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Abstract

Cosmology is at a crossroads. Experiments are providing an unprecedented amount

of data that, in theory, should lead to clear solutions to the many open questions in

cosmology. However, with new data comes new questions and recently uncovered ten-

sions between the predictions of the standard model of cosmology and observations are

leading some to question the very foundations on which the standard model is built.

To explore the vast cosmological landscape, numerical simulations are often employed,

but given the broad parameter space that needs to be explored other faster (but more

approximate) methods need to be adopted to maximise the coverage and the possible

extensions surveyed. In this panorama one of the options is the halo model, a simple

and elegant way to study the clustering of matter in the Universe. However, this method

is not free from assumptions and associated uncertainties.

In this thesis I explore the uncertainties associated with the halo model making use of

cosmological numerical simulations. I use the BAHAMAS simulations to obtain data

products such as the mass density profiles of the haloes and the number density of haloes

over a wide range of masses and I use these quantities in the halo model formalism

in order to make a self-consistent comparisons against the simulations results. Aside

from this application, I calibrate a fitting function on the Einasto function, which has

been shown to be a good representation of the matter distribution inside haloes, and

I use a standard form for the halo mass function. Comparing against the simulation

matter power spectrum at different redshift, I show the accuracy of the halo model

predictions is strongly dependent on the mass definitions used with differences over 50%.

In particular, the transition region between the 1-halo and the 2-halo terms and in the

smallest scales sampled (k ≈ 10hMpc−1). This picture applies to both collisionless and

hydrodynamical simulations, where galaxy formation processes are taken into account.

In contrast to the poor ability in reproducing the matter clustering, the halo model
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can reproduce the relative impact of baryons on the matter clustering to a competitive

accuracy (< 5%) in line of next-generation observations predictions.

In the second part of this work, I analyse the halo model applications of large-scale struc-

ture observables as gravitational weak lensing and thermal Sunyaev-Zel’Dovich effect.

To explore these observables, I have built the halo model using the electron pressure

inside haloes (relevant for the tSZ effect), and I have made several realisations of the

matter power spectrum up to z=3 for the lensing observables, in both the collisionless

and hydrodynamical cases. In this analysis, I have compared against observational data

(e.g., KiDS-450 survey and Planck) and results obtained from light-cones from the BA-

HAMAS simulations. I examined the dependence of the results on the different mass

definitions and the baryonic effects, in particular the baryonic suppression that can be

inferred from this set of observables.

Alberto Acuto February 2022
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Chapter 1

Introduction

The main purpose of this work is to explore the halo model approach in reproducing

large-scale structure predictions and to test its accuracy by making detailed comparisons

with cosmological hydrodynamical simulations. This work highlights the power of using

the relative impact of baryons in the halo model approach to explore, not only the

matter clustering signal but also large-scale observables with an accuracy comparable

to next-generation observational requirements.

In the introduction I aim to provide a general picture of the standard cosmological

framework (1.1) with an emphasis on large-scale structure theory (1.1.1) and large-scale

structure observables (1.1.2) considered in this work. I will, also, present the methods

used to explore the cosmological parameter space such as cosmological numerical simu-

lations (1.3) and the halo model (1.4), highlighting the strengths and weaknesses of each

of one of those methods.

1.1 The ΛCDM cosmology

ΛCDM is a simple, predictive theory that describes the geometry and the evolution of

the Universe from its origin up to its final days. Its name comes from the two major

components of the Universe: the cosmological constant denoted by Λ and the cold dark

matter (CDM). The main components of the Universe are radiation in form of photons

and neutrinos, ordinary matter (baryons and leptons), (non-relativistic) dark matter

and a cosmological constant, Λ. The first component, radiation, had a significant role

in the first instants of the life of the Universe, and its contribution can be measured in

1



Chapter 1 Introduction 2

the Cosmic Microwave Background (hereafter CMB), which provides a picture of the

Universe a few hundred thousand years after the origin, often called ‘Big Bang’1.

Dark matter is the fundamental building block of galaxies and, therefore, of the Universe

itself. The current assumption is that dark matter is ‘cold’2. This means that the

particles are relatively heavy and were not-relativistic when they decoupled from the

radiation field, allowing the start of the formation of potential wells large enough to

trigger the later baryonic collapse that led to the development of the first objects. The

debate about the origin and the nature of dark matter (which particle is it, how massive

is the particle, does it interact in other ways other than via gravitational force?) are

fundamental questions that remain unsolved.

The baryons are the main visible components of stars and galaxies that grant them the

status of the ‘real’ observable tracers of the Universe. Without the baryons, we would

not have had the first stars that have reionized the ‘opaque’ Universe, which became

cold, after having lost all the energy through the emission of the photons that compose

the CMB (reionizing phase, Barkana & Loeb 2001; Koopmans et al. 2015). Without the

baryons we would not have, as well, light to trace the underlying dark matter haloes.

Finally, there is the cosmological constant, Λ. The Λ constant, called ‘dark energy’, is

the last component of the concordance model for a spatially flat Universe. The standard

model assumes a cosmological constant which implies the energy density is time invariant

(Linder, 2003, 2005; Hu, 2005; Riess et al., 1998, 2004). However, the physical nature

of this component (e.g., whether it represents a scalar field, zero-point energy, vacuum

energy) and whether it is truly time-independent is currently unknown and represents

one of the most pressing questions in physics.

It is useful to introduce a variable that will help us describe the time evolution of the

Universe. This variable, redshift, is related to the expansion parameter, a, and it is

noted as z. I define, starting from an observation point of view, the redshift as :

1The redshift of the CMB emission is zCMB ≈ 1089 and it is assumed to be a flat plane distribution.
Therefore using the Friedmann’s equations we can obtain the age of the Universe at that event following:

te = tH

∫ ∞
zCMB

dz
′

(1 + z′)E(z′)
; (1.1)

where E(z) is defined in eqn. 1.12 and tH = H−1
0 ≈ 9.78h−1Gyrs (109 years) also called Hubble time

(Hogg, 1999). Doing this calculation using WMAP9 cosmology the age of the Universe when the CMB
was emitted was te ≈ 400000 years.

2The dark matter temperature is a measure of when this component is not in equilibrium with the
other components and starts its collapsing evolution. A ‘hot’ dark matter would have been relativistic
and, therefore, it would have decoupled at a similar time as radiation, leading to smaller potential wells.
A ‘cold’ model is privileged to justify the observed size and clustering of haloes and the hierarchical
growth of structures.



Chapter 1 Introduction 3

z =
λo − λe
λe

, (1.2)

with λo wavelength of radiation from the observed source at the origin (which is assumed,

for simplicity, the origin of the coordinate system) at a certain time t0 and, consequently,

emitted in a previous time te, with the corresponding emission wavelength λe. The source

is moving with the expansion of the Universe at the comoving coordinate re so:

∫ to

te

cdt

a(t)
= d , (1.3)

with distance d. The light emitted is moving at a constant speed therefore d is constant

for both couples (to,te) and (to + δto,te + δte) and that allows us to write:

∫ to

te

cdt

a(t)
=

∫ t′o=to+δto

t′e=te+δte

cdt′

a(t′)
→ δto

ao
=
δt

a
. (1.4)

In eqn. 1.4 I have ao = a(to) and I can define the frequency (e.g., νe for the emission)

as δt−1
e and obtain, with few logical passages using the associated wavelengths, to:

νea = νoao →
a

λe
=
ao
λo
→ 1 + z =

ao
a

, (1.5)

making use of the z definition (eqn. 1.2) I have obtained the physical formulation of

redshift in terms of the scale factor, a. It is customary to define the current scale factor,

a0, as being equal to one. In this way, the scale factor is relative to the present size of

the Universe.

After presenting the general components of the Universe, it is worth putting a frame

on these components and presenting the formal cosmological setup guided by general

relativity. General relativity (GR) is the theory that describes gravitational interactions

on several physical and cosmological scales. The ‘cosmological principle’ states that the

Universe is, under a statistical point of view, homogeneous and isotropic in both matter

and space on large scales (tens of megaparsec scale, inhomogeneity in galaxy cluster or

cosmic web are ignored). The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

is the mathematical formalism that describes the cosmic distances as:

ds2 = c2dt2 − a(t)2

(
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.6)

that emerges naturally from the cosmological principle. In eqn. 1.6 I have used spherical

polar coordinates to determine the distance s: r, θ, φ those are in comoving units (r
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by convention is dimensionless), t is the proper time and a(t) is the scale or expansion

factor. K is the normalised curvature parameter which can assume the values -1, 0

and 1 corresponding to three possible metric solutions (open, flat and closed). By

combining the 4-dimensions (t, r, θ, φ) of the space-time FLRW metric and the Einstein’s

field equations we obtain the Friedmann cosmological equations:

ȧ2 +Kc2 =
8

3
πGρa2 +

Λc2

3
; (1.7)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
; (1.8)

defined in terms of expansion parameter a (eqn. 1.5) and normalised such z = 0 →
a(t0) = 1. The overdot notation defines the temporal derivative. In eqns. (1.7)(1.8) G is

the gravitational constant, ρ is the density, p is the pressure and c speed of light. With

eqns. (1.7)(1.8) I can define the Universe critical density:

ρc ≡
3

8πG

(
ȧ

a

)2

, (1.9)

that allows the introduction of the density parameter Ω defined as follows:

Ω(t) =
ρ

ρc
. (1.10)

With the introduction of the density parameter it is possible to rewrite, accordingly, the

FLRW equations with these parameters explicitly:

8πG

3H2
ρ︸ ︷︷ ︸

Ωm

− K

a2H2︸ ︷︷ ︸
ΩK

+
Λ

3H2︸︷︷︸
ΩΛ

= 1 ,

Ωm + ΩΛ = 1− ΩK ,

H2 =
ȧ2

a2
=

8πGρ+ Λc2

3
.

(1.11)

As shown in eqn. 1.11, the Hubble parameter H is introduced and expressed in terms

of the expansion parameter. The equations are expressed in term of the dimensionless

density parameter, Ω, which states that, for a spatially flat universe (ΩK = 0), the sum

of the components (matter and Λ) must be equal to one. Note that Ωm here includes

the contributions of both baryons (often identified as Ωb) and dark matter and the

contribution of radiation is neglected, which as I presented above, is relevant only in

the early phases of the Universe. Another component is introduced into the standard

CDM paradigm is massive neutrinos, that are believed to have a significant role before
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recombination. The neutrino contribution is calculated as Ων = Mν/(93.12h2) with the

assumption that all neutrinos are non-relativistic (which is valid by z . 100 for 90% of

those Ali-Häımoud & Bird (2013)).

The cosmological evolution of the parameters is usually expressed by the, so-called,

Peebles function (Peebles, 1993):

E(z)2 = Ωm(1 + z)3 + ΩK(1 + z)2 + ΩΛ , (1.12)

that can also be expressed in terms of scale factor a. Equation 1.12 shows the time

(redshift or scale factor) evolution in terms of the matter density, Λ and curvature

parameters and it is bounded to the geometry of the Universe.

The geometry of the Universe is relevant not only for what happened in the past, in terms

of physical distances, but it is also important to understand the fate of the Universe,

as different geometries lead to different outcomes. For a spatially flat universe (which

is consistent with current measurements, Planck Collaboration (2018); Efstathiou &

Gratton (2020)3), we should expect it to keep expanding at a constant pace, however,

the presence of dark energy causes an accelerated expansion. In the hypothetical case

of a matter-dominated Universe (ΩΛ = 0), the geometry can describe, as well, the

scenarios of the ‘big crunch’ (K > 0, the matter density is above the critical threshold,

thus the gravity can pull the universe back to a singularity) or the ‘open’ cases (K < 0,

a continuous expansion).

Since I have already introduced and discussed distances, it is worth defining the various

distances in cosmology that will be relevant in the later discussions and Chapters. I start

with the Hubble distance, which is the distance travelled by the light in a Hubble-time:

DH =
c

H0
, (1.13)

since H−1
0 is the Hubble-time (th). With this, I can define the comoving distance, which

is worth highlighting can be differentiated between ‘line-of-sight’ (LOS) and ‘transverse’

(T) (Hogg, 1999):

DLOS
C (z) = χ(z) = DH

∫ z

0

dz′

E(z′)
. (1.14)

3In recent years, some authors have analysed in detail the measurements of the curvature of the
Universe using Planck data trying to explain some of the tensions present. For instance, Di Valentino
et al. (2020) found that using the same Planck data without any priors imposed the best-fitting model
prefers a curvature parameter significantly different from 0.
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Eqn. 1.14 presents the distance between two events, in the notation I use I define the

comoving distance with the Greek letter χ. For the transverse case, I define it in a more

general way making the cosmological curvature dependence explicit:

fTK(z) =


K−1/2 sin(K1/2χ(z)), K > 0;

χ(z), K = 0;

−K−1/2 sinh(−K1/2χ(z)), K < 0.

(1.15)

Having defined the comoving distance, I now introduce the angular distance as the

product between the comoving distance and the scale factor:

DA(z) =
fTK

1 + z
= afTK . (1.16)

The angular distance is the separation between two objects on the sky plane and it is

often used to convert object positions on the telescope field onto real locations in the

sky. Finally, I define the luminosity distance as the ratio between the integrated flux S

and the integrated luminosity L:

DL =

√
L

4πS
, (1.17)

which is related to the previous quantities as DL = a−1fTK = a−2DA. Hereafter, to

keep the notation more clear, I avoid using the (T) notation when I write the transverse

comoving distance, fK .

Currently, the best constraints on cosmological models comes from detailed analysis of

fluctuations in the CMB, starting in the early 90s with the COBE satellite4 (Smoot

et al., 1992; Fixsen et al., 1996). Since then, our understanding of the Universe has

improved significantly. The measurements from the WMAP5(Spergel et al., 2003) and

Planck 6 satellites (Planck Collaboration et al., 2014) provided strong constraints on the

cosmological parameters such as the amplitude of the fluctuations σ8, the spectral index

ns and the Hubble constant (H, or its normalised version h = H 100−1 km/s/Mpc). Not

only measurements from CMB observations confirm that the Universe is well represented

by the ΛCDM paradigm, results from galaxy clustering (e.g., BOSS7 survey, Ivanov et al.

(2020)) and weak lensing provide (e.g., KiDS-10008, Heymans et al. (2021)) strong proofs

on the flatness of the Universe and the hierarchical growth of structure.

4https://lambda.gsfc.nasa.gov/product/cobe/, COsmic Background Explorer.
5https://map.gsfc.nasa.gov/ , Wilkinson Microwave Anisotropy Probe.
6https://www.cosmos.esa.int/web/planck, named after the German 1918 Nobel winner Max Planck.
7BOSS = Baryon Oscillation Spectroscopic Survey.
8KiDS = Kilo Degrees Survey.

https://lambda.gsfc.nasa.gov/product/cobe/
https://map.gsfc.nasa.gov/
https://www.cosmos.esa.int/web/planck
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The last two parameters introduced, σ8 and ns, describe the distribution of fluctuations

on the large-scale and are obtained by measuring the matter power spectrum:

σ2
8 =

1

2π2

∫
T (k)P (k)W 2(kR)k2dk ; (1.18)

where k is the comoving wavenumber, P (k) is the primordial power spectrum, T (k)

is the transfer function which scales the primordial power spectrum to the present day

assuming linear evolution. W is the Fourier transform of the top-hat window function of

a real-space sphere of radius R = 8h−1Mpc. The Gaussian fluctuations that happened in

the inflationary period9 left the seeds for the gravitational collapse that can be measured

today with the positions and clustering of haloes. The primordial power spectrum can

be expressed as:

P (k) = Ask
ns , (1.19)

introducing the power spectrum amplitude, As, and the explicit dependence on the spec-

tral index, ns. Hypothetically, if the Universe had scale invariant fluctuations, we would

have ns = 1 (Harrison (1970); Peebles & Yu (1970); Zeldovich (1972), the Harrison-

Zel’Dovich power spectrum) but the current, accepted, inflationary paradigm (as the

slow-roll inflation, Linde (1982)) predicts that ns ≈ 0.96, which has been observation-

ally verified (Planck Collaboration, 2018).

The ΛCDM model has successfully explained a wide range of observations over the past

twenty years, but recent detailed comparisons have revealed some interesting tensions.

Two tensions prevail in the current cosmological landscape: the value of Hubble’s con-

stant and LSS statistics of Ωm and σ8, often recast in the joint constraint parametrised

as S8
10. The value of the Hubble’s constant, H0, presents a large discrepancy from early

Universe measurements, as CMB and BAO (Planck Collaboration, 2016, 2018; Abbott

et al., 2018), and late Universe probes as supernovae Ia (Riess et al., 2016) or strong

lensing time delays (e.g., H0LiCOW, Wong et al. (2020); Verde et al. (2019)). The ten-

sion comparing the measurements of Ωm and σ8 arise because Planck data favour a

higher value of one of those parameters (or both) whilst LSS data sets (e.g., Heymans

et al. (2013); Hildebrandt et al. (2017); Leauthaud et al. (2017); McCarthy et al. (2018))

appear to prefer a relatively lower value. These tensions escalated recently due to the

disagreement between the estimation of these from early Universe measurement of the

CMB and large-scale structure tracers (hereafter LSS). This situation exposed some key

trigger points in the solid theoretical background allowing variations and extensions of

9The inflationary epoch is a theorised phase in which the Universe underwent a phase of exponential
expansion. This theory finds many confirmations by the ‘cosmological principle’, which assures that,
statistically, the Universe is homogeneous and isotropic and explains the emission features of the CMB.

10S8 ≡ σ8

√
Ωm/0.3 .
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Table 1.1: Cosmological parameter values from Planck2018 survey and WMAP year
9 results. For the Planck case I present the parameters 68% interval using
CMB power spectra in combination with CMB lensing reconstruction and BAO
(TT,TE,EE+lowE+Lensing+BAO) for WMAP9, instead, I present the ΛCDM
best-fitting parameters with BAO and H0 priors. In this table I present the dark

matter density parameter as Ωc.

Planck (Planck Collaboration, 2018) WMAP9 (Hinshaw et al., 2013)
Parameter 68% limits 68% limits

H0 [km s−1Mpc−1] 67.66± 0.42 69.33± 0.88
Ωm . . . . . . . . . . . . . 0.311± 0.0056 0.288± 0.01
Ωb . . . . . . . . . . . . . . 0.049± 0.0003 0.0472± 0.0010
Ωc . . . . . . . . . . . . . . 0.262± 0.0001 0.2408± 0.009
ΩΛ . . . . . . . . . . . . . . 0.6889± 0.0056 0.712± 0.010
σ8 . . . . . . . . . . . . . . 0.8102± 0.006 0.830± 0.018
ns . . . . . . . . . . . . . . 0.9665± 0.0038 0.971± 0.010
109As . . . . . . . . . . . 2.105± 0.030 2.427± 0.078

this theory. Different species of dark matter, as a warm component or self-interacting

one, time-evolving dark energy, presence and feedback of massive neutrinos in the large-

scales growth of structure are some of the many hypotheses surveyed. This plethora of

options is heavily investigated in many different works, trying to dig out the information

and find the right solution (Di Valentino et al., 2021).

In Table 1.1 I present a recap of the main ΛCDM parameters shown previously in the

text from the Planck 2018 (Planck Collaboration, 2018) and WMAP9 surveys (Hinshaw

et al., 2013). The parameters are expressed with the 68% confidence level and are

obtained by combining the CMB power spectra (in the Planck case with also the EE,

TE, TT polarisation spectra available), BAO measurements and CMB lensing in the

first case and with priors on BAO and H0 in case of latter. In this table I have used the

parameter Ωc to describe the dark matter density parameter (please note that Ωc+Ωb =

Ωm).

1.1.1 Large-scale structure

Large-scale structure refers to the distribution of haloes and matter on the largest scales.

With haloes, I talk about objects from galaxy to group-cluster of galaxies size, in a

more general term. The distribution of haloes and matter in the Universe, in what is

commonly known as the cosmic web (Bond et al., 1996), creates several patterns. The

galaxies that occupy groups and clusters are the nodes developed from the intersection

between long filaments and sheets of matter. Surrounding the elongated filaments and

walls of matter there are near-empty void regions (van de Weygaert, 2016; Libeskind

et al., 2018). The primordial density field presented Gaussian random fluctuations, that
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through gravitational instabilities developed the patterns we observe in the cosmic web

(Bartolo et al., 2004).

Haloes are not glued to a single position in the sky as they wander driven by gravity,

collapsing and merging into larger objects in a process called hierarchical structure

formation (White & Frenk, 1991; Kauffmann et al., 1999). In fact, the most massive

galaxy clusters we can observe in the ‘recent’ Universe (z . 0.5) are the pinnacle of the

growth of structure. The accretion phenomena granted them such strong potential wells

that we can consider them as approximately closed cosmic laboratories.

While the growth of structure is well understood in the context of gravitational instability

within the ΛCDM model, detailed comparisons to observations require that we must

also carefully model the role of baryons and associated non-gravitational processes (e.g.,

feedback, radiative cooling, star formation). Furthermore, the details of the gravitational

collapse are altered in detail when massive neutrinos are incorporated and/or the nature

of dark energy is modified.

One of our most powerful tools for testing models of large-scale structure is the matter

power spectrum and its evolution with redshift. The challenge for next-generation weak

lensing surveys is to obtain this quantity to a percentage level accuracy, allowing us to

distinguish between different cosmologies and galaxy formation feedback.

1.1.1.1 Matter power spectrum

A detailed description and characterisation of the matter power spectrum at different

redshifts is the ultimate goal for modern cosmology. Our actual knowledge is definitely

more refined than before, thanks to many results from CMB and all-sky surveys (Ross

et al., 2020; Wang et al., 2020; Zhao et al., 2021).

From a theoretical perspective, the matter clustering can be described in a statistical

formalism from the dark matter density field as an n-point correlation function of the

density fluctuations δ(x). Any process that develops initial random fluctuation would,

eventually, produce Gaussian distributed perturbations thanks to the central limit the-

orem. If we express the density perturbations in the Universe in terms of a relative

background mean density, ρ, we have:

δr =
ρ(r)

ρ
− 1 ; (1.20)

where r is a 3D position in space while x is the 3D normalised position in space. As-

suming that the real coordinate space can be expressed by n-point correlation functions,
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without any loss of information, it is possible to write:

〈δ(xi)...δ(xn)〉 ≡ ξn(x1...xn) , (1.21)

with ξn denoted as the n-point correlation function. In Fourier space all the calculations

of the n-point correlations can be easily re-written in a more concise form as:

A(x) =

∫
d3k

(2π)3
A(k) exp(ikx) , (1.22)

that with the knowledge of the Fourier form of the Dirac delta function δD:

δD(k1..i..n) =

∫
d3x

(2π)3
δ(k) exp(ikx) , (1.23)

we can describe the real space density field as the sum over the Fourier modes:

δ(x) =

∫
d3k

(2π)3
δ(k) exp(ikx) . (1.24)

From eqn. 1.21 we know that the density field is equivalent to the measure of nth corre-

lation function between those, meaning we can express the nth correlation point using

eqn. 1.24 as:

〈δ(k1)δ(k2)〉 = (2π)3δD(k12)P (k) ,

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δD(k123)B(k1,k2,k3) ,

....

(1.25)

where P is the 2-point correlation function in k-space, with k = ‖k‖. To clarify further,

the Dirac delta application means that if ki = kj → δijD = 1 otherwise is δijD = 0 and this

can be generalised in the n-dimension version of this operator. The 2-point correlation

function is known as power spectrum in Fourier space, B is the 3-point correlation

function, often called bispectrum, and so on with the other n-point statistics. Each n-

point correlation describes a particular feature of the Universe, for example, the power

spectrum describes the clustering of haloes, non-Gaussianity11 can be quantified with

the bispectrum (Scoccimarro et al., 1998; Meerburg et al., 2019).

11The initial fluctuations that are measured by the power spectrum are assumed to be Gaussian, but
primordial interactions and dynamics in the inflationary period are expected to influence this assumption
(Meerburg et al., 2019).
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1.1.2 Large-scale structure tracers

In the next short sub-sections, I go into detail about the various large-scale structure

traces used in this work. I focus on the theoretical background, applications and cos-

mological dependencies exploring the work undertaken so far.

1.1.2.1 Gravitational weak lensing

To study the LSS we have several strong tools, one of these is the gravitational weak

lensing signal. The presence of collapsed objects (identified as lenses) along the line of

sights has a significant impact on disturbing the photon path-lines coming from objects

(sources) that lie at redshifts further away. The weak lensing is the measure of the

distortion that affects the background sources due to the effect of the lenses resulting

in both shape and signal differences from the original distribution. The background

sources can be photons either from galaxies or the CMB itself.

Gravitational weak lensing can be studied in statistical analysis using the coherence of

the shear signal over the sky. This happens because observations cannot describe the true

3D distribution of matter of the galaxies, so it is not easy to differentiate between a ‘real’

distortion of the galaxy observed compared to one created by weak lensing. Lensing, in

a broader sense, has two separate effects: the distortion and the magnification of the

light of the background sources. The magnification, an enhancement of the flux, can be

used as optical lenses to study objects further away with better resolution and details

(Bonvin et al., 2017).

Gravitational weak lensing measurements have been used to identify the underlying

dark matter haloes in spiral and elliptical galaxies (Brainerd et al., 1996; Griffiths et al.,

1996; Bartelmann & Schneider, 2001) and map the mass distribution of galaxy clusters

(e.g. Kaiser 1998; Hoekstra et al. 2013) providing strong constraints on the growth of

structure in a CDM Universe.

