value needed to reject 

the (hypothesis) rises because it is shown there is no significant change between the Observed 

value and Expected value. 

The same method is used to calculate the Chi-Squared %chloride per weight of cement and the 

predicted %chloride per weight of cement. Table 6.14 indicates the final calculations of chi-

squared values for the predicted percentage of chloride ions in five different saltwater 

concentrations specimens at three different depths. The results demonstrate that the 

electromagnetic (EM) wave spectroscopy can suitably predict the chloride ion content across 

the range of values investigated and the percentage error in relation to the destructive method 

(chlorimeter tool) as a gold standard in the industry is 0.034%. 

Table 6.14: The total Chi-Squared values and %of error 

Parameter % of Chloride Chi-Squared % Error 

Chlorimeter Tool per weight of cement 0.099000000 
 

Microwave 

spectroscopy_ 
per weight of cement @ 5.42GHz 0.099033791 

 
0.034 

 

According to the CHI Squared calculation, there is no significant change between observed 

and expected values. It can be seen in Table 6.14 that the % of error is calculated with the CHI 

Squared values. The following equation is used to calculate the percentage error. 

 

Per weight of cement @ 5.42GHz             %Error =
(0.09900000−0.099033791)

(0.099000000)
∗ 100 =0.034 
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6.6.4 Comparison of actual value and confirmed chloride ion percentages at 5.42 GHz 

frequency 

 

Figure 6.48 demonstrates the % of chloride per weight of cement in different saltwater 

concentrations at three various depths.  The Chlorimeter tool is used as  the gold standard 

method to measure chloride ions at three different depths. The accuracy of this Chlorimeter 

tool covers a wide range from 0.002% to 2% chloride per weight. It can be seen in both figures 

that the penetration of chloride increased with the increased percentage of salt water at the 18 

mm depth. But after the cover depth increased, the chloride penetration decreased because of 

the material properties such as less permeability, being well compacted, the high viscosity of 

the solution, and the water-cement ratio. 

In the case of chloride intrusion, chloride ions have only a small influence on the pH of the 

pore solution. Nevertheless, when the chloride content in the pore solution exceeds a critical 

value (chloride threshold), it can destroy the passive layer. However, it has proved rather 

difficult to establish a threshold chloride concentration below which there is no risk of 

corrosion as it depends on numerous factors, including [287]: a) The concentration of hydroxyl 

ions in the pore solution and pH of concrete. Therefore, above a critical ratio of chloride and 

hydroxy ions, corrosion can take place. Husman suggested 0.6 as the critical ratio [10]. In 

addition, the hydroxyl ion concentration in the pore solution mainly depends on the type of 

cement and additives. (b) The number of voids at the concrete reinforcement interface generally 

depends on the workability of the fresh concrete and the compacting procedure. Therefore, this 

may weaken the cement products deposited at the concrete reinforcement because of the voids. 

However, the data analysis obtained on bridge structures in the UK, suggested that the level of 

chloride below 0.2% by weight of cement represents minimal risk of corrosion, while levels of 

chloride above 1.5% represent a very high risk as can be seen in Figure 6.49 [288]. The 

outcomes of similar work on U.S. bridges recommended a range between 0.17 and 1.4% (by 

weight of cement), on Danish bridges 0.3% and 0.7% (by weight of cement), while especially 

high threshold levels (from 1.8 to 2.2% by weight of cement) were reported in one survey of 

Austrian bridges [288].  

Concrete cover specification according to the British standard BS EN 206-1 is the thickness of 

concrete cover based on the weather condition in which the structure is constructed. In addition  

the concrete strength and quality of concrete is dependent on cement and water-cement ratio 

[289].  



 

162 | P a g e  
 

According to the Complementary British Standard to BS EN 206 and European Committee for 

Concrete, for the limitation of the amount of chloride ion per weight of cement, there is a trigger 

point that should be 0.4%. Therefore, the proposed electromagnetic spectroscopy has 

determined the level below the critical level of chloride ion in the concrete structure. 

Consequently, the data demonstrated that the microwave sensor detects values below 0.4% per 

weight of cement, which means we can use this technology to predict when the structure is at 

the critical point for the repair [59] [290]. 

 

 

 

Figure 6.48: The comparison between actual and validated values of % chloride per weight of cement 

at one single frequency (5.42 GHz) 
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Figure 6.49: The corrosion risk determined on the UK bridges plotted as a function of chloride 

content according to BS EN 206.1 [291] 

 

The chloride threshold value as a general rule for structures exposed to the atmosphere is 

assumed to be in the range of 0.4 to 1% by weight of cement, such values may significantly 

change, depending on the above parameters. For instance, the high degree of moisture content 

in the concrete leads to low oxygen content and a low value of the electrochemical potential of 

steel, in the submerged part of a marine structure. Therefore the chloride threshold is increased 

significantly [292]. 

6.6.5 ANN was used to analyse and validate five different saltwater concentrations 

This section of the project presents and discusses the performance of the trained LM algorithm 

using the standard measuring performance indicator: mean square error (MSE), correlation 

coefficients (R2). As previously demonstrated, the developing LM algorithm was considered a 

regularisation back-propagation scheme to train and develop the network due to its advantages 

over conventional methods. The neural network training stops when the error falls below a 

user-specified level or when the user-defined number of training iterations has been reached. 

In this case, 1,000 iterations were planned for the final training process, while it was found to 

be adequate in a series of test runs.   

The validation performance and mean square error of the network starting at a large value and 

reducing to a small value is shown in Figure 6.50. A result is generated via the use of the 

software. The plot consists of three lines for three different steps of training, validation, and 
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test. The training process on the training vectors continues until the model gets to the point 

where the training decreases the network error on the validation vectors, leading to avoiding 

the over-fitting of the data sets. As shown in Figure 6.50, the best validation efficiency occurs 

at epoch 5, and the process stopped at epoch 11 after 6 error repetitions. The results shown in 

Figure 6.50 illustrate the same ones as in Figure 6.51. The MSE value is 5.0087x10-06 of the 

data per weight of cement and stopped the training of the neural network. The training state for 

an Artificial Neural Network model is shown in Figure 6.50. As it is illustrated in the figure, 

the errors are repeated 6 times after epoch 5, and the test stopped at epoch 11. The error repeats 

starting at epoch 6 demonstrated over-fitting of the data. Therefore, epoch 5 is selected as the 

base, and its weights are chosen as the final weights. Moreover, because the errors are 

replicated 6 times before stopping the operation, the validation check is equivalent to 6. Figure 

6.51 shows that at an epoch of 11, the error gradient was 7.04131x10-07, while the mu factor 

and validation check were 1x10-0.08.   

 

 

 

 

Figure 6.50: Best validation performance in Artificial Neural Network Model; Per weight of 

cement 
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A further useful picture of the network profile can be seen in the error histogram (EH), as 

shown in Figure 6.52. Therefore, it is of value to see that the performance of the proposed 

algorithm can be very much affected by the presence of outliers. Figure 6.52 presents the error 

histogram with 20 bins for the three training, validation, and test steps in an Artificial Neural 

Network modelling. As is shown in Figure 6.52, the zero error is illustrated with a yellow line 

in the middle with 5 instances in the training set. Consequently, the training process is stopped 

straight away once the validation error starts to increase. Also, it can be shown that most data 

coincide with the zero-error line in the central bins of -0.00049 and 9.44x10-0.5. However, the 

ANN technique generated the results from Figure 6.50 to Figure 6.52, with the data used of 

%chloride/weight of cement content from the microwave sensor. Also, this software calculated 

values based on the amount of data and matrix added into the software, and then the software 

algorithm started to calculate the values. 

