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Abstract  

One of the most hazardous and demanding tasks for older people is stair negotiation, often 

resulting in falls. These falls lead to significant loss of mobility and independence. In 

addition, after stair falls, quality of life is affected, often leading to serious complications. 

This stair falls cost National Health Service (NHS) approximately £2.3bn per year.  

A laboratory-based motion capture system and force plates are currently used to 

investigate older people's fall risk factors while on the stairs to prevent falls whilst 

ascending or descending stairs. However, these procedures are costly, needs a dedicated 

motion laboratory, and use expensive and cumbersome equipment.  

Laboratory-based measurements help identify key fall risk factors that affect people in a 

controlled environment. However, implementing effective prevention measures requires 

regular monitoring of these factors over a long period in the user’s environment (home), 

where a fall is likely to occur. Therefore, there is an urgent need for low-cost devices to 

measure these risk parameters in a home environment and provide accurate and repeatable 

results to detect people who are all at risk. 

This work aimed to detect the stair fall risk factors using wearable sensors incorporated in 

shoes and machine learning algorithms to detect risk factors to improve the ability of older 

adults to negotiate different staircase environments safely. This aim had been achieved 

through four studies: 

In the first study, wearable sensors were incorporated into a standard shoe to detect stair-

fall risk parameters. These parameters were identified as stair fall risk parameters in a 

controlled laboratory environment. The fall risk parameters were foot clearance and foot 
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contact length ratio. A sensor insole was designed to detect foot contact length ratio (foot 

overhang) using force-sensitive resistors. Two distance sensors (VL6180X) were attached 

to the shoe to detect foot clearance for ascending and descending. In addition, BNO055 

IMU was fitted in the shoe to measure foot motion kinematics such as velocity and 

acceleration. 

In the second study, the developed wearable sensor shoe was tested in the laboratory for 

validation against the current motion system’s standard biomechanical risk factors during 

stair negotiation. Foot clearance was validated with an accuracy of 0.05mm, and the 

precision was between 4.79mm to -4.67mm. Foot contact length ratio was validated with 

an accuracy of -2%, and the precision was between 10% to -13.91%. 

The developed sensor shoe was tested in the third study at different exemplar houses 

staircases to measure stair fall risk factors. In addition, a comparison was made between 

lab and houses to measure stair-negotiation behaviour changes. The results showed a 

significant difference in selected stair fall biomechanical factors among the three exemplar 

houses and laboratory stairs. 

In the fourth study, the supervised machine learning algorithm was trained to classify fall 

risk using collected sensor data along with self-reported falls. The support vector machine 

algorithm was trained to classify stair fall risk with a precision of 90.4%, a sensitivity of 

88.9%, and an F-measure of 90%. So, this trained algorithm can be used in the future to 

predict stair fall risk at home environments based on data collected from the developed 

sensors and instrumented shoes. 

Future research should include more stair fall risk factors and more people in real-life stair 

negotiation conditions (houses) to improve future stair fall risk prediction.  
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1.1 Stair fall Introduction   

Falls can happen to anyone, but the most vulnerable are old age people. Even though falls 

are common, they can lead to injuries and death if serious. Approximately 1 in 3 older 

people aged 65 and over and lives in the home environment experience at least one fall a 

year (Lord, Ward et al. 1993). Not all falls cause serious injuries. However, some falls 

could lead to bone fractures that reduce confidence. When older people lose their 

confidence, they become withdrawn and dependent, which has several serious 

consequences (Cumming, Salkeld et al. 2000).  

The most hazardous and demanding tasks for older people are stair negotiation, often 

resulting in falls, with 7-35% of these falls occurring on stairs(Jacobs 2016). Compared 

to level walking, fewer falls occur on stairs; however, these stair falls are the second 

leading cause of accidental death (Startzell, Owens et al. 2000). Also, stair falls cost 

National Health Service (NHS) approximately £2.3bn per year (Age 2010). 

Laboratory-based motion capture and force plates are currently used to investigate older 

people's fall risk factors while on the stairs to prevent a fall. These motion capture systems 

analyse all body segments using highly accurate computer-based optical tracking 

systems. These motion capture systems produce accurately quantified results for body 

movements examined within the laboratory. However, this procedure is costly, needs 

dedicated motion laboratory space, and uses cumbersome equipment that might interfere 

with the movement.  

So, there is a need for low-cost devices to measure fall risk factors in the home 

environment and provide accurate and repeatable results to detect people who are all at 

risk. Long-term monitoring of stair gait is also needed to analyse stair fall risk factors.  

This thesis discusses instrumented sensor shoe system development for uninterrupted 

monitoring of factors related to stair falls. This system includes an instrumented insole 

and an instrumented shoe, containing two distance sensors and an IMU sensor. The data 

are sent wirelessly via Bluetooth and provide information about the participants' fall risk 

factors such as acceleration, velocity, foot clearance and foot contact length ratio whilst 

negotiating stairs. 
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There were 25 subjects tested using the instrumented sensor shoe. The results from the 

sensor shoe compared to the motion analysis system (VICON) in a laboratory setting. In 

addition, the sensor shoe was also tested in an actual simulated home environment on 

three different exemplar houses staircases to check the instrumented sensor shoe's 

usability. 

1.2 Thesis statement 

The aim is to design, develop, calibrate, and use a wireless sensor instrumented shoe 

system capable of determining parameters linked to stair fall risk. The sensor system was 

designed to collect data unobtrusively and in any staircase over long periods. Moreover, 

it was designed not to interfere with gait. First, the sensor shoe was calibrated and used 

to collect data, and then these data were analysed to obtain information about the user’s 

gait. These results were then validated against the optical tracking system (motion 

analysis system available at the biomechanics laboratory). Finally, the analysed data were 

used to classify high and low fall risks using standard pattern recognition techniques. 

1.3 Motivation 

Falls are widespread and challenging for older adults; one-third of older people aged 65 

and above experience at least one fall every year. These falls lead to significant loss of 

mobility and independence. This stair falls severely affect the quality of life, resulting in 

early death or secondary complications during hospitalization, usually the following 

surgery to repair a fracture. Even though older people stair fall has detrimental effects, a 

system that can be used to timely identify people at high risk is currently lacking. 

Stair fall-risk assessment is currently achieved using laboratory-based equipment. 

Unfortunately, several environmental differences make it practically impossible to 

accurately simulate an individual scenario in the laboratory. These include ecological 

differences between houses, such as the shape of the staircase, dimensions of steps, 

position and shape of handrails, and the material used to cover the steps and lighting. 

Therefore, it is not feasible to systematically study and document what has caused the 

fall. Laboratory-based measurements help identify key fall risk factors (stair fall 

parameters) that affect people in a controlled environment. Implementing effective 
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prevention measures requires regular monitoring of these factors over a long period in the 

user’s environment, where a fall is likely to occur. 

Therefore, there is an urgent need to test these risk parameters in a home environment. A 

simple wearable system is needed to test stair fall in a home environment. The recent 

advances in wearable sensor technology enable us to pursue research with small and 

inexpensive sensors. Therefore, in this research project, a simple wearable sensor 

instrumented shoe system (sensors incorporated in an actual shoe) was developed to 

investigate stair fall risk parameters in different home environments. This sensor shoe 

allows the collection of a vast quantity of data in the different domestic staircases that are 

difficult to get through the current laboratory motion systems. 

1.4 Aim and Objectives (Project Description) 

The overall aim was to detect fall risk using sensors and machine learning algorithms to 

improve older adults’ ability to negotiate different staircase environments safely. This 

aim had been achieved through four objectives: 

1. Developing a wearable sensor shoe to detect stair-fall risk parameters that had been 

identified as stair fall risk parameters in the controlled laboratory environment using 

current motion analysis systems (VICON). 

2. Testing the developed instrumented sensors shoe in the laboratory for validation 

against the current motion system’s (VICON) standard biomechanical measurements 

during stair negotiation.  

3. Testing at different domestic houses’ staircases using the wearable sensor shoe to 

collect large sets of biomechanical, behavioural, and environmental data as older 

individuals navigate different staircases in a natural home environment 

4. Developing a machine learning system to detect fall risk using collected sensor data 

along with self-reported falls.  

These objectives of the project have been realised by conducting four corresponding 

studies that are explained below. 
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1.4.1 Study 1: Sensor Development 

The wearable sensor shoe system for stair-fall risk prediction had been developed 

especially for detecting relevant biomechanical parameters that previous laboratory-based 

research had shown to be risk factors for falling. The parameters include: 

1. Foot clearance  

2. Foot contact length ratio (foot overhang) 

3. Temporal characteristics 

• Gait cadence 

• Gait velocity  

• Gait Acceleration 

The slip and trip are the two most common fall mechanisms. In ascending, the risk of 

tripping is generally related to the distance between the forefoot and the step edge (Kesler, 

Horn et al. 2016), which is called foot clearance. The risk of tripping increases when the 

vertical distance of the foot to the edge of the step is reduced (Kesler et al., 2016). In 

addition, as the variability in foot clearance increases, the risk of tripping increases, as 

this may indicate that a person cannot maintain a safe foot trajectory (Hamel, Okita et al. 

2005). The risk of slipping increases if the proportion of the foot in contact length with 

the step is reduced. In addition, as the variability of the foot in contact length with the 

step increases, the risk for slip increases, as this may indicate an inability to position the 

foot consistently and securely on the step. 

In descending, similar to stair ascent, the risk for a trip is associated with foot clearance. 

However, during descent, this is usually the horizontal clearance of the foot's heel with 

the edge of the step. According to (Hamel, Okita et al. 2005) this research, the risk of 

falling from a staircase increases when foot clearance is decreased, and the variability of 

the foot clearance is increased. Similar to stair ascent, the risk of slipping increases during 

descending, when the proportion of foot in contact with the step is reduced (Roys and 

Wright 2005).  

Cadence during stair ascent ranges between 90 steps/ min (Livingston et al., 1991) and 

104 steps/min and stair descent range between 96 steps and 110 steps/min. Thus, 
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increased cadence indicates a riskier strategy that could increase the chance for a trip and 

slip (Zietz, Johannsen et al. 2011).  

According to this research, gait velocity is another crucial risk factor (Di Giulio, Reeves 

et al. 2020). Older adults with increased fall risk tend to walk slowly. (Hemmatpour, 

Ferrero et al. 2019). CoM angular acceleration is another crucial risk factor. Sudden 

changes like a more significant peak and variance in CoM angular acceleration cause the 

risk of losing CoM while stepping down and leading to falling (Templer 1995). A fall 

event can be predicted by processing acceleration data (Hemmatpour, Ferrero et al. 2019). 

Even though CoM acceleration causes the fall, gait acceleration and velocity was 

calculated due to sensor constraints. We decided not to use many sensors all over the body 

because older people might not wear them longer. So we decided to use the sensor only 

with shoes and tried to gather information from the sensor shoe data and predict the future 

fall risk.  

There was no literature available to combine all the above parameters to predict the risks 

of stairs in older adults using sensors. Therefore, three sensors were incorporated in the 

shoe to calculate all the above parameters: an IMU sensor, two distance sensors, and force 

sensors. The IMU sensor was used for motion analyses, fitted under the shoe’s middle 

part because it was very small. The two distance sensors were used to find foot clearance 

for ascending and descending gaits. Finally, a force-sensitive resistor was used to create 

a sensor insole to find foot contact length ratio (foot overhang), and this insole was fitted 

inside the shoe.  

1.4.2 Study2: Sensor Validation against a motion analysis system 

Initially, the instrumented shoe was tested on a custom-made staircase located in the 

biomechanics laboratory. Collected sensor shoe data were filtered and processed in 

Matlab. In addition, laboratory-based motion data (VICON) was collected 

simultaneously; this data was filtered and processed in Visual3D. For comparison and 

validation, stair fall risk parameters such as foot clearance, foot contact length ratio, 

acceleration, cadence, and velocity were derived from VICON and sensor data. 
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1.4.3 Study3: Testing stair negotiation at three different exemplar houses 

In this study, large sets of biomechanical, behavioural, and environmental data were 

collected in a realistic living environment of 25 older individuals in the LJMU’s 

(Liverpool John Moores University) exemplar house’s staircases using our developed 

instrumented shoe to assess whether our developed sensor system could predict all 

biomechanical fall risk parameters. Three different types of exemplar houses had been 

built at LJMU. Each house’s staircase was different as each exemplar house resembles 

different eras’ architectures, which were 1920’s, 1970’s and 2000’s.  

Factors such as foot clearance, degree of foot overhang on the step, speed of movement 

and use of handrails have been collected in the university’s houses using the unobtrusive 

instrumented shoe. Environmental parameters, such as step dimensions, position, and 

shape of handrails, were also recorded. Finally, fear of falling from previous experience 

was also noted. This study could reveal the biomechanical response of older people to 

different home stair negotiations. 

1.4.4. Study4: Developing a Machine learning algorithm to classify fallers 

The follow up started after data collection at the LJMU’s experimental houses, incidences 

of stair fall by the participants and the conditions under which they have experienced fall 

details were self-reported for six months. The self-reported information (who had fallen 

on stairs) and stair negotiation parameters (features) collected from three different houses 

were used to create a supervised machine learning algorithm to classify high fall risk 

people from those with low fall risk. The classification information can reduce the stair 

fall risk in the future.  

1.5 Summary of contribution 

The instrumented shoe with wearable sensors was used in a series of experiments to detect 

the risk parameters for stair fall and bridge the existing gap between laboratory-based 

research and the end-users environment. There were no previous studies on wearable 

sensors shoes to detect all the major biomechanical parameters to predict stair fall risk in 

older people using different real house staircases. 
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2.1 Stair Fall Background 

 Staircase Terminology 

The below staircase structure (Figure 2.1) describes the staircase terminologies. 

➢ Tread: The horizontal surface of the stair is called Tread. 

➢ Riser: The vertical surface of the stair is called Riser. 

➢ Nosing: The portion of the tread that overhangs the front of the riser is called 

Nosing. 

➢ Rise: The vertical dimension from tread to tread is called Rise. 

➢ Going: The horizontal dimension from the riser to the riser is called Going. 

 

 

 

 

 

 

 

 What is stair falling? 

A fall is defined as "an unexpected event in which the person comes to rest on the ground, 

floor, or lower-level " (Lamb, Jørstad‐Stein et al. 2005). The slip and trip are the two most 

common fall mechanisms. A trip is a sudden arrest in the swinging leg while the body 

continues its initial motion trajectory when the body’s centre of gravity moves outside 

the base of support, causing a fall. A slip happens when there is not enough friction 

between the person's foot and the walking surface, which causes the foot to slide, resulting 

in a loss of balance and a subsequent fall. 

 

  

  

  

      

  

  

Nosing Tread 

Riser 

Figure 2.1 Staircase Structure 
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There are more chances of a fall occurring during stair negotiation while the foot is on 

the swing phase. During this swing phase, the rear foot must pass two nosings, at this 

point, where the risk of tripping is higher. The subsequent risk occurs on stair ascent when 

the rear foot pushes off the lower tread. At this point, if the slip resistance of the tread is 

too small, then there may be a risk of slipping (Roys 2001). 

 Why do older people fall on the stairs? 

Older people can fall due to the combination of the following reasons, interruption to their 

normal gait, losing balance, and inability to correct their balance. Their centre of gravity 

moves out of their base of support provided by their feet. 

Because of the very different gait is used on stairs, is the reason for accidents differ 

significantly from that of accidents resulting from falls on the level. While walking, 

people continuously change their posture between unstable then retrieving it back to 

stable and the centre of gravity moving ahead. However, people get an even less stable 

gait on stairs than walking on the level.  People balance themselves on one flexed leg as 

the other leg swings forward and to one side to take the next step. By comparison to 

walking on the level, this is slow-motion activity. The exaggerated gait, coupled with the 

increased precision demanded, makes stairs such a tricky balancing act on a course with 

many potential obstacles represented by the steps. 

 Stair gait analysis 

Stair gait analysis involves studying lower limb movement patterns, identifying events 

during stair gait, measuring kinetic, kinematic, and temporal parameters. The gait consists 

of the stance and swing phase, and the stance phase involves weight acceptance, leg-pull 

up and forwards continuation. The swing phase involves foot clearance and foot contact 

length. Stair gait analysis is very useful for assessing and improving stair negotiation 

safety. During stair negotiation, gait analysis can identify older people with a stair fall 

risk and help improve balance and reduce stair injuries.  

Individuals walking up and downstairs are summarised in the following, which is 

different from walking on a level surface. When they ascend stairs, the leading foot is 

placed approximately horizontal on the approaching step. The heel usually would be 
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placed onto the tread, while the ball of the foot is placed further ahead on the tread. Next 

is the stance phase, in which the rear foot commences its ascent, rising onto the tiptoe to 

aid in elevating the entire body upwards and forwards. The rear foot generates a strong 

force that allows the opposite leg muscles to flatten and straighten out, effortlessly 

elevating the body further upwards. Following this is the swing phase. The rearmost leg 

moves past the leading foot over two nosing’s (two-step edges) onto the above step, and 

the cycle repeats. 

Accidents tend to be more severe while in descent, where, during the swing phase, the 

leading foot travels over the two nosings (of the tread that the rear foot is currently on and 

the tread that the leading foot was on) halts above the tread below. Next is the stance 

phase, where the rear foot's metatarsal heads brace the entire bodyweight's entirety as the 

heel of the rear foot starts to rise. Simultaneously, the rear leg bends at the hip and knee, 

meaning that the individual using the stairs has now transferred their weight to the 

forward foot and commences a controlled fall forward and downwards. To absorb the 

impact of the fall, the toes of the foot are pointed down towards the lower tread, with the 

angle of the same foot increasing towards a vertical position as the escalation increases. 

Next, the shock of the impact is softened by the ball of the foot and, lastly, the heel when 

the foot is lowered onto the tread. The swing phase then begins with the leading foot, 

which was the rear foot, after the weight is transferred onto the forward foot, and the cycle 

repeats. 

The most significant differences between the manner walking on the stair and walking on 

a level surface are that the transfer of weight vertically requires a controlled fall in descent 

or extra effort for ascending; and that individual step taken on stairs initiates on the toes 

and ball of the foot, rather than the heel. 

 What are the hazards associated with stair negotiation? 

Accidents tend to be less severe when ascending (Templer 1995) because the older adult’s 

centre of gravity is slightly forward. As a result, most falls are relatively insignificant and 

are towards the higher steps. When considering the gait, the most substantial risks are 

during the swing phase, as there is an increased risk of tripping when the rear foot travels 

over two nosings; this risk is predominantly heightened if there is a sizable variation in 
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the user’s height along with the flight of stairs (Roys 2001). There is an additional hazard 

situation during ascent when the user pushes off the lower tread with the rear foot. There 

is a risk of the foot slipping at this point if the slip resistance of the tread is low. There is 

also a possibility that the user will completely miscalculate the next tread’s position and 

will under-step, completely missing or sliding off the top edge of the step. 

In contrast to this, accidents tend to result in more severe injuries when descending, given 

that a fall in this position could end in the older adults hitting any number of stairs end-

route, descending the full flight by falling or tumbling down, potentially resulting in fatal 

injuries. Consequently, head injuries and broken bones are widespread in accidents 

concerning the descending steps compared to ascending them. There is no major problem 

with the descent if the treads' going (area of space for foot contact length on step) is 

greater in size than the older adults’ shod foot.  However, the problems are exaggerated 

as the goings decrease in size since this means that one of two possible outcomes have 

the opportunity to occur. Older adults will either allow the toes of their feet to hang over 

the edge of the tread or begin to turn their feet outwards; so that each foot is placed at an 

acute angle to the walking line (the direction of travel). Older adults may be at risk of 

catching their heel on the nosing or the riser of the step above if they do not initiate one 

of these compensatory measures as they may not be able to place their foot flat and 

securely on the tread. As a result, older adults may fall forward down the stairs due to 

either of these situations. 

There is a high risk of sliding off the step if older adults allow their toes to hang off of the 

edge, bearing the angle of their foot in mind as it hits the lower tread and the fact that they 

are in a controlled fall. As a result, older adults will either fall forwards or backwards, 

depending on the relation between their front foot and the older adults’ centre of gravity 

position, and whether any reactionary-saving measures, such as grabbing the handrail, are 

made. Although they may be very painful, there is a relatively low risk of causing severe 

injuries when slipping down a flight of stairs or falling backwards (in descent). However, 

as mentioned above, more severe injuries are likely to result from falling forwards (in 

descent). 
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 UK Stair fall history   

There are approximately 6000 deaths annually as an outcome of a home accident, 

showing that falls represent a significant health problem in the United Kingdom. In 

addition, these deaths are often associated with perturbation during everyday activities 

such as ambulation, stair ascent, or stair descent (NHS 2018). 

Falls can happen to anyone, but the most vulnerable are older people, even though falls 

are common when overlooked, which causes injuries. Approximately 1 in 3 older people 

aged 65 and over, lives in the home environment will experience at least one fall a year 

(NHS 2018). Not all falls cause serious injuries. But some of the falls could lead to broken 

bones, which will reduce the person's confidence. When older people lose their 

confidence, they will become withdrawn and dependent (NHS 2018). 

‘Royal Society for the prevention of accidents’ refer to fall as the most typical accident, 

more common in women than men. It is also reported that more people over 65 years die 

at home because of the accident than outside (Applebey 2016). 

In 2015, about 787 deaths were reported due to falling from stairs in England and Wales. 

This figure had increased by 20.5% from 2012 (Applebey 2016). The most common 

accident in old age is falling from stairs and steps. This fall accounts for approximately 

60% of the geriatric population's deaths. The most typical death mode amongst these is 

falling from steps and stairs (Applebey 2016). There are five times greater stair fall 

accidents in 75 years and older populations, and about 100 thousand elderly are treated 

for stairs-related falls each year (Applebey 2016).  

Besides, little research has investigated the contributing factors to imbalance during stair 

negotiation, which leads to stair falls. This project aims to identify older adults who are 

most vulnerable to falling but have not yet experienced a fall.  Identifying fall risk is vital 

since tailored exercise programs or activities and changes in the living environment may 

help prevent falls on stairs if applied when a person at risk is identified. 

 Causes and Risk factors of stair falls 

Often, ‘multifactorial’ causes are reported as contributing factors to a stair fall event. We 

can divide the risk factors into the following categories. 
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➢ Environmental factors 

➢ Personal factors 

➢ Behavioural factors 

Environmental factors: 

In daily life situations, people will encounter a wide range of staircases with various 

dimensions, which will have a different influence on the risk of falling. Dimensions of 

the steps of the stairs can amplify the risk of falling. The stair dimension is described 

using three terms: rise, going, and pitch (Figure 2.1).   

The staircase dimensions are essential factors in the stair fall event(Scott, Menz et al. 

2007). The stairway going is also very important. Tread risers are also a vital part. If the 

risers are huge, older people may fatigue immediately and are more likely to trip. When 

risers are very small or shallow, older adults may be tempted to take more than one step 

at a time, which leads to more chances of misstepping. The steepness or pitch of a stair 

may influence the likelihood of a fall. Tread risers are also an important aspect.  

Building regulations permit a private staircase to be made up of individual steps with each 

rise between 100-220 mm and a going length between 225-350 mm and a maximum 

incline of 41.5°. Similarly, the public staircase (Scott, Menz et al. 2007) to be made up of 

individual steps with each rise between 100-190 mm and a going length between 250-350 

mm and a maximum incline of 38°. These ranges permit a considerable variation in 

staircase design (Table2.1).  

Table 2.1  Standard stair dimensions for private and public building 

Stair category Rise(mm) Going(mm) 

 Min Max Min Max 

Private 100 220 225 350 

Public 100 190 250 350 

When the rise is less than 100mm, it is associated with more trips. Also, 220mm is the 

maximum chance for people to negotiate their steps (Institution 1985) safely. 
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The staircase structure can magnify the demands placed on the individual. For example, 

steep staircases create larger loading forces at foot contact and cause a more significant 

redistribution of forces at the joints than less steep staircases. It is also known that 

transition steps from the level onto the stairs or from the stairs onto the level are more 

demanding than the continuous steps in-between (Roys 2001). 

More precisely, staircases with an inadequate step tread to safely place the foot can 

restrict movement and threaten safety. Additionally, a stair with a higher riser is more 

challenging for older adults who, for example, have higher muscle weakness. It has been 

found that older adults can safely negotiate stairs with a lower step riser (Bertucco and 

Cesari 2009) compared to younger adults. Even for standard step risers, older subjects 

operate closer to their maximum capacities of joint range of motion (Reeves, Spanjaard 

et al. 2008, Samuel, Rowe et al. 2011), thus increasing their risk for a fall. Risky 

techniques employed by older people during stair negotiation can also increase the risk 

of falling. Older people might change their techniques over time because of their 

functional impairments or fear of falling (Zietz, Johannsen et al. 2011). For example, 

older people may have a large foot overhang on landing when stair walking and higher 

variability in foot clearance (Hamel, Okita et al. 2005), both of which increase the risk 

for a slip or trip on the stairs.  

Navigating through the stairs with caution is crucial for a fall, particularly the top and 

bottom three steps on a flight. Studies have demonstrated many stairway accidents occur 

on these top or bottom stairs (Templer, Archea et al. 1985). At these locations, the older 

adult may be looking around for the next part of the journey or the route to be taken; that’s 

why older adults attention may not be entirely focussed on the stairway (Templer 1995). 

Carpets or flooring with dazzling patterns may also disguise the edge of stair treads and 

cause a misplaced foot.  

The steepness or pitch of a stair may influence the likelihood of a fall. British Standards 

control the angle of steepness. However, in private buildings, the pitch may often exceed 

the maximum of 41.5 degrees. This increased pitch contributes to an increased possibility 

of accidents. Accidents are nearly twice as likely on stairs consisting of straight steps with 

no immediate landings, and the stairs' pitch is more than 42º (Applebey 2016). In addition, 
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the Colchester council reported that the lack of any handrail doubles the likelihood of a 

fall.  

Stairway type is another factor that contributes to falls. This research (Templer 1995)  

found that straight flights of stairs without landings accounted for 52% of all accidents. 

This straight might be the case because the path of straight flights is often clear and 

uninterrupted, so older adults are reassured into a false sense of security and reduced 

attention. However, straight flights may also result in more severe injuries because there 

is no place where the fall may be broken on the stairway.  

Personal Factors 

Stair users' characteristics may often contribute to stairway falls. The next important 

factor of stairway fall is age; older people are more prone to stairway fall. Vision 

impairment and balance problems associated with ageing are the main reasons for the 

high prevalence of stair-fall injuries in old age. The decreasing visual and balance 

perception from feet and joints makes it difficult for older adults to judge the stairs' edges 

well. In addition, the above mentioned age-related personal decline challenges the older 

adults to make their judgments towards the swinging limb's foot clearance (Cavanagh, 

Mulfinger et al. 1997). To potentially make matters worse, bone density also diminishes 

with age, so the injuries sustained may be more serious. 

With increasing age, both the health and agility of the human body deteriorates, resulting 

in an increased risk of falling among older people. With ageing, an adult experiences a 

loss in muscle mass, strength, and power, accompanied by a reduced range of motion in 

the lower limb joints. Reduced muscle mass and slower nerve conduction velocity lead 

to inadequate and delayed muscle contraction and force production within a reduced 

range of motion. These changes adversely affect an individual’s ability to recover from a 

threat to balance when quick reactive and appropriate muscle activation is necessary. In 

addition to muscle strength, an appropriate range of motion in the lower leg joints are 

essential for safe walking and stair negotiation. 

This study (Pauls 1985) reported that approximately 85% of deaths resulting from stair 

accidents occur in people over 65. With the increasing number of older people in the 

population, stair accidents are also likely to increase. Another study on falls in homes 
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(Applebey 2016) showed that individuals over 75 are thirteen times more likely to get 

injured than children aged 0-9. According to the US National Safety Council statistics, 

84% of the people who died after a fall are over 65 (Roys 2001). Mainly, stairway injuries 

among the elderly (in this case, over 65) are more likely to result in hospitalization. 

Familiarity with the house and stairs is often helpful; however, this can become an issue 

in some circumstances. For example, when poor housekeeping is maintained or transient 

changes to the house environment, the individual can face unexpected changes to their 

familiarity; these changes could make the older people a fall sufferer. Other important 

characteristics can be dizziness and fainting or muscle strength weaknesses in the knee 

and ankle joint muscles, increasing stair-fall incidents (Nagata 1991). 

Behavioural factors 

Certain behaviours may influence the likelihood of experiencing a stairway fall. Carrying 

items are commonly linked with falls on the stairs. According to (Nagata 1991), carrying 

objects on stairs leads to 24% of stairway falls.  It also decreases the chance of recovering 

from a loss of balance since the hands are not free to grab onto a handrail. Stairway users' 

whole-body balance may alter while carrying objects on stairs; this balance alteration 

leads to a fall. 

Fear of falling 

Fear of falling is one of the crucial factors associated with falls in particularly older 

individuals. It varies from 22% (Wijlhuizen, de Jong et al. 2007) to 63% (Dias, Freire et 

al. 2011) by reviewing the literature. The fear of falling limits people’s outdoor activities 

(Wijlhuizen, de Jong et al. 2007, Dias, Freire et al. 2011). It creates a vicious problem as 

they do not go outdoor; reduced physical activity may result in reduced muscle strength, 

which increases the chance of actual fall and fear (Wijlhuizen, de Jong et al. 2007). This 

fear of falling may also change their walking pattern in some older adults. Also, the older 

adult with a fear of falling may use devices like handrails to increase their balance, this is 

more common if they had a fall already (Murphy and Isaacs 1982). 
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2.2 Current Solutions to acquire stair fall risk factors 

The motion capture system (photoelectronic systems for Motion Analysis) and force plate 

are used to analyse older people's gait while on the stairs to prevent stair falls. 

 Laboratory-based approach  

Motion capture system uses infrared cameras (Mikhalchuk 2017) to record people's 

movements in three dimensions. In addition, motion capture systems use a marker or 

optical systems. Markers are commonly small ball-like attachments the size of a marble 

or reflective circle. These markers are placed on the body with specific guidelines for 

better quality data. Anatomical landmarks are selected for their reliability in determining 

joint motion. 

The most common motion capture systems are Vicon, Motion Analysis, OptoTrack, NDI, 

DARI Motion, Phoenix Technologies, Inc., and Xsens. The most used motion capture 

systems in biomechanics are VICON and OptoTrack. Both VICON and OptoTrack 

systems are optical tracking systems that track three-dimensional movement trajectories 

of reflective markers with up to 1mm accuracy. Force platforms represent the gold 

standard method for determining gait events. The force platform appears as one of the 

most common tools to provide information on three orthogonal forces and moments 

exerted by the human body. 

Motion capture helps connect other data sets like force platforms, which helps understand 

joint angle and body motions from different perspectives. However, capturing full-body 

motion requires a controlled laboratory to allow robust data collection. 

Although the Motion capture system is considered a “gold standard system”, it requires 

cumbersome equipment and tight clothes for marker placement which may cause 

participants to alter their gait. In addition, the cost of most motion capture systems is not 

cheap, and it requires a fully equipped laboratory on average.  

 Motion capture analysis for stair fall risk detection 

Motion capture systems are used for many stairs-related projects; each research focuses 

on different stair falls factors mentioned above. For example, these studies (Tinetti, 
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Doucette et al. 1995, Hamel and Cavanagh 2004) compared stair gait between younger 

and older adults, showing that older adults do slower ascend and descend with stairs. 

Older people also show greater stance, double the support times, and reduced vertical 

forces when accepting their weight and push-off. In addition, the fear of falling factor has 

been examined in this research (Tiedemann, Sherrington et al. 2007). Their findings show 

that older adults who have a fear of falling take cautious strategies such as velocity 

decreases, toe clearance increases, stable centre of mass or centre of pressure 

displacements. The previous evidence shows that older adults are at greater risk for falls 

on stairs because of their less stability when negotiating stairs.  

Furthermore, Slip and trip are the two most important mechanisms for a stair fall. The 

possibility of a trip is associated with foot clearance, which has been widely studied 

(Tinetti, Doucette et al. 1995, Arens, Freudenthaler et al. 1999) using motion capture 

systems. Their findings show that older people have a range of highly inconstant or 

variable minimum foot clearance (Tinetti, Doucette et al. 1995, Arens, Freudenthaler et 

al. 1999) and low foot clearance (Zietz and Hollands 2009). The minimum vertical foot 

clearance was calculated as the minimum overall distance between the stair edge and the 

toe(ascending) or heel(descending) during the swing phase (Simoneau, Cavanagh et al. 

1991). Also, the possibility of the trip increases when the foot clearance variability 

increases, showing a person's inability to maintain a safe foot trajectory on the stairs 

(Roys 2001). 

The distance between the stair edge and the toe cap describes the foot overhang, indicating 

whether only a part of or the whole foot is placed on the stairs. The possibility of a slip is 

associated with the frictional forces between the percentage of foot contact length and the 

step (Roys and Wright 2005). High frictional forces increase the chance for a slip of the 

step-in ascent during push-off and descent during the loading phase. Also, the risk of slip 

increases when the foot contact length is reduced; for example, a large part of the foot 

overhangs over the step edge. Moreover, the risk for a slip is increased when the 

variability in the foot contact length and required frictional forces increases, indicating an 

inability to place the foot safely on the step consistently. 
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2.3 Wearable sensors to detect stair fall risk parameters 

The motion capture systems require the maintenance of a high technology motion 

laboratory, and cumbersome equipment needs to be attached to the participant that needs 

to visit the laboratory. However, this high-cost method produces quantified and accurate 

results when testing in the laboratory. Motion capture systems have been used in many 

stair fall studies and found stair fall risk parameters and causes: foot clearance, foot 

contact length, foot clearance variability, foot contact length variability, acceleration, and 

velocity. However, motion capture results on their own are not a good solution, so we 

need to test at the home environment and more often and longitudinally. 

So, there is a need for a low-cost device that detects falls, which can provide quantitative 

and repeatable results over extended periods in an older adult’s home environment. Also, 

there is a need for monitoring participants’ stair gait over long periods. Therefore, more 

research focuses on sensor technology with high demand for inexpensive fall risk 

detection. Many sensor technologies are available for motion analysis, namely 

accelerometers, gyroscopes, footswitches, load cells, and force-sensing resistors, 

facilitating the general gait parameters' accurate acquisition. 

However, no stair gait analysis system already exists using wearable sensors. Therefore, 

this project's motivation is to design and develop a low-cost, reliable, and portable 

instrumented sensor shoe capable of predicting stair fall risk parameters. Instrumented 

shoe system helps perform the stair gait analysis in a less expensive and non-traditional 

motion laboratory environment. In addition, it also helps to collect a vast quantity of long-

term data from various environments, and some are not possibly obtained in a 

conventional gait analysis laboratory system. 

 The available sensor solution for stair falls parameters 

Foot clearance parameters 

The shoe-integrated direct foot clearance measurement system is the most unexplored 

topic in stair gait analysis and biomechanics research. An accelerometer sensor has been 

used to calculate foot clearance in level walking. However, accelerometer data gives 

unreliable results because of drifts and errors (Aminian and Najafi 2004, Lai, Begg et al. 
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2008). Sensing minimum foot clearance (MFC) using only accelerometer measurement 

on uneven, bumpy surfaces or during stair descent or ascent is problematic. It does not 

directly measure foot clearance but instead calculates it using acceleration data, so it is 

unreliable. 

MIT Media Laboratory has developed an electric field sensing technique and proves that 

this technique can calculate foot clearance on level walking (Lamb, Jørstad‐Stein et al. 

2005). The drawback of this system is that it can only measure up to 5cm (Wahab 2009). 

An ultrasonic sensor has been used to calculate foot clearance (Hamel and Cavanagh 

2004); this system's problem is that the ultrasonic sensor is too big to fit in the shoe, which 

might affect participants' walking. The studies mentioned above focus on level walking 

foot clearance, so we need to find a simple, low-cost sensor to detect foot clearance on 

the stairs. 

Foot overhang parameters 

There is no sensor shoe available to calculate foot overhanging on the stairs; some force 

sensors-based insoles exits are used to calculate foot distribution while level walking. 

Force distribution measurements allow examining force changes under localized regions 

and extracting the foot's orientation and position [Yip and Prieto, 1996]. 

The in-shoe devices display more advantages when compared with the force platform or 

floor-mounted systems. Participants can wear the in-shoe device while walking in their 

normal gait. The in-shoe device can monitor multiple steps while the force platform 

cannot. Because of wireless communication development, in-shoe devices can also be 

used in laboratory, clinic, and outdoor environments. This in-shoe also extends the usable 

locations for older people or patients at risk. Up-to-date research to obtain the acceleration 

and orientation velocity of joints using gyroscopes and accelerometers has been carried 

out. The commercially available in-shoe measurement systems are F-Scan systems and 

Pedar systems, but they are application-oriented devices, and these systems are costly. 

One example instrumented system was developed by (Grandez, Bustamante et al. 2009) 

and his colleagues based on tiny electronic circuits that collect and transmit data from 

force-sensing resistors. A separate sensor and load cells have been used to measure and 

sense force and torque. This is not only low-cost but also appropriately designed to obtain 
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forces accurately and reliably. Unfortunately, the load cell problem is too heavy and can 

hardly fit in the shoes. 

A multimodal approach was used in the insole motion measurement system. This 

instrumented insole system consists of an array of force-sensing resistors (FSRs), a dual-

axis gyroscope, and a tri-axis accelerometer. This combination of sensors allows for the 

plantar pressure measurement and detects the necessary motion patterns for further 

analysis in the fields of fall risk detection and physical activity measurement (Jagos, 

Oberzaucher et al. 2010).  

Also, many other instrumented insole designs were created with several sensors to 

measure different kinematics and kinetics forces based on their research or study 

requirements. For example, wireless gait analysis system by digital textile sensors (Yang, 

Chou et al. 2009), wireless modular sensor architecture and its application in on-shoe gait 

analysis (Benbasat, Morris et al. 2003), compact modular wireless sensor platform 

(Benbasat and Paradiso 2005), and the list goes on.  