Lensing is not sensitive only to the geometry of the Universe (as supernovae Ia or baryon

acoustic oscillations that are pure geometric probes) but also a direct measurement of

the growth of structure at different epochs (Hoekstra et al., 2013; Weinberg et al., 2013).

The geometry is present because, similarly to linear optics, the distances between source-

lens-observers can measure the cosmological distances as well as different growth status

between those (like the increase of distances caused by the acceleration, for instance due

to the effect of dark energy).

The weak lensing formalism starts from the observed surface brightness distribution,

fobs, that must be mapped back to the original surface brightness distribution, fs,
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under the assumption that the angle between the source and the lens is small (Hoekstra

& Jain, 2008). This can be done applying a distortion matrix A12:

fobs(θi) = fs(Aijθj) ;

A =
∂(δθi)

∂θj
≡ (δij −Ψ,ij) =

(
1− k̃ − γ1 −γ2

−γ2 1− k̃ + γ1

)
;

Ψ,ij ≡
∂2Ψ

∂θi∂θj
.

(1.26)

In eqn. 1.26 I introduce the 2D gravitational potential Ψ and its second order spatial

derivative Ψ,ij in terms of the observed lensed positions in the sky θij . γ1 and γ2 are

the components of the complex shear γ ≡ γ1 + iγ2, often expressed in terms of the shear

orientation angle α as γ = γ exp(2iα). These components are defined in terms of Ψ,ij

as follows:

γ1 =
1

2
(Ψ,11 −Ψ,22) and γ2 = Ψ,12 . (1.27)

k̃ is the lensing convergence, a scalar quantity obtained by a weighting projection of the

matter density fluctuation as:

k̃(θ) =
1

2
∇2Ψ(θ) =

∫
dχW (χ)δ[χ, χθ] ; (1.28)

with ∇2 Laplace’s operator defined using the flat sky approximation (so θi = θj
13) as

∇2 ≡ ∂2/∂θ2. χ is the comoving distance, depending on the curvature and geometry

of the Universe as shown in eqn. 1.15, that in a spatially flat Universe is equivalent as

K = 0 → fK = χ (Seljak, 1998; Harnois-Déraps et al., 2015). In the treatment, here

and throughout, I have assumed the Universe is spatially flat. The W (χ) is the lensing

efficiency function (or ‘kernel’) and is obtained as:

W (χ) =
3

2
ΩmH

2
0χa

−1(η(χ)|z)
∫
dχsns(χs)

(
1− χ

χs

)
, (1.29)

with H0 Hubble parameter at z = 0, matter density parameter Ωm and a scale factor.

η(χ) is commonly used to define the coformal time of the distance and is often substituted

in the formalism instead of redshift. The source-redshift distribution ns(χs) is defined

such
∫∞

0 dχsns(χs) = 1. Under the assumption of a single source redshift distribution,

12A is the Jacobian matrix of the transformation as can be seen from eqn. 1.26.
13In the case of θi 6= θj the Lapalce’s operator is defined as : ∇2 ≡ ∂2/∂θi∂θj .
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zs, ns function collapses to a Delta function as:

ns(χ) = δD(χ− χs)

1, if χ = χs,

0, otherwise.
(1.30)

As I have already said, the weak lensing signal is measured by estimating the shear

correlation functions from observations of galaxy shape catalogues in both optical/ near-

infrared (e.g., CFHTLenS, Erben et al. (2013)) and radio images surveys (e.g., SKA14,

Brown et al. (2015)). The 2-point correlation function of the shear (that is the same for

the convergence) for a catalogue is defined as:

ξγi,γj (θ) = 〈γi(θ1)· γj(θ2)〉 ; (1.31)

eqn. 1.31 is evaluated in general terms for two redshift bins (ith and jth) and with

θ = ‖θ1 − θ2‖. Since it is more complex to deal with vectorial products, it is standard

to define eqn. 1.31 in terms of sum and multiplication of the shear fields as:

ξ+(θ) = 〈γi+(θ1)γj+(θ2)〉 ,

ξ×(θ) = 〈γi×(θ1)γj×(θ2)〉 ;
(1.32)

with the parallel term (+) and the perpendicular (×). With this simplification I can

rewrite eqn. 1.31 as ξγiγj = ξ+ + ξ×. The shear power spectrum at a particular angular

wave number ` is the Fourier transform of ξγiγj and can be expressed as the projection

of the mass density power spectrum. I will go into detail about the calculations of the

shear power spectrum in Section 2.21 with the different applications and the differences

between the single source CMB weak lensing, the tomographic lensing analysis and the

source redshift distributions used.

Weak lensing observations have been used to constrain cosmological parameters via the

shear correlation functions defined above, but also indirectly via their use in estimating

the halo masses of galaxies, groups and clusters. The mass estimation is extremely im-

portant since it provides a less biased measurement of the total halo mass, which is less

subject to hydrodynamical distortion phenomena that can have a non-negligible effect

on the baryonic (mainly on gas properties in X-ray/SZ analysis) counterpart (see the

discussion on the hydrostatic mass bias in section 1.1.2.3). For what concerns cosmo-

logical parameter estimation via cosmic shear, the most sensitive parameters are the

ones characterising the geometry of the Universe (being the source-lens distances heav-

ily affected) such as the total amount of matter (Ωm) and the dark energy component

14https://www.skatelescope.org/the-ska-project/, Square Kilometre Array.

https://www.skatelescope.org/the-ska-project/
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(ΩΛ). Furthermore, weak lensing studies can provide constraints on the large-scale clus-

tering parameter σ8 and next-generation observations aim to efficiently disentangle the

constraints on Ωm and σ8, which so far have been strongly correlated (Heymans et al.,

2021).

The source of uncertainties in weak lensing, shear imaging, analysis comes from various

origins. Some of these uncertainties, like the PSF (point spread function of the telescope)

and its calibration, come from technical difficulties that are taken into account in a gen-

erally straightforward way. Another weak spot of these analyses is accurately estimating

the redshift distribution of the sources, due to the higher uncertainty associated with

photometric redshift measurements. Perhaps even more challenging is distinguishing a

lensed distorted galaxy image from a real galaxy shape. The intrinsic alignment (IA) in

weak lensing analysis is a problem that has no easy solution. Numerical studies using

hydrodynamical simulations have provided tools (e.g. identify which component is less

susceptible to be influenced by the dark-matter halo shape or large-scale tidal force) to

identify the most effective observable to understand the weak lensing signal (Velliscig

et al., 2015, 2017; Hill et al., 2021). In addition, the presence of baryons and their impact

in the non-linear power spectrum can introduce biases onto the cosmological analysis

performed (Jing et al., 2006; van Daalen et al., 2011; Schneider & Teyssier, 2015; Chisari

et al., 2019; Debackere et al., 2020, 2021; Schneider et al., 2019; van Daalen et al., 2020;

Angulo et al., 2021; Aricò et al., 2021; Martinelli et al., 2021).

In the above treatment of weak lensing, I have adopted the so-called Born approxima-

tion. The reconstruction of the lensing potential and the distortion of the light can, in

principle, be quite complex. However, in the case of weak lensing light rays will, by

definition, only undergo small deflections. Assuming these deflections to be small and

the angles between the lines of sight and original photon path lines are small, allows us

to describe the lensing convergence signal (eqn. 1.28) as a function of the lowest order

lensing potential. Consequently, the convergence signal k̃ is the integrated matter den-

sity on unperturbed line of sight weighted by the lensing kernel (eqn. 1.29, Schäfer et al.

(2012); Petri et al. (2017)).

This approximation is enough for quick analytical predictions for 2 point correlation

functions (as these halo model predictions, Schneider et al. (1998)) but it might not

be enough accurate for precision measurements, where a post-Born approximation can

solve the analytical issues (Cooray & Hu, 2002; Fabbian et al., 2018) or in simulations

with a full ray-tracing procedures (Giocoli et al., 2016; Wei et al., 2018).
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1.1.2.2 CMB weak lensing

The primary CMB is well understood and focus in recent years has shifted somewhat

to new probes that exploit the CMB in different ways, such as secondary anisotropies

arising from interactions with matter along the line of sight between the CMB and the

observer. One of the most interesting is CMB weak lensing, which is the use of the CMB

photons as source and their variations is associated by potential gradients along the line

of sight (Hu, 2000; Lewis & Challinor, 2006).

The first authors that presented the possibility of having gravitational effects on the

CMB anisotropies were Blanchard and Schneider in 1987 (Blanchard & Schneider, 1987).

But the first detection of those effects were only hinted at following WMAP observations

using cross-correlations with large-scale structures by galaxy surveys (Hirata et al., 2004)

and within the CMB observation itself with WMAP data (Feng et al., 2012), ACT

(Atacama Cosmology Telescope, Das et al. (2011)), SPT (South Pole Telescope, Keisler

et al. (2011)) and, at last, with Planck (Planck Collaboration et al., 2018).

In the case of unlensed CMB power spectrum, the temperature measured is approxi-

mately uniform (of 2.725 K) with fluctuations in the order of 10−5 due to the rise of

acoustic baryonic oscillations and signal from large-scale growth of structures associated

with integrated Sachs-Wolfe effect (ISW, Sachs & Wolfe (1967)) due to evolving poten-

tials along the line of sight. Small scale CMB temperature spectrum is influenced, also,

by the reionization of neutral gas (mainly between 6 < z < 20 due to stars and quasars

feedback).

The deflection of light, as presented in the previous section, is influenced by both under-

(e.g. weak lensing of cosmic voids, Davies et al. (2018, 2021)) and over-densities that

can lead a deflection up to δβ ≈ 10−4, where β is the deflection angle, and corresponds

to 2◦ in angular scales for this CMB case (Lewis & Challinor, 2006).

This probe has an advantage compared to other weak lensing studies, since the source

distribution is a well measured (almost) flat distribution of photons which have an as-

sociated lower measurement error compared to the redshifts of the galaxies in galaxy

surveys (i.e., the associated higher uncertainty with photometric redshift measurement).

Cross-correlating this observable with other lensing observations or probes, such as ther-

mal Sunyaev-Zel’Dovich or X-ray can provide further details on the growth of structure

(Hill & Spergel, 2014; Hand et al., 2015; Liu & Hill, 2015; Harnois-Déraps et al., 2016,

2017; Darwish et al., 2021).
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Figure 1.1: Thermal Sunayev-Zel’Dovich spectral shift feature. Figure adapted from
Carlstrom et al. (2002).

1.1.2.3 Thermal Sunyaev Zel’Dovich effect

The thermal Sunyaev-Zel’Dovich effect (hereafter tSZ, Sunyaev & Zeldovich (1981)) is

a frequency dependent distortion of the CMB spectrum due to the inverse Compton

effect from the CMB photons and the high-energy free electrons in the intra-cluster

medium of the galaxy clusters (Birkinshaw, 1999). This interaction creates a unique

and characteristic signature on the CMB spectrum. This spectral feature shifts photons

below ν ≈ 220 GHz into an excess above that energy range, resulting in a secondary

source of anisotropies in the CMB spectral energy distribution.

Fig. 1.1 shows a simplistic representation of the CMB spectral distortion due to tSZ

effect. The figure is adapted from Carlstrom et al. (2002).

Alongside the pure thermal contribution, if the collapsed object is moving with respect

to the CMB rest frame this adds a velocity contribution, as a Doppler shift, on the

spectral feature that is known as the kinetic Sunyaev Zel’Dovich (kSZ, Cooray & Chen

(2002)). This secondary effect is smaller compared to the thermal contribution, but

with upcoming surveys and detailed observations, the kSZ will become an important

observable (Deutsch et al., 2018; Münchmeyer et al., 2019; Coulton et al., 2020).
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The spectral distortion of the CMB of the tSZ effect can be expressed in terms of change

of the temperature as ∆TSZ at a dimensionless frequency, x ≡ hpν
kBTCMB

, as:

∆TSZ

TCMB
= yfSZ(x) = fSZ(x)

∫
neσT

kBTe
mec2

d` , (1.33)

with y called Compton y-parameter, σT is Thomson cross-section, kB is the Boltzmann

constant, hp Planck constant, Te is the electron temperature and mec
2 is the electron

rest mass energy (please note that in dimension kBT is an energy) integrated along the

line of sight. fSZ is the frequency dependence function and it has a general shape like:

fSZ(x) =

(
x
ex + 1

ex − 1
− 4

)
(1 + δSZ(x, Te)) = (x coth(x/2)− 4)(1 + δSZ(x, Te)) ; (1.34)

with δSZ as term of the relativistic correction that can be applied to the frequency

dependence. In the non relativistic Rayleigh-Jeans limit15 we have that fSZ(x)→ −2.

Eqn. 1.33 shows that in the spectral signature of the tSZ there is no dependency on the

redshift providing a very strong tool for detecting distant objects (Hurier et al., 2017; Lin

et al., 2021), studying galaxy cluster dynamics (Baldi et al., 2019), mapping the cosmic

web (Tanimura et al., 2020a) and constraining cosmological parameters (Komatsu &

Seljak, 2002; Komatsu et al., 2011; Battaglia et al., 2012b; McCarthy et al., 2014; Bolliet

et al., 2020; Tanimura et al., 2021).

The cosmological dependence is primarily through parameters that control the growth

of structure, such as σ8 and Ωm, therefore tSZ offers a constraining tool via both the

thermal power spectrum as well as tSZ cluster number counts. These dependencies

can help constrain the redshift evolution of the cluster number counts, test models of

dark energy (Bolliet et al., 2018) but also provide an overview of cosmological thermal

energy evolution (Chiang et al., 2020, 2021). In fact, the key role in this observable

are clusters of galaxies, that are themselves important for cosmology. The evolution of

galaxy clusters, from cluster abundances, clustering of clusters, and the thermodynamics

of the ICM contain a wealth of information about our cosmology and important baryonic

processes (such as feedback from supernovae and active galactic nuclei).

The energy distribution, in terms of thermal pressure, is where most uncertainties lie.

An accurate description of this observable is needed, since it has been shown that this

15The Rayleigh-Jeans limit is an approximation, under classical physics assumptions, of the black body
radiation emission (Rybicki & Lightman, 1986). This result predicts correctly the radiative frequencies
below ≈ 105 GHz and can be applied in low frequency regimes as submillimeters tSZ observations.



Chapter 1 Introduction 18

quantity is extremely sensitive to even the smallest changes in baryonic feedback. Start-

ing from X-ray selected massive clusters, Arnaud et al. (2010) provided a widely used

pressure profile characterisation, however, as other independent work have proven, a cor-

rect inclusion of AGN feedback is mandatory for a precise and realistic representation of

this observable especially from simulations as Komatsu & Kitayama (1999); Battaglia

et al. (2010, 2012a,b).

Another complex issue in tSZ modelling is the overall halo mass. Cluster mass measure-

ments from weak lensing and X-ray observations tend to differ by 10 − 20% (Hurier &

Angulo (2018) and references in this paper). This problem, known as the hydrostatic

mass bias, comes from the assumption that the gas inside haloes is in a hydrostatic

configuration (so in perfect equilibrium), but this is a strong assumption that impacts

significantly the overall mass estimation of the haloes involved (Salvati et al., 2018, 2019;

Tanimura et al., 2021). The tSZ observations are, together with X-ray observations since

both measure the same quantity (hot gas distribution), the most affected by this bias

that can have a strong influence on the measurements (Bocquet et al., 2019; Ettori et al.,

2019; Ruppin et al., 2019). This issue is less worrying in simulations, given the fact that

in simulations there is already the knowledge of the ‘true’ mass of haloes and can help

constrain and reconcile the differences between the observations (Barnes et al., 2020;

Gianfagna et al., 2021).

In recent years, the tSZ effect has enabled us to measure and trace gas distribution far

outside the virial radius of galaxies by stacking multiple images enhancing, significantly,

the signal to noise ratio (Tanimura et al., 2020a). SZ stacking images, together with

weak lensing techniques (Mead et al., 2010), X-ray stacking (Tanimura et al., 2020b) and

study on the galaxy distribution (Malavasi et al., 2020), will enhance our understanding

of the cosmic web as well.

1.2 Need for methods to explore parameters space

Stage IV cosmic shear surveys such as Euclid16, the Rubin Observatory Legacy Survey

of Space and Time (LSST)17, and the Nancy Grace Roman Space Telescope (NGRST)18

aim to measure the matter power spectrum to percent level accuracy, in principle allow-

ing constraints to be placed on important cosmological parameters. Comparatively tight

16https://www.euclid-ec.org/
17https://www.lsst.org/
18https://roman.gsfc.nasa.gov/

https://www.euclid-ec.org/
https://www.lsst.org/
https://roman.gsfc.nasa.gov/
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constraints are also expected from forthcoming X-ray surveys as eRosita19, Sunyaev-

Zeldovich effect surveys with SPT-3G20, Advanced ACTPol21, and Simons Observa-

tory22 and optical surveys (e.g. galaxy clustering) such as LSST and Euclid and

DESI23. In order to deliver on the aims of these surveys, a clear requirement is that

we must be able to predict the observables (e.g., weak lensing power spectrum, galaxy

clustering, SZ power spectrum) for a given cosmology, to an accuracy that is at least

as precise as the statistical measurement errors. Otherwise, we risk biasing the derived

cosmological parameters. In the specific case of weak lensing, this means predicting the

matter power spectrum to percent level accuracy. The problem is particularly challeng-

ing, as most of the signal from current LSS tests comes from non-linear scales, thus

requiring theoretical models to accurately follow matter as shells cross and collapse into

‘haloes’, with galaxies potentially forming at their centres.

The requirement for tools to explore extensively the cosmological parameter space accu-

rately are one of the main challenges at present in cosmological research. To model the

non-linear scales numerical simulations are, by far, the most accurate and reliable but

are time and resource consuming, leading to a trade-off between simulation size, param-

eter space sampling and inclusion of baryons. Therefore analytical or semi-analytical

methods are the most common choice since they are flexible, quick and easier to calibrate

for different purposes.

A promising solution to tackle these problems is using emulation techniques (e.g., Kwan

et al. 2015; Heitmann et al. 2016; DeRose et al. 2019; Nishimichi et al. 2019; Rogers

et al. 2019; Pellejero-Ibañez et al. 2020; Bose et al. 2020, 2021; Donald-McCann et al.

2021; Spurio Mancini et al. 2021), whereby a grid of cosmological simulations, spanning

some cosmological parameter landscape, is first run and then an emulator (e.g., based

on Gaussian process interpolation or neural networks) is used to quickly and accurately

interpolate the results (e.g., the matter power spectrum) for any choice of cosmological

parameters found within the boundaries of the initial grid. Such emulators, which can

typically be run in fractions of a second, can be implemented in cosmological Markov

chains24.

While emulation of cosmological simulations is clearly going to be an important tool

going forward, it does have limitations. For example, predictions are confined to the

19https://www.mpe.mpg.de/eROSITA
20https://pole.uchicago.edu/
21https://act.princeton.edu/
22https://simonsobservatory.org/
23https://www.desi.lbl.gov/
24Markov chains Monte-Carlo (MCMC) is a series of methods built on the Bayes theorem used to solve

highly dimensional parameter space. The basic and simplified idea is to ‘walk’ through the parameter
values between the set boundaries (priors), finding the new posterior values and evaluating the likelihood
of such prediction, please check Sharma (2017) for a more in-depth presentation of this method.

https://www.mpe.mpg.de/eROSITA
https://pole.uchicago.edu/
https://act.princeton.edu/
https://simonsobservatory.org/
https://www.desi.lbl.gov/
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parameter space defined in the initial base grid of simulations, where there is a trade-off

between accuracy of the emulator prediction, the volume of the cosmological landscape

being surveyed (i.e., the range of parameter values included), and the number of simu-

lations that can feasibly be run for the base grid. In addition, adding new extensions

(e.g., beyond ΛCDM) or probing a larger (or different) cosmological parameter spaces

generally requires one to construct a whole new grid or partially re-train the existing

emulator, limiting the adaptability of this tool.

In addition, at the moment most emulators are based on simulations that do not incor-

porate the hydrodynamics of the galaxy formation processes.

For example, it has been shown in recent work based on cosmological hydrodynamical

simulations that baryons can alter the matter power spectrum by up to a few tens

of percent (e.g., Jing et al. 2006; van Daalen et al. 2011; Schneider & Teyssier 2015;

Mummery et al. 2017; Chisari et al. 2019; van Daalen et al. 2020), which is significantly

larger than the anticipated statistical error of future weak lensing measurements.

A widely used approach is the halo model, that given its intuitive and physically-

motivated formalism and its quick and easy calibration can reproduce several LSS tracers

and the non-linear correction in the matter power spectrum. I will discuss in detail the

halo model approach in the next Sections after having presented the different types of

simulations.

1.3 Role of cosmological simulations to do precision cos-

mology

As discussed above, cosmological simulations are the most accurate method for following

the growth of structure. Here I refer specifically to simulations that follow the evolu-

tion of matter within large volumes (at least hundreds of Mpc on a side) so that they

are cosmologically representative. Other astrophysical simulations are, instead, focused

on smaller objects or systems, such as single galaxies or groups of galaxies aiming to

characterise some particular aspects of galaxy evolution and small scale interactions

(Vogelsberger et al., 2020). Cosmological simulations have multiple targets in their de-

velopments: in the first place, we want them to reproduce a realistic matter distribution

of the Universe, secondly, identify clear dependence of the observables on cosmological

parameters. In addition, we might want to explore the role of baryons and extensions

of the standard CDM cosmology.

Cosmological simulations can be differentiated in two separate ways: N-body simulations

(also called collisionless) that can describe very well the pure gravitational interplay
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between particles and hydrodynamical simulations, which attempt to model the complex

non-linear physics of galaxy formation processes. At fixed resolution and volume, N-

body simulations tend to be considerably cheaper than hydrodynamical simulations and

can describe carefully the dark matter distribution, they are easily scalable so they can

reproduce huge volumes and explore a vast parameter space, such as that done in the

Quijote simulation project25 (Villaescusa-Navarro et al., 2020) as a latter example.

Hydrodynamical simulations are much more complex and expensive. Hydrodynamical

simulations are this complex because they need to solve non-linear hydrodynamical

equations, alongside the gravitational interactions between particles. Aside from these

equations that describe the fluid motions, a number of other astrophysical processes have

to be complemented to shape the galaxy population. Some of these processes include the

production of heavy elements from stellar feedback, star formation on galaxy scales and

cooling and heating (e.g., AGN feedback) phenomena taking place on cluster scales. The

resolution and volume of the simulations are dictated by the final goal of the project.

If the main interest of the project is galaxy formation, then the simulations must have

higher resolution and smaller volume. Examples are the EAGLE26 and IllustrisTNG27

simulations (Schaye et al., 2015; Crain et al., 2015; Pillepich et al., 2018). However, if

the final goal is to build simulations for cosmological purposes, like for Cosmo-OWLS

and BAHAMAS28 projects (Schaye et al., 2010; Le Brun et al., 2014; McCarthy et al.,

2017), larger volumes are optimal, thus the resolution must be lower29.

In the next section, we discuss briefly the different types of simulations.

1.3.1 N-Body simulations

The first numerical experiment can be back-traced to 1941 with a ‘simple’ two body in-

teraction made by Holmberg (Holmberg, 1941) using thirty-seven light-bulbs as ‘particle

type’ elements to measure the gravitational interaction using the bulb brightness. The

computing power and the complexity of the problems have scaled up to today where

we are able to create realistic realisations of the Universe with billions of particles (the

MilleniumXXL simulation has 303 billion particles and 4.1 pGpc, physical Gigaparsecs,

box Angulo et al. (2012)).

To follow the distribution of collisionless particles, we need to determine the gravitational

force acting on each mass element. Gravity solvers, indeed, must determine these forces

25https://quijote-simulations.readthedocs.io/en/latest/
26http://eagle.strw.leidenuniv.nl/.
27https://www.tng-project.org/.
28https://www.astro.ljmu.ac.uk/ igm/BAHAMAS/.
29Note that all of these simulations have approximately the same number of particles, which is mainly

limited by the computer memory.

https://quijote-simulations.readthedocs.io/en/latest/
http://eagle.strw.leidenuniv.nl/
https://www.tng-project.org/
https://www.astro.ljmu.ac.uk/~igm/BAHAMAS/
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on each mass element by solving the Poisson’s equation. These solvers subdivide a

significant portion of the universe into many particles and compute the forces between

those particles and evolve, in discrete time-steps, the system (Somerville & Davé, 2015;

Vogelsberger et al., 2020).

There are different approaches to solving the Poisson’s equation: the direct summation

(brute-force), tree methods, and particle-meshes. The discrete direct summation, the

so-called particle-particle scheme, is the simplest and most accurate form to solve the

particles gravitational interactions involving the calculation of the forces between every

pair of particles. However, modern N-body simulations use a large number of particles

making it impossible, even for current machines, to compute all the gravitational forces

using direct summation methods (please note that this method scales as O(N 2), with

N number of particles). Approximate methods, such as the tree method, are employed

to accelerate these calculations, where short-range interactions are evaluated using the

direct summation method and long-range interactions are approximated by the lowest

order term of a multipole expansion (this reduces the computational cost from O(N 2)

to O(N logN )). Particle-mesh methods assign particles to cells in a grid calculating the

gravitational forces using the Fourier transforms of the density field (the complexity is

O(N ), where N is the number of grid cells). In hybrid schemes, different methods are

combined, the direct summation evaluates short-range interactions in the approximated

tree-like method, while Fast Fourier Transform (FFT) techniques are used as a force

solver for large scales.