 

 

 

 

Figure 6.51: The gradient and maximum validation checks for the LM trained network; per 

weight of cement. 
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The developed regression calibration plot for the training, testing and validation of all data sets 

to compare the measured and the validated percentage of chloride in three various depths, as 

demonstrated in Figure 6.53.  The experimental results (Target) are shown on the horizontal 

axis and the output results on the vertical axis. There is an excellent correlation between the 

experimental and output values for the complete data set. The general equation of a straight 

line is y=mx+c, where m is the gradient and y=c is the value where the line cut the y-axis. Also, 

this number c is called the intercept on the y-axis. However, these equations are linked to those 

related to the LM algorithm used in ANN techniques that were discussed more in chapter 3.  

Figure 6.53 (a, b, c & d) represents the plots of coincidence between the target and output 

variables for training, validation, testing, and all our data steps, respectively.  The “Target” 

values imply the “Measured Level of chloride ions from the concrete sample” and the “Output” 

values imply the “Validated level of chloride ions by MATLAB Software”. The dashed line in 

each plot represents the perfect result outputs = targets. Also, the solid line represents the best 

fit linear regression line between outputs and targets. The term “R” value is obtained by 

MATLAB Software which demonstrates the model efficiency.  In Figure 6.53 (a, b, c & d) “R” 

confirms acceptable accuracies of the model in all the training, validation, and testing steps. If 

Figure 6.52: The plot of error histogram (EH) for the LM algorithm; per weight of 

cement. 
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R =1, this indicates an exact linear relationship between outputs and targets. If R is close to 

zero then there is no linear relationship between outputs and targets.   

 The points in all subdivisions (training, testing, and validation) are located close to the best 

line of equality (validated %chloride ions= β * measured actual value of %chloride ions+ α) 

with the high coefficients of determination of 0.99998, 0.99956, 0.9991, and 0.99992 for 

training, validation, testing and all data of the %Wt-cement.  For this experimental work, the 

training data indicates a good fit. Also, the validation and test results show R values greater 

than 0.9. The results demonstrated that the ANN model is successful in learning the relationship 

between the different input and output parameters and show the ability of the network to 

validate the influence of varying saltwater concentrations on the microwave sensor in the 

concrete with different depths. The MATLAB code for those graphs has been shown in 

Appendix A, B and C. 

 

 

 

Figure 6.53: The regression graphs of the experimental results against the validated %Chloride ions 

per weight of cement 
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Furthermore, the performance of the LM algorithm is further examined using the target values 

versus the predicted values, as shown in Table 6.15.  According to the results, the significant 

agreement can be observed between the targets measured versus predicted values with a Value 

of Normalised Absolute Error statistic (NAE), Value of Root Mean Square Error statistic 

(RMSE), and Value correlation coefficients (R2) with the amount of %chloride per weight of 

cement at three different depths being (0.000256, 0.000120 and 0.986709). The results have 

demonstrated that microwave spectroscopy can determine varying concentrations of NaCl in 

the concrete specimens at different depths. The single frequency can be ascertained by using 

classification feature selection and indicated a frequency of 5.42 GHz as a durable predictor 

for level chloride ions. 

Table 6.15: The results for the observed data target and output values 

%Chloride per weight of cement 

 

Varying depths of 

cover (mm) 

NAEs RMSE R2 

18 0.000211 

 

0.000135 0.960388 

40 0.000303 

 

0.000122 0.960397 

 

70 0.000283 0.000106 0.960395 

 

Total of three depth 0.000256 0.000120 0.986709 

 

 

 

6.7 ANN was used to repeat the analysis of two different saltwater concentrations 

An experiment was undertaken for two concrete slabs with the same size 250 x 250 x 60 mm 

and the same material properties with reinforced rebars to investigate the difference between 

tap water and saltwater solutions on the concrete with reinforcement rebar and how they affect 

microwave signal. Figure 6.54 shows the S21 measurements of the concrete slab1 and slab2 

taken every minute over 24 hours to monitor the concrete drying off. It can be seen in Figure 

6.54 that visible changes are appearing in the electromagnetic (EM) wave signature during the 

drying process of the concrete slab1 and slab2 while submerged in the salt water and tap water 

for 24 hours. The change is thought to be caused by the decreasing amount of water and the 

remaining salt in the concrete sample. There is a linear correlation R2 value between the S21 

change and weight loss across the full frequency spectrum ranges (2-12 GHz), but for clarity, 

data measurements shown in 5.4-5.6 GHz are presented in Figure 6.54. The same procedure of 
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classification was applied to this experimental data work to identify the important frequency 

points. Then the ANN method was used to validate the data obtained from the sensor at 5.42 

GHz frequency and compared with the gold standard method. 

Then the destructive method (chlorimeter tool) was used as the gold standard method to 

measure the number of chloride ions at two different depths on both samples. Table 6.16 

indicates the average of chloride ions in 3 grams of dust collected in three holes at the same 

depth of the concrete surface.     

 

Figure 6.54: The measurement of microwaves horn antenna; for clarity, data from the 5.4-5.6 GHz is 

presented (Tap water & Salt water) 

 

Table 6.16: The Percentage of chloride per weight of 3 grams of dust in 2 different saltwater 

concentrations at 2 different depths 

2 samples with two different saltwater concentration, chloride 

content per weight of 3-gram dust 

2 varying depths of cover 

(mm) 

0.0% NaCl added 2.53% NaCl added 

18 0.03% 0.55% 

40 0.00% 0.00% 
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The sample depth chosen was intended to include an acceptable range to allow interpolation 

and estimation between the commonly used nominal depth of cover under different exposure 

conditions, such as near the top surface, a little deeper, and very close to the rebar position. But 

for this experimental work, only two different depths have been selected because of the 

thickness of the concrete sample. 

Also, because the surface of the concrete is usually flaky, the first 2-3 mm is easily removed 

due to the high-water content at the surface, so the 18 mm depth was chosen. As a result of the 

concrete cover's weakness and evaporation at the surface, 20 mm of cover is effectively reduced 

to 17-18 mm. 

The variable selected for the Artificial Neural Network (ANN) technique was used to validate 

the amount of chloride in the concrete sample at different depths in different saltwater 

concentrations. Therefore, to visualize the performance of the Artificial Neural Network 

(ANN) models graphically, the measured values obtained from the laboratory measurement 

and its predicted values resulting from 5.4-5.6 GHz and only one single frequency are plotted 

and displayed in Figure 6.55. The ANN model exhibited a great capability to predict a level of 

chloride output with R2 = 0.99 and with Mean Square Error of prediction very low. 

Furthermore, in order to approximate the number of hidden nodes in the hidden layer, neural 

networks were trained with different numbers of hidden layer neurons. Thus, the data from the 

training set was used to determine the number of neurons in the hidden layer, which resulted 

in the least error between the neural network output and the experimental data. See section 

6.6.1 and Figure 6.45. 
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Figure 6.55: The characteristic structure of ANN model inputs and output variables for a single 

frequency (5.42GHz) 

 

In addition, the raw data of electromagnetic waves on concrete samples in two different 

saltwater concentrations were considered as input parameters. The data was formatted into a 

2x2 matrix to fit the ANN model. Table 6.17 gives the list of the ANN inputs and outputs. 

