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Abstract 14 

Intraspecific variation in social behaviour is often observed among animal populations. Local 15 

predation risk can be a key driver of these differences, with populations that are exposed to 16 

greater threat typically showing greater aggregation and reduced intraspecific aggression. The 17 

Trinidadian guppy, Poecilia reticulata, is found in populations that vary dramatically in 18 

predation risk and show greater grouping and reduced agonism in high predation populations 19 

compared to low predation populations. The neurohormonal mechanisms that underpin these 20 

differences in behaviour across populations remain unknown and elucidating these 21 

mechanisms may help us to understand the evolution of behavioural diversity in this species. 22 

We predicted that guppies naturally exposed to higher predation risk would show greater 23 

expression of the isotocin system and reduced expression of the vasotocin system when 24 

compared to the low predation fish, because these peptides are thought to promote 25 

gregariousness and aggressivity respectively. We collected guppies of both sexes from high 26 

and low predation sites, replicated in two different Trinidadian rivers, and measured the 27 

brain-gene expression of isotocin and vasotocin along with their central receptors. Contrary 28 

to our prediction, we found that high predation guppies showed greater expression of 29 

vasotocin, while we did not find evidence that the populations differed in isotocin expression, 30 

nor in the expression of the receptors. These results support the hypothesis that vasotocin 31 

may act as a neural substrate for social variation in fishes but call into question 32 

generalisations about its specific role across species.  33 

 34 
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Introduction 37 

Forming groups is widespread throughout the animal kingdom (Krause & Ruxton, 2002) and 38 

is a prerequisite for more complex social systems including cooperative breeding and 39 

eusociality (Bourke, 2011). Living within a group confers several advantages, many of which 40 

center around reducing predation risk (Ioannou et al., 2012). However, living in a group can 41 

also have drawbacks, including increased intraspecific conflict over resources leading to 42 

aggressive interactions which can impose substantial costs (Earley & Dugatkin, 2010; 43 

Lacasse & Aubin-Horth, 2014; Balshine et al., 2017). Depending on relative strength of these 44 

costs and benefits, there is considerable variation in grouping tendencies both between and 45 

within species (Lott, 1991; Krause & Ruxton, 2002). To fully understand the causes and 46 

consequences of social variation, it is crucial that we grasp the mechanisms underlying social 47 

behaviour as these may shape or constrain the expression of sociality (Soares et al., 2010; 48 

Monaghan, 2014; Aubin-Horth, 2016).  49 

Prime candidates for the proximate control of social behaviour in vertebrates are the 50 

nonapeptide hormones (Goodson et al., 2012; Goodson, 2013), including oxytocin and 51 

vasopressin in mammals, which are important for social recognition, pair bonding, and 52 

mating behaviour (Donaldson & Young, 2008; Lee et al., 2009). The nonapeptide hormones 53 

are well conserved throughout the vertebrate lineage and homologous molecules can be 54 

found in all vertebrates (Hoyle, 1999). The role of nonapeptides in regulating social 55 

behaviour also appears to be conserved across taxonomic lines (Goodson & Bass, 2001; 56 

Goodson & Thompson, 2010; Goodson, 2013). In birds, for example, the tendency to flock is 57 

tied to the activity of the nonapeptide circuitry and can be manipulated by perturbing the 58 

nonapeptide systems (Goodson et al., 2009, 2012). To date, many insights about the role of 59 

the nonapeptides in regulating social behaviour have been gleaned by comparing related 60 

species that differ in their social system as well as the expression and function of the 61 

nonapeptide circuits in their brains (e.g., Insel & Shapiro, 1992; Insel et al., 1994; Goodson et 62 

al., 2009, 2012). This comparative approach suggests that the observed differences in social 63 

behaviour are mediated, at least in part, by the observed differences in nonapeptide circuit 64 

function (Goodson et al., 2012). However, comparing species, even closely related ones, is 65 

not without caveats. It can be difficult to confidently ascribe differences in neurobiology to 66 

selection on the behaviour of interest when other factors will inevitably differ among even 67 

closely related species (Pozzi et al., 2014). This challenge to the comparative approach can 68 

be at least partially overcome using multiple replicate species pairs and by controlling 69 
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comparisons phylogenetically (MacLean et al., 2012). Another valuable tool for 70 

understanding how evolution acts upon the proximate bases of social behaviour is the study 71 

of a single species that shows social variation across populations, which can mitigate some of 72 

the problems with cross-species comparisons (Pavosudov & Clayton, 2002; Aubin-Horth, 73 