An advantage of tree codes lies in how accurately they can represent the forces on the

particles down to a lower limit, identified as force softening length30, while the particle-

mesh codes are limited by the grid size.

In N-body simulations there is no need of employing relativistic gravity instead of using

classical Newtonian gravity, which provides, anyway, a good approximation for both the

linear and non-linear large-scale growth. Furthermore, the velocities induced by these

interactions are far below the relativistic limit.

The general results obtained using this type of simulation are quite astonishing:

• dark matter distribution on large scale is extremely well recovered, analysing the

clustering signal;

• halo demographics (halo mass functions);

• the internal halo structure (e.g. the Navarro-Frenk-White, NFW, and Einasto

profiles).

30Often defined as ε. It is standard to use a softening length to smooth high density environments to
avoid unphysical two-body scatterings.
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All these (semi) independent results are comparable to the observational results, with

respect to the changes and corrections such as galaxy bias to match dark matter halo

clustering when comparing galaxy clustering.

This starting point provides solid foundations (a ‘skeleton’) for structure formation.

To reproduce the observable universe, however, we need to add baryons and associated

non-gravitational physics.

1.3.2 Hydrodynamical simulations

Simulating baryons allows us, in principle, to reproduce the visible component of the

Universe providing a more direct comparison with the observations.

The baryon component is described as an ideal inviscid fluid, and in the beginning,

composed of a mixture of hydrogen and helium. To solve the hydrodynamical equations

(the Euler’s equations, which are a form of Navier-Stokes equations assuming no vis-

cosity or conduction, Springel (2010)) there are two ways: the Eulerian and Lagrangian

approaches.

The Lagrangian approach assumes an observer that follows an individual fluid unit,

with its own properties, like density, as it moves through space and time. The Eulerian

approach focuses on specific locations in space through which the fluid flows as time

passes (Vogelsberger et al., 2020). The Eulerian method discretizes the fluid onto grid

cells and computes the advection of the fluid properties across the cell boundaries.

Smoothed particle hydrodynamics (SPH) is the most widely used mesh-free Lagrangian

technique for solving the continuum dynamics of fluids using sampling particles. In this

case, the fluid is discretized in mass and the particles carry the information about the

fluid, which is evaluated by a kernel-weighted sum over several neighbouring particles,

inside a specified smoothing length.

Eulerian methods can accurately model the dynamic instabilities in the gas, like Kelvin-

Helmholtz or Rayleigh-Taylor instabilities which are fundamental for fluid mixing (e.g.,

Zavala et al. (2012)). SPH-based codes, with the addition of a form of artificial viscosity

and conduction, can reproduce, effectively, the mixing of different fluids providing, as

well, an increased dynamic range (e.g., Price (2008)). An advantage of the particle-

based methods is that, being able to follow how the masses move, it is straightforward

to understand how mass assembles into galaxies, and to track ejected material from

galaxies (Somerville & Davé, 2015).

At this stage, we have explored how the gravitational and hydrodynamical forces are

characterised in the simulations, however, there are a host of galaxy formation processes
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not described in the treatment above. These processes take place on scales below the

simulation’s resolution, the ‘sub-grid’ (or ‘sub-resolution’) models. These models are

introduced to approximate the astrophysical processes allowing us to produce more

accurate theoretical predictions.

In the treatment so far, we have considered properties of dark matter and baryons, but

we have not included any prescription for radiation. Radiative cooling is implemented in

most cosmological simulations and describes the energy dissipation of the gas through

processes, like collisional excitation and ionization, inverse Compton, recombination

and free-free emission. These processes are coupled to the energy equation via cooling

functions (e.g., Wiersma et al. (2009b)) because they describe phenomena happening on

atomic level, that cannot be resolved.

Some models characterise the stellar life cycle, from birth to death. Star formation takes

place in dense, cold molecular clouds and its modelling is crucial. However, to model

accurately the different phases of the galaxy environments is rather difficult. In addition,

the timescales on which these processes occur are shorter than the simulation time-step.

To solve these issues, the dense gas is often described by a polytropic equation of state

(i.e., T ∝ ργ(ρ)), which relates the temperature of the gas to the density (Springel

& Hernquist, 2003; Dalla Vecchia & Schaye, 2008). Simulating the molecular phase

of the interstellar medium is rather challenging because it requires the modelling of

the interaction between different actors as gas, dust and radiation (Vogelsberger et al.,

2020). Following these difficulties, to model star formation, it is standard to adopt a

probabilistic approach based on the calculated star formation rate. The criteria that

need to be met to transform a gas particle into a star particle are based on: density

thresholds, Jeans length and virial parameters ensuring that the star formation takes

place in dense regions, close to gravitational instabilities (Katz et al., 1996; Teyssier

et al., 2013; Schaye et al., 2015; Hopkins et al., 2018).

The stars have interactions with their surrounding gas through the injection of both

energy and momentum leading to a feedback loop regulating star formation (Springel &

Hernquist, 2003; Vogelsberger et al., 2013; Pillepich et al., 2018). Supernovae explosions

and stellar winds are the principal sources to inject energy and momentum into the

interstellar medium. Supernovae explosion must be capable of igniting galactic outflows

that eject particles, metals and large amounts of energy into the surrounding gas. This

energy heats the gas and helps regulate star formation. However, given the variety

of implementations of these phenomena, together with several schemes to treat the

combined effects of heating and cooling in the interstellar medium, more work is required

to fully understand these stellar feedback channels.
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The presence of supermassive black holes in the centres of galaxies is well known, hence

simulations must include models to encapsulate their feedback. The formation of those

objects, however, is not well understood at all, so it is standard to artificially seed the

dark matter haloes (M > 1010 M�) allowing them to give rise to active galactic nuclei

(AGN) that will accrete matter onto them and expel, via jets and winds, large amounts

of high energy radiation (Di Matteo et al., 2005; Springel, 2005; Sijacki et al., 2008; Booth

& Schaye, 2009). These AGN feedback phenomena are much more powerful than the

supernovae and bring about the heating of the intracluster medium and the regulation

of star formation in massive galaxies 31.

The main results obtained using hydrodynamical simulations are:

• global galaxy properties such as the stellar mass function, galaxy clustering, scaling

relations (e.g., the Tully-Fisher);

• properties of the late-type galaxies (formation of a multi-component stellar disk,

presence of cooling phases perpendicularly to the disk);

• properties of the early-type galaxies (formation of spheroid galaxies, with matched

early star formation history and matched size-mass-velocity dispersion);

• intracluster medium, circumgalactic medium and diffuse gas (Lyman-α emission

and metal emission/absorption lines from hot gas).

1.4 The Halo model approach

The halo model (Ma & Fry, 2000; Peacock & Smith, 2000; Seljak, 1998, 2000; Cooray &

Sheth, 2002; Smith et al., 2003)32 is a powerful tool that can solve some of the issues that

emulators or simulations have. The halo model approach provides a simple physically-

motivated picture for describing the clustering of matter and haloes.

If we focus on its standard (and simplest) form, the halo model requires as input the

distribution of matter within haloes (i.e., their density profiles), the demographics of

haloes (i.e., the abundances of haloes as a function of mass and redshift, the halo mass

function), and in the ‘linear regime’ a prescription for a halo bias which describes how the

31In this Section, we have not explored the inclusion of magnetic fields in the simulations and their sub-
grid modelling. Those simulations have higher complexity because the hydrodynamics equations must
fulfil also the magnetic component. Popular sub-grid models include the presence of magnetic fields
in the interstellar medium (relevant criteria for triggering star formation), production and feedback of
cosmic rays and turbulence.

32The modern halo model formalism is presented in work as Seljak (1998) and Peacock & Smith (2000)
but the first theoretical approach on this method can be traced back to McClelland & Silk (1977) and
Scherrer & Bertschinger (1991).
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clustering of haloes is related to the underlying clustering of matter. These ingredients

can be used to calculate the so-called 1-halo and 2-halo clustering terms. The 1-halo

term describes the clustering of particles inside the same halo, whilst the 2-halo term

describes the clustering between different haloes. The halo model often assumes the

Universe is spatially flat (though this assumption can be relaxed) and, usually, employs

the so-called Limber approximation (which includes clustering only in the plane of the

sky but not along the line of sight) when computing projected clustering observables such

as the angular correlation function of galaxies or the tSZ effect power spectrum. The

Limber approximation may fail when considering extremely large scales (in particular, it

is relevant for CMB spectrum fluctuations in the large scale regime). A beyond-Limber

approach has gathered momentum in explaining odd multipoles in weak-lensing and

CMB analysis (Lemos et al., 2017; Fabbian et al., 2018; Fang et al., 2020).

In this brief introductory Section, I present an overview of halo model applications in

predicting the matter clustering and the several LSS observables like galaxy weak lensing

and thermal Sunyaev-Zel’Dovich.

The halo model used to predict the clustering of matter has been approached in different

ways in order to maximise its reliability and its accuracy. The halo model weak spot

is the transition between the two regimes (the 1-halo and 2-halo terms) in which the

arising non-linear physics is not captured with sufficient accuracy by both the descending

2-halo component and rising 1-halo term. Different ways of mitigating this apparent

problem have been proposed. For example, Mead et al. (Mead et al., 2015, 2016, 2021)

developed a modified halo model (HMcode33) which introduced ad hoc parameters to

grant the halo model additional flexibility and then determined those parameters by

fitting the model to a large suite of cosmological simulations (CosmicEMU34, Heitmann

et al. (2016)). To tackle the non-linearity involved, solutions as the use of modification of

the terms using effective field theory (EFT35, Philcox et al. (2020); Sullivan et al. (2021))

or a Zel’Dovich approach (Mohammed & Seljak, 2014) have shown interesting results.

The assumption of the conservation of cosmological laws (i.e., mass conservation) may

reduce, as well, the tension between the halo model predictions and the simulations

results (Chen & Afshordi, 2020).

Extensions of the standard approach include considering the cosmic voids, as presented

in Voivodic et al. (2020), deviations from the spherical symmetry (Smith & Watts, 2005),

addition of secondary terms of substructure (Cooray & Hu, 2002; Sheth & Jain, 2003)

or exclusion terms (van den Bosch et al., 2013) and the inclusion of massive neutrino as

in Massara et al. (2014).

33https://github.com/alexander-mead/hmcode, for the updated 2020 version.
34https://github.com/lanl/CosmicEmu.
35https://effectivehalos.readthedocs.io/en/latest/.

https://github.com/alexander-mead/hmcode
https://github.com/lanl/CosmicEmu
https://effectivehalos.readthedocs.io/en/latest/
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It is relatively straightforward to adjust the halo model to incorporate the impact of

baryons. The free parameters associated with the baryon physics can either be con-

strained by cosmological hydrodynamical simulations (e.g.,Rudd et al. (2008), Fedeli

(2014); Fedeli et al. (2014), Semboloni et al. (2011, 2013) and Mead et al. (2020, 2021)),

external observations (Debackere et al., 2020), or they can be marginalised over when fit-

ting the cosmological data set (e.g., cosmic shear) to jointly fit cosmological and baryon

parameters.

The knowledge and the chance to explore cosmological extensions with the matter power

spectrum with great accuracy is the basis of its extensive use in weak lensing analysis.

The halo model has been applied in cosmic shear analysis (Giocoli et al., 2010; Schneider

et al., 2019; Giocoli et al., 2017, 2020), tomographic weak lensing (Köhlinger et al., 2017;

Heymans et al., 2021) and cross-correlations between different probes to explore further

the parameter space and constrain the growth of structure (Robertson et al., 2021)

The halo model has been extensively employed to model the tSZ effect, yielding con-

straints on both cosmology and baryon physics. This observable is sensitive to physics

involved in the characterisation of the hot free gas in massive haloes which are influenced

by both supernova and AGN feedback (McCarthy et al., 2014; Battaglia et al., 2012a,b).

Different extensions of the standard ΛCDM are also tested using this probe (Horowitz

& Seljak, 2017; Bolliet et al., 2018).

In recent years, this approach has been used to test and predict the kinetic Sunyaev-

Zel’dovich effect features (Giri & Smith, 2020). The kinetic Sunyaev-Zel’Dovich is an

interesting next-generation observable which could tell more about the internal energy

budget of haloes and the internal dynamics, next-generation observations will have

enough (spectral) resolution to observe and identify coherent and turbulent gas mo-

tion that will shape this feature. Already, using stacking methods, it is possible to

observe and measure this quantity but it is, still, in its early days.

In conclusion, the halo model ability to predict different baryonic and cosmological influ-

ences on LSS observables has been valuable in a number of works considering the cross-

correlations between the tSZ effect and gravitational probes such as CMB (Battaglia

et al., 2015; Hill & Spergel, 2014; Robertson et al., 2021; Koukoufilippas et al., 2020)

and galaxy weak lensing power spectrum (Hojjati et al., 2017; Osato et al., 2018; Shi-

rasaki et al., 2020).
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1.5 This Thesis

In this thesis, I present a critical assessment of the internal accuracy of the halo model.

This is achieved by specifying the ingredients of the halo model using cosmological sim-

ulations (the BAHAMAS), such that there are no tunable parameters remaining, and

then testing how well the halo model reproduce the clustering of matter in the simula-

tions. I explore how the different choices of the halo mass definition affect the results

and the impact of baryons. After having explored these topics, I use the halo model to

examine large-scale structure observables via auto and cross-correlations (such as cosmic

shear, tSZ and CMB weak lensing) and I test how accurately the halo model matches

observational and simulation-based results and their sensitivity to baryon physics.



Chapter 2

Methods

In this second Chapter of the Thesis, I summarise and highlight the main components

behind the halo model formalism for matter clustering and LSS probes. Most of the

content presented here is gathered from seminal papers on the topic, including Peacock

& Smith (2000),Cooray & Sheth (2002) and Mead et al. (2015, 2016).

2.1 Halo Model formalism

I have introduced the main halo model applications in Section 1.4, while here I focus

onto the mathematical formalism behind this tool.

The halo model describes haloes as the main component of the Universe, with some

assumptions:

• all particles belong to haloes (no matter outside the halo boundaries, Cooray &

Sheth (2002));

• the haloes have a spherical symmetry;

• it is possible to describe the clustering in two independent terms;

• the matter (or the observable, as pressure or hot gas) can be described as a con-

tinuous function dependent on the radial distance from the centre (e.g. spherical

radius), the mass of the halo and redshift (Cole & Kaiser, 1988; Seljak, 1998, 2000;

Battaglia et al., 2012b; Mead et al., 2015).

The halo model formalism often makes use of the Limber approximation (Limber, 1954)

on a flat-sky limit. The Limber approximation describes the clustering of haloes and it

29
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has been proved to provide a good results for ` > 100 (Loverde & Afshordi, 2008; Lemos

et al., 2017). At smaller multipoles, so very large scales, this approximation may fail

but in this analysis I am interested in multipoles in a range from 100 < ` < 10000 (or

in k-space above 0.001h−1Mpc).

The general prescription for the standard halo model can be summarised in the contri-

bution of the two independent components as described from the Fourier transform of

the 2-point correlation function (Cole & Kaiser, 1988):

C(`)tot = C(`)1h + C(`)2h ,

P (k)tot = P (k)1h + P (k)2h ;
(2.1)

where the first term (with notation 1h) describes the clustering of particles within a

single halo (also called intra-halo clustering and 1-halo term) while the second term

describes the clustering of particles belonging different haloes (2-halo term, Smith et al.

(2011)). The formulation presented in eqn. 2.1 differentiates from the angular clustering

defined as C(`) and power spectrum defined as P (k). In this introductory section I will

carry both C(`) and P (k) notations as an overview, then I will focus on each of those

independently.

The two terms can be described generally as:

C(`)XY
1h =

∫
dz

d2V

dzdΩ

∫
dM

dn(M, z)

dM
|X̃`(M, z)Ỹ`(M, z)| ,

C(`)XY
2h =

∫
dz

d2V

dzdΩ
Plin(k, z)

[∫
dMX

dn(MX, z)

dMX
b(MX, z)|X̃`(MX, z)|

]
×
[∫

dMY
dn(MY, z)

dMY
b(MY, z)|Ỹ`(MY, z)|

]
;

(2.2)

P (k)XY
1h =

∫
dM

dn(M, z)

dM
|X̃k(M, z)Ỹk(M, z)| ,

P (k)XY
2h = Plin(k, z)

[∫
dMX

dn(MX, z)

dMX
b(MX, z)|X̃k(MX, z)|

]
×
[∫

dMY
dn(MY, z)

dMY
b(MY, z)|Ỹk(MY, z)|

]
;

(2.3)

with the auto-correlation case defined as X=Y, otherwise is the cross-correlation case.

In the 1-halo term, I do not have to differentiate the mass, which identifies the haloes,

since we are doing the analysis on the same halo for both X and Y observable. In the

2-halo, instead, I need to differentiate because the signal comes from different haloes. In

eqn. 2.2 there is an integral on the comoving volume dV and redshift, differently from

eqn. 2.3 which, instead, is at fixed redshift. dΩ is the comoving volume of the sky, that
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under Limber approximation is dΩ ≈ 1, meaning all sky coverage (Komatsu & Seljak,

2002). dn/dM (also called Φ) is the halo mass function (HMF), so the abundance of

haloes of a certain mass at certain redshift. b(M) is linear halo bias and, finally, Plin(k)

the linear matter power spectrum computed here using the camb software1(Lewis &

Challinor, 2006). X̃ is the Fourier transform of the 3D spherical profiles, u, convoluted

with the Fourier transform of the top-hat window function expressed as:

X̃`|k(M, z) =
1

u

∫ R∆

0
4πr2u(r,M, z)

sin(r̂)

r̂
dr , (2.4)

with r̂ = `r`−1
s or kr depending on which observable we are considering while u is the

normalisation to keep X̃ dimensionless. `s is a scale multipole defined accordingly in

each cases (see for instance in the tSZ case, Section 1.33). The Limber approximation lies

in the sin(r̂)/r̂ term, that spreads the dimensionless profiles contributions, u, at several

Fourier-space modes (usually to convert from k to ` this relation is used k ≡ `χ−1). With

the formulation just presented the halo model can reproduce several different observables

in both auto and cross-correlations, by replacing the spherical 3D profile provided and

the correct physical normalisation accordingly (in eqn. 2.4).

In the next subsections I focus on the different elements composing the power spectrum

such the halo profiles, the halo mass function and the linear bias.

2.1.1 Halo profiles

A key component in the halo model’s prediction is the way that matter is distributed

inside haloes; i.e., their total matter density profiles or the pressure density in the case of

the tSZ. A common choice in this regard for the matter distribution, which is motivated

on the basis of collisionless (N-body) cosmological simulations, is the Navarro-Frenk-

White profile (NFW, Navarro et al. (1997)):

ρ =
ρ0(

r
rs

)(
1 + r

rs

)2 , (2.5)

where rs is the scale radius and ρ0 is the normalisation. The scale radius is a free

parameter, whereas one can either leave the normalisation (ρ0) free or specify it through

the halo mass definition (e.g., chosen so that the mean density within R200,crit from the

simulations is 200 times the critical density). The scale radius is often recast in terms

of the halo concentration, c∆ ≡ R∆/rs, where R∆ is the radius used in the halo mass

1https://camb.info/. Other Boltzmann solver often used are CLASS (Blas et al., 2011), CMBEASY
(Doran, 2005) and pycosmo (Refregier et al., 2018).

https://camb.info/
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definition. The concentration is known to depend on halo mass, redshift, and the choice

of cosmological parameters and various fitting functions for this behaviour have been

proposed (Duffy et al., 2008; Ludlow et al., 2014, 2016; Diemer & Kravtsov, 2015). Using

these fitting functions for the concentration, one completely specifies the distribution of

mass within haloes given a total halo mass, redshift, and the cosmological parameters.

While the NFW profile provides a reasonably good description of the typical density

profiles of collisionless simulations, it performs less well in describing the total matter

density profiles in cosmological hydrodynamical simulations (Duffy et al., 2010; Dutton

& Macciò, 2014; Schaller et al., 2015a,b; Sereno et al., 2016). One can generalise the

NFW form to allow for additional freedom (Nagai et al., 2007):

ρ(r,M, z) = ρ0

(
r

rs

)α [
1 +

(
r

rs

)γ]−β
, (2.6)

where ρ0, α,γ and β are free parameters. This parametric form is often used to model

the pressure distribution of the hot gas around groups and clusters (e.g., Arnaud et al.

2010; Battaglia et al. 2012b) but would also be suitable for the mass density distribution.

In principle the free parameters of the generalised NFW form are also functions of mass

and redshift, which leads to an even larger number of free parameters which would be

expected to have significant degeneracies.

For what matters the electron pressure profiles, that will be relevant in the tSZ modelling,

the common choice is to use the generalised NFW (GNFW) as presented in eqn. 2.5 and

firstly calibrated on a small subset of X-ray relaxed selected clusters (REXCESS, Arnaud

et al. (2010), or more recently as Sayers et al. (2016); Ghirardini et al. (2017, 2018)).

Others, as Battaglia et al. (2012b) and Le Brun et al. (2015), have calibrated this profile

on numerical hydrodynamical simulations. The susceptibility of this profile on galactic-

radiative feedback leads to associated uncertainties and biases, as the hydrostatic bias

or selection bias, affecting the accuracy of the results and predictions (Ruppin et al.,

2019; He et al., 2021).

Our approach is to allow for additional freedom relative to the original NFW form, but

with fewer free parameters than in the generalised NFW case. In particular, I adopt the

so-called Einasto profile (Einasto, 1965), which recent work has shown that reproduces

better the matter distribution in haloes in collisionless simulations (Springel et al., 2008;

Navarro et al., 2010; Dutton & Macciò, 2014; Brown et al., 2020). This is due to its

additional flexibility relative to NFW (it has an additional free parameter) which ought

to allow it to better describe hydrodynamical simulations as well. The Einasto profile
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can be expressed as:

ρ(r,M, z) = f0(M, z) exp
[
−A(M, z)rα(M,z)

]
, (2.7)

with three main parameters f0, A and α which need to be fit for. I am also using the

Einasto profile for the electron pressure profiles used in the tSZ.

2.1.2 Halo mass function

The second most important component in this formulation is the halo mass function

(HMF, Φ). This quantity can be derived from analytic/semi-analytic theoretical argu-

ments, such as those put forward by Press & Schechter (1974) and Sheth et al. (2001).

However, more accurate representations can be derived from fits to large suites of cos-

mological simulations (e.g., Jenkins et al. 2001; Tinker et al. 2008; Bocquet et al. 2016;

Despali et al. 2016; Bocquet et al. 2020; Diemer 2020).

It is commonplace to parametrise the halo mass function from cosmological N-body

simulations as:

dn(M, z)

dM
= f(σ)

ρ

M

lnσ−1

dM
, (2.8)

where the f(σ) is a function fit to the simulation where the universal changes in redshift

and σ are encapsulated:

f(σ) = A

[(σ
b

)−α
+ 1

]
e−c/σ

2
, (2.9)

with σ(R), the rms density fluctuation in a sphere of radius R, is defined as:

σ2(R) =
1

2π2

∫
P (k)Ŵ 2(kR)k2dk , (2.10)

where P (k) is the linear matter power spectrum, Ŵ is the Fourier transform of the top-

hat window function2 (Tinker et al., 2008). This form has been shown to reproduce the

halo mass function from simulations to ≈ 10% accuracy (Tinker et al., 2008; Diemer,

2020). Note that the cosmology dependence of the HMF enters in through both the σ

term (which depends on the cosmology-dependent linear power spectrum) and the mean

matter density (ρ). The accuracy of the analytic arguments such as Press & Schechter

(1974) and Sheth et al. (2001) HMFs are typically 20% with a general overprediction of

the abundance of the most massive objects (Mead et al., 2015; Del Popolo et al., 2017).

2Ŵ (k) = 3x3(sin(x)− x cos(x)) , where x = kR.
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Note that these halo mass functions are typically derived from collisionless (DM-Only)

simulations and therefore they do not account for any baryonic processes (e.g., feedback)

effecting the haloes. Given the important role of galaxy formation processes in setting

the mass distributions of haloes, I will make use of the BAHAMAS HMFs to build a

‘correction’ function to allow us to study the impact of baryons on the matter power

spectrum via the halo model (see Section 3.3.1).

2.1.3 Halo bias

With the matter distribution within haloes (density profiles) and the number density

(mass function) specified, the remaining ingredient is to clarify how haloes cluster in

space, in terms of their 2-point correlation function (or, in Fourier space, their power

spectrum). I adopt the standard assumption that haloes are linearly-biased tracers of

the overall matter distribution. The linear bias is evaluated as :

b(k) =

√
Ph,mm(k)

Plin,mm(k)
, (2.11)

where Phh(k) and Plin,mm(k) are the halo-halo and linear matter power spectra, respec-

tively. On large (linear) scales b(k) →const., which is what is typically referred as just

the linear bias, which we use here.

In this thesis we use the linear bias-peak height relation of Tinker et al. (2010) to

calculate the linear bias as a function of halo mass and redshift, with relative cosmological

parameters. Please note that the peak height is defined as ν = δcrit/σ(M) where δcrit is

the density threshold for collapse (usually assumed to be equal to 1.686) and σ(M) is

the linear matter variance measured within the Lagrangian scale, R, corresponding to

halo mass M .