 

Table 6.17: The input and output parameters of ANN at one single frequency (5.42GHz) 

 

 

 

 

 

 

Input variables Target (Output) 

2 different 

percentages of 

saltwater 

concentration 

 

Averaged (10) 

Number of S21 

(5.42GHz), (dB) 

%Chloride Per weight of 

cement 

18mm depth 40mm depth 

0.0% NaCl added -27.246 (Stdev) 

 

0.0017 0.0013 

2.53% NaCl added -25.2545 (Stdev) 

 

0.0282 0.0130 
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As declared in the experimental data collection, that destructive method was used to detect the 

level of chloride in two different depths by extracting using the drill press. Table 6.18 indicates 

the percentage of chloride per weight of cement. Moreover, in order to define the profile of 

penetration of chlorides, as shown in Figure 6.56, samples from different depths were extracted 

using a drill press. 

 

Table 6.18: The %chloride per weight of concrete in different concentrations at 2 different depths 

Actual value %chloride per weight of cement 

 2 varying depths of cover 

(mm) 

0.0% NaCl added 2.53% NaCl added 

18 0.002 0.028 

40 0.001 0.013 

 

The above equation 6.2 was used to calculate the amount of chloride per weight of each 

concrete sample in different saltwater concentrations at two different depths shown in the above 

section 6.6.1. 

 

Figure 6.56: The % chloride per weight of cement 
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 Figure 6.56 shows clearly that the transmission of chloride at different concentrations 

decreases by increasing the concrete cover. This is due to the salt water's high viscosity, the 

concrete's decreased permeability, and the fact that it was compacted thoroughly during the 

casting process. Moreover, while the water evaporated through the surface of the concrete, the 

salt remained inside the concrete and created a crystal, and it blocked the capillary absorption 

to let more penetration of the solution deeper to reach the reinforcement and start corrosion.  

In Table 6.19, the description of the model performance for optimization of the best single 

frequency for chloride validation is presented.  The ANN model divided the total data into three 

subsets of training, validation, and test. The proportion of training, validation, and testing are 

characterized based on the fact that the general structure of the model is constructed based on 

the training data set. The ANN model was developed, trained, tested, and validated using 20 

data sets. To assess the reliability and accuracy of the models, 70% of the 20 data sets were 

randomly selected as training sets, 15% of the 20 data sets selected for testing and 15%  selected 

for validation. Within minimizing the criteria function, the training process included iterative 

measurements of the weight coefficients. The network validated the outputs after each iteration 

use and validation. When the validation record's misclassification rate began to vary from the 

training record's misclassification rate, the training was stopped to avoid overfitting. 

 

Table 6.19: Indicates the summary results of the ANNs model 

  Per weight of cement 

Parameter Samples MSE R2 

Training (70%) 14 1.16923x10-12 0.999999 

Validation (15%) 3 4.09133x10-14 0.999993 

Testing (15%) 3 8.26223x10-13 0.999999 

 

Table 6.20 presents the validated percentage of chloride per weight of cement in the concrete 

specimens using an electromagnetic (EM) waves sensor at microwave frequency. The 

difference between Table 6.20 and Table 6.18 is that the values in Table 6.18 were obtained 

from the measured chloride ion level directly from the concrete samples with the destructive 

method (Chlorimeter tool). But the values in Table 6.20 were obtained from the validated level 

of chloride ions from the ANN algorithm. 
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Table 6.20: The validated values of %chloride per weight of cement 

percentage of chloride per weight of cement that has been 

validated throughout a single frequency range (5.42 GHz) 
2 varying depths 

of cover(mm) 

0.0% NaCl added_ 

validated 
2.53% NaCl added_ 

validated 

18 0.0016907 0.0282383 

40 0.0013456 0.0129729 

 

Figure 6.57 demonstrates the validated chloride per weight of cement obtained from using the 

artificial neural network (ANN) technique after gaining the validated values of % chloride per 

weight of cement in two different saltwater concentrations at two different depths. The reason 

for choosing only two different depths was because the size of the concrete sample used was 

250 x 250 x 60 mm in this experimental work. Then these results obtained need to prove that 

there are no significant differences between the results obtained by the chlorimeter tool as a 

destructive method and the microwave sensor as a non-destructive method by using the 

statistical technique called a Chi-Squared test. The statistical chi-squared approach was used 

to produce Chi-Squared values, P- values, and the hypothesis test to verify the data is more 

significant, in order to demonstrate the accuracy of the predicted model developed algorithm. 

 

Figure 6.57: The validated value of percent chloride per (weight of cement) at various depths at a 

single frequency (5.42 GHz) 
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Chi-squared test 

The Chi-Squared test is used to determine the Chi-Squared values and then can calculate the 

percentage of error within one single frequency point. The following Table 6.21, Table 6.22, 

and Table 6.23 show the observed, expected, and total Chi-squared values. 

 

Table 6.21: Observed values obtained from the laboratory 

Observed values Actual percentages of chloride content per 

weight of cement 

2 varying depths of 

cover (mm) 

0.0% NaCl 

added 

2.53% NaCl 

added 

Total 

18 0.0016905 0.0282383 0.0299288 

40 0.0013455 0.0129720 0.0143175 

Total  0.0030360 0.0412103 0.0442463 

 

Table 6.22: Expected values obtained from the calculation 

Expecting values 
  

2 varying depths of 

cover (mm) 

0.0% NaCl added 2.53% NaCl added 

18 0.0020536 0.0278752 

40 0.0009824 0.0133351 

 

Table 6.23: Shows the total CHI Squared calculation values 

 

 

 

 

 

 

 

Degree of freedom (df) (number of rows – 1) x (number of columns – 1) = (2-1) x (2-1) = 1. 

Table 6.24 shows the critical values of the chi-square distribution with degrees of freedom and 

95 % confidence ranges. 

 

Chi-Squared 
 

 

varying depths of cover 

(mm) 

0.0% NaCl added 0.5% NaCl 

added 

18 0.00004701 0.0000336 

40 0.00009932 0.0000709 

Total Chi-squared 0.00021296 

P_Value 0.988356615 
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Table 6.24: The final chi-squared and P-value 

X2 0.00021296 

Df 1 

X2 critical 3.841 

P_value 0.988356615 > 0.05 

 

In this case, H1 indicates that there is a variation in age between the three possibilities (alternate 

hypothesis). H0 indicates that there is no variation (Null Hypothesis). 

 

0.0002 < 3.841, therefore, we rejected H1 and accepted H0. The chi-squared value needed to 

reject the (hypothesis) rises because it is shown there is no significant change between the 

Observed value and Expected value. 

The same method is used to calculate the Chi-Squared % chloride per weight of cement and 

the predicted % chloride per weight of concrete and cement. The following Table 6.25 indicates 

the final calculation of chi-squared values for the predicted percentage of chloride ions in two 

different saltwater concentration specimens at two different depths.  

 

Table 6.25: The total Chi-Squared values and %of error 

Parameter % Chloride Chi-Squared % Error 

Chlorimeter Tool_ 

(Destructive method) 

per weight of cement 0.0002130084 
 

 

Microwave spectroscopy 

per weight of cement @ 

5.42 GHz 

0.0002129655 0.020 

 

According to the Chi-Squared calculation, there is no significant change between the observed 

values and expected values. The percentage error at the frequency point is very low. This means 

the relations between the predictions and actual values are very close to each other. 

6.7.1 Comparison of % chloride ion between actual values and validated values 

Figure 6.58 illustrates the comparison between the percentage of chloride per weight of cement 

in two different saltwater concentrations and at two different depths.  Thus, the actual values 

of % chloride ions were collected by using the chlorimeter tools as a gold standard method at 

two different depths. It can be seen in Figure 6.58 that the penetration of chloride was increased 

with the increased percentage of salt water at the first 18 mm layer depth. The rate of chloride 

penetration in concrete in the marine environment depends mainly on the exposure situation 

that varies with the regular variation of the tide level. However, most of the concrete structures 
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exposed to the tidal environment are in a non-saturated state, and also chloride ion transport is 

driven both by diffusion through concentration gradient through continuous pore water channel 

and convection via moisture through non-saturated pores. It also decreases the penetration of 

chloride ions into the concrete by increasing the concrete cover depth and using a lower water-

cement ratio, being well compacted during casting, and high viscosity of the solution. Figure 

6.58 presents the skin depth of electromagnetic waves and the ability to penetrate the concrete 

sample to validate the level of chloride ions with different saltwater concentrations at different 

cover depths. 