2016; Lacasse & Aubin-Horth, 2019).   74 

The Trinidadian guppy, Poecilia reticulata, is a model species in the study of 75 

intraspecific variation in social behaviour. Guppies are small, live-bearing, freshwater fish 76 

found throughout Trinidad (Magurran, 2005). In the mountainous terrain of Northern 77 

Trinidad, waterfalls subdivide much of the guppy habitat, creating populations exposed to 78 

higher or lower predation risk (high- and low predation populations). Large fish predators are 79 

abundant below the waterfalls, whereas above them, adult guppies are relatively safe from 80 

aquatic predation (Endler, 1978). These high and low predation populations differ in their 81 

social behaviour (Magurran & Seghers, 1991, 1994). In high predation areas, guppies show a 82 

stronger tendency to aggregate because shoaling is an effective strategy to avoid predation 83 

from large, active aquatic predators (Magurran, 1990). Where predation pressure is reduced, 84 

guppies show a weaker tendency to shoal (Magurran & Seghers, 1991). Low predation 85 

guppies also tend to be more aggressive to conspecifics than their high predation counterparts 86 

(Magurran & Seghers, 1991), presumably because competition for resources tends to be 87 

stronger in low predation populations (Endler, 1995) and the need to shoal is decreased. 88 

These population differences are likely to be at least partially due to genetic divergence 89 

among guppy populations (Magurran et al., 1993), though plasticity may also play a role 90 

(Houslay et al., 2018). 91 

The nonapeptide hormones oxytocin and vasopressin have homologues in teleost 92 

fishes known as isotocin and vasotocin, respectively (Hoyle, 1999). Considerably less 93 

research attention has been directed towards understanding the role of the nonapeptides in 94 

fishes than in mammals or birds, but the existing literature strongly suggests that 95 

nonapeptides are key regulators of social behaviour in fishes (Godwin & Thompson, 2012). 96 

For example, in the Amargosa pupfish, Cyprinodon nevadensis amargosae, hypothalamic 97 

vasotocin gene expression correlates positively with aggressive behaviour (Lema et al. 2015). 98 

Peripheral injections of vasotocin also increase aggression in the beaugregory 99 

damselfish, Stegastes leucostictus (Santangelo and Bass, 2006), while in the cooperatively 100 

breeding daffodil cichlid, Neolamprologus pulcher, injections of isotocin increase submissive 101 

behaviour (Reddon et al., 2012; Hellmann et al., 2015), which may facilitate group living in 102 

this species (Reddon et al., 2019; Ruberto et al., 2020). Similarly, in the daffodil cichlid, 103 
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expression levels of the isotocin gene correlate positively with submission and social 104 

affiliation (O’Connor et al., 2016). Populations of stickleback that show lower levels of 105 

aggression exhibit greater expression of their lone isotocin receptor (Lacasse & Aubin-Horth, 106 

2019). In zebrafish, Danio rerio (Lindeyer et al., 2015), and goldfish, Carassius auratus 107 

(Thompson & Walton, 2004), administration of exogenous vasotocin reduces social approach 108 

and shoaling tendency. In guppies, central administrations of isotocin increases shoaling 109 

behaviour, while vasotocin administrations decrease it (Cabrera-Álvarez, 2018). A recent 110 

study in guppies also found more shoaling behaviour in fish given a peripheral injection of 111 

isotocin compared to those given a non-specific nonapeptide antagonist (Mehr et al. 2020). 112 