A physical condition that must be met is that, when integrated over all halo masses, the

bias must be unity. That is, the total matter is unbiased, by definition; i.e.:∫ ∞
0

b(ν)f(ν)dν = 1 ,

f(ν)dν =
M

ρm

dn(M)

dM
dM ,

(2.12)

(Tinker et al., 2010; Desjacques et al., 2018). This equation can also be verified in

physical space by fulfilling: ∫ ∞
0

b(M)M
dn(M)

dM
dM = ρ , (2.13)
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where ρ is the mean density of the Universe at z = 0 and b(M) and dn(M)/dM are

function of the total mass of the haloes.

With the linear bias all the main components of the halo model formalism are presented.

Now I focus further in detail of the calculations of the matter power spectrum (Section

2.2) and LSS tracers (Section 2.3).

2.2 Matter power spectrum

The 3D matter power spectrum is, by far, the most challenging and interesting halo

model application given its importance in tracing the matter distribution of the Universe.

To model this quantity I use the 3D density profiles to feed eqn. 2.4 and then build the

1 and 2 halo terms as shown in eqn. 2.3 at a certain redshift.

In this quantity there are some corrections and adjustments aimed to improve and

enhance, physically, the reliability of the halo model predictions. Starting with the

fulfilment of eqn. 2.12. The HMF and bias are calibrated3 to fulfil eqn. 2.12 for an

infinite range of masses. This is true when, ideally, you are integrating from [0,+∞]

(Schmidt, 2016; Mead et al., 2020). This lack of inclusion of small, and non-resolved,

haloes from the simulations affects the ability to recover the large-scale linear power

spectrum using the halo model (van Daalen & Schaye, 2015; Mead et al., 2020).

A correction to solve this issue is to add artificially the small haloes contribution. Fol-

lowing previous studies (Schmidt, 2016; Mead et al., 2020; Philcox et al., 2020) I add the

contribution into the 2-halo term obtaining the corrective term derived from eqn. 2.12

as:

Alow = 1− 1

ρ

∫ M∞

Mmin

b(M)
dn(M)

dM
dM ; (2.14)

where Mmin is the minimum halo mass resolved in the simulation, and in BAHAMAS

case I assume ≈ 4 × 1011 M� h
−1 (in the next chapter I will discuss further about

this choice). The upper limit of integration is dependent on the size of simulation,

BAHAMAS volume is large enough to have massive haloes around 4 × 1015 M� h
−1

which can be approximated as ∞ given the lower statistical impact of those, unique,

objects in the Universe. With the above equation I construct the additive component

3Tinker et al. (2008) provide two different sets of parameters for the HMFs one that is built to
converge on low mass haloes, M < 108 M� h

−1, while other is not convergent. The differences in the
simulation resolved haloes (1011 − 1016 M� h

−1) are below 1%.
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for the 2-halo term as:

Cadd =
AlowX̃k(Mmin)

Mmin
; (2.15)

where X̃k is the Fourier transform of the 3D density profiles of the lowest resolved halo

mass of Mmin. The term in eqn. 2.15 is added to the 2-halo calculation before being

multiplied by the linear matter power spectrum as:

P (k)2h =

[∫ M∞

Mmin

dn(M, z)

dM
b(M, z)|X̃k(M, z)|dM + Cadd(Mmin)

]2

×Plin(k, z) .

(2.16)

As noted above, this approach guarantees that the constructed halo model reproduces

the linear clustering of matter on large scales. Alternatively, a common choice is replace

the 2-halo term with the linear matter power spectrum, as computed using camb soft-

ware, and virtually obtain comparable results. The only significant difference occurs on

small scales where the 1-halo is already dominant.

2.2.1 Additional (ad hoc) considerations

In this section, I will briefly explore some additional, ad hoc, adjustments of the standard

halo model which have been implemented in previous works. Specifically, I follow some of

the adjustments introduced in Mead et al. (2015) to avoid several non-physical artefacts

in the standard halo model. These artefacts come from the Fourier expansions that

spread the contributions far-off the expected range of the 1 and 2 halo terms, contributing

power in scales which is not expected.

In this section I will treat the correction as suggested by Mead et al. (2015) using the

dimensionless power spectra defined as:

∆2(k) = 4π

(
k

2π

)3

P (k) . (2.17)

Firstly, I apply a smooth cut-off of the 2-halo term on quasi-linear scales. As discussed

in Mead et al. (2015, 2016), linear theory overpredicts the matter power spectrum on

quasi-linear scales and does not accurately capture the damping of the baryonic acoustic

oscillations (BAO) peaks in the particular range k ≈ 0.2− 0.4h−1Mpc. Following Mead

et al. (2015) (see their section 3.2.1) I, therefore, apply a tapering to the 2-halo term on

quasi-linear scales using:

∆
′2
2h(k) =

[
1− f tanh2(kσv,d/

√
f)
]

∆2
2h(k) ; (2.18)
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with σv,d is the 1D linear-theory displacement variance defined as:

σ2
v,d =

1

3

∫ ∞
0

∆2
lin(k)

k3
dk , (2.19)

where f in eqn. 2.18 is the introduced damping factor, and ∆2
lin is the dimensionless

linear power spectrum. Mead et al. (2016) find that f has a small dependence on

σv,d as f = 0.095σ1.37
v,d (z). Note that the application of eqn. 2.20 only affects P (k) by

about a percent on large scales and therefore has no significant impact on the results or

conclusions of our study, but we include it for completeness.

As also discussed in the previous paper presented, but firstly presented in several pa-

pers as Cooray & Sheth (2002) (see also Smith et al. (2011); Valageas & Nishimichi

(2011)), the standard (unmodified) 1-halo term displays unphysical behaviour at very

large scales. In short, the 1-halo term becomes larger and larger than that predicted by

linear theory on very large scales, because the halo model implicitly assumes that haloes

are randomly distributed on large scales when, in reality, they tend to be more clus-

tered and distributed more smoothly. Following Mead et al. (2015) (see section 3.2.2),

I truncate the 1-halo term on large scales using:

∆
′2
1h =

[
1− e−(k/k∗)2

]
∆2

1h . (2.20)

This, ad hoc, correction suppresses non-physical 1-halo power at scales k . k∗. Mead

et al. find the value of k∗ depends on the 1D linear-theory displacement variance as

k∗ = 0.548σ−1
v,d(z).

In addition to the above modifications, Mead et al. (2015) (see also Mead et al. 2020,

2021) consider a number of other modifications of the halo model (e.g. changes in

the linear collapse threshold, δcrit, mass-concentration relation in haloes and smoothing

between the 1-2 halo transition region) designed to provide a better fit to the non-linear

matter power spectra of cosmological simulations. While allowing for extra degrees of

freedom does allow the halo model to provide an improved fit to the simulations, one

could argue that in doing so we are sacrificing the physical intuitiveness of the model for

new parameters whose interpretation is ambiguous. Whether these parameters should

depend on baryon physics or cosmology is also unclear. Therefore, I take a different

approach and simply evaluate the accuracy (see Chapter 3) of the standard halo model,

with the solely addition of eqns. (2.18)(2.20), and assess to what extent it can be reliably

applied in this era of precision large-scale structure cosmology.
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2.3 LSS tracers

After having presented the general description for the halo model approach on the case

of the matter power spectrum I present other large-scale tracers under the halo model

approach highlighting the differences whenever it is possible. I start presenting the weak

lensing, since it is a direct application of the matter power spectrum, then I move on

the tSZ and cross-correlations.

2.3.1 Weak lensing shear and tomography

In principle, one can again compute singularly the 1-2 halo terms using the halo density

profiles, halo demographics and halo bias obtaining an equivalent weak lensing angular

power spectrum using the kernel function and the source redshift distributions (Bartel-

mann & Schneider, 1999). However, the knowledge of the matter power spectrum, at

different redshifts, allows to skip the first steps and integrate only in redshift using the

appropriate weighting functions and source distributions (as discussed in Section 1.26).

As I have shown in the beginning of the weak lensing theory section, most of the in-

formation needed for weak lensing measurements lie in the lensing kernel, g, and in the

non-linear matter power spectrum. In the matter power spectrum (P (k)) there is, al-

ready, the knowledge of the halo demographics, matter density profiles and biases while

in the kernel there is the geometric knowledge of the lenses and sources.

So for a generic weak lensing shear power spectrum (defined as kk) I have:

Ckk(`) =

∫ χH

0
dχ
gi(χ)gj(χ)

a(χ)2
Pmm

(
k ≡ `+ 1/2

fK(χ)
, η(χ)

)
; (2.21)

where the lensing kernel (or efficiency as seen in eqn. 1.29) is defined for a particular (i

or j) source redshift distribution as:

gi(χ) =
3H2

0 Ωm

2c2

∫ χH

χ
dχ
′
niν(χ

′
)
fK(χ

′ − χ)

fK(χ′)
. (2.22)

a is the scale factor, niν is the normalised source redshift distribution as
∫
dχniν(χ) = 1,

and fK(χ) is the comoving distance of them evaluated as in eqn. 1.15 depending on

the geometric curvature of the Universe. χH is the comoving distance of the source

distribution horizon, in the special case of the CMB weak lensing that is equivalent to
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the last scattering horizon (Kaiser, 1998). η(χ) is a coformal time at which the photon

source is at a distance χ.

In the general cosmic shear weak lensing power spectrum, gi ≡ gj , that means assuming

a unique source distribution. For what matters tomographic weak lensing analysis I

have that gi 6= gj , meaning that different source redshift distributions are used for each

bin, providing details by cross-correlating different populations of sources and distances

between the sources and lenses (given the differences in the relative distances).

In weak lensing observations and analyses it is common use to adopt the angular corre-

lation function instead of the standard Fourier version. To convert from angular power

spectrum (C(`)) to angular correlation function (ξ(θ)) one must do:

ξij±(θ) =
1

2π

∫ ∞
0

Cijkk(`)J0/4(`θ)`d` , (2.23)

with Ckk convergence shear power spectrum (eqn. 2.21), Jn(x) is the nth order Bessel

function of the first kind (Cole & Kaiser, 1988; Loverde & Afshordi, 2008). I have left

explicit ij since this is valid for both shear and tomographic applications. The two ξ

(monopole,+, and quadrupole,−) are computed using two different Bessel functions (the

zeroth and fourth order respectively). To compute numerically the correlation function

I have used the improved python package Hankel4 which allows to calculate efficiently

the Hankel transform integral defined as:

Fν(k) =

∫ ∞
0

f(r)Jν(kr)rdr . (2.24)

For the CMB power spectrum, one can use the convergence signal or the lensing potential

φ`. The formulation for the individual terms of the latter can be expressed as:

φ̃`(M, z) =
2WCMB(z)

`(`+ 1)

4πR∆

`2s
X̃`(M, z) ; (2.25)

WCMB is the CMB lensing kernel that can be written in terms of comoving distances as:

WCMB(z) =
4πGχ(z)(χ∗ − χ(z))

c2χ∗(1 + z)
; (2.26)

4https://github.com/steven-murray/hankel Murray & Poulin (2019).

https://github.com/steven-murray/hankel
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where χ is the comoving distance, χ∗ is the source comoving distance (χ∗ = χ(zCMB))

and G is the gravitational constant (Hu, 2000; Lewis & Challinor, 2006; Planck Collab-

oration et al., 2018). The CMB weak lensing can also be defined in terms of the lensing

potential, φ(n̂), as:

φ(n̂) = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
Ψ(χn̂, η(χ)) , (2.27)

where n̂ describes the direction and Ψ is the gravitational potential. This enters into

the angular power spectra as:

C(`)φφ =

∫ χ∗

0

dχ

fK(χ)2

[
−2

fK(χ∗ − χ)

fK(χ∗)fK(χ)

]2

PΨ

(
k =

`

fK(χ)
, η(χ)

)
, (2.28)

with PΨ(k, η(χ)), power spectrum of the gravitational potential related with the matter

density through the Poisson’s equation (Hojjati & Linder, 2016; Osato et al., 2016)

following:

PΨ =
9Ω2

m(z)H4(z)

8π2k
P (k, z) . (2.29)

Please note that to convert a lensing potential power spectrum to a convergence power

spectrum you can:

k̃ = −1

2
∇ · d = −1

2
∇2φ where d = ∇φ ,

C(`)kk = [`(`+ 1)]2C(`)φφ .

(2.30)

In eqn. 2.30, d is the deflection vector, which is related to the lensing potential φ and

H(z) = H0E(z) (see eqn. 1.12).

2.3.2 Thermal Sunyaev - Zel’Dovich angular power spectrum

In Section 1.1.2.3, I have explored the basic general description and use of the tSZ and

its role as cosmological tracer, in this section I explore in deeper detail the halo model

approach to produce the angular power spectrum.

The basic formalism is similar to what is presented for the matter clustering with the

difference of the use of electron pressure profiles instead of matter density profiles. I

start presenting the Compton-y parameter in terms of the electron pressure Pe:

y =

∫
neσT

kbT

mec2
dl =

σT
mec2

∫
Pe(l)dl , (2.31)
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in eqn. 2.31 I express the Compton-y in physical units as the integral of the electron

pressure along the line of sight (l). This quantity then enters in the 3D Fourier transform

as:

ỹ(M, z) =
4πrs
`2s

σT
mec2

∫ R∆

0
Pe(xyrs,y,M, z)x2

y

sin(`xy/`s)

`xy/`s
dxy , (2.32)

where xy is the normalised 3D radius defined as xy = r/R∆, `s is the scale multipole

and it is defined as the ratio between the pressure scale length and the angular diameter

distance (defined in eqn. 1.16) as follows `s = rs,yDA(z)−1.

Substituting eqn. 2.32 in the general halo model equations I can obtain the two tSZ

angular power spectrum terms. Again, it is possible to use Limber approximation be-

cause I am considering a sensitive ` range (`� 1), in fact, below this limit the Limber

assumption fails (Hill & Pajer, 2013).

The 2-halo term has less significant contribution, around ≈ 10% of the total power,

and uniquely in multipoles ` < 1000 and it is related to clustering signal from different

haloes (Komatsu & Kitayama, 1999; Cooray, 2001; Refregier & Teyssier, 2002; Horowitz

& Seljak, 2017). The 1-halo term is, instead, dominant at all scales providing a further

reason why this power spectrum is extremely interesting. Since most power comes

from the correlation of the matter inside the same halo, thermal phenomena, such as

AGN feedback and gas cooling, can heavily influence the electron energy distribution

inside haloes and can be quantified using in this observable (Battaglia et al., 2012a,b;

McCarthy et al., 2014; Ramos-Ceja et al., 2015; Khatri & Gaspari, 2016; Dolag et al.,

2016; Battaglia et al., 2017).

The peak of the power spectrum distribution (` ≈ 3000) is both influenced by astro-

physical and cosmological parameters (Shaw et al., 2010; Trac et al., 2011; Dolag et al.,

2016). In fact, following Bolliet et al. (2018), I can measure that the power spectrum is

proportional to some cosmological parameters as:

Cyy` ∝ σ
8.1
8 Ω3.2

m B−3.2h−1.7 ; (2.33)

with B, hydrostatic mass bias. The mass bias is related to the difference between the halo

mass measured using weak lensing methods and SZ/X-ray as I have explored in Section

1.1.2.3, and it can have a non negligible effect onto the power spectra characterisation and

accuracy. Therefore, some authors, use the hydrostatic bias as a free explicit parameter.
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2.3.3 Weak lensing cross-correlations

Single probe can prove many interesting features of the collapsed objects and details

of the astrophysics involved but, cross-correlating different probes can provide much

more information both on the astrophysical and cosmological side. The halo model

simplistic approach allows to do cross-correlations between several LSS probes, allowing

to disentangle the key actors in each of the analyses, do forecast for next-generation

observations and predictions on not yet studied probes (such as the upcoming use of

kinetic Sunyaev-Zel’dovich).

In this thesis, I focus on cross-correlations between weak lensing measurements (galaxy

lensing and CMB) with tSZ and between galaxy and CMB weak lensing.

The halo model simplistic approach allows to write the weak lensing cross correlations

as follows:

Cij(`) =

∫ χH

0
dχWi(χ)Wj(χ)Pmm

(
k =

`+ 1/2

χ
, z

)
, (2.34)

with Wi and Wj kernel functions for each of the weak lensing probes. This is the

simplified version, since the underlying matter distribution is the same and what changes

is the source redshift distribution.

To do cross-correlations with tSZ observations, instead, I prefer using the general terms

shown in eqn. 2.2 adapting accordingly the definition of ỹ (eqn. 2.32) for the pressure

distribution, φ̃` (eqn. 2.25) when using the CMB lensing (Hill & Spergel, 2014) or X̃k

(eqn. 2.4) for convergence weak lensing (Hojjati & Linder, 2016; Osato et al., 2018, 2020;

Yan et al., 2021).

2.4 BAHAMAS simulations

I employ the BAHAMAS (BAryons and HAloes of MAssive Systems) suite of cosmologi-

cal hydrodynamical simulations to obtain haloes details to use in our halo model calibra-

tion and testing ground. The BAHAMAS simulations consist of 400h−1Mpc comoving

on a side, periodic box containing 2×10243 particles McCarthy et al. (2017, 2018). The

Boltzmann code camb (Lewis et al. (2000), version April 2014) was used to compute

the transfer functions which were supplied to a modified version of V. Springel’s code

N-GenIC5 to create the initial conditions at a starting redshift z = 127. The code was

modified by S. Bird to include second-order Lagrangian Perturbation Theory (2LPT)

and support for massive neutrinos.

5https://github.com/sbird/S-GenIC.

https://github.com/sbird/S-GenIC
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The BAHAMAS simulations were run with the Lagrangian TreePM-SPH code gadget3

(Springel, 2005). The subgrid physics are adapted from OWLS simulations and Cosmo-

OWLS (OWLS = OverWhelmingly Large Simulations, Schaye et al. 2010; Le Brun et al.

2014). These prescriptions are adapted from OWLS simulations and updated for latest

results in order to match the galaxy stellar mass function at z = 0 and cluster baryon

fraction (see McCarthy et al. (2017) for further details on the calibration). The pre-

scriptions for the stellar components are related to star formation, evolution, metallicity

evolution and supernova feedback (shocks, mass loss and chemical enrichment Dalla Vec-

chia & Schaye 2008; Schaye & Dalla Vecchia 2008; Wiersma et al. 2009a; Wiersma et al.

2009b). The AGN feedback and black holes mergers and accretion are adapted from

Booth & Schaye (2009) and Ali-Häımoud & Bird (2012).

While in OWLS (and cosmo-OWLS) no attempt was made to calibrate the feedback

parameters to reproduce observations, the approach of BAHAMAS was to explicitly

calibrate the efficiencies of the stellar and AGN feedback to reproduce the local (z ≈ 0)

galaxy stellar mass function and the gas fractions of galaxy groups and clusters. The

objective in doing so was to ensure that the most massive haloes (massive galaxies up

to clusters), which contribute the most to the matter power spectrum (van Daalen &

Schaye, 2015; Mead et al., 2021), have the correct baryon fractions. van Daalen et al.

(2020) have shown that the baryon fraction on the group scale (M ≈ 1014 M� h
−1) is the

key quantity in determining the impact of baryon physics on the matter power spectrum.

A standard Friend-Of-Friend (hereafter FOF) algorithm (SUBFIND, Dolag et al. (2009))

with a linking length of b = 0.2 times the mean interparticle separation is run to identify

FOF haloes. Please note that because we first identify haloes with a FOF algorithm

and then compute the spherical overdensity masses (and associated quantities), haloes

cannot overlap spatially.

The BAHAMAS simulations and theirs calibrated baryonic feedback have been used to

extend the standard ΛCDM parameter space to non-standard cosmologies like massive

neutrinos (Mummery et al., 2017), running spectral index (Stafford et al., 2020a,b),

dynamical dark energy (Pfeifer et al., 2020). In future work, there is the interest in

explore further ‘non-standard’ cosmologies.

2.4.1 Light-cones and map-making

Simulations are a fantastic tool, however, they lack some observational features needed

to make a fair and proper comparison with ‘real’ observations. A way to tackle these

issues is to build ‘observational-like’ outputs from the simulations to narrow down the

differences, which means computing ‘light-cones’.
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The way to build light-cones is to stack randomly rotated and translated simulations

snapshots along the line of sight (da Silva et al., 2000) back to a certain redshift achieving

the convergence of the various LSS diagnostics (for most BAHAMAS LSS results, such

as tSZ, this means z = 3 but for CMB weak lensing we should have the knowledge of

the matter distribution up to z ≈ 1100). The way the BAHAMAS light-cones are built

is presented in McCarthy et al. (2018) paper, and here I just summarise the main basic

points.

The BAHAMAS simulations have 15 snapshots with different ∆ in redshift as: ∆z =

0.125 for 0 < z ≤ 0.5, and ∆z = 0.25 from z = 0.5 to z = 3. That means that, under

WMAP9 cosmology, z = 3 → χ(z) ≈ 4600h−1Mpc meaning that a minimum of 11

snapshots are needed to be stacked along the line of sight (11×400 = 4400h−1Mpc, where

400h−1Mpc is the simulation box size). For the maximum redshift I obtain a field that

is slightly bigger than 5 degrees by θmax = Lbox/χ(z = 3) ≈ 400/4600 × 180/π ≈ 5.2◦.

Therefore the light-cones (and consequent maps created from those) have resolution of

5× 5 square degrees.

The maps which I will compare against are the tSZ maps produced computing the

Compton-y parameter. This quantity is computed starting from:

Υ ≡ σT
kbT

mec2

m

µemH
, (2.35)

with T particle temperature, m particle mass, µe electron fraction and mH hydrogen

mass (Roncarelli et al., 2006, 2007). This quantity is associated to each particle in the

light-cone and then a realistic map of this observable can be computed by summing all

the contributions and dividing by the pixel angular size as y ≡ Υ/L2
pix. For the maps

created the angular pixel size is 10 arcseconds (arcsecs) which is a better resolution com-

pared to actual tSZ telescopes (next-generation observatories like Simons Observatory

will have an angular resolution of 0.5◦ (Ade et al., 2019) or CMB-S4 aims to get < 1.5

arcmins at 150 GHz (Abazajian et al., 2019; Carlstrom et al., 2019)). Then to create the

‘observable’ image they map the gas particles into a 2D grid using a simplistic nearest

grid point algorithm summing all components from all particles on the line of sight.

To compare against weak lensing results I have used the convergence maps. For the 3D

‘convergence’ fields, commonly called k(x), they compute the quantity using the matter

overdensity δ(x) as :

2k̃(x) = ∇2ψ(x) =
3

2
ΩmH

2
0 (1 + z)δ(x) . (2.36)

In eqn. 2.36 ψ is the local gravitational potential (in literature also often called Φ but

for unambiguous definition I use ψ) that is related to the local matter overdensity. To
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obtain a realistic results there is the need of considering the projection of this quantity

and that converts eqn. 2.36 into:

k(θ) =
3ΩmH

2
0

2c2

∫ χ(zmax)

0

g(χ)

a(η(χ))
δ(θ, η(χ))dχ , (2.37)

with g(χ) the lensing kernel defined as eqn. 1.29 and a is the scale factor (defined as

eqn. 1.5).

The relation between η(χ) and z is linear therefore it is common use to describe this kind

of equations in one of these variables. The lensing source redshift distribution nν(z|χ)

enters in the lensing kernel and has different shapes in case of a realistic source redshift

distribution or if we compare against a single source distribution, where nν collapses into

a Dirac delta function (as shown in Section 1.26). To compute these quantities in light-

cones the standard procedure is to break these quantities into segments with fixed width

of ∆z = 0.05 (that is similar to imaging surveys as KiDS and DES, Harnois-Déraps et al.

(2012)) as follows:

k(θ) =
3ΩmH

2
0

2c2

N∑
i=1

g(χ(zi))

a(zi)
δi(θ)∆χi ; (2.38)

with the kernel described as:

g(χ(zi)) = χ(zi)

N∑
j=i

nν(zj)

[
1− χ(zi)

χ(zj)

]
∆z , (2.39)

where the sums are done over the ith and jth segments. Eqns. (2.38)(2.39) are valid only

under the Born approximation, assuming small deflection angles (for further discussion

see Subsection 1.1.2.1) which is enough for the purposes of these tests.

For weak lensing cosmic shear, there is the need to compute the γ1 and γ2 shear moments

from the convergence maps. The method used is the one presented in Clowe et al. (2004)

and Bahé et al. (2012) where they evaluate the Fourier transform of the complex shear

as γ = γ1 + iγ2 more explicitly:

γ̃ ≡ (γ̃1, γ̃2) =

(
k̂2

1 − k̂2
2

k̂2
1 + k̂2

2

k̃,
2k̂1k̂2

k̂2
1 + k̂2

2

k̃

)
, (2.40)

where γ̃ and k̃ are the Fourier transform of γ and k respectively and k̂ are the appropriate

wave vectors. In real observations, there is a higher level of complexity compared to this

simplistic approach. For instance, the role of intrinsic alignment of galaxies and their
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Figure 2.1: tSZ map from light-cone (left) and composite convergence images with
four different source planes (zs = [0.25, 0.5, 0.75, 1.0]) from light-cones (right). The
light-cones used are the ones built from the AGN TUNED WMAP9 BAHAMAS simu-
lations. In the left panel I show also the different scales of image in comoving Mpc on
the y-axis and on the x-axis the degrees scale, in the right, for solely plotting constraint

I have not shown any axis labelling.

components (as dark matter, gas and stars as shown in Velliscig et al. (2015) and Hill

et al. (2021)) can alter the predictions but those effects seem to have a smaller influence

on LSS statistics (Hildebrandt et al., 2017).

