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Abstract  

In dietary risk assessment, residues of pesticidal ingredients or their metabolites need to be 

evaluated for their genotoxic potential. The European Food Safety Authority recommend a 

tiered approach focussing assessment and testing on classes of similar chemicals. To 

characterise similarity and to identify structural alerts associated with genotoxic concern, a 

set of chemical sub-structures was derived for an example dataset of 74 sulphonyl urea 

agrochemicals for which either Ames, chromosomal aberration or micronucleus test results 

are publicly available. This analysis resulted in a set of seven structural alerts that define the 

chemical space, in terms of the common parent and metabolic scaffolds, associated with the 

sulphonyl urea chemical class. An analysis of the available profiling schemes for DNA and 

protein reactivity shows the importance of investigating the predictivity of such schemes 

within a well-defined area of structural space. Structural space alerts, covalent chemistry 

profiling and physico-chemistry properties were combined to develop chemical categories 

suitable for chemical prioritisation. The method is a robust and reproducible approach to such 

read-across predictions, with the potential to reduce unnecessary testing. The key challenge 

in the approach was identified as being the need for pesticide-class specific metabolism data 

as the basis for structural space alert development.    

Keywords: read-across; mutagenicity; sulphonyl urea; metabolism; category formation  
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1. Introduction 

The European Food Safety Authority (EFSA) guidance on the establishment of residue 

definition for the dietary risk assessment for genotoxicity specifically outlines the usage of 

category formation and read-across [1]. However, at the time of writing, this guidance has 

not been agreed between stakeholders and EFSA. Thus, there is currently no established legal 

framework for the use of read-across (or quantitative/qualitative structure-activity 

relationship methods, more generally). Therefore, a robust scientific weight-of-evidence 

needs to be established for such methods to become commonplace for the prediction of 

genotoxicity of pesticide residues. For these purposes, the term “residue” is defined as any 

compound associated with the active ingredient that may result in risk to human and/or 

livestock following the application of a pesticide. EFSA have published a workflow to enable 

the use of read-across to predict either the presence or absence of genotoxicity within a 

category of similar chemicals where data may be missing or incomplete [1]. In cases where 

genotoxicity is predicted, further testing is required to confirm the read-across prediction. 

The test strategy needs to ensure that a representative number of the chemicals in the 

category are tested for gene mutation as well as structural and numerical chromosomal 

aberration. A battery of in vitro and in vivo tests is recommended by EFSA to cover the three 

key genotoxicity endpoints with minimal animal usage [2]. The initial battery is typically the 

Ames test (gene mutation) and an in vitro micronucleus test (structural and numerical 

chromosomal aberration). This combination of testing is considered state of the art within 

most regulatory guidelines, with in vivo testing only being conducted as a higher tier to 

evaluate positive in vitro micronucleus assay results [2]. In contrast to this process for positive 

predictions, the absence of genotoxicity within a category (with data gaps being filled via 

read-across) requires no further genotoxicity testing.   

The key step in the use of the category approach is the ability to confidently define ‘similarity’ 

between chemicals [3-5]. In terms of the use of category formation in the EFSA genotoxicity 

workflow noted above, defining similarity is relatively straightforward for potentially 

genotoxic chemicals. This is due to the key molecular initiating event for DNA-reactive 

genotoxicity being the formation of a covalent bond between nucleophilic centres in DNA and 

a chemical capable of behaving as an electrophile (either directly or after metabolic 

activation) [6-12]. The associated chemistry can be encoded easily as structural alert-based in 

silico profilers that enable chemicals to be assigned to a category based on the presence of a 

common alert. One well-established (others are available) computational tool for this type of 

analysis being the OECD QSAR Toolbox which contains a range of profilers of this type. In 

contrast, defining similarity between chemicals that lack an alert for DNA reactivity is more 

challenging [13]. One of the most common options (after identifying simple structural 

analogues) being to utilise molecular fingerprint-based methods coupled with a similarity 

metric such as the Tanimoto coefficient [14-18].  
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As part of an extensive study into the use of in silico methods for the prediction of 

genotoxicity, a recent publication outlined the use of Atom Centred Pair molecular 

fingerprints and the Dice similarity metric to identify analogues suitable for read-across for a 

series of target chemicals [19]. The study focussed on predicting the Ames and in vitro 

chromosomal aberration tests, with the results showing significantly better predictivity for 

the Ames test. The authors suggest better predictivity is due to greater number of Ames test 

results in the dataset (this increased predictivity is also partly due to the numerous variants 

of the chromosomal aberration assay, some of which lack DNA repair capability). 