Together, these pharmacological manipulations suggest that the endogenous vasotocin and 113 

isotocin systems could differ between high and low predation populations of guppies, but the 114 

expression levels of these nonapeptides and their receptors across populations remain 115 

unknown. Recent studies of behavioural divergence in fishes have shown that ligands may be 116 

the target of evolutionary change (Kitano & Lema, 2013; Reddon et al., 2017), while other 117 

studies have found that receptors are more likely to diverge between populations (Di Poi et 118 

al., 2016; Lacasse & Aubin-Horth, 2019). 119 

In the current study, we compared brain gene expression of the isotocin and vasotocin 120 

coding genes along with the genes that code for their central receptors between guppies from 121 

high and low predation populations in Northern Trinidad using quantitative PCR (qPCR). We 122 

predicted that the high predation populations would show greater expression of isotocin and 123 

the isotocin receptors that have been linked to prosocial behaviour (O’Connor et al. 2016; 124 

Cabrera-Álvarez, 2018) compared to the low predation fish. Vasotocin, by contrast, has been 125 

implicated in social withdrawal (Thompson & Walton, 2004) and the expression of 126 

aggressive behaviour (Santangelo & Bass, 2006; Dewan & Tricas, 2011; Silva & Pandolfi, 127 

2019), which may interfere the formation of cohesive social groups (Lacasse & Aubin-Horth, 128 

2014). Therefore, we predicted that the low predation guppy populations would show 129 

increased expression of vasotocin and its central receptor, compared to high predation fish.  130 

 131 

Materials and methods 132 

Sampling 133 

We captured 151 (n = 79 males and n = 72 females) adult guppies in March 2016 using 134 

butterfly nets from 4 collection sites, one high predation and one low predation site in each of 135 

two rivers (Aripo and Marianne) in Northern Trinidad. We chose to sample from these sites 136 



Vasotocin and predation risk in guppies 

 6 

based on their use in previous studies (Millar et al., 2006; Millar & Hendry, 2012; Gotanda et 137 

al., 2013). The high and low predation sites were differentiated by the presence or absence of 138 

large piscivorous fishes (as reported in Gotanda et al. 2013). For further details of the sample 139 

collections, see Reddon et al. (2018).  140 

Following collection, fish were transported to the William Beebe Research Station 141 

near Arima, Trinidad where we euthanised them with an overdose of pH buffered MS222 142 

(Argent Chemical Laboratories) approximately 24 hours after capture. This timing was 143 

necessary to ensure consistency between collection sites in the delay between capture and 144 

euthanasia, given that some sites were remote, meaning that not all fish could be collected 145 

and processed on the same day. We measured the standard length (SL, taken from the tip of 146 

the snout to the end of the caudal peduncle) in mm of each fish using a pair of dial callipers. 147 

We then dissected out their brains using a stereomicroscope. Samples were incubated in 148 

RNAlater (Sigma-Aldrich) for 24 hours at room temperature and then frozen at -20°C. 149 

Following our return to McGill University (Quebec, Canada), we weighed each whole brain 150 

to the nearest 0.1 mg using a Mettler-Toledo ME104E balance (see Reddon et al. 2018 for 151 

details) and then placed them into fresh RNAlater and returned them to -20°C. 152 

 153 

Analysis of gene expression 154 

We transported the samples to Université Laval (Quebec, Canada) where we homogenised 155 

each brain and extracted total whole brain RNA using Qiagen RNeasy mini kits, following 156 

the manufacturers protocol. The concentration and purity of each sample was then evaluated 157 

using a nanodrop spectrophotometer (Thermo Fisher Scientific). Samples with total RNA 158 

concentrations below 100ng/ul and/or 260/280 ratios below 1.8, indicating possible RNA 159 

degradation, were removed from the analyses, resulting in a final sample size of 115 fish (low 160 

predation males n = 24, low predation females n = 26, high predation males n = 37, high 161 

predation females n = 28).  A haphazardly selected subset of 12 samples was further checked 162 

for RNA integrity using a 2100 Bioanalyzer instrument (Agilent Technologies). All tested 163 

samples had an RNA Integrity Number (RIN) > 8.0, and were therefore acceptable for qPCR 164 

(Fleige et al., 2006). 165 

 Before cDNA synthesis, we treated 2000ng aliquots of RNA with DNase I 166 

(Invitrogen) to eliminate DNA contamination. First strand cDNA synthesis was then 167 

conducted using SuperScript II Reverse Transcriptase (Invitrogen) with a mix of random 168 

hexamer (Invitrogen) and oligo dt primers (Invitrogen). We checked the success of our 169 
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cDNA synthesis reaction with PCR followed by a 1.2% agarose electrophoresis gel using 170 