However, all these customs made or instrumented sensors did not focus on stair fall risk 

parameters like foot contact length (foot overhang) and other parameters. This project 

aims to create a custom-made insole that can find foot overhanging and other parameters 

to identify stair fall risk in a typical living environment.  

2.4 Wearable Sensor Shoe Solution 

Stair falls are the main reason for the injury, and the loss of independence for older people 

and stair fall increases the NHS's demands. Stair fall risk parameters have been identified 

using extensive study on stairs in the laboratory. However, laboratory-based fall risk 

parameters require expensive, cumbersome material. Also, using laboratory-based 

equipment is not able to test at real houses. Therefore, there is a need to identify stair fall 

risk parameters using a simple wearable solution to fill the gap between the laboratory 

and real-time houses. Wearable sensor solutions have been studied extensively for 

different purposes. Still, none of the wearable solutions has attempted to detect stair fall 

risk parameters in older people at different real house staircases. Besides, the older adults 

who tested in the staircases must be followed up for an extended period to find older 

adults at risk of falling at stairs. The follow-up for a period helps to document falls on 
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stairs that occur after testing in the laboratory. However, no prospective study focused on 

stair falls using wearable sensors. After testing, obtaining future fall information would 

help identify the biomechanical stair fall risk factors that separate stair fallers from non-

fallers. Machine learning algorithms help to improve the classification accuracy of stair 

fallers from non-fallers. However, there is no machine learning study available for older 

adults' stair fall risk data collected in different real houses and follow-ups.  

So, this project's motivation was to design and develop a low cost, reliable, and portable 

instrumented sensor shoe system to detect stair fall risk factors in a typical living 

environment. After testing, older adults needed to be followed up for a period to document 

fall history, which occurs post-testing. We need to develop a machine-learning algorithm 

to predict stair fall risk in the future. The instrumented sensor shoe was developed to 

achieve our aim, described in chapter 3. The designed sensor shoe was tested in the 

laboratory, and stair fall risk parameters were validated against the Vicon system 

described in chapter4. Developed instrumented sensor shoe was tested at different houses 

staircase, and the results were compared in chapter5. A machine-learning algorithm was 

used to classify fallers and non-fallers in chapter6. Chapter7 explains the summary of 

findings and future recommendations to improve stair safety. 
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3. CHAPTER 3:  Sensor Shoe Development  
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3.1 Introduction 

This chapter focused on designing an instrumented sensor shoe with an insole to measure 

stair fall risk parameters. Several main aspects are needed to develop an instrumented 

insole to obtain the most practical design. The main aspects were sensor selection, sensor 

positions, power supply, signal conditioning, data logging, data transmission, data 

storage, and data analysis. To cover all those aspects, this chapter is divided into four 

sections, which are sensor selection, instrumented sensor shoe implementation methods, 

discussion about sensors specifications and results. 

3.2 Sensor selection 

The first step in designing instrumented sensor shoes was selecting the appropriate 

sensors to create an instrumented sensor shoe system capable of sensing stair fall risk 

parameters. Chapter 2 Literature review identified some of the significant stair fall risk 

parameters through other stair fall studies and research articles. Those parameters were 

foot clearance, foot contact length, cadence, stance time, swing time, linear gait 

acceleration, gait velocity, angular velocity, and foot angle (pitch).  

 Foot clearance 

Currently, foot clearance measurements are being done using the electric field sensing 

technique(Morris 2004, Bamberg, Benbasat et al. 2008)  in level walking. However, it 

can only measure up to 5cm, and it requires a minimum of 5 layers of electrodes and 

insulators, which increases the total thickness of the insole. The other method is based on 

the ultrasonic sensor technique (Bakar, Wahab et al. 2013), which is also widely used in 

level walking; this sensor system is larger in size, so it is not ideal for stair climbing 

research.  

The VL6180X distance sensor was selected to measure foot clearance; this sensor was 

chosen due to its size, measurement range, and accuracy. This VL6180X sensor contains 

a distance sensor and a light sensor. Two distance sensors were implemented to measure 

foot clearance. Two distance sensors were placed at the back (underneath the shoe's sole), 

under the toes and the heel. The front sensor was used to calculate ascending vertical foot 

clearance, and the rear sensor was used for descending vertical foot clearance.  
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 Foot contact length, stance time, swing time and cadence 

Force Sensitive Resistors (FSR) were selected and placed underneath the foot to measure 

foot contact length. An FSR is a sensor whose electrical resistance decreases as the 

applied load increases. Up to ten FSRs were placed underneath the foot from the heel to 

toe to calculate foot contact length during foot landing in stair climbing. Further analysis 

of the FSR sensor results helps determine foot stance time, swing time, and cadence. 

Other force sensors or pressure sensors like fine-grain printed arrays of FSRs, Tekscan’s 

F-Scan system were considered, providing extensive information about the pressure 

distribution underneath the foot. However, the higher market price of Tekscan’s 

proprietary system is not a cost-effective choice for this research. 

 Linear acceleration, Velocity, Angular velocity, and Foot angle (Pitch) 

An Inertial Measurement Unit (IMU) sensor was chosen for this purpose and was placed 

at the back of the shoe in the middle. IMU sensor contains three orthogonal gyroscopes 

and three orthogonal accelerometers, which can measure angular velocity and linear 

acceleration in a three-dimensional space. An IMU sensor is placed in a typical 

configuration to cover three different spatial axes. Like any sensor, accelerometers and 

gyroscopes are also prone to measurement errors. The data measured by an accelerometer 

is often obscured by noise, and a gyroscope must cope with drift over time. However, 

since both sensors capture an object's movement data, these errors are compensated by 

combining accelerometer and gyroscope data. By doing this way, the relative heading and 

speed of an object can be estimated in a process called sensor fusion. In addition, some 

IMUs are equipped with a magnetometer, which can compensate for the drift error in the 

accelerometer.  

On the other hand, the magnetometer can provide a constant reference (magnetic north), 

allowing the relative heading to be transformed into an absolute orientation (Chabikuli, 

Fast et al. 2017). The Velocity and the position can be obtained from single and double 

integration to the acceleration component's time corresponding to the foot's forward 

motion in all three directions. The gyroscope provides information about the foot's 

rotation, which can be integrated with time to give the angle. 
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There are many readymade IMU solutions available. These products incorporate all the 

needed hardware, software and output 3D orientation data in Euler angles or quaternions. 

The IMU systems manufactured by Xsens, MicroStrain, VectorNav, Intersens, PNI and 

Crossbow are well known for this purpose. The downsides of these readymade IMU 

solutions are expensive; some models need manual calibration and are too sensitive to 

magnetic distortions. 

Although many inexpensive IMUs available, far fewer products output 3D orientation 

data. Following are the essential elements of an IMU sensor for this research purpose, 

➢ Output 3D orientation data in quaternion or Euler angle format, using the 

onboard computational device (microcontroller) 

➢ Small physical size  

➢ Good accuracy  

➢ no angular drifting in time  

➢ Low price (range of £20 - £50) 

We chose BNO055 IMU based on these criteria for this project, and it has a 32bit 

microcontroller (high-speed Cortex-M0 based processor) running the BSX3.0 

FusionLib software. The on-board fusion algorithm fuses the triaxial 14bit 

BMA055 accelerometer, a triaxial 16bit BMI055 gyroscope, and a triaxial 

BMM055 geomagnetic sensor into a single composite sensor. 

Table 3.1 shows the stair fall risk parameter with the selected sensors that were used for 

this project. 
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Table 3.1 Stair fall risk parameter with the chosen sensor 

 

3.2.4 Other Components 

Apart from choosing the suitable sensors for this research, there are more essential 

components needed to build instrumented sensor shoes (Appendix D show the images of 

all the sensors used to develop sensor shoe) as the followings, 

1. Bluno Nano Microcontroller  

2. Arduino 

3. I2c Multiplexer  

4. Analog to digital multiplexer  

5. SD card 

6. Amplifier 

7. Voltage regulator 

8. Battery power supply 

All these components technical details, working principles and implementation details 

are further explained in this chapter. 

Parameter Sensor Accuracy 

Foot contact length ratio Force Sensitive 

Resister 

± 5% to ± 25% of established 

nominal resistance (FSR user 

manual), Curve fitting calibration 

method was used to improve 

accuracy, R2 =0.97 lower forces, 

R2 =0.99 higher forces 

Foot clearance Range sensor 

VL6180X 

±3 mm 

Orientation, stride 

velocity, displacement 

IMU BNO055 Acc:1 LSB/mg 

Gyro:0.05 

IMU (sensor fusion): ±1% 

Stance time, swing time FSR, Range sensor ±3 mm 
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3.2.4.1 Bluno Nano microcontroller  

The Atmega 328 microcontroller chip was used in the Bluno Nano board. Bluno Nano 

integrates a TI CC2540 BT 4.0 chip with the Arduino UNO development board 

(DFROBOT 2015). It allows wireless programming via Bluetooth Low Energy (BLE) 

and supports the AT command to configure the BLE. The Bluno Nano board contains an 

integrated Bluetooth module that directly transmits any data written over a ‘Bluetooth 

Low Energy (BLE)’ connection to its serial port. In this module, the firmware can be 

upgraded easily. This microcontroller is the perfect choice for BLE projects with limited 

space or weight. BLE is a low power version of Bluetooth 4.0, which runs with power 

sources for an extended period. Transmission range was confirmed through testing to be 

reliable up to 20 metres for indoor and 60m for outdoors, with the non-existence of any 

large physical barrier.  

Bluno Nano contains two types of pins: analog pins (A), which can read a range of values 

and digital pins (D), which can read and write data. Two distance sensors and one IMU 

sensor are needed to connect with the Bluno Nano microcontroller through a serial 

communication protocol (inter-integrated communication, I2c). For this, the Bluno Nano 

microcontroller needs three sets of I2c pins; each set comprises one A4 analog pin (serial 

data) and one A5 analog pin (serial clock). However, in a standard Bluno Nano 

microcontroller, only one set of I2c connections is possible. An I2c multiplexer was used 

to connect the required three sets of I2c pins to the microcontroller. All three sensors (two 

distance sensors and one IMU sensor) were connected to this I2c multiplexer, which 

finally connects to the Bluno Nano microcontroller. 

In this project, up to 10 ‘Force-sensitive resistors (FSR)’ were selected; to connect these 

FSRs with the microcontroller needed more analog pins than available. Analog to digital 

multiplexer was used to overcome this issue, and this multiplexer was connected to the 

microcontroller to make these FSRs work; 13 resistors and two amplifiers were needed 

for each shoe. A Printed circuit board(PCB) was created to connect all these resistors, 

amplifiers, sensors, power supply and microcontroller, and a 7v battery-powered power 

supply was used. Technical details of this multiplexer and other components are 

explained below. 
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3.2.4.2 Arduino 

Arduino software was used to write coding to Bluno Nano microcontroller. The Arduino 

Software is user friendly with an open-source electronics platform, which allows users to 

write program code and upload them on a microcontroller board. C/C++ language has 

been used to write coding in Arduino. The Arduino software included all the necessary 

sensor libraries to make instrumented sensor shoes work. After adding all the libraries, 

coding was written to get the desired output (Appendix G).  

3.2.4.3 I2C Multiplexer 

The IMU and two distance sensors that use I2c communication share the same hardware 

ID. This same hardware ID prohibits using a common I2c bus as the sensors are 

indistinguishable from one another. Our design provides an independent I2c channel for 

each sensor using I2c multiplexer to overcome this issue, 

The TCA9548A I2c multiplexer was used to collect data across all the three sensors that 

were concurrently operating I2c channels. Its technical specifications are as follows 

((Instruments 2015): 

➢ Selectable I2C address 0x70-0x77  

➢ Operating Voltage: 1.65-5.5V 

➢ Weight: 1.8g 

➢ Product Dimensions: 30.6mm x 17.6mm x 2.7mm / 1.2” x 0.7” x 0.1”  

The use of an eight-channel I2c multiplexer (Instruments, 2015) allows our design to 

support up to eight independent sensors and presents a layer of expandability to our 

system. 

It comprises two distance sensors, a BNO055 IMU sensor that collects various forms of 

motion data. These sensors communicate via the I2c protocol and are wired through a 

TCA9548A I2c multiplexer to the Bluno Nano microcontroller. The Bluno Nano 

microcontroller functions as a master, facilitating data collection, formatting, and 

transmission over Bluetooth 4.0 to our SD card. 
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3.2.4.4 Analog to Digital multiplexer: 

Spark Fun’s Analog to Digital Multiplexer CD74HC4067 breakout board was used to 

multiplex FSR sensors. It has a 16 Channel Analog Multiplexer. This chip is like a rotary 

switch; it internally routes the common pin (SIG on the board) to one of 16 channel pins 

(C1 to C16 in the board). It works with both digital and analog signals, and the 

connections function in either direction (Sparkfun 2005). 

To make this work, four digital outputs from the Bluno Nano microcontroller connected 

with analog multiplexer’s pins S0-S3. This analog multiplexer gives provision to connect 

16 FSR sensors if we need to increase the FSR sensor or need to include other sensors in 

the future. 

3.2.4.4 Operational Amplifiers (LM358)  

The operational amplifier is an amplifier where the output voltage is proportional to the 

negative of its input voltage. The LM358 is a low power quad operational amplifier 

(Sparkfun 2005), consisting of four independent, high gain, internal frequency 

compensated operational amplifiers. LM358 operational amplifiers were used in a voltage 

divider configuration of the design to achieve a switch-like response where a certain 

amount of force is required to break the sensor's resistance to allow a proportional voltage 

to leak/go through it. The resistance value of the pull-down resistor is inversely 

proportional to the force sensitivity range of the FSR, which limits the current.  

It is explicitly designed to operate from a single power supply over a wide range of 

voltages. The low power supply current drain is independent of the magnitude of the 

power supply voltage. The LM358 connection details are explained in the FSR sensor 

implementation part. 

3.2.4.5 Battery power Supply  

Without a power supply, the whole instrumented system cannot function. Therefore, 

providing enough electrical power to make the instrumented sensor shoe’s measurements 

work was crucial in operating the entire system. Meanwhile, attention should be paid to 

selecting the voltage source, which would supply the correct range of required voltages 
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for the system's electrical and electronic circuitry. Hence, electronic components such as 

voltage regulators were implemented to ensure no extra voltage would cause overflow or 

damage to circuitry.  

The 7.4 V Rechargeable batteries  (Sparkfun 2005) were used to provide the required 

voltage to the whole design for smooth operation. Voltage regulators were used in this 

design to regulate and maintain the input voltage at a constant level. The difference 

between the actual output voltages with the internal fixed reference voltage was amplified 

and used to control the regulation element to correct the voltage error.  

3.1.4.6 Voltage Regulator (LM7805)  

A 7.4 V battery has been used to supply power to the electronic components in this design. 

Typically, most electronic components' operating power ranges from 2.0 V to 5.0 V, 

where too high input voltage may cause damage. Therefore, an LM7805 5.0 V 

(STMicroelectronics 2018) voltage regulator was used to lower the input voltage before 

the voltage was supplied to the whole circuit. The LM7805 5.0 V voltage regulator 

consists of three-terminal pins: input, ground, and output pins.  

3.1.4.7 Data Storage  

Data storage is a sub-system used by the instrumented sensor shoe to store the collected 

data for further analysis. An individual micro-SD card for each shoe was used in this 

model to record the real-time data and to store the collected data. The data was stored as 

CSV files by using LabVIEW software.  

 

Adafruit provides a micro-SD breakout board that was connected to a Bluno Nano micro-

controller. Arduino has been used to create a file in the micro-SD cards (Electronics 

2010), which contains all the necessary data logging methods. 5v power supply was used. 

To make the SD breakout board work, CLK pin from micro-SD board connected to D13 

(digital 13) pin in Bluno Nano micro-controller. Similarly, these pins were connected D0 

to D12 pin, D1 to D11pin and CS to D10pin. 
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Adafruit Micro-SD breakout board was implemented into the instrumented sensor shoe 

system. SanDisk Extreme 4GB microSD cards were used for this project. All the collected 

data were logged into the micro-SD cards with its built-in capability (writing speeds up 

to 90 MB/S) by the Arduino. An Arduino programme was created with a for loop. This 

programme creates CSV files from digits 00 up to 999, based on whether the file already 

exists or not. A string was created to write the structure of the data file. 

3.3 Methods 

 Instrumented sensor shoe physical implementation 

Some of the functional requirements were considered to design this instrumented sensor 

shoe as follows, 

1. Should not affect the stair climbing gait 

2. To collect data for both the feet 

3. Wireless 

4. It is available in different sizes of insoles and instrumented shoes, so anyone can 

use them. 

 

One of the senor shoe's essential requirements is that it should not affect the participants' 

gait while climbing stairs and the hardware had to be small, compact, and lightweight. 

There are published research evidence (Hausdorff, Zemany et al. 1999)that have shown 

that even when the lower extremities are loaded with different weights, this can result in 

subtle effects on the stair gaits. So, instrumented insole final prototype was made under 

300gm. 

Both shoes were instrumented to get both feet motion data at the same time. Figure 3.1 

shows the instrumented sensor shoe. The instrumented sensor shoe comprised one PCB 

(Printed circuit board) module and instrumented insole. PCB module was mounted to the 

shoe's lateral side using a robust Velcro strap. The Instrumented insole was placed inside 

the shoe. We used shoe sizes 6 to 10 to accommodate women and men participants in our 

research. The Instrumented insole can have 6 to 10 ‘Force-sensitive resistors’ to collect 

the pressure data depending on the shoe size. 
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Figure 3.1 Instrumented shoe with PCB Module, and Insole fitted 

A Printed Circuit Board (PCB) is vital in holding the entire instrumented sensor shoe’s 

hardware together. PCB connects various electronic components on a shared physical 

platform. PCB was created using EAGLE software (EAGLE is an acronym for Easily 

Applicable Graphical Layout Editors). 

The PCB module contained the Bluno Nano microcontroller with Bluetooth (BLE). This 

Bluetooth made instrumented shoe into a wireless system. PCB module contains 

additional components, which are IC2 multiplexers for IMU and range sensor, an 

analogue multiplexer, resisters, an amplifier for the insole, voltage controller and 

connection for the inputs from the power supply. After designing the PCB, two separate 

PCBs were printed for both left and right feet.  

IMU sensor was fitted at the back of the shoe’s middle part to measure the foot motion 

directly on the stairs. In this way, foot angle output is zero when the foot is flat. When the 

foot starts to move, the IMU sensor helps to measure the foot angle. This foot angle 

information is vital because if the participant has a larger foot angle with less foot contact 

length, this can cause a fall. 
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Figure 3.2 Back of the instrumented insole, two distance sensors and one IMU sensor fitted 

We fitted two distance sensors at the back of the shoe. The front distance sensor was fitted 

just beneath and parallel to the toes, and the rear one was fitted right beneath the heel 

(Figure 3.2). 

The reasons for fitting the sensors at the back of the shoe are as follows, 

 

➢ Distance sensor can directly measure the distance between shoe and stair edge 

➢ To calculate vertical foot clearance in ascending, we need to know precisely when 

the toe crosses the stair edge. Placing the sensor closer to the toe is essential to 

find out this information. So ‘front distance sensor’ was placed at the back of the 

shoe, parallel to the toes. 

➢ To calculate vertical foot clearance in descending, we need to know precisely 

when the heel crosses the stair edge. To find out this information, placing a sensor 

right at the back of the heel is essential.  

IMU 

Distance Sensors 
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The Inertial Measurement Unit (IMU) and distance sensors can get damaged while 

walking. Two separate cases (boxes) were used to protect the Inertial Measurement Unit 

(IMU) and the distance sensors from damage. These cases were designed using ‘solid 

works’ software. Box type case was designed for the IMU sensor, while the distance 

sensor’s case was designed differently. Because the distance sensor’s sensing module 

needs to see the object to measure the distance, the case was designed with a small 

rectangular opening. Figure 3.3 shows the IMU sensor case and distance sensor case. 

IMU and distance sensor cases were printed using nylon material. Nylon filament is a 

reliable, durable, and versatile 3D printing material. Also, it is thin and flexible, with very 

high inter-layer adhesion.  

A Lab view program was created as a user interface (explained later in this chapter) to 

send start and stop signals to the shoe’s microcontroller. Next, the microcontroller sends 

data to each shoe’s SD card (Each shoe has a separate SD card), where the data gets stored 

and transmitted to the computer for further analysis.  

 Insole design 

Eagle software was used to design instrumented insole, and flexible PCB lamination 

material was used to print the insole design. Figure 3.4 shows the insole design. Flexible 

PCB (Flex FR4) was just 0.127mm thick, double-sided, 1/2oz copper material, and it is 

ideal for making flexible circuits. This Flex FR4 PCB is semi-rigid, and a high-quality 

laminate allows the creation of flexible PCB and solder components directly onto the 

copper tracks using standard soldering techniques and temperatures.  

Figure 3.3 Case for IMU and Distance sensor 
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Figure 3.4 Instrumented insole designed in eagle software 

After printing a flexible insole, FSRs were soldered onto it. Figure 3.5 shows the 

Instrumented insole. The instrumented insole accommodates several FSR sensors 

connected to the PCB module via a connecter pin. 

 

 

 

Figure 3.5 Instrumented flexible Insole printed and fitted with ten FSRs 

The insole contained from 6 to 10 FSRs in line. The insole provided a straightforward 

method to position the sensors in order beneath the foot. The reason for placing the 

sensors in the line was to calculate the foot contact length directly. Therefore, we will get 

the force readings only when the foot touches the stairs during the stance phase. When 
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the foot is not touching the stairs, we will not get any force reading. Also, when the foot 

is in the swing phase, we will not get any force readings. 

The FSR sensors were purposefully facing downwards for sensor safety. They were 

placed in the middle of the shoes, with the sensors and wires coming off from the shoes' 

lateral (outside) aspect. An additional layer of insole hid these for protection. The distance 

between each sensor was 26mm to 29mm, and these were noted down for future 

calculation. 

 LabVIEW user interface for data collection 

The user interface for data collection was developed using LabVIEW software 

(Laboratory Virtual Instrument Engineering Workbench), a system-design platform and 

development environment for a visual programming language from National Instruments 

[NI]. LabVIEW is commonly used for data acquisition, instrument control, and industrial 

automation.  

LabVIEW has built-in functions that can read serial data sent by Arduino to LabVIEW’s 

VI (Virtual Instrument). A way to do so is to use ‘VISA resource’ to get data serially.  

VISA serial was used to get settings from Arduino. The data has a baud rate of 115200 

and was transferred in 8 bits. Baud rate refers to the number of signal or symbol changes 

that occur per second (Frenzel 2012). A ‘while loop’ was created to read data from the 

‘COM port’ whenever serial communication occurred. There were three ‘COM ports’ 

created. Left shoe ‘COM port’, right shoe ‘COM port’, and triggering ‘COM port’.  

Data collection was done in two different settings (laboratory and three different house 

settings). In Laboratory, data was collected via the ‘VICON system’. To synchronise 

VICON  with the shoes, ‘Vicon’s sync out port’ was connected to an ‘Arduino 

microcontroller analog pin’.  

When the ‘Vicon system’ starts collecting data, Vicon’s synchronise port will send a ‘high 

voltage signal’ to Arduino. Arduino continuously checks these voltages; when the voltage 

reaches ‘greater than 3v’, this will send an ‘H’ signal to LabVIEW. As soon as the ‘Vicon 

system’ stops collecting data, the ‘Vicon’s synchronise port’ will send a low voltage 
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signal to Arduino. On receiving this low voltage signal of ‘less than 3v’, the Arduino will 

send an ‘L’ signal to the LabVIEW. 

LabVIEW continuously checks the ‘Arduino trigger port’; when LabVIEW receives an 

‘H’ signal, LabVIEW sends a ‘start signal’ to both the shoes via a dedicated Bluetooth 

system to start data collection from the shoes. When LabVIEW receives an ‘L’ signal, 

LabVIEW sends a ‘stop signal’ in the above manner to stop data collection by the shoes.  

Once the data collection is started, LabVIEW reads the data sent by the shoes and writes 

them into an ‘SD storage card’ with a ‘Unique/itemised file name’ for each data. This 

Unique file will be closed when the LabVIEW receives the ‘L’ signal by sending a ‘stop 

signal’ to the shoes. 

In houses, data collection was done without Vicon triggering (Appendix B). LabVIEW 

sent a signal directly to shoes to start and stop data collection. Figure 3.6 shows the 

LabVIEW user interface, which we created to collect data from instrumented shoes. 

 

Figure 3.6 Instrumented data collection user interface, COM port3 to connect with Arduino for 

synchronisation, COM port to connect with left sensor shoe and COM port2 to connect with right sensor 

shoe. Use Vicon button used for lab data collection, start, and stop buttons were used for houses data 

collection.    
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3.4 Results  

This section discusses each sensor, including an overview of the sensor's working 

principle and the signal conditioning and implementation used in the instrumented sensor 

shoe system. A table summarizing relevant parameters of each sensor (as provided by 

manufacturers) is included. 

 Bandwidth requirements 

The average step rate of adults is just under 120 steps per minute, which corresponds to 

a stride frequency of 2Hz. Each sensor worked well with a high sampling rate on its own. 

For example, the IMU sensor gave 50hz data when tested on its own. The distance sensor 

also gave 50hz data. In this project, there were between seven to ten force-sensitive 

resistors used. Each Force-sensitive resistor provided two outputs, so a total of twenty 

sets of output at a time. Instrumented sensor shoe circuit output contains twenty FSR sets 

of data, two distance sensor data, three-axis accelerometer, three-axis gyroscope, roll, 

pitch, yaw, and time data, which was more than 30 sets of data. Due to the large quantity 

of data, bandwidth was reduced to 20hz. The comparison was made between the 20hz 

data in the circuit and 50hz data to avoid missing any crucial information. The result 

showed that 20hz data did not miss any crucial data. So 20hz bandwidth is used for data 

collection. 

 Distance sensor specification 

The VL6180X product is based on ST’s patented ‘Flight Sense™ technology’. This 

ground-breaking technology allows absolute distance to be measured independent of 

target reflectance (STMicroelectronics 2010). Instead of estimating the distance by 

measuring the amount of light reflected from the object (which is significantly influenced 

by colour and surface), the VL6180X precisely measures the time the light takes to travel 

to the nearest object and reflect the sensor (Time-of-Flight) (STMicroelectronics 2010).  

Combining an IR emitter, a range sensor and an ambient light sensor in a three-in-one, 

ready-to-use package, the VL6180X is easy to integrate. 
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 The main advantages offered by this technology are: 

(i) transmitter and receiver integrated into the same module 

(ii) small sensor dimensions 

(iii) accuracy independent from experimental factors (e.g., the intensity of the 

ambient light) 

(iv) low power consumption (∼2–5 mA).  

Thus, VL6180x distance sensors are suitable to use for human movement applications. 

The module is designed for low power operation. Ranging and light intensity 

measurements can perform at user-defined intervals. Multiple thresholds and interrupt 

schemes are supported to minimize host operations. Host control and result reading used 

I2c serial communication.  

3.4.2.1 Working Principle 

The VL6180X uses ST’s ‘Flight Sense technology’ to measure how long it takes for 

emitted pulses of infrared laser light to be reflected to a detector from an object, making it 

essentially a short-range LIDAR (Light Detection and Ranging) sensor. This ‘time-of-

flight (TOF)’ measurement enables it to accurately determine the absolute distance to a 

target with 1mm resolution, without the object’s reflectance influencing the measurement 

(STMicroelectronics 2010). It can measure distances up to 250mm. The microcontroller 

embedded in the ST devices handles all calculations and noise reduction. The reasons for 

choosing this sensor are low cost, small size, and accuracy. Figure 3.7 shows the TOF 

concept, multiplying the time frame and the speed of light in the air gives the distance. 

Speed of light(c)= 299,792,458 meters/second 

Time(t)= (( To object+Return))/2 

Distance=c*t 
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Table 3.2 shows the specification of the selected distance for foot clearance 

(STMicroelectronics 2010). 

Table 3.2 Distance Sensor Specification 

Feature Details 

Size 0.5″ × 0.7″ × 0.085″ 

(13 mm × 18 mm × 2 mm) 

Mass 0.5 g (0.02 oz) 

Operating voltage 2.7 V to 5.5 V 

Output format (I²C) 8-bit distance reading 

Distance measuring range 0 mm to 250 mm 

Resolution 1 mm 

Temperature-dependent drift 15mm 

Accuracy ± 3mm 

Noise 2.0mm maximum 

Frequency 30 Hz 

Laser-Infrared Emitter 850 nm 

Manufacturer Pololu 

LIDAR 

Object 

Time to object or Emitted signal 

Time to Return 

 

Figure 3.7 Time of Flight concept(STMicroelectronics 2010) 
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3.4.2.2 Calibration and Accuracy testing 

An initial study found that ‘IR-ToF sensors’ (VL6180X, STMicroelectronics, Geneva, 

Switzerland) can provide better accuracy than alternative technologies (Bertuletti, 

Cereatti et al. 2016). Furthermore, the sensor manufacturers (e.g., ST Microelectronics) 

only report the sensor performance under very specific and controlled conditions in the 

datasheet. Therefore, it is crucial to evaluate the system performance under working 

conditions simulating the real scenarios. 

For this specific study, the IR-ToF proximity sensor sampling rate was set to 20 Hz, and 

since the minimum foot clearance is generally less than 250 mm, the measurement range 

was set to 0–250 mm.  

We analysed the following factors, which could potentially affect the accuracy associated 

with distance estimation: 

(i)  Colours of the target surface (grey carpet, white carpet, and wood) 

(ii)  Distance (from 0 to 250 mm) 

(iii)  Angle of incidence (0,10,20,30, 40,50,60) 

All three influence factors were tested both in static and dynamic conditions. These 

factors were chosen to cover the range of possible configurations occurring during stair 

walking. In static acquisitions, the target (carpet) was kept stationary in front of the 

‘VL6180x distance sensor’ (fitted in the shoe). While during dynamic acquisitions, the 

sensor shoe was moved to the desired position. 

The first distance experiment was done with white carpets, grey carpets, and wood 

material. Next, distance sensors were fitted with shoes, and it was kept at 28mm from the 

wood, grey and white carpet. Similar results were found for all the materials tested. 

According to the VL6180X distance sensor’s datasheet, accuracy is ±3mm; this is clear 

from this experiment as well (Figure 3.8). 
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Figure 3.8 Distance sensor under different material, it was 28mm±3mm 

Based on the results provided by the initial investigation on the influence of the target's 

colour, we decided to use the white carpet for the subsequent experimental acquisitions. 

The second experiment was to check the accuracy of Angle of Incidence (AoI) and 

Distance measurement. The distance measurement was done whilst the AoI was kept from 

zero degrees to 60 degrees by increasing it in 10-degree (00, 100,20o, 30o,40o,50o, 60o). 

For each testing, the ‘mean value’ of the distance provided by the sensor and actual 

distance (manually measured by the ruler) were computed, and the absolute difference of 

these two was derived. 

The overall ‘Mean error (BIAS)’, ‘Mean absolute error (MAE)’ and ‘Mean absolute 

percentage error (MAE%)’ were computed by averaging differences over a few trials. 

The ‘Root Mean Squared Error (RMSE)’ was calculated. The calculations were done using 

the following formula, 

The error has been calculated using the below formula (3.1) as the sensor value (𝑆𝑡)minus 

the actual (𝐴𝑡) 

 𝑒𝑡 = 𝐴𝑡−𝑆𝑡…………………………………………………….. (3.1) 

The bias is the average error, and n is the number of historical periods. Bias was calculated 

using formula (3.2). 

 

 ……………………………………………… 

 

(3.2) 



45 

 

The Mean Absolute Percentage Error (MAPE) measures forecast accuracy. MAPE is 

the sum of the individual absolute errors divided by the actual value (each period 

separately). It is the average of the percentage errors. MAPE was calculated using the 

formula (3.3). 

 

…………………………………………………………….(3.3)  

 

The Mean Absolute Error (MAE) was calculated using the formula (3.4). 

 

………………………………………………………………(3.4) 

 

The Root Mean Squared Error (RMSE) is defined as the average squared error's square 

root. RMSE was calculated using formula (3.5). 

 

…………………………………………………….(3.5) 

 

 

 

Table 3.3 Detailed offset calculation for the distance sensor 
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Table 3.3 shows the detailed calculation for distance sensor offset and accuracy testing 

for a different angle of incidence (AoI). Offsets and accuracy were calculated using the 

above formulas. Our results showed that low BIAS rate (0.1) for this sensor, and the 

absolute error for the sensor was 2.4mm, which was less than the maximum given by the 

company's sensor specifications. Also, the RMSE was only 7.85mm; these results are 

shown in Table 3.4. 

Table 3.4 Distance sensor offset and accuracy testing results 

 

 

Figure 3.9 Distance sensor calibration curve, sensor angle set for zero degrees to 60 degrees by increasing 

it in 100 (00, 100,20o, 30o,40o,50o, 60o), and measured for 10mm,15mm,20mm,25mm,30mm,35mm and 

40mm. Linear correlation r2  =0.9226 

 

N 7 

Bias 1mm 

MAE 2.4 mm 

RMSE 7.85mm 

MAPE 8.1% 
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Based on the above result, the graph was plotted. Figure 3.9 shows the calibration curve. 

The x-axis was degrees; the y-axis was distance. The plot between actual and distance 

sensor values formed a linear correlation in this experiment. This Linear correlation was 

calculated with the formula ‘y= 4.4643x+7’ to calibrate the range sensors and our ‘R 

square value’ was 0.9226, which confirmed a significant correlation between these two 

measurement values. 

3.4.2.2.3 Foot clearance calculation 

Distance sensors were fitted at the front and back of the sensor. Foot clearance 

measurement was taken between the front(ascending), back (descending) distance sensor 

and to the edge of the landing stair whilst both ascending (when the toe crosses the edge) 

and descending (when the heel crosses the edge). 

It was a vertical foot clearance measurement, which could be picked up easily whilst 

plotting the measurements over the graph, where the point abrupt measurement change 

happens. Figure 3.10 shows how measurements were picked up easily. For example, 

while going down the stairs, a subject starts swinging their left foot from the stance phase; 

minimum foot clearance was calculated while crossing the stair edge. After crossing the 

stair edge during this swing phase, the foot reaches the first maximum value; then, this 

value slowly goes down.  
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Figure 3.10 Descending vertical foot clearance measurement calculation, while the foot crossing the step 

edge foot clearance was calculated as a distance between the back distance sensor and step edge 

 

Figure 3.11 Graphical representation of minimum foot clearance calculation while descending 

Figure 3.11 shows the foot clearance calculation graph for descending. While descending, 

the foot must cross two stair edges. While crossing the first step edge, minimum foot 

clearance was calculated. After crossing the first edge, the sensor reaches the first 

maximum and goes down, and after crossing the second stair edge, the sensor reaches the 
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second maximum value and goes down. Matlab was used to calculate foot clearance using 

the above information. 

 Force Sensitive Resistor (FSR) sensor specification 

‘Force-sensitive resistor (FSR)’ is a type of resistive sensor that experiences a decrease 

in electrical resistance when force is applied orthogonally to the sensor's active area. 

Though less accurate than a load cell, FSRs are generally inexpensive, and when 

manufactured from polymers, the typical thickness is on the order of 0.25mm.  

 

We used the force-sensitive resistors (FSR) manufactured by Interlink Electronics (FSR-

402 short), which has a circular sensing area with a diameter of 13mm (Electronics 2010). 

In our custom built-instrumented shoes, we placed 6 to 10 of these FSR sensors 

underneath the foot, from toe to heel, in a line depending upon the shoe size.  

3.4.3.1 FSR working principle 

The FSR-402s are polymer-based sensors and consist of three layers. The lowest layer is 

a flexible substrate coated with a printable semiconductor material. The middle layer is a 

spacer adhesive, with material only along the outline of the part, providing an open region 

at the device's active area. The top layer is a flexible substrate, printed with interdigitating 

electrodes and two printed leads connected to solder tabs. The active area of the sensor is 

the area containing the electrodes. FSR-402 uses a 0.13mm layer of polyetherimide for 

the top and bottom layers, with a 0.15mm layer of acrylic for the spacer. The transparent 

polyether sulfone has excellent temperature resistance, moderate chemical resistance, and 

good flexibility. On the other hand, polyetherimide is a semi-transparent substrate with 

excellent temperature resistance, excellent chemical resistance, and limited flexibility 

(Figure 3.12). 
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Figure 3.12 FSR made of these three layers (Electronics 2010) 

The semiconductor material on the lowest layer of the FSR provides an electrical 

connection between the sets of interdigitating electrodes. The adhesive provides an air 

gap between the semiconductor and the electrodes when there is no force applied; this 

keeps the high sensor resistance.  When force is applied across the active area, the 

electrodes are pressed into the semiconductor, reducing the resistance across the sensor. 

Table 3.5 shows the FSR parameters and specifications (Electronics 2010). 

Table 3.5 Relevant parameters of the interlink FSR-402 

Parameter Value 

Force sensitivity range <100g to >10kg depending on mechanics 

Pressure sensitivity range < 0.1 kg/cm2 to > 10 kg/cm2 

part-to-part repeatability ±15% to 25% of established nominal resistance 

Single part repeatability ±2% to 5% of established nominal resistance 

Current consumption 1mA/cm2 of applied force 

Resolution 0.5% full scale 

Temperature Range -30°C to +70°C 

Sensitivity to Noise/ Vibration Not significantly affected 

Devices rise time 1.2 msec 

Lifetime >10 million actuations 

Hysteresis +10% average 
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3.4.3.2 FSR Implementation 

We used a voltage divider circuit to measure changes in resistance of the FSRs; a simple 

voltage divider circuit explained this as below in Figure 3.13.  

 

Figure 3.13 Voltage divider circuit for a force-sensitive resistor (FSR) with 10kohm resistor 

The output can be explained by the following equation 3.6 (Ohm’s law). 