Interestingly, this work also looked at both one-to-one and one-to-many read-across 

predictions – the results showing that the inclusion of additional chemicals added weight of 

evidence to the predictions. However, this analysis highlights the key challenge of using 

fingerprint methods in that the authors had to identify the value of the similarity metric at 

which chemicals were no longer considered similar enough to be within the same category as 

the target chemical (defined initially as 70% and then lowered to 60%). In addition to the 

fingerprint method, the use of sub-structure searching as a method to identify similar 

chemicals was also investigated [18]. This involved defining a key sub-structure within the 

target chemical and using the presence of this sub-structure as an initial screening tool to 

identify category members. The final category membership was determined via elimination 

of chemicals with a similarity score of less than 70% (as determined via Atom Centred Pair 

fingerprints and the Dice similarity metric). This analysis showed the potential for the 

development of key sub-structures to improve the structural space of the category (in terms 

of relevance to the target chemical).  

Whilst the development of key sub-structures is vital for the proper definition of categories – 

and hence better read-across for residues – this has not been undertaken in a formal and 

systematic approach. The aim of the current investigation was to develop a methodology to 

derive chemical sub-structures considered to be the key drivers of chemical similarity (for 

chemicals lacking an alert for DNA reactivity) which could be applied to pesticide residues. 

The novelty in this investigation was rather than defining a sub-structure based on the target 

chemical, sub-structures were used to define the structural space associated with Ames, 

chromosomal aberration, and micronucleus test results. Importantly, the structure-toxicity 

relationships within the resulting sub-structure-based categories were investigated to 

establish their utility for use within the read-across step in the EFSA framework for residue 

risk assessment. Once a theoretical approach to derive the sub-structures was developed, this 

was implemented in a workflow with the example of the sulphonyl urea pesticides being used 

as a case study.  
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2. Methods  

To assess chemical similarity and to identify structural alerts associated with genotoxicity 

concern, several key steps were required. The first was the identification of a dataset of 

sulphonyl urea pharmaceutical and agrochemical active ingredients with associated 

genotoxicity data. These structures were placed onto a metabolic map of the key 

transformations present for the sulphonyl urea chemical class, enabling common metabolic 

scaffolds to be developed into structural space alerts. The key steps required for this type of 

analysis being as follows:   

2.1 Creation of a dataset for read-across and chemical space analysis 

An initial dataset of 21 sulphonyl urea pesticide active ingredients was identified based on the 

availability of EFSA Draft Assessment Report (DAR)/Renewal Assessment Report (RAR) 

documents (www.efsa.europa.eu/en). Only chemicals for which a DAR/RAR document was 

available were included in the initial dataset. The chemical space of this initial dataset was 

expanded through a data harvesting exercise from the DAR/RAR documents in which any 

metabolite for which experimental genotoxicity data had been generated was added to the 

dataset. For the current study genotoxicity data were defined as either Ames, chromosomal 

aberration, or micronucleus test results. This data harvesting exercise resulted in a final 

dataset of 74 sulphonyl urea agrochemical active ingredients and metabolites. All structural 

space alerts were developed from this dataset. The dataset, termed the ‘sulphonyl urea 

genotoxicity dataset’ contained the following test results (in vitro assays with S9 fraction, 

Ames tests in the standard battery):  

• Ames - 73 chemicals (all negative)  

• in vitro chromosomal aberration - 53 chemicals (41 negative, 12 positive) 

• in vivo chromosomal aberration - 5 chemicals (all negative) 

• in vitro micronucleus – 4 chemicals (3 negative, 1 positive) 

• in vivo micronucleus - 26 chemicals (26 negative, 0 positive)  

A second dataset containing 697 additional genotoxicity test results from a wider range of 

agrochemicals was also utilised [20]. This dataset was denoted as the ‘EFSA genotoxicity 

dataset’. Importantly, this dataset was used to assess the predictivity of the profiling schemes 

within the OECD QSAR Toolbox (detailed in section 2.4) and as a source of potential 

analogues for the read-across case studies only (section 3.3) – it was not used to define 

develop the structural space alerts. Full datasets are available in the Supplementary 

Information. 

Chemical structures for both data sets were recorded with relevant identifiers e.g., name 

(where applicable), CAS numbers if available and SMILES strings. This information is also 

available in the Supplementary Information.  
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2.2 Structural space alert development 

The development of the structural space alerts utilised the following protocol (the overall 

process is summarised in Figure 1):  

1. Definition of the metabolic map for the sulphonylurea pesticides: This analysis 

involved inspection of the available metabolism data in the 21 DAR/RAR documents 

to identify metabolic transformations common to the sulphonyl urea active 

ingredients (www.efsa.europa.eu/en). In terms of the sulphonyl urea pesticides, these 

metabolic transformations were hydrolysis reactions resulting in the cleavage of the 

sulphonyl urea moiety and hydroxylation reactions on the aromatic rings. These 

reactions were common to all the sulphonyl urea pesticides in the dataset. The 

metabolic map is as shown in Figure 2.   