SyberSafe (Life Technologies).  171 

 We designed primers for the nonapeptide genes and their receptors in silico using 172 

Primer 3 (Rozen & Skaletzky, 2000) and Amplify 3 (Engels, 2005) based on guppy 173 

sequences retrieved from the NCBI database. We created primers for both nonapeptide 174 

ligands, vasotocin (AVT) and isotocin (IT), along with the central receptors for each. Fishes 175 

possess multiple receptors for vasotocin (Lema, 2010; Lema et al., 2015) and we chose to 176 

focus on AVTv1a2 (following the naming convention in Lema et al. 2019; hereafter referred 177 

to as AVTr) because it is the central receptor which has been most consistently implicated in 178 

the regulation of social behaviour in fishes (Lema, 2010; Kline et al. 2011; Oldfield et al. 179 

2013). There are two known isotocin receptors (ITr1, ITr2) in guppies, and while studies 180 

have not yet been conducted to fully determine their binding affinities (e.g., one or both may 181 

also bind with vasotocin; Lyu et al., 2021), it can be assumed that both receptors bind 182 

isotocin with high affinity. Little is known about the individual function of these isotocin 183 

receptors but divergent expression patterns within species suggest that they may have 184 

different functions (O’Connor et al., 2015, 2016). Therefore, we chose to examine both 185 

isotocin receptors in the current study. Here we follow the naming conventions for the 186 

isotocin receptors (ITr1, ITr2) found in Lema et al. (2019), which contrast with those in 187 

another recent report (Lyu et al., 2021). We also designed primers for the metabolic enzyme 188 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which is known for strong 189 

constitutive expression across individuals and tissues (Livak & Schmittgen, 2001), and 190 

therefore is often used as a control (housekeeping) gene in qPCR studies in fishes (Rui-Xue 191 

et al., 2010). Following primer design, each primer pair was tested by amplifying guppy 192 

cDNA using PCR and examining the output of a 1.2% agarose electrophoresis gel using 193 

SyberSafe for the presence of a single well-defined band of the appropriate size. To 194 

determine amplification efficiency, the absence of primer dimers and the specificity of 195 

amplification for each primer pair, qPCR experiments and melting curves (50 to 90°C) were 196 

run using standard curves consisting of 5 x 10-fold dilutions (of pooled samples) in 197 

duplicates. Information on the primers used can be found in Supplemental Table 1. 198 

 We measured the expression of our 5 target genes (AVT, IT, AVTr, ITr1, ITr2) and 199 

our control gene (GAPDH) in a 384-well plate qPCR machine (Roche Light Cycler). Each 200 

gene for each individual fish was assayed in triplicate on 384-well plates (Axygen) prepared 201 

using an EpMotion liquid handler (Eppendorf), following the scaled-down version of the 202 



Vasotocin and predation risk in guppies 

 8 

Quantitect SYBRGreen PCR kit manufacturer’s protocol (Qiagen) including no-primer and 203 

no-template controls. To verify that only a single amplified product was present and that no 204 

primer dimers were produced, a melting curve (50 to 90°C) was also performed for each 205 

gene. The mean Cq value across the three replicates for each gene in each fish was used for 206 

analysis. 207 

 208 

Statistical analysis 209 

We compared the expression of our control gene, GAPDH, between the sexes and predation 210 

regimes using a using a linear mixed model including river as a random effect. We rank 211 

transformed GAPDH Cq prior to analysis to conform to the assumption of homogeneity of 212 

variance. We examined the expression of each of our five target genes (AVT, IT, AVTr, 213 

ITr1, ITr2) relative to the expression of the reference gene GAPDH (Pfaffl, 2001). For 214 

purposes of comparison, expression of each gene was calculated relative to the mean 215 

expression of the high predation males from the Aripo river. We ran a linear mixed model for 216 

each gene including sex, predation regime, and the sex*predation interaction as fixed effects. 217 