 𝑣𝑜𝑢𝑡 = 𝑣 ∗ (
𝐹𝑆𝑅

𝑅+𝐹𝑆𝑅
)………………………………. 

 

(3.6) 
 

 

In this configuration, the output voltage decreases with increasing force. This circuit 

produced an output voltage inversely proportional to FSR resistance, which is inversely 

proportional to the applied force. The result was an inverse proportionality between force 

and voltage.  

We used a 10Kohm fixed resistor (R) to maximize the desired force sensitivity range and 

to limit the current. A 5voltage power supply was preferred in this circuit. The graph 

Figure 3.14 shows the results of implemented ‘voltage divider circuit’ producing a non-

linear output, which could measure forces up to 30N accurately. There was a challenge 

when this force reached more than 30N; the voltage change was very minimal, making it 

hard to measure the force. 
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Figure 3.14 Voltage Vs Forces, 5voltage steadily drops up to 30n, after that voltage drops was very 

minimal, which was hard to measure 

To overcome this challenge, we implemented an additional FSR divider with a unity gain 

amplifier using ‘Op-amp LM-358’ shown in Figure 3.15. This offset compensated ‘Op-

amp LM-358’ offers high input impedance that has been recommended for use by 

Interlink Electronics (FSR integration guide). 
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Figure 3.15 To overcome minimum voltage drop and measure forces up to 100N, a voltage divider circuit 

was created with two Operational amplifiers (Op-amp) 

Two identical amplifiers were incorporated on a single board, which does the parallel 

processing. The comparator can compare two voltages (reference voltage and sensing 

voltage). The reference voltage is a set force threshold voltage (1.1v) used to compare 

against the sensing voltage, which comes from the voltage divider. When the sensing 

voltage exceeds the reference voltage, the Op-amp turns ON. The circuit output was 

divided into two parallel vout-1 to work with 2/3-threshold force and vout-2 to work with 

1/3 threshold force. For example, this helps the FSR measure a force up to 100N; when 

vout-2 measured 30N from 0N, vout-1 can measure up to100N from 30N.  
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All the resistors share a 5v common current, and the value of the resistor decides the 

circuit current and there-by ratio between vout-1 and vout-2, which was calculated using 

the ohm’s law equation (3.7). 

 𝑣𝑜𝑢𝑡 = 𝑣 ∗ (
𝑅𝐹𝑆𝑅

 𝑅+𝑅𝐹𝑆𝑅
)………………………………………………. (3.7) 

 
The low bias currents of these op-amps reduce the error due to the voltage divider's source 

impedance. Vout1 compares the threshold voltage with sensing voltage when the sensing 

voltage =>1.1v, then op-amp turns on (Table 3.6). When the weight reaches 30N, it starts 

sensing forces in this table. 

Table 3.6 Higher force calculation(vout1) used to measure forces from 30N to 100N 

 
 
 
The plotted results showed improved response with the improved parallel circuit with 

non-linearity in the higher range shown in Figure 3.16. The higher force measurement 

was done up to 100N from 30N.  
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Figure 3.16 Voltage Vs Higher Forces graphical representation shows that the voltage would not change 

until 29N; once the force reaches 30N, the voltage drops. 

The parallel circuit optimised the desired low force sensitivity range and limited the 

current through the FSR. Three resistors R1, R2 and R3 were created high impedance that 

let the low current for vout2, and the ratio was calculated using ohm’s law equation 3.8 

and 3.9, as below, 

 
 

vout2 = v ∗
(ratio ∗ R3)

Rtot
… … … … … … … … … … … … … … … … … … .. 

 

(3.8) 

 

 

  

ratio =
RFSR

RFSR + R
… … … … … … … … … … … … … … … … .. 

 

 

(3.9) 

 
Here, 𝑅𝑡𝑜𝑡  = 𝑅1 + 𝑅2 + 𝑅3  and  V=5V(5000mv) 

 

The results are calculated in Table 3.7. Vout2 measures tiny changes in the force.  
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Table 3.7 Low force Vout2 calculation used to measure forces from 1N to 30N 

 
 
Results are plotted, as shown in Figure 3.17. Moreover, it was observed that the graph 

exhibits improved response with nonlinearity in the lower range. This low force 

measurement is used to measure forces up to 30N accurately.  

 

 

Figure 3.17 Voltage Vs less force graphical representation, the voltage would not change after 30N 

heavily, it only measures 1N to 30N, after(>30N) that the voltage change would be minimal 
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After the above FSR implementation, sensitivity and calibration were carried out in the 

laboratory to verify the desired results.  

3.4.3.3 Sensitivity 

The output of the FSR can be based on the applied force and the method of the application. 

Therefore, FSRs can be biased if it is bent. The FSRs can be bent by two mechanisms, by 

simple folding motion, depending on the shoe and the FSR placement location beneath 

the foot. FSRs are placed in the middle of the insole from toe to heel in a line to overcome 

this. We expect there will not be any typical bending underneath the middle foot, and the 

area of the foot is much larger than the FSR sensing area where the bending due to 

indentation is less possible. The FSRs also have temperature and humidity sensors, 

affecting their performance within the shoe environment.  

3.4.3.4 Calibration 

The zero offset was not required. Hence the FSRs are loaded under the foot inside a shoe 

with a snugly tied lace. Therefore, the load on FSRs when the foot is in the air is not 

expected to be 0kg. So long as the sensitivity is determined at small values close to 0 

kilograms, zero offsets are not required. These FSR outputs are non-linear, and their 

single part repeatability is from ±2% to ±5% of the nominal resistance. Sometimes we 

may face challenges like adhesive layer breakage can lead to an increased non-linearity.  

The FSR was calibrated of their output to the units of applied force in kg. Each FSR was 

tested in the material testing machine (Appendix C). The ‘Tinius Olsen material testing 

machine’ was used to apply successive forces from 0.25kg to 10kg, continually recording 

the actual applied force and the corresponding outputs of the FSRs simultaneously. 

The graph Figure 3.18 shows the calibration results, FSR higher and lower forces voltage 

vs material testing machine forces, with a second x-axis showing the equivalent applied 

force unit from the testing machine. FSR worked the way it was implemented; FSR’s 

more force(vout1) output worked after reaching 30N machine force. FSR’s less 

force(vout2) result worked up to 30N from 0N. 
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A single curve fit the calibration data for multiple FSRs rather than fitting individual 

curves for each FSR. Few of the FSRs were tested, and the output of all the FSRs grouped. 

The results were correlated. 

To capture the non-linear relationship between the FSR higher force output and applied 

force, ‘fourth-order Polynomial curve fitting’ was used for calibration. Formula 3.10 was 

used for this curve fitting, and the R squared value for this curve fitting was 0.9984. This 

result showed the excellent reliability of the sensors. 

y = 3E-05x4 - 0.0023x3 + 0.0706x2 - 0.2793x + 32.803…………………………. (3.10) 

From Figure 3.18, to capture the non-linear relationship between the FSR lower force 

output and applied force, ‘third-order Polynomial curve fitting’ was used for calibration. 

The formula 3.11 was used for this curve fitting, and the R squared value for this curve 

fitting was R² = 0.9766. This result showed the excellent reliability of the sensors. 

y = 6E-06x3 - 0.0019x2 + 0.1923x - 3.6929…………………………..................... (3.11) 

 

 

Figure 3.18 Calibration Curve for higher force (A) to measure 30N to 100N and lower force (B) to measures 

1N to 30N. After designing circuit with Op-Amp, the FSR was calibrated with material testing machine 
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 Foot contact length 

Table 3.8 Foot contact length calculation for Ascending 

Foot contact length % Ascending 

shoe 

size 

10th 

sensor 

9th 

sensor 

8th 

sensor 

7th 

sensor 

6th 

sensor 

5th 

sensor 

4th 

sensor 

3rd 

sensor 

2nd 

sensor 

1st 

sensor 

6 n/a n/a n/a n/a 100 83 66 49 32 15 

7 n/a n/a n/a 100 86 72 57 43 29 15 

8 n/a n/a 100 88 75 63 50 38 25 13 

9 n/a 100 89 78 67 56 45 34 23 12 

10 100 90 80 70 60 50 40 30 20 10 

 

Table 3.9 Foot contact length calculation for Descending 

Foot contact length % Descending 

shoe 

size 

1st 

sensor 

2nd 

sensor 

3rd 

sensor 

4th 

sensor 

5th 

sensor 

6th 

sensor 

7th 

sensor 

8th 

sensor 

9th 

sensor 

10th 

sensor 

6 100 83 66 49 32 15 n/a n/a n/a n/a 

7 100 86 72 57 43 29 15 n/a n/a n/a 

8 100 88 75 63 50 38 25 13 n/a n/a 

9 100 89 78 67 56 45 34 23 12 n/a 

10 100 90 80 70 60 50 40 30 20 10 

 

 

Figure 3.19 Printed flexible Insole fitted with ten FSR sensors with the Sensor number 

1 2 4 6 5 3 
7 

8 9 10 
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We used Figure 3.19, Table 3.8, and Table 3.9 to find out which sensor has force or not. 

The foot contact length ratio was calculated as below; for example, the above sensor 

insole has ten sensors; its total length was 32cm. The distance between sensors was 3.2cm 

which was 10% of the whole insole length. When calculating the ascending foot contact 

length ratio, one needs to check the heel sensor forces. If all the sensor has the forces, 

100% of the foot is placed on the stairs. If only the last sensor does not have any force 

(100%-10%=90%), 90% of the foot is placed on the stairs. Suppose the last two sensors 

do not have forces, which means (100%-20%=80%) 80% of the foot placed on the stairs. 

Similarly, remaining sensor forces were checked to measure the foot contact length ratio. 

For descending foot contact length ratio, check front senor’s forces; based on the forces 

and length of insole, the foot contact length ratio was calculated. 

As we have already explained, we have created the instrumented sensor shoes, with a 

variable number of sensors based on the shoe sizes (Table 3.8 and Table 3.9) with a 

measured distance between each sensor. By doing this, we calculated the exact ‘foot 

contact length distance’ in percentage. We used this percentage of foot contact length 

distance data for further analysis. 

 

Figure 3.20 FSR results for higher force (>30N to 100N) 

 

0

200

400

600

800

1000

1200

0
.0

5

0
.3

5

0
.6

5

0
.9

5

1
.2

5

1
.5

5

1
.8

5

2
.1

5

2
.4

5

2
.7

5

3
.0

5

3
.3

5

3
.6

5

3
.9

5

4
.2

5

4
.5

5

4
.8

5

5
.1

5

5
.4

5

5
.7

5

6
.0

5

6
.3

5

6
.6

5

6
.9

5

7
.2

5

A
n

al
o

g 
V

al
u

e

Time(S)

FSR Higher Force

S1_H

S2_H

S3_H

S4_H

S5_H

S6_H

S7_H



61 

 

The insole was tested in the stairs for going up trial. There was seven FSR sensor in the 

insole. In Figure 3.20 high force graph shows the forces applied from all the sensors. 

According to this graph, S7’s sensor force was applied on step1and 2 while no force was 

applied on step3,4,5 and 6. S6’s sensor force was applied on all the steps. 86% of the foot 

placed on all the steps, 14% of foot overhanging. The foot contact length was calculated 

using Tables 3.8 and 3.9. 

3.4.3.5 Stance time  

Stance time is when the foot is in contact with the floor. Stance time was calculated from 

the first contact with the step and ended with the same foot's last contact on the same step. 

3.4.3.6 Swing time 

It is when the foot is not in contact with the floor. To be precise, ‘the time is taken for the 

leg to swing through while the body is in single support on the other leg’. During swing 

time, instrumented insole produces no force changes because the foot is in the air.  

3.4.3.7 Cadence (cycle time) 

The average duration of two gait cycles (one of the left limbs and one of the right limbs) 

was taken as a cadence for stair ascent and stair descent. 

 BNO055 IMU 

IMU BNO055 from Bosch company was used in this project. It has a 32bit 

microcontroller (high-speed Cortex-M0 based processor) running the BSX3.0 Fusion Lib 

software. The on-board fusion algorithm fuses the triaxial 14bit BMA055 accelerometer, 

a triaxial 16bit BMI055 gyroscope and a triaxial BMM055 geomagnetic sensor into a 

‘single composite sensor’. The sensor fusion used an extended Kalman filter algorithm, 

inbuilt low and high pass filtering and autocalibration and temperature compensation 

(GmbH 2020). These features were used to fuse the three sensors’ data into a quaternion 

representation of absolute orientation and provide linear acceleration, gravity, and Euler 

angle outputs (adafruit, BNO055). The results were directly read via I2c (inter-integrated 

circuit) serial communication protocol from internal registers. IMU sensor size was 

significantly small (3.8mm x 5.2mm x 1.1 mm). The BO055 IMU sensor used a low 



62 

 

power, micro-electro-mechanical system (MEMS) accelerometer, gyroscope, and 

magnetometer.  

3.3.4.1 Capacitive MEMS Accelerometer 

A capacitive accelerometer sensor was used to build the BNO055 IMU sensor. The 

capacitive MEMS accelerometer has high sensitivity and accuracy at high temperatures. 

In addition, the device depends only on the capacitive value that occurs due to the change 

in distance between the plates, and it does not change the values depending on the base 

materials used. 

A simple MEMS accelerometer mainly consists of a movable microstructure or a proof 

mass connected to a mechanical suspension system. The movable plates and the fixed 

outer plates act as capacitor plates. When acceleration is applied, the proof mass moves 

accordingly, which produces a capacitance between the movable and the fixed outer 

plates. MEMS accelerometer measures both static acceleration (resulting from gravity) 

and dynamic acceleration resulting from shock, vibration, linear motion, or other types of 

motion.  

3.3.4.2 MEMS Gyroscope 

BNO055 IMU used MEMS gyroscope, which provides low-noise angular rate 

(gyroscopic) measurement at low power consumption (Woodman 2007). MEMS 

gyroscope uses Coriolis effect and vibrating element to measure angular velocity. MEMS 

gyroscope uses vibrating masses that vibrates along a drive axis primarily, and a 

secondary vibration is induced along the perpendicular sense axis, which displaces the 

mass from its original path when the gyroscope is rotated (Woodman 2007). The working 

principles of a gyroscope where the rotation around respective axes is introduced. The 

gyroscope introduces capacitance changes to detect this displacement. Based on this, the 

angular velocity of the IMU can be measured and by integrating the signal, we can obtain 

orientation. 



63 

 

 

Figure 3.21 Accelerometer and Gyroscope Specification (Townsend 2018) 

Figure 3.21 shows the specification of the accelerometer and gyroscope. Default ±4g for 

accelerometer and 2000dps for gyroscope was used in fusion mode. 

3.4.4.3 Calibration 

Three types of information about the accelerometer were required: the zero offset (to 

centre the output around zero), the sensitivity (to convert the output to units of m/s2), and 

the orientation of the accelerometers relative to the foot to interpret the sensor output 

accurately. 

3.4.4.4  Zero offsets and sensitivity 

Determining the sensitivity of the accelerometers was straightforward by using gravity. 

Naturally, the gravitational acceleration vector, g, is stable, accurate, and readily 

available. 

The sensor fusion software runs the calibration algorithm of all the three sensors 

(accelerometer, gyroscope, and magnetometer) in the background to remove the offsets. 

The following procedure was done to calibrate the IMU. The gyroscope was kept standing 

still in one position to calibrate the gyroscope. Moreover, to calibrate the magnetometer, 



64 

 

'figure 8' motions were made in 3 dimensions, but with current devices, fast magnetic 

compensation occurs with enough normal device movement. The BNO055 was placed in 

6 standing positions for +X, -X, +Y, +Y, -Y, +Z and -Z to calibrate the accelerometer. 

The BNO055 also provides information about the current calibration status. Four statuses 

can be read from the IMU’s registers: SYS (system), GYR (gyroscope), ACC 

(accelerometer), MAG (magnetometer). These statuses hold a value from 0 (uncalibrated) 

to 3 (fully calibrated). The SYS status depends on the status of all three sensors. 

If the calibration status is ‘0’ in sensor fusion mode, the sensor could not find the north 

pole. Therefore, if the data is collected during this time, the sensor provides relative 

orientation values instead of absolute orientation values. However, once calibration 

status> 0 means that the BNO055 sensor has found the north pole, it can give the absolute 

orientation values (Townsend 2018). 

Every sensor has a specific bias based on its physical properties and manufacturing. 

Individual BNO055 sensor static testing confirmed sensor data usability and bias. The 

sensor has a minimal bias seen in the average signal output, even when no movement is 

present. 

 

Figure 3.22 Accelerometer sensor bias test result 

For this testing, BNO055 was idle for a period. The accelerometer sensor data bias is 

shown in Figure 3.22. The x (accx) and y(accy) acceleration have an average value around 



65 

 

zero. The z (accz) acceleration is ±1g due to gravity. By estimating the bias for each axis, 

these values can be repositioned around zero.  

To measure sensor bias in the gyroscope, BNO055 was kept static over a period. Static 

bias results for Gyroscope’s angular velocities (gx, gy, gz) are shown in Figure 3.23. 

Results showed that gyroscope offset is ±20. 

 

Figure 3.23 Gyroscope Sensor Bias result, the offset is ±20 

The sensor data has been verified and has minimal standstill drift over a period, and this 

reinforces our selection of the BNO055 IMU and further supports the reliability of the 

received data.  

3.4.4.5 Orientation  

Understanding the default orientation of the sensor is very important to understand the 

acquired data. Figure 3.24 shows the default coordinate system of the BNO055 sensor 

(Townsend 2018). This coordinate system was used for the rest of the experiment and 

data analysis. Rotation in the x-axis is called roll (ψ), rotation in the y-axis is called pitch 

(θ), and rotation in the z-axis is called Yaw (ϕ). 
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Figure 3.24 Coordinate System for BNO055 IMU (Townsend 2018) 

 

We can access IMU output in either fusion mode or non-fusion mode; Fusion mode gives 

processed data while non-fusion mode gives raw data. In this project, fusion mode was 

used for data collection. In the fusion mode orientation, outputs are accessed by either 

Euler angles or quaternion. Euler angles are relatively easy to understand, but it has a 

singularity problem when the yaw angle is 90º, called gimbal lock. It is impossible to 

reorient when a gimbal lock occurs without an external reference.  Euler angle orientation 

is not fully defined, meaning that roll and pitch are not stable values when yaw is 

approaching 90 degrees. So Euler angles were not used to calculate the foot motion in 

this project.  

Quaternions orientation was used to measure foot motion. Quaternions provide a 

measurement technique that does not suffer from gimbal lock but are more complex than 

Euler angles. A quaternion consists of four numbers: one scalar and a three-component 

vector. 

𝑞 = (𝑤, 𝑥𝑖, 𝑦𝑗, 𝑧𝑘) 

Where w, x, y, and z are real numbers and i, j, and k are quaternion units. Typically, w, 

x, y, and z are kept in the range between -1 and 1, and 

√𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1 
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All these w,x,y and z numbers reorient vectors in a single rotation with or without changes 

in length. 

The sensor fusion modes also provide linear accelerations(for example, the acceleration 

applied due to movement) and angular velocity and quaternion orientation data.  

3.4.4.6 Linear acceleration, velocity, Angular velocity, and Foot angle (Pitch) 

Individual BNO055 sensor was tested for dynamic movements like walking stairs up and 

down to confirm sensor data usability. The participant was wearing instrumented sensor 

shoes and then walked up and down the stairs. 

Figures 3.25 and 3.26 show the processed BNO055 output of linear acceleration and 

angular velocity for going up data. Again, when the foot is placed on the floor, the 

acceleration value goes zero. 

 

Figure 3.25 Linear Acceleration 
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Figure 3.26 Angular Velocity 

This linear acceleration data was further processed in Matlab to calculate the velocity on 

the stairs. The velocity was obtained from single integration to the acceleration 

component's time corresponding to the foot's forward motion in all three directions. The 

below Figure 3.27 shows the results of the calculated velocity for going up data. For 

steps1 and 4 have higher velocity than the other steps. The velocity range for this going 

up is between 1.25m/s to 2m/s.  

 

Figure 3.27 Velocity results for going up 
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The quaternion data provides information about the rotation of the foot. The below 

formula was used to calculate the foot angle from quaternion, 

double pitch = asin(2 * quat.w() * quat.y() - quat.x() * quat.z()); 

 

Figure 3.28 shows the calculated pitch for going up. According to this figure, the 

participant's foot lifted between 200 to 550. when the heel lifted (plantarflexion), the foot 

angle went up (positive). When the toe was raised (dorsiflexion), the foot angle value 

went down (Negative).  

3.5 Discussion 

An instrumented shoe was developed to detect stair fall risk parameters at the community 

level and not only in the laboratory. Three low-cost sensors were used to create the 

instrumented shoe: a vl6180x distance sensor, a BNO055 IMU and an FSR force sensor; 

each sensor shoe cost £200 to develop, so a total cost of £400 for both instrumented shoes.  

The current instrumented setup could only measure vertical clearance, not horizontal 

clearance. However, horizontal clearance is also necessary while descending stairs to find 

risk for slip. Therefore, this project’s printed circuit board can add a few more distance 

sensors. With this ability, we can fit the distance sensor at the shoe's back (heel counter) 

to find horizontal foot clearance while descending stairs. We tried to include the distance 

sensor at the back (heel counter) of the shoe, but the data collection frequency went down 

and also, it was hard to fit it back (heel counter) of the shoe. In addition, when the shoe’s 
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outer layer was thinner, the sensor went inside and was uncomfortable, so we didn’t use 

this sensor for data collection.   

 

Figure 3.29 Lower limb circuit board, IMU sensors fitted with thigh, shank, and sacrum to calculate range 

of motion and centre of mass control 

The other stair fall risk parameters are a range of motion and centre of mass control.  It 

has been shown that accelerometers can determine a range of spatiotemporal gait 

parameters and give insight into the control of the CoM, which is an indicator for the risk 

of a loss of CoM control during stair descent. To measure the range of motion and centre 

of mass, we designed a lower limb circuit board containing three IMU sensors with one 

microcontroller, storage card and power supply. Figure 3.29 shows that one IMU was 

fitted at the Thigh, the second one was fitted at the Shank, and the third was fitted at the 

Sacrum. Thus, three IMU sensors can measure the range of motion at the hip, knee, and 

ankle and the centre of mass control.  

The problem with this circuit was the wired circuit. A lower limb circuit board was 

created with long wires for each IMU sensor to fit this circuit to all older people. 

Unfortunately, this long wire became a problem, and the reduced wire could not fit with 

others. This wired circuit affected older peoples’ gait, and also, the sensor itself moved, 

didn’t get the correct data, so didn’t use that sensor for further data collection. 
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Fitting many sensors all over the body might affect a participant’s daily activity, whereas 

if the sensors are incorporated in the shoe, many people will happily wear them at home 

to collect data for longer; that was the reason for focusing on only instrumented shoes. 

Even though few risk parameters were implemented, we can predict the fall risk in the 

future using this powerful parameter. The sensor shoe has the potential to add more 

sensors in future. Older people can use this sensor shoe at home without any assistance 

(just pressing the button in the shoe). Data will be stored in the storage (SD) card. Those 

data will be processed later to predict stair fall risk. This system won’t affect their gait, is 

less expensive, and can collect data for longer.  

3.6 Conclusion  

This project's motivation was to design and develop a low cost, reliable, and portable 

instrumented sensor shoe system to detect stair fall risk factors in a typical living 

environment.  An instrumented shoe system was investigated and designed, which 

contains a custom-made insole that can find foot contact length ratio. And distance 

sensors are fitted in the shoe to calculate foot clearance, inertia measurement unit (IMU) 

sensor to find motion parameters. Instrumented sensor shoes and insole were developed 

for different sizes. The designed instrumented sensor shoe was calibrated using different 

methods. Also, these sensor shoes were tested on the stairs for static and dynamic motions 

to measure accuracy and repeatability. Selected sensors were achieved good accuracy. 

Developed sensor shoe system enabled the stair gait analysis in a less expensive and non-

traditional motion laboratory environment. Instrumented sensor shoe was tested on the 

staircase, and risk parameters were extracted from the stair testing. These results are 

validated against VICON systems in the next chapter. 
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4. CHAPTER 4:  Sensor Shoe’s stair fall risk 

parameters validation  
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4.1 Introduction  

We have developed sensor shoes to fill the gap between laboratory and real-world 

environments. The first step was to test and validate the sensor shoe’s stair fall risk 

parameters against the VICON system, which was considered a golden standard to predict 

fall parameters. The main factors of stair fall are foot clearance and foot contact length 

ratio (foot overhang). So, it is essential to validate these two parameters against the vicon 

system. 

4.2 Methods 

 Participants 

Twenty-five older adults participated in this study.  (Age:70.72 ± 4.0Y; bodymass:70.18 

± 10.0kg; body height:1.62 ± 0.06m; female:20; male:5). All the participants were 

recruited from the local community of Wirral and Liverpool, UK. All these participants 

lived independently, able to climb stairs without help. The study was approved by the 

Liverpool John Moores University ethics committee in the UK (REF: 18/SPS/024). After 

the explained procedure, informed written consent was obtained from all participants. 

 Laboratory staircase structure 

Custom made instrumented staircase was used to take measurements in the laboratory 

settings. This staircase was made up of seven steps in total, and force platforms (1080Hz, 

9260AA, Kistler AG, CH) were embedded in the lower four steps from 1 to 4 to obtain 

kinetic data. The staircase configuration followed building regulations and guidelines in 

the UK (British-Standards-Institute, 1984). Custom made staircase configuration has 

matched the design of a private home, with the set rise at 19.5cm (the vertical distance 

from one step to the next) and the flat run at 23.5cm. Handrails were placed on both sides 

of the staircase.  
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Figure 4.1 Laboratory custom-built instrumented seven-step staircase structure image, first four steps 

fitted with a force plate, twenty-four infrared cameras were around the staircase  

Figure 4.1 shows the 7-step custom made staircase structure. The staircase steps and the 

top landing and walkway steps were independent structures, once it was placed in the 

desired position, the top landing was fixed, and the walkway was secured on the floor. 

The structure did not separate or roll away from each other by connecting the metal 

frameworks of each step using bolts; then staircase was connected to the top landing on 

one side and the walkway on the other side. Twenty-four infrared camera system (120Hz, 

Vicon, Oxford Metrics, UK) was used to obtain kinematic data. 

 Data collection procedure 

The participants ascended and descended the instrumented staircase at their own preferred 

pace in a step-by-step manner (for example, alternative limb lead on each step) with 

handrails if needed. The participants dressed in tight-fitting Lycra shorts and shirts during 

stair negotiation and wore our instrumented sensor shoes. A five-point safety harness was 

fitted with all participants, and this safety harness was attached to the overhead belay 

safety system to ensure safety. A trained member of the research team supported each 

participant's overhead belay safety system by holding the safety rope system attached to 

the floor. Participants performed a few familiarisation trials. After familiarisation, 

participants performed five trials; the final three trials were selected for further analysis 

among these trials. 
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 Data collection for sensor shoe and VICON system: 

 

 

 

 

 

 

In the laboratory, sensor shoe data was collected with VICON Synchronously. To 

synchronise VICON data with the shoes, first, ‘Vicon’s sync out port’ was connected to 

an ‘Arduino microcontroller analog pin’. Then this Arduino microcontroller is connected 

to a laptop computer (Figure 4.2). Next, two Bluetooth (BLE-Bluetooth Low Energy) 

USPs (Universal Serial Port) connected with a laptop, and a LabVIEW user interface was 

created in that laptop computer. Bluetooth1 sends the signal to the left shoe, and 

Bluetooth2 sends the signal to the right shoe (Figure 4.3). 

When the vicon system collects data, Vicon’s synchronise port sends a ‘high voltage 

signal’ to Arduino. Arduino continuously checks these voltages; when the voltage reaches 

‘greater than 3v’, this sends an ‘H’ signal to LabVIEW. As soon as the ‘Vicon system’ 

stops collecting data, the ‘Vicon’s synchronise port’ sends a low voltage signal to 

Arduino. On receiving this low voltage signal of ‘less than 3v’, the Arduino sends an ‘L’ 

signal to the LabVIEW. 

 

Figure 4.2 Lab data collection setup, left side image was sensor shoe with computer connected with 

Bluetooth in one side of the computer, the other side of the computer connected with VICON system, right 

side image was participant with markers and sensor shoe  
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Figure 4.3 Sensor and Vicon System Synchronisation. A computer connected with a Vicon system. Vicon 

synchronization port was connected with Arduino; then this Arduino connected with a laptop, which 

contains a user interface to collect data from the sensor shoe. Finally, two Bluetooth dongles were 

connected to the computer to signal the sensor shoe to start and stop data collection. 

LabVIEW continuously checks the ‘Arduino trigger port’; when LabVIEW receives an 

‘H’ signal, LabVIEW sends a ‘start signal’ to both the shoes via a dedicated Bluetooth 

system to start data collection from the shoes. When LabVIEW receives an ‘L’ signal, 

LabVIEW sends a ‘stop signal’ in the above manner to stop data collection by the shoes.  

Once the data collection is started, LabVIEW reads the data sent by the shoes and writes 

them into an ‘SD storage card’ with a ‘Unique/itemised file name’ for each data. This 

Unique file is closed when the LabVIEW receives the ‘L’ signal by sending a ‘stop signal’ 

to the shoes. After finishing the trials, all the files were transferred to the computer from 

an SD card for further analysis. 

 VICON data analysis 

Full-body kinematics was obtained using a 15 segment (head, thorax, pelvis, upper arms, 

lower arms, hands, thighs, shanks, feet) full-body six-degrees of freedom. The kinematic 

model was defined using 76 reflective markers (diameter 14 mm). The segmental data 
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were defined in visual3D based on Dempster’s regression equations (Dempster 1955) and 

used geometrical volumes to represent each segment  (Hanavan Jr 1964). After data 

collection, all kinetic and kinematic data were filtered using a low-pass fourth-order 

Butterworth filter with a cut-off frequency of 6 Hz. Force plates were used to obtain gait 

events.  

 

Kinematic data were obtained using a 24 infrared camera system (120Hz, Vicon, Oxford 

Metrics, UK). Kinetic data were synchronously recorded from four force platforms. Foot 

clearance, foot contact length ratio and foot motion data were obtained using a 24 infrared 

camera system (120Hz, Vicon, Oxford Metrics, UK). The participant’s sensor shoes were 

digitalised manually. The participant’s sensor shoe's two-dimensional outline was 

obtained by taking a picture of the sensor shoe outline drawn on an A4 paper (Figure 4.4) 

and imported using ImageJ (National Institutes of Health, Bethesda, USA). The 

coordinates of up to 600 virtual markers representing the individual shoe sole outline were 

calculated in Matlab. The position of three markers fixed on the shoe (first 

metatarsophalangeal joint (RMP1), fifth metatarsophalangeal joint (RMP5) and calcaneus 

lateral (RLCL)). And these markers were digitised in the two-dimensional drawing using 

the static measurement. These static measurements included the above three markers 

position in a 3D (three dimensions) space, which helps determine the position of the 

shoe's virtual outline relative to the markers. The virtual outline of the shoe was then 

projected in movement trials, again relative to the three markers. 

The foot clearance (Figure 4.4) was obtained during the swing phase when the virtual 

shoe outline of the leading limb passed the vertical position (1) of the step edge up until 

the outline passed the horizontal position of the step edge (2). The minimal clearance of 

the virtual shoe was determined within this time frame. The minimal foot clearance was 

determined for steps 1-7 in all three trials. The mean value across the three trials was 

considered for further analysis. 

 

 

 



78 

 

 

 

 

 

 

 

 

 

 

We calculated the foot contact length ratio using the foot touchdown over the ‘force 

plate’, placed on steps 1 to 4. Distance X was measured, the distance between the step 

edge and the posterior foot end of the virtual shoe line, and distance Y is the distance 

between the step edge and the most anterior foot end of the virtual shoe outline (Figure 

4.5). 

Figure 4.4 Vicon foot clearance calculation of the right foot using the above foot model.  A two- 

dimensional outline of the shoe (A) was digitized and linked to three markers (first metatarsophalangeal 

joint: RMP1, fifth metatarsophalangeal joint: RMP5 and calcaneus lateralis: RLCL) of the static 

measurement. The virtual outline of the shoe was then projected in the movement trials. Foot clearance 

was calculated as the minimal distance between the virtual shoe and the step edge, within the orange 

colour area between 1 and 2 shown in (B). 

(A) (B) 
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Figure 4.5 VICON Foot contact length ratio calculation, the Foot contact length ratio 

was calculated at touch-down using the rigid virtual shoe (blue line) as: Foot placement 

ratio = (x / (x + y)) * 100%.  

Foot contact length ratio was calculated using the formula 
𝑥

(𝑥+𝑦)
× 100%. The mean value 

across three trials was calculated and used for further analysis.  

 Sensor shoe data analysis 

Sensor shoe development was explained in chapter3. So, the only summary of the foot 

clearance and foot contact length ratio is presented in this chapter.   
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1 
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2 

2 

Ascending Descending 

Figure 4.6 Foot clearance calculation for sensors, for ascending front distance sensor measures vertical 

distance while crossing the stair edge, back distance sensor measures vertical distance while crossing the 

stair edge 
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For descending, foot clearance was calculated during the swing phase when the sensor 

shoe’s back distance sensor of the leading limb (Figure 4.6) passed the step edge's vertical 

position (1). For ascending, during the swing phase, when the sensor shoe’s front distance 

sensor of the leading limb passed the second step edge (2) before placing the foot on the 

stairs.  

 

Different sizes of sensor insole were created to fit various shoe sizes from 6 to 11. Each 

sensor insole had a different number of sensors. The number was given for each sensor 

from the toe as one to heel as number nine (last number). The foot contact length ratio 

was calculated as below; for example, the below sensor insole has nine sensors; the 

insole's total length was 26cm. The distance between sensors was 2.9cm which was 11% 

of the whole insole length. All the force sensors’ force was checked to calculate ascending 

foot contact length ratio.  

 

 

 

Figure 4.7 Foot Contact length ratio calculation, (A) shows the flexible sensor insole with nine sensors, the 

distance between each sensor was2.9cm, (B) sample table shows how foot contact length was calculated, 

(C) shows the schematic representation of foot contact length calculation. 
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Figure 4.7 shows the foot contact length ratio calculation. For example, if all the sensors 

have the forces, 100% of the foot is placed on the stairs. If only the last sensor does not 

have any force (100%-11%=89%), 89% of the foot is placed on the stairs. Suppose the 

last two sensors do not have forces, which means (100%-22%=78%) 78% of the foot 

placed on the stairs. Similarly, the remaining sensor forces are checked to measure the 

foot contact length ratio. For descending foot contact length ratio, check front senors’ 

forces; based on the forces and length of insole, the foot contact length ratio was 

calculated.  

4.3 Results   

Sensor-based stair fall risk parameters were validated with (well-established laboratory 

method) VICON based stair fall risk parameters. Three steps were used for validation,  

 

➢ Step1: Correlation coefficients (r and r2) were calculated to measure the sensor 

and vicon parameters relationship. 

➢ Step2: Regression was calculated to find the best fit line. 

➢ Step3: Bland-Altman plot was created to check the agreement between the sensor 

and vicon parameters. 

Correlation checks the relationship between two variables, showing how strongly they 

are related. The most common correlation techniques are Pearson and product-moment 

correlation(correlation coefficient(r)). It is calculated as the covariance ratio between the 

variables to the product of their standard deviations. The correlation coefficient(r) ranges 

from +1 to -1. This value helps get an idea of the relationship strength; the correlation 

coefficient(r) value closer to +1 shows the strong positive linear relationship, close to -1 

shows the strong negative linear relationship. R square is the square of the 

correlation coefficient and indicates the percentage of variation explained by the 

regression line out of the total variation. 
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 Foot Clearance results between Sensor and Vicon 
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This study used the Pearson correlation to check the relationship between sensor foot 

clearance and VICON foot clearance. The correlation coefficient was calculated for each 

step, a total of 7steps with 3trials (N=75, 3trials×25 participants) (Figure 4.8). 

Table 4.1 Foot clearance correlation results between sensors and VICON 

Foot clearance calculation Correlation coefficient (𝑟2) Linear Regression 

Step1 0.8751 y = 0.9983x + 0.2504 

Step2 0.7198 y = 0.9347x + 0.255 

Step3 0.9144 y = 0.9864x - 0.1926 

Step4 0.8454 y = 0.9131x + 2.1111 

Step5 0.8512 y = 0.9301x + 2.3561 

Step6 0.7289 y = 0.8625x + 3.0084 

Step7 0.9211 y = 0.9504x + 0.8463 

Mean of all 7steps 0.9654 Y = 0.9611x + 0.8632 
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Figure 4.8 Foot clearance correlation coefficient (r2) results between sensors and VICON (Laboratory System) 

(a) Step one foot clearance correlation, (b) Step two-foot clearance correlation, (c) Step three-foot clearance 

correlation, (d) Step four-foot clearance correlation,(e) Step five clearance correlation, (f) Step six-foot 

clearance correlation, (g) Step seven-foot clearance correlation, (h) All seven steps combined foot clearance 

correlation. Step one, step seven, and all seven steps combined foot clearance correlation showed a high 

positive linear correlation between data from the sensors and the VICON system. 
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In total, there were 25 participants; each participant’s three trials of foot clearance were 

used to calculate each step’s correlation coefficients (25×3=75 data). The mean value of 

three trials’ foot clearance was used to calculate the overall correlation coefficient 

(25participants×7steps=175 data points). The overall (Table 4.1) correlation co-efficient 

was  𝑟2 =0.96 and r = 0.967, which was closer to +1, showed a strong positive linear 

correlation between sensor foot clearance and vicon foot clearance. Step3 and step7 had 

a high positive linear correlation (0.9144, 0.9211), step2 and 6 had slightly less positive 

correlation (0.7198, 0.7289). step1,4 and 5 (0.8751, 0.8454, 0.8512) had better correlation 

than the step2,6 and less correction than step3,7.  