2. Metabolic scaffold identification: Common metabolic scaffolds were then identified 

from the metabolic map developed in step 1. This involved applying the metabolic 

transformations defined in the metabolic map to the sulphonyl urea active 

ingredients. The resulting structures from this analysis were defined as metabolic 

scaffolds. These metabolic scaffolds were grouped together based on maximum 

common sub-substructures for development into structural space alerts. 

3. Structural space alert development: The metabolic scaffolds identified in step 2 were 

used to profile the sulphonyl urea genotoxicity dataset – metabolic scaffolds that had 

genotoxicity data associated with them (either Ames, chromosomal aberration, or 

micronucleus test data) were denoted as structural space alerts and encoded as 

SMARTS patterns. No additional physico-chemical boundaries were imposed on the 

structural space alerts (enabling then to identify any chemical containing the alert sub-

structure).    

 

Figure 1: Flow chart outlining the protocol for the development of structural space alerts  

 

 

1. Identify common

metabolic transformations
from RAR/DAR documents

2. Apply the metabolic transformations 

to the active ingredients to identify a 
set of metabolic scaffolds

3. Profile genotoxicity dataset using the metabolic 

scaffolds. Metabolic scaffolds with genotoxicity 
data are defined as structural space alerts

http://www.efsa.europa.eu/en
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2.3 Chemoinformatics analysis 

All chemoinformatics analyses were carried out using the KNIME data analytics platform 

(V4.2.2). Structural space alerts were encoded as SMARTS patterns. These were developed 

and tested using the RDkit substructure node. The logarithm of the octanol-water partition 

coefficient (SlogP) and molecular weight (MW) were calculated using the RDKit Descriptor 

Calculation node in KNIME for all chemicals in the sulphonyl urea genotoxicity and EFSA 

genotoxicity datasets. Chemical similarity analysis using MACCS structural keys and Morgan 

fingerprints, coupled to the Tanimoto similarity metric, was performed using the RDKit 

Fingerprint node (fingerprint analysis was utilised as part of the read-across case studies in 

section 3.3).  

2.4 Chemical profiling 

Chemicals in both datasets were profiled using computational tools for the potential for 

covalent interactions relevant to genotoxicity within the OECD QSAR Toolbox (V4.1.1). These 

profilers being (CA is chromosomal aberration and MNT is the micronucleus test):   

• OECD: DNA binding by OECD 

• OASIS: DNA binding by OASIS; DNA alerts for AMES, CA and MNT by OASIS; protein 

binding alerts for CA by OASIS  

• ISS: in vitro mutagenicity (Ames test) alerts by ISS, in vivo micronucleus alerts by ISS  

2.5 Read-across 

Read-across was attempted for two metabolites of the herbicide prosulfuron (SYN547308 and 

SYN542604 in [21]) with no data. Specifically, predictions of Ames, chromosomal aberration 

and micronucleus test results were attempted from suitable analogues. Each metabolite was 

assigned to a relevant structural space category based on the presence of a common 

structural space alert. The domain of the category was then defined based on similarity 

between the metabolite and category members in terms of DNA/protein binding and key 

physico-chemical properties. Subsequent read-across predictions were made using a majority 

rules basis.  

3. Results and Discussion 

The aim of this study was to develop a workflow to implement a set of structural alerts to 

define the structural space associated with a set of sulphonyl urea agrochemical active 

ingredients and metabolites for which genotoxicity data exist. The development of these 

structural space alerts was driven by the need to prioritise potential metabolites (coming from 

plants and other animals) for further testing using a read-across approach. This study also 
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demonstrated how these structural space alerts can be used in conjunction with existing in 

silico profilers designed to identify DNA and/or protein reactive chemicals. 

3.1 Structural space definition 

The structural space associated with the sulphonyl urea genotoxicity dataset was defined 

through a set of seven structural space alerts as shown in Table 1. This set of structural space 

alerts identified 64 of the 74 chemicals in the sulphonyl urea dataset from which they were 

developed. Inspection of the remaining 10 chemicals showed them to have no common sub-

structures suitable for further alert development. The sub-structures of these seven structural 

space alerts are depicted in Table 1. In addition, a summary of the genotoxicity data for the 

sulphonyl ureas, associated with the seven alerts, is provided in Table 1 (denoted as “SU”). 

The data in Table 1 show that only structural space alerts 1 and 2 have more than a single in 

vivo assay result associated with them, with only structural space alert 1 having data from 

both in vivo assays. All of these in vivo test results were negative. In terms of in vitro data, all 

the structural space alerts had Ames and chromosomal aberration data, with only alert 1 and 

having data from the micronucleus test. Interestingly, despite most of the in vitro and in vivo 

assay results being negative, in vitro chromosomal aberration test showed positive results for 

at least one chemical associated for nearly every alert.    