Before closing this Chapter, I present in Table 2.1 the cosmological parameters used in

the BAHAMAS simulations for the WMAP and Planck runs, with explicit definition of

the mass of the DM and GAS particles and the neutrino masses as stated in McCarthy

et al. (2017, 2018) papers.
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Table 2.1: Cosmological parameter values for the simulations used here. The columns are: (1) The summed mass of the 3 active neutrino species
(we adopt a normal hierarchy for the individual masses); (2) Hubble’s constant; (3) present-day baryon density; (4) present-day dark matter density;
(5) present-day neutrino density, computed as Ων = Mν/(93.14 eV h2); (6) spectral index of the initial power spectrum; (7) amplitude of the initial
matter power spectrum at a camb pivot k of 2 × 10−3 h Mpc−1; (8) present-day (linearly-evolved) amplitude of the matter power spectrum on
a scale of 8 h−1Mpc (note that we use As rather than σ8 to compute the power spectrum used for the initial conditions, thus the ICs are ‘CMB
normalised’). In addition to the cosmological parameters, we also list the following simulation parameters: (9) dark matter particle mass; (10) initial

baryon particle mass.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Mν H0 Ωb Ωcdm Ων ns As σ8 MDM Mbar,init

(eV) (kms−1Mpc−1) (10−9) [109 h−1M�] [108 h−1M�]

WMAP9-based
0.0 70.00 0.0463 0.2330 0.0 0.9720 2.392 0.8211 3.85 7.66
0.06 70.00 0.0463 0.2317 0.0013 0.9720 2.392 0.8069 3.83 7.66
0.12 70.00 0.0463 0.2304 0.0026 0.9720 2.392 0.7924 3.81 7.66
0.24 70.00 0.0463 0.2277 0.0053 0.9720 2.392 0.7600 3.77 7.66
0.48 70.00 0.0463 0.2225 0.0105 0.9720 2.392 0.7001 3.68 7.66

Planck2015/ALens-based
0.06 67.87 0.0482 0.2571 0.0014 0.9701 2.309 0.8085 4.25 7.97
0.12 67.68 0.0488 0.2574 0.0029 0.9693 2.326 0.7943 4.26 8.07
0.24 67.23 0.0496 0.2576 0.0057 0.9733 2.315 0.7664 4.26 8.21
0.48 66.43 0.0513 0.2567 0.0117 0.9811 2.253 0.7030 4.25 8.49

Planck2013-based
0.0 67.11 0.0490 0.2685 0.0 0.9624 2.405 0.8341 4.44 8.11
0.24 67.11 0.0490 0.2628 0.0057 0.9624 2.405 0.7759 4.35 8.11



Chapter 3

Evaluating the accuracy of the

halo model in predicting the

non-linear matter power

spectrum

3.1 Introduction

In this Chapter, I go into detail in the accuracy tests I have applied to the ‘BAHAMAS

informed’ halo model. The idea of testing the internal accuracy of the halo model

starts from the need of assessing the reliability of this tool, improve the method and

deepening the knowledge of where this model may reveal some issues that would corrupt

its competitiveness.

Weak lensing studies of the large-scale structure of the Universe will, in the near fu-

ture, constrain the distribution of collapsed objects with an unprecedented accuracy

guiding tighter boundaries on the cosmological parameters possibly consolidating either

the ΛCDM or ruling out proposed extensions. To validate and explore the parameter

spaces, as I have presented in Section 1.2, there are several, equally interesting, ways with

their own strengths and weaknesses. The halo model is often chosen for its simplistic

approach, easy calibration and speed in obtaining results.

I explain in Section 3.2.1, how I select particles in haloes to build matter density profiles

from collisionless and hydrodynamical simulations. Then, I use the, aforementioned,

profiles to fit a generalised Einasto profile and I test the accuracy of these profiles in

48
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recovering the original halo masses for the four different mass definitions and three

redshifts here considered.

After presenting the profiles, I focus on the baryonic correction applied to the halo mass

functions using the BAHAMAS simulations (Sections (3.3)(3.3.1)). Finally, I present

the results of these applications in reproducing the matter power spectrum at different

redshifts using the tabulated density profiles, the fit density profiles for the four different

mass thresholds and the differences between the two cases (DM-Only and AGN ). In

the last section, I discuss the matter power spectrum suppression due to baryons.

Most of the content present in this Chapter is part of the submitted and accepted paper.

3.2 Informing the halo model with BAHAMAS

I start presenting the construction of the matter density profiles used in the analysis.

3.2.1 Matter density profiles

To calibrate the halo model I use the matter profiles obtained from BAHAMAS suite

of simulations, described in detail in Section 2.4. I select FOF-identified haloes from

1011 < M∆[M� h
−1] . 5 × 1015 and from 0 ≤ z ≤ 3, where the halo mass, M∆, is

defined according to one of the four mass definitions that I present below (see Table

3.1). I extract the simulation particles attached to the FOF SUBFIND catalogues from

the FOF-identified halo centres to R∆, then I select the FOF haloes in mass bins of

dlog10M = 0.125 to create mass stacked density profiles. To create these profiles I sum

all the particles inside ≈ 150 spherical shells scaled by R∆ logarithmically spaced from

10−3R∆ to R∆, where ∆ is generalised to cover the four different mass definitions (see,

again, Table 3.1). For a given radial bin, I compute the mass-weighted mean radius

(rw):

rw =
Σimiri
Σimi

. (3.1)

Note that I am able to reach such small inner radii (10−3R∆) because I am considering

all the particles in many haloes stacked together. Note, also, that for the lowest mass

haloes I consider that 10−3R∆ can actually probe scales below the softening length of the

simulations (4 pkpch−1), but this does not effect our ability to evaluate the consistency

of the halo model, since the softening will also effect the power spectrum, P (k), in the

same way.
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As already noted, I will use both the tabulated density profiles directly and parametric

fits to those profiles, using an Einasto form. To allow for potential halo mass and redshift

dependencies of the three main parameters in the Einasto profile (see eqn. 2.7), I model

them with a simple power law dependence on both quantities, as follows:

f0 = f0,int

(
M

Mref

)fM
(1 + z)fz , (3.2)

A = A0,int

(
M

Mref

)AM

(1 + z)Az , (3.3)

α = α0,int

(
M

Mref

)αM

(1 + z)αz , (3.4)

where Mref is a reference mass (or pivot point) used for normalisation of the function,

which I adopt as 1013 M� h
−1.

I determine the best-fitting parameters using a nonlinear least-squares Levenberg-Marquardt

approach (Markwardt, 2009) with the idl routines CURVEFIT and MPCURVEFIT

using the partial derivatives with respect to each parameter to help the convergence of

the fit (the partial derivatives for each parameters are explicitly presented in Appendix

B.1). I simultaneously fit to the stacked density profiles over the full range of radial

bins, halo mass bins, and redshifts described above.

In Table 3.1 I present the best-fitting parameters for the DM-Only and AGN total

matter density profiles for the four different mass definitions. I note that there are

likely to be large degeneracies between the derived parameters, but this is generally

unimportant for the purposes, since I only require that the function provides a good fit

to the simulated profiles for the range of halo masses, radii, and redshifts that I consider.

Because of the degeneracies between the parameters, the best-fitting values themselves

do not necessarily have important physical significance.

In Table 3.1 I have introduced the four different halo mass definitions that I consider,

corresponding to spherical overdensities of either 200 or 500 times either the critical or

mean density of the universe at a given redshift, where the critical density, ρcrit(z), is

defined as 3H(z)2/8πG and the mean density is just Ωm(z)ρcrit(z). I fit to the mass den-

sity profiles normalised by either ρmean or ρcrit (depending on the halo mass definition),

thus the density normalisation parameter f0 is dimensionless, and the radial bins are

normalised by the corresponding overdensity radius. For a given halo mass definition,

M∆, I fit the profiles out to R∆.
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Table 3.1: Best-fitting Einasto parameter values (see eqns. 2.7 and 3.4) describing the density profiles of the BAHAMAS DM-Only and AGN cases
for four different halo mass definitions.

Type Mref [M� h
−1] F0(×109) fm fz A0 am az α0 αm αz

∆ = 200m DM-Only 1013 0.3474 −0.0056 −1.804 14.01 −0.00475 −0.1891 0.298 −0.0182 −0.053
∆ = 200c DM-Only 1013 0.2295 0.2633 −1.196 12.04 0.01594 −0.0062 0.255 −0.0522 −0.161
∆ = 500m DM-Only 1013 0.3395 0.0025 −1.624 12.77 −0.00371 −0.1861 0.242 −0.0218 −0.096
∆ = 500c DM-Only 1013 0.1354 0.3520 −0.869 10.42 0.0259 0.0213 0.279 −0.0711 −0.239

∆ = 200m AGN 1013 0.5083 −0.099 0.642 16.63 −0.0115 0.006 0.189 −0.019 −0.025
∆ = 200c AGN 1013 14504.6 −0.263 −1.76 25.29 −0.0147 −0.023 0.105 −0.032 −0.104
∆ = 500m AGN 1013 12491.88 −0.316 −2.342 25.52 −0.0173 −0.118 0.104 −0.027 −0.115
∆ = 500c AGN 1013 35538.27 −0.287 −1.793 25.09 −0.0152 −0.025 0.096 −0.033 −0.126
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3.2.2 Tests and density profiles comparisons

To verify and quantify the ability of the profiles to reproduce accurately the total matter

inside haloes, I run a test where I integrate the total density profiles over the halo

spherical volume (depending on R∆):

M int
∆ =

∫ R∆

0
4πr2ρ(r,M, z)∆ρ dr . (3.5)

Eqn. 3.5 shows the integral used to evaluate the total mass obtained using the profiles

(stacked and fit) for the four different overdensities. ∆ρ is needed to transform the

normalised density profiles, ρ, into physical units. In figs. (3.3)(3.6) I have used eqn. 3.5

to compute the total mass and compare against the mean MFOF,∆ of the mass bins from

simulations1.

In fig. 3.1 and fig. 3.2 I present the DM-Only results comparing the stacked density

profiles and the Einasto fits. In fig. 3.1 I present the results at three different redshifts

(z = [0, 1, 2]) for three, well, populated mass bins (log10(M) = [12.8, 13.5, 13.8] M� h
−1)

for the ∆ = 200m overdensity. The density has been normalised by 200ρ and multiplied

by (r/R∆=200m)2 in order to reduce the dynamic range of the plots. In the bottom

panels, I present the residuals, defined as (ρfit − ρsim)/ρsim with a shaded area that

represents the ± 10% (0.1) agreement.

In fig. 3.2, instead, I present the residual plots for the four mass definitions at z = 0

for three different mass bins (log10(M) = [13.0, 14.0, 15.0] M� h
−1) aiming to show a

broader comparison in terms of mass bins and different mass definitions.

In both figures we verify that the generalised Einasto profiles can reproduce well (within

10%) the radial trend of the profiles from 0.02 to ≈ R∆ at all redshifts and for the four

mass definitions.

I evaluate the total masses using the density profiles integral (eqn. 3.5) for the four

overdensity definitions. This will be relevant while considering the large-scale clustering

as explained in Section 2.2.

In fig. 3.3 I present the results of the tests with the integral of stacked density profiles and

the fitting profiles for the four mass definitions at three different redshifts z = [0, 1, 2].

In distinct shades of blue I show the four mass definitions and in the shaded region

the 1% for the stacked density and 5% for the Einasto profile results. It is possible

to state that the stacked density profiles can recover better than 5% the starting halo

masses. This offset might be due to the fact that using mass-weighted radial bins the

1Using the mean or the median values of the mass bins presented less than 1% difference.
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Figure 3.1: Stacked density (solid lines) and fit density profiles (dashed lines) for
the DM-Only cases of three mass bins at three different redshifts (z = [0, 1, 2]) and
the residuals for ∆ = 200,Mean mass definition. In the top panels I show the profiles
normalised by ∆ρ and multiplied by r/R∆ squared to reduce the dynamic range. I
have chosen the mass bins log10(M) = [12.8, 13.5, 13.8] M� h

−1 because they are well
represented in all three redshifts. In the residual plots I see that the fitting function can
reproduce the actual data at the three redshifts bins. The area grey-shaded identifies
the ±10% accuracy. Overall the differences are below 10% in the radial range from 0.02

to R∆.
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Figure 3.2: Extended comparisons with the DM-Only profiles for the four mass def-
initions at z = 0 for three mass bins (log10(M) = [13.0, 14.0, 15.0] M� h

−1). Here are
presented in terms of residual plot defined as (ρFit − ρ)/ρ.
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Figure 3.3: In left panel there are ratio plots between the integrated DM-Only stacked
profiles compared to the original M∆,FOF for the four mass definitions and at three
redshifts bins (z = 0 top panel, z = 1 middle and z = 2 bottom). In the right panel,

same ratio plot structure, but using the Einasto fitting profiles.

final integration bins are not perfectly centred at same FOF radius definitions, leading

to these small mismatches. The stacked profiles using ∆ = 200 (lighter blue lines), both

in the mean and critical case, can reproduce better than ≈ 2% the total dark matter

masses in a wide mass range (1011 − 5× 1015 M� h
−1) in all three redshifts. This result

means that the spherical overdensities used to describe the dark matter profiles are

enough detailed to reproduce the starting halo masses. The ∆ = 500 profiles (darker

blue lines), instead, can reproduce the mass values in a slightly worse accuracy, these

profiles tend to overpredict the total masses by 3− 4% evenly in redshift. Again, these

differences might be related to the way the outer boundaries are defined and the way

the centre of haloes are defined and scaled accordingly by R∆.

In case of the fitted density profiles (right plot) we can see that most of the densities are

recovered better than 10% at all redshifts. The mass definitions are colour-coded as the

stacked density case. The area with oblique lines is, instead, where the fit is extrapolated

due to the lack of data points in the fitted data set. The ∆mean mass definition tends to

provide a better agreement with the expected starting halo mass at all redshifts (always

below 5%) but for the case of ∆crit it is possible to check that the accuracy at higher

redshift (z = 2) is well above 20% (in the plot is highlighted with small coloured arrows

showing the underfit).

A possible explanation is that the most influential mass bins (1013−1014 M� h
−1) in the

stacked profiles were not enough detailed in the ∆crit case at higher redshift, and this

lack of definition has strongly impacted the overall agreement in all mass bins, even,

in the lowest ones available. The shape of the ratio plot for the ∆crit cases present a

starting accuracy around 15% below 1012 M� h
−1 rising up to < 5% at ≈ 1013 M� h

−1
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Figure 3.4: Same as fig. 3.1 but for the AGN case. I have used the same mass and
redshift bins as above. To differentiate from the companion figure I have colour-coded

the AGN case in shades of red.

and being almost constant until the last mass bins are reached. This, reinforces the fact

that, if the central mass bins were not enough characterised, might have led to a worse

fit in that regime.

Now I present the stacked density and the fit for the AGN case. For the total matter

profiles I have computed each simulation particle types (DM, GAS and STAR) the

stacked density profiles and I have sum them together to obtain the total matter density

profiles. I found that the mass-weighted radii of each component agree better than 1%

to the others so I am summing them without any changes or corrections2.

In fig. 3.4 and fig. 3.5 I present the companion plots between the fit and the stacked

density profiles for the ∆ = 200m in the first figure and for the four overdensities

at z = 0. In the first figure it is possible to see that the lowest mass bin involved

(log10(M) = 12.8 M� h
−1 in light orange) presents a clear complex structure at all

redshift in radii r < 0.08R∆. This complex feature might be related to some stellar

structure that is more relevant in this mass bin and less accurately reproduced in the

Einasto fit. In the second figure, instead, I present the four different mass definitions

comparison with three mass bins at z = 0. The fit here shows some difficulties in

reproducing better the stacked density profiles, but the general agreement is always

below 15%(0.13).

2As I have shown in Table 2.1 DM and GAS particles have different masses and while accounting for
the weighted-mean radii, eqn. 3.1, that means that there was the risk of misplacement of a portion of
particles. I have verified, that this is not the case, in fact, the weighted profiles match perfectly.
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Figure 3.5: Companion figure of fig. 3.2 but for the AGN case. The same mass and
redshift bins are presented here. As before, I am using a different colour-grading to

show the three different mass bins involved.
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Figure 3.6: The figure is a companion of fig. 3.3 but for the AGN cases. In left
panel there are the ratio plots between the integrated stacked profiles compared to the
original M∆,FOF for the four overdensities and at three redshifts bins (z = 0 top panel,
z = 1 middle and z = 2 bottom). In the right panel same ratio plot structure but using

the Einasto fitting profiles.
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In fig. 3.6 I present the integral tests for the stacked density profiles and the fit density

profiles for the AGN case. As was seen for the DM-Only case, the stacked density

profiles can match the original M∆,FOF with accuracy of 1 − 3% for all redshifts and

mass definitions. For the fitting profiles it is possible to see a similar behaviour as the

DM-Only case with the mean overdensities that perform well for a wide mass ranges

and redshifts while the ∆crit suffers from the same issues presented in the previous case.

Comparing the results from fig. 3.18 and fig. 3.6 look like that the inaccuracy of the

fit, compared to the stacked profiles in the stellar components in the inner parts of the

haloes have a quite small impact on the overall accuracy on the total halo mass.

In principle one could include an additional component to the parametric model to

better fit the inner regions. Indeed, this would be recommended when modelling real

data. However, since I also evaluate the halo model using the tabulated profiles directly

from the simulations, I can still assess the accuracy of the halo model without including

such a component. By comparing the tabulated and parametric versions, I can directly

assess the impact of neglecting an additional component designed to better capture the

central galaxy.

3.3 Halo mass function

I, now, consider the halo mass function (HMF) from BAHAMAS as input for the halo

model. At a given redshift and for a given halo mass definition (spherical overdensity), I

compute the HMF of FOF haloes using a bin width of d log10(M) = 0.0625, over a mass

range 1011 − 5× 1015 M� h
−1. To compute the mass function, dn/dM (called here also

Φ), I simply count the number of FOF haloes in a given bin and divide by the linear bin

width and simulation comoving volume.

I present in fig. 3.7 a comparison between the HMF from the BAHAMAS DM-Only run

with the Tinker et al. (2008) prediction for the four different mass definitions at three

redshifts bins. I have computed the Tinker HMF using the Colossus Toolkit (Diemer,

2018) 3.

I see that there is generally good agreement between the two independent mass functions.

In the small panels below the main ones I present the residuals between the BAHAMAS

and the Tinker HMFs for the three different redshifts (with the same lines). Small

differences can be seen at high masses which are likely a result of cosmic variance and

relatively poor statistics (Poisson errors) in the BAHAMAS volume.

3https://bdiemer.bitbucket.io/colossus/.

https://bdiemer.bitbucket.io/colossus/
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Figure 3.7: Halo mass function (HMF, Φ = dn/dM [Mpc−3h4M−1
� ]) comparison be-

tween the BAHAMAS DM-Only case (ΦB , orange curves) and the Tinker et al. (2008)
prediction (ΦT , blue curves) at three redshifts bins (solid, dashed and dotted curves) for
four halo mass definitions. In the smaller subpanels residuals between the BAHAMAS
HMF and the Tinker HMF are shown. The shaded orange regions represent the Pois-
son errors for the BAHAMAS HMFs. Differences between the Tinker and BAHAMAS
mass functions are likely due to cosmic variance and Poisson uncertainties at the high-
mass end and finite resolution and differences in how haloes are identified (FOF for
BAHAMAS and spherical overdensity for Tinker) at the low-mass end (see text). I
examine how the differences in the mass functions affect the resulting non-linear power

spectrum in fig. 3.13.

Regardless of the origin of the differences, they should be taken into account evaluating

the internal accuracy of the halo model. For example, if through cosmic variance the

BAHAMAS volume has somewhat more very massive clusters than expected on the basis

of the Tinker HMF, this could also affect the overall non-linear P (k) of the simulation.

Therefore, by using the actual HMF from BAHAMAS I can more accurately test the

halo model formalism.

At low masses (∼ 1011 M� h
−1), the BAHAMAS simulations predict a lower abundance

of haloes compared to the Tinker expectation. This is likely due to two effects: finite

resolution of the BAHAMAS simulations and differences in the way haloes are identified

in BAHAMAS and Tinker et al. (2008). There is a clear resolution effect at masses below

≈ 3× 1011 M� h
−1, where the BAHAMAS HMF stops increasing with decreasing mass.

Here the simulations are approaching the 20 particle limit imposed on FOF groups. At

somewhat higher masses, there is still a deficit with respect to the Tinker prediction of

≈ 10− 20%. This is likely due to differences in the way haloes are identified.
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For BAHAMAS, haloes are identified with a FOF algorithm after which spherical over-

density masses are computed, whereas Tinker et al. (2008) identify haloes using the

spherical overdensity method and haloes are allowed to partially overlap (Tinker et al.,

2008). Consequently, more intermediate/low mass haloes are identified in the vicinity

of larger haloes using the spherical overdensity method, whereas a FOF algorithm will

combine haloes into larger group in which they are sufficiently close to one another.

These differences have been previously discussed in the literature (e.g., Bocquet et al.

2020) so I will not discuss them further here. However, such differences in the HMFs

will propagate through the halo model and affect the predictions for P (k). I will show

that the differences in the HMFs will impact the P (k) predictions only slightly at low

redshift, but play a relatively larger role at higher redshift (z ≈ 2).

3.3.1 Role of baryons on the HMFs

In the HMF comparison presented above, I examined the DM-Only run from BAHAMAS

and compared it with the predictions of Tinker et al. (2008), who used a large suite of

collisionless (dark matter-only) cosmological simulations to calibrate an approximately

universal form (to ∼ 10% accuracy) for the HMF (see eqn. 2.8). Thus, the comparison

was a consistent one. However, as several authors have shown previously, the halo profiles

and HMFs can be affected by baryonic processes such as feedback from supernovae and

AGN (Cui et al., 2014; Velliscig et al., 2014; Bocquet et al., 2016; Mummery et al.,

2017; Pfeifer et al., 2020; Stafford et al., 2020a), with effects as large as 20% in the

HMF which is large enough to have a non-negligible impact on cosmological parameter

inference (Cusworth et al., 2014; Castro et al., 2021; Debackere et al., 2021).

To evaluate the impact of baryons on the HMF and how these translate to predictions

of the halo model, I extend the formalism presented in Velliscig et al. (2014) to correct

the masses and HMFs. I explore two separate ways of accounting for baryons in the

HMF. In the first case, I can exploit the fact that the DM-Only and AGN runs have

the same phases in the initial conditions, making it possible to match haloes between

the two runs (using the unique particle IDs) on a halo-by-halo basis, as done previously

in Pfeifer et al. (2020) and Stafford et al. (2020a) when evaluating both the impact of

baryons and cosmological extensions (dynamical dark energy and a running of scalar

spectral index, respectively) on the HMF in BAHAMAS. With this approach, one can

directly determine how the halo mass has changed as a result of baryonic processes. In

appendix A.2 I briefly explain the matching technique by using particles IDs from two

separate simulations. In the second approach, one can simply compare the HMFs of

the DM-Only and AGN runs, effectively computing the ratio of abundances in a given

halo mass bin (e.g., Velliscig et al. 2014). By default I use the halo matching scheme
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Figure 3.8: Fractional change in halo mass (eqn. 3.6) between the BAHAMAS
AGN and DM-Only simulations as a function of DM-Only halo mass. Shown are the
median (top panel) and mean (bottom panel) trends, along with the best-fit functions
(eqn. 3.7), for the ∆ = 200m case at three different redshifts. The scatter, shown in

shaded grey area, represents the 68% confidence region at z = 0.

to derive a HMF correction factor, but I have also explored the results using the HMF

ratio method (see appendix A.3). In short, while both approaches yield similar results,

I find the halo matching scheme to be more accurate (less noisy).

In fig. 3.8 I present a comparison between the mean and median values of ∆mass at three

redshifts bins for the ∆ = 200m case, where ∆mass is the fractional difference in the halo

mass between the AGN and DM-Only runs:

∆mass =

(
MAGN −MDM-Only

MDM-Only

)
. (3.6)

Consistent with previous studies, I find that the halo masses are most strongly affected

on the scale of galaxy groups (1013 − 1014 M� h
−1), where AGN feedback is able to

expel a large fraction of the baryons. At higher masses (above a few 1014 M� h
−1) the

increased binding energy of the haloes prevents significant gas expulsion, while at lower

masses (. 1012 M� h
−1) AGN feedback is generally not yet active and stellar (supernova)

feedback is not sufficiently energetic to eject a significant amount of baryons.

Following Velliscig et al. (2014), I model the change in halo mass (mass shift) due to

baryons with the following functional form:
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Table 3.2: Best-fitting parameters for the baryonic mass correction (eqn. 3.7) for
the median and mean fractional changes in halo mass, ∆mass. In fig. 3.8 I show the

comparison between our best-fit models and the median and mean trends.

∆Mean ∆Median

P a0 az a0 az
A 22291.3 0.260 19539.1 0.417
B −0.327 0.289 −0.312 0.414
C −13.574 −0.033 −13.552 −0.037
D −0.395 0.218 −0.417 0.216

∆mass(MDM-Only) =
A

cosh[log10(MDM-Only)]

+
B

1 + exp
[
− log10(MDM-Only)−C

D

] (3.7)

Note that in eqn. 3.7 I have added a hyperbolic cosine term that allows the function to

better reproduce the increase in ∆mass towards low halo masses. In addition, to account

for the redshift evolution of the halo mass shift, I allow the four parameters (A,B,C and

D) to have power law redshift dependencies, e.g.,:

A(z) = a0(1 + z)az . (3.8)

To improve the fit I have computed the partial derivatives of each parameters of eqn. 3.7

and I have listed them in Appendix B.2.

