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Abstract 1 

Port State Control (PSC) inspections have been implemented as an administrative 2 

measure to detect and detain substandard ships and thus to ensure maritime safety. 3 

Advanced risk models were developed to investigate the impact of factors influencing 4 

ship detention. Although showing much attractiveness, current studies still reveal a key 5 

challenge on how such analysis can improve the ship performance in PSC inspections 6 

and aid PSC detention risk control decision. By incorporating a data-driven Bayesian 7 

network (BN) into the Technique for Order Preference by Similarity to an Ideal 8 

Solution (TOPSIS) method, this paper proposes a new ship detention risk control 9 

methodology, in which the decision criteria are generated from the root risk variables, 10 

and the alternatives refer to the established strategies adopted by ship-owners in their 11 

practical ship detention risk control. Along with the new methodology, the main 12 

technical novelty of this paper lies in the quantitative measurement of the effectiveness 13 

of each strategy in terms of the reduction of detention rate in a dynamic manner. Its 14 

practical contributions are seen, from both ship owner and port authority perspectives, 15 

through the provisions of useful insights on dynamic evaluation of rational control 16 

strategies to reduce ship detention risk under various PSC inspection scenarios. 17 

Keywords: Port state control, Bayesian network, TOPSIS, detention risk, maritime 18 

safety, maritime risk 19 
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1. Introduction 1 

Traditional flag state control has its limits in ensuring the implementation of maritime 2 

safety regulations, particularly when ship owners choose open registration. Port State 3 

Control (PSC), which renders port authorities the ability to inspect foreign vessels in 4 

their own ports, was set up in 1982 as an effective complementation of flag state control, 5 

to avoid the entries of sub-standard ships into their waters and prevent the occurrence 6 

of maritime accidents. Since its implementation, PSC has been gradually viewed as one 7 

of the important safety lines of defending sub-standard vessels and improving maritime 8 

safety. As a result, PSC effectively reduces the appearance of the vessels that are not 9 

obeying the relevant maritime safety regulations to a satisfactory level.  10 

Practical lessons, in the meantime, reveal the shortcomings of PSC in its practical 11 

applications such as no risk stake on the involved ship management companies. Every 12 

year there are still a large number of vessels that do not comply with the inspection 13 

regulations and fail to pass the inspection, according to the Paris MoU detention records 14 

(Paris MoU inspection database, https://www.parismou.org). In the old PSC inspection 15 

system, ship management companies are third-party managers who, for a negotiated fee 16 

and with no shareholding ties with their clients, undertake the responsibility of 17 

managing vessels in which they have no financial stake (Mitroussi, 2003). They 18 

accepted and managed ships on behalf of ship owners without much concern on their 19 

technical soundness given that they had no responsibility on vessels’ failures of passing 20 

PSC inspections, which is a big issue in supervising vessel quality (Yang et al., 2018b). 21 

To improve the PSC inspection efficiency, New Inspection Regime (NIR) was launched 22 

in 2011 by Paris Memorandum of Understanding (MoU). It is so far viewed as the most 23 

significant change that transforms and modernizes the PSC inspection mechanism in 24 

recent years (Paris MoU, 2011). Under the NIR, a foreign vessel visiting a port will be 25 

attributed with a ship risk profile (SRP) through a risk associated information system 26 

containing some essential factors such as vessel age, vessel type, and flag state 27 

performance (Xiao et al., 2020), which is used to determine the priority of ship 28 

inspections, the intervals between the inspections of a ship and the type of the 29 

inspections. Based on the feedback from the information system, port authorities will 30 

assign PSC Officers (PSCOs) to inspect those vessels with high priority or having 31 

overriding or unexpected factors that may pose threats to maritime safety (Wan et al., 32 

2019b). Once the inspection is completed, an inspection report including the detected 33 

deficiencies, detention results, and detention periods is issued. The vessels are required 34 

to rectify their deficiencies in different time periods according to their status 35 

(https://www.parismou.org/). The Paris MoU expected that the implementation of NIR 36 

could efficiently improve the performance of PSC inspection system and the overall 37 

vessel quality of the shipping industry. In fact, through the analysis on the statistics 38 

https://www.parismou.org/
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provided by the Paris MoU annual reports, the implementation of NIR indeed improves 1 

the PSC system, which is reflected from the aspects such as the reduction of detention 2 

rate, deficiencies per inspection, detainable deficiencies per inspection, and the 3 

detainable deficiency rate (Yang et al., 2020). 4 

Since the implementation of PSC inspection, several revisions and improvements have 5 

been undertaken to make the rules stricter, leading to various concerns posing on 6 

different perspectives. However, the issue on how to strike a balance by rational ship 7 

detention control strategies remains to be further addressed in both academic and 8 

industrial communities. A high number of ship detention means the existence of a large 9 

substandard ship fleet sailing at sea, not only bringing potential hazards to maritime 10 

safety, but also causing huge losses and negative impacts on shipping productivity.  For 11 

port authorities, they need to allocate more resources to monitor these poor-quality 12 

vessels until the identified deficiencies are rectified to a satisfactory level under the 13 

NIR, as the inspection intervals for high-risk vessels are between 5-6 months, much 14 

shorter than standard (within 10-12 months) and low-risk vessels (within 24-36 15 

months). Such condition poses high pressures and inspection burdens on port 16 

authorities within the Paris MoU region. Furthermore, an international shipping 17 

management company becomes a key stakeholder under the NIR. When a ship is 18 

detained, the delay puts a high cost on the company, and the punishment helps raise its 19 

attention on ship quality under its management. Moreover, a high rate of ship detention 20 

will also weaken the competitiveness of a shipping company in the international market, 21 

and even seriously affected the reputation of shipping companies and flag states. 22 

Therefore, studies on rational detention risk control measures will essentially be highly 23 

valuable to address the above concerns practically and trigger the thoughts on new risk 24 

control frameworks that enables the evaluation of risk control measure(s) based on 25 

dynamic risk scenarios. 26 

The aim of this paper is to establish a new risk decision tool to aid the evaluation and 27 

selection of PSC detention risk control strategies (DRCSs) to reduce the detention risk 28 

of ships under the NIR of PSC. The findings can contribute to the current research in 29 

the following ways. Firstly, it proposes a novel evaluation tool to aid the evaluation of 30 