 

Figure 6.58:  The comparison between actual and validated values of % chloride per weight of 

cement at one single frequency (5.42 GHz). 

In general, the threshold chloride value for an exposed structure is assumed to be in the range 

of 0.4 to 1% by weight of cement. Still, such values may significantly change, depending on 

the parameters. For instance, the high degree of moisture content in the concrete leads to low 

oxygen content and a low value of the electrochemical potential of steel in the submerged part 

of a marine structure. Therefore, the chloride threshold is increased significantly [292]. 

However, according to the data set produced in this study, the microwave sensor can identify 

the level of chloride ions in the structure at different depths with different saltwater 

concentrations below the trigger point of 0.4%. This means that the technique can be used to 

predict when a structure's maintenance is at a critical stage. 
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 In this experimental work, only two different saltwater concentrations are used to investigate 

how saltwater concentrations have affected the electromagnetic wave signal. The microwave 

signal has changed due to the variant level of saltwater concentrations. Therefore, we carried 

out further experimental work with five different concentrations of salt water.  

 

6.7.2 ANN was used to analyse and validate two different saltwater concentrations   

This section presents and discusses the performance of the trained LM algorithm using the 

standard measuring performance indicator: mean square error (MSE), correlation coefficients 

(R2).  Considering the analytical mechanism during the training process is vital for successful 

modelling. Figure 6.59 demonstrates the procedure of the training LM through the three stages 

testing, training, and validations. The epochs are one complete sweep of training, testing, and 

validation. The performance plot shows MSE in training, testing, and validation data. The MSE 

plot in the training data has a lower curve and has an upper curve invalidation data set. The 

network with minimum MSE invalidation is called the trained ANN model. 

 The training automatically stops when the validation error stops improving, as indicated by an 

increase in the MSE of the validation data samples. The results illustrate that the training 

process terminated when the validation errors number exceeded the allowed numbers. The 

technique of the training LM via the three stages of testing, training, and validations is 

represented in Figure 6.59. The epochs represent a whole training, testing, and validation cycle. 

MSE in training, testing, and validation data is shown in the performance plot.   

From Figure 6.59, it can be seen that after 11 repetitions of the network training, the value of 

MSE  had reduced to the specified level of 4.0913x10-14 of the data per weight of cement, then 

the training of the neural network was automatically stopped.  
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Furthermore, the equivalent change of gradient and the Marquardt adjustment factor (mu) 

shows an important role in decreasing the mean square error percentage. As discovered in 

Figure 6.60, the gradient error decreases and reaches 4.8858x10-08. Significantly, the mu factor 

is decreased to a negligible value 1x10-14 after a few epochs, and the validation doesn’t change 

at an epoch of 11. Additionally, Figure 6.61 demonstrates the error histogram (EH) plot to 

obtain further efficiency validation of network performance. Also, the EH can indicate outliers 

data features that appear to be inconsistent with other subsets observations [142]. Therefore, it 

is of value to see that the performance of the proposed algorithm can be very much affected by 

the presence of outliers. Consequently, the training process is stopped straightway once the 

validation error starts to increase. Also, it can be shown that the majority of data coincides with 

the zero-error line in the two central bins (-1.2x10-07 and 4.93x10-08). 

 

 

Figure 6.59: The performance plot of the LM algorithm for the concrete developed model 

during the training process; Per weight of cement. 

 



 

180 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.60: The gradient and maximum validation checks for the LM trained network; Per 

weight of cement 

Figure 6.61: The plot of error histogram (EH) for the LM algorithm; Per weight of cement 
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Further useful figures concerning the correlation between the measured and the computational 

values such as training, testing, validation, and all data can be experiential in the regression 

plot of Figure 6.62 (a, b, c, & d). This Figure illustrates the relationship between the target and 

output variables for training, validation, and testing steps, respectively. The target values 

indicate the percentage of chloride ions in the concrete sample, and output values indicate the 

predicted percentage of chloride ions from the ANN algorithm in MATLAB Software. The 

points in all subdivisions (training, testing, and validation) are located close to the best line of 

equality (predicted %chloride ions= β * measured actual value of %chloride ions+α) with the 

high coefficients of determination of 1,1,1 and 1 for training, validation, testing and all data of 

the %Wt-cement. The term R is obtained by MATLAB Software which demonstrates the 

model efficiency. The MATLAB code for those graphs has been shown in Appendix A, B and 

C. 

Furthermore, the performance of the LM algorithm is further examined using the target values 

versus the predicted values, as shown in Table 6.26. According to the results, the significant 

agreement can be observed between the targets measured versus predicted values with a Value 

Figure 6. 62: The regression graphs of the experimental results against the validated %Chloride 

ions per weight of cement 
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of Normalised Absolute Error statistic (NAE), Value of Root Mean Square Error statistic 

(RMSE), and Value correlation coefficients (R2) with the amount of %chloride per weight of 

cement at three different depths being (0.000138, 0.000272 and 0.9983905). According to the 

findings, microwave spectroscopy can assess variable amounts of NaCl in concrete samples at 

various depths. Furthermore, using supervised machine learning classification feature 

selection, a single frequency of 5.42GHz was identified as the most significant predictor for 

chloride ions. 

 

Table 6.26:Presents the resulting data for the observed data target and validated values 

%Chloride per weight of cement 

 

Varying depth of 

cover (mm) 

NAEs RMSE R2 

18 0.000101 0.000212 

 

0.997883 

 

40 0.000215 0.000332 0.998898 

Total both depth 0.000138 0.000272 0.9983905 

 

 

6.8 Summary  
 

The first experiment demonstrates that there is a considerable shift in the electromagnetic (EM) 

wave signature once the concrete absorbs water and salt water, notably at the 3.6 GHz and 4.1 

GHz frequency range. The second experimental curing process was carried out for up to 28 

days on two concrete samples of the same size and material properties. There is a noticeable 

change in EM signature between frequency range 2 GHz and 3 GHz, especially at frequency 

2.7096 GHz. The change is affected by the amount of tap water and salt water absorbed in the 

concrete sample during the 28-days curing period. This is due to water's high dielectric 

property, which causes a microwave signal to change and electromagnetic (EM) wave 

absorption to depend highly on water salinity and temperature. However, the microwave signal 

changes early in the curing process and continues until the concrete is fully saturated. The third 

experiment used a set of horn antennae to monitor the drying process of both concrete samples 

with two different saltwater concentrations. There is a noticeable change occurring in the 

electromagnetic (EM) signal in both samples. Chose the frequency range of 2.5 GHz to 3.0 

GHz because 2.709 GHz demonstrated the strongest linear correlation between the change in 



 

183 | P a g e  
 

attenuation and weight loss of both concrete samples. The strongest linear correlation was 

found between S21 change at 2.709 GHz and weight, with R2 = 0.89 for the saltwater sample 

and R2 = 0.88 for the tap water sample. The fourth and fifth experiments used five concrete 

samples in five different saltwater concentrations. This study used two methods to detect the 

level of chloride ions in concrete samples based on the saltwater concentration. The first 

method employed an electromagnetic wave sensor, while the second, known as the chlorimeter 

tool, was used as  the gold standard method to determine the amount of chloride in various 

cover depths.  