 Table 4.2 Foot clearance Pearson correlation result between sensors and VICON 

Pearson Correlations(r) 

 FC_VICON FC_SENSOR 

FC_VICON Pearson Correlation 1 .967** 

Sig. (2-tailed)  .000 

N 175 175 

FC_SENSOR Pearson Correlation .967** 1 

Sig. (2-tailed) .000  

N 175 175 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

A Table 4.2 shows, Pearson correlation results for overall foot clearance between sensor 

and vicon r = 0.967 (p < 0.000). Because the p-value was less than 0.05 (p < .05), the null 

hypothesis (no significant relationship) was rejected, and the alternative hypothesis was 

accepted (there is a statistically significant relationship between sensor and vicon foot 

clearance). Linear regression was calculated to find the best line that predicts sensor foot 

clearance from the vicon foot clearance. The calculated linear regression results are in 

table 4.1.  

The correlation coefficient describes the relationship between two variables (sensor and 

vicon foot clearance), but it does not describe their agreement (Bland and Altman 1986). 

Therefore, a high correlation does not mean a good agreement between two variables. So, 

the Bland-Altman plot was used to measure the agreement between two variables by 

constructing limits of agreement.  These limits of agreement were calculated using the 
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mean and standard deviations of the difference between the sensor and vicon foot 

clearance measurements (Bland and Altman 1986). 

 

 

 

The scatter plot shows Bland-Altman’s agreement results for sensor and vicon foot 

clearance. The X-axis represents the average of the sensor and vicon foot clearance; Y-

axis represents the difference between sensor and vicon foot clearances.  Plotting 

Figure 4.9 Bland-Altman plot of foot clearance between the sensor method and the VICON method in the 

Laboratory. The X-axis represents the average of the sensor and vicon foot clearance; Y-axis represents the 

difference between sensor and vicon foot clearance. The indigo horizontal line denotes the mean difference 

between sensor and VICON method which was 0.1mm, while the top red horizontal line represents the upper 

limits of agreement (Mean difference+1.96 ×SD of difference) which was 4.8mm, the bottom red line 

represents the lower limits of agreement (Mean difference-1.96× SD of difference) which was -4.7mm. 

Purple lines shows the confidence limit for the upper and lower limits of agreement. The Orange small 

circles are data points, and when shown out of the confidence limits these are called outliers; four outliers 

in total (4 out of 175 datapoints). The orange horizontal line shows the line of equality, and it is possible to 

determine if bias is significant or not. This equality line was within the confidence interval of the mean 

difference, so the bias was not significant (0.1 mm). 
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difference against mean value helps find a possible relationship between measurement 

error and the actual value (Giavarina 2015). For example, from Figure 4.9, the average of 

the differences was 0.05mm(bias). This mean difference was not zero, which means that, 

on average, the second method (sensor shoe) measures 0.0566mm more foot clearance 

than the first method (VICON).  

 

Repeatability is the degree to which the same method produces the same results on 

repeated measurements. The standard deviation (SD) of all the individual differences was 

calculated to measure repeatability, 2.41mm. Approximately 5% (10 of 175 data points) 

of data points were outliers and exceeded the upper and lower limit of agreement. The 

Shapiro-Wilk method was used to check the normality of the data point in differences 

(vicon foot clearance data-sensor foot clearance data). The results (p=.210) showed that 

differences were normally distributed. The limit of agreement was calculated; 95% of the 

limits of agreement was between the upper limit (4.8mm) and lower limit (-4.7mm).  

Precision is the degree (confidence limit) to which values cluster around the mean 

distribution of values, which was the 95% confidence limit of upper (4.1mm to 5.4mm) 

and lower (-5.2mm to -4.0mm). The results measured by the VICON system may be 

4.8mm above or 4.7mm below in sensor measurement of foot clearance. This confidence 

limit was small enough to be confident that the new method (sensor shoe) could be used 

to calculate foot clearance in place of the VICON.  
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 Foot Contact length ratio results between Sensor and Vicon 

Sensor-based foot contact length ratio was validated with (well-established laboratory 

method) VICON based foot contact length ratio.  

 

Figure 4.10 Foot contact length ratio correlation results between the sensor and VICON (Laboratory 

System). (a) step one- Foot contact length ratio correlation results, (b) step two- Foot contact length ratio 

correlation results, (c) step three- Foot contact length ratio correlation results, (d) step four- Foot contact 

length ratio correlation results. Among the four steps, step two showed a higher positive linear correlation 

between data from the sensors and the VICON system compared to the other three steps.  
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Figure 4.11 Four steps combined foot contact length ratio correlation between sensors and VICON 

(Laboratory system) with high positive linear correlation 

Pearson correlation was used to check the relationship between the sensor’s foot contact 

length ratio and VICON’s foot contact length ratio. The correlation coefficient (Figure 

4.10 and Figure 4.11) was calculated for all four force plates (N=75, 3trials×25 

participants). In total, there were 25 participants; each participant’s three trials of foot 

contact length ratio were used to calculate all four force plates correlation coefficients 

(25×3=75 data). The mean value of three trials’ foot contact length ratio was used to 

calculate the overall correlation coefficient (25participants×4steps=100 data points). 

Table 4.3 Foot contact length ratio’s correlation between sensors and VICON 

Foot contact length ratio Correlation coefficient 

(𝑟2) 

Regression 

Force plate1(FP1) 0.6851 y = 0.8357x + 14.671 

Force plate2(FP2) 0.7799 y = 0.8043x + 15.542 

Force plate3(FP3) 0.6851 y = 0.8727x + 12.441 

Force plate4(FP4) 0.6551 y = 0.7068x + 24.143 

Combined Foot contact 

length ratio 

0.7709 y = 0.8394x + 14.082 
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The overall correlation coefficient (Table 4.3) was 𝑟2 =0.77 and r= 0.878, closer to +1, 

showed a high positive linear correlation between sensor foot contact length and vicon 

contact length ratios. Force plate1,3 and 4 had a moderate positive linear correlation 

(𝑟2 =0.6851, 0.6851, 0.6551) and ForcePlate2(FP2) had high positive linear correlation 

(0.7799). Linear regression was calculated to find the best line that predicts sensor contact 

length ratio from the VICON contact length ratio. The calculated linear regression results 

are in table 4.3.  

Table 4.4 Foot contact length ratio Pearson correlation 

 

 

 

 

 

A Table 4.4 shows, Pearson correlation results for overall foot contact length ratio 

between sensor and vicon r= 0.878 (p < 0.000). Because the p-value was less than 0.000 

(p < .000), the null hypothesis (no significant relationship) was rejected, and the 

alternative hypothesis was accepted (there is a statistically significant relationship 

between sensor and vicon contact length ratio).  

The correlation coefficient describes the relationship between two variables (sensor and 

vicon contact length ratio (Table 4.4), but it does not describe their agreement. A high 

correlation does not mean a good agreement between two variables. So, the Bland-Altman 

plot was used to measure the agreement between two variables by constructing limits of 

agreement.  These limits of agreement were calculated using the mean and standard 

deviations of the difference between sensor and vicon foot clearance measurements. 

Pearson Correlations 

 FO_VICON FO_SENSOR 

FO_VICON Pearson Correlation 1 .878** 

Sig. (2-tailed)  .000 

N 100 100 

FO_SENSOR Pearson Correlation .878** 1 

Sig. (2-tailed) .000  

N 100 100 

**. Correlation is significant at the 0.01 level (2-tailed). 
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The scatter plot shows Bland-Altman’s agreement results for sensor and vicon foot 

contact length ratio. The X-axis represents the average of the sensor and vicon foot 

contact length ratio; Y-axis represents the difference between the sensor and vicon foot 

contact length ratio.  Plotting the difference against the mean value helps to find a possible 

relationship between measurement error and actual value. From Figure 4.12, the average 

of the differences was -2%(bias). This mean difference was not zero, which means that, 

on average, the second method (sensor shoe) measures -2% more-foot contact length ratio 

Figure 4.12 Bland-Altman plot of foot contact length ratio agreement between the sensor method and the 

VICON method in the Laboratory. The X-axis represents the average of the sensor and vicon foot contact 

length ratio; Y-axis represents the difference between sensor and vicon foot contact length ratio. The indigo 

horizontal line denotes the mean difference between sensor and VICON method which was -2%, while 

upper red line represents the upper limits of agreement (Mean difference+1.96 ×SD of difference) which 

was10%, the lower red line represents the lower limits of agreement (Mean difference-1.96× SD of 

difference) which was -13.9%. Purple lines shows the confidence limits for the upper and lower limits of 

agreement. The Orange small circle are data points, when shown out of the confidence limits are called 

outliers, four outliers in total (4 out of 100 datapoints). The Orange horizontal line shows the line of 

equality, it is possible to determine if bias is significant or not. This equality line was not within the 

confidence interval of the mean difference, so the bias is significant (-2%). 
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than the first method (VICON). Repeatability is the degree to which the same method 

produces the same results on repeated measurements. The standard deviation (SD) of all 

the individual differences was calculated to measure repeatability, 6.08%. Approximately 

4% (4 of 100 data points) of data points were outliers and exceeded the upper and lower 

limit of agreement. Shapiro-Wilk method was used to check the normality of the data 

point in differences (vicon foot contact length ratio -sensor foot contact length ratio), and 

the results (p=.266) showed that differences were normally distributed. Limits of the 

agreement were calculated; 95% of the limits of agreement were between 10% (upper 

limit) and -13.91% (lower limit).  Precision is the degree (confidence limit) to which 

values cluster around the mean distribution of values, which was the 95% confidence 

limit for upper (7.8% to 12%) and 95% confidence limit for lower limits of agreement (-

15.97% to -11%). Therefore, the foot contact length ratio results measured by the VICON 

system is -13.91 % less or 10% more than sensor-based measurements. This confidence 

limit was small enough to ensure that the new method (sensor shoe) could calculate the 

foot contact length ratio in place of the VICON method. 

 Cycle time (Cadence) results between Sensor and Vicon  

Sensor-based cycle time was validated with (well-established laboratory method) VICON 

based cycle time.  

 

Figure 4.13 Cycle time correlation results between instrumented sensor shoe and Vicon, moderate positive 

linear correlation 
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Pearson correlation was used to check the relationship between the instrumented sensor 

shoe’s cycle time and VICON’s cycle time. The correlation coefficient (Figure 4.13) was 

calculated as an average cycle time for each participant (N=25, 3trials×25 participants). 

There were 25 participants; each participant’s three trials of cycle time were averaged to 

calculate correlation coefficients. The overall cycle time correlation coefficient (Figure 

4.13) was r2= 0.69, closer to +1, which showed a positive linear correlation between the 

sensor shoe’s cycle time and vicon cycle time.  

Table 4.5 Cycle time's Pearson correlation results between sensors and VICON method 

Correlations 

     sensor vicon 

sensor Pearson Correlation 1 .835** 

Sig. (2-tailed)  .000 

N 25 25 

vicon Pearson Correlation .835** 1 

Sig. (2-tailed) .000  

N 25 25 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

A Table 4.5 shows, Pearson correlation results for overall cycle time between sensor and 

vicon r= 0.835 (p < 0.000). Because the p-value was less than 0.000 (p < .000), the null 

hypothesis (there is no significant relationship between sensor and vicon cycle time) was 

rejected. And the alternative hypothesis was accepted (there is a statistically significant 

relationship between sensor and vicon cycle time). Linear regression was calculated to 

find the best line that predicts sensor cycle time from the vicon cycle time. The calculated 

linear regression (Figure 4.13) results y = 1.1057x + 0.1052.  

The correlation coefficient describes the relationship between two variables (sensor and 

vicon cycle time (Table 4.4), but it does not describe their agreement. A high correlation 

does not mean a good agreement between two variables. So, the Bland-Altman plot was 

used to measure the agreement between two variables by constructing limits of 

agreement.  These limits of agreement were calculated using mean and standard 

deviations of the difference between sensor and vicon cycle time measurements.  



93 

 

 

Figure 4.14 Bland-Altman plot of cycle time between the sensor method and the VICON method in the 

Laboratory. The X-axis represents the average of the sensor and vicon cycle time; Y-axis represents the 

difference between sensor and vicon cycle time. The indigo horizontal line denotes the mean difference 

between the sensor and VICON method, which was 0.22s, while upper red lines represent the upper limits 

of agreement (Mean difference+1.96 ×SD of difference) which was 0.58s, the lower red line represents the 

lower limits of agreement (Mean difference-1.96× SD of difference) which was -0.15s. Purple lines show 

the confidence limits for the upper and lower limits of agreement. There are no outliers in the cycle time 

because no data point has gone out of the confidence limit. The Orange horizontal line shows the line of 

equality, and it is possible to determine if bias is significant or not. This equality line was not within the 

confidence interval of the mean difference, so the bias is significant (0.22s). 

The scatter plot shows Bland-Altman’s agreement results for sensor and vicon cycle time. 

The X-axis represents the average sensor and vicon cycle time; the Y-axis represents the 

difference between sensor and vicon cycle time.  Plotting the difference against the mean 

value helps to find a possible relationship between measurement error and real value. 

From Figure 4.14, the average of the differences was .22s(bias). This mean difference 

was not zero, which means that, on average, the second method (sensor shoe) measures 
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.22s less cycle time than the first method (VICON). Repeatability is the degree to which 

the same method produces the same results on repeated measurements. The standard 

deviation (SD) of all the individual differences was calculated to measure repeatability, 

which was .1867seconds. Shapiro-Wilk method was used to check the normality of the 

data point in differences (vicon cycle time -sensor cycle time), and the results (p=.186) 

showed that differences were normally distributed. Finally, limits of the agreement were 

calculated; 95% of the limits of agreement were between 0.58s (upper limit) and -0.15s 

(lower limit).  Precision is the degree (confidence limit) to which values cluster around 

the mean distribution of values, which was the 95% confidence limit of upper limits of 

agreement (0.45s to 0.71s) and the 95% confidence limit of lower limits of agreement (-

0.28s to -0.01s). The results measured by the VICON system may be 0.1seconds above 

or 0.57seconds below in sensor measurement of cycle time. This confidence limit was 

small enough to ensure that the new method (sensor shoe) could calculate cycle time in 

place of the VICON method. 

4.4 Discussion 

There are different approaches available to track human motion, with the main ones being 

Optical motion systems (such as Vicon or Optotrak) and commercial IMU sensors such 

as MTw(Xsens). However, the most widely used and accepted system to track stair 

climbing motion is optical motion systems because they have high accuracy when 

operating in controlled environments. This Vicon optical motion system was used in our 

lab, so this was chosen to compare against the sensor-based results.  

Instrumented shoe derived fall risk parameters such as foot clearance, foot contact length 

and cycle time were validated against the Vicon system. There were two different 

methods used for this purpose based on correlations and the Bland Altman plots (B&A). 

The correlation coefficient describes the relationship between two methods (sensor and 

vicon); sensor shoe’s foot clearance, foot contact length ratio and cycle time had a high 

positive linear correlation with parameters measured with the Vicon system. But this 

correlation does not describe their agreement (Bland and Altman 1986). A high 

correlation does not mean a good agreement between two variables. So, the Bland-Altman 

plot was used to measure the agreement between the two methods by constructing limits 

of agreement.   
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The B&A plot system does not express if the agreement is sufficient or suitable to use a 

method or the other indifferently. It simply quantifies the bias and a range of agreement, 

within which 95% of the differences between the two measurements are included. 

Therefore, we need to define the maximum acceptable difference (limits of agreement 

expected) between the two methods. For example, if 5 mm is set as an acceptable 

difference for foot clearance between the sensor and Vicon means that if the sensor 

measurement is 5 mm more or less than the Vicon system measurement of the same 

parameter, it is then accepted. Next, we need to compare the bias and limits of agreement 

results with prior acceptable differences. If both bias and limits of agreement (LoA) fall 

within the acceptable difference, the new method(sensor) may be used interchangeably 

with the established method (Vicon). On the other hand, if the bias and limits of the 

agreement exceed the acceptable difference, the new method(sensor) would be 

considered unacceptable in practice. 

This research set 5mm as the maximum acceptable difference for foot clearance. The 

B&A plot results showed that the sensor shoe’s foot clearance measurements were 

0.05mm(bias), and the limits of agreements results were from 4.7mm to -4.6mm. This 

range falls within the maximum acceptable difference, so this method of calculating foot 

clearance can be used in the future.  

The maximum acceptable difference for foot contact length was set at 15% for this 

research. The B&A plot results showed that the sensor shoe’s foot contact length 

measurements were -2%(bias), and the limits of agreements results were from 10% to -

13.9%. This limit falls within the acceptable difference, so this method of calculating foot 

contact length can be used in the future.  

The maximum acceptable difference for cycle time for this research was set 0.5seconds. 

The B&A plot results showed that the sensor shoe’s cycle time measurements were 0.2 

seconds(bias), and the limits of agreements results were from 0.5 seconds to -0.14 

seconds. This limit comes within the acceptable difference, so this method of calculating 

cycle time can be used in the future.  
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This 95%  limit of agreement was small enough to be confident that the new method 

(sensor shoe) can be used to calculate foot clearance, foot contact length ratio and cycle 

time in place of the VICON method.  

4.5 Conclusion 

In this chapter, the sensor shoe’s fall risk parameters were validated against the vicon 

system using correlation and the Bland Altman plot method. Sensor shoe’s fall risk 

parameter had a high positive linear correlation with the vicon system. Sensor shoe’s fall 

risk parameters results for Bland Altman plot was within the acceptable difference. So, 

this sensor shoe can be used in the future to calculate foot clearance, foot contact length 

ratio and cycle time. In the future need to extract more fall risk parameters using sensor 

shoes, and those parameters should be validated against the vicon system. 
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5. CHAPTER 5: Stair fall-risk parameters 

comparison between a controlled environment 

and uncontrolled environment  
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5.1 Abstract 

One of the significant health problems for older people is falling on the stairs. Identifying 

stair fall risk factors are mostly limited to a controlled environment, with a given set of 

stair dimensions. These identified stair fall risk parameters are useful. However, it 

remains unknown whether the conclusions drawn would still apply to the testing that takes 

place in other domestic staircases with different dimensions. The purpose of this study 

was to investigate whether selected biomechanical stepping behaviour such as foot 

clearance, percentage of the foot placed on the stairs (foot contact length ratio), and 

cadence are maintained when the staircase dimensions are different. Twenty-five older 

adults (>65 years) walked in a custom made seven-step laboratory staircase (rise 19.5 cm, 

and a going 23.5 cm) and three different LJMU’s Exemplar houses. The modern 

Exemplar houses’ staircases contain one winder staircase and two straight staircases. 

Three important biomechanical factors of stair fall risk were measured using instrumented 

sensor shoes.  Matlab was used to extract fall risk parameters from the collected data. In 

SPSS, one-way ANOVA was used to compare fall risk parameters for each step in 

different houses’ staircases. In addition, laboratory-based fall risk parameters were 

compared with house results. The first ANOVA results suggested significant differences 

in the houses' selected stair fall biomechanical factors. And the second ANOVA results 

indicated significant differences between laboratory and house for the selected stair fall 

biomechanical factors. Finally, the third ANOVA results suggested significant 

differences between the Fallers and non-Fallers groups within the laboratory and houses 

for the selected stair fall biomechanical factors. 

5.2 Introduction 

In daily life situations, people encounter a wide range of staircases with various 

dimensions, and all have a different influence on the risk of falling. Staircase dimensions 

are essential to avoid stair falls, and the dimensions of the steps in stairs can amplify the 

risk of falling (Scott 2005). The staircase going is vital in determining the percentage of 

foot length placed on a stair tread. The staircase risers are also very important. If the risers 

are huge, older people may fatigue quickly and become vulnerable to the trip. When risers 

are very small or shallow, older adults may be tempted to take more than one step at a 

time, which leads to more chances of misstepping. The steepness or pitch of a stair may 

also influence the likelihood of a fall.  
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The UK Building regulations permit a private staircase to be made up of individual steps 

with each rise between 100-220 mm and a going length between 225-350 mm and a 

maximum incline of 41.5°. Similarly, the public staircase (Scott 2005) to be made up of 

individual steps with each rise between 100-190 mm and a going length between 250-

350 mm and a maximum incline of 38°. These ranges permit a considerable variation in 

staircase design. 

The staircase structure can magnify the demands placed on the individual. For example, 

steep staircases create larger loading forces at foot contact and cause a more significant 

redistribution of forces at the joints than less steep staircases. It is also known that the 

transition steps from the level onto the stairs or from the stairs onto the level are more 

demanding than the continuous steps in-between (Roys 2001). 

More importantly, staircases with inadequate step tread to safely place the foot can restrict 

movements and threaten safety. Additionally, a stair with a higher riser is more 

challenging for older adults with higher muscle weakness. It has been found that older 

adults can safely negotiate stairs with a lower step riser (Bertucco and Cesari 2009) 

compared to younger adults. It is also evidenced that even for standard step risers, older 

adults operate closer to their maximum capacities of joint range of motion (Samuel, Rowe 

et al. 2011), thus increasing their risk for a fall. Risky techniques employed by older 

people during stair negotiation can also increase the risk of falling. Older people might 

change their techniques over time because of their functional impairments or fear of 

falling (Zietz, Johannsen et al. 2011). For example, older adults may have a large foot 

overhang on landing when stair walking and higher variability in foot clearance (Hamel, 

Okita et al. 2005), both of which increase the risk for a slip or trip on the stairs.  

Identifying stair fall risk factors are mostly limited to a controlled environment, with a 

given set of stair dimensions. However, it remains unclear whether the conclusions drawn 

would still apply if the testing occurs in a different domestic staircase with different 

dimensions. So, this study aims to examine older adults fall risk in a controlled 

environment(laboratory) as well as real-time houses (LJMU’s Exemplar houses).  The 

purpose was to investigate whether selected biomechanical stepping behaviour such as 

foot clearance, foot contact length ratio and cadence was maintained when the staircase 

dimensions were different. 
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5.3 Hypothesis 1 

Selected biomechanical stepping behaviour such as foot clearance, foot contact length 

ratio and cadence was not maintained when the older participants negotiated three 

LJMU’s Exemplar houses’ staircase. 

5.4 Hypothesis 2 

Selected biomechanical stepping behaviour such as foot clearance, foot contact length 

ratio and cadence was not maintained when the older participants negotiated staircases in 

the controlled environment(laboratory) and uncontrolled (real-time houses staircase) 

environment.  

5.5 Hypothesis 3 

Selected biomechanical stepping behaviour such as foot clearance, foot contact length 

ratio and cadence was not maintained between the high-risk group and low-risk group 

when they negotiated staircases within the controlled environment(laboratory) and 

uncontrolled (real houses staircase) environment.  

5.6 Methods 

 Participants 

Twenty-five older adults participated in this study (female:20; male:5; age:70.72±4.0Y; 

bodymass:70.18±10.0kg; body height:1.62±0.06m; mean and standard deviation). All the 

participants were recruited from the local community of Wirral and Liverpool, UK. All 

these participants lived independently, able to climb stairs without help. The study was 

approved by the Liverpool John Moores University ethics committee in the UK (REF: 

18/SPS/024). After the explained procedure, informed written consent was obtained from 

all participants. 

 Staircase configuration 

The measurements were conducted in the LJMU’s Exemplar houses and custom-built 

seven-step staircase in the laboratory. Liverpool John Moores University (LJMU) has a 

branch of the BRE (Building Research Establishment) Innovation Park on the LJMU’s 

Campus, opened in September 2016. The Innovation Park consists of three Exemplar 
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houses (Figure 5.1) that LJMU and BRE use to provide test facilities. These three houses 

have been constructed using staircase designs from the 1920s, 1970s and 2010s.   

 

Figure 5.1 LJMU's Exemplar House, which contains three houses 

The Exemplar houses have three different staircases (Figure 5.1). Space (area) was 

considered an essential factor in choosing different staircases for each Exemplar’s house. 

1920’s house staircase was a straight staircase, which runs straight from the ground floor 

landing to the top floor landing with 12 steps and a handrail. The standard staircase going 

(width) was between 22cm to 30cm, and the standard rise (height) was 15cm to 22cm. 

The 1920’s house staircase used 23cm going and 21cm rise (min going and nearly 

maximum rise). The 1970’s house staircase was like the 1920s, except for the staircase 

location (the 1970’s staircase was set next to the entrance door, and the 1920’s staircase 

was placed in the middle of the house between two rooms). The staircase comprises a 

single linear flight that does not change direction. (Figure 5.2 for 1920 and 1970’s house 

staircase) 
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The 2010’s exemplar house has a winder staircase, with 11-steps and no handrail. The 

winder stairs were like L-shaped stairs, but instead of a straight landing, these stairs 

incorporate a 90-degree turning at the start and the end of the stairs (Figure 5.3). The 

winder stairs created exciting features with a seamless transition and saved more space 

without landing. However, these stairs were more challenging to navigate than other 

stairs. It is also true that negotiating winder stairs require more centre support.  

Winder staircase was narrower on one side than the other. A series of winder stairs form 

a half circular-shaped stairway. Three steps were used to turn a 90degree; the intermediate 

step was called a kite winder as it looks similar to a kite-shaped quadrilateral. Figure 5.3 

shows the 2010s house’s staircase. 

 

 

 

Figure 5.2 1920's and 1970's staircase design 
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The measurements were conducted on a custom-made instrumented seven-step staircase 

with handrails on each side in the laboratory. The stairs had a top and bottom landing of 

sufficient length to complete an entry and exit phase. Each step had a riser height of 19.5 

cm and a going length of 23.5 cm, within the current UK building regulations for 

commercial and private properties (Regulations 2000). Each of the bottom four steps 

contained a force-platform (FP; Kistler) sampling at 1080 Hz. During this study, whilst 

on the staircase, our participants wore a passive overhead safety harness operated by a 

trained belayer (Figure 5.4). 

 

  

90 degrees turning 

Consistent  

90 degrees turning 

Figure 5.3 2010's staircase design 
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 Procedures 

Data collection took place with two sections lasting approximately 2 hours with a short 

break between the sections. Instrumented sensor shoe was used for data collection; this 

sensor shoe design and fall risk parameters calculation was explained in chapter3 and 4. 

The first section was in the laboratory, and the participants completed the Berg Balance 

assessments, previous fall history and fear of falling questions. All participants were 

familiarised with the custom build laboratory staircase before data collection. Participants 

wore tight-fitting clothes and instrumented sensor shoes based on their shoe size and 

markers during familiarisation. And then, participants were fitted into the 5-point safety 

harness connected to an overhead safety rail via rope, controlled by a trained member of 

the research team who was also secured via rope to the floor. The participants navigated 

the stairs step-over-step and were permitted to use the handrails if they wished. They 

could ascend and descend as many times as they wanted until they were comfortable 

(usually two of each). After familiarisation, participants performed five more trials with 

the final three trials used for data analysis.  

After the break, the second section was at the LJMU’s Exemplar houses.  All participants 

were familiarised with all three exemplar houses’ staircase before the data collection. 

Participants wore comfortable clothes with sensor shoes; no markers and cameras were 

used in the houses. Sensor shoes and a computer were used to collect data in the houses. 

Sensor shoe’s data collection procedure was explained in chapter 3.  

Figure 5.4 Laboratory custom built instrumented seven-step staircase structure 
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All participants performed three ascending and descending trials for each house (3 houses 

×3ascending ×3descending) in a total of eighteen trials. The participants navigated the 

stairs step-over-step and were permitted to use the handrails if they wished. 

 Data analysis 

The percentage of foot contact length indicates the slip-induced fall risk due to foot 

positioning relative to the step edge. A reduced percentage of foot contact length is 

associated with greater fall risk. Foot clearance indicates trip-induced fall risk, where a 

smaller foot clearance is associated with greater fall risk. So, in this study, these 

parameters were analysed to measure the fall risk. 

For the laboratory data, the foot clearance and percentage foot contact length, the foot's 

3D motion were captured using 24 infrared Vicon cameras, covering the whole stairs, 

landing, and walkway (120 Hz, Vicon, Oxford Metrics, UK). Kinetic data were 

synchronously recorded from four different force platforms (1080 Hz, 9260AA, Kistler 

AG, CH), embedded in the stairs' lower four steps (Step1-4, see Figure 5.4). Foot markers 

were placed on the lateral and medial malleolus (ankle), first and fifth meta-phalange 

joints (base of big and little toe) and on the posterior calcaneus (heel). Additional markers 

were placed on the lateral and medial calcaneus, and a rigid cluster of three markers was 

placed over the toes. A rigid 2D surface model of the shoe sole outline was created by 

tracing the shoes' outline onto paper. The outline was digitised, and the position of each 

digitised point was referenced from the centre of the lateral calcaneus origin to the first 

and fifth meta-phalange markers. These markers were tracked throughout the movement 

trials. The digitised shoe sole boundary was used for foot clearance to determine the linear 

distance to the step edge (during the swing). For percentage foot contact length, the linear 

distance between the furthest forward (ascent) or backward (descent) point of the outline 

to the step edge was calculated and converted to a percentage of the total length. To 

calculate foot clearance and percentage of foot contact length, kinematic and kinetic data 

imported into Matlab (R2017b, The MathWorks, Natick, USA) along with step-edge 

locations (defined by custom-made clusters of known dimensions), the participant static 

calibration, and the digitised shoe sole outlines (ImageJ: National Institutes of Health, 

Bethesda, USA). 
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The sensor shoe synchronised with the VICON system in the laboratory, so both sensor 

and VICON data were collected simultaneously. In addition, sensor shoes’ foot clearance 

was calculated from the distance sensor, percentage of foot contact length was calculated 

from the FSR sensor insole. For detailed information, refer to chapter3(Sensor shoe 

development). 

Descending stairs fast may result in a fall, as an increased speed could negatively modify 

the foot clearance and foot contact length. Therefore, the average duration of two gait 

cycles (one of the left limbs and one of the right limbs) was taken as a cadence for stair 

ascent and stair descent. In addition to foot clearance, foot contact length and cadence, the 

trial-to-trial variability of these parameters were also calculated as the average of the 

variability across the three trials for each of the analysed steps. Variability is a risk factor 

for falls, as more variability can indicate a person’s inability to maintain a steady/safe 

movement pattern (Hausdorff, Zemany et al. 1999). 

 Statistics 

Older adults were followed up for 6months after testing; based on the occurrence of a fall 

in the 6months, older adults were classified into fallers and non-fallers. A fall was self-

reported and defined as an event that inadvertently resulted in a person coming to rest on 

the ground or floor or other lower level.  

Three ANOVA comparison tests were conducted; the first ANOVA test compared the 

difference in fall risk parameters between individuals in different houses (independent of 

fall history). One-way ANOVA and post-hoc tests were conducted, with alpha level 0.05. 

Post-hoc analyses were Tukey's HSD tests to account for multiple comparisons. Raw data 

from three trials for each house (18 trials for each participant, 9trials for ascending and 

9trials for descending), a total of 25 participants (18×25=450 total trial data), and each 

step treated separately, i.e., individual analyses performed for each of the eleven steps to 

compare between the house. 

The second ANOVA test was conducted to compare the difference between laboratory 

and houses (independent of follow up fall details). There were seven steps in the 

laboratory; foot clearance was calculated for all seven steps in the laboratory. To compare 

this seven-step foot clearance with house data, only first, fourth, fifth, sixth, seventh, 
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eighth, and last steps foot clearance were considered for houses. The foot contact length 

ratio was calculated for four steps where force plates were placed in the laboratory. Only 

the first four steps’ foot contact lengths were considered to compare this four-step foot 

contact length with a house. 

The third ANOVA test investigated differences in fall risk parameter measures within 

each condition (laboratory versus exemplar houses’ stairs) and between the two fall risk 

groups (fallers versus non-fallers). A mixed ANOVA (Analysis of Variance) test was 

conducted for ascent and descent.  In the case of significant interactions, posthoc tests 

were performed where appropriate. Post-hoc analyses were Tukey's HSD tests to account 

for multiple comparisons. Alpha level was set at 0.05. For this test, the data were averaged 

for all three trials; only start, end, and middle stairs averaged data were used to compare 

laboratory and houses. 

5.7 Results 

 Differences between three houses’ staircase during stair ascent 

 

 

 

 

 

 

 

 

Figure 5.5 Interval plot for difference of mean in Cadence for three houses, it displays that older people 

were cautious using 2010’s staircase and confident in using straight staircase (1920 and 1970’s house) so 

they spent less time to climb stairs. 
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There was a significant difference (Figure 5.5 and Figure 5.6) in cadence between 

different house stairs (F (2,224) = 25.52, p = .00. Similar cadence was used in the 1920s 

and 1970s house stairs (M=0.850s, M=0.800s). In contrast, older adults took more time 

to climb 2010s stairs due to winder stairs (M=1.08s). These results showed that older 

adults were more cautious while using difficult (winder) stairs. 

 

 

 

 

 

 

 

 

 

Older adults’ foot clearance increased in the 1970’s staircase (Figure 5.7). For example, 

there was a main effect of different staircase dimension on foot clearance over step7 (F 

(2,224) = 3.39, p = .0036). Post-hoc comparisons (Figure 5.8) revealed that increased foot 

clearance in the 1970s (M=30.23mm) compared to1920’s and 2010’s (M=25.01mm, 

M=26.12mm) staircase. These 1920’s and 2010’s reduced foot clearance might lead to an 

increase in the chances of falling. There were no changes in foot clearance during the 

entry and exit steps in different houses’ staircases.  

Figure 5.6 Confidence interval (CI) for the three different houses’ cadence, the confidence intervals 

for the (2010-1970, 2010-1920) these house pairs of means range does not include zero, which 

indicates that the difference is statistically significant. 



109 

 

 

  

 

 

Figure 5.8 Confidence interval (CI) for the three different houses’ foot clearance, the confidence 

intervals for the (1970-1920) house pairs of means range does not include zero, which indicates that 

the difference is statistically significant. 

Figure 5.7 Interval plot for the difference of means in step7 foot clearance for three houses, it 

displays that in step7 older people have more clearance in 1970s house compared to other houses 

foot clearance 
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Below Table 5.1 describes more about individual steps foot clearance in three different 

houses. Even though there were slight differences in the foot clearance between different 

houses, these differences were not statistically significant except for step7. 

Table 5.1 Foot clearance Mean for all three houses (ascending) 

Foot 

clearance 

Step

1 

Step

2 

Step

3 

Step

4 

Step

5 

Step

6 

Step

7 

Step

8 

Step

9 

Step 

10 

Step 

  11 

1920 

Mean± 

Standard 

deviation 

26.72

± 

13.50 

27.94

± 

17.52 

26.26

± 

11.44 

27.94

± 

13.27 

27.68

± 

14.47 

28.34

± 

14.39 

25.01

± 

11.12 

29.37

± 

14.56 

25.44

± 

11.76 

30.50 

± 

12.50 

27.89 

± 

13.89 

1970 

Mean± 

Standard 

deviation 

29.08

± 

14.12 

26.44

± 

13.50 

26.84

± 

12.25 

28.85

± 

13.36 

27.44

± 

12.56 

26.72

± 

12.56 

30.22

± 

14.13 

27.42

± 

12.68 

26.37

± 

11.58 

27.01 

± 

12.38 

27.92 

± 

13.78 

2010 

Mean± 

Standard 

deviation 

26.84

± 

13.47 

26.17

± 

13.17 

28.24

± 

14.45 

27.76

± 

14.45 

29.14

± 

14.01 

26.93

± 

11.76 

26.12

± 

13.31 

29.22

± 

14.61 

28.38

± 

12.81 

27.89 

± 

13.16 

30.13 

± 

14.52 

 

Older adults’ percentage of foot contact length decreased in the 2010’s staircase due to 

less going on the stair dimension.  There was a main effect of different staircase 

dimension on percentage of foot contact length over step3 (F(2,222=83.127 ,p=0.0000)) 

and step4 (F(2,222)=80.8540,p=0.0000)).Post-hoc comparisons revealed that decreased 

percentage of foot contact length (Figure 5.9 and Figure 5.10) in 2010’s staircase at step3 

and step4 (M=59.29% at step3, M=59.29% at step4) compared to 1920’s (M=74.90% at 

step3, M=73.78% at step4) and 1970’s (M=83.36% at step3, M=79.61% at step4). Due 

to the winder staircase in 2010’s house, older adults’ percentage of foot contact length 

significantly reduced, which may initiate the slip-induced fall. Due to the straight 

staircase in the 1920s and 1970’s house, the percentage of foot contact length were not 

significantly different, except the step3 and step4. However, the percentage of foot 

contact length is significantly different for the 2010’s staircase and the other two 

staircases for the remaining steps.  
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Figure 5.9 Interval plot for the difference of mean in foot contact length ratio for three houses, it displays 

that in step3 older people have more foot contact length ratio in 1970s and1920s house compared to other 

houses foot contact length ratio 

 

Figure 5.10 Confidence interval (CI) for the three different houses’ foot contact length. The confidence 

intervals for all three house pairs of means range do not include zero, which indicates that the difference 

is statistically significant for all three houses. 
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Below Table 5.2 shows the significant percentage of foot contact length among three 

houses for all steps. 

Table 5.2 Post hoc result for foot contact length (FCL) ratio for each step in all three houses (ascending) 

 

Post hoc 

result for 

Foot contact 

length ratio 

N=75 

 

 

2010 

 

 

1970 

 

 

1920 

 

 

Sig. 