The chemical domain associated with the eight structural space alerts was expanded by 

profiling the larger EFSA genotoxicity dataset (697 chemicals), with the results summarised in 

Table 1 (denoted as “EFSA”). This analysis resulted in the identification of an additional 46 

chemicals with data (ten in vivo micronucleus, one in vitro micronucleus, five in vivo 

chromosomal aberration, 33 in vitro chromosomal aberration and 44 Ames assay test results). 

The inclusion of these chemicals increased the numbers of relevant chemicals with Ames and 

in vitro chromosomal aberration data for most of the structural space alerts. However, the 

inclusion of this dataset only added further in vivo data to alerts 1 - 4.  
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Table 1: Structural space alerts developed from the sulphonylurea genotoxicity dataset with number of compounds associated with the various 

mutagenicity endpoints from the sulphonyl urea (SU) and EFSA data sets (N.B. structural space alerts were developed from the SU dataset).  

   In vitro In vivo 

   Ames CA MNT CA MNT 

Alert Structural space alert Dataset + - + - + - + - + - 

1  
R1 = aromatic carbon 

R2 = pyrimidine or triazine 

SU 0 27 6 17 0 3 0 5 0 17 

EFSA 0 11 2 8 0 1 0 5 0 4 

Total 0 38 8 25 0 4 0 10 0 21 

2 
 

R = aromatic carbon 

SU 0 12 4 3 0 0 0 0 0 6 

EFSA 0 10 1 6 0 0 0 0 0 3 

Total 0 22 5 9 0 0 0 0 0 9 

3 
 

X = aromatic carbon 
Y = aliphatic carbon (sp3 or sp2 hybridised) 

SU 0 3 0 2 0 0 0 0 0 0 

EFSA 0 1 0 1 0 0 0 0 0 0 

Total 0 4 0 3 0 0 0 0 0 0 

4  
R1 = pyrimidine or triazine 

R2, R3 = hydrogen or methyl 

SU 0 6 0 2 1 0 0 0 0 1 

EFSA 0 16 1 10 0 0 0 0 1 1 

Total 0 22 1 12 1 0 0 0 1 2 

5 

 

SU 0 8 1 8 0 0 0 0 0 0 

EFSA 0 2 0 2 0 0 0 0 0 0 
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R = aromatic carbon 
X = O, NH Total 0 10 1 10 0 0 0 0 0 0 

6  
R1 = aromatic carbon 

R2 = pyrimidine or triazine 

SU 0 5 0 4 0 0 0 0 0 0 

EFSA 0 0 0 0 0 0 0 0 0 0 

Total 0 5 0 4 0 0 0 0 0 0 

7  
R1 = aromatic carbon 

R2 = pyrimidine or pyrazine ring 

SU 0 3 1 0 0 0 0 0 0 1 

EFSA 0 4 0 2 0 0 0 0 0 1 

Total 0 7 1 2 0 0 0 0 0 2 

Abbreviations: CA = chromosomal aberration; MNT = micronucleus test, SU = sulphonyl urea genotoxicity dataset, EFSA = EFSA genotoxicity 

dataset.
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3.2 In silico profiler analysis  

The chemicals with relevant genotoxicity data identified by the structural space alerts 

outlined in Table 1 were profiled using a set of DNA and protein binding profilers within the 

OECD QSAR Toolbox applicable to genetic toxicity. This set of profilers being those outlined in 

the EFSA genotoxicity read-across guidance documents [1, 2]. These profiling schemes are 

split into two classes: general mechanistic and endpoint specific. The general mechanistic 

profiling schemes outline a broad spectrum of structural alerts developed from a knowledge 

of the potential organic chemistry associated with DNA and/or protein binding. Importantly, 

toxicological data are not necessarily associated with these alerts. In contrast, the endpoint 

specific profiling schemes were developed from an analysis of toxicological data making them 

more focussed. A summary of the results of this profiling, in terms of the numbers of 

compounds hit, is shown in Table 2. 

3.2.1 General mechanistic profilers 

The DNA binding by OASIS and OECD profiling schemes both identified more than 20 

chemicals in the combined dataset featuring at least one structural alert associated with DNA 

reactivity (24 and 55 chemicals respectively). Inspection of the profiling results showed two 

alerts to be triggered in these chemicals: an alert for Schiff base formation for 20 of the 24 

chemicals identified by the OASIS profiler and an alert for acylation for 45 of the 55 chemicals 

identified by the OECD profiler. Interestingly, the two profilers did not agree with one another 

for these predictions – with no alert being identified by the second profiler. In contrast to the 

DNA profiling schemes, the Protein binding by OASIS and OECD profiling schemes identified 

relatively few chemicals in the combined dataset (six and nine chemicals respectively). 

Inspection of the structural alerts identified showed there to be no common alerts within the 

chemicals that triggered an alert.   