In this project, we decided to use the Weka workbench to determine the most significant 

frequency point to investigate the level of chloride. The J48 algorithm, which displays the most 

important frequency point to detect the level of chloride ions in five different saltwater 

concentrations, obtained the best accuracy of 86 percent. Following the classification method's 

selection of a single frequency point, ANN prediction was used to analyse and develop the 

model. In addition, the Chi-squared, P-values, and error % between the actual and validated 

values of chloride ions were determined using the statistical Chi-squared test. According to the 

Chi-squared test, the percentage error between the actual and validated values per weight of 

cement is 0.036%. On the other hand, the ANN model accurately validated the level of chloride 

ions in five concrete samples at three different depths, with NAE = 0.000256 and R2 = 

0.986709, respectively.  

Nevertheless, this study aims to see if electromagnetic (EM) waves could be used as a non-

destructive method for determining chloride levels in reinforced concrete structures. The 

findings showed that the microwave sensor could detect chloride ions at different depths in 

concrete samples with saltwater concentrations less than the limited requirement of 0.4% 

chloride ion in the concrete structure. 
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Chapter Seven: Conclusions and Recommendations 
 

7.1 Conclusions 
 

 The presence of chloride ions in concrete structures is a significant source of reinforced 

steel corrosion, which leads to degradation. According to the present state-of-the-art 

limits, there is room for improvement since there is currently no easy-to-use yet strong 

technology to help in the NDT process. The most advanced field methods are 

destructive or somewhat destructive, limiting their continual usage by industry and 

requiring the extraction of the concrete pore solution. As a result, the researcher has 

been motivated to continue to study the application of innovative sensing technologies 

to create non-destructive ways for predicting the proportion of chloride ions in concrete 

buildings. A non-destructive measuring approach is required for real-time, consistent, 

and continuous monitoring of chloride-based degradation. 

 Using microwave frequency and a horn antenna to detect chloride ions during the curing 

phase and drying process of concrete has been successfully tested and established. 

According to the literature study, horn antennas satisfied all of the design criteria for 

microwave sensors, including cost, flexibility, simplicity, and repeatability of results. 

As a result, the horn antenna was chosen for future research.  

 The preliminary work began with the study of electromagnetic waves and the various 

types of microwave sensors used in different applications. This study selected two types 

of microwave sensors, the rectangular waveguide and the horn antenna, as possible 

sensing platforms to detect the amount of chloride ions in RC concrete structures. On 

the other hand, the dielectric property experiments were carried out to determine the 

imaginary and complex relative permittivity for concrete samples, both dry and wet, 

with fresh and salt water. To reach this conclusion, the S-parameters were measured by 

reflection and transmission using three different frequencies of rectangular waveguide 

bands. In Chapter 4, section 4.10.1, the bands utilised in this project are described and 

discussed. 

Due to the aims of this experiment, it was essential to find out how deep the 

electromagnetic wave propagation needed to go to detect chloride ions. However, the 

usual depth of reinforced concrete for chloride detection in the field of civil engineering 

is about 70mm for condition XS3, which involves exposure to salt water. Using civil 

engineering requirements for concrete structures exposed to chloride ion conditions and 
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calculations of skin depth, the optimum angle between the two horn antennas was 

determined. It was then decided that the S21 and S11 parameters could be utilised with 

concrete samples and that there was a link between the skin depth of the concrete 

samples and the penetration depth.   

Based on a literature review and preliminary experimental testing, a set of horn 

antennas were used in the lab. 

 The first experiment used the transmitter and receiver horn antennas in the 

frequency range of 2 GHz and 12 GHz, respectively. Every hour for 24 hours, 

the S21 of wet processing pavement concrete was measured. A substantial shift 

in EM appears after both concrete samples absorbed water and salt water, 

particularly at the 3.6 GHz and 4.1 GHz frequency ranges. The changes are 

induced by a decrease in the amount of water and salt water in the concrete 

samples.  

 In the second experiment, a 28-day curing process was carried out with a set of 

horn antennas. Measurements were collected every 15 minutes for 28 days 

while the concrete samples were immersed in both tap water and salt water. 

Especially around 2.709 GHz, there is a notable shift in the EM signature 

between the 2.5 GHz and 3 GHz range. The quantity of water and salt absorbed 

in the concrete samples throughout the 28-day curing period influences the EM 

wave changes. Results from the experimental curing procedure show that the 

microwave signal begins to alter at an early stage of curing and continues to do 

so until the concrete is fully saturated. 

  S21 and S11 measurements of the drying process of both concrete samples in two 

different saltwater concentrations were taken after the curing process was 

complete. In both experiments, the EM signal shows a noticeable shift. There 

was a significant polynomial connection between the reflected signal and 

weight loss of both concrete samples and changes in the S21 parameter 

measurement at 2.709 GHz, with R2 = 0.91 for the sample with salt water and 

R2 = 0.97 for the sample with tap water for the transmitter and receiver sensors. 

At 2.709 GHz, the S11 parameter measurement changes from R2 = 0.96 for the 

sample containing salt water and R2 = 0.92 for the sample containing tap water.  

 Two concrete slabs containing two rebars of the same size and material 

characteristics were compared in the fourth experiment. Figure 6.35 shows the 

greatest (polynomial) correlation coefficient between S21 shifts at 3.482 GHz 
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and weight loss, with R2 = 0.78 for the saltwater sample and R2 = 0.90 for the 

tap water sample. Figure 6.36 shows the greatest (polynomial) relationship 

between S21 shifts at 4.42 GHz and weight reduction, with R2 = 0.71 for the 

saltwater sample and R2 = 0.89 for the tap water sample. 

 The fifth experimental investigation, conducted between 2-12 GHz frequencies, 

used five concrete samples with five different saltwater contents.  According to 

the data, the proportion of chloride ions at the concrete's surface was 

significantly greater, and it dropped as the concrete's cover increased. They have 

combined the data from both techniques to create a model for the percentage of 

chloride ions per weight of cement at three depths. It was found that the J48 

algorithm provided the greatest accuracy of 86% and the lowest mean absolute 

error and the root mean square error. As shown in Figure 6.42, the decision tree 

created by the J48 algorithm is dependent on the varied saltwater 

concentrations. We used the ANN approach to analyse and construct the model 

once the most significant frequency point was selected. For the transmitter and 

receiver sensors, a single frequency point of 5.42 GHz was chosen to develop 

the validation model. The Chi-squared test was used to determine the Chi-

squared value and percentage of error. 

 Additionally, the error % found was 0.034 per weight of cement. ANN model 

summary results show that the MSE and R2 of the 70% training were 

2.22469x10-7 and 0.99984 per weight of cement, respectively. For training, 

validation, testing, and the entire data set of the study, the coefficients of 

determination are 0.99998, 0.99956, 0.9991, and 0.99992, which are all high 

(per weight of cement). By using values for Normalised Absolute Error (NAE), 

Root Mean Square Error (RMSE), and Value Correlation coefficients (R2). A 

significant agreement was found between the measured and validated values for 

the percent chloride per weight of cement at three different depths (0.000256, 

0.000120 and 0.986709). 

 Electromagnetic waves enable the measurement of chloride levels at different depths at 

a single frequency, and the findings achieved in this study were promising (5.42 GHz). 