 

 

 

Degree of 

freedom 

Df (2,222) 

 

 

Significant 

difference 

Subset for 

alpha = 0.05 

Mean Mean Mean 
 

F 1=2010, 

2=1970&192, 

3=1920 

FCL1 67.0133 78.3467 79.2000 0.000 35.7710 1,2 

FCL2 62.0133 75.9867 79.3600 0.000 64.2140 1,2 

FCL3 59.8000 74.9067 83.3600 0.000 83.1270 1,2,3 

FCL4 59.2933 73.7867 79.6133 0.001 80.8540 1,2,3 

FCL5 61.3067 74.4533 75.1600 0.000 32.4600 1,2 

FCL6 59.8533 73.3067 74.2400 0.000 51.2870 1,2 

FCL7 62.1867 74.5467 74.5467 0.000 26.5450 1,2 

FCL8 59.4133 72.9200 73.7067 0.000 52.5330 1,2 

FCL9 62.6933 74.3733 76.8933 0.000 31.8210 1,2 

FCL10 60.4267 73.0533 74.5600 0.000 46.3970 1,2 

FCL11 65.3867 79.7200 82.0933 0.000 61.6030 1,2 

 

 Differences between Laboratory and Houses during stairs ascent  

The second ANOVA test was conducted to compare the difference between laboratory 

and houses (independent of follow up fall details). There were seven steps in the 

laboratory; foot clearance was calculated for all seven steps in the laboratory. Only the 

first, fourth, fifth, sixth, seventh, eighth, and last steps foot clearance average were 

considered for houses to compare with laboratory data. For the laboratory, foot contact 

length was calculated for the first four steps placed on force plates. Only the first four-

foot contact lengths from the house were considered to compare with a laboratory (Table 

5.3). 

Older adults’ cadence decreased in the house staircase compared to the laboratory. For 

example, different environments' main effect on foot cadence F (1,98) =8.17, p=.005. 

Post-hoc comparisons revealed decreased cadence in the house (Mean=0.910seconds) 
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compared to the laboratory (Mean=1.07seconds) staircase. However, ascending results 

showed no significant difference in cadence variability between houses and laboratories. 

Older adults’ entry steps’ foot clearance decreased in the house staircase compared to the 

laboratory. For example, the main effect was on foot clearance in different environments 

over step1 F (1,98) =5.54, p=0.021. Post-hoc comparisons revealed decreased foot 

clearance in the house (Mean=26.24mm) compared to the laboratory (M=31.24 mm) 

staircase. There was no significant difference in foot clearance variability between houses 

and laboratories during the first step in different environments.  

Older adults’ middle steps’ foot clearance increased in house staircase compared to a 

laboratory. For example, the main effect was on foot clearance in different environments 

over step2 F (1,98) =14.83, p=0.000. Post-hoc comparisons revealed increased foot 

clearance in the house (Mean=27.66 mm) compared to the laboratory (M=20.25mm) 

staircase. Older adults’ middle steps’ foot clearance variability increased in house 

staircase compared to a laboratory. For example, different environments' main effect on 

foot clearance variability over step2        F (1,98) =6.72, p=0.011. Post-hoc comparisons 

revealed increased foot clearance variability in the house (Mean=8.57mm) compared to 

the laboratory (M=5.2 mm) staircase.  

There were no changes in foot clearance during the exit step in different environments. 

However, older adults’ end steps’ foot clearance variability increased in house staircase 

compared to a laboratory. For example, different environments' main effect on foot 

clearance variability over step7 F (1,98) =4.77, p=0.030. Post-hoc comparisons revealed 

increased foot clearance variability in the house (Mean=10.35 mm) compared to the 

laboratory (M=6.6mm) staircase.  

Ascending results showed no significant differences in foot contact length between 

houses and laboratory’s first step, second step and third step. Older adults’ fourth steps’ 

foot contact length decreased in the house staircase compared to the laboratory. For 

example, there was a main effect on different environments foot contact length over step4 

F (1,98) =5.59, p=0.020. Post-hoc comparisons revealed decreased foot contact length in 

the house (Mean=70.90%) compared to the laboratory (M=77.45) staircase. There were 
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changes in foot contact length variability during the first, second, third and fourth steps 

in different environments.  

Table 5.3 Difference between Laboratory and House ascend ANOVA results 

Variables -Ascent Alpha <0.05 House (1) Laboratory (2) 

Cadence Y, F (1,98) =8.17, p=.005 0.910±0.22 1.07±0.25 

Cadence variability N   

FC start  Y, F (1,98) =5.54, p=0.021 26.24±9.46 31.24±8.37 

FC middle (2) Y, F (1,98) =14.83, p=0.000 27.66+9.10 20.25±5.24 

FC middle (3) N   

FC middle (4) Y, F (1,98) =9.90, p=0.002 27.56±8.93 21.12±8.66 

FC middle (5) Y, F (1,98) =7.18, p=0.009 26.04±6.90 21.51±8.56 

FC middle (6) Y, F (1,98) =18.48, p=0.000 28.40±9.11 19.60±8.07 

FC end N   

FC start var N   

FC middle_var2 Y, F (1,98) =6.72, p=0.011 8.57±6.11 5.2±2.9 

FC middle_var3 N   

FC middle_var4 N   

FC middle_var5 Y, F (1,98) =8.10, p=0.005 9.23±7.4 4.90±2.1 

FC middle_var6 Y, F (1,98) =4.30, p=0.041 8.46±6.56 5.6±3.2 

FC end var Y, F (1,98) =4.77, p=0.030 10.35±7.8 6.6±4.8 

FCL start N   

FCL second N   

FCL third N   

FCL fourth Y, F (1,98) =5.59, p=0.020 70.90±11.92 77.45±12.28 

FCL start var Y, F (1,98) =51.15, p=0.000 0.11±0.10 3.80±4.34 

FCL second Y, F (1,98) =58.00, p=0.000 0.15±0.17 3.52±3.86 

FCL third Y, F (1,98) =36.29, p=0.000 0.097±0.08 2.35±3.27 

FCL fourth Y, F (1,98) =51.53, p=0.000 0.09±0.08 3.0±3.6 

 

 Difference between fallers and non-fallers during stairs ascent  

The third ANOVA test was conducted to compare within the different environments 

(laboratory and houses) between the fallers group and the non-fallers group. The follow-

up-fall variable contains two groups: the fallers and the non-fallers groups. Fallers group 

is considered a high risk of falling due to the previous fall history. On the other hand, the 
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Non-fallers group has a low risk of falling due to no previous fall history. These groups 

were created based on the six months of follow-up-fall information.  

The environment contains four different staircases (the 1920s, 1970s,2010s and 

laboratory). However, two of the staircase dimensions were the same (the 1920s and 

1970s), so only one of the staircases (1920) was selected along with the 2010s house and 

laboratory. This selection was because the 1920s staircase contained consistent steps 

(21cm rise, 23cm going), and the 2010s staircase had inconsistent (winder staircase) 

steps. The Laboratory staircase was constant but different dimensions (rise 19.5cm and 

going 23.5cm). 

The mixed-model ANOVA test was performed to calculate the difference between fallers 

and non-fallers groups within the different environments (three different staircase 

dimensions) and the interaction between the fallers and non-fallers group x different 

environments. The mixed-model ANOVA results showed that the fallers and non-fallers 

group x different environments interaction was not significant for cadence, foot clearance, 

foot contact length ratio (FCL) and its variability for ascending. Table 5.4 shows the 

difference between fallers and non-fallers results in ascending. 

Table 5.4 difference between fallers and non-fallers in ascent 

Risk-Parameters Alpha p<0.05 Fallers Non-Fallers 

Entry steps Foot clearance F (1,23) = 6.795, p=.016 24.77 mm 30.45 mm 

Middle steps Foot clearance F (1,23) = 10.613, p=.003 22.02 mm 28.09 mm 

Exit steps Foot clearance Not significant No No 

Entry steps Foot clearance 

variability 

F (1,23) =10.613, p=.003 7.4 mm 9.9 mm 

Foot contact length and 

variability 

Not significant No No 

 

A mixed-model ANOVA revealed that the main effect of fallers and non-fallers group in 

cadence and its variability were not significant (p > .05). The main effect of fallers and 

non-fallers group in entry-foot clearance was significant F (1,23) = 6.795, p=.016; post 

hoc results showed that the fallers group had less foot clearance (mean=24.77mm) than 

the non-fallers group (mean=30.45). The main effect of fallers and non-fallers group in 
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middle-foot clearance was significant F (1,23) = 10.613, p=.003, post hoc results showed 

that fallers group have less foot clearance (mean=22.02mm) than non-fallers group 

(mean=28.09mm). Finally, the main effect of the fallers and non-fallers group in exit-foot 

clearance was not significant.  

The main effect of fallers and non-fallers group in entry steps foot clearance variability 

was significant F (1,23) =10.613, p=.003, post hoc results showed that non-fallers had 

increased entry foot clearance variability (mean=9.9mm) than fallers(mean=7.4mm). On 

the other hand, the main effect of fallers and non-fallers group in middle and exit-foot 

clearance variability was not significant.  

The main effect of fallers and non-fallers group foot contact length was insignificant. In 

addition, the main effect of the fallers and non-fallers group in the entry and middle foot 

contact length variability was not significant. 

Table 5.5 Difference between fallers and non-fallers in different environments during ascent 

Variables -Ascent Alpha <0.05 Laborato

ry 

1920 2010 

Cadence Y, F (2,23) = 5.67, p =.000 0.069 s .806 s .860 s 

Cadence variability Not significant    

Foot clearances entry steps Y, F (2,23) =4.750, p=0.40 31 mm 25 mm 26 mm 

Foot clearance middle steps Y, F (2,23) =7.663, p=0.011 20 mm 27 mm 27 mm 

Foot clearances exit steps Not significant    

Foot clearance variability Not significant    

Foot contact length ratio in entry steps Y, F (2,23) =22.559, p=0.000 77% 79% 67% 

Foot contact length ratio in Middle steps Y, F (2,23) =55.123, p=0.000 77% 74% 59% 

Foot contact length ratio in exit steps Not significant    

Foot contact length ratio variability in 

entry steps 

Y, F (2,23) =11.945, p=0.002 3.8% 1% 1% 

Foot contact length ratio variability in 

middle steps 

Y, F (2,23) =17.603, p=0.000 2.3% 1% 1% 

Foot contact length ratio variability in 

exit steps 

Not significant    
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Table 5.5 shows the results of the difference between fallers and non-fallers in different 

environments during ascent. The main effect of cadence in different environments was 

significant F (2,23) = 5.67, p =.000, so the mean cadence for the laboratory was 

significantly higher (1.069) than houses(1920=.806seconds,2010=.860seconds). There 

was no significant difference in cadence variability in different environments. 

The main effect of different environments in entry steps foot clearance was significant F 

(2,23) =4.750, p=0.40, post hoc results showed that older adults had less entry foot 

clearance in the houses (the 1920s = 25mm, 2010s = 26mm) than the 

laboratory(mean=31mm). The main effect of different environments(location) in middle-

foot clearance was significant F (2,23) =7.663, p=0.011, post hoc results showed that 

older adults had less entry foot clearance in the laboratory (mean=20mm) than the houses 

(mean 1920s=27mm and 2010=27mm). And there was no significant difference between 

the environments for exit-foot clearance. And there was no significant difference between 

the environments for entry, middle and exit-foot clearance variability. 

The main effect of different environments in entry steps foot contact length (FCL) was 

significant F (2,23) =22.559, p=0.000, so the entry mean foot contact length for houses 

particularly 2010s was significantly lower (67%) than the 1920s(mean=79%) house and 

laboratory(mean=77%). Similarly, the main effect of different environments in 

intermediate steps foot contact length (FCL) was significant F (2,23) =55.123, p=0.000, 

particularly in the 2010s, was significantly lower (59%) than in the 1920s (mean=74%) 

house and laboratory (mean=77%). 

The main effect of different environments in entry foot contact length (FCL) variability 

was significant F (2,23) =11.945, p=0.002, so the entry mean foot contact length 

variability for laboratory (mean=3.8%) was higher than the houses(mean=1%).  

Similarly, the main effect of different environments(location) in middle foot contact 

length (FCL) variability was significant F (2,23) =17.603, p=0.000, so the entry mean 

foot contact length variability for laboratory (mean=2.3%) was higher than the 

houses(mean=1%).  
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 Differences between three houses during stair descent 

The first ANOVA test for descending results showed a significant cadence difference 

between house stairs (F (2,224) = 8.249, p = .00. Similar cadence was used in the 1920 

and 2010’s house stairs (M=1.0s, M=1.03s); in contrast, older adults took more time to 

climb 1970’s stairs (M=1.2). These results showed that older adults were not more 

cautious while using difficult (winder) stairs; going fast will lead to stair fall. 

Older adults’ foot clearance increased in the 1970’s staircase. For example, there was a 

main effect of different staircase dimension on foot clearance over step10 (F (2,224) = 

3.413,p = .035). Post-hoc comparisons revealed increased foot clearance in the 1970s 

(M=34.02mm) compared to the 1920’s and 2010s (M=32.01mm, M=29.12mm) staircase. 

These 1920’s and 2010’s reduced foot clearance might lead to an increase in the chances 

of falling. There were no changes in foot clearance during the entry and exit steps in 

different houses’ staircases.  

Older adults’ percentage of foot contact length (foot overhang) decreased in 2010’s 

staircase.  There was a main effect of different staircase dimension on percentage of foot 

contact length from step2 (F (2,222) =171.447, p=0.0000) to step11 (F (2,222) =390.811, 

p=0.0000). Post-hoc comparisons revealed that decreased percentage of foot contact 

length in 2010’s house step2 to step11 (M=65.82% at step2, M=69.54% at step11) 

compared to 1970’s (M=84.52% at step2, M=89.05% at step11) and 1920’s (M=84.52% 

at step2, M=84.80% at step11). Due to the winder staircase in 2010’s house, older adults’ 

percentage of foot contact length significantly reduced, which may initiate the slip-

induced fall. Due to the straight staircase in the 1920s and 1970’s house, the percentage 

of foot contact length were not significantly different. Below Table 5.6 shows the 

significant percentage of foot contact length among three houses for all steps. 
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Table 5.6 Post hoc result for foot contact length ratio for each step in all three houses (descending) 

Post Hoc result for Foot 

contact length ratio in 

descending 

2010 1970 1920 Sig. Df (2,222) 

N=75 

 
Mean Mean Mean 

alpha = 

0.05 
F 

Foot Contact length step1 70.3733 84.5200 84.2533 0.0000 334.156 

Foot Contact length step2 65.8267 84.5200 81.4267 0.0000 171.447 

Foot Contact length step3 69.9200 89.3467 76.5067 0.0000 247.767 

Foot Contact length step4 65.6000 86.1200 81.2267 0.0010 174.200 

Foot Contact length step5 68.9733 89.6000 84.4633 0.0000 464.929 

Foot Contact length step6 64.9067 84.4533 82.0000 0.0000 177.450 

Foot Contact length step7 69.0533 89.1467 84.7600 0.0000 436.971 

Foot Contact length step8 65.1233 86.3467 81.7733 0.0000 188.358 

Foot Contact length step9 68.9333 89.0400 84.7867 0.0000 450.253 

Foot Contact length step10 65.5733 85.8133 81.4667 0.0000 178.279 

Foot Contact length step11 69.5467 89.0533 84.8000 0.0000 390.811 

 

 Differences between laboratory and houses during stairs descent  

The second ANOVA test was conducted to compare the difference between laboratory 

and houses (independent of follow up fall details). Descending results (Table 5.7) showed 

no significant differences in cadence and cadence variability between houses and 

laboratories.  

Older adults’ entry steps’ foot clearance increased in the house staircase compared to the 

laboratory. For example, the main effect was on foot clearance in different environments 

over step1 F (1,98) =22.08, p=.0000. Post-hoc comparisons revealed increased foot 

clearance in the house (Mean=28.13 mm) compared to the laboratory (M=19.30mm) 

staircase. Older adults’ entry steps’ foot clearance variability increased in the house 

staircase compared to the laboratory. For example, different environments' main effect on 

foot clearance variability over step1 F (1,98) =15.33, p=0.000. Post-hoc comparisons 

revealed increased foot clearance variability in the house (Mean=7.6 mm) compared to 

the laboratory (M=3.6 mm) staircase.   

Older adults’ middle steps’ foot clearance increased in the house staircase compared to 

the laboratory. For example, the main effect was on foot clearance in different 

environments over step2 F (1,98) =14.22, p=0.0000. Post-hoc comparisons revealed 
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increased foot clearance in the house (Mean=30.70mm) compared to the laboratory 

(M=24.35mm) staircase. Older adults’ middle steps’ foot clearance variability increased 

in the house staircase compared to the laboratory. For example, different environments' 

main effect on foot clearance variability over step2 F (1,98) =8.17, p=0.005. Post-hoc 

comparisons revealed increased foot clearance variability in the house (Mean=10.82 mm) 

compared to the laboratory (M=7.3 mm) staircase.  

Older adults’ end steps’ foot clearance increased in the house staircase compared to the 

laboratory. For example, the main effect was on foot clearance in different environments 

over step7 F (1,98) =6.28, p=0.014. Post-hoc comparisons revealed increased foot 

clearance in the house (Mean=31.71mm) compared to the laboratory (M=27.48mm) 

staircase. There was no change in foot clearance variability during the exit step in 

different environments. 

Table 5.7 Difference between Laboratory and House descend ANOVA results 

Variables Descend Alpha <0.05 House  Lab  

Cadence N   

Cadence variability N   

FC start  Y, F (1,98) =22.08, p=.0000 28.13±9.24 19.30±2.58 

FC middle (2) Y, F (1,98) =14.22, 

p=0.0000 

30.70+7.62 24.35±6.21 

FC middle (3) N   

FC middle (4) Y, F (1,98) =9.93, p=0.002 34.42±8.51 28.33±7.89 

FC middle (5) Y, F (1,98) =5.87, p=0.017 31.32±6.94 27.55±6.12 

FC middle (6) N   

FC end Y, F (1,98) =6.28, p=0.014 31.71±7.9 27.48±5.05 

FC start var Y, F (1,98) =15.33, p=0.000 7.6±4.7 3.6±3.05 

FC middle_var2 Y, F (1,98) =8.17, p=0.005 10.82±5.3 7.3±5.14 

FC middle_var3 Y, F (1,98) =7.52, p=0.007 11.21±5.6 7.76±4.8 

FC middle_var4 Y, F (1,98) =6.14, p=0.015 11.91±5.5 8.8±4.9 

FC middle_var5 Y, F (1,98) =4, p=0.048 12.32±6.0 9.54±5.91 

FC middle_var6 N   

FC end var N   

FCL start N   

FCL middle2 Y, F (1,98) =11.28, p=0.001 89.36±3.52 85.71±7.25 
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FCL middle3 N   

FCL end Y, F (1,98) =14.03, p=0.000 89.42±3.86 85.20±7.15 

FCL start var N   

FCL middle_var2 N   

FCL middle_var3 N   

FCL end var N   

 

Descending results showed no significant differences in foot contact length and its 

variability between houses and the laboratory’s first step. Older adults’ middle steps’ foot 

contact length increased in the house staircase compared to the laboratory. For example, 

different environments' main effect on foot contact length over step2 F (1,98) =11.28, 

p=0.001. Post-hoc comparisons revealed increased foot contact length in the house 

(Mean=89.36%) compared to the laboratory (M=85.71%) staircase. There was no change 

in foot contact length variability during the second step in different environments. Also, 

there were no changes in foot contact length and its variability during the third step in 

different environments. 

Older adults’ fourth steps’ foot contact length increased in the house staircase compared 

to the laboratory. For example, different environments' main effect on foot contact length 

over step4 F (1,98) =14.03, p=0.000. Post-hoc comparisons revealed increased foot 

contact length in the house (Mean=89.42%) compared to the laboratory (M=85.20%) 

staircase. There were no changes in foot contact length variability during the fourth step 

in different environments. 

 Differences between fallers and non-fallers during stair descent  

The third ANOVA test was conducted to compare within the laboratory and houses 

between fallers and non-fallers group in descending.  The mixed-model ANOVA test was 

performed to calculate the difference between fallers and non-fallers groups within the 

different environments and the interaction between the fall risk groups x different 

environments in descending. 
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The mixed-model ANOVA results showed that the fallers and non-fallers group x 

different environments interaction was not significant for cadence, foot clearance, foot 

contact length (FCL) and its variability for descending. 

Table 5.8 Difference between fallers and non-fallers in descending 

Risk-Parameters for Stair Descent Alpha p<0.05 Fallers Non-Fallers 

Cadence and its variability Not significant No No 

Foot clearance and its variability Not significant No No 

Foot contact length and variability Not significant No No 

 

The mixed-mode ANOVA test revealed that the main effect of cadence and its variability 

in the fallers and non-fallers group was insignificant. The main effect of fallers and non-

fallers group in entry, middle, exit foot clearance and its variability were not significant. 

The main effect of the fallers and non-fallers group in the foot contact length and its 

variability were not significant. Table 5.8 shows the results of the difference between 

fallers and non-fallers in descending. 

Table 5.9 Difference between fallers and non-fallers in different environments in descending 

Variables -Descent Alpha <0.05 Laboratory 1920 2010 

Cadence Y, F (2,23) =6.788, p =.016 0.941 s .941 s 1.035 s 

Cadence variability Not significant    

Foot clearances entry steps F (2,23) =15.098, p =.001 18 mm 28 mm 27 mm 

Foot clearance middle steps Not significant    

Foot clearances exit steps Not significant    

Foot clearance variability in 

entry steps 

F (2,23) =8.094, p =.009 3 mm 7 mm 7 mm 

Foot clearance variability in 

middle steps 

F (2,23) =8.638, p =.007 9 mm 14 mm 14 mm 

Foot contact length ratio and 

its variability 

Not significant    

Foot contact length ratio in 

exit steps 

Not significant    
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Table 5.9 shows the results of the difference between fallers and non-fallers in different 

environments in descending The main effect of cadence in different environments was 

significant F (2,23) =6.788, p =.016, so the mean cadence for 2010s house was 

significantly higher (1.03seconds) than the mean cadence time for 1920s 

houses(mean=.941seconds) and laboratory(mean=0.941seconds). There was no 

significant difference in cadence variability in different environments. 

The main effect of entry-foot clearance in different environments was significant F (2,23) 

=15.098, p =.001; post hoc results showed that older adults had less entry foot clearance 

in the laboratory(mean=18mm) than the houses(1920=28mm,2010=27mm). The main 

effect of environments in entry foot clearance variability was significant F (2,23) 

=8.094, p =.009, post hoc results showed that older adults had increased variability in the 

houses (7mm) than the laboratory (mean=3mm).  

There was no significant difference between the environments for middle-foot clearance. 

The main effect of environments in middle foot clearance variability was significant 

F (2,23) =8.638, p =.007, post hoc results showed that older adults had increased 

intermediate steps foot clearance variability in the houses (14mm) than the 

laboratory(mean=9mm). There was no significant difference between the environments 

for exit-foot clearance and its variability.  

The main effect of different environments(location) in foot contact length (FCL) and its 

variability were insignificant.  

5.8 Discussion 

The safety of stair negotiation depends on the interactions between the behaviour of 

humans and their staircase environment. All older adults used the step-over-step method 

to negotiate the different staircases during the data collection in the houses and laboratory. 

This step-over-step method requires alternation between limbs by which each limb should 

contribute to single-limb support. This method is most demanding even though it is the 

fastest and most efficient (King, Underdown et al. 2018) 
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 First Hypothesis 

The first ANOVA test compared the houses' cadence, foot clearance, and foot contact 

length ratio. One-way ANOVA test results support the first hypothesis: significant 

differences in foot clearance, foot contact length ratio, and cadence between different 

houses. 

Older adults were tested in three houses’ staircases; two staircases were straight, and the 

exact dimensions were used. The third staircase dimension and structure differed from 

the other two houses’ staircases.  The reason for the testing at three houses and data 

comparison was that people encounter a wide variety of staircases in real life to discover 

how older adults negotiate different staircase dimensions and similar staircase 

dimensions. This study helps to find which staircase is dangerous for older people. Also, 

when older adults encounter different staircase dimensions, they might need to change 

their walking trajectory to cope with that particular staircase; they are at risk if they do 

not change. In similar staircase (the 1920s and 1970s) contains similar dimensions; will 

older adults negotiate a similar staircase in the same manner (consistent walking 

trajectory)? If so, they have more balance control and are safe on the stairs; if older adults 

use a different manner (inconsistent walking trajectory), the risk for fall in the future. The 

results showed that older adults’ feet followed a similar trajectory for entry, exit and 

except a few steps in the middle stairs. For example, in both ascending and descending, 

in similar staircases (the 1920s and 1970s), older adults showed no significant statistical 

difference in foot contact length ratio (FCL), so their feet followed a similar trajectory for 

both similar staircases. Also, for similar staircases, older adults used similar cadence for 

ascending and different cadence for descending. There was no significant difference for 

entry and exit foot clearance in a similar staircase for both ascent and descent. However, 

in ascending, there was a significant difference over step7 foot clearance in a similar 

staircase and in descending, there was a significant difference over step10. 

In ascending, older adults spent less time climbing consistent (the 1920s and 1970s) 

straight stairs. This research (Templer 1995)  found that straight flights of stairs without 

landings accounted for 52% of all accidents. This straight might be the case because the 

path of straight flights is often clear and uninterrupted, so stair users are reassured into a 

false sense of security and reduced attention. Straight flights may also result in more 
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severe injuries because there is no place where the fall may be broken on the stairway. In 

ascending, older adults spent more time climbing uneven stairs (the 2010s); in contrast, 

in descending, older adults spent less time negotiating uneven stairs. Older adults 

negotiated stairs considerably faster, which is considered riskier. 

The foot contact length ratio was less (mean= 67%) for inconsistent (the 2010s) stairs for 

both ascending and descending. It shows that the risk of overstepping increases on 

narrower stairs (the 2010s) due to lack of space to place the foot safely (Roys and Wright 

2005). The foot contact length ratio is more crucial for descending than ascending for safe 

stair negotiation (Roys, 2013). For example, older adults who usually have less foot 

contact length ratio might experience a fall (Roys and Wright 2005). If less than 70% of 

the foot contact length regularly, there is an increased risk of a slip over the step-edge 

(Roys 2013), but the British Standards Institution (BSI) indicate that less than 50% of 

foot contact length ratio would most likely lead to a fall (BSI 2010).  

For both ascending and descending, older adults foot clearances over the intermediate 

steps were reduced for the 2010s staircase, increasing the risk of toe-catching due to less 

foot clearance, the chances of tripping increase (Hamel, Okita et al. 2005). 

 Second Hypothesis  

The second ANOVA test was conducted for stair fall risk factors such as cadence, foot 

clearance and foot contact length ratio to compare the difference between laboratory and 

houses. Again, one-way ANOVA test results support the second hypothesis: significant 

differences in foot clearance, foot contact length ratio, and cadence between houses 

(uncontrolled environment) and laboratory (controlled environment). 

In ascending, older adults walked slowly in the lab than the house. The measurements of 

this study were conducted on an experimental staircase using a safety harness in a 

laboratory environment, which differs from house staircases, and this might have had 

psychological effects on the stair performance of the older adults’ cadence. The home 

staircase did not use a safety harness. 

Older adults showed a safe strategy for ascending in the lab; for example, older adults 

had increased foot clearance in the start and middle steps and also showed less foot 
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clearance variability. In addition, older adults foot contact length increased in the 

laboratory’s exit steps. However, older adults foot contact length variability was higher 

for the laboratory than houses. 

In contrast, older adults showed a risky strategy while descending laboratory stairs; for 

example, starting, middle and end foot clearance reduced in the lab than in the houses. In 

addition, the intermediate step’s foot contact length was less in the lab. Older adults used 

only one safe technique; it was less variability in the foot clearance in the laboratory’s 

entry and intermediate steps. 

Older adults showed a risky strategy for ascending in the houses; for example, older adults 

had decreased foot clearance in the start and middle steps and also showed more foot 

clearance variability. In addition, older adults foot contact length decreased in the houses’ 

exit steps. However, older adults foot contact length variability was less for houses. 

In contrast, older adults showed a safe strategy while descending houses’ stairs; for 

example, starting, middle and end foot clearance increased. Also, the intermediate step’s 

foot contact length increased in the houses. However, older adults showed more 

variability in the foot clearance in the houses’ entry and intermediate steps. 

 Third Hypothesis  

The third ANOVA test compared differences in the stair fall risk factors within laboratory 

and houses (different environments) between the fallers and non-fallers groups. The  

2(fall/non-fall) x 3(environment) mixed-model ANOVA test revealed three different 

results. The first results were significant differences in cadence, foot clearance, foot 

contact length and their variability due to the main effect of fallers and non-fallers groups. 

The second results were substantial differences in cadence, foot clearance, foot contact 

length and their variability due to the main impact of different environments (laboratory 

and two different houses staircase). Finally, the third results were significant differences 

in cadence, foot clearance, foot contact length and their variability due to the main effect 

of risk group x different environments interaction. In summary, there was a significant 

change only due to the risk group and different environments. There was no significant 

difference between the fallers and non-fallers group x different environments interaction, 

so only part of Hypothesis 3 was accepted. 
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The mixed-model ANOVA results showed that the risk group x different environments 

interaction was not significant for cadence, foot clearance, foot contact length (FCL) and 

its variability for descending. Differences in behaviour observed between the fallers and 

non-fallers group, the effect of the different environments were similar for the fallers and 

non-fallers group older adults (risk group x different environment interactions were not 

detected). Therefore, it is expected that both groups would be at an increased fall risk by 

the same mechanisms on different environments’ staircases. However, the consequences 

will likely be more severe for the fallers group (Foster, Maganaris et al. 2019)  as they do 

not have the adequate strength reserves to recover when they lose balance (Reeves, 

Spanjaard et al. 2008). 

The significant differences due to the main effect of fallers and non-fallers group were 

obtained. For example, in ascending high risk, older adults had less foot clearance at the 

entry and middle steps; they had more foot clearance variability in the entry steps. This 

result suggests that the fallers group in this present study did not adopt more conservative 

stepping strategies during stair ascent compared to low-risk older adults. Showing less 

foot clearance and more variability in foot clearance would increase the risk for a trip 

(Roys 2001). 

The significant differences due to the different environments are as below: cadence results 

showed that older adults ascended the laboratory staircase slowly than the houses 

staircases; this is because the safety harness was used in the laboratory, which might affect 

older adults’ cadence. Also, results showed that older adults descended the 2010s(winder) 

staircase slowly (more time) and spent less time negotiating consistent staircases such 

as1920s and the laboratory. Even though the winder staircase was narrow steeper, older 

adults took more care when walking on the winder staircase (uneven staircase), and this 

showed that older people were more cautious in the winder staircase. 

In ascending, older adults had less entry foot clearance in the house staircases such as 

the 2010s and 1920s. Also, during descending older adults showed more variability in 

the foot clearance for entry steps and less entry foot clearance in the laboratory. The 

reason for this less foot clearance and its variability in the entry steps were already 

demonstrated that a disproportionate amount of stairway accidents occurs on the top or 

bottom stairs (Templer, Archea et al. 1985). At these locations, the older adult might be 
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looking around for the next part of the journey or the route to be taken, so their attention 

might not be entirely focussed on the stairway (Templer 1995). 

In ascending, older adults showed that foot contact length ratio reduced for the 

2010s(winder) staircase, and foot contact length variability increased in the laboratory. 

This reduced foot contact length ratio increases the risk of slipping. The reason for this, 

older adults get their best support when they place most of their foot on the tread, but this 

is not always possible because the going of the winder staircase was less (below 250mm) 

than the older adults foot length. To safely negotiate this small going, older adults need 

to turn their feet to the side of each step. 

 Other fall risk parameters 

The Berg Balance Scale (BBS) (Berg et al., 1989) (Appendix E) was used to measure 

older people’s balance. The Berg balance scale contains fourteen assessment tasks such 

as standing with eyes closed, turning around, and standing on one leg. This Berg balance 

scale task assessment is subjective and qualitative, typically using threshold assessment 

scores to categorise people as low fall risk, moderate fall risk and high fall risk. Possible 

scores are 0 to 56, and the maximum score of 41to 56 signifies no balance impairment 

(low risk), 0-20 score implies a high risk of fall and, from 21 to 40 indicates a medium 

risk of fall. The BBS is highly sensitive and specific to identify older adults at higher risk 

of falling (Shumway-Cook, Baldwin et al. 1997). In this study, there were 25 participants 

assessed based on the Berg balance scale; only one participant had high fall risk, 6 

participants had moderate fall risk, and 18 participants had low fall risk. In descending, 

Berg balance-high risk older adults had increased cadence (Mean=1.37s) compared to 

low and moderate risk older adults (Mean=.810s for low risk and mean=.900s for medium 

risk). 

After data collection, participants were followed up for six months to measure fall 

occurrences via email and phone calls by the researcher. Older adults were classified into 

two groups (fallers and non-fallers) based on the fall event. Among 25 participants, 13 

people had at least one fall or trip or slip in the last six months, so they were assigned into 

the Fallers group; 12 people did not experience any fall in the last six months, so they 
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were in a non-Fallers group. These risk groups were used in chapter 6 to create a machine-

learning algorithm to predict future fall risk on stairs. 

Fear of falling and previous fall history was assessed by oral interview. The risk of a fall 

was higher in older adults who experienced a previous fall. Among 25 participants, eight 

people had a fear of falling, and 17people did not have a fear of falling. Among these 8 

(fear of falling) older adults, five of them already had a fall in the six months follow-up 

time. 

The risk of a fall is higher in older adults who experienced a previous fall (Hamel, Okita 

et al. 2005). The older adults who had a previous fall showed high variability in foot 

clearance compared to the older adults who had not had any previous fall (in ascending, 

previous faller: Standard Deviation (SD)=8mm vs previous non-faller older adults: 

SD=5mm foot clearance variability). In addition to foot clearance variability, older adults 

who had experienced a previous fall showed more percentage of foot contact length 

variability compared to older adults who had not had any previous fall (in ascending, 

previous faller: SD=3.10% vs the previous non-faller: SD=1.10% foot contact length 

variability). 

Fear of falling was known as a risk factor for a trip on stairs. Older adults who had a fear 

of falling showed increased cadence variability than older adults who did not have a fear 

of falling. Cadence variability implies the older adult’s stability. This reduced stability 

may lead to future falls.  

5.9 Conclusion 

There was a significant difference in selected stair fall biomechanical factors among the 

houses and laboratory. Even though the 1920s and 1970s staircases have similar 

dimensions, older adults negotiated middle steps differently, and there were no changes 

in stair negotiation for the entry and exit steps. Although it has been generally considered 

that winders stairs are more dangerous than standard stair designs because of the non-

uniform tread width or the wedge shape of the winder tread, recent studies concerning 

stair accidents reveal that this is not true (Wells 1977). Older adults used increased 

cadence and more foot clearance than other houses to support this. In contrast, the 

percentage of foot contact length decreased compared to other houses. This is because the 
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walking portion of the tread is less than the other two houses. Older adults showed a safe 

strategy for ascending in the laboratory, descending in the houses. 

In contrast, older adults showed a riskier strategy for descending in the laboratory, 

ascending in the houses. The risk group comparisons suggest that high-risk fallers 

implemented a biomechanically risky strategy that could increase overall falling risk. 

However, only selected stair fall risk parameters were compared in this study. In the 

future, more stair fall parameter comparisons would be helpful to predict stair fall risk by 

finding people who are all at the risk of falling; by giving intervention, the future fall will 

be controlled. 
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6. CHAPTER 6: Identify Fall Risk using 

Novel sensor and Machine learning algorithm 
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6.1 Abstract 

Stair falls continue to be a prominent cause of unintentional injury in older people. It can 

result in a significant loss of mobility and independence, which significantly affects the 

quality of life, and in some cases, it can be fatal. The causes of stair fall risk identification 

were limited to the controlled environment (laboratory). Laboratory-based measurements 

help identify the factors of older people's stair fall risk. Some of the stair fall risk 

parameters were foot clearance, variability in foot clearance, foot contact length ratio, 

variability in foot contact length ratio, cycle time, stance time, and swing time.  However, 

no systems can directly calculate all those stairs fall risk parameters in an uncontrolled 

environment (houses). So, this work aimed to design a sensor shoe system to calculate all 

those parameters directly and test in the actual houses’ staircase. Twenty-five older adults 

were tested using the sensor shoe system in LJMU’s exemplar houses staircase. The Berg 

Balance scale was measured to evaluate older adults' balance and lower limb strength. 

Also, previous fall risk information was collected. After the data collection, participants 

were followed up for six months to measure the occurrence of falls. 

Based on the fall occurrence, older adults are divided into fallers and non-fallers.  After 

collecting the follow-up information about falls, a stair fall risk classification system was 

developed using a machine learning algorithm.  The stair fall risk classification system 

helps identify fall risk factors to estimate the probability of a real-time fall occurrence 

(Hemmatpour, Ferrero et al. 2019). Three classifier algorithms were trained to classify 

fallers and non-fallers class with high precision, specificity, and f-measure. F-measure for 

Support vector machine (SVM) was 90%, the ensemble was 89% and, k-Nearest 

Neighbors (k-NN) was 84% using feature set selected by chi-square feature selection 

method. The trained algorithm can be used in the future for new data set to predict fall 

risk for older people with high precision. 

6.2 Introduction 

Currently, 11.6 million individuals are aged 65 or over in the UK  (Mid 2015). More than 

one-third of those individuals experience at least one fall each year, and 10-15% of these 

falls occur on stairs (van Schooten, Pijnappels et al. 2015). Falls are the second leading 

cause of accidental or unintentional injury deaths worldwide. These falls lead to 

significant loss of mobility and independence for older people, significantly affecting 
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their quality of life (Alexander, Rivara et al. 1992). Furthermore, these stair falls often 

result in early death or secondary complications during hospitalization, usually the 

following surgery to repair a fracture. Moreover, injuries cause an expensive bill to 

National Health Services: the UK's annual cost of fall injuries is more than £2.3 billion 

per year (Age-UK, 2010).  

In laboratory settings, various stairs fall risk-related studies used photo-electronic systems 

and force plates; using this laboratory setting, a lot of research has demonstrated older 

people’s fall risk factors and causes. Trip and slip were the two main underlying 

mechanisms for stair fall. A trip's risk has been linked to reduced foot clearance (Kesler, 

Horn et al. 2016). The risk of trip increases when the variability of foot clearances 

increases (Roys 2001). The risk for a slip increases when the percentage of the foot 

contact length is reduced (Roys and Wright 2005). Also, the foot contact length ratio 

variability indicates older adults’ inability to place the foot safely on the step continually. 