DRCSs in dynamic PSC scenarios, which can be easily tailored and adopted by a 31 

shipping company facing high ship detention risk. Secondly, it supports rational 32 

shipping safety decision-making through a new theoretical risk control methodology by 33 

incorporating BNs and TOPSIS. Thirdly, it indicates that arranging shipping routes 34 

based on ship risk condition could effectively reduce the detention probability among 35 

possible risk control measures. Fourthly, it provides useful insights for port authorities 36 

when formulating and improving corresponding inspection regulations in terms of the 37 

reduction of detention risk, as well as for ship owners to support their decisions as it 38 
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provides a way for comparing the performance of different DRCSs in a quantitative 1 

manner. 2 

The rest of the paper is organized as follows. Section 2 gives an overview of the existing 3 

risk-based PSC research. Section 3 introduces the main methods used to develop the 4 

novel PSC risk control decision-making model. Section 4 illustrates the proposed 5 

method by conducting a case study, before the conclusion in Section 5.   6 

2. Literature review  7 

Since PSC inspections play an increasingly important role in maritime safety, more and 8 

more researchers stepped into this field and conducted works on the risk management 9 

of PSC inspections from both qualitative and quantitative perspectives, especially in 10 

the past two decades. It is evident by the increasing number of relevant papers since 11 

2011 when NIR was initiated. The PSC related studies are therefore critically analysed 12 

below. 13 

In 2014, Li et al. (2015) built a bi-matrix game between the port authorities and ship 14 

operators in PSC inspection to quantify the risks existing in PSC inspections to decide 15 

on the optimal inspection policy with an aim to save inspection cost whilst keeping 16 

deterrence pressure on potential wrongdoers. Through a numerical case study, it was 17 

shown that the optimal inspection rate obtained from the model can yield a significant 18 

saving, as well as prevent potential violations by ship operators. Knowing that heavy 19 

maritime traffic may cause significant navigational challenges in the Istanbul Strait, 20 

Kara (2016) applied a weighted point method to assess the risk level of each vessel 21 

experiencing the PSC inspection under the Black Sea MoU. However, the weighting 22 

and scoring methods adopted in these studies were based on subjective expert 23 

judgements, which arguably introduced subjective bias to the obtained results.  24 

Extracted from Tokyo MoU inspection database, Tsou (2018) used association rule 25 

mining techniques in big data analysis to examine the relationships between detention 26 

deficiencies and external factors as well as between detention deficiencies themselves. 27 

The findings provided countermeasures and can be used as a reference by ship 28 

management personnel during the corresponding PSC inspection to reduce the 29 

detention rate of ships, improve working efficiency of staff members, and reduce the 30 

adverse influences brought by substandard vessels. Similarly, Osman et al. (2020) used 31 

the same approach to analyse the inspection pattern in Malaysian port and provide a 32 

useful rule to help PSC officers in organizing an effective inspection plan. 33 

Realising former risk assessment approaches are not fully competent to tackle dynamic 34 

PSC risk (e.g., ship detention probability) in different environments, Yang et al. (2018a) 35 

pioneered the development of a BN framework to create a detention rate prediction tool 36 
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for port authorities. The advantages of BN over other approaches in dynamic prediction 1 

are that it provides important insights to seek the optimal inspection policies under 2 

different environments in NIR. Furthermore, based on the BN models in this research, 3 

Yang et al. (2020) conducted a comparative analysis between ‘Pre-NIR’ period and 4 

‘Post-NIR’ period from both qualitative and quantitative perspectives. The results 5 

revealed that it is beneficial to implement NIR for PSC inspection system, vessel quality 6 

and maritime safety. 7 

Following Yang et al. in 2018a, Wang et al. (2019) developed a new Tree Augmented 8 

Naïve (TAN) Classifier to identify high-risk foreign vessels coming to the Hong Kong 9 

port. Compared with the Ship Risk Profile selection scheme currently used in practice, 10 

the TAN classifier can discover 130% more deficiencies on average. The proposed 11 

classifier can help the PSC authorities to better identify substandard ships as well as to 12 

allocate inspection resources. Later in 2021, to solve the imbalanced inspection records 13 

issue, Yan et al. (2021) proposes a classification model called balanced random forest 14 

(BRF) to predict ship detention by using 1,600 inspection records at the Hong 15 

Kong port for three years. Compared with the current selection regime at the Hong 16 

Kong port, the BRF model is much more efficient and can achieve an average 17 

improvement of 73.72% in detained ship identification. 18 

Understanding the current PSC research and practice are not able to incorporate 19 

deficiency records into detention analysis, Wang et al. (2021) utilize a Bayesian 20 

Information Criteria (BIC) approach to construct a PSC risk probabilistic model to 21 

analyse the dependency and interdependency among the factors influencing detention. 22 

The results reveal that safety condition and technical features are the most influential 23 

factors concerning ship detention. 24 

Focusing on the factors behind the detention of vessels, Chen et al. (2019) proposed a 25 

grey rational analysis (GRA) model with improved entropy weights to understand how 26 

much the varied factors influence the decision of ship detention, and identify key factors 27 

of detainment to guarantee shipping safety and environmental protection. The results 28 

could be used by port authorities to develop the suggestions and countermeasures of 29 

reducing ship detention. 30 

Another popular method in PSC inspection model development is support vector 31 

machine (SVM). Back to 2007, Xu et al. (2007) presented a risk model based on SVM 32 

to estimate the risk state of vessels before conducting on-board inspection. Recently, 33 

Wu et al. (2021) proposed a SVM based framework to exploit crucial ship deficiencies 34 

and forecast the probability of ship detention. The findings could help port authorities 35 

easily identify fatal ship deficiencies to make more reasonable ship detention decision. 36 
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Other applied methods like Bayesian search algorithm (Fan et al., 2020) and binary 1 

logistic regression (Xiao et al., 2020) also play important roles in risk-based PSC 2 

inspection studies. 3 

In light of the above analysis, it is obvious that previous studies are mainly conducted 4 

for the identification, analysis and assessment of the risks associated with PSC 5 

inspections, leaving the issues on the management of detention risk under PSC 6 

inspection unaddressed. To fill the research gap, this study proposed a BN-based 7 