There is, therefore, a requirement to create a portable sensor with a set of horn antennas 

as a transmitter and receiver that operates at a single frequency to employ this 

technology as an NDT technique for the large majority of prospective civil engineering 

users. A non-destructive method for determining chloride content in concrete structures 
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was evaluated for the first time in this study using electromagnetic waves. When 

compared to existing industry gold standards, this novel approach may change the early 

detection of deterioration in steel-reinforced concrete structures. Because the 

microwave sensor detects values below 0.4% as a trigger threshold, this technology 

could be utilised to determine when concrete structures are at the critical point for 

repair, based on the data collected in this project. In order to confirm the amount of 

chloride ions in concrete samples, ANN was successfully utilised to analyse the 

microwave data and validate the results obtained. 

 

7.2 Recommendations for future work 

In light of results reported in this study and based on the experience gained during the research, 

several possible future studies are recommended as follows: 

 Further work can be conducted to further test a larger number of laboratory concrete 

specimens to further validate the prediction model.  

 The system can be taken to the marine environment to verify the technique on various 

structures with different chloride levels and depths of penetration. 

  Incorporating this technology could enable the assessment of repairs to marine 

structures. 

 Using this technology to detect the carbonation of concrete and reduce Ph levels could 

also be beneficial.  

 Based on the findings and possible application, it is suggested to design a portable 

sensor device operating at 5.42GHz, including the VNA system for evaluation, all in 

one hand-held unit.  

 The development of a mobile tool machine learning algorithm will provide further 

support for service life prediction. 
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Appendices 
 

 Appendix A: % MATLAB code was used to run the LM method for all ANN produced 

models, including the optimal number of hidden layers and the data division process for 

each sub-set. 

 

.% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created 08-Jul-2019 18:53:15 

% 

% This script assumes these variables are defined: 

% 

%   data - input data. 

%   data_1 - target data. 

  

x = data'; 

t = data_1'; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = ('removeconstantrows','mapminmax'); 

net.output.processFcns = ('removeconstantrows','mapminmax'); 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivision 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean Squared Error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
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    'plotregression', 'plotfit'}; 

  

% Train the Network 

[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 

  

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

    % Generate MATLAB function for neural network for application 

    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

    % tools, or simply to examine the calculations your trained neural 

    % network performs. 

    genFunction(net,'myNeuralNetworkFunction'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a matrix-only MATLAB function for neural network code 

    % generation with MATLAB Coder tools. 

    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a Simulink diagram for simulation or deployment with. 

    % Simulink Coder tools. 

    gensim(net); end 
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Appendix B: A MATLAB Neural Network Function, comprising optimum connection 

weights and magnitude data values for five different salt water concentrations per 

weight of cement model trained, validated, and tested and targeted to three different 

depths. 

 

% 

% This script assumes these variables are defined: 

% 

%   data - input data. 

%   data_2 - target data. 

  

x = data'; 

t = data_2'; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

  

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

net.input.processFcns = {'removeconstantrows','mapminmax'}; 

net.output.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivision 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean Squared Error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

    'plotregression', 'plotfit'}; 
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% Train the Network 

[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask{1}; 

valTargets = t .* tr.valMask{1}; 

testTargets = t .* tr.testMask{1}; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 

  

% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

    % Generate MATLAB function for neural network for application 

    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

    % tools, or simply to examine the calculations your trained neural 

    % network performs. 

    genFunction(net,'myNeuralNetworkFunction'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a matrix-only MATLAB function for neural network code 

    % generation with MATLAB Coder tools. 

    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

    y = myNeuralNetworkFunction(x); 

end 

if (false) 

    % Generate a Simulink diagram for simulation or deployment with. 

    % Simulink Coder tools. 

    gensim(net); end 
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Appendix C: Determinate the value of mean square error statistic and Value of 

Coefficient of Determination statistic between the actual values and the validated values 

obtained from the ANN trained per weight of cement. 
 

n=length(obs); 
format long 
B = (sum(pred - obs))/n; 
NAE = (sum(abs(pred - obs)))/(sum(obs)); 
pbar = mean(pred) 
obar = mean(obs) 
stddevpbar = std(pred) 
stddevobar = std(obs) 
p2 = pred-pbar 
obs2 = obs-obar 
numPA = p2'*obs2 
denoPA = (n-1)*stddevpbar*stddevobar'; 
PA = numPA/denoPA 
numer = (pred - pbar)'*(obs - obar); 
denor = stddevpbar*stddevobar'; 
RSQ = (numer/(n*denor))^2; 
SSR = (pred - obar)'*(pred - obar) 
SSE = (obs - pred)'*(obs - pred) 
SST = SSR + SSE 
RSQ1 = SSR/SST 
RMSE1 = (pred - obs)'*(pred - obs); 
RMSE2 = sum(RMSE1); 
RMSE3 = RMSE2/(n-1); 
RMSE = sqrt(RMSE3); 
numd = (pred-obs)'*(pred-obs); 
deno1d = abs(pred-obar); 
deno2d = abs(obs-obar); 
sumdeno3d = deno1d + deno2d; 
sqsumdeno4d = sumdeno3d'*sumdeno3d; 
IA = 1-(numd/sqsumdeno4d); 
  
fprintf('Value of Normalised Absolute Error statistic is %f \n',NAE) 
fprintf('Value of Root Mean Square Error statistic is %f \n',RMSE) 
fprintf('Value of Index of Agreement statistic is %f\n',IA) 
fprintf('Value of Prediction Accuracy statistic is %f \n',PA) 
fprintf('Value of Coefficient of Determination statistic is %f \n',RSQ), 
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Appendix D: 

(a) The raw data from the concrete sample experiment with single rebar. 
 

 

 

 

Figure 7.2: Transmitted power S21 measurements using microwave sensor were taken everyone 

minute in the frequency range (2-12 GHz), Saltwater 

Figure 7.1: Transmitted power S21 measurements response from the concrete using microwave sensor 

were taken per minute for the full range of frequencies, (2-12 GHz), but for clarity data from every 

hour interval and 3.45-3.55 GHz are presented (Saltwater) 
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Figure 7.4: Transmitted power S21 measurements using microwave sensor were taken per minute for 

the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals 

and 4.2-4.6 GHz are presented (Saltwater) 

Figure 7.3: Microwave sensor measurements were taken every one minute in the frequency range (2-

12 GHz), Tap water 
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Figure 7.6: Transmitted power S21 measurements using microwave were taken per minute for the full 

range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 4.2-4.6 GHz are 

presented (Tap water) 

Figure 7.5: Transmitted power S21 measurements were taken per minute for the full range of 

frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 3.45-3.55 

GHz are presented (Tap water) 
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Figure 7.8: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum 

Figure 7.7: Polynomial correlation coefficient best fit between weight loss and S21 change at 

3.482GHz, with R2 =0.87, for saltwater sample and R2=0.94 for tap water sample 
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Figure 7.9: Polynomial correlation coefficient best fit between weight loss and S21 change at 

4.42GHz, with R2 =0.93, for salt water sample and R2=0.86 for tap water sample 
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(b) The raw data from the concrete sample experiment with crossing rebars. 

 

 

Figure 7.11: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data from every hour intervals and 3.45-3.55GHz 

are presented (NaCl) 

Figure 7.10: Transmitted power S21 using microwave sensor measurements were taken every one 

minute in the frequency range (2-12 GHz), Saltwater 
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Figure 7.12: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies (2-12 GHz), but for clarity, data measurements from every hour intervals and 

4.2-4.6 GHz are presented (NaCl) 

 

Figure 7.13: The electromagnetic wave sensor: S21 Measurement were taken every one minute in the 

frequency range (2-12 GHz), Tap water 
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Figure 7.14: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measuments from every hour intervals and 

3.45-3.55 GHz are presented (Tap water) 

Figure 7.15: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) 
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Figure 7.17: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482 

GHz, with R2 =0.88, for salt water sample and R2=0.87 for tap water sample 

Figure 7.16: R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum 
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Figure 7.18: Polynomial correlation coefficient best fit between weight loss and S21 change at 4.428 

GHz, with R2 =0.90, for salt water sample and R2=0.93 for tap water sample 
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(c)  The raw data from the concrete sample experiment with mesh rebars. 