The other crucial personal stair fall factors are fear of falling (Jacobs 2016) and low 

muscle strength (Reeves, Spanjaard et al. 2008). In addition to individual factors, the other 

important factor related to stair fall is the environmental factor. Environmental factors 

contain stair geometry linked with stair falls(Reeves, Spanjaard et al. 2008). Stair 

geometry, for example, each staircase step dimensions varies, staircases are more difficult 

to negotiate when the steps height(rise) increased or steps run (going) reduced (Roys and 

Wright 2005). However, stair fall risk factors identification was limited to the controlled 

environment (laboratory). 

Measurements in a controlled and standardised environment like a laboratory are the first 

necessary step, but on their own, they are unlikely to lead to a translational outcome. 

Furthermore, this type of stair fall risk measurement may not represent real-life-based 

measurements in natural settings such as homes or public places(Wahab, Bakar et al. 

2014). Despite the prevalence and devastating consequences of stair falls for older people, 

systems that can be used in a home environment for timely identification of people at a 

high risk of a fall are currently lacking. 

So, there is a need for a real-time testing system to predict stair fall risk parameters at 

home environment stairs. Over the past decade, there has been a great deal of research on 
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developing methods to detect falls based on wearable sensors (Li, Ho et al. 2012, Wang, 

Wu et al. 2016) and distance sensors(Selvaraj, Baltzopoulos et al. 2018).   

IMU sensor was used to calculate foot clearance in level walking. MIT Media Laboratory 

has developed an electric field sensing technique and proved this technique is used to 

calculate foot clearance on level walking(Wahab 2009). The downside of this system is 

that it can only measure up to 5cm (Wahab 2009). An ultrasonic sensor has been used to 

calculate foot clearance(Hamel and Cavanagh 2004); the problem with this system is that 

this sensor is too big to fit in the shoe, which might affect participants’ walking. The shoe-

integrated direct foot clearance measurement system is the most unexplored topic in stair 

gait analysis. 

There is no sensor shoe available to calculate foot overhanging on the stairs; some force 

sensors-based insoles exist, which are used to calculate foot distribution while level 

walking. The main commercially available in-shoe measurement systems are F-Scan and 

Pedar systems, but they are very expensive application-oriented devices.  

All the above custom made or instrumented sensors did not focus on all stair fall risk 

parameters. So, this project's motivation was to design and develop a low cost, reliable, 

and portable sensor shoe system to detect stair fall risk factors in a typical living 

environment.  An instrumented shoe system was investigated and designed. Developed 

sensor shoe system enabled to perform the stair gait analysis in a less expensive and non-

traditional motion laboratory environment. Sensor shoe system contains a custom-made 

insole that can find foot contact length ratio and distance sensors fitted in the shoe to 

calculate foot clearance and inertia measurement unit (IMU) sensor to find motion 

parameters.  

Although the sensor shoes could reliably measure body movement, identification of 

specific movement patterns and their fall risk prediction could not be achieved without 

using advanced machine learning algorithms. Therefore, three different machine learning 

classifier algorithms, such as support vector machine (SVM), K-Nearest neighbors 

(KNN) and ensemble, were used to train stair fall risk classification system. 
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6.3 Methods 

 Sensor Shoe Design 

Detailed information about instrumented sensor shoe development, data collection 

method, sensor calibration, static and dynamic testing can be found in chapter3.  

 Participants 

Twenty-five older adults participated in this study (female: 20; male: 5; age: 70.72±4.0Y; 

body mass: 70.18±10.0kg; body height: 1.62±0.06m; mean and standard deviation). All 

the participants were recruited from the local community of Wirral and Liverpool, UK. 

All these participants lived independently, able to climb stairs without help. This study 

was approved by the Liverpool John Moores University ethics committee in the UK 

(REF: 18/SPS/024). After the explained procedure, informed written consent was 

obtained from all participants. 

 Data collection location 

Initially, sensor-based data and VICON data were collected on a custom-made staircase 

located in the biomechanics laboratory. Sensor data was filtered and processed in Matlab. 

Laboratory-based motion data (VICON) was filtered and processed in visual 3D and 

Matlab. Stair fall risk parameters such as foot clearance, foot contact length ratio and 

cadence were derived for VICON and sensor data and validated.  

After the validation, older adult data were collected using instrumented sensor shoes in 

the LJMU’s Exemplar houses. Liverpool John Moores University (LJMU) has a branch 

of the BRE (Building Research Establishment) Innovation Park on the LJMU’s Campus, 

which was opened in September 2016. The Innovation Park consists of three Exemplar 

houses that LJMU and BRE use to provide test facilities. These three houses have been 

constructed using designs, technologies, and materials from the 1920s, 1970s and 2000s.  

Detailed information about the staircase dimension details can be found in chapter5. 

 Data collection procedure 

After the successful validation against the VICON system, data collection took place in 

the three LJMU experimental houses. Data collection took place in a single day with two 

sections (laboratory and houses) lasting approximately two hours. Following informed 
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consent, participants completed a berg balance scale assessment and acknowledged any 

previous falls.  

Participants were familiarised with all three exemplar houses staircase before the data 

collection. Participants wore comfortable clothes with sensor shoes, and the LabVIEW 

user interface in computer was used to collect data in the houses. No markers and cameras 

were used in the houses. Sensor shoe’s data collection procedure was explained in 

chapter3. All participants performed three ascending and descending trials for each house 

(3 houses ×3ascending ×3descending) in a total of eighteen trials. The participants 

navigated the stairs step-over-step and were permitted to use the handrails if they wished. 

The sensor data was stored in the shoe’s SD (storage) card and transferred to a computer 

for further processing. When all trials had been completed, the sensor shoe was removed 

from the participant’s foot, and participants changed back into their shoes.  Factors such 

as foot clearance, foot contact length ratio on the step, speed of movement and motion 

data were collected in the university’s houses using instrumented sensor shoes. There 

were 450 trials used for further analysis (Table 6.1). 

Table 6.1 Data collection location and trial details 

Data collection 

Location 

 Number of 

trails 

Total Participants Total 

participants 

1920's house Ascending 3trials 25 75 

 
Descending 3trials 25 75 

1970's house Ascending 3trials 25 75 

 
Descending 3trials 25 75 

2010's house Ascending 3trials 25 75 

 
Descending 3trials 25 75 

 
Total trials 450 trials 

 



137 

 

6.4 Data Analysis and features extraction 

A Machine learning algorithm from Matlab was used to design a fall risk classification 

system. A complete machine learning process is composed of three steps: data pre-

processing, feature extraction and dimension reduction, and system modelling. Data pre-

processing contains noise filtering and data normalization. 

The second step was feature extraction.  The goal was to extract parameters that represent 

discriminative information about risk fall identification. Matlab was used to extract all 

the bio-mechanical fall risk factors from LMU’s experimental houses' collected sensor 

data. After successful parameter extraction, an algorithm was designed using extracted 

features and six months of follow-up fall data from participants' actual living houses.  

The last step was establishing a system model for classification. Once a feature set was 

obtained for each sensor type, the next step was finding the appropriate classifiers. Three 

classifier algorithms, such as Support Vector Machines (SVM), Ensemble, and K Nearest 

Neighbour (KNN) algorithm, were used to design a stair fall risk classification system. 

 Pre-processing 

IMU sensor data can contain unwanted noise mixed in with the acceleration data. This 

noise, referred to as artefacts, can originate from various sources such as the subject, 

equipment, or environment.  

Artefacts distort data and can disrupt the detection of high-risk fallers. Therefore, 

removing as many artefacts as possible from the acceleration data before feature 

extraction is crucial. Certain artefacts reside at specific frequencies and can be removed 

by filtering the signal, and this is usually done by removing frequencies from the 

acceleration data using some cut-off frequencies. Many researchers used between 0.1 and 

0.5 Hz frequency as a cut off frequency (Mathie, Coster et al. 2004). Acceleration data 

was filtered with a fifth-order Butterworth high pass filter with a cut-off frequency of 

0.36Hz.  
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 Features extraction 

Five different sets of features were extracted from the dataset: time-domain features, 

frequency domain features, biomechanical features, strength test features and personal 

features. Below Table 6.2 shows the extracted features. 

Table 6.2 Extracted Features details 

Features 

Time Domain 

Features 

Frequency 

Domain Features 

Biomechanical 

features from 

sensors 

Strength Test 

features 

Personal 

features 

Mean_Acc_X PeakmagX Totaltime Berg balance test Height 

Mean_Acc_X_R peakfreqX Cycletime Fear of falling (FOF) Mass 

Mean_Acc_Y peakmagY Stancetime 6month Follow-up  Age 

Mean_Acc_Y_R peakfrqY Swingtime 
  

Mean_Acc_Z peakfeqZ FC_Entry 
  

Mean_Acc_Z_R peakmagZ FC_Middle 
  

SD_Acc_X accx_kurtosis FC_exit 
  

SD_Acc_X_R accx_skewness FC_SD 
  

SD_Acc_Y accx_entropy FO_entry 
  

SD_Acc_Y_R accy_kurtosis FO_Middle 
  

SD_Acc_Z accy_skewness FO_Exit 
  

SD_Acc_Z_R accy_entropy FO_SD 
  

VarAccX accz_kurtosis AccMax_entry 
  

VarAccX_R accz_skewness AccMax_middle 
  

VarAccY accz_entropy AccMax_exit 
  

VarAccY_R PeakmagX_R Pitch_entry 
  

VarAccZ peakfreqX_R Pitch_middle 
  

VarAccZ_R peakmagY_R Pitch_exit 
  

RmsAccX peakfrqY_R Vel_entry 
  

RmsAccX_R peakfeqZ_R Vel_middle 
  

RmsAcc_Y peakmagZ_R Vel_exit 
  

RmsAccY_R accx_kurtosis_R 
   

RmsAcc_Z accx_skewness_R 
   

RmsAccZ_R accx_entropy_R 
   

 accy_kurtosis_R    

 accy_skewness_R    

 accy_entropy_R    
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 accz_kurtosis_R    

 accz_skewness_R    

 accz_entropy_R    

Total=24 Total=30 Total=21 Total=3 Total=3 

Total features =81 

Time-domain and frequency-domain Features 

The motion data was collected in the time domain, and it was transformed into the 

frequency domain so that frequency-based features could be extracted. Features from both 

the time and frequency domains can be incorporated into a feature vector that increases 

classification accuracy.  

Time-domain features were responsible for the most frequent variations in the 

acceleration signal. Time-domain features were derived directly from accelerometer 

sensor data and were typically statistical measures. Example time-domain features used 

in many activity monitoring include the mean, standard deviation (SD), variability, root 

mean square (RMS), skewness, entropy, kurtosis (Preece, Goulermas et al. 2009, Ejupi, 

Lord et al. 2014). Linear acceleration was calculated to measure participants’ physical 

movements by removing a gravitational component. Time-domain features of mean, 

standard deviation (SD), variability, root mean square (RMS), skewness, entropy, and 

kurtosis were calculated for all three directions. 

Kurtosis of signal amplitude describes the extent to which the distribution of amplitudes 

was concentrated; kurtosis high values suggest that distribution was more peaked, with 

occasional severe variations. 

Entropy rate computes the signal regularity; entropy values range from 0-1, 0 denotes the 

maximum randomness among consecutive data points, and 1 denotes the complete 

regularity. 

Skewness rate computed asymmetry of signal distribution, skewness value either zero or 

positive or negative. A positive value representing the distribution was right-skewed, the 

negative one representing the distribution was left-skewed, and zero representing the 

normal distribution. 
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Measurement of postural sway was used to measure older adults balance and falls risk 

(Mathie, Coster et al. 2004). Both amplitude and frequency were significant in the 

postural sway assessment, with large sway amplitudes and higher frequencies being 

indicative of postural instability (Mathie, Coster et al. 2004). Therefore, frequency 

domain features were calculated to measure amplitude and frequency. Accelerometer 

sensor data was converted into the frequency domain using a ‘Fast Fourier transform’ 

(FFT) to derive frequency domain features. The output of an FFT typically gives a set of 

basic coefficients representing the amplitudes of the signal's frequency components and 

the distribution of the signal energy (Preece, Goulermas et al. 2009). The maximum 

spectral power was the peak frequency. Using FFT, peak frequency and peak magnitude 

were calculated for each step, and then chose only the maximum frequency and 

magnitude for each trial in three directions for further analysis.  

 

 

 

 

 

 

 

 

 

The above example of going up trial data had shown in Figure 6.1; it had a larger 

magnitude at 3.1 Hz, 4.3 Hz, 5.8 Hz and 7.5 Hz. The higher magnitude was in the middle 

at 5.8 Hz. 

Figure 6.1 Acceleration up data for time domain to frequency domain conversion, x is frequency and y is 

amplitude 
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Biomechanical features 

It was crucial to extract the relevant and appropriate information from the datasets. The 

literature review showed that minimum foot clearance, variability in foot clearance, foot 

contact length ratio, variability in foot contact length are fall risk parameters, so all those 

factors were extracted. The minimum foot clearance indicates a fall risk for a trip; a more 

significant fall risk was associated with smaller foot clearance. In this work, vertical foot 

clearance was calculated. All these instrumented sensor shoes fall risk parameters’ 

calculation procedure was explained in chapter 4. 

During the swing phase, foot clearance was calculated for descending, when the sensor 

shoe’s back distance sensor of the leading limb (Chapter 4’s Figure 4.6) passed the step 

edge's vertical position (1). For ascending, during the swing phase, foot clearance was 

calculated when the sensor shoe’s front distance sensor of the leading limb passed the 

vertical position of the second step edge (2) before placing the foot on the stairs. The 

minimal foot clearance was calculated for steps 1-12 in all three trials, and the twelve-

step foot clearance was divided into three parts, entry (first step), exit (last step), middle 

(combined all remaining steps) for each trial. The measured twelve-step foot clearance 

was used to calculate the foot clearance variability using the standard deviation for each 

house’s trials. 

Foot contact length ratio indicates fall risk for slip; a more significant fall risk was 

associated with reduced foot contact length ratio relative to the step edge. Chapter4’s 

Figure 4.7 shows the foot contact length ratio calculation. For example, if all the sensors 

have the forces, 100% of the foot is placed on the stairs. If only the last sensor does not 

have any force (100%-11%=89%), 89% of the foot is placed on the stairs. Suppose the 

last two sensors do not have forces, which means (100%-22%=78%) 78% of the foot 

placed on the stairs. Similarly, remaining sensor forces were checked to measure the foot 

contact length ratio.  

Foot contact length ratio was calculated for all twelve steps. The 12 steps foot contact 

length ratio was divided into three parts, entry Foot Contact length ratio (FCLR) (first 

step), exit FCLR (last step), middle FCLR (combined all remaining steps). The measured 

twelve-step foot contact length ratio was used to calculate the foot contact length ratio 



142 

 

variability using the standard deviation for each houses’ trial. Higher variability indicates 

an inability to place the foot safely on the step continually. 

 

 

 

Figure 6.2 Stance time Swing time graphical representation, stance time was calculated as the duration of 

the foot contact on the step, swing time was calculated as the duration of the foot off the step 

Going down fast on the stairs may increase the fall risk. The duration of one gait cycle 

was measured for the left and right limbs. Fallers walk with greater stance and swing time 

variability than non-fallers(Mathie, Coster et al. 2004). Stance and swing time was 

measured using a distance sensor (Figure 6.2). Stance time was calculated as the duration 

of the foot contact on the step, and swing time was calculated as the duration of the foot 

off the step. Stance time, swing time, cycle time and total time were calculated for all the 

twelve steps. The 12steps measurements were divided into three parts, entry swing, 

stance, cycle, and total time (first step), exit swing, stance, cycle, and total time (last step), 

middle swing, stance, cycle, and total time (combined all the remaining steps). 

A fall event can be predicted by processing the acceleration signal because changing body 

movement in a pre-fall state causes alternation in the acceleration. For example, older 

people, who have an increased fall risk, manage to walk slowly(Tong, Song et al. 2013); 

this fall risk can be measured using velocity. The velocity was obtained from single 

integration to the acceleration component corresponding to the foot's forward motion. 

Acceleration, velocity, and foot angle were calculated for all twelve steps. The 12steps 

measurements were divided into three parts, entry acceleration, velocity, and foot 

angle(first step), exit acceleration, velocity, and foot angle (last step), middle acceleration, 

velocity, and foot angle (combined all remaining steps). 
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After calculating all the biomechanical risk factors, to determine any fall risk parameters 

related to fallers and non-fallers, ANOVA was used to calculate the mean and standard 

deviation for each factor in two different categories of fallers and non-fallers. Table 6.3 

shows the results. 

Table 6.3 Biomechanical features for fallers and non-fallers (Mean ± SD) 

Variable Fallers Non-Fallers 

Totaltime 11.45±3.0 12.3±3.2 

Cycletime 1.04±0.31 1.00±0.30 

Stancetime 7.96±2.4 8.6±2.5 

Swingtime 3.49±1.54 3.67±1.86 

FootClearance_Entry 25.19±11 29.33±13.13 

FootClearance_Middle 28.84±6.23 29.81±4.94 

FootClearance_exit 30.23±14.00 30.69±13.97 

FootClearance_SD 9.5±18.4 10.35±4.2 

FootContactLength_entry 76.74±10.0 77.8±9.8 

FootcontactLength _Middle 74.81±10.4 74.6±10.7 

FootContactLength _Exit 77.31±12.01 78±10.48 

FootContactLength _SD 6.2±3.6 6.04±3.4 

AccMax_entry 11.1±4.5 12.27±4.95 

AccMax_middle 15.26±4.0 15.20±3.5 

AccMax_exit 13.96±6.6 12.74±5.9 

Pitch_entry 17.30±10.65 10.23±11.59 

Pitch_middle 11.85±18.92 11.70±19.71 

Pitch exit 12.56±12.57 12.87±14.53 

Vel_entry 0.51±0.32 0.57±0.35 

Vel_middle 0.71±0.30 0.68±0.21 

Vel_exit 0.74±0.49 0.64±0.33 

 

Fallers took less total time, swing time and stance time than non-fallers, and there were 

no significant changes in the cycle time. Fallers had less foot clearance for entry and 

intermediate steps compared to non-fallers. Similarly, fallers have a slightly less foot 
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contact length ratio for entry and exit steps. Fallers had more pitch at the entry than non-

fallers. Fallers’ velocity was high for the middle and exit phase. 

Personal Features 

Personal features such as age, height, and mass were extracted from the dataset. 

According to Table 6.4, fallers’ age was slightly less (70.4±4.05) than the non-fallers 

(71±3.9). In contrast, fallers’ height and mass were higher than the non-fallers. 

Table 6.4 Personal Features for fallers and non-fallers(Mean±SD) 

Variable Fallers Non-Fallers 

Age 70.4±4.05 71±3.9 

Height 165.11±5.6 160±6.4 

Mass 71.65±11.7 68.58±7.53 

 

Strength Test features 

Postural transition duration specifies the duration of a transition from one posture to 

another one. Balance control and stability of the body during postural transitions were 

key factors for avoiding falls. Postural transition duration can be an indicator of fall 

because it was significantly correlated with the fall risk(Guimarães, Ribeiro et al. 2013). 

Higher transition duration means lower muscle strength which might lead to a fall. This 

postural transition (berg balance scale assessment) duration was measured using a 

stopwatch.  

Table 6.5 Berg Balance results 

 

Berg balance 

 Frequency Percent 

Valid 

Percent Cumulative Percent 

 1.00, High Risk 1 4.0 4.0 4.0 

2.00, Moderate Risk 6 24.0 24.0 28.0 

3.00, Low Risk 18 72.0 72.0 100.0 

Total 25 100.0 100.0  
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Functional assessments such as the berg balance scale were subjective and qualitative and 

typically used threshold assessment scores to categorise people as low fall risk, moderate 

fall risk and high fall risk. There were 25 participants (Table 6.5), based on the berg 

balance scale; only one participant had high fall risk, 6 participants had moderate fall risk, 

and 18 participants had low fall risk. 

 

Fear of falling  

 The risk of a fall was higher in older adults who experienced a previous fall. 

Table 6.6 Fear of Falling results 

FOF (Fear of Falling) 

 Frequency Percent Valid Percent Cumulative Percent 

          1, Yes for Fear of Falling 8 32.0 32.0 32.0 

 2, No for Fear of Falling 17 68.0 68.0 100.0 

Total 25 100.0 100.0  

 

Among 25 participants (Table 6.6), eight people had a fear of falling, and 17people did 

not have a fear of falling. Among these 8 (fear of falling) older adults, five of them already 

had a fall in the six months follow-up time. 

 

Follow-ups fall  

After data collection, participants were followed up for six months to measure fall 

occurrences; based on the fall occurrence, older adults were classified into fallers and 

non-fallers.   

Table 6.7 Follow-up fall risk results 

Fall risk 

 Frequency Percent Valid Percent 

Cumulative 

Percent 

 Fallers 13 52.0 52.0 52.0 

Non-Fallers 12 48.0 48.0 100.0 

Total 25 100.0 100.0  
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Among 25participants (Table 6.7), 13 people had at least one fall or trip or slip in the last 

six months, so they were Faller's group. Twelve people did not experience any fall in the 

six months, so they were in a non-Fallers group. 

6.5 Features Selection 

After extracting features from the data collection, the next challenge was classifying the 

features. Totally 81 features were extracted. If all features are used to train the classifier 

algorithm (81 features= 80dependent features+1response feature), then the possibility of 

getting biased results is very high. The feature selection method was used to avoid the 

above problem; this feature selection method reduces features with the same information 

as others and features that do not relate to the class(fallers/non-fallers).  

 Feature selection using F-test 

The performance of a classification algorithm directly depends on the size of the feature 

set. The features should be minimized, and dimensionality should be reduced to improve 

the performance of the fall risk classifiers. One way to reduce dimensionality would be 

to apply feature selection algorithms. Feature selection was used to determine which 

features are informative and can significantly differentiate between fallers and non-

fallers. A rank-based system was implemented to determine which features to select from 

the extracted features. A rank-based system was implemented, which computes the F-test 

and p-value on each feature, which helps determine which features to use. The “fsrftest” 

Matlab function was used to get the p-values(Vallabh, Malekian et al. 2016). An empirical 

cumulative distribution function (CDF) of the p-values, as shown in Figure 6.3, shows 

the difference in feature values between the fallers and non-fallers. 

About 15% (15% of 80=18) of features had p-values smaller than 0.05, meaning there 

were 18 features among the original 80 features that have strong discrimination power. 

Features were sorted based on their p-values (or the absolute values of the F-

statistic). Features selected for classification mainly use a p-value range of [0.0005, 

0.055] (Vallabh, Malekian et al. 2016). 
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Figure 6.3 Features selection using a Filter method (F-Test), CDF means Cumulative distribution function, 

p values smaller than 0.05 has more discrimination features between fallers and non-fallers, so those 

features were selected to create a machine learning algorithm 

Table 6.8 P-value for selected Features 

Feature 

Number 

P-value Features name 

1 0.000502 Mean_Acc_Z_R 

2     0.00058 vel_exit 

3 0.014115 vel_middle 

4 0.018885 accxmax_exit 

5     0.02229 stancetime 

6 0.023324 Mean_Acc_Z 

7 0.024122 peakfeqZ 

8 0.025587 FO_exit 

9 0.032013 totaltime 

10 0.034406 RmsAccZ_R 

11 0.043307 peakfreqX 
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The P-value of mean acceleration and velocity was very small; a small p-value of the 

statistic indicates that the corresponding predictor was significant. Features that had low 

p-value are shown in Table 6.8. The eighteen features were selected, along with these 

features, some other features were included, which were biomechanically important to 

predict fall risk (7 other features). The seven features were berg balance, fear of falling, 

foot clearance variability, foot contact length ratio variability, foot clearance entry and 

exit and foot contact length ratio entry. So, in total, 25 features were used to train the 

classifier algorithm. 

 Feature selection using rank features (chi-square test) 

Another rank-based system was implemented to determine which features to select from 

the extracted features. A filter approach rank-based system was implemented, which 

computes the chi-square test on each feature. The “fscchi2” Matlab function was used; 

this is a non-parametric test and computes Pearson’s chi-square test of association. The 

Chi-square test checks whether the fall risk factors (80 features) and response class 

(fallers/non-fallers) are dependent. By calculating the chi-square scores for all the 

features, features can be ranked by the chi-square scores, the top-ranked features were 

selected to train the classifiers.   

 

12     0.04446 cycletime 

13 0.045848 accy_skewness 

14 0.048657 VarAccZ_R 

15 0.052541 accxmax_entry 

16 0.053947 accy_entropy 

17     0.05488 SD_Acc_Z_R 

18 0.055399 Mean_Acc_Y 
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Figure 6.4 Feature selection using the Chi-square test, the features selected by predictor rank has more 

discrimination features between fallers and non-fallers, so those features were selected to create a machine 

learning algorithm 

The mean acceleration for z-direction (Figure 6.4) was the most crucial response class 

predictor (fallers/non-fallers). The other most essential predictors were foot clearance, 

stance time, velocity, acceleration’s standard deviation, acceleration variance, frequency 

domain features such as peak frequency, magnitude, and some of the time domain features 

acceleration skewness, acceleration root mean square. The fifteen features were selected, 

along with these features, some other features were included, which were 

biomechanically important to predict fall risk (7 other features). The seven features were 

berg balance, fear of falling, foot clearance variability, foot contact length ratio 

variability, foot clearance exit and foot contact length ratio entry and exit.  So, 22 features 

were used to train the classifier algorithm in total. 
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6.6 Training Classification Algorithms 

Supervised machine learning algorithms or classifiers were used to categorise an 

observation based on trained observations. The observations were fed into the classifier 

in the training phase, and the classifier learns the patterns that differentiate between the 

categories(fallers/non-fallers), the observations in this study were the features mentioned 

in the previous section. 

In most cases, fall risk classification was a binary classification problem in that there were 

two categories, fallers and non-fallers. Therefore, the classifier used the features in the 

training phase to learn the differences between these two categories. This section explores 

the classifiers, specifically looking at each classifier's results; this can be used to compare 

this study's results. 

 Classification Evaluation Metrics 

There were two different methods (statistical and visualization) were used to compare 

the performance evaluation results:  

i. Statistical Analysis: This method was used to compare the evaluation results by 

mathematical formulas such as classification accuracy (Confusion Matrix), 

Precision, Recall, Sensitivity, Specificity and F-Measure. 

ii. Visualization: representing the possible outcome of true and false values of a 

classifier in the form of graphs, AUC and ROC curves.  

Confusion Matrix 

The confusion matrix was used to measure the classification algorithm's performance (or 

the classifiers) on the test data. The confusion matrix was quite simple to understand. The 

confusion matrix used the binary classification test to measure the predictive abilities of 

the classifier. 

Classifiers were usually evaluated by using four metrics: 

➢ True Positive (TP)- fallers that were correctly classified as fallers 

➢ False Positive (FP)- non-fallers incorrectly classified as fallers (false alarm) 

➢ True Negative (TN)-non-fallers that were correctly classified as non-fallers 

➢ False Negative (FN)-fallers incorrectly classified as non-fallers (miss)    
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Table 6.9 Confusion matrix with advanced classification metrics (Matrix 2019) 

         

 

 Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Type2 Error 

Negative False Positive (FP) 

Type1 Error 

True Negative (TN) 

 

                        

Using the binary classification test (Table 6.9) confusion matrix produces true positives 

and true negative results; these results were divided by the total number of entries that 

gives the accuracy.   

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

Precision: It was a function of true positive and the misclassified objects as positive, for 

example, false positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall/Sensitivity and Specificity: Sensitivity determines how accurately the true 

positives have been predicted. For example, true positive (correctly classifying as fallers) 

and the objects that were classified incorrectly (false negative) and was defined as 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity determines how accurately the true negatives (non-fallers) have been 

predicted, for example, correctly classifying as non-fallers, defined as: 

 

Actual Class 

Predicted Class 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

 

F-Measure was another standard evaluation metric combining precision and recall into 

a single value. The formula is as: 

 

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝐹1 𝑠𝑐𝑜𝑟𝑒) = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

AUC-ROC The ‘Receiver Operating Characteristic curve’ (ROC) was a standard 

technique used to summarise classifier performance based on trade-offs between true 

positive and true negative error rates. ROC Type1 error (False Positive-false alarm) and 

Type2 error (False Negative-missed positive).  

𝑇𝑦𝑝𝑒1 𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑦𝑝𝑒2 𝐸𝑟𝑟𝑜𝑟 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

AUC (Area Under the Curve) - ROC curve was used to measure the classification 

problem's performance. ROC was a probability curve, and AUC represents the degree of 

separability. It describes how much the model could distinguish between classes.  The 

higher the AUC values better the model at distinguishing between fallers and non-fallers. 

 Classification Algorithms 

Supervised machine learning classification is the automatic assignment of a class 

(fallers/non-fallers) to the feature vector that had been previously extracted from the 

collected data. The algorithms used for this classification are known as “classifiers”. A 

classifier is a program built by a learner. The learner takes the input from the dataset and 

produces the classifier. Classifiers learn how to identify the class of a feature vector from 

the training dataset. The training set comprised the feature vectors and class labels.  

Many classifiers are available to get better results, and we need to try different classifiers 

because almost every dataset comes with different specifications. This project used some 

of the most common classification algorithms. However, only some classification 
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algorithms like Support Vector Machine (SVM), k-nearest neighbors algorithm and 

Ensemble (AdaBoost) performed well. 

The Support Vector Machine (SVM) Classifier: The SVM classifier calculates the best 

smoothing parameter (hyperplane) using a linear decision boundary to separate two 

different classes (fallers and non-fallers) in the database. The best property of SVM is 

that it concurrently reduces the classification error and increases the geometric margin. A 

linear hyperplane that entirely separates between two classes. In real-world examples, it 

may not be possible to sufficiently split the two classes using a linear hyperplane.  

Instead of using a non-linear separator (high-order polynomial), SVM uses a method to 

convert the feature space such that the classes do become linearly separable. This method 

is called the kernel trick, and it alters the feature space, separating the classes with a linear 

hyperplane. The radial basis function (RBF) is a standard method for kernel 

transformation in high-dimensional space is the radial basis function (RBF). Training sets 

are mapped with a higher dimensional space using the radial basis function (RBF) in the 

SVM classification. Four basic kernels are available in SVM: linear, radial, polynomial, 

and sigmoid.  

Ensemble methods Ensemble models are a useful, practical tool for different predictive 

tasks, as they could consistently provide higher accuracy results than conventional single 

strong machine learning models. However, ensemble classifications require more 

computation than any other single model. The common types of ensembles are Bayes 

optimal classifier and boosting. 

Bayes optimal classifier is a simple method to construct a machine learning classifier. A 

Bayes optimal classifier considered each input feature are assumed to be independent of 

each other. For example, some fruits are maybe orange fruit, orange colour, round, and 

about 10 cm in diameter. There are three features created for orange fruit classification: 

colour, shape, and size.  A Bayes optimal classifier considers each of these features to 

contribute independently to the probability that this fruit is an orange, regardless of any 

possible correlation between the colour, shape, and size features. Bayes optimal classifier 

can be trained efficiently for probability models in supervised machine learning. Also, 

Bayes optimal classifier uses a maximum likelihood method for parameter estimation. 
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AdaBoost is the most common boosting algorithm’s implementation. In AdaBoost 

algorithms, the learning procedure consecutively fitted new models to provide a more 

accurate estimate of the response variable. This algorithm's principal idea is to construct 

the new base-learners to be maximally correlated with the negative gradient of the loss 

function associated with the whole ensemble.  

k-nearest neighbors algorithm (k-NN) k-NN is a simple classification algorithm based 

on calculating the distance (usually the Euclidean distance) between the new element to 

be classified and the elements in the training set. k-NN is also called instance-based 

learning, where all computations are postponed until the end of classification. 

Classification of the object is based on the neighbours’ selection, which was correctly 

classified at the time of training, and that neighbour’s class is assigned to the object. k-

NN accuracy can be improved by normalizing the training data. A useful technique is to 

allocate weights to the neighbors so that the closer neighbors can contribute more to the 

average than the more distant ones. 

 

Figure 6.5 Example for k-NN (Wikipedia) 

For example (Figure 6.5), the test sample (orange dot) should be classified as either green 

squares or blue triangles. If k = 3 (the inner circle), it was assigned to the blue triangles 

because there were two triangles and only one square inside the inner circle. If k = 

5 (outer circle), it was assigned to the green squares (three squares vs two triangles inside 

the outer circle). 
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 Validation Methods 

The dataset data set was divided into two parts; one part was for training, and the second 

part was for validation. K fold cross-validation technique was used for validation. The k-

fold technique partitions data into k fold; for example, if k=5, the feature set would be 

divided into five equal sizes. One subset was used for validation, and the remaining 

subsets were used for training. This process was repeated k times, such that each subset 

was used exactly once for validation. Finally, the k-fold cross-validation technique was 

used to estimate the accuracy of the classifiers. In this project, the results obtained for k-

fold cross validation uses five folds.  

6.7 Results  

A total of 450 trials were used to create a dataset. All five sets of features such as time 

domain, frequency domain features, biomechanical features, strength features, and person 

features were extracted for all 450 trials. This feature set referred to a feature vector, 

follow up fall information listed as a class in the dataset, can either be fallers or non-

fallers. In this dataset, 234 trials were identified as fallers, and 216 trials were identified 

as non-fallers.  

 

Figure 6.6 Selected three feature set for classification training 
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In this work, three feature sets (Figure 6.6) were used for classification; the first feature 

set contained all the features, the second feature set contained features selected by f-test 

(18features+7biomechancical features=25features), and the feature set contained features 

selected by chi-square test (15feature+7biomechanical features=22features). All the 

features were standardised before classifier training. 

 Full Feature set results 

Full features were used to train the classifier. Many classifiers were tested, but three 

classifiers (SVM, k-NN and Ensemble) performed better than other classifiers. Cubic 

kernel function was used by the SVM classifier. Ensemble classifier used boosted trees, 

the method was AdaBoost, and learner type was decision tree. Fine k-NN was used by k-

NN, the number of neighbors was 1, Euclidean distance Metrix was used, and distance 

weight was equal. 

For full features (Table 6.10), three classifiers had given comparatively better results: 

SVM, k-NN and ensemble with 80.2%, 79.6%, and 77.6% accuracy, respectively. k-NN 

classifier had more sensitivity (81%) than the other two classifiers (79% SVM and 78% 

ensemble). SVM classifier (81.5%) had better specificity than other classifiers (78.2% k-

NN, 77.3% ensemble). SVM had better precision (82.2%) than the other two classifiers 

(80.1% k-NN, 78.8% ensemble). The F-Measure result had been used to compare 

classifier performance; SVM (80.57%) and k-NN (80.55%) were performed better than 

ensemble (78.45%)  

Table 6.10 Full Feature set classification results 

Classifier SVM (cubic SVM) 

 

KNN (fine KNN) 

 

Ensemble 

Confusion Matrix Accuracy 80.2% 79.6% 77.6% 

Precision 82.2% 

 

80.1% 78.8% 

Recall/Sensitivity 79% 81% 

 

78% 

Specificity 81.5% 78.2% 

 

77.3% 

F-Measure 80.57% 80.55% 78.45% 

Type1 Error 19% 22% 23% 
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Type2 Error 20.9% 20.4% 22.2% 

Error rate 19.80% 20.40% 22.40% 

AUC 0.87 0.80 0.85 

  

Type1 Error (false alarm) represented the “False Positive” values. In contrast, Type2 

Error (missed positive case) presents the “False Negative” Type2 Error-values that show 

the system’s failure to predict any fallers and label them non-fallers. SVM classifier had 

less type1 error (0.19%) rate compared to other classifier (0.22% k-NN and 0.23% 

ensemble). The K-NN classifier had a lower type2 error rate of 20.4 % than other 

classifiers (20.9% SVM, 22.2% ensemble). 

The ROC curve (Figure 6.7) was plotted with TPR against the FPR, where TPR was on 

the y-axis and FPR was on the x-axis. The AUC gave a single value which explains the 

probability that each algorithm would correctly classify a random sample. All models 

performed very well in this complete feature set, but the SVM algorithm showed the best 

performance, with AUC = .87 compared to the k-NN (AUC = .80) and the ensemble 

(AUC = .85). 

 

 

Fine KNN Cubic SVM 
Full Features 

Figure 6.7 Area Under the Curve (AUC) results for best two classifiers using Full feature set, cubic 

SVM algorithm produced 87% AUC and the Fine KNN produced 80% AUC 



158 

 

 Chi-square Feature set results 

Twenty-two features were used to train the classifier. Again, many classifiers were tested, 

but again same three classifiers (SVM, k-NN and ensemble) performed better than other 

classifiers. The SVM classifier used the cubic kernel function. Ensemble classifier used 

boosted trees, the method was AdaBoost, and learner type was decision tree. Fine k-NN 

was used by k-NN, the number of neighbors was 1, Euclidean distance Metrix was used, 

and distance weight was equal. 

The results (Figure 6.8) reveal that some of the classifiers had shown a comparatively 

lower error rate, especially the SVM, which had classified 209/234 fallers and 192/234 

non-fallers correctly.  

 

Figure 6.8 Confusion matrix for SVM 

Table 6.11 shows the chi-square feature set classification results for best-performing three 

classifiers for the chi-square feature set. The three classifiers with comparatively better 

results were SVM, ensemble, and k-NN with 89.3%, 89.1%, and 83.6% accuracy. SVM 

classifier had more sensitivity (88.9%) than the other two classifiers (88.0% ensemble 

and 82.1% k-NN). Ensemble classifiers had better specificity (90.3%) than other 

classifiers (88.9% SVM, 85.2% k-NN). Ensemble had better precision (90.7%) than the 
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other two classifiers (90.4% SVM, 85.7% k-NN). The F-Measure result had been used to 

compare classifier performance; SVM (90%) and ensemble (89%) were performed better 

than k-NN (84%). 