3.2.2 Endpoint specific profilers 

The OASIS profilers in the OECD QSAR Toolbox showed only three chemicals (in the combined 

dataset) to contain structural features associated with a positive result in either the Ames, 

chromosomal aberration, or micronucleus tests. In contrast, 31 out of 110 chemicals have at 

least one structural feature associated with a positive Ames result in the in vitro mutagenicity 

(Ames test) alerts by ISS. Furthermore, the in vivo micronucleus alerts by ISS profilers 

identified 102 out of 110 chemicals as having a structural feature associated with a positive 

micronucleus test result. Inspection of the poor performance of the ISS profiler for the 

micronucleus test showed it to be due to the “H-acceptor-path3-H-acceptor” structural alert. 

This alert was identified in 84 of the 110 chemicals in the combined datasets. The predictivity 

of this alert is of concern given that there are 35 chemicals within the combined datasets with 

an in vivo micronucleus test result, 34 of which are negative (Table 3). This confirms the 

analysis of Benigni et al. [21]  that showed this alert to have significantly lower predictivity 
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than the other alerts in the profiler [22]. In addition, both ISS profilers consistently identify 2-

aminopyrimidines and 2-amino-1,3,5-triazines as being potentially genotoxic (four in the SU 

dataset and 13 in the EFSA dataset). Inspection of the experimental data shows that these 

chemicals are not genotoxic suggesting that these ring systems do not undergo the same 

metabolic transformation into a nitrenium ion as the benzene equivalent [6]. This is 

hypothesis is supported by the profiling results from the OASIS profilers which did not flag 

these chemicals as being potentially DNA-reactive.     

3.2.3 Profiling summary 

Overall, the profiling results summarised in Table 2 suggest that the endpoint specific 

schemes are more applicable than the general mechanistic profilers for the domain defined 

by structural space alerts in Table 1. The reason for this being that the general mechanistic 

profilers, by design, cover a very broad range of covalent chemistry – much of which is not 

associated with a given endpoint (meaning these profilers tend to be overly predictive). Such 

over-predictivity is, in certain circumstances advantageous e.g., in the analysis of new 

compound classes, although it often requires subsequent sub-categorisation. However, when 

available, the endpoint specific profilers offer a more tightly defined set of alerts making them 

significantly more useful within a read-across scheme. 

In addition to the above, the analysis also showed that for the sulphonyl urea chemical space 

the endpoint specific OASIS profilers were significantly more applicable than the ISS profilers 

– this being due to several of the alerts within the ISS schemes being significantly over-

predictive. Therefore, in terms of the current study, these results indicated that it is the 

endpoint specific OASIS profilers that should be utilised in conjunction with the structural 

space structural alerts to build the weight of evidence that a chemical is unlikely to be 

genotoxic.   
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Table 2: A summary of in silico profiling results showing the number of chemicals identified 

as having a structural alert using the four endpoint specific profilers for available in the OECD 

QSAR Toolbox (V4.4.1).  

Profiling scheme 
SU 

(64 chemicals) 

EFSA 

(46 chemicals) 

Combined 

(110 chemicals) 

DNA binding by OASIS 19 5 24 

DNA binding by OECD 38 17 55 

Protein binding by OASIS 2 4 6 

Protein binding by OECD 6 3 9 

DNA alerts for AMES, CA and MNT by 

OASIS 
0 1 1 

Protein binding alerts for 

Chromosomal aberration by OASIS 
1 1 2 

In vitro mutagenicity (Ames test) 

alerts by ISS 
9 22 31 

In vivo mutagenicity (Micronucleus) 

alerts by ISS 
59 43 102 

Abbreviations: CA = chromosomal aberration; MNT = micronucleus test, SU = sulphonylurea 

genotoxicity dataset, EFSA = EFSA genotoxicity dataset 

Table 3: Summary of the genotoxicity test results within the domain defined by the structural 

space alerts outlined in Table 1.  

  In vitro In vivo 

Dataset Result Ames CA MNT CA MNT 

SU 
Number of positive results 0 12 1 0 0 

Number of negative results 64 36 3 5 25 

EFSA 
Number of positive results 0 4 0 0 1 

Number of negative results 44 29 1 5 9 

Total 
Number of positive results 0 16 1 0 1 

Number of negative results 108 65 4 10 34 

Abbreviations: CA = chromosomal aberration; MNT = micronucleus test, SU = sulphonyl urea 

genotoxicity dataset, EFSA = EFSA genotoxicity dataset  

3.3 Read-across usage examples  

An important part of the current study was to outline how the structural space alerts and 

endpoint specific profiling information can be used to identify chemicals that are unlikely to 

be genotoxic. In this case, the definition provided by EFSA that the absence of genotoxicity is 

a lack of gene mutation, structural (clastogenic) and numerical (aneugenic) chromosomal 
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aberration was applied [2]. The intended use of the structural space structural alerts outlined 

in Table 1 is to locate analogues suitable for a read-across prediction for data poor 

compounds. As an example, consider the metabolite SYN547308 from prosulfuron (identified 

from reference [21]). The structural space and endpoint specific profiling results for this 

chemical are as shown in Table 4. These results show this chemical to be within the structural 

space defined by structural alert 1 (alert detailed in Table 1). In addition, it does not feature 

any structural alerts associated with either covalent DNA or protein binding (as determined 

using the OASIS profilers). Finally, this chemical has an SlogP value of 1.58 and molecular 

weight of 449.06 g/mol, these fall within the ranges defined by the other category members 

(ranges as outlined in Table 4).  