We included the river of collection (Aripo, Marianne) as a random effect in each model. 218 

Because we were interested in the relative expression of each gene between sexes and 219 

populations rather than the magnitude of these differences, and to conform to the assumption 220 

of homogeneity of variance between groups, we rank transformed the response measure prior 221 

to analysis and present the rank transformed data graphically. In our sample, we had 222 

previously reported sex and predation regime differences in both body length and brain mass 223 

(Reddon et al. 2018). Differences in brain mass could have affected transcript abundance in 224 

our samples. Therefore, we included brain mass as a covariate in all of our analyses, although 225 

this had no qualitative effect on the pattern of results we observed. The data required to 226 

recreate our analyses and figures are available in the supplementary materials. Analysis was 227 

conducted in SPSS v.27 (IBM) for Mac OS 11.4 and the figures were made using ggplot2 228 

v3.3.5 in R v.4.1.0 for Mac OS 11.4.  229 

 230 

Ethical note 231 

Sampling methods were approved by the McGill University Animal Care Committee (2015-232 

7708) and followed the ABS/ASAB guidelines. Animal collection was approved by the 233 

Ministry of Agriculture, Land and Marine Resources of the Republic of Trinidad and Tobago. 234 

Guppies are not threatened and were abundant at all collection sites.  235 
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 236 

Results 237 

We found that GAPDH expression did not differ significantly between high and low 238 

predation populations (F1,110.58 = 0.81, p = 0.37), however females did have lower average 239 

GAPDH expression than did males (F1,110 = 16.72, p < 0.001). There was no statistically 240 

significant interaction between sex and predation regime on GAPDH expression (F1,100.02 = 241 

0.005; p = 0.94) and the brain mass covariate was not statistically significant (F1,109.93 = 0.08; 242 

p = 0.79). All subsequent results refer to gene expression relative to the expression of 243 

GAPDH.  244 

The expression of the vasotocin gene was greater in the high predation populations 245 

than in the low predation populations (Fig. 1, p = 0.02, Table 1). This result was qualitatively 246 

similar in each of the two sampled rivers, Aripo and Marianne (Fig. 1). Males had greater 247 

expression of vasotocin than females, but this difference did not reach statistical significance 248 

(Fig. 1, p = 0.07, Table 1). We did not find evidence that expression of the isotocin gene 249 

differed between populations (Fig. 2, p = 0.79, Table 1), but females showed greater 250 

expression of isotocin than did males (Fig. 2, p = 0.04, Table 1). This sex difference in 251 

isotocin expression seems to be primarily driven by the Aripo fish (Fig. 2) and may also 252 

reflect the fact that GAPDH expression was lower in females than males. We did not detect 253 

evidence that any of the three receptor genes (AVTr, ITr1, Itr2) that we examined showed a 254 

difference between the high and low predation populations, or between the sexes (all p ³ 255 

0.18, Table 1). We did not detect any statistically significant interactions between population 256 

and sex on the expression of any of the examined genes (all p ³ 0.47, Table 1). The brain 257 

mass covariate was not statistically significant in any of our analyses (all p ³ 0.08; Table 1).   258 

 259 
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 260 
Fig. 1 – Ranked relative vasotocin expression by sex and predation regime for the Marianne 261 

and Aripo rivers. Guppies collected from high predation sites (white boxes) showed higher 262 

relative brain gene expression of vasotocin than did guppies from low predation sites (grey 263 

boxes; p = 0.01). Males had higher vasotocin expression than females, but this difference did 264 

not reach statistical significance (p = 0.07). Boxes indicate the interquartile range with the 265 

median represented by the horizontal line. Circles represent the individual data points.   266 
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 268 
Fig. 2 – Ranked relative isotocin expression by sex and predation regime for the Marianne 269 

and Aripo rivers. There was no statistically significant difference in isotocin brain gene 270 

expression between guppies collected at high (white boxes) and low predation sites (grey 271 

boxes; p = 0.73). Female guppies had higher isotocin expression than males (p = 0.04). Boxes 272 

indicate the interquartile range with the median represented by the horizontal line. Circles 273 

represent the individual data points.   274 
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Table 1 – Summary statistics for linear mixed models examining the effects of sex, predation 276 

regime, and their interaction, with brain mass as a covariate on the ranked expression of each 277 

nonapeptide or receptor gene relative to GAPDH. Statistically significant effects (p < 0.05) 278 

are bolded. River (Aripo, Marianne) was included as a random effect in all models. 279 