Table 6.11 Classification results for the chi-square feature set 

Chi-square features set classification 

results /Classifier 

SVM Cubic Ensemble 

Boosted Trees 

KNN 

Fine KNN 

Confusion Matrix Accuracy 89.3% 89.1% 83.6% 

Precision 90.4% 90.7% 85.7% 

Recall/Sensitivity 88.9% 88.0% 82.1% 

Specificity 89.8% 90.3% 85.2% 

F-Measure 90% 89% 84% 

Type1 Error 11.1% 12% 17.9% 

Type2 Error 10.2% 9.7% 14.8% 

Error rate 10.70% 10.90% 16.40% 

AUC 0.93 0.95 0.84 

 

SVM classifier had less type1 error (11.1%) rate than other classifiers (12% ensemble 

and 17.9% k-NN). Ensemble classifiers had a lower type2 error rate of 9.7% than other 

classifiers (10.2 % SVM, 14.8% k-NN). 

The AUC gave (Figure 6.9) a single value which explains the probability that each 

algorithm would correctly classify a random sample. All models perform very well in this 

chi-square feature set, but the Ensemble algorithm showed the best performance, with 

AUC = 0.95 compared to the k-NN (AUC = 0.84) and the SVM (AUC = 0.93). 
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 F-Test Feature set results  

Twenty-five features were used to train the classifier. Again, many classifiers were tested, 

but again same three classifiers (SVM, k-NN and ensemble) performed better than other 

classifiers. 

The SVM classifier used the cubic kernel function. Ensemble classifier used boosted 

trees, the method was AdaBoost, and learner type was decision tree. Fine k-NN was used 

by k-NN, the number of neighbors was 1, Euclidean distance Metrix was used, and 

distance weight was equal. 

For F-test features, Table 6.12 shows the result, three classifiers with comparatively better 

results were SVM, ensemble and k-NN with 89.1%, 86.2%, and 83.6% accurate results, 

respectively. SVM classifier had more sensitivity (89.3%) than the other two classifiers 

(82.1% ensemble and 83.3% k-NN). Ensemble classifiers had better specificity (90.7%) 

than other classifiers (88.9% SVM, 83.3% k-NN). Ensemble had better precision (90.6%) 

than the other two classifiers (89.7% SVM, 84.8% k-NN). The F-Measure result had been 

used to compare classifier performance; SVM (89%) and ensemble (86%) were 

performed better than k-NN (84%). SVM classifier had less type1 error (10.7%) rate 

Chi-square feature selection 

results 

Figure 6.9 Area Under the Curve (AUC) results for best two classifiers using chi-square feature set, cubic 

SVM algorithm produced 93% AUC and the Boosted trees produced 95% AUC 
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compared to other classifier (17.9% ensemble and 16.7% k-NN). Ensemble classifiers 

had less type2 error rate of 9.3% than other classifiers (11.1 % SVM, 16.2% k-NN) 

Table 6.12 Classification results for F-Test feature set 

Classifiers for F-test SVM (Cubic 

SVM) 

Ensemble (Boosted 

Trees) 

KNN (Fine KNN) 

Confusion Matrix Accuracy 89.1% 86.2% 83.6% 

Precision 89.7% 90.6% 84.8% 

Recall/Sensitivity 89.3% 82.1% 83.3% 

Specificity 88.9% 90.7% 83.3% 

AUC 0.94 0.94 0.84 

F-Measure 0.89 0.86 0.84 

Type1 Error 10.7% 17.9% 16.7% 

Type2 Error 11.1% 9.3% 16.2% 

Error rate 10.90% 13.80% 16.40% 

In this F-Test feature set, all models performed very well, but the Ensemble and SVM 

classifiers showed the best performance (Figure 6.10), with AUC = 0.94 for both 

compared to the k-NN (AUC = 0.84). 

 

 

 

 

 

 

 

 

Cubic SVM Ensemble Ada Boost 

F-test features selection were used  

Figure 6.10 Area Under the Curve (AUC) results for best two classifiers using F-Test feature set, cubic 

SVM algorithm produced 94% AUC and the Ensemble Ada Boost produced 94% AUC 
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6.8 Discussion 

This study aimed to design the stair fall risk classification system using supervised 

machine learning algorithms. The input data sample represents the older participants trials 

(450trials. Each sample in the dataset represents an older adult who belongs to one of the 

two classes (fallers or non-fallers). The input dimension depends on the features (81) 

associated with older adults’ trials. The classifiers' outputs were binary values; for 

example, 1 represents the fallers group, and 0 represents the non-fallers group. There were 

52% of sample data fallers and 48% non-fallers. 

This work explored two filter type features-selection algorithms to reduce the feature set's 

size and improve classification accuracy. Those two algorithms were the chi-square test 

and F-test. The chi-square feature selection algorithm's advantage was that it returned 

rank for each feature (risk factor), based on the discriminative power between fallers and 

non-fallers. F-test returns a p-value for each feature, which had less than 0.05 p-values 

indicating that the corresponding predictor was significant for classification. By selecting 

these features, the classification accuracy was improved. Both algorithms showed that 

mean acceleration, foot clearance, and velocity were the top three features with strong 

discrimination power between fallers and non-fallers. This is because fallers' foot 

clearance was less than that of non-fallers, and acceleration and velocity were higher for 

fallers than non-fallers (table 6.3). 

Three different feature sets were trained, one with full features (A), chi-square feature set 

(B) and F-test feature set(C). The feature set that contained all the features (A) did not 

perform well, so it was not compared with other results. The other two feature sets (B and 

C) performed well, so the feature sets B and C results are compared below.  

After selecting feature sets, many algorithms were trained to classify fallers and non-

fallers. However, only three algorithms were performed well: Support Vector Machine 

(SVM), k-nearest neighbors algorithm, and Ensemble (AdaBoost). Results showed that 

all three selected algorithms could perform with high accuracy, sensitivity, and specificity 

despite substantial differences in how the algorithms work.  
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Table 6.13 Chi-square and F-Test classification results in comparison, green colour indicates that the first-

best results for that evaluation metrics, the red colour shows the second-best results for that evaluation 

metrics 

 

The above Table 6.13 shows the precision, recall and F-measure for all three trained 

algorithms from two different feature sets (B and C). Green colour indicates the first-best 

results for that evaluation metrics; the red colour shows the second-best results for that 

evaluation metrics.  

Accuracy is the percentage of the total number of correct predictions. The 89.3% of fallers 

were correctly classified by the SVM classifier (feature set B). The Ensemble classifier 

correctly classified 89.1% of fallers. 

Precision calculates the ratio of correctly classified instances among those classified as 

positive. For example, precision represents the ratio between the number of fallers 

correctly predicted and the total number of predicted fallers correctly and incorrectly; the 

90.7% of older adults who were classified as fallers were actually fallers. The ensemble 

classifier had better precision (90.7(B), 90.6(C)) than the other two classifiers in both 

feature sets. 

Sensitivity is the ability of a test to correctly identify fallers (true positive rate); for 

example, Recall(sensitivity) is the ratio between the number of fallers that are correctly 

predicted and the total number of actual fallers in the dataset. SVM algorithm had better 

sensitivity for both feature sets (89.3 % (C), 88.9 % (B) than the other classifiers. So, the 

SVM algorithm can classify 89.3% of fallers among all fallers in the dataset. 

Evaluation 

metrics 

Precision Recall/sensitivity Accuracy F-Measure 

Classifier Feature 

set(B) 

Feature 

set(C) 

Feature 

set(B) 

Feature 

set(C) 

Feature 

set(B) 

Feature 

set(C) 

Feature 

set(B) 

Feature 

set(C) 

SVM 90.4% 89.7% 88.9% 89.3% 89.3% 89.1% 90% 89% 

Ensemble 90.7% 90.6% 88.0% 82.1% 89.1% 86.2% 89% 86% 

k-NN 85.7% 84.8% 82.1% 83.3% 83.6% 83.6% 84% 84% 
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The weighted average of the sensitivity and precision is called the F1 score. F-Measure 

provides a single score that balances both the concerns of precision and recall in one 

number, and it helps to distinguish the model’s performance. Based on the F1 score, the 

overall feature set(B)’s classifier performed well; for example for SVM algorithm had 

better F-measure of 90% for feature set (B) and the ensemble algorithm had second better 

results for F-measure 89% for feature set(B).  

Support Vector Machine classifier gives significant prediction results, shown in Table 

6.13, as they have their own predictive power in computing. Also, SVM gives significant 

results in terms of ROC value and lower error rate for fallers misclassification, which was 

much better than the other classifiers. 

Overall, the support vector machine classification model was more effective than other 

models for predicting fallers (Fallers). 

 The prediction of stair fall risk in future 

A classification model had been trained to classify fall information (Appendix G). Fall 

risk prediction can be made in the future based on the instrumented sensor shoe and our 

trained classification algorithms if applied to large groups of older people.  

In future, instrumented sensor shoes can be tested in a home environment. The raw data 

from instrumented sensor shoes in the houses are not directly applicable to our trained 

classification model. Before using our trained algorithm, we need to extract the same 

features (features set (B)) used in this project. Follow up fall information (fallers/non-

fallers) is not required in the future to use our trained classification algorithm. Because 

our trained algorithm learned the patterns from the database used in this project. After 

successful features extraction, our trained classification model can be applied to new 

extracted features (without a class label). 

The trained classification model can then predict either fallers (high risk of falling) or 

non-fallers (low risk of falling). Figure 6.11 shows how these data are represented and 

processed by the trained model in the future. In Figure 6.11, (A) represents classification 

training, (B) represents Validation, and (C) represents new data testing using the trained 
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algorithm. Note that all algorithms that return predictions that suggest a near-certainty 

that this trial is a high risk of falling/low risk of falling. 

 

Figure 6.11 (A)Training (B)Validation (C)Trained algorithm for future testing 

Simulating all the external conditions is technically challenging and may modify the older 

adult’s stair negotiation performance. The realistic approach could test the stair fall risk 

parameter in real-life staircases. The developed instrumented sensor shoe allows 

recording various stair fall risk parameters to identify the stair fall risk. Using stair-

specific biomechanical parameters measured in real-life conditions together with a higher 

sample size in real life stair negotiation conditions could improve the predictive power of 

our trained machine learning algorithm. 
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6.9 Conclusion 

In this study, instrumented sensor shoe was successfully designed, validated, tested in the 

houses. Also, a stair fall classification system was created using supervised machine 

learning algorithms. SVM, ensemble and k-NN algorithm gave better precision, 

sensitivity, and F-measure. Data need to be collected from their own living environment 

using sensor shoes for future fall risk prediction. These collected data need to be analysed 

to compute the appropriate feature set. Then, the risk of a possible fall can be evaluated 

through our trained classification algorithms. Once the trained algorithm provides output 

about the subjects at high risk of falling, those older people will be informed about their 

high risk of falling. They will be recommended for a fall prevention exercise program run 

by NHS to improve their balance on the stairs. 
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7. CHAPTER 7:  General Discussion  
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7.1 Purpose  

The overall purpose of this thesis was to develop an instrumented shoe with a novel 

combination of sensors that can identify older adults risk parameters for a fall on stairs at 

the community level and in their natural home environment. Identified fall risk parameters 

were used in the machine learning algorithm to classify older adults at risk of falling. 

Identified high risk older adults can then be referred to fall prevention and exercise 

programs to improve their strength and balance to avoid future falls.  

7.2 Summary of experimental findings  

Chapter 3 Sensor Shoe Development 

Stair fall risk parameters have been identified using extensive study on stairs in the 

laboratory. However, laboratory-based fall risk parameters require expensive, 

cumbersome equipment and instrumentation. Also, laboratory-based equipment is not 

able to test at real houses. On the other hand, most stair falls occur at home, so a simple 

solution would be helpful to predict fall risk at home.  So, a simple prototype wearable 

sensor shoe was developed to fill the gap between the laboratory measurements and stair 

fall risk assessment in actual houses. 

An instrumented shoe was developed to detect stair fall risk parameters at the community 

level and not only in the laboratory. Three low-cost sensors were used to create the 

instrumented shoe: a vl6180x distance sensor, a BNO055 IMU and an FSR force sensor 

and each sensor shoe cost £200 to produce, so a total cost of £400 for both instrumented 

shoes. Participants walked with this instrumented shoe outside the houses during the data 

collection in different homes. The sensors were not damaged due to the sensor cases, so 

this showed the durability of the instrumented shoe. 

Fitting many sensors all over the body might affect a participant's daily activity. In 

contrast, if the sensors are incorporated in the shoe, many people will happily wear them 

at home to collect data for longer. That was the main reason for focusing on only 

instrumented shoes. Even though few risk parameters were implemented, we can predict 

the fall risk in the future using this set of powerful parameters. The sensor shoe has the 

potential to add more sensors in future. Older people can use this sensor shoe at home 
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without any assistance (just required to press a  button on the shoe). Data is stored in the 

Storage (SD) card and are processed later to predict stair fall risk. This system won't affect 

their gait, is less expensive, and can collect data for longer.  

Chapter 4 Sensor Shoe’s stair fall risk parameters validation 

The instrumented shoe's extracted stair fall risk parameters were validated against fall 

risk parameters collected through a Vicon system in a biomechanics laboratory. Different 

approaches are available to track human motion: Optical motion systems (such as Vicon 

or Optotrak) and commercial IMU sensors such as MTw(Xsens). However, the most 

widely used and accepted system to track stair climbing motion is the optical motion 

system because it has high accuracy when operating in controlled environments. This 

Vicon optical motion system was used in our lab, so it was decided to compare the sensor 

results with the Vicon system.  

Instrumented shoes' fall risk parameters such as foot clearance, foot contact length, and 

cycle time were validated against the parameters measured with the Vicon system. There 

were two different methods, correlation and Bland Altman plot(B&A), used to compare 

the results. The correlation coefficient describes the relationship between two methods 

(sensor and vicon); sensor shoe's foot clearance, foot contact length ratio and cycle time 

had a high positive linear correlation with the vicon system. But this correlation does not 

describe their agreement (Bland and Altman 1986). A high correlation does not mean a 

good agreement between the two methods. So, the Bland-Altman plot was used to 

measure the agreement between two methods by constructing limits of agreement.   

The maximum acceptable difference for foot clearance was 5 mm, and this was set by the 

researcher. The B&A plot results showed that the sensor shoe's foot clearance 

measurements were 0.05 mm(bias), and the limits of agreements results were from 4.7 

mm to -4.6 mm. This limit comes within the acceptable difference, so this method of 

calculating foot clearance can be used in the future.  

The maximum acceptable difference for foot contact length was 15%; this was set by the 

researcher. The B&A plot results showed that the sensor shoe's foot contact length 

measurements were -2%(bias), and the limits of agreements results were from 10% to -
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13.9%. This limit comes within the acceptable difference, so this method of calculating 

foot contact length can be used in the future.  

The maximum acceptable difference for cycle time was 0.5 seconds; this was set by the 

researcher. The B&A plot results showed that the sensor shoe's cycle time measurements 

were 0.2 seconds(bias), and the limits of agreements results were from 0.5 seconds to -

0.14 seconds. This limit comes within the acceptable difference, so this method of 

calculating cycle time can be used in the future.  

These 95% limits of agreement were small enough to be confident that the new method 

(sensor shoe) can calculate foot clearance, foot contact length ratio and cycle time in place 

of the VICON method.  

Chapter 5 Stair fall risk parameters comparison between a controlled environment and 

uncontrolled environment 

 This chapter investigated whether older adults maintained their stair-negotiating 

behaviour when negotiating different staircase dimensions. It was found that most of the 

older adults did maintain their stair-negotiating behaviour, for both ascent and descent in 

similar staircases, altered their stair behaviour for different stair dimensions of 2010, 1920 

and 1970’s houses.  

In ascending, older adults spent less time (faster) to climb consistent (the 1920s and 

1970s) straight stairs. This research (Templer 1995) found that straight flights of stairs 

without landings accounted for 52% of all accidents. The straight staircase might be the 

case because the path of straight flights is often clear and uninterrupted, so stair users are 

reassured into a false sense of security and reduced attention. However, straight flights 

may also result in more severe injuries because there is no place where the fall may be 

broken on the stairway.  

The ascending and descending foot contact length ratio was less (mean= 67%) for 

inconsistent (the 2010s) stairs. It shows that the risk of overstepping increases on 

narrower stairs (the 2010s) due to lack of space to place the foot safely (Roys and Wright 

2005). Descending foot contact length ratio is more critical for safe stair negotiation 

(Roys, 2013); for example, older adults who usually have less foot contact length ratio 
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might experience a fall (Roys and Wright 2005). If less than 70% of the foot contact 

length regularly, there is an increased risk of a slip over the step-edge (Roys 2013), but 

the British Standards Institution (BSI) indicate that less than 50% of foot contact length 

ratio would most likely lead to a fall (BSI 2010).  

Winder stairs are more dangerous than standard stair designs because of the non-uniform 

tread width; recent studies concerning stair accidents reveal that this is not true (Wells 

1977). Older adults used increased cadence and increased entry and exit foot clearance 

compared to other houses to support this. In contrast, the foot contact length ratio 

decreased compared to other houses due to the walking portion of the tread being less 

than the other two houses. The 2010s staircase (winder staircase) contains 210 mm rise 

and from 185 mm to 230 mm going configuration; if the feet are placed forward, the ball 

of the lead foot is placed outside the edge of the step, which can reduce the balance and 

result in a fall. Older adults find it challenging to negotiate staircases with high step-rises 

or short step-goings, and this configuration challenges muscle strength and postural 

stability. The reason for this, older adults get their best support when they place most of 

their foot on the tread, but this is not always possible because the going of the winder 

staircase was less than the older adults foot length. Therefore, to safely negotiate this 

small going, they need to turn their feet to the side of each step. Otherwise, more of the 

feet will overhang. In addition, older adults foot clearances over the middle steps were 

less for the 2010s staircase for both ascending and descending; this would increase the 

risk of a toe-catch, and the chances of tripping increase when individuals have less foot 

clearance (Hamel, Okita et al. 2005). 

Older adults showed a safe strategy for ascending in the laboratory and descending in the 

houses. In contrast, older adults showed a riskier strategy for descending in the laboratory 

and ascending in the houses. Older adults had less foot clearance in the entry steps and 

more variability in the foot clearance in the houses than in the lab. It is already 

demonstrated that many stairway accidents occur on the top or bottom stairs (templer. 

1985) as an older adult might be looking around for the next part of their movement, so 

their attention might not be entirely focused on the stairway (Templer 1995). It is possible 

to conclude that house staircases are not safer because there was more variability in the 

foot clearance, leading to trip. In the laboratory staircase, due to less rise and more going, 
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starting foot clearance and ending foot contact length was high compared to houses with 

less variability. Therefore, it shows that the laboratory staircase is safer than the exemplar 

houses. 

There was no interaction between the follow-up group (faller/non-fallers) and different 

environments, so both fallers and non-fallers group would be at an increased fall risk by 

the exact mechanism on different environments. However, the consequences will likely 

be more severe for the fallers group because they do not have the adequate strength 

reserves to recover when they lose balance (Foster, Maganaris et al 2019) 

Older adults who had a previous fall showed more variability in foot clearance and more 

variability in foot contact length than others. Older adults afraid of falling showed 

increased cadence variability; this showed less stability and led to a fall. High risk older 

adults from the berg balance scale had normal cadence (1.37 s) compared to low and 

moderate risk older adults (high cadence); this shows that high risk older adults take some 

cautious strategies to stay safe in the stairs. 

With only current statistical results, it is hard to state who is at risk of falling in the future, 

so the machine learning method was used to find future fall risk prediction. Despite many 

similarities between the statistical and machine learning methods, the Machine Learning 

algorithm is differentiated from statistical inference by predicting real-life outcomes from 

new data. 

Chapter 6: Identify Fall risk using Novel sensors and Machine learning algorithm   

This study aimed to design the stair fall-risk detection system using supervised machine 

learning algorithms. The input data sample represents the older participants trials (450 

trials) in this study. Each sample in the dataset represents an older adult who belongs to 

one of the two classes (fallers or non-fallers). The input dimension depends on the features 

(81features) associated with older adults' trials. The classifiers' outputs were binary 

values; for example, 1 represents the fallers group, and 0 represents the non-fallers group. 

There were 52% of sample data contained fallers, and 48% of sample data had non-fallers. 

There were 81 features (risk parameters) extracted from the data set; feature selection 

methods were applied to select appropriate features. Feature selection methods showed 
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that mean acceleration, foot clearance, and velocity were the top three features with strong 

discrimination power between fallers and non-fallers. Fallers' foot clearance was less than 

the non-fallers group, and acceleration and velocity were higher for fallers than non-

fallers. 

After selecting feature sets, many algorithms were trained to classify fallers and non-

fallers. However, only three algorithms were performed well: Support Vector Machine 

(SVM), k-nearest neighbors algorithm, and Ensemble (AdaBoost).  

The ensemble classifier had better precision than the other two classifiers. On the other 

hand, the SVM algorithm had better sensitivity than the other classifiers. So, the SVM 

algorithm can classify 89.3% of fallers among all fallers in the dataset. Based on the F1 

score, the overall SVM algorithm had better F-measure of 90%, and the ensemble 

algorithm had second better results for F-measure 89%. 

Support Vector Machine classifier gives significant prediction results, as they have their 

own predictive power in computing. Also, SVM provides substantial results in ROC value 

and lower error rate for fallers misclassification, which was much better than the other 

classifiers. Overall, the support vector machine (SVM) classification model was more 

effective than other machine learning models for predicting fallers. A successfully 

developed machine learning algorithm can test future fall risks of older people.  

Simulating all the external conditions that may modify the older adult's stair negotiation, 

and also it is technically challenging. So the realistic approach could be to test the stair 

fall risk parameter in real-life staircases. Advancements in wearable sensors, such as our 

developed instrumented sensor shoe, allow recording various input parameters to identify 

the stair fall risk. Using biomechanical parameters measured in real-life conditions could 

improve the machine learning algorithm's predictive power. In addition, older people can 

use this sensor shoe at home without any assistance (just pressing the button in the shoe). 

Data will be stored in the storage (SD) card. Those data will be processed to predict stair 

falls. The collected raw data from sensor shoes in the houses are not directly appliable for 

our trained classification model. Before using our trained algorithm, we need to extract 

the same features used in this project. Follow up fall information (fallers/non-fallers) is 

not required in the future to use our trained classification algorithm. Because our trained 
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algorithm learned the patterns from the database used in this project, after successful 

features extraction, our trained classification model can be applied to the new extracted 

features (without a class label). 

The trained classification model can then predict fallers (high risk of falling) and non-

fallers (low risk of falling). In the future, all algorithms return predictions that suggest a 

near-certainty that this trial is a high risk of falling(fallers)/low risk of falling(non-fallers). 

Once the trained algorithm provides output about who are at high risk of falling, those 

older people will be informed about their high risk of falling and recommended for the 

fall prevention exercise programs run by NHS to improve their balance on the stairs. 

The developed instrumented shoe in large-scale populations without a dedicated gait 

laboratory opens new possibilities for stair fall risk detection and prevention at the 

community level.  The instrumented shoe was successfully developed, validated, and 

tested in actual houses. In addition, a classification algorithm was developed to 

differentiate fallers and non-fallers, which could detect stair fall risk in the future. Despite 

many similarities, the Machine Learning algorithm is distinguished from statistical 

inference by predicting real-life outcomes from new data. First, data must be collected 

from sensors at home and analysed to compute the appropriate feature set to predict fall 

risk. Then, the risk of a possible fall will be evaluated through classification algorithms. 

Finally, some specialised exercise programs will prevent future falls by improving the 

gait and mobility of high risk older adults.  

7.3 Stair falls   

Many studies focus on falls in general, but only a few studies focus on stair falls. Two 

different stair falls study paradigms are available, the one in the laboratory to examine 

stair fall risk parameters with specialist and expensive biomechanical analysis equipment. 

The other research paradigm focuses on detecting falls (actual fall- when it is happening) 

using sensors at home.  This project fills the gap between these two domains by using an 

instrumented shoe with special sensors to detect fall risk using the parameters that have 

been found to constitute a fall risk in the laboratory. Twenty-five people were tested, and 

13 people had a slip, trip, and fall in the following six months (Appendix F). Although 

one of the participants had two falls in the six-month follow-up, that participant slowly 

negotiated the laboratory staircase. Even though that participant was cautious, she did not 
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pay attention to the environment (things on the stair), which caused her a fall, and she 

needed surgery after a fall. Another participant showed less foot contact length ratio in 

the laboratory, and he had two trips at his home staircase, but they did not cause a 

significant fall. Another participant had a trip, but she managed to retain her balance, so 

no fall was recorded, based on the sensor data, and she did not show any risky behaviour 

for falls. The remaining participants who had a fall or slip did not show any risky 

behaviour for fall at the lab and houses data. 

7.4 Limitations 

Improvement in printed circuit board size (sensor shoe), making it even smaller, keep it 

in a small, enclosed box would be ideal. Data were collected from only 25 participants; 

more participants would be better, along with a new, improved circuit board. This project 

only focuses on different stair dimensions of how older people perform. It would be better 

to include various risk factors such as light, carpet, and so on. In addition, the current 

circuit could only measure vertical clearance, not horizontal clearance. The horizontal 

clearance is essential to find a risk for slip while descending stairs. This project's printed 

circuit board can add a few more distance sensors. With this ability, we can fit the distance 

sensor at the back of the shoe to find out horizontal foot clearance while descending stairs. 

We tried to fit the distance sensor at the shoe's back (heel counter), but the data collection 

frequency decreased.  In addition, it was hard to fit the back (heel counter) of the shoe; 

when the shoe's outer layer was thinner, the sensor went inside the shoe and was not 

comfortable to walk, so we didn't use this back distance senor(horizontal) for data 

collection.   

People would not wear shoes at home in real life, but they wear slippers. It was hard to 

fit all the sensors in the slipper, so we decided to use the shoe to include the required 

sensors, which was practical. Instead of bringing older people to the lab to test whether 

they have a risk of falling in the future, we can test them at home with this sensor shoe. 

They need to wear them only when they use stairs. Instead of collecting in a controlled 

environment, we will get realistic data that cause falls. Older adults need to wear them 

for a few days, and then by analysing (machine learning algorithm) their data, future fall 

risk can be predicted. 
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7.5 Future recommendations  

In the future, we need to extract more fall risk parameters within the user environment as 

this would be more beneficial for predicting stair falls. Also, we need to test the 

instrumented shoe in different staircase dimensions in the broader general living 

environment of various user groups. Testing more people on real stairs will improve the 

prediction of the stair fall risk. 

Future research should implement the machine learning method in real-life stair 

negotiation conditions, avoiding the constraints necessary to conduct biomechanical 

research in the lab. A way to achieve this is to collect relevant data using instrumented 

sensor shoes. Furthermore, it has been found that horizontal clearance of the foot to the 

step edge, which indicates trip risk during descending, can be obtained using a distance 

sensor by attaching the sensor at the shoe's back (heel counter). Therefore, the 

instrumented sensor shoe with additional sensors for horizontal foot clearance will be 

useful to detect stair fall risk. Furthermore, these biomechanical parameters could be used 

as input to the machine learning algorithm, thus allowing the identification of risky 

stepping strategies which causes the future fall in real-life situations.  

The present research work involves the potential study that has monitored falls on stairs 

specifically and tested older adults in different house stairs. The current machine learning 

was created with fall and no-fall as an output. This prediction system could be improved 

by grouping the hazardous events based on the underlying mechanism that caused the 

event (e.g., trip, slip or loss of balance) and linking these as an output to the machine 

learning algorithm to predict future risk of fall.  

One other important factor that could facilitate the prevention of falls in older adults is 

increasing the awareness of the consequences of stair falls. Attention must be given to 

people in their own homes, where they might falsely feel safer compared to less familiar 

environments. When individuals feel more confident and safer, they are more likely to 

take more risks, which increases the potential for a fall. Increasing awareness of stair fall 

and the fundamental dangers of stairs might be an effective fall reduction intervention, 

and future studies should consider experimentally testing this. 
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The NHS is providing muscle strengthening and balance training for older people who 

are all at risk of falls by recommending people who are at risk of falling, and this will 

help them avoid future falls.  

7.6 Implications of this project 

This project's approach testing at different houses' staircases has policy implications. It 

may lead to revisions of the current building regulations relating to stair design; older 

adults can negotiate standard stair configurations, although they adopt different strategies. 

However, these strategies become more common and exaggerated as the staircase 

configuration becomes challenging. In stair design, step-rise imposes the highest demand 

on older individuals. Therefore, optimising step-rise and step-going may reduce lower-

limb muscle strength demands and potentially lower fall risk. 

We have explored stair dimensions, specifically the step-rise and step-going, since older 

people may lack the strength to cope with high steps and have difficulty landing safely 

on narrow steps. The Chapter 5 results showed that most older adults maintained their 

stepping behaviour when negotiating a similar staircase and altered stepping behaviour 

for the different staircase. Furthermore, these findings indicate that the underlying 

mechanism of a stair fall may remain stair dimensions that contain less going and more 

rise. Thus, the stepping behaviour of an individual at risk for a stair fall can be improved 

through changing staircase dimensions. 

Stairs should be designed so that everybody using the stair can do so comfortably and 

safely while exerting the least energy. To ensure comfortable use and adequate 

proportioning, rise and going should be considered together. If the rise is small, the going 

should be proportionately greater to ensure that the stair is comfortable to use. 

7.7 Conclusion  

Applying the developed instrumented shoe in large-scale populations without a dedicated 

gait laboratory opens new possibilities for the community's stair fall risk detection and 

prevention.  The prototype instrumented shoe was successfully developed, validated, and 

tested in actual exemplar houses. In addition, a classification algorithm was developed to 

differentiate fallers and non-fallers, which could detect stair fall risk in the future. Future 
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research should implement the ubiquitous measurement of more fall risk parameters in 

more people in real-life stair negotiation conditions to improve stair fall risk prediction.  
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A. Appendices 

Appendix A: 

Instrumented sensor shoe’s PCB (Printed Circuit Board) from Eagle software: Figure A.1 

and Figure A.2 show the designed right shoe’s PCB design. Figure A.3 and Figure A.4 

show the designed left shoe’s PCB design. 

 

 

Figure A.2 Right Shoe’s PCB board design from Eagle software 

Figure A.1 Right Shoe’s PCB schematic design Eagle software 
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Figure A.4 Left Shoe’s PCB board design from Eagle software 

Figure A.3 Left Shoe's PCB board design from Eagle software 
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Right Shoe’s insole design: 

Figure A.5 shows the designed insole PCB design. 

Appendix B: LabVIEW User Interface Design: 

Figure A.6 shows the LabVIEW user interface design. 

 

Figure A.6 User Interface designed using LABVIEW software 

Figure A.5  Insole's design from Eagle software 
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LabVIEW Block Diagram for the user interface: 

There were three COM ports (Figure A.7), one for a left shoe (COM port), one for a right 

shoe (COM port2), and one for Arduino, which was connected with the Vicon system for 

synchronising (COM port3).  

When the vicon system starts collecting data, Vicon’s synchronise port sends a ‘high 

voltage signal’ to Arduino. Arduino constantly checks these voltages; when the voltage 

reaches ‘greater than 3v’, this sends an ‘H’ signal to LabVIEW (Figure A.8). 

Figure A.7 COM ports and Trigger process 

Figure A.8 Trigger to start data collection from Vicon 
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LabVIEW constantly checks the ‘Arduino trigger port’; when LabVIEW receives an ‘H’ 

signal, then LabVIEW sends a ‘start signal (S)’ to both the shoes via a dedicated 

Bluetooth system to start data collection from the shoes (Figure A.9). 

 

As soon as the ‘Vicon system’ stops collecting data, the ‘Vicon’s synchronise port’ sends 

a low voltage signal to Arduino. On receiving this low voltage signal of ‘less than 3v’, 

the Arduino sends an ‘L’ signal to the LabVIEW (Figure A.10). 

Figure A.9 After receiving start trigger, start signal send to shoes PCB board 

Figure A.10 Trigger to stop data collection from Vicon 



184 

 

When LabVIEW receives the ‘L’ signal then, LabVIEW sends a ‘stop signal (N)’ in the 

above manner to stop data collection by the shoes (Figure A.11).  

Once the data collection is started, LabVIEW reads the data sent by the shoes and writes 

them into an ‘SD storage card’ with a ‘Unique/itemised file name’ for each data. This 

Unique file is closed when the LabVIEW receives the ‘L’ signal by sending a ‘stop signal 

(N)’ to the shoes (Figure A.12).  

Figure A.11 After receiving stop trigger, start stop send to shoes PCB board 

Figure A.12 Writing data in the SD (Secure Digital) card 
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In this process, if anything goes wrong, then an error message will be displayed. 

 

Appendix C: FSR testing with Material testing Machine used for FSR calibration 

 

 

 Figure A.14 FSR testing with Material Testing Machine 

Figure A.13 Error message generation 
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Appendix D: Sensors used to develop sensor shoe  
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Figure A.15 Sensors used to develop sensor shoe 
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Appendix E: Berg Balance Scale 

 

Figure A.16 Berg Balance Scale 

Appendix F: Follow-up-fall information 

Table A.1 Six months follow up fall information 

Participant 
ID Gender Age Height Weight 

Previous 
Fall 
History 

Berg 
Balance 
Scale Causes of Fall 

J01_OA F 68 161 80 N Low risk uneven pavement trip 

M03_OA F 68 160 84.2 Yes 
Moderate 
risk Slip on stairs 

M04_OA M 65 174.7 89.9 yes High risk fall on stairs 

E09_OA F 70 168.5 77.4 N Low risk trip 

A10_OA M 70 172 63.75 N Low risk trip 

J11_OA M 65 175 109 N Low risk slip on stairs 

T14_OA M 70 180 87 N Low risk uneven pavement trip 

S15_OA F 74 160 51.45 Yes 
Moderate 
risk tripped twice 

L17_OA F 66 162 61 No Low risk missed step 

A24_OA F 74 160 63 Yes Low risk trip 

D25_OA M 68 177 90 No 
Moderate 
risk missed step 

K26_OA M 72 150 78 Yes Low risk tripped twice 

B29_OA F 74 161.3 58.4 No Low risk trip 
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Appendix G: Coding 

Trigger code for VICON Synchronization: 

void setup()  

{   

  // initialize the serial communication:    

  Serial.begin(115200); 

}   

void loop() 

{    

    //read voltage input    

    int Val = analogRead(A1);   

   //convert analog reading to digital   

    float voltage = Val * (5.0 / 1023.0);      

    Serial.println(voltage);  

     if (voltage < 3.0 ) 

{     

       Serial.write('L'); 

}    

else 

{    

        Serial.write('H');  

 }   

      delay(1000); 

} 

 

 

//Left_shoe_arduino(Microcontroller code for left shoe’s Printed Circuit Board from 

Arduino) 

 

#include <Wire.h> 
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#include <VL6180X.h> 

#include <TimeLib.h> 

#include <Adafruit_Sensor.h> 

#include <Adafruit_BNO055.h> 

#include <utility/imumaths.h> 

#include <SPI.h> 

#include <SD.h> 

 

// Base name must be six characters or less for short file names. 

