Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

Viola, M and Cacciato, M and Brouwer, M and Kuijken, K and Hoekstra, H and Norberg, P and Robotham, ASG and Uitert, EV and Alpaslan, M and Baldry, IK and Choi, A and Jong, JTAD and Driver, SP and Erben, T and Grado, A and Graham, AW and Heymans, C and Hildebrandt, H and Hopkins, AM and Irisarri, N and Joachimi, B and Loveday, J and Miller, L and Nakajima, R and Schneider, P and Sifón, C and Kleijn, GV (2015) Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Monthly Notices of the Royal Astronomical Society, 452 (4). pp. 3259-3550. ISSN 0035-8711

This is the latest version of this item.

[img] Text
1507.00735v1.pdf - Accepted Version

Download (3MB)

Abstract

The Kilo-Degree Survey (KiDS) is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of $\sim \mathrm{1400}$ spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly (GAMA) survey. We detect a highly significant signal (signal-to-noise-ratio $\sim$ 120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from $M \sim 10^{13}-10^{14.5} h^{-1}\mathrm{M_{\odot}}$. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the Brightest Cluster Galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power-law with slope $1.16 \pm 0.13$ (1-sigma) and with the group velocity dispersion as a power-law with slope $1.89 \pm 0.27$ (1-sigma). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations (Cosmo-OWLS) project, ruling out models without AGN feedback.

Item Type: Article
Additional Information: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record MNRAS (October 01, 2015) 452(4): 3529-3550 is available online at: http://dx.doi.org/10.1093/mnras/stv1447
Uncontrolled Keywords: 0201 Astronomical And Space Sciences
Subjects: Q Science > QB Astronomy
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 26 Oct 2015 13:57
Last Modified: 26 Oct 2015 13:57
DOI or Identification number: 10.1093/mnras/stv1447
URI: http://researchonline.ljmu.ac.uk/id/eprint/1602

Available Versions of this Item

Actions (login required)

View Item View Item