 280 

Gene Effect Denominator df F p 

AVT predation 104.13 5.62 0.02 

 sex 104.02 3.41 0.07 

 predation*sex 104.00 0.52 0.47 

 brain mass 104.18 0.47 0.50 

IT predation 107.24 0.08 0.79 

 sex 107.04 4.38 0.04 

 predation*sex 107.00 0.17 0.68 

 brain mass 107.52 0.26 0.61 

AVTr predation 106.21 1.29 0.26 

 sex 106.04 0.62 0.43 

 predation*sex 106.00 0.08 0.78 

 brain mass 106.44 2.32 0.13 

ITr1 predation 107.14 1.81 0.18 

 sex 107.02 0.14 0.71 

 predation*sex 107.00 0.08 0.78 

 brain mass 107.32 2.69 0.10 

ITr2 predation 107.10 0.01 0.91 

 sex 107.02 0.05 0.82 

 predation*sex 107.00 0.01 0.96 

 brain mass 107.24 3.13 0.08 

 281 

 282 

Discussion 283 

Guppies from high predation populations exhibit greater shoaling behaviour and 284 

lower aggression than those from lower predation environments (Magurran & Seghers, 285 

1991). In several species of fish, isotocin administration promotes shoaling behaviour 286 

(Thompson & Walton, 2004; Braida et al., 2012; Cabrera-Álvarez, 2018), while vasotocin 287 
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administration inhibits shoaling (Lindeyer et al. 2015; Thompson & Walton, 2004; Cabrera-288 

Álvarez 2018) and increases aggression (Santangelo & Bass, 2006). We therefore predicted 289 

that the isotocin system would be upregulated in the high predation populations and the 290 

vasotocin system downregulated. Unexpectedly, in two replicated river systems we found 291 

that high predation guppies showed greater brain gene expression of vasotocin than did low 292 

predation guppies and did not find evidence for a difference between predation regimes in the 293 

expression of isotocin. We did not find evidence supporting a difference between predation 294 

regimes for any of the receptors we examined. We also detected a sex difference in the 295 

expression of isotocin, with females having greater expression than males, and some 296 

evidence for the opposite pattern in vasotocin, but found no evidence for a sex difference in 297 

the expression of any of the receptors. Our results suggest that variation in vasotocin 298 

expression may be related to variation in behaviour among wild guppy populations, though 299 

the direction of the population difference in vasotocin expression ran counter to our 300 

prediction.  301 

A potential explanation for the greater expression of vasotocin in the high predation 302 

fish may lie in the fact that vasotocin is involved in the stress response and tends to be 303 

positively correlated with both acute and chronic stress (de Kloet, 2010; Sokołowska et al., 304 

2020). For example, acute stress leads to an increase in vasotocin expression in the rainbow 305 

trout, Oncorhynchus mykiss (Gilchriest et al., 2000). Central administration of vasotocin in 306 

the same species induces a stress response (Gesto et al., 2014), suggesting vasotocin has 307 

anxiogenic effects in rainbow trout. Chronic osmotic stress in medaka, Ozyzias latipes, leads 308 

to an increase in pituitary vasotocin and alterations in the size and number of vasotocin 309 

producing neurons in the preoptic area (Haruta et al., 1991). High predation guppies are 310 

likely to be living under more chronically stressful conditions and/or show greater reactivity 311 

to acute stressors (Fischer et al. 2014; Chouinard-Thuly et al. 2018). Given that the capture 312 

and transport procedures were likely at least somewhat stressful for the fish, and acute stress 313 

responses have been found to affect nonapeptide gene expression in other fishes over similar 314 

timeframes (Lema et al., 2010; Skrzynska et al., 2018), either chronic stress in the high 315 

predation environment, or a larger acute stress effect on vasotocin expression in the high 316 

predation fish could explain the greater levels of vasotocin brain gene expression that we 317 

observed.  318 

The relationship between nonapeptide gene expression and behavioural phenotype is 319 

complicated by the fact that nonapeptide synthesis is a multistage process and nonapeptides 320 

have multiple sites of action (Sokołowska et al., 2020), therefore, different measurement 321 
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approaches may yield different results. For example, in the daffodil cichlid, dominant 322 

breeding individuals have greater expression of the vasotocin gene than do subordinates 323 