TOPSIS method to develop rational DRCSs under dynamic PSC inspection scenarios. 8 

 9 

3. Methodology 10 

3.1 BNs in maritime risk 11 

The BN method was developed based on the well-defined Bayesian probability theory 12 

and networking technique. A BN is a graphical presentation of probability combined 13 

with a mathematical inference calculation, which provides a strong framework for 14 

representing knowledge. It has a good ability in modelling randomness and capturing 15 

non-linear causal relationships, so that the inference based on imprecise and uncertain 16 

information can be achieved (Wan et al., 2019a). Taking advantage of causal inference, 17 

BN has been used to analyse the importance degree of risk variables and the 18 

relationships between them. Compared to pure Bayesian theory, BN is more visualized, 19 

while it has a solid foundation of mathematical knowledge. Because of its advantages, 20 

BN has been increasingly applied in various research orientations in risk assessment of 21 

maritime related systems, as shown in Table 1. Additionally, a figure illustrating the 22 

change of number of core journal publications on BN applications (on Web of Science) 23 

in the maritime field in recent years is presented as well, demonstrating the popularity 24 

and feasibility of BN applications (see Fig. 1). 25 

Table 1 BN applications in maritime related risk related topics 26 

Research Classification Relevant Reference 

Occurrence of ship-ship 

collisions 

Kujala, et al. (2009); Klanac, et al. (2010); Hänninen & 

Kujala (2012); Weng, et al. (2012); Hänninen, et al. 

(2014); Goerlandt & Montewka (2015) 

Navigational safety in shipping Zhang et al. (2013); Banda et al. (2016) 

Maritime accident evaluation 

and prevention 

Antao et al. (2009); Hanninen et al. (2014); Li et al. 

(2014) 

Oil spill accidents & recovery 

in maritime field 
Lehikoinen et al. (2013); Goerlandt & Montewka (2014) 

Offshore safety analysis Eleye-Datubo et al. (2008); Ren et al. (2009); 

Sea wave overtopping issue Tolo, et al. (2015) 
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PSC inspections 
Hänninen & Kujala (2014); Hanninen et al. (2014); Yang 

et al. (2018a); Yang et al. (2018b); Wang et al. (2019) 

 1 

 2 

Source: Web of Science, by authors 3 

Fig 1 - Number of publications of BN in maritime field in the recent decade 4 

Normally, the process of developing a BN model consists of four phases: data 5 

acquisition, variable identification, BN construction, and conditional probability 6 

distribution and risk prediction (Yang et al., 2018b). Unlike the traditional ways (i.e., 7 

human expert knowledge, common sense, historical experience) to develop the 8 

structure of BN, the network structure of this research is purely induced from data. This 9 

kind of data-driven approaches can avoid common issues in traditional approaches, 10 

such as time consuming, heavy burden on experts, and subjective perception (Yang et 11 

al., 2018a; Yu et al., 2020). Additionally, the accuracy of model results can be improved 12 

when comparing with traditional ways involving subjective judgements. Specifically, 13 

various methods for network configuration optimisation were utilised in the literature, 14 

including dependency analysis (Thomas, 2005), search and score approach (Cooper et 15 

al., 1992), genetic algorithm (Novobilski, 2003), chain genetic algorithm (Kabli et al., 16 

2007).  Although BN can be extended into an influential diagram (ID) to incorporate 17 

decision and utility nodes for decision making, ID is usually incompetent to deal with 18 

multiple decision attributes of different characteristics in maritime risk control studies 19 

(Yang et al., 2009).  20 
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3.2 TOPSIS in maritime risk analysis 1 

Multi-criteria decision-making (MCDM) problems are frequently encountered in 2 

various aspects in maritime operations. TOPSIS (Hwang and Yoon, 1981), as one of 3 

the well-established methods for solving MCDM problems, has been widely studied for 4 

several decades, and been widely applied in maritime risk management due to its 5 

advantages of being intuitive, easy to understand and to implement. Moreover, it is able 6 

to manage each kind of variables and each type of criteria with data collected from 7 

various sources involving risk, cost, and social benefits. Othman et al. (2015) applied 8 

TOPSIS method to ranking the factors that caused psychological problem of distraction 9 

of seafarers. Wu et al. (2016) introduced TOPSIS for group decision-making in order 10 

to provide a practical decision framework for safety control of ships out of control. Due 11 

to high flexibility of TOPSIS, it can accommodate further extension to make better 12 

choices in different conditions, including fuzzy environment. Liu et al. (2016) proposed 13 

an extend TOPSIS model to facilitate the comparison between fuzzy numbers in the 14 

safety assessment of inland waterway transportation with the ability to dealing with 15 

expected values of different situations. Yan et al. (2017) introduced the cost-benefit 16 

ratio to the fuzzy TOPSIS in order to achieve a rational risk analysis for prioritising 17 

congestion risk control options of inland waterway transportation under dynamic risk 18 

scenarios. Zhang and Lam (2019) combined fuzzy TOPSIS with Delphi and AHP to 19 

identify barriers in emerging technology adoption with a case of maritime 20 

organizations. However, TOPSIS and its extensions are rarely used to model the 21 

dynamic interdependencies among multiple decision criteria with very few previous 22 

studies (e.g. Yang et al., 2009, Fan et al. 2020).  23 

3.3 The proposed method 24 

In this research, a new methodology incorporating BN with TOPSIS is proposed to 25 

develop the risk decision tool for the evaluation of DRCSs in PSC inspections. It 26 

combines the advantages of both BN and TOPSIS (as mentioned in section 3.1 and 3.2 27 

respectively). Therefore, the holistic approach is superior over either BN or TOPSIS 28 

(as standing along methods) in a way of: 29 

1) A BN for predicting the safety of a system cannot be used to make a decision about 30 

whether or not an action can improve the system safety, when such a decision have to 31 

be made against multiple criteria such as cost and safety. However, the cooperation of 32 

TOPSIS can address this BN deficiency, and extend the function and application scope 33 

of traditional BN. 34 

2) Compared to the traditional TOPSIS method, the proposed holistic method can first 35 

be used to predict safety and the result is integrated into TOPSIS in an objective form. 36 