The data outlined for the structural space category shown in Table 4 suggest that chemicals 

within this category do not cause gene mutation or structural/numerical chromosomal 

aberration. This is based on an extensive set of data from the Ames assay, in vitro and in vivo 

chromosomal aberration and micronucleus tests, the majority of which were negative in 

these assays. Despite this, eight of the category members did show positive results in the in 

vitro chromosomal aberration assay (out of 33 tested). However, inspection of the chemicals 

associated with these positive data within the category showed two to be negative in the in 

vivo chromosomal aberration assay and a further four to be negative in the in vivo 

micronucleus assay (one of the remaining two chemicals showed an inconclusive result in the 

in vivo chromosomal aberration and the second had not been tested in either in vivo assay). 

This suggests that these six chemicals do not cause structural chromosomal aberration in vivo 

(as predicted by the in vitro assay results). These structure-toxicity relationships within the 

category enable SYN547308 to be predicted as non-genotoxic via read-across. Importantly, 

the available experimental data give the maximum confidence that members of this category 

do not cause gene mutation or structural/numerical chromosomal aberration. In addition, the 

category data presented in Table 4 suggest that no further genotoxicity testing is required for 

SYN547308 (all category data, including chemical structures, are available in the 

Supplementary Information).  
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Table 4: In silico profiling results for metabolite SYN547308 of prosulfuron (metabolite identified in reference [21]).  

Target structure 

(SYN547308) 

 
Structural space  Target Alert 1 MACCS Morgan 

Number of category members N/A 39 39 0 

DNA alerts for AMES, CA and MNT No alert No alerts No alerts N/A 

Protein binding alerts for CA No alert No alerts No alerts N/A 

SlogP 1.58 -1.07 -> 2.43 -1.07 -> 3.64 N/A 

MW 449.06 350.07 -> 492.96 256.01 -> 493.14 N/A 

Ames Negative (R/A from alert 1) 
38 negatives 

0 positives 

38 negatives 

0 positives 
N/A 

In vitro CA Negative (R/A from alert 1) 
25 negatives 

8 positives 

26 negatives 

8 positives 
N/A 

In vivo CA Negative (R/A from alert 1) 
10 negatives 

0 positives 

10 negatives 

0 positives 
N/A 

In vitro MNT Negative (R/A from alert 1) 
4 negatives 

0 positives 

3 negatives 

0 positives 
N/A 

In vivo MNT Negative (R/A from alert 1) 
21 negatives 

0 positives 

20 negatives 

0 positives 
N/A 

Abbreviations: CA = chromosomal aberration; MNT = micronucleus test; R/A = read-across; N/A = not applicable.   
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The structural space category approach can also be utilised to prioritise a chemical for further 

testing. Consider metabolite SYN542604 (also from prosulfuron), this chemical falls into the 

domain of structural space alert 5. This category contains 11 chemicals, ten with Ames data 

and 11 with in vitro chromosomal aberration test results (Table 5). All but one of these in vitro 

results are negative, the sole positive results being for in vitro chromosomal aberration. 

Taking a weight of evidence approach, this enables these two endpoints to be predicted via 

read across as being negative for SYN542604. In this example, only two of the three regulatory 

endpoints can be predicted for this chemical. This highlights the potential for the category 

approach to identify where targeted testing of several category members could enable weight 

of evidence to be employed to fill the data gap. In this example this would be to utilise the in 

vitro micronucleus assay to investigate the ability of category members to cause numerical 

chromosomal aberration. This test would also add further evidence to the in vitro 

chromosomal aberration data (as the micronucleus it also tests for structural chromosomal 

aberration). Full data for the category, including all chemical structures are available in the 

Supplementary Information. 
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Table 5: In silico profiling results for metabolite SYN542604 of prosulfuron (metabolite identified in reference [21]).  

Target structure 

(SYN542604) 

 
Structural space Target Alert 5 MACCS Morgan 

Number of category members N/A 11 8 1 

DNA alerts for AMES, CA and MNT No alert No alerts No alerts No alert 

Protein binding alerts for CA No alert No alerts No alerts No alert 

SlogP 0.77 -1.68 -> 1.06 -1.68 -> 1.83 1.06 

MW 381.07 258.03 -> 393.04 253.04 -> 393.04 125.14 

Ames Negative (R/A from alert 6) 
10 negatives 

0 positives 

5 negatives 

3 positives 
1 negative 

In vitro CA Negative (R/A from alert 6) 
10 negatives 

1 positive 
No data 1 negative 

In vivo CA No prediction No data No data No data 

In vitro MNT No prediction No data No data No data 

In vivo MNT No prediction No data 
1 negative 

1 positive  
No data 

Abbreviations: CA = chromosomal aberration; MNT = micronucleus test; R/A = read-across; N/A = not applicable.     
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3.4 Metabolic space and structural space alerts  

The key advantage of the structural space alert approach is that structural space alerts are 

developed from an analysis of parent and metabolite structures for a given chemical class. 