(Aubin-Horth et al., 2007), whereas when measuring free bioactive peptide in the brain, the 324 

subordinate individuals exhibit higher levels (Reddon et al., 2015). Similarly, cooperatively 325 

breeding and closely related non-cooperative cichlid species show a consistent pattern of 326 

parvocellular isotocin neuronal phenotypes, with cooperative species having fewer of these 327 

cells (Reddon et al., 2017), however when comparing brain gene expression, no consistent 328 

difference in isotocin was apparent between social systems (O’Connor et al., 2015). This may 329 

reflect a difference in production versus storage of the peptide (Ota et al., 1999; Grober et al., 330 

2002). Species differences in the apparent behavioural functions of the nonapeptides are also 331 

common (Goodson, 2008; Goodson & Thompson, 2010), especially in fishes (Godwin & 332 

Thompson, 2012), for example, exogenous isotocin may either reduce shoaling motivation or 333 

have no effect (e.g., Reddon et al., 2014; Lindeyer et al., 2015) in contrast to its prosocial 334 

effects in other species (e.g., Thompson & Walton, 2004; Braida et al., 2012). Given the 335 

variation between fish species and between different approaches for studying the effects of 336 

nonapeptides on social behaviour, our initial predictions of greater isotocin system gene 337 

expression in the high predation guppies and greater vasotocin expression in the less social 338 

low predation guppies may have been overly simplistic.  339 

Oxytocin and the related non-mammalian peptides are often associated with the 340 

regulation of female behaviour, and correspondingly, the oxytocin signalling system is 341 

typically upregulated in females relative to males (Dumais & Veenema, 2016), which is 342 

consistent with our results, albeit driven predominantly by fish from Aripo river. It should be 343 

noted however that this sex difference is not always observed in fishes (Reddon et al., 2015; 344 

Cunha-Saraiva et al. 2019) and the unexpected sex difference in mRNA transcript abundance 345 

for our chosen control gene does complicate the interpretation of this difference. Lower 346 

expression of GAPDH in females may exaggerate the expression of isotocin in females 347 

relative to males. This sex difference in isotocin gene expression should be confirmed using 348 

an alternative control gene. The vasopressin/vasotocin system by contrast has been associated 349 

with regulating social behaviour predominantly in males (De Vries & Panzica, 2006; Albers, 350 

2015; Dumais & Veenema, 2016), though again this finding may be absent or reversed in 351 

fishes (Aubin-Horth et al., 2007; Reddon et al., 2015; Cunha-Saraiva et al., 2019). We did 352 

find a notable, although non-significant, trend for greater expression of vasotocin in male 353 

relative to female guppies. Collectively our results suggest that guppies may show sex 354 

differences in the expression of the nonapeptides broadly reminiscent of those often observed 355 
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in birds and mammals (De Vries & Panzica, 2006). If they do prove reliable, the functional 356 

significance of these sex differences in guppies would be an interesting area for future work 357 

given the sex differences in behaviour, cognition, and physiology exhibited in this species 358 

(e.g., Griffiths & Magurran, 1998; Harris et al., 2010; Lucon-Xiccato et al., 2016, 2020; 359 

Lucon-Xiccato & Bisazza, 2017; Chouinard-Thuly et al., 2018).   360 

In our analyses, we examined gene expression across the entire brains of our sampled 361 

animals which may have obscured differences between the populations in particular regions 362 

of the brain. In fishes, nonapeptides are synthesised in three separate nuclei in the preoptic 363 

era of the hypothalamus (Ramallo et al. 2012; Silva & Pandolfi, 2019), the parvocellular, 364 

magnocellular, and gigantocellular regions, each of which has distinct cell morphologies, 365 

projections, and apparent roles in the regulation of social behaviour (Godwin & Thompson, 366 