In particular, the outputs of BN (i.e. root variables, mutual information) are used as the 37 

inputs of TOPSIS (i.e. criteria, and their weights), reducing the influence of subjective 38 
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judgments when making decision. Additionally, the results can be updated accordingly 1 

when new information is incorporated, supporting dynamic decision making. 2 

As aforementioned, the process of developing a BN model consists of four phases: data 3 

acquisition, variable identification, BN construction, and conditional probability 4 

distribution and risk prediction. While the main steps of applying a TOPSIS method 5 

include constructing decision-making matrix, weighting and normalizing the decision 6 

matrix, calculating the separation measures of the alternatives, determining their 7 

relative closeness to the ideal solution, and finally ranking the alternatives. To avoid 8 

unnecessary repetitions regarding the construction of data-driven BNs (incl. equations 9 

and algorithms) and the application of the TOPSIS method, which are detailed in Yang 10 

et al. (2018a) and Yan et al. (2017), respectively, this paper stresses the key steps of 11 

combining the two in the context of PSC inspection. By doing this, we can emphasize 12 

how the original data-driven BN model and the TOPSIS method can be combined in a 13 

complementary manner for decision making of detention risk reduction strategies under 14 

PSC inspections. 15 

As the kernel of the proposed method, a risk-based BN for PSC is constructed to capture 16 

the relationships among different risk factors and then use their risk contribution to ship 17 

detention to calculate their dynamic importance degrees. The risk factors that are 18 

identified as root variables in the BN will be transformed as the decision criteria when 19 

constructing the decision matrix in TOPSIS, while the weights of the selected criteria 20 

will be determined based on their mutual information with the target node, i.e., 21 

‘detention’, in the BN. Fig.2 shows the flow chart of the proposed method. It is worth 22 

noting that when the prior probabilities in the BN model are updated to reflect a 23 

particular case scenario (e.g. a particular port in a specified timeframe), the weights of 24 

the criteria (i.e. root causes) will be changed accordingly to respond to the dynamic 25 

feature of PSC to meet a particular ship/ship-owners requirement.  26 
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 1 

Fig 2 - The flow chart of the proposed method 2 

Source: Authors 3 

The detailed description of the proposed methodology is outlined in the following steps. 4 

Step 1. Data collection and processing 5 

To determine the detention rate of a vessel in a port, it is important to have a list of 6 

historical PSC inspection records from the port region (e.g., Paris or Tokyo MoU). 7 

Collected from the Paris MoU online inspection database, 49,328 inspection records 8 

from 2015-2017 are extracted to form the research database to train the prior 9 

probabilities in the PSC risk-based BN. It is noted that the bulk carriers are selected as 10 

the research target in this study due to 1) its dominant role in the global maritime market 11 
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(making up 15% - 17% of the world's merchant fleets), and 2) the detention rate of bulk 1 

carriers shows a very similar trajectory to general situations, which is proved in a recent 2 

research produced by Yang et al. (2020) through a comprehensive analysis. 3 

Step 2. Construction of the risk-based PSC BN 4 

The construction of the PSC BN consists of variable identification, structure learning, 5 

and conditional probability configuration (Yang et al., 2018a).  6 

The variables used in model construction are determined based on the PSC inspection 7 

records and previous studies simultaneously. A PSC inspection record contains 8 

information in two aspects, vessel-related and inspection-related. It is noteworthy that 9 

the factors concerned in this study are those influencing detention (inspection results), 10 

instead of inspections, which means the research is conducted on the whole inspection 11 

process. Major information in inspection records is valuable and selected as the risk 12 

variables in our research, which are vessel flag, vessel age, company performance, type 13 

of inspections, port of inspection, number of deficiencies, and detention. These 14 

variables have been proved to be important factors influencing inspection results 15 

according to previous research, i.e., Yang et al. (2018a). Meanwhile, two intermediate 16 

level risk variables, ‘vessel group’ and ‘inspection group’, are introduced to avoid 17 

enormous conditional probability tables (CPTs) and reduce calculation work based on 18 

the principle of divorcing approach (Jensen, 2001). They can be viewed as the overall 19 

level of vessel-related risk and inspection-related risk. For the ‘vessel group’, based on 20 

the information provided by Yang et al (2018) and Wang et al. (2019), this variable has 21 

two states of ‘detention risk higher than 10%’ and ‘detention risk lower than 10%’. 22 

Three parent nodes of ‘vessel group’ have a number of different combinations, and 23 

cases correlated with them can all be found in the PSC inspection database. If we select 24 

several cases with different combination of vessel-related nodes and same combination 25 

of inspection-related nodes, when inputting them into BN model, the results reveal that 26 

most cases resulting in detention has a detention rate more than 10%, and other cases 27 

are lower than 10%. In other words, once the detention risk of a vessel is higher than 28 

10%, the inspection records showed it is about to be detained. Therefore, in this study, 29 

10% detention probability is a threshold value of ‘vessel group’, resulting in two states 30 

of this variable ‘detention risk higher than 10%’ and ‘detention risk lower than 10%’. 31 

The same distinguish criteria goes to the ‘inspection group’. More detailed information 32 

can be referenced in Yang et al. (2018a). 33 
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 1 

Fig 3 - PSC BN model  2 

The structure of BN in this study is learned via a data-driven approach, called Tree 3 

Augmented Naïve (TAN) learning, the essence of which is actually an optimization 4 

problem (Friedman et al., 1997). The TAN learning is chosen in this study because it is 5 

proved to be more competitive and accurate than other data-driven approaches (Murphy 6 

& Aha, 1995). The detailed process of how the network is derived from TAN is found 7 

in Yang et al., (2018a). Through the Netica software, the result is presented in Fig. 3.  8 

Once the structure of BN is determined, the conditional probabilities of nodes are 9 

required to model the uncertainties of risk variables. To avoid the problems existing in 10 

traditional CPT calculation methods (expert judgment) like time-consuming and 11 

impractical application in this study, the CPTs are formulated by a gradient descent 12 

approach (Bottou, 2010). Its essence is to narrow the distance between the conditional 13 

probability and the value of prior information. When the minimum distance is found, 14 

the value at this point is selected as the associated conditional probability. The gradient 15 

descent approach has good performance when calculating CPTs (Yang et al., 2018a). 16 