In fig. 3.8 I see that the fitting functions can reproduce the halo mass shift for all mass

bins (> 3×1011 M� h
−1) and at the three different redshifts shown. Note that the lower

limit of 3 × 1011 M� h
−1 is dictated by the minimum number of matched most-bound

particles (50) that I require to match haloes between two BAHAMAS runs.

Overall, the accuracy of the best-fitting functions to the mean and the median values of

∆mass is better than 10% in all mass bins and redshifts sampled. In Table 3.2 I present

the best-fitting parameter values for the mean and median versions of the mass shift

∆mass.

As an aside, I find that the effects of baryons on the HMF (and presumably density

profiles as well) are slightly cosmology dependent. I have determined this by testing our

model against a BAHAMAS Planck13 run that has a different universal baryon fraction

(fPlanck
b = 0.15433) and I have found that the first fitting parameter, A, should be

corrected by a factor of 0.87 to account for the different value of fb. We remind that the
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value of fb is 0.165 for our WMAP9 cosmology run. This cosmology correction works for

both the mean and median ∆mass results. In Appendix A.3 I present a similar analysis

for what concerns the cosmology dependence on the direct HMF baryonic correction.

While the halo mass correction procedure derived above could be applied on a halo-by-

halo basis to the BAHAMAS DM-Only run to derive a baryon-corrected HMF, such

a procedure would generally not be possible for published HMFs based on collisionless

simulations, since the individual halo masses (halo catalogues) are generally not avail-

able. Thus, I wish to derive a simple correction factor that can be applied to existing

collisionless HMFs in the literature.

To do this, I first shift the halo mass bins from a collisionless HMF (in this case the

BAHAMAS DM-Only HMF) using the baryonic correction procedure above. I use the

mean correction function in Table 3.2. This creates a new set of mass bins. I, next,

rescale the abundances (Φ) by the relative ratio between the DM-Only and AGN mass

bins as:

dn

dMAGN
=

dn

dMDM-Only

(MDM-Only,i −MDM-Only,i−1 ≡ dMDM-Only)

(MAGN,i −MAGN,i−1 ≡ dMAGN)
, (3.9)

where MAGN is the corrected halo mass, derived using the (uncorrected) mass, MDM-Only,

and eqns. 3.6 and 3.7, and i refers to the ith mass bin. Essentially, this procedure works

because the number of haloes does not change as a result of feedback/baryons, only their

masses change. This means that both the x-axis (halo mass) and the y-axis (φ ≡ dn/dM ,

through the change in dM) change due to baryons4. With this procedure, I can correct

existing HMFs derived from collisionless simulations for the presence of baryons.

In fig. 3.9 I present the result of the application of the method shown before on the

BAHAMAS DM-Only HMFs with respect the AGN version. It is possible to see that

the method provide a ≈ 5% accuracy in most mass bins. Larger deviations are present

at the very highest masses, which are due to poor sampling statistics. The differences

using the mean or median values of ∆mass are small and have a slight effect on the largest

masses regime.

In fig. 3.10 I present a comparison between the baryon-corrected Tinker HMFs and the

BAHAMAS AGN HMFs, as I have done for the DM-Only case in fig. 3.7. I can see that

the method applied also provides good results in this case.

Concluding this section on the halo mass function I remind that the formalism of the

linear bias is the same both for the DM-Only and AGN cases, as supported by recent

4An underlying assumption of this procedure is that the rank ordering of haloes by mass does not
change through the inclusion of baryons.
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Figure 3.9: Ratio plots between the BAHAMAS HMFs for the AGN case over the
corrected DM-Only using the baryonic correction using the mean (left plot) and median
(right) values. I present the three redshifts bins and all four mass definitions (orange
for the critical mass definitions and blue for the mean ones). I can see that the baryonic
correction helps recover the HMFs better than 5% in most cases and all redshifts with
a better agreement on the regime above 5×1013M� h

−1. The huge spikes visible in the
high mass regime is due to the variance of the ratios and the small differences between

the two cases.
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curves).
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Figure 3.11: Halo fraction comparison between the Tinker and BAHAMAS HMFs as
function of the Mmin in terms of mass definitions and for the three redshifts. In the left
plot, I present the DM-Only version with Tinker results in blue lines and BAHAMAS
in orange with solid line for z=0, dashed for z=1 and dotted for the last z=2. In the
right-hand side plot, I present the AGN version with Tinker, mass corrected, in grey

and BAHAMAS in red.

work as Castro et al. (2021). Therefore I have not modified the linear bias also when

working with the AGN matter power spectrum by the baryon effect. Also, I will use

the standard linear bias when I will use the BAHAMAS HMF because the differences

between the latter and the Tinker HMf is small and the impact should be small as well.

3.3.1.1 Halo fraction of the total mass

As pointed out in van Daalen & Schaye (2015), it is important to understand the share

of mass that is inside haloes compared to the total amount of mass that there is in

the Universe. That accounts for the overall 2-point correlation function that guides the

clustering at large scales (k < 0.1hMpc−1). A method to quantify the shared quantity is

to integrate the HMFs between a Mmin to a maximum mass (which I set to 1016 M� h
−1).

I compare this quantity, called fh halo fraction, between the different mass definitions

and redshifts analysed in this thesis and for the DM-Only and AGN cases. fh is defined,

for clarity, as function of Mmin as:

fh(Mmin, z) =
1

ρ̄

∫ ∞
Mmin

Mφ(M, z)dM . (3.10)

In fig. 3.11 I present the four mass definitions estimates of fh for both DM-Only (left-

hand side plot) and AGN cases (right-hand side plot). I present the three redshifts bins

as solid, dashed and dotted lines (z = [0, 1, 2]). In orange and red I have integrated

the BAHAMAS HMFs while in blue and grey the Tinker HMFs (in the AGN cases I
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have used the one baryonically corrected). It is possible to examine that for the limited

range available (1011−1016 M� h
−1, I define the upper limit∞ since the small statistical

impact of this) the mass shared in haloes accounts only for 0.43 for Tinker at z=0 in

the DM-Only case and 0.41 for the AGN case. Changing mass definition, also reduces

that value to a mere 0.25 for the ∆ = 500c for the DM-Only case and ≈ 0.22 for the

AGN one.

At higher redshifts the halo fraction goes down below 0.3 (z=1) for ∆ = 200m and 0.12

(z=2). This results show that there is huge portion of mass that is either not in haloes,

as found out by van Daalen & Schaye (2015), which prevents the halo model approach

and to be thoroughly descriptive to the reality of the Universe. Simulations, as well,

contain a significant number of unresolved objects that contributes in the overall matter

power spectrum.

3.4 Matter power spectrum

In the previous sections I have explained how I extract the ingredients necessary from

the BAHAMAS simulations to be able to evaluate the halo model. I have shown the

accuracy with which the Einasto fits reproduce the stacked density profiles computed

from the simulations. I have also examined the differences in the HMFs, deriving a

baryon correction factor that can be applied to HMFs from collisionless simulations.

Below I apply these quantities to calculate the non-linear power spectrum, P (k), using

the halo model and I compare this with the actual power spectrum measured from the

BAHAMAS simulations.

3.4.1 Collisionless matter power spectrum

In this section I present a comparison of the (BAHAMAS-informed) halo model pre-

dictions for the non-linear matter power spectrum alongside power spectrum predic-

tions from the BAHAMAS simulations themselves. I also show linear theory prediction

computed by the software camb (Lewis & Challinor, 2006) and the non-linear power

spectrum from the (collisionless) halofit package (Takahashi et al., 2012). Note that

halofit provides a non-linear correction factor for the linear power spectrum, which

Takahashi et al. (2012) have derived by fitting to a large suite of collisionless simulations

spanning a wide range of cosmologies.

I begin by presenting the results for the collisionless (DM-Only) case. As already dis-

cussed, I explore different versions of the halo model, where, for the density profiles I
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Figure 3.12: Top: Matter power spectra comparison for the collisionless case. The
solid black curve represents the halo model computed with the stacked density profiles
and the BAHAMAS HMF, while the dashed and dot-dashed grey curves represent the
1-halo and 2-halo terms separately. The power spectrum from the BAHAMAS DM-
Only run is represented with orange symbols. The dashed and dotted blue curves
represent the non-linear power spectrum predicted by halofit and the linear matter
power spectrum predicted by camb. The vertical dotted line represents 0.5 times the
Nyquist frequency of the BAHAMAS simulation volume. Bottom: Ratios with respect
to the halo model. On very large scales, the halo model reproduces linear theory to
percent level accuracy, by construction. On small scales, the 1-halo term dominates
and reproduces the simulated (BAHAMAS) power spectrum to typically 5% accuracy.
In the 1-halo/2-halo transition region, the halo model predicts up to 20% less power

than in the BAHAMAS simulations.

use either the tabulated profiles extracted directly from the simulations or a smooth

parametric fit to them and for the halo mass function I use either the HMF directly

from the simulations or forms from the literature (specifically Tinker et al. 2008). I

also explore the impact of changing the halo mass definition, by varying the overdensity

criteria used to define a halo’s mass and its radial extent.

In fig. 3.12 I present the comparison between the halo model prediction (black solid line),

its 1-halo and 2-halo terms (grey lines) and the BAHAMAS power spectrum (orange

diamonds), as well as the predictions of linear theory and halofit (dotted and dashed

blue curves, respectively). Note that for this comparison, the halo model is computed

using the tabulated mass density profiles (as opposed to Einasto fits to them) and the

HMF directly from the BAHAMAS DM-Only run. In the bottom panel I present the

ratio of the different cases with respect to the BAHAMAS-informed halo. The BA-

HAMAS simulation power spectrum is computed using the software NBodykit5(Hand

5https://nbodykit.readthedocs.io/en/latest/.

https://nbodykit.readthedocs.io/en/latest/
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et al., 2018).

Qualitatively speaking, the halo model does capture the general trends of the simulation

non-linear power spectrum well, including the shape of the power spectrum from the

simulations (top panel). For example, there is a strong increase in power with respect

to linear theory on small scales, as expected. Focusing on the bottom panel for a

quantitative comparison, I can see that the halo model predictions match those of linear

theory at large scales to percent level accuracy, which is by construction, after accounting

for haloes that lie below the mass resolution limit of the simulations (see eqn. 2.16). Note

that the application of eqn. 2.18 (2-halo truncation) only affects P (k) by about a percent

on large scales and therefore has no significant impact on the results or conclusions of

our study, but I include it for completeness.

The most challenging region is between 0.1 . k [hMpc−1] . 2 which corresponds to

the transition region between the 1-halo and 2-halo terms. Here the halo model’s pre-

diction can deviate from the simulations by up to 15%. This is qualitatively consistent

with previous findings (e.g., Giocoli et al. (2010), Massara et al. (2014), Mead et al.

(2015),Chen & Afshordi (2020) and Voivodic et al. (2020)), although note that this test

is more stringent due to the fact that I am using the same simulation to inform and then

test the halo model.

At small scales I see that the level of agreement improves again (< 5% at 1 < k [hMpc−1] <

4) between the BAHAMAS-informed halo model predictions and the simulations and

theoretical predictions. However, the error increases again at still smaller scales. While

the error increases as the Nyquist frequency is approached6 (see dotted vertical line), the

fact that the halofit prediction is very similar to that of BAHAMAS suggests that the

error is not solely due to aliasing effects in the simulation P (k). Further tests exploring

the minimum radius and halo mass, as well as the radial and mass binning strategies,

in the halo model show the results to be numerically robust. Plausible physical ex-

planations for the deviation at very small scales include differences in the clustering

of substructures compared to the smooth dark matter profile, asphericity of the mass

distribution, and intrinsic scatter in the mass density profiles.

In fig. 3.13 I explore the effects of changing the halo mass definition, the profiles (tabu-

lated vs. parametric fit), and the HMF (BAHAMAS vs. Tinker et al. 2008) at a number

of different redshifts. There are four sets of plots, corresponding to the four halo mass

definitions that I explore (∆ = 200m, 500m and ∆ = 200c, 500c). The top row of panels

in each plot set correspond to the case where the tabulated profiles directly from the

simulations are used in the halo model, whereas the bottom row of panels use the Einasto

6The Nyquist frequency is defined as νy = 2πNcell/LBox where Ncell is the number of cells used in
the Fourier transform (to the one-third power) when evaluating P (k) and LBox is the box size.



Chapter 3 Evaluating the accuracy of the halo model in predicting the non-linear
matter power spectrum 68

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[P
(k

)
PSt

ac
k

H
M

(k
)]/

P(
k)

z=0

Tinker HMF
BAHAMAS HMF

z=1 z=2

10 2 10 1 100 1010.1

0.0

0.1

0.2

0.3

0.4

[P
(k

)
PFi

t
H

M
(k

)]/
P(

k)

= 200m

CAMB
HaloFit
BAHAMAS

10 1 100 101

k [h/Mpc]
10 1 100 101

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[P
(k

)
PSt

ac
k

H
M

(k
)]/

P(
k) z=0 z=1 z=2

10 2 10 1 100 1010.1

0.0

0.1

0.2

0.3

0.4

[P
(k

)
PFi

t
H

M
(k

)]/
P(

k) = 500m

10 1 100 101

k [h/Mpc]
10 1 100 101

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[P
(k

)
PSt

ac
k

H
M

(k
)]/

P(
k) z=0 z=1 z=2

10 2 10 1 100 1010.1

0.0

0.1

0.2

0.3

0.4

[P
(k

)
PFi

t
H

M
(k

)]/
P(

k) = 200c

10 1 100 101

k [h/Mpc]
10 1 100 101

0.1

0.0

0.1

0.2

0.3

0.4

0.5

[P
(k

)
PSt

ac
k

H
M

(k
)]/

P(
k) z=0 z=1 z=2

10 2 10 1 100 1010.1

0.0

0.1

0.2

0.3

0.4
[P

(k
)

PFi
t

H
M
(k

)]/
P(

k) = 500c

10 1 100 101

k [h/Mpc]
10 1 100 101

Figure 3.13: Residual plots between the matter power spectrum and the halo model
predictions at three redshifts bins for the four different mass definition as follows: top-
left ∆ = 200m, top-right ∆ = 500m, bottom-left ∆ = 200c and bottom-right ∆ = 500c.
The top (bottom) row of panels in each plot set correspond to the case where the
tabulated profiles directly from the simulations (Einasto fits to) are used in the halo
model. The orange (blue) curves correspond to the case where I use the BAHAMAS
DM-Only simulation (Tinker) HMF. I compare against linear theory predictions using
camb (dotted curves) and the non-linear halofit prediction (dashed curves) and BA-
HAMAS DM-Only simulation (solid curves). The vertical dotted line represents 0.5
times the Nyquist frequency of the BAHAMAS simulation volume. All models recover
the large-scale limit by construction while the 1-halo/2-halo transition region is (at
best, corresponding to the ∆ = 200m case) recovered to 10-15% accuracy. In general,
the accuracy decreases with decreasing radial extent of the haloes (due to changing halo

mass definition, see text) and increasing redshift.

fit to the density profiles. The blue curves correspond to the case where I use the Tinker

HMF, whereas the orange curves used the BAHAMAS DM-Only simulation HMF. Note

that here I present residuals, defined as [P (k) − PHM(k)]/P (k) (where PHM(k) is the

halo model prediction), whereas in the bottom panel of fig. 3.12 I showed a simple ratio.

I focus first on the top left set of plots, corresponding to a spherical overdensity case of

∆ = 200m. Scanning from left to right, it is clear to see the halo model increasingly

struggles to capture the 1-halo/2-halo transition region with increasing redshift. This is

true regardless of which mass function I use (BAHAMAS or Tinker) or whether I use
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tabulated or fitted density profiles (top vs. bottom rows). Interestingly, examining the

other spherical overdensity cases (see the other three sets of plots in fig. 3.13), it appears

that when the overdensity criteria are defined with respect to the mean background

density, the precision of the model worsens with increasing redshift while the accuracy is

mostly independent of redshift when the critical density is used. The fact that there is a

relation between the accuracy of the halo model and the mass definition was also hinted

at in Mead et al. (2021), where they identified differences between using ∆ = 200m and

∆ = 200c.

Comparing the top and bottom rows of the top left set of plots, there are no significant

differences in the ability of the halo model to recover the simulation P (k). This implies

that the Einasto form I have used reproduces the simulated matter density profiles

sufficiently well for the purposes of predicting P (k), since the result does not change

when I use tabulated profiles directly (top row) vs. the Einasto fitting function (bottom

row).

Comparing the solid orange (BAHAMAS HMF) and solid blue (Tinker HMF) curves, I

see that using the actual BAHAMAS simulation HMF results in an improved agreement

between the halo model and the simulation P (k), particularly at higher redshifts. Thus,

the halo model is more accurate than what might have been inferred using a generic

halo mass function to test it.

Scanning between the four sets of plots, another trend that is clearly visible is that

changing the halo mass definition has a significant impact on the accuracy of the halo

model with respect to the simulations. The change in the halo mass itself is not what is

driving this trend: since I essentially integrate over all haloes, how I label their masses

should not matter. However, by changing the halo mass definition, I am also changing

the radial extent (size) of a halo (given the spherical overdensity definition) and this

clearly will impact where the 1-halo and 2-halo terms intersect, due to the change in the

extent of the 1-halo term. These results are consistent with the findings of van Daalen

& Schaye (2015), who showed the importance of the radial selection of particles on the

resulting power spectrum of cosmological simulations (see figure 3 of that study).

I find that the larger the radial extent of the halo (noting that at z = 0, R200m is

the largest and R500c is the smallest) the better the halo model is able to capture

the 1-halo/2-halo transition region in the simulations. This suggests that one way to

help further improve the halo model is to radially extend the 1-halo term (as recently

presented in Garćıa et al. (2021)). For example, even if the halo mass function and bias

are defined with respect to some standard choice of overdensity (e.g., ∆ = 200c,m),

the profiles could, for example, be extended to several times the corresponding spherical

overdensity radius, with the optimum extent determined by fitting to the simulation
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Figure 3.14: Same as fig. 3.12 but for the hydrodynamical (AGN ) case. The BA-
HAMAS AGN matter power spectrum is represented by green symbols. The bottom
panel I show the ratios with respect to the baryonic version of the halo model (i.e., using
the density profiles and HMF from the BAHAMAS AGN run). The level of agreement
between the baryonic halo model and the hydrodynamical simulations is similar to that
seen in the comparison of the collisionless halo model and collisionless simulations in

fig. 3.12.

P (k). However, whether such an approach is strongly cosmology dependent is unclear.

Alternatively, it may be possible to adopt a consistent mass and radius definition but

simply lower the overdensity value (e.g., ∆ = 100) or adopt an alternative physical

mass/radius scale such as the ‘splashback’ radius (e.g., Diemer & Kravtsov 2015; Diemer

2020; O’Neil et al. 2021).

3.4.2 Matter power spectrum including baryon physics

In fig. 3.14 I present an analogous plot as in fig. 3.12, where the green diamonds represent

the power spectrum from the BAHAMAS AGN run and in the bottom panel the various

ratios are now with respect to the baryon version of the halo model. Note that the baryon

version of the halo model corresponds to either using tabulated profiles directly from the

AGN run or an Einasto fit to them, as well as using either the BAHAMAS AGN HMF

or a Tinker HMF with a baryon correction applied. For fig. 3.14 I use the tabulated

profiles and HMF from the BAHAMAS AGN run.

As in the case of the DM-Only version, our baryon halo model prescription recovers the

linear regime (k < 0.1hMpc−1) to better than percent level accuracy, by construction.

Consistent with the collisionless comparison, the agreement is worst at the 1-halo/2-halo
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Figure 3.15: Residuals plots between the baryonic matter power spectrum and the
halo model predictions at three different redshifts for the four different mass definition
following the same format as the DM-Only companion plot in fig. 3.13. I also show,
instead of the halofit prediction, the difference between the baryonic halo model
compared the BAHAMAS DM-Only P (k) (dashed curve). The overall trends and level
of agreement are very similar to those found for the DM-Only case, though there are

differences in detail (see text).

transition region, deviating from the simulation prediction by up to 20%. The agreement

improves again at smaller scales, though still deviates by ≈10%.

In fig. 3.15 I show the residuals plots in the same way I have presented for the DM-

Only case, with the stacked and fitted density profiles and two different forms for the

HMFs, at different redshifts (z = [0, 1, 2]), and for the four halo mass definitions. The

grey curves correspond to the cases using the baryon-corrected Tinker HMF and the red

curves correspond to the cases using the BAHAMAS AGN HMF. Overall, I find very

similar trends to those presented in fig. 3.13 for the DM-Only case. Specifically, the

mass definition that works best is again ∆ = 200m, which can recover the 1-halo/2-halo

transition region to 20% at z = 0 and ≈ 35% at z = 1. The 1-halo region (k > 2hMpc−1)

is generally recovered to 10% at z = 0 independent of the choice of halo mass definition,

HMF, and non-parametric vs. parametric profiles. At higher redshifts, the discrepancy
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with respect to the simulations increases for both the 1-halo/2-halo transition region

and in the deep non-linear (1-halo) region.

Upon closer inspection, it is apparent in some cases that there is a difference at very

small scales (high k values) between the accuracy of the halo model when using either the

parametric (Einasto) or tabulated mass density profiles. For example, at z = 0 in either

the ∆ = 200m or ∆ = 200c cases, the residuals increase towards smaller scales when

using the tabulated profiles, whereas for the parametric case they are approximately

independent of k scale. I attribute this difference in behaviour to the inability of the

Einasto form to fully capture the behaviour of the density profiles at small scales, due

to the increasing importance of the central galaxy (see fig. 3.4). Thus, in this case,

using the more accurate tabulated density profiles demonstrates that the halo model is

actually less accurate in reproducing the non-linear power spectrum on small scales.

Overall, therefore, the trends in the accuracy of the baryon version of the halo model are

very similar to those for the collisionless version, when the models are compared to the

hydrodynamical and collisionless BAHAMAS simulations respectively. In particular, I

find that the absolute accuracy is worse at the 1-halo/2-halo transition and typically

worsens at higher redshifts when the halo mass definition is defined with respect to the

mean background density. The choice of halo mass definition is also important. Given

that the trends are very similar between the baryon and collisionless cases, it raises

the interesting question of whether the halo model would actually be better suited at

predicting the ratio (or suppression) of the matter power spectrum due to baryons, as

opposed to predicting the absolute P (k). I explore this possibility below.

3.4.3 Matter power spectrum suppression

I now explore the halo model predictions for the matter power spectrum suppression,

sometimes also referred to as the ‘suppression factor’. There are many recent studies of

the suppression factor using cosmological hydrodynamical simulations in the literature

(e.g., van Daalen et al. 2011, 2020; Schneider & Teyssier 2015; Chisari et al. 2019;

Schneider et al. 2019; Debackere et al. 2020). Here I explore the accuracy with which the

halo model can recover the suppression of the matter power spectrum in the BAHAMAS

simulations.

In fig. 3.16 I show the suppression effect of the baryons with respect to the DM-Only sim-

ulations, where the suppression is defined simply as S(k) ≡ PAGN(k)/PDM(k). The

structure of the plots is similar to the previous ones that I have shown for the power

spectra comparison (figs. 3.13 and 3.15) but in this case I show the suppression power

spectra (top panels) and the ratio between the BAHAMAS results and the halo model
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Figure 3.16: Matter power spectrum suppression plots between the total matter
power spectrum and the DM-Only power spectra predictions using the halo model
results at three different redshifts for the four different mass definition following the
same structure as the DM-Only and AGN plots fig. 3.13 and fig. 3.15. In the bottom
panel I show the accuracy of our prediction with the ratio between the simulation
expected results and the halo model prediction highlighting the 2% difference using
dashed black curves. The BAHAMAS predictions are shown in solid black curve. I
show the prediction with BAHAMAS HMFs in solid orange curves while in grey I show
the Tinker prediction, in dashed curves I show the case using the fit density profiles while
in solid curves the stacked density profiles. The halo model reproduces the simulated
suppression factor to typically a few percent accuracy, independent of details such as

the halo mass definition.

results (bottom panels). I show in solid (dashed) curves the predictions using the tab-

ulated (fitted) density profiles. In orange I show the predictions using the BAHAMAS

HMFs and in grey using the Tinker HMFs (with the baryonic correction applied to the

AGN cases).

On a qualitative level, I can see that the ratio of the baryon to collisionless halo models

(top row of panels in each plot set) has a ‘spoon’-like form that closely mimics that found

by taking the ratio of power spectra from hydrodynamical and collisionless simulations.

Examining the ratio of power spectrum suppression of the simulations with respect to

that from the halo model (i.e., a ratio of ratios, in the bottom row of panels of each plot
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set in fig. 3.16), I can also see that there is no evidence of an issue of near the 1-halo/2-

halo transition region, nor of any particular systematic issues as a function of halo mass

definition or redshift. Slight differences exist depending on which set of density profiles

I use (tabulated vs. parametric), but it is nevertheless abundantly clear that the halo

model formalism is considerably more accurate in predicting the matter power spectrum

suppression factor, as opposed the absolute P (k). Typically, I find that the ratio of halo

models is accurate at the ≈2-3 percent level. The suppression comes principally from

the baryonic correction applied to the HMFs then, in a minor part, from the density

profiles.