2012). For example, in the African cichlid fish, Astatotilapia burtoni, vasotocin activity in the 367 

parvocellular region is associated with fleeing and submission while vasotocin activity in the 368 

magnocellular region is associated with aggression and dominance (Greenwood et al., 2008). 369 

In contrast to the nonapeptide synthesising neuronal populations, the nonapeptide receptors 370 

are widely dispersed throughout the brain (Godwin & Thompson, 2012), including in several 371 

regions that have been associated with distinct social behaviours and responses (Goodson, 372 

2005). Our whole brain approach may therefore be less sensitive to population differences in 373 

region specific expression of nonapeptide receptors. The nonapeptides are integrated into the 374 

social decision-making network, which controls social behaviour via relative activity across a 375 

network of brain areas (Goodson 2005; Goodson & Thompson, 2010; O’Connell & 376 

Hofmann, 2012; Nunes et al., 2020). Therefore, we might predict both up- and down-377 

regulation of nonapeptide receptors among distinct nodes of the network across social 378 

phenotypes and thus we may not expect a whole brain change in the expression of these 379 

receptors between guppy populations. Future work should examine nonapeptide ligand 380 

expression separately in each of the preoptic nuclei, and receptor expression independently in 381 

each node of the social decision-making network across populations of guppies exposed to 382 

different predation regimes. Future studies should also attempt to link social phenotypes 383 

directly to nonapeptide brain gene expression at the individual level, as population level 384 

correlations offer only indirect evidence of a causal relationship between nonapeptide circuity 385 

and behaviour.  386 

We sampled adult fish from the wild for this study, therefore, we cannot distinguish 387 

between the possible influences of genetic differences among populations, developmental 388 

organisation of the nonapeptide circuitry influenced by early life experiences (e.g., Baran, 389 
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2017), or acute variation in the expression of vasotocin in response to recent predation threat 390 

or current conditions. Lema (2006) found both genetic and plastic differences in AVT 391 

immunoreactivity between populations of Amargosa pupfish that differed in social behaviour. 392 

Future work should compare guppies from high and low predation populations raised under 393 

common garden conditions, and experimentally expose guppies to cues of predation threat in 394 

the laboratory to distinguish between genetic differences among populations and plastic 395 

responses to predation threat (e.g., Lema 2006; Gosline & Rodd, 2008; Fischer et al., 2014; 396 

Ghalambor et al., 2015; Chouinard-Thuly et al., 2018; Reddon et al., 2018).  397 

Wild guppy populations are exposed to variance in ecological conditions beyond 398 

predation risk, for example collection sites may also vary in resource availability (Grether et 399 

al., 2001; Reznick et al., 2001; Millar et al., 2006; Schwartz & Hendry, 2010), which can 400 

affect levels of competition among guppies (Potter et al. 2018) and therefore also drive 401 

differences in social behaviour (Magurran & Seghers, 1991; Endler, 1995). Moreover, Lema 402 

(2006) found that under laboratory conditions a complex interaction between population of 403 

origin, water temperature, and salinity determined vasotocin neuronal phenotypes in 404 

Amargosa pupfish. Such results suggest that additional unmeasured ecological parameters 405 

may also have affected the differences we observed in addition to variance in predation 406 

threat. We replicated our sampling in two rivers (four total populations), but further 407 

replication across additional independent river basins to confirm the generality of our 408 

findings would also be valuable. Experimental laboratory studies could also help to 409 

distinguish the specific effects of predation risk from other correlated ecological factors in the 410 

generation of social variation between guppy populations and the neural substrates that 411 

underpin that variation.  412 

 413 

Conclusions 414 

We found that guppy populations exposed to differing levels of predation risk showed 415 

distinct patterns of vasotocin brain gene expression and this result was replicated in two 416 

independent river drainages. Contrary to prediction, the high predation populations showed 417 

greater expression of vasotocin than the low predation populations. Our results add to a 418 

growing literature implicating vasotocin as a proximate mediator of social behaviour and 419 

suggest that it may serve as a proximate substrate for intraspecies variation in social 420 

behaviour.  421 

 422 
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