When the structure and CPTs of BN are properly constructed, the probability of ship 17 

detention under the PSC inspections can be predicted by considering different sets of 18 

observable evidence. 19 

Step 3. Selection of the criteria for measuring detention DRCSs 20 

Only root variables in the constructed PSC BN model are considered to be the possible 21 

criteria for decision-making analysis, as they are derived directly from the PSC 22 
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inspection database, and can be effectively influenced by the stakeholders from 1 

different aspects via appropriate actions. According to Fig 3, they are vessel flag, vessel 2 

age, type of inspections and port of inspection. Port of inspection is at large fixed based 3 

on the charter party that the ship is engaged with and hence beyond the owner’s direct 4 

control and removed from the criterion list. Therefore, the retained three root variables 5 

are selected as the criteria for measuring and comparing the performance of DRCSs, 6 

including vessel flag, vessel age, and type of inspections. 7 

Step 4. Weighting the criteria according to the mutual information 8 

In this research, the weight of each criterion is determined according to the mutual 9 

information of each node. Mutual information is the information that two variables 10 

share in a BN, which can be used to calculate the strength of the relationships between 11 

the target node (i.e. detention) and influencing nodes (i.e. the selected three criteria - 12 

vessel age, vessel flag, and type of inspections) in this study. One of the advantages of 13 

mutual information is that it can be computed between variables at different layers. The 14 

mutual information between ‘detention’ and other risk variables can be defined as: 15 

 𝐼(𝐷, 𝛽) = − ∑ 𝑃(𝑑, 𝛽𝑖)𝑙𝑜𝑔𝑏

𝑃(𝑑, 𝛽𝑖)

𝑃(𝑑)𝑃(𝛽𝑖)
𝑑,𝑖

 (1) 

Where D represents ‘detention’, 𝛽 represents risk variable, 𝛽𝑖 represents the ith state 16 

of 𝛽,   𝐼(𝐷, 𝛽) represents the mutual information between ‘detention’ and risk variables. 17 

The value of 𝐼(𝐷, 𝛽) is only related to the two variables D and 𝛽, and it is independent 18 

to other mutual information in the model. The larger the value of mutual information 19 

is, the stronger relationship which exists between variable ‘𝛽’ and ‘detention’. It is 20 

noteworthy that the amount of mutual information represents the degree of influence, 21 

not the exact weight of variables. 22 

Then, the weight of each criterion can be calculated using Eq. (2). 23 

1

/ , 1,2,...,


 
n

j jj

j

w I I j n      (2) 24 

where, wj is the weight of jth criterion (or in other words, jth selected risk variable), and 25 

Ij is the mutual information between jth risk variable and ‘detention’. 26 

Step 5. Construction of the decision matrix of DRCSs 27 

DRCSs are developed from different perspectives based on multiple sources in order to 28 

maximally reduce the risk of ship detention, and the performance of each DRCS against 29 

each criterion under a specific risk scenario is assessed by expert judgement. For 30 

example, under a high-risk scenario, stricter control measures are usually more 31 
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desirable; while under a low-risk condition, more attention will be paid on the cost of 1 

taking countermeasures in order to select a cost-effective one. In this way, the 2 

performance of each DRCS against each variable under dynamic situations can be 3 

achieved. A questionnaire survey was designed to collect experts’ judgements about 4 

the performance of DRCSs in terms of each criterion. Experienced staff members who 5 

have working experience in relation to the PSC inspections of European ports were 6 

selected for the case study. The subjective probability distributions from multiple expert 7 

judgments are merged using a weighted average approach (Wan et al., 2018). To 8 

facilitate subjective data collection and representation of judgements associated with 9 

the performance of DRCSs, a set of linguistic variables are defined. Three grades of 10 

performance are considered, and they are described using linguistic variables “low”, 11 

“medium”, and “high”. Supposing altogether l variables are used to evaluate the 12 

performance of DRCSs, then the score of kth variable (Ck) can be calculated using Eq. 13 

(3) (Yang et al., 2014). 14 

110 ( 1,2,... ) k

kC k l      (3) 

15 

k is the order of variables and they are listed in an ascending order, which means a 16 

higher value of k represents a better performance in this study. Thus, the scores of “low”, 17 

“medium”, and “high” are 1 (100), 10(101), 100(102), respectively, and then the overall 18 

evaluation can be transferred into a numeric value by using the following utility 19 

function. 20 

 
1

( )



L

l

l

lu E u G      (4) 

21 

Where, u(E) is the total score of the performance of a DRCS, l is the number of 22 

linguistic variables used to describe the performance of a DRCS (which is three here), 23 

u(Gl) is the score of lth grade of performance, and βl is the subjective probability 24 

distributed to lth grade of performance, ranging from 0% to 100%. 25 

Based on the criteria and evaluation on the performance of DRCSs, a decision matrix 26 

D = (xmn) can be established, and normalized as: 27 

2

1

/ , 1,2,..., 1,2,...,；


  
m

ij ij ij

i

r x x i m j n     (5) 28 

Where, xij in matrix D describes the performance of ith DRCS with respect to jth criterion.  29 

m is the total number of DRCS, and n is the number of criteria. rij denotes the normalised 30 

value of xij. 31 
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Multiply the columns of the normalized matrix by the associated weights to obtain the 1 

weighted decision matrix A = (vmn): 2 

, 1,2,..., , 1,2,...,ij j ijv w r i m j n        (6) 3 

Where, wj is the weight of jth criterion. 4 

Step 6. Selection of the optimal DRCSs 5 

Once the weighted decision matrix is constructed, the optimal DRCSs can be identified 6 

via employing the TOPSIS algorithm. Firstly, the positive ideal and the negative ideal 7 

solutions, are denoted by A+ and A-, respectively. They are defined as follows: 8 

+
1 21 2

1 21 2

( , ,..., ) (max{ } ), (min{ }) ;

( , ,..., ) (min{ } ), (max{ })

{ }
{ }

n ij ij
ii

n ij ij
i i

A v v v v j J v j J

A v v v v j J v j J

  

   

   

   
   (7) 9 

Where, J1 and J2 represent the set of benefit and cost criteria, respectively. 10 

Secondly, the Euclidean distances of each DRCS from the PIS (dj
+) and the NIS (dj