#define FILE_BASE_NAME "Data" 

const uint8_t CS_PIN = 4; 

File file; 

//to store upto999 

char filename[12] = "DATA001.csv"; 

char numb[4]; 

String str; 

//File mFile; 

byte logflag; 

byte endflag; 

// sd card log 

char inbyte=0; 

 int currenttime; 

//declaring dataString to store data 

String dataString=""; 

int h1,m1,s11; 

 

// *******************Multiplexer *************************** 

#define TCAADDR 0x70  

void tcaselect(uint8_t i) { 

 if (i > 7) return; 

Wire.beginTransmission(TCAADDR); 

Wire.write(1 << i); 

Wire.endTransmission();   
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} 

//Range sensors 

VL6180X sensor; 

VL6180X sensor1; 

/* Set the delay between fresh samples */ 

#define BNO055_SAMPLERATE_DELAY_MS (5) 

Adafruit_BNO055 bno = Adafruit_BNO055();   

//Force Sensor 

int s0 = 8; 

int s1 = 7; 

int s2 = 6; 

int s3 = 5; 

//Mux in “SIG” pin 

int SIG_pin = A6; 

int SIG_pin1 = A7; 

int val; 

int val1; 

void setup() 

{ 

Serial.begin(115200); 

//force sensors declare 

analogReference(INTERNAL);  

pinMode(s0, OUTPUT); 

pinMode(s1, OUTPUT); 

pinMode(s2, OUTPUT); 

pinMode(s3, OUTPUT); 

digitalWrite(s0, LOW); 

digitalWrite(s1, LOW); 

digitalWrite(s2, LOW); 

digitalWrite(s3, LOW); 

logflag=false; 

if (!SD.begin(CS_PIN)) { 

Serial.println(F("begin failed")); 
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return; 

} 

       

 Wire.begin(); 

  /*******Singleshot range sensor***********/ 

  tcaselect(3); 

  sensor.init(); 

  sensor.configureDefault(); 

  sensor.setTimeout(500); 

  tcaselect(6); 

  sensor1.init(); 

  sensor1.configureDefault(); 

  sensor1.setTimeout(500); 

   

   /* Initialise imu the sensor */   

  tcaselect(4); 

  if(!bno.begin()) 

 { 

    /* problem in detecting the BNO055 ... check your connections */ 

    Serial.print("Ooops, no BNO055 detected ... Check your wiring or I2C 

ADDR!"); 

   while(1); 

} 

} 

 

void loop() 

{ 

  endflag=0; 

    //filename goes here 

    filename[4] = '0'; 

    filename[5] = '0'; 

    filename[6] = '1'; 

    for (int m = 1; m < 999; m++) { //Maximum 999 Files.  
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      str = String(m); 

      str.toCharArray(numb, 4); 

      if (m < 10) { 

        filename[6] = numb[0]; 

      } 

      else if (m < 100) { 

        filename[6] = numb[1]; 

        filename[5] = numb[0]; 

      } 

      else { 

        filename[4] = numb[0]; 

        filename[5] = numb[1]; 

        filename[6] = numb[2]; 

      } 

      if (!SD.exists(filename)) { 

        break; 

      } 

    } 

    Serial.print(F("opened: ")); 

    Serial.println(filename); 

    file.close(); 

 

//filemame finishes 

   

   while(endflag==0){ 

    if(Serial.available()) 

    {   

      inbyte=(Serial.read()); 

      if(inbyte=='S') 

      { 

        Serial.println("S"); 

        logflag=true; 

      } 
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      if(inbyte=='N') 

      { 

        Serial.println("N"); 

        logflag=false; 

        endflag=1; 

      } 

    } 

   

        unsigned long runMillis=millis(); 

        unsigned long allSeconds=millis()/1000; 

        int runHours=allSeconds/3600; 

        int secRemaining=allSeconds%3600; 

        int runMinutes=secRemaining/60; 

        int runSeconds=secRemaining%60; 

        char buf[21]; 

        

//sprintf(buf,"Runtime%02d:%02d:%02d",runHours,runMinutes,runSeconds); 

        sprintf(buf,"%02d,%02d,%02d",runHours,runMinutes,runSeconds); 

        dataString =buf; 

        dataString+=",";  

         

      //Range sensor 

      tcaselect(3); 

      int range_sensor=sensor.readRangeSingleMillimeters(); 

      dataString+=range_sensor; 

      dataString+=",";   

      tcaselect(6); 

      int range_sensor1=sensor1.readRangeSingleMillimeters(); 

      dataString+=range_sensor1; 

      dataString+=",";  

   

           tcaselect(4); 

      // Possible vector values can be: 
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      // - VECTOR_ACCELEROMETER - m/s^2 

      // - VECTOR_MAGNETOMETER  - ut 

      // - VECTOR_GYROSCOPE     - rad/s 

      // - VECTOR_EULER         - degrees 

      // - VECTOR_LINEARACCEL   - m/s^2 

      // - VECTOR_GRAVITY       - m/s^2 

            

//imu::Vector<3>accel=bno.getVector(Adafruit_BNO055::VECTOR_ACCELE

ROMETER); 

      // Display the floating point data       

      // Quaternion data*/ 

      imu::Quaternion quat = bno.getQuat();     

    /* Create Rotation Matrix rm from Quaternion */ 

    /*double rm[3][3];     

    rm[1][1] =quat.w()*quat.w()+quat.x()*quat.x()-quat.y()*quat.y() - 

quat.z()*quat.z();    

    rm[1][2] = 2*quat.x()*quat.y() - 2*quat.w()*quat.z();             

    rm[1][3] = 2*quat.x()*quat.z() + 2*quat.w()*quat.y(); 

    rm[2][1] = 2*quat.x()*quat.y() + 2*quat.w()*quat.z();        

    rm[2][2] =quat.w()*quat.w()-quat.x()*quat.x()+quat.y()*quat.y() - 

quat.z()*quat.z();           

    rm[2][3] = 2*quat.y()*quat.z() - 2*quat.w()*quat.x();      

    rm[3][1] = 2*quat.x()*quat.z() - 2*quat.w()*quat.y();        

    rm[3][2] = 2*quat.y()*quat.z() + 2*quat.w()*quat.x();             

    rm[3][3] =quat.w()*quat.w()-quat.x()*quat.x()-quat.y()*quat.y() + 

quat.z()*quat.z(); 

     

    /* Display Rotation Matrix  

    Serial.print(rm[1][1],5);Serial.print("  \t"); 

    Serial.print(rm[1][2],5);Serial.print("  \t"); 

    Serial.println(rm[1][3],5); 

    Serial.print(rm[2][1],5);Serial.print("  \t"); 

    Serial.print(rm[2][2],5);Serial.print("  \t"); 
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    Serial.println(rm[2][3],5); 

    Serial.print(rm[3][1],5);Serial.print("  \t"); 

    Serial.print(rm[3][2],5);Serial.print("  \t"); 

    Serial.println(rm[3][3],5);*/ 

     

    /* Create Roll Pitch Yaw Angles from Quaternions */ 

    double yy = quat.y() * quat.y(); // 2 Uses below    

    double roll =atan2(2*(quat.w()*quat.x()+quat.y()*quat.z()),1-

2*(quat.x()*quat.x() + yy)); 

    double pitch = asin(2 * quat.w() * quat.y() - quat.x() * quat.z()); 

    double yaw = atan2(2 * (quat.w() * quat.z() + quat.x() * quat.y()), 1 - 

2*(yy+quat.z() * quat.z())); 

     

    /*  Convert Radians to Degrees */ 

    float rollDeg  = 57.2958 * roll; 

    float pitchDeg = 57.2958 * pitch; 

    float yawDeg   = 57.2958 * yaw; 

    float rollDeg1 = rollDeg*2; 

    float pitchDeg1= pitchDeg*2; 

    float yawDeg1  = yawDeg*2; 

 

    //Linear accerleration 

imu::Vector<3>      

linearaccel=bno.getVector(Adafruit_BNO055::VECTOR_LINEARACCEL); 

    //Vector gyroscope radions per second 

imu::Vector<3>  

lineargyro=bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);   

    dataString+=rollDeg; 

    dataString+=",";  

    dataString+=pitchDeg; 

    dataString+=",";  

    dataString+=yawDeg;   

    dataString+=",";  
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    dataString+=linearaccel.x(); 

    dataString+=",";  

    dataString+=linearaccel.y();   

    dataString+=",";  

    dataString+=linearaccel.z();   

    dataString+=",";  

    dataString+=lineargyro.x(); 

    dataString+=",";  

    dataString+=lineargyro.y(); 

    dataString+=",";  

    dataString+=lineargyro.z(); 

    dataString+=","; 

    //force sensor data 

    for(int i = 1; i < 11; i ++)  

   {  

     readMux(i);  

      dataString+=(val); 

      dataString+=","; 

      dataString+=(val1); 

      dataString+=","; 

    } 

    if(logflag==true) 

    { 

      //Serial.println("L"); 

      File mfile = SD.open(filename, FILE_WRITE); 

        

      if(mfile) 

      { 

        mfile.println(dataString); 

        //print to the serial port too: 

        Serial.println(dataString); 

        dataString=""; 

        mfile.close(); 
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      } 

    } 

    delay(BNO055_SAMPLERATE_DELAY_MS); 

  } 

}  

//Force sensor function 

void readMux(int channel) 

{  

int controlPin[] = {s0, s1, s2, s3}; 

int muxChannel[16][4]={  

   {1,1,1,1}, //14 

    {0,1,1,1},//13 

    {0,0,1,1},//12 

    {1,1,0,1},//11 

    {0,1,0,1},//10 

    {1,0,0,1},//9 

    {0,0,0,1},//8 

    {1,1,1,0},//7 

    {0,1,1,0},//6 

    {1,1,1,1},//5 

    {0,0,1,0},//4 

    {1,1,0,0},//3 

    {0,1,0,0},//2 

    {1,0,0,0},//1 

     {0,0,0,0}//channel 0    

 }; 

 //loop through the 4 sig  

  for(int i = 0; i < 4; i ++) 

  {  

    digitalWrite(controlPin[i], muxChannel[channel][i]); 

 

  } 

   //read the value at the SIG pin  
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  val = analogRead(SIG_pin);  

  val1 = analogRead(SIG_pin1);  

}  

 

 

    

 

Matlab code for foot clearance and foot overhanging: 

%%%%%%%%%%% Setting variables to all files  %%%%%%%%%%%%%%%%% 

clear all 

clc 

%data1=datastore("C:\Users\ramst\Desktop\houses\up\P31\left\u319.csv"); 

data1=datastore("C:\Users\ramst\Desktop\lab\down\all_lab_down_right\down318.csv"); 

                                                         tablename='down318_R.csv'; 

preprocds = transform(data1,@scale) 

data1=read(preprocds); 

%path=('C:\Users\ramst\Desktop\lab\up\all_lab_up_right\'); 

path=('C:\Users\ramst\Desktop\lab\down\all_lab_down_right1\'); 

warning('off','MATLAB:xlswrite') 

                                                   

writetable(data1,[path tablename]); 

function data = scale(data) 

Var_Names=["time","front","back","roll","pitch","yaw","accx","accy","accz","gyrox","

gyroy","gyroz","foot","p_id","age","height","weight","fall"]; 

data=table(data.time,data.front,data.back,data.roll,data.pitch,data.yaw,data.accx,data.acc

y,data.accz,data.gyrox,data.gyroy,data.gyroz,data.foot,data.p_id,data.age,data.height,dat

a.weight,data.fall,'VariableNames',Var_Names); 

end 

%%%%%%%%%%%%%%Joining multiple files together 

%%%%%%%%%%%%%%%%%%%%%%%% 

pathName = 'C:\Users\ramst\Desktop\results_Senosr\lab\ascending'; 

fileList = dir(fullfile(pathName, '*.csv')); 

out1      = fopen(fullfile(pathName, 'Joined_result_houses_up.csv'), 'w'); 
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for k = 1:numel(fileList) 

s = fileread(fullfile(pathName, fileList(k).name)); 

fwrite(out1, s, 'int'); 

end 

fclose(out1); 

%%%%%%%%%%%%    All Combined down features extraction 

%%%%%%%%%%%%%%%%%%%%% 

clear  all; 

clc 

data1=datastore("C:\Users\ramst\Desktop\lab\down\P31\left"); 

featds=transform(data1,@extract) 

fsrds=transform(preprocds,@force_calculation) 

datas=readall(featds) 

datas1=readall(fsrds) 

  

  

path=('C:\Users\ramst\Desktop\lab\down\P31\left\'); 

warning('off','MATLAB:xlswrite') 

features_list1= datas; 

tablename='lab_down_31_l.csv'; 

writetable(features_list1,[path tablename]); 

fsrs=table(datas1); 

tablename1='fsr_down_lab_31_l.csv'; 

writetable(fsrs,[path tablename1]);  

  

  

function feat = extract(data) 

% Aspect ratio 

%aratio = range(data.accy)/range(data.accx); 

  

%% removing offset from distance sensor 

going = data.back;%going down back sensor 

mini=min(going); %minimum of going to get offset 
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going1=(going-mini); %removing offset 

  

%% swingtime calculation 

stance=(going1<10); 

time1=data.time 

time1(stance)=0; 

A=time1'; 

%A = [0 0 1 2 3 0 0 0 0 0 2 3 4 0 0 0 0 0 4 5 6 7 0 0 0 0 1 1 1 0 0 0]; 

ne0 = find(A~=0);                                   % Nonzero Elements 

ix0 = unique([ne0(1) ne0(diff([0 ne0])>1)]);        % Non-Zero Segment Start Indices 

eq0 = find(A==0);                                   % Zero Elements 

ix1 = unique([eq0(1) eq0(diff([0 eq0])>1)]);        % Zero Segment Start Indices 

ixv = sort([ix0 ix1 length(A)]);                    % Consecutive Indices Vector 

for k1 = 1:length(ixv)-1 

    section{k1} = A(ixv(k1):ixv(k1+1)-1); 

end 

%because we made stance into zero, all the swing will be one, for each 

%'1'cell array we calculate minimum and maximum to get swing time. 

for i=1:(length(section)-1)  

result1=min(section{i});     

result2=max(section{i});  

swingresult(i)=result2-result1; % for each cell swing time 

sr=(swingresult>0); 

finalswingresult=swingresult(sr); 

end 

total_swing_time=sum(finalswingresult); 

total_no_swing=nnz(finalswingresult); 

step1_swing_time=finalswingresult(1); 

step3_swing_time=finalswingresult(2); 

step5_swing_time=finalswingresult(3); 

step7_swing_time=finalswingresult(4); 

  

time2=data.time 
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total_time=time2(end); 

stance_time=total_time-total_swing_time; 

  

%step1_swing_time,step3_swing_time,step5_swing_time,step7_swing_time,step9_swi

ng_time,step11_swing_time,step13_swing_time 

%"step1_swing_time","step3_swing_time","step5_swing_time","step7_swing_time","st

ep9_swing_time","step11_swing_time","step13_swing_time" 

  

%% Landing Foot Clearance for descending is calculated immediately from 

%stance to swing phase or push off and swing phase 

%foot_clearance_down 

descending = data.back;%going down back sensor 

m=min(descending); %minimum of going to get offset 

descending1=(descending-m); %removing offset 

  

% we need only more than 10 and less than 45mm 

zeross=((descending1<10));   %it means foot is landed already 

oneee=(descending1>=45);% foot is in swing position 

descending1(zeross)=0; %applying 0 to landed position 

descending1(oneee)=0; % applying 0 to swing position, so we will only starting swing 

and end of swing, before landing position value 

  

% spliting zeros and ones 

AA=descending1'; 

  

%A = [0 0 1 2 3 0 0 0 0 0 2 3 4 0 0 0 0 0 4 5 6 7 0 0 0 0 1 1 1 0 0 0]; 

nne0 = find(AA~=0);                                   % Nonzero Elements 

iix0 = unique([nne0(1) nne0(diff([0 nne0])>1)]);        % Non-Zero Segment Start Indices 

eeq0 = find(AA==0);                                   % Zero Elements 

iix1 = unique([eeq0(1) eeq0(diff([0 eeq0])>1)]);        % Zero Segment Start Indices 

iixv = sort([iix0 iix1 length(AA)]);                    % Consecutive Indices Vector 

for I1 = 1:length(iixv)-1 
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    section2{I1} = AA(iixv(I1):iixv(I1+1)-1); % this will more than 14mm and less than 

45mm, and this will splitted into cell array 

end 

for i=1:(length(section2)-1) 

result3(i)=min(section2{i});     

finall=result3'; 

finall1=(finall>0); 

finalfinall=finall(finall1); 

foot_clearance = finalfinall(1:2:end,:)% before crossing the foot on the stair edge we 

calculate foot clearance 

end 

step1_Land_FC=foot_clearance(1); 

step3_Land_FC=foot_clearance(2); 

step5_Land_FC=foot_clearance(3); 

step7_Land_FC=foot_clearance(4); 

  

%numpitchmax = nnz(foot_clearance); 

%"step1_Land_FC","step3_Land_FC","step5_Land_FC","step7_Land_FC","step9_Lan

d_FC","step11_Land_FC","step13_Land_FC" 

%step1_Land_FC,step3_Land_FC,step5_Land_FC,step7_Land_FC,step9_Land_FC,ste

p11_Land_FC,step13_Land_FC 

%% Passing Foot Clearance for Down(Descending) 

  

des = data.back;%going down back sensor 

m=min(des); %minimum of going to get offset 

descending2=(des-m); %removing offset 

  

% we only need more 45mm and > than 200 

zeros1=((descending2>=1) &(descending2<45)) ;   %it means foot starting from landing 

to swing 

onee1=(descending2>=150);% foot is in swing position maximum 

descending2(zeros1)=0; %applying 0 to landed position 
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descending2(onee1)=0; % applying 0 to swing positon, so we will only starting swing 

and end of swing, before landing positon value 

  

% spliting zeros and ones 

X2=descending2'; 

%A = [0 0 1 2 3 0 0 0 0 0 2 3 4 0 0 0 0 0 4 5 6 7 0 0 0 0 1 1 1 0 0 0]; 

nne02 = find(X2~=0);                                   % Nonzero Elements 

iix02 = unique([nne02(1) nne02(diff([0 nne02])>1)]);        % Non-Zero Segment Start 

Indices 

eeq02 = find(X2==0);                                   % Zero Elements 

iix12 = unique([eeq02(1) eeq02(diff([0 eeq02])>1)]);        % Zero Segment Start Indices 

iixv2 = sort([iix02 iix12 length(X2)]);                    % Consecutive Indices Vector 

for I2 = 1:length(iixv2)-1 

    section3{I2} = X2(iixv2(I2):iixv2(I2+1)-1); % this will more than 14mm and less than 

45mm, and this will splited into cell array 

end 

for LL=1:(length(section3)-1)  

result4(LL)=min(section3{LL});     

finals=result4' 

finals1=(finals>0); 

finals2=finals(finals1); 

Passing_foot_clearance =finals2(1:1:end,:);% while crossing the foot on the stair edge we 

calculate foot clearance 

end 

step1_Passing_FC=Passing_foot_clearance(1); 

step3_Passing_FC=Passing_foot_clearance(2); 

step5_Passing_FC=Passing_foot_clearance(3); 

step7_Passing_FC=Passing_foot_clearance(4); 

  

%numpitchmax = nnz(foot_clearance); 

%"step1_Passing_FC","step3_Passing_FC","step5_Passing_FC","step7_Passing_FC","

step9_Passing_FC","step11_Passing_FC","step13_Passing_FC" 
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%step1_Passing_FC,step3_Passing_FC,step5_Passing_FC,step7_Passing_FC,step9_Pas

sing_FC,step11_Passing_FC,step13_Passing_FC 

  

% %%right 

% idxmax1 = islocalmin(data.pitch,"MinProminence",0.1); 

% results2=data.pitch(idxmax1); 

% results3=results2<-10; 

% finalresults1=results2(results3); 

  

% % % % % Local max/min of pitch 

idxmax1 = islocalmax(data.pitch,"MinProminence",0.1); 

results2=data.pitch(idxmax1); 

results3=results2>15; 

finalresults1=results2(results3); 

  

step1_pitch_max=finalresults1(1); 

step3_pitch_max=finalresults1(2); 

step5_pitch_max=finalresults1(3); 

step7_pitch_max=finalresults1(4); 

  

numpitchmax = nnz(finalresults1); 

%step1_pitch_min,step3_pitch_min,step5_pitch_min,step7_pitch_min,step9_pitch_min,

step11_pitch_min,step13_pitch_min, 

%"step1_pitch_min","step3_pitch_min","step5_pitch_min","step7_pitch_min","step9_p

itch_min","step11_pitch_min","step13_pitch_min", 

  

  

%Mean,SD,Variance of Pitch 

Mean_Pitch=mean(data.pitch); 

SD_Pitch=std(data.pitch); 

Variance_Pitch=var(data.pitch); 

Rms_Pitch=rms(data.pitch); 

%pitch_statistics=[Mean_Pitch, SD_Pitch, Variance_Pitch]; 
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%pitch_statistics="Mean_Pitch", "SD_Pitch", "Variance_Pitch" 

  

% Local max/min of accelerometer 

idxmin = islocalmin(data.accx,"MinProminence",0.1); 

results=data.accx(idxmin); 

results1=results<-5; 

finalresults=results(results1); 

step1_accx_min=finalresults(1); 

step3_accx_min=finalresults(2); 

step5_accx_min=finalresults(3); 

step7_accx_min=finalresults(4); 

  

numXmin = nnz(finalresults); 

  

%local max of acceleometer 

idxmax= islocalmax(data.accx,"MinProminence",1); 

result=data.accx(idxmax); 

result1=result>4; 

finalresult=result(result1); 

step1_accx_max=finalresult(1); 

step3_accx_max=finalresult(2); 

step5_accx_max=finalresult(3); 

step7_accx_max=finalresult(4); 

  

numXmax = nnz(finalresult); 

  

%acc mean,sd,var 

Mean_Acc_X=mean(data.accx); 

Mean_Acc_Y=mean(data.accy); 

Mean_Acc_Z=mean(data.accz); 

SD_Acc_X=std(data.accx); 

SD_Acc_Y=std(data.accy); 

SD_Acc_Z=std(data.accz); 
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Variance_Acc_X=var(data.accx); 

Variance_Acc_Y=var(data.accy); 

Variance_Acc_Z=var(data.accz); 

Rms_Acc_X=rms(data.accx); 

Rms_Acc_Y=rms(data.accy); 

Rms_Acc_Z=rms(data.accz); 

  

%ACC_statistics=[Mean_Acc_X, Mean_Acc_Y,Mean_Acc_Z, SD_Acc_X 

,SD_Acc_Y, SD_Acc_Z, Variance_Acc_X, Variance_Acc_Y, Variance_Acc_Z]; 

%ACC_statistics=["Mean_Acc_X", "Mean_Acc_Y","Mean_Acc_Z", "SD_Acc_X" 

,"SD_Acc_Y", "SD_Acc_Z", "Variance_Acc_X", "Variance_Acc_Y", 

"Variance_Acc_Z"]; 

  

% Velocity 

velx=0; 

vely=0; 

velz=0; 

velocity_x = velx+ cumtrapz(data.time,data.accx); 

velocity_y = vely+ cumtrapz(data.time,data.accy); 

velocity_z = velz+ cumtrapz(data.time,data.accz); 

vel_x= diff(velocity_x); 

vel_y= diff(velocity_y); 

vel_z= diff(velocity_z); 

  

Mean_vel_X=mean(vel_x); 

Mean_vel_Y=mean(vel_y); 

Mean_vel_Z=mean(vel_z); 

SD_vel_X=std(vel_x); 

SD_vel_Y=std(vel_y); 

SD_vel_Z=std(vel_z); 

Variance_vel_X=var(vel_x); 

Variance_vel_Y=var(vel_y); 

Variance_vel_Z=var(vel_z); 
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Rms_vel_X=rms(vel_x); 

Rms_vel_Y=rms(vel_y); 

Rms_vel_Z=rms(vel_z); 

  

%Vell_statistics=[Mean_vel_X, Mean_vel_Y ,Mean_vel_Z, SD_vel_X, SD_vel_Y 

,SD_vel_Z ,Variance_vel_X, Variance_vel_Y, Variance_vel_Z]; 

%"Mean_vel_X"," Mean_vel_Y"," Mean_vel_Z", "SD_vel_X", "SD_vel_Y", 

"SD_vel_Z", "Variance_vel_X", "Variance_vel_Y", "Variance_vel_Z" 

 [pks,locs] = findpeaks(vel_x,'MinPeakDistance',10); 

 pks1=pks>0.1; 

 vel_pks2=pks(pks1); 

step1_velx_max=vel_pks2(1); 

step3_velx_max=vel_pks2(2); 

step5_velx_max=vel_pks2(3); 

step7_velx_max=vel_pks2(4); 

  

  

%"step1_velx_max", "step3_velx_max", "step5_velx_max", "step7_velx_max", 

"step9_velx_max", "step11_velx_max", "step13_velx_max" 

%step1_velx_max,step3_velx_max,step5_velx_max,step7_velx_max,step9_velx_max,s

tep11_velx_max,step13_velx_max 

angular_velcocity_x=data.gyrox; 

angular_velcocity_y=data.gyroy; 

angular_velcocity_z=data.gyroz; 

Mean_ang_vel_X=mean(angular_velcocity_x); 

Mean_ang_vel_Y=mean(angular_velcocity_y); 

Mean_ang_vel_Z=mean(angular_velcocity_z); 

SD_ang_vel_X=std(angular_velcocity_x); 

SD_ang_vel_Y=std(angular_velcocity_y); 

SD_ang_vel_Z=std(angular_velcocity_z); 

Variance_ang_vel_X=var(angular_velcocity_x); 

Variance_ang_vel_Y=var(angular_velcocity_y); 

Variance_ang_vel_Z=var(angular_velcocity_z); 
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Rms_ang_vel_X=rms(angular_velcocity_x); 

Rms_ang_vel_Y=rms(angular_velcocity_y); 

Rms_ang_vel_Z=rms(angular_velcocity_z); 

  

%Mean_ang_vel_X,Mean_ang_vel_Y,Mean_ang_vel_Z,SD_ang_vel_X,SD_ang_vel_

Y,SD_ang_vel_Z,Variance_ang_vel_X,Variance_ang_vel_Y,Variance_ang_vel_Z 

%"Mean_ang_vel_X","Mean_ang_vel_Y","Mean_ang_vel_Z","SD_ang_vel_X","SD_a

ng_vel_Y","SD_ang_vel_Z","Variance_ang_vel_X","Variance_ang_vel_Y","Variance_

ang_vel_Z" 

  

gyroy=data.gyroy; 

[gyroypks,locs] = findpeaks(gyroy,'MinPeakDistance',10); 

gyroypks1=gyroypks>80; 

gyroypks2=gyroypks(gyroypks1); 

step1_ang_vely_max=gyroypks2(1); 

step3_ang_vely_max=gyroypks2(2); 

step5_ang_vely_max=gyroypks2(3); 

step7_ang_vely_max=gyroypks2(4); 

  

%step1_ang_vely_max,step3_ang_vely_max,step5_ang_vely_max,step7_ang_vely_ma

x,step9_ang_vely_max,step11_ang_vely_max,step13_ang_vely_max 

%"step1_ang_vely_max","step3_ang_vely_max","step5_ang_vely_max","step7_ang_ve

ly_max","step9_ang_vely_max","step11_ang_vely_max","step13_ang_vely_max"  

  

%{'foot','p_id','age','height','weight','gender','fall'} 

foot=data.foot(1); 

p_id=data.p_id(1); 

age=data.age(1); 

height=data.height(1); 

weight=data.weight(1); 

gender="F"; 

fall=data.fall(1); 
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% Put it all together into a table 

featurenames = 

["total_time","stance_time","total_no_swing","total_swing_time","step1_swing_time","

step3_swing_time","step5_swing_time","step7_swing_time","step1_Land_FC","step3_

Land_FC","step5_Land_FC","step7_Land_FC","step1_Passing_FC","step3_Passing_F

C","step5_Passing_FC","step7_Passing_FC","NumMinX","step1_accx_min","step3_ac

cx_min","step5_accx_min","step7_accx_min","numXmax","step1_accx_max","step3_a

ccx_max","step5_accx_max","step7_accx_max","Mean_Acc_X","Mean_Acc_Y","Mea

n_Acc_Z", "SD_Acc_X" ,"SD_Acc_Y", "SD_Acc_Z", 

"Variance_Acc_X","Variance_Acc_Y", 

"Variance_Acc_Z","Rms_Acc_X","Rms_Acc_Y","Rms_Acc_Z","Mean_Pitch","SD_Pi

tch","Variance_Pitch","Rms_Pitch","numpitchmin","step1_pitch_max","step3_pitch_m

ax","step5_pitch_max","step7_pitch_max","Mean_vel_X"," Mean_vel_Y"," 

Mean_vel_Z", "SD_vel_X", "SD_vel_Y", "SD_vel_Z", 

"Variance_vel_X","Variance_vel_Y","Variance_vel_Z","Rms_vel_X","Rms_vel_Y","

Rms_vel_Z","step1_velx_max", "step3_velx_max", "step5_velx_max", 

"step7_velx_max","Mean_ang_vel_X","Mean_ang_vel_Y","Mean_ang_vel_Z","SD_an

g_vel_X","SD_ang_vel_Y","SD_ang_vel_Z","Variance_ang_vel_X","Variance_ang_ve

l_Y","Variance_ang_vel_Z","Rms_ang_vel_X","Rms_ang_vel_Y","Rms_ang_vel_Z","

step1_ang_vely_max","step3_ang_vely_max","step5_ang_vely_max","step7_ang_vely

_max","foot","p_id","age","height","weight","gender","fall"]; 

feat = 

table(total_time,stance_time,total_no_swing,total_swing_time,step1_swing_time,step3_

swing_time,step5_swing_time,step7_swing_time,step1_Land_FC,step3_Land_FC,step5

_Land_FC,step7_Land_FC,step1_Passing_FC,step3_Passing_FC,step5_Passing_FC,ste

p7_Passing_FC,numXmin,step1_accx_min,step3_accx_min,step5_accx_min,step7_acc

x_min,numXmax,step1_accx_max,step3_accx_max,step5_accx_max,step7_accx_max,

Mean_Acc_X,Mean_Acc_Y,Mean_Acc_Z, SD_Acc_X ,SD_Acc_Y, SD_Acc_Z, 

Variance_Acc_X, Variance_Acc_Y, 

Variance_Acc_Z,Rms_Acc_X,Rms_Acc_Y,Rms_Acc_Z,Mean_Pitch,SD_Pitch,Varian

ce_Pitch,Rms_Pitch,numpitchmax,step1_pitch_max,step3_pitch_max,step5_pitch_max,

step7_pitch_max,Mean_vel_X, Mean_vel_Y ,Mean_vel_Z, SD_vel_X, SD_vel_Y 
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,SD_vel_Z 

,Variance_vel_X,Variance_vel_Y,Variance_vel_Z,Rms_vel_X,Rms_vel_Y,Rms_vel_Z

,step1_velx_max,step3_velx_max,step5_velx_max,step7_velx_max,Mean_ang_vel_X,

Mean_ang_vel_Y,Mean_ang_vel_Z,SD_ang_vel_X,SD_ang_vel_Y,SD_ang_vel_Z,Var

iance_ang_vel_X,Variance_ang_vel_Y,Variance_ang_vel_Z,Rms_ang_vel_X,Rms_ang

_vel_Y,Rms_ang_vel_Z,step1_ang_vely_max,step3_ang_vely_max,step5_ang_vely_m

ax,step7_ang_vely_max,foot,p_id,age,height,weight,gender,fall,'VariableNames',feature

names); 

end 

  

function FSR_sum_result1 = force_calculation(data) 

% y=-0.0955x + 101.33 

big13=-0.0955*(data.b1) + 101.33; 

big15=-0.0955*(data.b2) + 101.33; 

big17=-0.0955*(data.b3) + 101.33; 

big19=-0.0955*(data.b4) + 101.33; 

big21=-0.0955*(data.b5) + 101.33; 

big23=-0.0955*(data.b6) + 101.33; 

big25=-0.0955*(data.b7)+ 101.33; 

%big_result=big13+big15+big17+big19+big21+big23+big25; 

 big27=-0.0955*(data.b8) + 101.33; 

 %big_result=big13+big15+big17+big19+big21+big23+big25+big27; 

 big29=-0.0955*(data.b9)+ 101.33; 

 big_result=big13+big15+big17+big19+big21+big23+big25+big27+big29; 

%big31=-0.0955*(data.b10) + 101.33; 

%big_result=big13+big15+big17+big19+big21+big23+big25+big27+big29+big31; 

big_result=big_result-min(big_result); 

  

% y = -11ln(x) + 68.178 

small14 = -11*log(data.s1) + 68.178; 

small16 = -11*log(data.s2) + 68.178; 

small18 = -11*log(data.s3) + 68.178; 

small20 = -11*log(data.s4) + 68.178; 
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small22 = -11*log(data.s5) + 68.178; 

small24 = -11*log(data.s6) + 68.178; 

small26 = -11*log(data.s7) + 68.178; 

%small_result=small14+small16+small18+small20+small22+small24+small26; 

small28 = -11*log(data.s8) + 68.178; 

%small_result=small14+small16+small18+small20+small22+small24+small26+small2

8; 

 small30 = -11*log(data.s9)+ 68.178; 

 

small_result=small14+small16+small18+small20+small22+small24+small26+small28+

small30; 

% %small32 = -11*log(data.s10) + 68.178; 

%small_result=small14+small16+small18+small20+small22+small24+small26+small2

8+small30+small32; 

small_result=small_result-min(small_result); 

  

body_weight=64; 

ttt=data.time; 

  

FSR_result=big_result+small_result; 

FSR_sum_result=[big_result small_result FSR_result]; 

FSR_percentage_result=((FSR_sum_result/8)/body_weight)*100; 

FSR_sum_result1=[ttt FSR_sum_result FSR_percentage_result]; 

end 

  

  

 

 

 

%%%%%%%%%%%    Features fft %%%%%%%%%%%%%%%%%%% 

clear all 

clc 
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data1=datastore("C:\Users\ramst\Desktop\all_data_features\houses\down\all_house_do

wn_left"); 

featds=transform(data1,@extract) 

datas=readall(featds)  

path=('C:\Users\ramst\Desktop\all_data_features\houses\down\all_house_down_left\'); 

warning('off','MATLAB:xlswrite') 

features_list1= datas; 

tablename='frequency_features_left.csv'; 

writetable(features_list1,[path tablename]); 

  

function feat = extract(data) 

L=length(data.accx); 

fs=1/L; 

time=0:1/(L-1):1; 

subplot(3,1,1) 

plot(time,data.accx) 

title('Time Domain Dignal'); 

xlabel('Time(s)'); 

ylabel('Amplitude(v)'); 

accx_fft=fft(data.accx,L)/L; 

x_amplitude=2*abs(accx_fft(1:L/2+1)); 

x_freq=fs/2*linspace(0,1,L/2+1); 

subplot(3,1,2) 

plot(x_freq,x_amplitude); 

  

[pks1,locs1] = findpeaks((x_amplitude),'MinPeakHeight',0.5); 

subplot(3,1,3) 

plot(x_freq(locs1),pks1,'or'); 

hold on; 

plot(x_freq,x_amplitude) 

 ff=x_freq(locs1) 

peak_magnitude=[ff',pks1]; 

 accx_peak_freq_mag_one=peak_magnitude(1,:) 
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accx_peak_freq_mag_three=peak_magnitude(2,:) 

accx_peak_freq_mag_five=peak_magnitude(3,:) 

accx_peak_freq_mag_seven=peak_magnitude(4,:) 

accx_peak_freq_mag_nine=peak_magnitude(5,:) 

accx_peak_freq_mag_eleven=peak_magnitude(6,:) 

  

featurenames = 

["accx_peak_freq_mag_one","accx_peak_freq_mag_three","accx_peak_freq_mag_five"

,"accx_peak_freq_mag_seven","accx_peak_freq_mag_nine","accx_peak_freq_mag_ele

ven"]; 

feat = 

table(accx_peak_freq_mag_one,accx_peak_freq_mag_three,accx_peak_freq_mag_five,

accx_peak_freq_mag_seven,accx_peak_freq_mag_nine,accx_peak_freq_mag_eleven,'V

ariableNames',featurenames); 

end 

%%%%%%%%%%%%%%%%%%%%%            Feature Selection                

%%%%%%% 

house_data4= house_data3(:,3:end); 

house_data4=table2array(house_data4 (:,1:end-1)); 

response_data= house_data4 (:,end); 

 

[idx,scores] = fscchi2(house_data4,response_data) %Univariate feature ranking for 

classification using chi-square tests 

figure 

bar(scores(idx(1:15))) 

xlabel('Predictor rank') 

ylabel('Predictor importance score') 

xticklabels(strrep(house_data4.Properties.VariableNames(idx),'_','\_')) 

xtickangle(-45) 

title('Univariate feature ranking using chi-square tests') 

  

[idx2 scores2] = fsrftest(house_data4,response_data) 

figure 
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bar(scores2(idx2(1:15))) 

xlabel('Predictor rank') 

ylabel('Predictor importance score') 

xticklabels(strrep(house_data3.Properties.VariableNames(idx2),'_','\_')) 

xtickangle(-50) 

title('Univariate feature ranking for regression using F-Test') 

chiresult=[scores ; idx] 

 chiresult_var=house_data.Properties.VariableNames(idx) 

 ftestresult=[scores2 ; idx2] 

 p_value_ftest=1./(-log(scores2)) 

 ftestresult_var=house_data.Properties.VariableNames(idx2) 

% %  holdoutCVP = cvpartition(house_data4,'holdout',150) 

a=(house_data4((response_data==1),:)); 

b=(house_data4((response_data==2),:)); 

a1=a(1:150,:); 

b1=b(1:150,:); 

[h,p,ci,stats] = ttest(a1,b1) 

figure 

ecdf(p); 

xlabel('P value');  

ylabel('CDF value') 

title('Features selection Using a Simple Filter Approach-ttest'); 

 

 

%%%%%%%%%%%%%%%%% Classifier results %%%%%%%%%%%%%%%% 

function [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 

% [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 

% Returns a trained classifier and its accuracy. This code recreates the 

% classification model trained in Classification Learner app. Use the 

% generated code to automate training the same model with new data 

% 

%  Input: 

%      trainingData: A table containing the same predictor and response 
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%       columns as those imported into the app. 

% 

%  Output: 

%      trainedClassifier: A struct containing the trained classifier. The 

%       struct contains various fields with information about the trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: A function to make predictions on new 

%       data. 

% 

%      validationAccuracy: A double containing the accuracy in percent. In 

%       the app, the History list displays this overall accuracy score for 

%       each model. 

% 

% Use the code to train the model with new data. To retrain your 

% classifier, call the function from the command line with your original 

% data or new data as the input argument trainingData. 

% 

% For example, to retrain a classifier trained with the original data set 

% T, enter: 

% [trainedClassifier, validationAccuracy] = trainClassifier(T) 

% To make predictions with the returned 'trainedClassifier' on new data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

  

% Auto-generated by MATLAB on 08-Dec-2020 12:18:37 

  

  

% Extract predictors and response 
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% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'stancetime', 'swingtime', 'FC_entry', 'FC_exit', 'FC_sd', 'FO_entry', 

'FO_exit', 'FO_sd', 'accxmax_exit', 'Mean_AccZ_R', 'SD_AccZ_R', 'VarAccY_R', 

'RmsAccX_R', 'RmsAccZ_R', 'vel_entry', 'vel_middle', 'PeakmagX', 'peakmagY', 

'peakmagZ', 'accy_skewness'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Follow_up_fall; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false, false, false, false, false, false, false, false, false, false]; 

  

% Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', categorical({'Fallers'; 'Non fallers'})); 

  

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

  

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'FC_entry', 'FC_exit', 'FC_sd', 'FO_entry', 

'FO_exit', 'FO_sd', 'Mean_AccZ_R', 'PeakmagX', 'RmsAccX_R', 'RmsAccZ_R', 
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'SD_AccZ_R', 'VarAccY_R', 'accxmax_exit', 'accy_skewness', 'peakmagY', 'peakmagZ', 

'stancetime', 'swingtime', 'vel_entry', 'vel_middle'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020a.'; 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'stancetime', 'swingtime', 'FC_entry', 'FC_exit', 'FC_sd', 'FO_entry', 

'FO_exit', 'FO_sd', 'accxmax_exit', 'Mean_AccZ_R', 'SD_AccZ_R', 'VarAccY_R', 

'RmsAccX_R', 'RmsAccZ_R', 'vel_entry', 'vel_middle', 'PeakmagX', 'peakmagY', 

'peakmagZ', 'accy_skewness'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Follow_up_fall; 

isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, 

false, false, false, false, false, false, false, false, false, false]; 

  

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

  

% Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

  

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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