 

 

Figure 7.20: Tranmitted power S21 measurements using microwave sensor were taken per minute for 

the full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals 

and 3.45-3.55 GHz are presented (NaCl) 

Figure 7.19: The electromagnetic wave sensor: S21 measurements were taken every one minute in the 

frequency range (2-12 GHz), NaCl. 
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Figure 7.21: Microwave measurements of transmitted power S21 were taken every minute for the 

complete range of frequencies (2-12 GHz), although data from every hour intervals and 4.42-4.6 GHz 

are presented for clarity, (NaCl) 

    

 

 

  

Figure 7.22: S21 measurement was taken every minute in the frequency range (2-12 GHz) using the 

electromagnetic wave sensor, Tapwater 
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Figure 7.24: Microwave measurements of transmitted power S21 were taken every minute over the 

whole frequency range (2-12 GHz), but for clarity data measurements from every hour intervals and 

4.2-4.6 GHz are presented (Tap water) 

Figure 7.23: Transmitted power S21 measurements using microwave were taken per minute for the 

full range of frequencies, (2-12 GHz), but for clarity data measurements from every hour intervals and 

3.45-3.55 GHz are presented (Tap water) 
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Figure 7.25:  R2 between both concrete sample weight loss and S21 change across the full frequency 

spectrum 

Figure 7.26: Polynomial correlation coefficient best fit between weight loss and S21 change at 3.482 

GHz, with R2 =0.93, for salt water sample and R2=0.98 for tap water sample 
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Figure 7.27: Polynomial correlation coefficient best fit between weight loss and S21 change at 4.428 

GHz, with R2 =0.96, for salt water sample and R2=0.97 for tap water sample 
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Appendix E: Select the other frequency point based on data analysis of five concrete 

samples with five different saltwater concentrations. 

 

The complete technique of this section was covered in detail in Chapter 6, Section 6.6. 

Furthermore, using the same classification and analysis data, the same technology was used to 

detect chloride ions in five different saltwater concentrations at three different depths. Fig. 7.28 

illustrates the area of interest to zoom in over the range of frequency spectrums. Additionally, 

the complete spectrum was divided into three parts from 2.5-3 GHz, 4-4.5 GHz, and 5.4-5.6 

GHz, as shown in Figure 7.29 (a and b). Other significant frequency spots were selected using 

the WEKA workbench classification. Chapter 6, section 6.6 shows the real outcome results for 

the frequency range of 5.4-5.6 and a single frequency 5.42 GHz. 

 

 

 

 

 

Figure 7.28: The microwave horn antenna; S21 measurements were taken for the frequency range 2-

12 GHz. 



 

222 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was found that the J48 algorithm had the best accuracy of 90 percent and 92 percent for least 

means absolute error and root mean square error. J48 algorithm decision tree is shown in Figure 

7.30 (a and b), which illustrates the other possible significant frequency point for the different 

saltwater concentration levels. 

a 

b 

Figure 7.29: Using microwave horn antenna, S21 measurements were taken for the frequency range 2-

12 GHz, but for clarity data (a) from the 2.5-3 GHz (b) from the 4-4.5 GHz are presented 
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Tables 7.1 and 7.2 show the set of techniques previously described in Chapter 3 inside various 

classifiers with a lower mean square error and a more significant percentage of accuracy to 

determine the most critical possible frequency across five different saltwater concentration 

classes. The focus of this study was on the most popular decision tree classifier, the algorithm 

J48. 

 

a 

b 

Figure 7.30: Indicates the classification of algorithm J48 decision tree graphic; selected 

frequency point (a) 2.5-3 GHz (b) 4-4.5GHz. 
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Table 7.1: Results obtained for different classifiers from the Weka workbench at (2.5-3 GHz) 

 

 

 

 

 

 

 

 

 

 

Table 7.2: Results obtained for different classifiers from the Weka workbench at (4-4.5 GHz) 

 

 

 

 

 

 

 

 

 

 

 

The generated decision rules determine that other frequency points, such as 2.57 GHz and 4.25 

GHz, can be used to detect chloride ions in concrete structures for the sensor used in this 

project. The total number of test cases is 50 (n = 50). The classification accuracy was 92% and 

90%, respectively. A two-dimensional matrix containing a column and row for each class is 

frequently used to display the results of a test set. The number of test samples for which the 

actual class is the row, and the predicted class is the column is shown in each matrix element. 

Each row and column in the matrix represent the number of test samples for which the actual 

class is the row, and the projected class in the column, respectively. In addition, the 

classification accuracy is determined by dividing the total number of test examples by the sum 

The different classifier 

has been used for these 

algorithms  

Accuracy 

(%),  

Means 

Absolute error 

(%) 

Root means 

square error 

(%) 

MultiScheme 20 0.32 0.4 

Bagging 20 0.33 0.4005 

CVParameterSelection 20 0.32 0.4 

InputMappedClassifier 20 0.32 0.4 

OneR 41 0.23 0.4632 

ZeroR 20 0.33 0.4 

REPTree 20 0.32 0.4 

RandomTree 78 0.125 0.2266 

DecisionStump 56 0.154 0.2664 

J48 92 0.032 0.1789 

The different classifier 

has been used for these 

algorithms  

Accuracy 

(%),  

Means 

Absolute error 

(%) 

Root means 

square error 

(%) 

MultiScheme 20 0.32 0.4 

Bagging 20 0.32 0.4005 

CVParameterSelection 20 0.32 0.4 

InputMappedClassifier 20 0.32 0.4 

OneR 20 0.32 0.5658 

ZeroR 20 0.33 0.4 

REPTree 20 0.32 0.4 

RandomTree 78 0.125 0.2266 

DecisionStump 40 0.24 0.3464 

J48 90 0.04 0.2 
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of the numbers from the major diagonal of the confusion matrix with a red arrow. The 

confusion matrix for the solved problem is shown in Tables 7.3 and 7.4.. 

 

Table 7.3: The confusion matrix for the leave-one-out validation of classification for frequency rang 

(2.5-3GHz) 

Classified as 0.0%  NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

0.0% NaCl 10 0 0 1 0 

0.5% NaCl 0 9 0 0 2 

1.5% NaCl 2 0 9 0 0 

2.5% NaCl 0 2 0 9 0 

3.5% NaCl 0 0 0 0 9 

 

Table 7.4: The confusion matrix for the leave-one -out validation of classification for frequency rang 

(4-4.5GHz) 

Classified as 0.0% NaCl 

added 

0.5% NaCl 

added 

1.5% NaCl 

added 

2.5% NaCl 

added 

3.5% NaCl 

added 

0.0% NaCl 9 0 0 1 0 

0.5% NaCl 0 9 0 0 2 

1.5% NaCl 2 0 8 0 0 

2.5% NaCl 0 2 0 9 0 

3.5% NaCl 0 0 0 0 10 

 

 

A Selection of Variables for the Neural Network. 