-) 11 

can be calculated as: 12 

2
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2
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( ) , 1,2,..., 1,2,..., ;

( ) , 1,2,..., 1,2,...,

；

；













   

   





n

i ij j

j

n

i ij j

j

d v v i m j n

d v v i m j n

       (8) 13 

Finally, the relative closeness (Si) to the ideal solution is calculated as: 14 

, 1,2,...,


 
 



i
i

i i

d
S i m

d d
       (9) 15 

Where, 0 ≤ Si ≤ 1. 16 

After ranking the DRCSs according the relative closeness, the DRCSs with the highest 17 

Si are selected to reduce a ship detention rate. 18 

Step 7. Validation of the proposed method 19 

The validation of the proposed method is conducted through its benchmark with some 20 

established methods. In this process, the results from all the investigated methods are 21 

compared to check their consistency.  22 

 23 

4 Case study 24 
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4.1 DRCSs of ship detention 1 

In this study, DRCSs are developed and taken in response to the risk influencing factors 2 

(e.g., detainable deficiencies of ships) which are directly and closely related to the ship 3 

detention, and will increase the possibility of a ship being detained to a large extent 4 

under PSC inspections. From the perspective of system engineering, a system is usually 5 

composed of three major parts which are human, machine and environment (Lank et 6 

al., 2011). In this study, we substitute management factors for environmental ones 7 

considering the special role management plays in the safety of waterway transportation 8 

and the fact that environmental factors are usually difficult to control, whether natural 9 

environment or political environment. Thus, three main aspects considered here are 10 

human (e.g., crew), vessel, and management (e.g., shipping company, maritime safety 11 

authority, and port authority). By combing this idea with the existing PSC practice, 12 

several generic DRCSs are selected only for the illustrative purpose of the proposed 13 

method1.  14 

DRCS #1. Strengthen the knowledge promotion of PSC inspection  15 

Strengthen the knowledge promotion of PSC inspection for those who work closely 16 

related to the maritime shipping such as managers of shipping companies, senior crew, 17 

and shore-based personnel. For example, the training of seafarers on PSC inspection 18 

can vigorously improve the professional quality of seafarers, and raise the awareness 19 

of safety management as well. Maritime shipping safety is closely related to the quality 20 

of the crew. Thus, many shipping companies have not only required crew members to 21 

conduct performance training, but also developed special training courses for crew 22 

based on the company's conditions, in order to improve their competitiveness in the 23 

shipping market. It should be ensured that captains are full familiar with the company's 24 

Safety Management System (SMS). When PSC officers audit the captain with respect 25 

to performance of the monitoring duties, they will pay attention not only to the written 26 

records of captains such as Navigation Logs, but also their actual monitoring quality of 27 

operation. 28 

DRCS #2. Arrange shipping routes based on ship risk condition 29 

Several amendments to the maritime safety-related conventions have come into effect 30 

in the past five years, with many different types of inspection items being involved. 31 

Therefore, both management and operation personnel on board should be familiar with 32 

the relevant requirements of the amendments in a timely manner, and take effective 33 

                                                            
1  It is worth noting that the development of specific DRCSs are very complicated, requiring information on 

operational environments to make it sensible according to the survey of domain experts in the process of identifying 

valid DRCSs in this work. For the purpose of illustrating the proposed methodology and not losing the generality of 

the used DRCSs, the following three generic strategies are put forward in this study.    
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measures to ensure that ships meet the new requirements of conventions. It is required 1 

that more attention should be paid on the ships with a relatively higher risk level with 2 

respect to maintenance and shore-based support, in order to reduce risks of ships. 3 

DRCS #3. Self-inspection of ships before sailing 4 

It is required that shipping companies should establish reasonable self-inspection 5 

procedures before the sailing of a ship. An individual agency/department is suggested 6 

to set up which is responsible for collecting PSC information of the ships abroad. Also, 7 

we need to clarify the responsibilities of relevant departments, personnel and ships, 8 

eliminate the defects found in time, and improve the technical status of the ship. Every 9 

time before the sailing of ships, the crew should conduct self-inspection with respect to 10 

ship's technical conditions and cargo loading conditions, and fill out the "Self-11 

inspection checklist" which needs to be signed and confirmed by the captain in 12 

responsible before sailing. Shipping companies, regulatory bodies/authorities and 13 

classification societies need to work together to develop and implement a tripartite 14 

coordination mechanism for PSC inspection, and strengthen the safety management of 15 

ships through the implementation of the International Safety Management (ISM) Code. 16 

4.2 Evaluation of the selected DRCSs 17 

First of all, the weights of criteria can be determined based on the mutual information 18 

between these nodes and target node, as shown in Table 1. It is noted that the value of 19 

mutual information between all nodes and target node ‘detention’ were calculated, but 20 

only that of root nodes is presented. According to the mutual information, the weight 21 

of each criteria can then be calculated using Eq. (2), and the results are listed as follows: 22 

Table 2 - Mutual information between root nodes and ‘Detention’ in 2015-2017 23 

Node 
Mutual   

Information 
Percent Weight  

Detention 0.20388 100 - 

Vessel age 0.00669 3.28 0.55 

Type of inspections 0.00523 2.57 0.43 

Vessel flag 0.00025 0.123 0.02 

 24 

The assessment of the three DRCSs with respect to different risk variables influencing 25 

ship detention under PSC inspection was conducted to demonstrate the feasibility of 26 

the proposed method in the performance evaluation of DRCSs. A questionnaire was 27 

conducted with three senior staff from different organisations working related to the 28 

PSC inspection and ship navigation safety. It is worth noting that all these experts have 29 
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working experience in European countries (or European shipping routes) to ensure that 1 

they are familiar with Paris MoU. The qualification of the selected experts is 2 

summarized as follows:   3 

 Expert No. 1: Senior Captain, technical safety department; has worked onboard 4 

ships on different shipping routes for more than 12 years. 5 

 Expert No. 2: General Manager, marine operations centre; involved in the safety 6 

and security management of global ship fleets for more than 12 years. 7 

 Expert No. 3: Senior marine investigator, maritime authority; has worked on 8 

maritime safety and accident investigation for more than 13 years. 9 

This study employed a subjective probability method to collect expert opinions. 10 