This results in the alerts defining a set of common metabolic scaffolds that define metabolic 

space for which genotoxicity data exist. This ensures that chemicals grouped together using 

a specific structural space alert are likely to have a degree of metabolic similarity – an 

important factor in category formation [23]. The metabolic space associated with the 

sulphonyl ureas can be summarised as follows (denoted A, B, C and D in Figure 2):   

A. Hydroxylation reactions of the parent sulphonyl urea (relevant to structural space 

alerts 1 and 2 in Table 1). These reactions typically occur on the six-membered 

aromatic rings present in this class of chemical. The benzene (or pyridine) ring, which 

is common to all sulphonyl ureas, has been shown to undergo a hydroxylation 

reaction; however, the exact position of this reaction is not typically determined 

experimentally. In contrast, the pyrimidine ring has been shown to undergo an 

equivalent reaction in the 4-postion. Replacement of this ring with a triazine prevents 

this reaction due to the presence of a nitrogen in the 4-postion (pyrimidine and 

triazines defined by alert 1). Finally, the majority of the sulphonyl urea chemical class 

feature methoxy groups in the 3- or 5- positions of the pyrimidine (or triazine) ring. 

The experimental data show that one of these groups undergoes a demethylation 

reaction producing a hydroxyl group.  

B. Cleavage via hydrolysis of the sulphonyl urea bond (structural space alerts 2, 3 and 4). 

These reactions involve cleavage via hydrolysis of either one of the carbonyl-nitrogen 

bonds present in the sulphonyl urea moiety. The products of this reaction produce 

either a sulphonamide (defined by alert 2) and a carbamic acid or a primary aromatic 

amine (defined by alert 3) and a sulphonyl carbamic acid. The carbamic acids have 

been suggested to potentially undergo a methylation reaction; however, further 

functionalisation reactions of these species have not been observed experimentally 

(presumably due to the polar nature of the carbamic acid). In contrast, the benzene 

ring of the sulphonamide and the pyrimidine ring of the aromatic amine have been 

shown to undergo hydroxylation reactions (no reaction is possible when a triazine ring 

is present instead of a pyrimidine moiety). In the case of the pyrimidine ring, this 

reaction occurs in the 4-position, whereas the exact position of the hydroxyl group on 

the benzene ring of the sulphonamide is not typically defined in the available 

experimental data. In certain circumstances, the sulphonamide has been shown to 

undergo cyclisation reactions (defined by alert 4).     

C. Cleavage of the six-membered heterocyclic ring (structural space alert 5). This reaction 

involves the cleavage of either the pyrimidine or triazine ring to produce a guanidine 

moiety. No further reactions have been noted for this species.  

D. Re-arrangement of the sulphonyl urea bond (structural space alerts 6 and 7). This 

reaction involves the re-arrangement of the sulphonyl urea moiety into a urea, driven 

by the loss of sulphur dioxide (defined by alert 6). Experimental evidence has shown 
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that the urea species undergoes subsequent loss of the amide functional group 

resulting in a secondary amine (defined by alert 7). Finally, the secondary amine is 

either hydroxylated in the 4-position of the pyrimidine ring (no such reaction is 

possible when the pyrimidine is replaced by a triazine) or, when present, a methoxy 

group on the pyrimidine ring undergoes demethylation. 

In addition to the metabolic reactions described above, several conjugated products have also 

been identified experimentally. These products typically involved the hydroxylated species 

outlined being conjugated with glutathione, sulphate or, to a lesser extent, glucuronic acid. 

These conjugated species are not shown in Figure 2 for clarity.  
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Figure 2: Overview of the common metabolic transformations for the sulphonyl urea chemical class 

A

D

BB

C
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3.5 Structural space alerts versus fingerprint approaches 

The analysis presented above demonstrates how the structural space alerts can be used to 

develop structural space categories within which read-across predictions can be made. 