3.4.4 Halo model comparison with other models

In Section 3.4, I have compared the calibrated halo model predictions against standard

linear theory and non-linear results such as camb and halofit in order to validate

our results. In this short Section, I present the comparison against other, up-to-date,

non-linear results such as CosmicEMU (Heitmann et al., 2016), HaloMOD (Murray

et al., 2020) and HMCode (Mead et al., 2015, 2021) in order to verify our results in the

light of the latest development on the topic. Please note that the first one presented,

CosmicEMU, is a matter power spectrum emulator while the other two are halo model

based software.

In fig. 3.17 I present in detail the comparison of our halo model prediction against other

non-linear code, similarly to what I have done previously in fig. 3.12 in Section 3.4. I

show the non-linear codes in dotted and dashed blue lines (see figure caption for further

details) and the simulation output in orange square dots in the top panel, while in the

bottom panel I show the ratio of the models over our prediction.

It is possible to see in the large scale limit (k < 0.2hMpc−1) all predictions agree better

than 5%, I can also see a feature in the HMCode in the region 0.07 < k [hMpc−1] < 0.2

where there is a different treatment of the baryonic acoustic peaks. In the transitional

region, 0.1 < k [hMpc−1] . 2, all model are in reasonable agreement, therefore our

prediction, that is not able to accurately reproduce this region, have an agreement

between 10 and 20%, that grows back to 5% in the 1-halo region (k & 2hMpc−1) as

was already shown in previous analysis.

In the small scale regime, I see a similar behaviour compared to the previous analysis.

Please note that the different non-linear models have different largest k values (e.g.,

CosmicEMU has a maximum k scale at ≈ 7hMpc−1).
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Figure 3.17: In the top panel I present the DM-Only BAHAMAS matter power
spectrum as orange squared symbols, in dotted blue line the CosmicEMU results, in
dashed blue the HMCode and in dot-dashed line the HaloMod results, finally with
a solid black line our prediction using the stacked density profiles of ∆ = 200m. In
the bottom panel I present the ratio of the previous results as presented in fig. 3.12.
We see a good agreement in the large scale limit (< 4%) with all the models, in the
1-2 halo transition region I see an agreement between 10− 15%. Finally in the 1-halo
region (k & 2hMpc−1) I see that our prediction has a better than 5% agreement with
all models which is the same result that I have found comparing against Halofit and

BAHAMAS power spectrum.

In fig. 3.18 I present a comparison between our AGN calibrated halo model against

BAHAMAS power spectrum and HMCode (v2016 and v2020) baryon matter power

spectrum. As before, our prediction are in good agreement with these updated codes.

On the large scale regime there is a concordance better than 5% and < 15% agreement

in the 1-2 halo transition region. It is interesting to see that the model denoted as

v2016 in the HMCode is in great agreement with the simulation output but the v2020

is a bit lower, under-predicting by more than 5% the simulation output being strongly

comparable to our halo model predictions with an agreement in the order of 3%. The

differences between the two version of the HMCode lie in the different baryon feedback

parameters used (BAR = 2.75 for the v2016 version) and the new calibrated one on

a AGN heating temperature of THeat = 108 K for v2020. Further and more detailed

discussion can be found in Mead et al. (2016, 2021).
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Figure 3.18: Same plot as fig. 3.17 but for the AGN case (companion plot with
fig. 3.14 in Section 3.4). In the top panel I present the DM-Only and AGN BAHAMAS
matter power spectrum as orange and green squared symbols, in dashed blue lines
the results from HMCode from two separate versions (v2016 with baryon feedback
parameters BAR = 2.75 darker line, and v2020 with calibrated THeat = 108K in
lighter blue), finally with a solid black line our prediction. In the bottom panel I
present the ratio of the previous results as presented in fig. 3.17. As was already visible
in the DM-Only case there is a good agreement in the large scale limit (< 4%) with
the HMcode and an agreement between 10 − 15% in the 1-2 halo transition region.
Finally in the 1-halo region (k & 2hMpc−1) it is possible to see that our prediction
has a better than 5% agreement with all models. A little surprising is the fact that the
newest calibrated baryon feedback from HMCode has a similar behaviour compared

to our halo model prescription compared to BAHAMAS results.

3.5 Discussion and Summary

In this Chapter, I have assessed the accuracy of the halo model to predict the non-linear

matter power spectrum, which is the basis of many large-scale structure cosmological

probes. The advantages of the halo model are its speed, flexibility, and its intuitive

physical nature. However, its accuracy in predicting the non-linear power spectrum

needs to be carefully assessed and here I have posed a simple question: how well does the

halo model predict the non-linear power spectrum, P (k), from a cosmological simulation

when the ingredients of the halo model (namely the halo mass function and mass density

profiles) are extracted from the same simulation? Although the question is simple, the

test is in fact a demanding one, since once the mass function and density profiles (and

cosmology) are specified, there are no free parameters in the standard halo model.

I briefly summarise the main results below:
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• I have computed the stacked (mean) total mass density profiles in bins of halo mass

and redshift for the BAHAMAS DM-Only and AGN simulations (see figs. 3.1 and

3.4, respectively) and provided Einasto profile fits to these profiles (see eqn. 2.7

and Table 3.1).

• Using the BAHAMAS simulations, I have derived a correction to the halo mass

function that encapsulates the presence and impact of baryons on haloes. This

correction works for every overdensity and up to z = 2 with an accuracy better

than 5% (see fig. 3.8 and eqn. 3.7).

• Using density profiles and halo mass functions extracted from the BAHAMAS

simulations, I have calculated the non-linear power spectrum, P (k), using the

standard halo model. Qualitatively speaking, the standard halo model reproduces

the power spectrum in both the collisionless and baryon cases (see fig. 3.12 and

fig. 3.14, respectively) I have considered, correctly capturing both the large-scale,

linear limit and the deep non-linear regime.

• In detail, I find that the halo model struggles to quantitatively reproduce the sim-

ulation power spectrum on intermediate scales (0.1 . k [hMpc−1] . 5) that mark

the transition from the so-called 2-halo term (the clustering of nearby, correlated

haloes) to the 1-halo term (the mass density distribution inside a single halo). For

example, at z = 0 and adopting a halo mass defined with respect to 200 times

the mean background density, the halo model predicts a P (k) that is systemati-

cally lower than predicted by the cosmological simulations by up to 15-20% (see

figs. 3.13 and 3.15). This result follows previous works (e.g. Massara et al. 2014;

Voivodic et al. 2020) but narrows down the source of uncertainties by using the

halo mass function and density profiles directly from the simulations.

• I have shown that the choice of halo mass definition (defined with respect to the

critical or mean background density and the choice of overdensity) has a significant

impact on the 1-halo/2-halo transition region offset. This effect is due to the

change in the radial extent of the haloes depending on the mass definition, with

larger radial extents (lower overdensities) generally resulting in an improved match

between the halo model and the simulations.

• The 1-halo dominated region is recovered to 5% at z = 0 and better than 10% for

all mass definitions, although the accuracy decreases at higher redshifts.

• While the standard (unmodified) halo model cannot predict the absolute power

spectrum to better than 15% accuracy on intermediate scales (at best), I have

shown that these systematic errors largely cancel when considering the ratio of

the baryon to collisionless cases. Typically, the halo model can reproduce the
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suppression seen in the simulations to a few percent accuracy, independent of the

details such as the halo mass definition (fig. 3.16).

One of the key findings of this study is that the accuracy of the halo model in reproducing

the simulations is strongly affected by the halo mass definition, through its impact on

the radial extent of haloes. In essence, adopting higher overdensities implies smaller

radial extents (for a given mass) which effectively confines the 1-halo contribution to

smaller scales, resulting in lower power at the 1-halo/2-halo transition region and poorer

agreement with the simulations. One possibility is to simply radially extend the profiles

associated with a given mass definition (Garćıa & Rozo, 2019; Garćıa et al., 2021).

Alternatively, one can retain the link between the halo mass and radius and simply adopt

a lower overdensity, or perhaps another physical scale (at typically low overdensities)

such as the splashback radius. In addition, Mead & Verde (2021) have shown that

accounting for non-linear bias in the 2-halo term also helps to mitigate the error in the

transition region. Note that the standard halo model assumes a linear bias which is

independent of scale, but in principle I expect the clustering to be scale-dependent on

quasi-linear scales (Smith et al., 2007; Baldauf et al., 2012).

The other major finding of this study is that the ratio of power spectra (baryon case to

collisionless case) can be much more robustly predicted with the standard halo model

than can the absolute power spectra. Interestingly, previous studies have similarly con-

cluded that the effects of including massive neutrinos or of altering the nature of dark

energy or gravity on the matter power spectrum are also most reliably captured with

the halo model in terms of ratios (e.g., Schmidt et al. 2010; Mead 2017; Cataneo et al.

2019, 2020; Bose et al. 2020, 2021). In these studies, the ratio is sometimes referred to

as the ‘response’ or the ‘reaction’ to a cosmological change. Our results regarding the

ratio of the baryon and collisionless halo models could therefore be termed as a ‘baryon

response’ or ‘baryon reaction’. One possibility, is to use the halo model to predict the

baryon response and combine this with other methods for computing the absolute power

spectrum in the collisionless limit.



Chapter 4

Halo model predictions for

large-scale structure observables

In this Chapter of the Thesis, I explore the applications of the halo model in reproducing

large scale structure auto- and cross-correlations used to constrain cosmological and

baryonic feedback parameters. I will focus on how inaccuracies in the modelling of

the non-linear power spectrum propagate through to predictions for these observables

and quantify the impact of baryon physics. Being able to distinguish and quantify the

baryonic effects on each separate observables could, in principle, improve the quality

of the predictions made by the halo model and avoid the introduction of biases in the

parameters inferred with this method.

4.1 Introduction

In the previous Chapter and Sections, I have presented several tests to validate the

internal accuracy of the halo model prediction for the non-linear matter power spectrum

by making use of the BAHAMAS simulations. The previous results showed that the

standard halo model approach reproduces the large and small scale limits fairly well but

struggles to accurately recover the 1-halo to 2-halo transition region better than 15%

accuracy at z=0.

In this Chapter, I explore the accuracy of the standard approach in reproducing LSS

observables. Those LSS probes (weak lensing and tSZ) are the perfect testing ground for

exploring the calibrated halo model results and investigating the separability between the

baryonic and accuracy effects. It is worth mentioning that not all observables considered

are impacted in the same way by the halo model overall accuracy, for instance, the tSZ

79
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is strongly influenced by the 1-halo term so the lack of accuracy in transition region

will not affect this observable. As I have presented earlier, the use of the ‘boost factor’

or baryonic suppression can remove some of the uncertainties present in the standard

halo model approach over a wide range of redshifts and k scales. Interestingly, I have

shown that the mass definitions have a significant impact on the accuracy of the matter

clustering with a relative discrepancy up to 50% at z=0. However, the dependence of

the accuracy of the halo model on the choice of halo mass definition in predicting P (k)

appears to be independent of whether the collisionless or hydrodynamical simulations

are used to constrain the halo model. I will explore the extent to which this issue is true

for other observables.

To validate and explore the LSS probes, I will use the fit to the density profiles of the

four mass definitions, using the Tinker HMF for both the DM-Only and AGN cases

and I will apply the same parameters presented in Mead et al. (2016) as explained in

the previous Chapter. The largest mass definition, ∆ =200 Mean, showed the highest

accuracy in reproducing the matter clustering and will be considered our ‘fiducial’ setup

below.

To make these tests with LSS probes, I have computed the matter power spectrum up

to z=3 (three hundred realisations between 0 ≤ z ≤ 3) in a mass range from 4× 1011 <

M [M� h
−1] < 5× 1015, using the Tinker HMF and linear bias, corrected when working

with the hydrodynamical case accordingly. The redshift range is enough for many of the

LSS probes presented, excluding CMB weak lensing which, as a general rule, requires

the knowledge of the matter distribution at least up to z ≈ 10 (Hill & Spergel, 2014)

due to the width of the associated lensing efficiency kernel. For the latter probe, I will

only focus on the baryonic suppression to compare against BAHAMAS simulations, as

presented in Chung et al. (2020).

In the following Sections, I will present the weak lensing source redshift distributions used

in the analysis, the tSZ data I am comparing against and how each probe is evaluated,

as well as presenting the baryonic effect on those probes.

4.2 LSS predictions

The basic theory of how these observables are computed and their cosmological parame-

ters dependency is presented thoroughly in Chapter 2 and for sake of brevity and clarity,

they will not be repeated here. In the next subsection I present the weak lensing data I

use to build these observables and compare against. I use separate data sets in order to
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maximise the number of tests of the halo model and match some of the results presented

in McCarthy et al. (2018).

4.2.1 Weak lensing data

To validate the halo model accuracy, I compare the predictions for angular power spec-

trum results for fixed source distributions using the BAHAMAS light-cones maps, as

presented in Section 2.4.1, and in real space correlations with data sets of some of the

latest weak lensing survey results. Throughout this Chapter, we present observational

results as obtained by the original authors and we refer to their papers accordingly.

CFHTLenS

The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS)1 is a weak lensing

survey that obtained deep multi-colour data on 154 square degrees in five different

photometric observational bands with an apparent magnitude limit of ≈ 25.5 in the

filter i
′

(Hildebrandt et al., 2012; Heymans et al., 2012, 2013; Benjamin et al., 2013)2.

The images were taken with the MegaPrime multi-chip instrument based on the Hawaii

islands (Erben et al., 2013).

RCSLenS

The Red Cluster Sequence 2 Survey (RCSLenS)3 is an application of the techniques de-

veloped for CFHTLenS to the ≈ 800 deg2 multi-band imaging data survey (Hildebrandt

et al., 2016). The observational bands are the griz bands over an area of 785 deg2 to

a depth of ≈ 24.4 magnitude in the r-band for a 7σ point source. This survey uses the

same instrument setup as CFHTLenS. This survey was designed to target an optically

selected sample of galaxy clusters over a wide range of redshift (Choi et al., 2016; van

Uitert et al., 2016).

This survey overlaps with Sloan Digital Sky Survey (SDSS) mostly in the northern sky

with ≈ 400 deg2 and with Baryon Oscillation Spectroscopic Survey (BOSS), a spec-

troscopic follow-up of SDSS-III (Eisenstein et al., 2011). RCSLenS overlaps SDSS by

roughly 184 deg2 thanks to the BOSS large sample of Luminous Red Galaxies (LRG),

≈ 50000.

Another overlap is with WiggleZ Dark Energy Survey (Drinkwater et al., 2010), a redshift

survey of emission line galaxies in the southern sky with a total of 80000 shared objects

1https://www.cfhtlens.org/.
2The five photometric observational bands used are u∗g

′
r
′
i
′
z
′

those correspond to 5 different pho-
tometric filters with effective wavelengths midpoint of 365, 464, 658, 806, 900 nm. The first is in the UV
band, g

′
r
′

are in the optical bands and i
′
z
′

are in the near-infrared wavelengths.
3https://www.rcslens.org/.

https://www.cfhtlens.org/
https://www.rcslens.org/
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Figure 4.1: In the left plot, I present the KiDS tomographic source redshift distri-
butions (Hildebrandt et al., 2017). I show in different colours the four tomographic
bins used to compute the tomographic weak lensing measurements. In the right
panel, instead, I present the continuum redshift source distributions for RCSLenS and
CFHTLenS from Hildebrandt et al. (2016) and Harnois-Déraps et al. (2015) using
eqns. (4.2)(4.1). I apply a cut at z = 2 due to the small number or sources above that

threshold, ns(χ|z) ≈ 0.

from 0 < z < 1 (unmasked 181 deg2). Finally, with the DEEP2 galaxy redshift survey

(Newman et al., 2013) with roughly 6000 sources in an area of 1 deg2.

KiDS

KiDS, the Kilo Degrees Survey4, is a four-band imaging survey made using the Omega-

CAM CCD mosaic camera mounted on the European southern observatory VLT Survey

Telescope (VLT) on the Chilean mountains5. Observations are carried out similarly to

the SDSS configurations with u, g, r, i bands with magnitudes at the optimal setup of

24.3, 25.1, 24.9, 23.8 (5σ in a 2 arcsec aperture). The observations targets are two strips

of ≈ 10 × 75 deg on the celestial equator and around the South Galactic Pole (respec-

tively called KiDS-N and KiDS-S, Hildebrandt et al. (2017)). The KiDS source redshift

distributions were acquired from the survey database cited above.

In fig. 4.1 I present the source redshift distribution for the KiDS tomographic cases

(left-hand side plot) and the continuum distributions (i.e., a single wide redshift bin)

of RCSLenS and CFHTLenS (right-hand side plot). Sources are plotted up to z = 2

because there are very few detected above that threshold. In fig. 4.2 I present the

lensing kernels of the source distributions presented in fig. 4.1. The values are presented

in normalised units by dividing with the maximum value of the distribution for the cases

of RCSLenS and CFHTLenS, while for KiDS, I have divided by the maximum of the

last tomographic bin (fourth bin). The equation used to compute the kernel is presented

4http://kids.strw.leidenuniv.nl/.
5https://www.eso.org/public/italy/teles-instr/paranal-observatory/vlt/.

http://kids.strw.leidenuniv.nl/
https://www.eso.org/public/italy/teles-instr/paranal-observatory/vlt/


Chapter 4 Halo model predictions for large-scale structure observables 83

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z

0.0

0.2

0.4

0.6

0.8

1.0

W
k(z

)[
ar

bi
tra

ry
un

its
]

RCSLenS
CFHTLenS
KiDS bin 1
KiDS bin 2
KiDS bin 3
KiDS bin 4

Figure 4.2: Weak lensing kernels for CFHTLenS, RCSLenS and KiDS source redshift
distributions. The values are normalised, for plotting purposes, to the maximum of the
Wk for the first two cases, while it is normalised to the maximum of the fourth bin for

KiDS case. The kernels are computed using eqn. 2.22.

in eqn. 2.22. It is possible to see that the long tail of sources, present in the first bin of

KiDS survey, creates a broader lensing kernel compared to the other cases.

The RCSLenS and CFHTLenS have source redshift distributions that can be approxi-

mated by the following functions:

NCFHTLenS(z) = N0 exp

(
−(z − z0)4

S2
0

)
+N1 exp

(
−(z − z1)4

S2
1

)
+

N2 exp

(
−(z − z2)4

S2
2

)
,

(4.1)

NRCSLenS(z) = zN
′
0 exp

(
−(z − z′0)2

C2
0

)
+ zN

′
1 exp

(
−(z − z′1)2

C2
1

)
+

zN
′
2 exp

(
−(z − z′2)2

C2
2

)
.

(4.2)

In Table 4.1 I present the free parameters used in eqn. 4.1 for the CFHTLenS results

(Kilbinger et al., 2013; Van Waerbeke et al., 2013; Harnois-Déraps et al., 2015) and

eqn. 4.2 for the RCSLenS ones (Hildebrandt et al., 2016).
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Table 4.1: CFHTLenS and RCSLenS free parameters of the analytical functions
shown in eqns. (4.1)(4.2) from Van Waerbeke et al. (2013); Harnois-Déraps et al. (2015)
and Kilbinger et al. (2013) for CFHTLenS and Hildebrandt et al. (2016) and Hojjati

et al. (2017) for RCSLenS.

CFHTLenS (Harnois-Déraps et al., 2015)

N0 z0 s0 N1 z1 s1 N2 z2 s2

0.5482 0.699 0.074 0.596 0.815 0.216 0.207 1.133 0.308

RCSLenS (Hildebrandt et al., 2016)

N
′
0 z

′
0 C0 N

′
1 z

′
1 C1 N

′
2 z

′
2 C2

3.126 0.419 0.979 1.678 0.404 0.25 0.40 0.813 0.121

The knowledge of the distribution of the sources enters in the calculations of the weak

lensing kernels, using eqn. 2.22, that is needed to compute the convergence power spec-

trum as shown in eqn. 2.21.

4.2.2 tSZ pressure profiles

To compute the thermal Sunyaev-Zel’Dovich power spectrum we need a way to charac-

terise the energy distributed inside the haloes. To do so, following the general description

of this observable provided in Chapter 1 of this Thesis, I compute the electron pressure

density inside haloes.

I recall the description of the electron pressure density in terms of the gas density, ρ,

and depending on the mean molecular weight per free electron, µe, and the proton mass,

mp, in eqn. 4.3 :

Pe = kBT
ρ

µemp
. (4.3)

Following the methodology applied to the mass density profiles, I build a catalogue

of stacked pressure profiles spanning a wide range of masses and redshifts. Since the

tSZ is mostly influenced by the group-cluster regime, I cut the haloes catalogue below

1012 M� h
−1. In analogy to what was done with the density profiles, I compute energy

weighted radial bins. The energy weighted radial bins, rSZ
w , are built as follows:

rSZ
w =

∑
i kBTimiri∑
i kBTimi

; (4.4)

where kB is the Boltzmann’s constant, mi and Ti are the mass and temperature of each

particle inside the radial shells considered. In the analysis, I have excluded particles

from dense, low temperature, clouds (T < 105.2K and/or ne > 0.1) and belonging to

sub-haloes (in contrast to what is done with the mass density profiles). In this analysis,

I ignore small relativistic corrections (e.g. Lee et al. (2020)).
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In contrast to previous works, which used a gNFW profile to model the pressure profiles

(Nagai et al., 2007; Arnaud et al., 2010; Battaglia et al., 2012b), I have fitted those

profiles with a generalised Einasto profile, which has fewer free parameters.
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Table 4.2: Best-fitting Einasto parameter values (see eqns. 2.7 and 3.4) describing the electron pressure profiles of the BAHAMAS for four halo
mass definitions.

Mref [M� h
−1] F0 fm fz A0 am az α0 αm αz

∆ = 200m 7× 1013 24.445 0.812 0.13 5.82 0.13 −0.066 0.77 −0.097 −0.235
∆ = 200c 7× 1013 10.743 0.781 0.521 4.494 0.14 0.10 0.75 −0.10 −0.095
∆ = 500m 7× 1013 16.379 0.708 0.0315 4.904 0.135 −0.10 0.68 −0.062 −0.30
∆ = 500c 7× 1013 7.543 0.718 0.30 3.82 0.151 0.03 0.70 −0.091 −0.109



Chapter 4 Halo model predictions for large-scale structure observables 87

10 3

10 2

10 1

P/
P

(r/
r

)2

z=0

13.8 M h 1

14.0 M h 1

15.0 M h 1

Data
Fit
Data
Fit

z=1

13.5 M h 1

13.8 M h 1

14.0 M h 1

z=2

13.4 M h 1

13.5 M h 1

13.8 M h 1

10 2 10 1 100

0.2

0.0

0.2

(P
Fi

t
P)

/P

±0.1

10 1 100

r/R
10 1 100

Figure 4.3: Same as fig. 3.1 but in the case of electron pressure profiles. The format
of the plot is similar to the previous ones used to show the agreement between the fit
and the stacked pressure profiles. In the top panels I show the comparison at three
redshift bins for three separate mass bins. In the bottom, instead, I show the residual

between the two models.

In Table 4.2 I present the best-fitting parameters for the Einasto fit of the pressure

profile used in fig. 4.3 and fig. 4.4.

In fig. 4.3 I show the agreement between the stacked pressure profiles and the Einasto

fitting functions using ∆ = 200m mass definition. In the top panel I compare three dif-

ferent, well populated, mass bins for each redshift: log10(M) = [13.8, 14, 15] M� h
−1 for

z=0, log10(M) = [13.5, 13.8, 14] M� h
−1 for z=0 and log10(M) = [13.4, 13.5, 13.8] M� h

−1

for z=2. The profiles are normalised by P∆ and by (r/R∆) squared to reduce the dy-

namic range. P∆, also called ‘virial pressure’, is the self-similar pressure amplitude at

R∆ with ∆ that identifies the mass definition, defined as:

P∆ = ne,∆kBT∆ ,

kBT∆ = µmp
GM∆

2R∆
,

ne,∆ = ∆
ρ(z)fb
µemH

;

(4.5)

with fb baryon fraction (fb = 0.165) and ne,∆ is the mean electron density inside R∆

knowing the baryon fraction (Voit, 2005; Battaglia et al., 2012b; Le Brun et al., 2014;

McCarthy et al., 2014). In the bottom panels I present the residuals as done in the

companion plots (see figs. (3.1)(3.4)).
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Figure 4.4: Residuals plot of the comparison between the stacked profiles and the
fitting functions for the four mass definitions at z=0 in three mass bins (shown in

different scales of green).

We see that the accuracy of the fit depends on the mass bins involved. In fact, larger

haloes show less disturbance and a better fit compared to smaller ones (e.g. see the haloes

of 7× 1013 M� h
−1 at z=0). Smaller mass ranges might be influenced by ongoing AGN

feedback and recent dynamical interactions. Those phenomena could have perturbed

significantly the internal energy distribution. Overall, the Einasto function fits the

simulated pressure profiles to typically 10-15% accuracy.

In fig. 4.4 I present, as done for the DM-Only and AGN profiles, a general comparison

at z=0 for the four mass definitions of three mass bins. In this case I present the mass

bins log10(M) = [13.6, 14.0, 15.0] M� h
−1 that are well reproduced in the simulation. In

fact, the accuracy of the fitting is well below 10% for the largest mass bins while it is

possible to see some variations (around 25%) for the lowest mass samples. Please note

that for the ∆ = 200m I have used a different, lower, mass bins compared to fig. 4.3.