Subjective probability is a probability derived from an expert’s judgment about the 11 

degrees of a specific assessment level to which one criterion belongs with respect to 12 

any DRCS. In the subjective probability method, the performance of each DRCS is 13 

estimated and represented using the probability distribution of the linguistic variables 14 

(i.e. Low, Medium, and High), provided directly by experts (see an example in 15 

Appendix A). Due to the similar seniority of the three experts, equal weight was 16 

assigned to each expert when combining their evaluations, and then the total score of 17 

each DRCS in terms of each criterion can be calculated by using Eq. (4). The results 18 

are summarised in Table 3. 19 

Table 3 - Summary of the evaluation results from different experts 20 

RCS Criteria 
Evaluation of DRCSs Total 

score 

Low medium High 

No.1 

Vessel age 63% 37%  4.3 

Type of 

inspections 
40% 60%  6.4 

Vessel flag 67% 33%  4.0 

No.2 

Vessel age  17% 83% 85.0 

Type of 

inspections 
17% 47% 36% 41.5 

Vessel flag 17% 57% 26% 32.5 

No.3 

Vessel age 63% 37%  4.3 

Type of 

inspections 
 40% 60% 64.0 

Vessel flag  43% 57% 61.0 

 21 



  20 

 
 

Based on the above information, the weighted normalized decision matrix for the 1 

evaluation of DRCSs can be constructed using Eq. (5) and (6), which is shown as 2 

follows. 3 

0.0257 0.0385 0.0017

0.5087 0.2494 0.0141

0.0257 0.3846 0.0
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Finally, the DRCSs can be ranked according to the value of relative closeness, as shown 5 

in Table 4. 6 

Table 4 - Ranking of the DRCSs 7 

 d+ d- Sj Rank 

DRCS 1 0.613 0 0 3 

DRCS 2 0.127 0.557 0.815 1 

DRCS 3 0.521 0.324 0.383 2 
 8 

As aforementioned, the results from Table 4 indicate the preference of each DRCS 9 

with respect to the overall dry bulk ship detention data of MoU Paris in the period 10 

of 2015-2017. Due to the difficulty of accessing individual port/ship company level 11 

information on the operational environment, the DRCS ranking and functionality 12 

analysis are kept at the generic level. From the managerial implication perspective, 13 

it helps ship owners/management companies to understand that without further 14 

specific port level information, they could implement the above three strategies in 15 

a sequence to reduce the ship’s detention rate in European ports. It also serves as 16 

the base line to observe how the methodology can be used to deal with dynamic 17 

situations when specific data becomes available.  18 

4.3 Performance of DRCSs under dynamic situations 19 

In this section, the performance of the DRCSs under dynamic situations is demonstrated. 20 

To explore this dynamic feature, new evidence is collected and entered into the 21 

proposed method. An extended database of over 2000 inspection records in 2018 is 22 

collected. Based on the same group of experts, the performance of three DRCSs under 23 

new environment is presented as follows. Table 5 is the updated mutual information 24 

between root nodes and ‘Detention’ in 2018. 25 

Table 5 - Mutual information between root nodes and ‘Detention’ in 2018 26 

Node 
Mutual   

Information 
Percent Weight  

Detention 0.18495 100 - 
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Vessel age 0.00280 1.51 0.44 

Type of inspections 0.00344 1.86 0.54 

Vessel flag 0.00017 0.0926 0.02 

For illustration purpose only, we use the same evaluation results of each DRCS as 1 

presented in Table 2 to reflect the dynamic features of the proposed model in decision-2 

making under a different scenario (for this case, it is a different time period)2. Under 3 

this situation, the weighted normalized decision matrix for the evaluation of DRCSs in 4 

2018 can be constructed as follows.  5 

0.0156 0.0560 0.0012

0.3092 0.3632 0.0094

0.0156 0.5602 0.0
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Finally, the DRCSs can be ranked according to the value of their relative closeness 7 

Table 6 - Ranking of the DRCSs in 2018 8 

 d+ d- Sj Rank 

DRCS 1 0.582 0 0 3 

DRCS 2 0.159 0.485 0.753 1 

DRCS 3 0.417 0.407 0.494 2 

 9 

It can be seen from the above results that although the same order of ranking of DRCSs 10 

are obtained in 2018, the numerical gap (Sj value) between DRCS 2 and DRCS 3 is 11 

much reduced, which indicates that the performance of these two strategies tend to be 12 

similar under this circumstance. It is believed that with more PSC inspection data 13 

derived from other time periods, the changing trend of the role that these DRCSs play 14 

in different time periods can be revealed. 15 

4.4 Validation and analysis of the results 16 

Since the criteria in the decision matrix are generated from risk variables in the PSC 17 

BN, the evaluation of the DRCSs with respect to each criterion from expert judgement 18 

can also be explained as the effects of DRCSs on the mitigation of each risk factor. 19 

Thus, the performance of the DRCSs in terms of each criterion will be transformed into 20 

the reduction of probability of relevant risk factors in the BN model. This kind of 21 

transformation is achieved according to the total score that a DRCS obtained. For 22 

example, the total score of DRCS #1 in terms of vessel flag is 4.0, it means that a share 23 

of probability of 4.0% is reassigned in node “vessel flag” moving toward the maximal 24 

                                                            
2 It is worth noting that the proposed model is able to deal with both dynamic weights and evaluations 

under different scenarios when more evaluation results from experts are collected. 
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decrement of detention risk (from status “black high” to “white”). In this way, the 1 

performance of DRCSs can be reflected in the form of variation of detention rate of 2 

individual vessels in the BN model, and then the DRCSs can be ranked according to 3 

their effects on reducing the ship detention rate under PSC inspections.  4 

Figure 4 shows the result of detention analysis based on the BN model. It indicates that 5 

the detention rate of a bulk carrier is estimated to be 3.19% given the input data covering 6 

the period of 2015-2017. If we calculate the detention rate from the database directly, 7 

it is 3.23%, which shows a harmony with the result delivered by the model (a similarity 8 

of 98.8%). The model is verified in terms of prediction of detention rate of bulk carriers. 9 