However, it is also possible to utilise chemical fingerprint methods to identify similar 

chemicals to a target chemical. The key challenge with this approach being the need to 

identify a suitable fingerprint method (of which there are many) and to select an appropriate 

similarity coefficient by which to decide if a chemical is similar or not [24]. By way of 

comparison chemical categories were developed for the two metabolites using MACCS keys 

and Morgan fingerprint methods. Chemical analogues were defined as being within the 

fingerprint categories if they were within a Tanimoto distance of 0.7 of the Target chemical 

[16, 17]. Utilising the MACCS keys fingerprints resulted in a similar sized categories for both 

Target metabolites when compared to the categories defined by the respective structural 

space alerts (39 chemicals for both for metabolite SYN547308 and eight compared to 11 for 

metabolite SYN542604 - Tables 4 and 5 respectively). In contrast, the Morgan fingerprint 

method failed to identify any analogues within the 0.7 similarity cut-off for metabolite 

SYN547308, and only a single analogue for metabolite SYN542604. This highlights the 

variability that using different fingerprint methods has upon the resulting category 

membership.  

In addition, the use of fingerprint can result in groups of highly similar chemicals that are not 

always suitable for read-across. For example, the single analogue with in vivo MNT data for 

Target SYN542604 (identified using MACCS key fingerprints) was identified as similar due to 

overlap in the skeletal parts of the molecules (Figure 3 - similarity based on a Tanimoto 

coefficient of 0.71). However, profiling of the Target and analogue structures with the 

structural space alerts showed them to have differing metabolic scaffolds (SYN542604: alert 

5, sulphonamide A: alert 2 - Table 1). These different scaffolds are likely to undergo different 

metabolic transformations (as outlined in Figure 2), meaning that they are metabolically diss-

similar. This highlights the key advantage of the structural space approach in that category 

membership is determined by the presence of well-defined chemical sub-structures derived 

from knowledge of the common scaffolds present within the metabolic space for a given 

chemical class.  
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Figure 3: Analogue identified using MACCS keys fingerprint method for SYN542604  

3.6 Proposed read-across workflow for genotoxicity 

The analysis presented above demonstrates how read-across can be used for the prediction 

of genotoxicity for agrochemical residues. The approach requires the description of a set of 

structural space alerts that define a set of chemical categories for which experimental 

genotoxicity data exist. These structural space alerts are developed from an expert analysis 

of genotoxicity data and are agrochemical-class specific. The development of such alerts 

requires a data harvesting exercise to identify relevant chemical structures (for parent and 

metabolites) and associated genotoxicity test results. The availability of genotoxicity data, 

coupled with a set of structural space alerts, enables a read-across workflow to be outlined 

(Figure 4). This series of steps uses structural and physico-chemical parameters to ensure the 

target chemical can be confidently assigned to the chemical space category. However, the 

potential need to assess the ability of (representative) members of the category being able to 

reach the bone marrow is one of the key areas of uncertainty/difficulty in the proposed 

scheme. This becomes important when using existing negative in vivo micronucleus test data 

as the basis for a read-across prediction, as EFSA guidance states that bone marrow exposure 

must be demonstrated [1]. Such data on bone marrow exposure are typically available from 

the ADME studies in the DAR/RAR documents. However, these data are generated using the 

parent compound and thus do not enable metabolite exposure levels to be quantified 

(although in newer versions of the in vivo MNT quantification of bone marrow or, as a 

minimum, plasma levels are determined). An alternative solution, potentially capable of 

quantifying metabolite exposure levels, could be to use PBPK modelling to demonstrate 

exposure to the bone marrow [25-28]. It is important to note that this scheme does not imply 

the need for additional in vivo testing, it outlines how existing in vitro and/or in vivo data can 

be used to make read-across predictions. As stated previously, any additional testing to 

support a category would be either in the Ames or in vitro micronucleus tests.        
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Figure 4: Proposed read-across workflow for genotoxicity prediction for agrochemical 

residues  

4. Conclusions 

The aim of this study was to develop a set of structural alerts to define the structural space 

associated with a set of sulphonyl urea agrochemicals. This analysis resulted in a set of seven 

structural space alerts developed from a dataset of 74 chemicals for which either Ames, 

chromosomal aberration of micronucleus test results were publicly available. The structural 

space alerts were developed based on a maximum common sub-structure linked to the 

common metabolic transformations for the sulphonyl urea chemical class. This linkage 

meaning the structural space alerts implicitly take metabolism into account. However, the 
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approach relies on the availability of metabolism information (typically from DAR/RAR 

documents), without such information structural space alerts cannot be developed. The study 

has also outlined how these structural space alerts could be used to identify further chemicals 

with similar chemistries from additional datasets. In addition, an analysis of the available 

profiling schemes for DNA and protein reactivity showed the importance of investigating the 

predictivity of such schemes within a well-defined area of structural space. Finally, an outline 

of how a combination of structural space alerts, covalent chemistry profiling and physical-

chemistry properties could be used to develop chemical categories suitable for chemical 

prioritisation was presented. These results showed that genotoxicity for pesticide residues 

and/or metabolites could be predicted via read-across, including for the in vivo micronucleus 

test. The method presented represents a robust and repeatable approach to such read-across 

predictions, with the potential to reduce unnecessary testing.  
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