To detect chloride ions in specimens, supervised applied machine learning classification 

methods after determining the most critical frequency using the WEKA workbench algorithm 

J48. In addition, the chloride ion content in concrete samples was also determined using these 

other frequency points from the WEKA classification. Fed the single frequency data sets into 

the ANN algorithm to evaluate the sensors against the gold standard approach typically used 

in industry. The ANN technique was constructed and tested using MATLAB programming in 

this research. Additional, input parameters depended on the raw data of electromagnetic waves 

for concrete samples in five different saltwater concentrations. An ANN model fitted using a 

5x3 matrix of data that had been prepared to fit the data. The ANN inputs and outputs are listed 

in Table 7.5 
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Table 7.5: The Input and output parameters of the ANN at one single frequency (GHz) 

Input Variable Target (output) 

5 different 

percentages of salt 

water concentration 

 

Averaged (10) 

Number of S21 at 

(2.572 GHz), (dB) 

Averaged (10) 

Number of S21 at 

(4.258 GHz), 

(dB) 

% of Chloride ion per weight of 

cement 

18mm 

depth 

40mm 

depth 

70mm 

depth 

0.0% NaCl added 

 

-15.51739 (Stdev) 

 

-27.09047 (Stdev) 

 

0.0059 

 

0.0047 

 

0.0039 

 

0.5% NaCl added 

 

-16.52751 (Stdev) 

 

-28.36107 (Stdev) 

 

0.1667 0.1291 0.1222 

1.5% NaCl added 

 

-16.19105 (Stdev) 

 

-29.31408 (Stdev) 

 

0.1855 0.1589 0.1421 

2.5% NaCl added 

 

-16.00162 (Stdev) 

 

-26.60306 (Stdev) 

 

0.2316 0.1821 0.1506 

3.5% NaCl added 

 

-15.69473 (Stdev) 

 

-26.27971 (Stdev) 

 

0.3256 0.0952 0.0786 

 

The ANN model was built using data from electromagnetic wave sensors 

It's been shown in Table 7.6 and Table 7.7 how to optimise one single frequency for chloride 

prediction based on model output. A total of 50 data samples were used for ANN model training 

(70%), validation (15%) and testing (15%), respectively. There was a very strong correlation 

between the predicted and measured values when comparing the model results with those 

obtained using the destructive approach (chlorimeter tool). 

Table 7.6: The ANN model's summary findings at one single frequency (2.57 GHz) 

 

 

 

 

 

 

 

  Per weight of cement 

Parameter Samples MSE R2 

Training (70%) 34 4.37485x10-10 0.99994 

Validation (15%) 8 1.68219x10-5 0.99757 

Testing (15%) 8 1.51784x10-5 0.999814 
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Table 7.7: The ANN model's summary findings at one single frequency (4.25 GHz) 

 

 

 

 

 

 

 

 

  Per weight of cement 

Parameter Samples MSE R2 

Training (70%) 34 8.73909x10-7 0.99994 

Validation (15%) 8 2.66048x10-5 0.99677 

Testing (15%) 8 1.59637x10-5 0.99916 

Figure 7.31: The actual of % chloride per weight of cement 
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Figure 7.32: Validated percent chloride per weight of cement obtained from the ANN model for five 

different saltwater concentrations and three different depths using a single frequency (2.57 GHz) 

Figure 7.33: Validated percent chloride per weight of cement obtained from the ANN model for five 

different saltwater concentrations and three different depths using a single frequency (4.25 GHz) 
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Error Calculations Using the Chi-Squared Method. 

Table 7.8 and Table 7.9 shows the total Chi-Squared calculation values for 5 different saltwater 

concentrations at three different depths for the single frequency (2.57 GHz and 4.25 GHz). The 

Chi-squared calculation procedure is discussed in Chapter 6. 

 

Table 7.8: The total Chi-Squared calculation values at (2.57 GHz) 

Chi-Squared 
     

Different depth (mm) 0.0% added NaCl 0.5%NaCl 1.5%NaCl 2.5%NaCl 3.5%NaCl 

18 
0.0003 0.0034 0.0069 0.0031 0.0385 

40 
0.0001 0.0006 0.0026 0.0024 0.0158 

70 
0.0002 0.0028 0.0032 0.0005 0.0170 

Total 0.097 

 

P_Value 0.99999 

 

Table 7.9: The total Chi-Squared calculation values at (4.25 GHz) 

Chi-Squared 
     

Different depth (mm) 0.0% added NaCl 0.5%NaCl 1.5%NaCl 2.5%NaCl 3.5%NaCl 

18 
0.00011 0.00364 0.00634 0.00337 0.03895 

40 
0.00008 0.00075 0.00205 0.00271 0.01606 

70 
0.00002 0.00277 0.00356 0.00054 0.01757 

Total 0.099 

 

P_Value 0.99999 

 

The resulting chi-squared values and percentages of error for the validated percentage of 

chloride ions in five different saltwater concentrations specimens at three different depths on 

both single frequency points are shown in Table 7.10. 

Table 7.10: The total Chi-Squared values and %of error 

Parameter % of Chloride Chi-Squared % Error 

Chlorimeter Tool per weight of cement 0.099000000 
 

 

Microwave 

spectroscopy_ 

per weight of cement @ 2.57 GHz 0.099136649 

 

0.138 

per weight of cement @ 4.25 GHz 0.098917182 
 

0.083 
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ANN was used to analyse and validate five different saltwater concentrations. 

 

The performance of the trained LM algorithm is discussed and presented in this section of the 

project using standard performance indicators such as mean square error (MSE) and correlation 

coefficients (R2). Figure 7.34 (a  and b) shows the network's validation performance and mean 

square error from a high value to a low value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Figure 7.34: Best validation performance in Artificial Neural Network Model at one single frequency 

point; Per weight of cement of (a) 2.57 GHz and (b) 4.25 GHz 
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a 

b 

Figure 7.35: The gradient and maximum validation checks for the LM trained network for one single 

frequency; per weight of cement. (a0 2.57 GHz and (b) 4.25 GHz 
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a 

b 

Figure 7.36: The plot of error histogram (EH) for the LM algorithm; per weight of 

cement. (a) 2.57 GHz and (b) 4.25 GHz 
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a 

b 

Figure 7.37: The regression graphs of the experimental results against the validated 

%Chloride ions per weight of cement, (a) 2.57 GHz and (b) 4.25 GHz 
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Table 7. 11: The results for the observed data target and output values at 2.57 GHz 

%Chloride per weight of cement 

 

Depth (mm) NAEs RMSE R2 

18 0.000321 

 

0.000126 0.951387 

40 0.000342 

 

0.000156 0.960058 

 

70 0.000274 0.000114 0.951586 

 

Total of three depth 0.000312 0.000132 0.954343 

 

 

Table 7.12: The results for the observed data target and output values at 4.25 GHz 

%Chloride per weight of cement 

 

Depth (mm) NAEs RMSE R2 

18 0.000245 

 

0.000156 0.970456 

40 0.000326 

 

0.000112 0.982097 

 

70 0.000269 0.000101 0.960298 

 

Total of three depth 0.000266 0.000123 0.970950 

 

 

There's also an additional comparison between target and validated values, as illustrated in 

Table 7.11 and Table 7.12. There was a significant agreement between the measured and 

predicted values with a Value of Normalised Absolute Error statistic (NAE), Value of Root 

Mean Square Error statistic (RMSE), and Value correlation coefficients (R2), with the amount 

of percent chloride per weight cement at three different depths from 2.57 GHz (0.000312, 

0.000132 and 0.954343) and 4.25 GHz (0.000266, 0.000123 and 0.970950). The findings show 

that microwave spectroscopy can be utilised to assess variable NaCl contents in concrete 

specimens at various depths. The other possible single frequency was discovered using 

classification feature selection, and it showed a frequency of 2.57 GHz and 4.25 GHz as a 

significant predictor of level chloride ions. 
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