 10 

 11 

Fig 4 - Results of BN model 12 

Source: Author 13 

Taking DRCS #1 as an illustration, the total scores of it in terms of criterion vessel age, 14 

type of inspections, vessel flag are 4.3, 6.4, 4.0 respectively, which means that the 15 

probability reassigned in node “vessel age”, “type of inspections”, “vessel flag” are 16 

4.3%, 6.4%, and 4.0% respectively, moving towards the maximal decrement of 17 

detention risk. For example, in node “vessel age”, the probability of “over 20 years” 18 

will be decreased from 6.05% to 1.75%, while that of “0 to 5 years” will be increased 19 

from 27.5% to 31.8% accordingly. In a similar way, the effect of each DRCS on the 20 

reduction of ship detention risk can be calculated according to the BN model, as shown 21 

in Fig 5, 6, and 7, respectively. 22 
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 1 

Fig 5 - Risk of ship detention under DRCS #1 2 

 3 

4 

Fig 6 - Risk of ship detention under DRCS #2 5 

 6 
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 1 

Fig 7 - Risk of ship detention under DRCS #3 2 

It can be seen from the BN results that, after the implementation of these DRCSs 3 

individually, the detention rate of a bulk carrier is reduced to 2.60%, 0.96%, and 1.30% 4 

respectively. The results reveal that DRCS #2 performs the best in in this case, followed 5 

by DRCS #3 and #1. This is consistent with the results obtained from the proposed 6 

method, validating the model to a certain degree. 7 

4.5 Managerial insights 8 

4.5.1 Perspective from the port authorities 9 
Port authorities usually aim to regulate the behaviour of ship owners in order to avoid 10 

potential accidents and ensure ship safety through their PSC inspections. Vessels with 11 

different risk levels will be provided with different safety-improve suggestions. 12 

According to the results of the proposed models, the DRCSs which show better 13 

performance in terms of the reduction of detention risk of ships can be collected and 14 

taken as a reference for port authorities when formulating and improving corresponding 15 

inspection regulations. This in turn will also improve the overall quality of ships to be 16 

inspected, and thus enhance the safety of maritime transportation. 17 

4.5.2 Perspective of the shipping companies 18 
Once a vessel was detained, all the identified deficiencies need to be fully addressed as 19 

required. Different from port authorities, shipping companies care more on profits and 20 

are more likely to know whether the implementation of a DRCS could help them to 21 

reduce detention cost, and how effective it is. In this regard, the proposed model is 22 
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helpful to support their decisions as it provides a way for comparing the performance 1 

of different DRCSs in a quantitative manner, making it possible to carry out cost-2 

effective analysis of DRCSs if needed. Furthermore, the effectiveness of one DRCS on 3 

different ships can also be calculated so that DRCSs can match different ships under 4 

different conditions more appropriately. 5 

5 Conclusion 6 

Although BNs have proven to be a powerful technique for reasoning under uncertainty 7 

and have been widely applied in the prediction of ship detention risk under PSC 8 

inspection, they cannot be used directly to make a decision in terms of the selection of 9 

the most effective countermeasures since such a decision are usually based on some 10 

certain criteria other than a single goal of safety. To solve this problem, this paper 11 

proposes a novel method by incorporating a data-driven BN with the TOPSIS method 12 

in a complementary manner for selecting risk control options of ship detention under 13 

PSC inspections.  14 

The proposed model in this research is proved to be able to deal with both dynamic 15 

weights and evaluations when more evaluation results from experts are collected. The 16 

novel method can be used to quantitatively analyse the performance of different risk 17 

control strategies under PSC inspections, so as to provide stakeholders with helpful 18 

reference on the evaluation of DRCSs from different aspects and identify the most 19 

effective one under different situations. Moreover, the proposed model has the potential 20 

to be adapted to different application scenarios. On one hand, it helps collect and 21 

analyse the current information of ships under PSC inspection to model the 22 

relationships between different variables; On the other hand, based on the results of 23 

analysis, it can evaluate how much one DRCS can reduce the detention probabilities 24 

after being applied to reduce future detention risk. It is well reflected by the BN ability 25 

of supporting forward risk prediction and backward risk diagnosis.  26 

It is worth noting that the ranking of DRCSs is mainly used to show the feasibility of 27 

the proposed model and methodology. When port/management company level data 28 

becomes available, the methodology can be tailored and applied to evaluate more 29 

specific DRCSs. The findings from the case should be further interpreted to meet the 30 

individual stakeholder requirements. Any implications from the discussed DRCSs 31 

should be carefully reviewed to avoid any misleading insights being disseminated 32 

inappropriately. In future research, with the proposed method being gradually applied 33 

in real world and more detailed information of the detainable deficiencies from PSC 34 

inspections being collected, more specific stakeholder-related DRCSs can be developed 35 

accordingly to guide the action of shipping companies, so that the safety of maritime 36 
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shipping can be improved. Besides, the performance of these DRCSs can also be 1 

evaluated and compared to further validate and improve the proposed method. 2 
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Appendix A 1 

Questionnaire Survey 2 

Three grades (using linguistic variables “low”, “medium”, and “high”.) of performance 3 

of DRCSs are considered in terms of their influence on each detention risk parameter 4 

(or criteria). Linguistic grade Low means the investigated DRCS has a slight impact on 5 

the selected criteria, Medium indicates a moderate impact, and High indicates a strong 6 

impact.  7 

The performance of each DRCS is estimated using the probability distribution of the 8 

linguistic variables provided directly by experts. For example, if an expert thinks that 9 

DRCS #1 has a slight impact on the vessel age with a belief degree of 20%, and a 10 

moderate impact on the vessel age with a belief degree of 80%. Then the performance 11 

of DRCS #1 with respect to vessel age will be 0.2 Low and 0.8 Medium. An example 12 

of the judgement on DRCS #1 with respect to each criterion is show in Table A1.  13 

In a similar way, performance evaluation results of DRCSs from different experts can 14 

be obtained and merged together for case study. 15 

Table A1 Example of judgement from an expert 16 

DRCS Criteria 
Performance of DRCSs 

Low medium High 

No.1 

Vessel age 20% 80%  

Type of inspections  50% 50% 

Vessel flag 90% 10%  

No.2 

Vessel age    

Type of inspections    

Vessel flag    

No.3 

Vessel age    

Type of inspections    

Vessel flag    

 17 