In fig. 4.5 I present a test using the stacked electron profiles and the Einasto fit of

the pressure for the four mass definitions at three redshifts bins. While discussing the

density profiles, I checked that the density profile integrals were able to recover the total

masses of the haloes (M(< R∆)). It is possible to do a similar test using the electron

pressure profiles by comparing them with the total energy inside haloes.

However, the total energy budget in haloes is not fully modelled by uniquely the electron

pressure. In fact, using M∆ and the virial theorem, we would have a higher value for

the total energy inside the haloes. So, to avoid these differences I use the integral of
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Figure 4.5: Integral comparison of the total energy, obtained by the electron pressure,
between the stacked profiles and the Einasto fit for the four mass definitions and three
different redshifts (z = [0, 1, 2]). In different scales of greens I present the four mass

definitions.

the stacked electron pressure profiles, noted as ETot,Stack and I compare against the ones

obtained using the fit profiles. I use different version of eqn. 3.5 to compute the value

of ETot in this test:

ETot =

∫ R∆

0
4πr2P (r,M, z)P∆dr . (4.6)

I remind the reader that I have a reduced integration limit of 1012 < M [ M� h
−1] <

3× 1015 as discussed while presenting the tSZ power spectrum. It is possible to see that

all models can reproduce well (< 5%) at all redshifts in the mass range & 3×1013 M� h
−1

where the AGN influence is less strong to perturb the energy distribution inside haloes.

Since the fit was done on stacked profiles, the injection of energy coming from dynamical

effects such as accretion or minor mergers are most likely undetectable owing to the large

number of particles present in each spherical shell. These effects can be seen also in

fig. 4.4 with the larger discrepancy, in all mass definitions, at masses below 1014 M� h
−1

(see also the fig. 4.3 for the case ∆ = 200m).



Chapter 4 Halo model predictions for large-scale structure observables 90

10 5

10 4

(
+

1)
C

k /2

zs=0.5 zs=0.75

BAHAMAS Lightcone

zs=1.0

=200m
=500m
=200c
=500c

102 103 104

0.2

0.0

0.2

0.4

[C
B

C
H

M
]/C

B

±10%

103 104 103 104

10 5

10 4

(
+

1)
C

k /2

zs=0.5 zs=0.75

BAHAMAS Lightcone

zs=1.0

=200m
=500m
=200c
=500c

102 103 104

0.0

0.2

0.4

0.6

[C
B

C
H

M
]/C

B ±10%

103 104 103 104

Figure 4.6: Single source plane distribution comparison between the DM-Only halo
model predictions (left plot) and AGN (right plot) and the BAHAMAS maps for three
different source plane locations (zs = [0.5, 0.75, 1.0]). In different colours (blue for
DM-Only case and orange for the AGN ) are present the four different mass definitions
used and in grey lines are shown the BAHAMAS maps prediction with the error bars
associated with the scatter obtained from the 25 maps available. In the bottom panels
I present the residual plot between the mean of the BAHAMAS maps and the halo

model prediction using the same colours as before.

4.3 Weak lensing single source distribution test

In order to verify the halo model predictions presented above, I present some weak

lensing tests carried out by making comparisons with the weak lensing maps built from

BAHAMAS light-cones using the AGN TUNED WMAP9 runs.

The weak lensing light-cones, built using BAHAMAS simulations boxes, are presented

in further detail in Section 2.4.1. Here, I present the convergence weak lensing maps

made by a ‘single source distribution’. I test the accuracy of the angular power spectrum

built using both the DM-Only and AGN cases for three source planes zs = [0.5, 0.75, 1.0]

using the four different mass definitions (200m, 500m, 200c, 500c). The details of how

to compute this observable are presented in Section 2.21.

The way I have built the matter-matter power spectrum for each of the four mass

definitions is presented in Section 4.1.

In fig. 4.6 I present the comparison between three weak lensing maps computed for three

separate single plane source distributions built using the BAHAMAS AGN simulations.

The BAHAMAS (grey lines) results are presented with error-bars built with the scatter

from the twenty-five light-cones available. The maps are built using the AGN BA-

HAMAS simulations. In the four different dashed lines in scales of blue and orange

(DM-Only and AGN cases respectively) I compare the halo model predictions for the



Chapter 4 Halo model predictions for large-scale structure observables 91

four mass definitions to see how much the accuracy on the power spectrum reflects on

the weak lensing predictions.

In the bottom panels, I present the residuals between the mean values of the BAHAMAS

simulations against our predictions using the same colours scheme presented earlier. The

10% differences are highlighted using dotted black lines, while the intrinsic scatter from

the twenty-five light-cones is shown with the grey area. Please note that residuals,

presented as (C(`)B − C(`)HM )/C(`)B, are on different scales from the AGN to the

DM-Only versions to allow a better visualisation.

To compute the weak lensing power spectrum I put a hard cut at k > 10hMpc−1,

which is the limit imposed to our halo model predictions (as discussed in the previous

Chapter). This choice might be one of the reasons why there is a greater difference in

` & 8000, other explanation might be the accuracy in the prediction on the halo model

itself, that at k > 8hMpc−1 differs more than 10% from the simulation results.

As expected, the accuracy in reproducing the matter distribution has a strong influence

on the overall accuracy in reproducing the weak lensing signal, especially in the range

200 < ` < 3000 corresponding to the 1-2 halo transition region. We see that, as the

sources move to higher redshift, there is a more general agreement (≈ 10%) on all scales

while at lower redshift there is a significant difference at low multipoles and in the

small-scale regime.

The different mass definitions have a similar and coherent behaviour: all models agree

on the largest scales due to our efforts in matching the linear theory on the largest k-

modes, and show a 15% agreement on the scales 2000 < ` < 6000, area dominated by

the 1-halo signal. The sharp drop at smaller scales is mainly due to two factors: the halo

model accuracy and the integration cut imposed. The differences in the DM-Only and

AGN cases are more evident in the small scale regime, where the DM-Only have up to

15% more power compared to the simulation maps.

I have checked whether the number of matter power spectrum redshift realisations (three

hundred, as stated earlier) used have an impact on the accuracy of the prediction but

this seems not to be the case, achieving comparable results within a 2% difference on all

scales.

The differences are still inside the scatter presented by the other maps, excluding only

the small scale regime in the case of z = 0.5 which is not recovered well enough. I

speculate that this is strongly affected by the k-cut applied at the halo model matter

power spectrum and, partially, by the general poorer agreement between the halo model

predictions and BAHAMAS results (as could be seen in Section 3.4).



Chapter 4 Halo model predictions for large-scale structure observables 92

4.4 tSZ effect

In this section, I present the tSZ halo model predictions using the fit of the electron

pressure profiles described in Section 4.2.2 comparing against BAHAMAS tSZ maps,

presented in Section 2.4.1 and observational results.

To compute the angular tSZ power spectrum, I integrate haloes from 0 < z < 3 and

in a mass range 1012 < M [M� h
−1] < 3 × 1015, which is a smaller range compared

to the matter-matter power spectrum presented earlier in Section 4.1. Massive (≈ 3 ×
1015 M� h

−1) clusters at low redshift have a strong influence on the characterisation of

the largest modes of this observable, providing a non-negligible amount of power, indeed

those are often excluded from tSZ power spectrum analysis. To avoid this issue, I have

cut out integration up to haloes masses of that mass values6.

In this analysis, I present two different approaches: one when keeping the halo mass

fixed and a second where I integrate the halo mass using the density profiles computed

in this work, for the four different mass definitions and for the DM-Only and AGN cases

accordingly. These approaches differ due to the different link between the halo masses

and the pressure profiles associated: in the second instance we use a fixed index (the

halo mass) to identify both the density and pressure profiles, the density profiles then

provide a more realistic halo masses that better fit the pressure profiles identified. With

this approach, I can enhance further the baryonic effects.

In fig. 4.7 I present the halo model results in comparison with BAHAMAS light-cone

maps (McCarthy et al., 2018), Planck13 results (grey diamonds, Planck Collaboration

(2014)), Planck15 (black squares, Planck Collaboration et al. (2016)) and the more

recent South Pole Telescope (SPT) measurements (George et al., 2015) and Atacama

Cosmology Telescope (ACT, Sievers et al. (2013), upward arrow and downward arrow).

The observational data from Planck survey, ACT and SPT are elaborated by the original

authors. The latter measurements presented are an independent constrain at ` ≈ 3000

and are consistent one with the other. Instead, the two Planck power spectra show

clearer differences at multipoles below ≈ 1000. The error bars presented are dominated

by the systematic foreground subtraction uncertainty (due to the presence of infrared

contamination such intergalactic dust, point sources and cosmic infrared background -

CIB, see the relevant discussion in the papers cited above).

In the bottom panel, I present the residuals between the mean values obtained from

BAHAMAS maps and the halo model predictions. I show in the grey shaded area the

6e.g., Virgo and Coma clusters are masked in the Planck analysis when computing the tSZ power
spectrum.
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Figure 4.7: In the left plot, I have computed the tSZ using the fix halo mass, as
discussed in the text, and in the right plot, I have used the masses integrated using the

matter density profiles. The structure of each plot is the same and follows:
Top: tSZ auto-power spectrum comparison between the calibrated halo model predic-
tions for the four mass definitions (blue for the DM-Only predictions and orange for
the AGN, and four different line styles for each overdensities), the BAHAMAS light-
cone results (grey lines, the line is the mean value of the twenty-five realisations and
the shaded area is the error bars associated), Planck13 (grey diamonds) and Planck15
(black squares) observational results and ACT and SPT measurements (black arrows).
The vertical dashed line highlights the scales of ` = 300, below which the simulation

finite box size influences the results.
Bottom: residuals, computed as (CHM` −CSims

` )/CSims
` , between the BAHAMAS mean

values and the halo model predictions (with the same colours and line styles as before)
with shaded region computed using the scatter from the light-cones. In dotted black

lines I show the 10% (±0.1) agreement.

scatter obtained using the error bars measured on the twenty-five maps available. The

dotted lines highlight the 10% differences.

I find that, as shown previously by other works (Horowitz & Seljak, 2017; Bolliet et al.,

2018), the 2-halo term is sub-dominant in this observable, accounting for at most 10%

of the total spectrum in the large scale limit (` < 400, here for clarity I have plotted

only the total power spectrum without highlighting the two separate components). This

large scale limit is a difficult region to quantify properly because it is both at the limit

of light-cones size and it is strongly influenced by cosmic variance, which can contribute

up ≈ 20%. Additionally, in observations, these scales are hugely influenced by massive

low-redshift clusters (Planck Collaboration et al., 2016).

The halo model predictions for the four mass definitions are interesting. All predictions

are in line with the expected results constraining the peak of the distribution better

than 10% when using the fixed halo masses, for both the AGN and DM-Only cases,

while in the integrated case (right plot) there is a slightly larger scatter. The increased

difference in the small-scale regime we see using ∆ = 500c mass definition, can be
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explained, partially, by the fact that the density profiles overpredict (see fig. 3.3) the

halo masses at high-redshift. The larger mass definitions (e.g. 200m) provide a better

representation of the power spectrum leading to a maximum 10% difference in the scales

700 < ` < 2000. These differences, which are present in both fix and integrated mass

approaches and for each mass definition, can be associated with the lack of inclusion of

outer boundaries of haloes which are a source of some clustering signal.

The peak at ` ≈ 3000 is influenced both by the choice of the cosmological parameters

(Bolliet et al., 2018) as well as modelling of astrophysical processes (e.g., stellar and

AGN feedback) and the minimum mass integration limits. The choice of integrating

from 1012 M� h
−1 is a conservative choice because smaller haloes do not contribute

significantly to the tSZ power spectrum (see for reference Battaglia et al. (2012b), where

the influence of different mass bins is clearly highlighted in the shaping of the power

spectrum, as well in McCarthy et al. (2014) in a simulation context). Also the ability

to fully reconstruct the AGN feedback is a key factor in this spectrum region (Battaglia

et al., 2012a; McCarthy et al., 2014, 2017, 2018).

The two approaches on the use of fixed or integrated halo masses lead to comparable

results, but with some relevant differences. As explained above, the different use of the

halo mass to identify the profiles causes not only a shift in the prediction but also larger

differences between the AGN and DM-Only cases. Indeed, the different mass values

do reflect also on the HMFs leading to an increased difference between the two sets of

predictions.

Using a DM-Only or a baryonically corrected HMF reduces the power spectrum values

in a nearly scale-independent way. Therefore, the combined use of an accurate halo mass

and the correction on the HMFs has an effect that is not a mere shift of the prediction

but results in an enhancement of the baryonic feedback on this observable. A more

detailed discussion about the feedback will be done in the next Sections.

The agreement with observations is more complex. The largest mass definitions predic-

tions are within the uncertainties of the Planck measurements in the range 400 < ` <

1200, while smaller halo definitions seem to be in more agreement with Planck13 and/or

Planck15 results. The differences between the two Planck data releases are tightly bound

to the different treatment of cosmic dust and infrared background contamination. In-

deed, Bolliet et al. (2018) examined the noise subtraction closely in the latest Planck

result and found that it was closer to the previous (2013 data release) power spectrum

result. Regarding the ACT and SPT measurements, these are not recovered at all,

coherently with other BAHAMAS results.
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One cannot choose the overdensity to match the data. What we should be doing, instead,

is using all gas that contributes to the total power spectrum, independently from the

mass definition. Matching, in this way, what is observed. Using larger mass definitions,

e.g. the ∆ = 200m, could be the starting point for adding up even larger scales to obtain

a fully convergent result. As said, the tSZ signal is not only coming from the central

parts of the haloes but also from the outskirts, that in the light-cones measurements are

considered and it results in an enhancing of the signal measured. It is, also, known that

the calibration of halo masses is quite complex and the introduction of mass biases are

quite common while trying to match the Planck modelling of the measurements (see the

discussion reported while presenting the tSZ power spectrum in Section 1.33).

With all this information aligned, it is difficult to draw a conclusive solution: the halo

model predictions can help understand the influence of the right baryon modelling and

explore how different feedback approach can influence the ability to fit the data, but

there is the need for novel and high-quality data from observations.

4.5 Weak lensing results

After having presented the weak lensing tests using single source redshift distribution

in Section 4.3, those were done to investigate the influence of the overall accuracy of

the halo model matter distribution in weak lensing analysis. Below I explore the weak

lensing measurements in auto and cross-correlations comparing against real observations

as well as BAHAMAS results.

In this Section, I present weak lensing predictions for different observational surveys

(namely CFHTLenS and tomographic analysis using KiDS-450). The interest in these

analyses is two-fold: on one side I am interested in seeing how much the internal matter

power spectrum accuracy impacts the overall accuracy in weak lensing analysis and on

the other side, making use of different tomographic redshift bins, I can highlight how

the accuracy varies as a function of redshift. Furthermore, using the DM-Only and

AGN versions of the halo model, I can constrain the baryonic effects and understand at

what scales those take place and influence the predictions.

In fig. 4.8 I present the angular weak lensing predictions using the CFHTLenS redshift

source distribution. I compare against BAHAMAS results presented in McCarthy et al.

(2018) paper (solid grey line) and CFHTLenS observational data (black points) from

Kilbinger et al. (2013). In blue and orange lines I present the halo model predictions us-

ing the DM-Only and AGN matter distributions presented in this work. The C(`), weak

lensing convergence power spectrum, is computed using eqn. 2.21 and the source redshift
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Figure 4.8: Weak lensing ξ+ (left) and ξ− (right plot) predictions using the
CFHTLenS redshift source distribution, comparing against observational data (black
dots, Kilbinger et al. (2013)) and BAHAMAS predictions (solid grey lines). In different
colours (blue and orange) I present the halo model predictions for the DM-Only and
AGN cases, and in different line styles the four mass definitions. In the bottom panels
I show the residuals between the BAHAMAS predictions and the halo model, colour
coded and with the same line style as the panel above. The shaded grey area is the

scatter associated with the BAHAMAS maps used.

distribution is obtained using eqn. 4.1. The CFHTLenS source redshift distribution is

shown in fig. 4.1 (and the relative lensing kernel in fig. 4.2). In order to convert from

convergence power spectrum to angular correlation (ξ±) I have used eqn. 2.23. Mul-

tiplying ξ± by the angular distance, θ, I reduce the dynamic range allowing an easier

model-to-data comparison.

The agreement between the data and the models is good for both statistics, but there

are some interesting differences. Those arise from the separate effects obtained from the

tangential or cross values of the weak lensing effect. The ξ+ case shows a good agreement

(15%) in the range 1 < θ [arcmins] < 100 with both the data and the simulations, please

note that both the BAHAMAS and the halo model overpredict the observational values

in the scales 8 < θ [arcmins] < 40. At larger angular distances, we see a sharp drop in

both simulations and halo model predictions and an increase of uncertainty, highlighted

by the shaded grey area. The largest scales are more difficult to model due to the finite

size of the light-cones and the cut at large scale of k ≈ 0.01hMpc−1 of the halo model.

Differently, we do not see any of this larger discrepancy on the large scale in the ξ−

case. However, we see a wider spread in the range of 1 < θ [arcmins] < 25 between the

different mass definitions. This observables is more influenced by small scale effects as

can be visible in the scale of the baryonic suppression. In the large scale regime, instead,

all predictions from the different mass definitions collapse to a similar result. The sharp

drop at θ < 1 arcmin in the residuals is mainly due to the few points sampled in the
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Figure 4.9: KiDS-450 tomographic weak lensing ξ+ measurements (Köhlinger et al.,
2017) with DM-Only halo model predictions with the four mass definitions. The dif-
ferent tomographic bins are highlighted in top right of each panel. I do not show the

AGN version of the predictions for plotting clarity.

halo model and simulations, in fact, in the main panel it is possible to see that they

share a similar trend.

On the large scales, we see that the mass definitions behave similarly in both cases: the

fiducial setup is in accord with the predictions of the simulations only for a small portion

of the spectrum surveyed, with the DM-Only case which overpredicts the largest modes

(as expected). The ∆ = 200c and ∆ = 500m share a similar trend with differences of

20% in these scales. We note, as well, that in both statistics the behaviour is coherent

with the expectations.

4.5.1 Tomographic weak lensing with KiDS-450 data

To explore the growth of structure and understand how the Universe evolves weak lens-

ing tomography techniques provide a uniquely powerful tool. This method is based on

the calculation of the convergence power spectrum using different source redshift distri-

butions for each ij bin determining the lensing kernels gij . To explore this possibility

I have used the four tomographic bins from the KiDS-450 survey shown in fig. 4.1 (as

well as the lensing kernels in fig. 4.2) in Section 4.2.1.
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Figure 4.10: Same as fig. 4.9 but for ξ− cases.

In figs. (4.9)(4.10) I present the tomographic weak lensing analysis using the four source

redshift bins of KiDS-450 survey (Köhlinger et al., 2017) data and I compare the halo

model predictions using the DM-Only case with the four mass definitions. I do not show

the AGN predictions only for plotting clarity, as can be seen in the previous weak lensing

analyses, they show very little differences compared to the DM-Only counterparts. The

KiDS-450 data are shown in black dots with error bars (Hildebrandt et al., 2017). The

triangular plot shows the cross-correlations between the four different redshift bins iden-

tified from 1 to 4. In the case where i = j (e.g. 1-1 or 2-2) those are auto-correlations

of each redshift bin.

We see that the auto-correlations at high redshift (4-4, with distribution peaked at

z ≈ 0.9) shows larger differences between the four overdensity definitions analysed. One

explanation can be traced to the peak at high redshift of the distribution, where the

different levels of accuracy in reproducing the matter clustering in the models influence

these results. In general terms, it is possible to see that at all bins the different mass

definitions trace quite well the data with major differences only at scales θ < 3 arcmins,

where the models differentiate the most.

In the other bins, both in auto and cross-correlation cases there is good agreement on all

scales, with some larger mass definitions that are significantly higher compared to the

actual data. This result is in agreement with what was found in McCarthy et al. (2018).
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I find that the large scale limit (θ > 100 arcmins) is slightly higher compared to trend

of the data for the ξ+ case, similar to what was evident in the CFHTLenS analysis7.

Taking into consideration the last two analyses using weak lensing statistics, it is possible

to explore further the impact of the mass definitions, meaning the influence of the halo

model accuracy in the matter clustering and its effect on observational comparisons. In

general terms, the ability of the halo model to reproduce to a competitive accuracy the

matter distribution is visible and verifiable only in the ξ− cases, which appears to be

less sensitive to the broader inaccuracies and redshift dependencies. ξ+ cases, on the

other hand, highlight clearly how the discrepancies in the matter clustering are forecast

in this observable. The weak lensing data used in this Thesis have themselves broad

uncertainties that do not allow to draw clear conclusions on the ability to distinguish

between accuracy or baryonic effects from the halo model. More recent data (e.g., DES

or KiDS-1000) and upcoming results will help ease this task.

4.6 Weak lensing cross-correlations

With tomographic weak lensing analysis, I have introduced the role of cross-correlating

different source distributions or different observables. The power of using this method is

in the possibility of exploring further the composition of the Universe and seeing more in

detail how much different probes explore the matter clustering in the Universe. In this

Section I will explore the main weak lensing cross-correlations presented in theoretical

details in Section 2.3.3 and then move on to the case of tSZ-weak lensing.

Weak lensing cross-correlations between CMB source and photons coming from galaxies

at different redshifts is one of the main tools that can probe different epochs of the

Universe, highlighting the growth of structure and constraining the geometry of the

Universe. Thanks to the number of weak lensing surveys available and the detailed

Planck results, this procedure has been applied multiple times, and it is expected to be

a significant tracer with next-generation observations.

In fig. 4.11 I present the halo model predictions for the CMB - galaxy weak lensing cross-

correlations (called also kφ×k) using a wide unique bin made from the four tomographic

bins of KiDS-450, in orange lines, I present the halo model AGN predictions while

DM-Only predictions are depicted using blue lines. The observational data points are

computed using KiDS-2D (from KiDS-450 data release, Harnois-Déraps et al. (2017))

and Planck15 data. The grey line represents the mean of the maps built from the

BAHAMAS light-cones and in grey shaded area the scatter associated with those maps.

7Please note that the halo model predictions in the large-scale limit are also slightly higher compared
to the BAHAMAS results, see McCarthy et al. (2018)
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Figure 4.11: CMB-KiDS weak lensing cross-correlations (kφ×k) comparison between
the observations (black dots, Harnois-Déraps et al. (2017)), the BAHAMAS light-cone
predictions (grey lines) and halo model DM-Only (blue) and AGN (orange lines) for
the four different mass definitions (as presented earlier). In the bottom panel I present
the residual between the halo model prediction and the BAHAMAS light-cones, with

the grey shaded area highlighting the scatter of the maps used.

With the halo model cut imposed (` < 100), it is not possible to see the peak of the

distribution that is around ` ≈ 70, where the Limber approximation is not solid enough

(see in Chapter 2 the discussion about the limits of the Limber approximation, predom-

inantly in CMB analysis). All mass definitions trace well the data point distribution, so

it is quite complicated to distinguish between the different baryonic effects or levels of

accuracy due to the separate mass definitions. In the residual plot with the calibrated

BAHAMAS maps, it is possible to see that the fiducial model ∆ = 200m seems to

predict well on all scales, by ≈ 10%, the simulation results. The collisionless case is

in slightly better agreement with the data and BAHAMAS maps. The 200c and 500m

cases present a lower level of agreement (25%) and share similar trend, even lower, is

the 500c case, which has shown a poorer ability in reproducing the matter clustering

effectively.

All halo models predictions (and simulations as well) are below the data point at ` ≈ 1400

which is slightly (1.5σ) over the other data points.
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4.6.1 tSZ cross-correlations

After having presented the weak lensing cross-correlations, I analyse here the cross-

correlations with the tSZ power spectrum (y × kφ), which had shown, already, some

interesting features. As previously done for the tSZ power spectrum, I analyse two

separate cases: one with the fixed halo mass and the other with the halo masses obtained

by integrating the density profiles. In principle, the latter approach should be a fairer

comparison with weak lensing measurements, since the masses are obtained using the,

aforementioned, density profiles.

To continue making the comparison with McCarthy et al. (2018) paper, I should take

into consideration cross-correlations between the tSZ and both CMB and galaxy lensing

(in this case, we use RCSLenS because this survey has more overlap with the Planck

maps and targets more clusters of galaxies, compared to KiDS or CFHTLenS surveys).

However, I will focus only on the first presented since it has less mask-modelling required

to match the results from observations. Galaxy lensing - tSZ cross-correlations, instead,

are required to undergo several matching and masking iterations due to Planck beam

size effect, that alters the signal above ` ≈ 1000, see, for instance, the discussion about

this observable in Harnois-Déraps et al. 2015; Hojjati et al. 2017 and more recently with

the first of the papers on the results using DES year 38 and Planck tSZ measurements

(Gatti et al., 2021). The CMB weak lensing- tSZ cross-correlation, instead, does not

require much modelling since the data comes from the ‘same’ instrument allowing to

ignore these mask-modelling related issues.

In any case, I will present the baryonic suppression as well for the galaxy lensing -

tSZ case (y × k) since, mask modelling aside, the signal from the baryons should be

distinguishable and measurable and, as we will see, different from the comparison with

the CMB weak lensing and tSZ.

In fig. 4.12 I present the cross-correlation predictions using the halo model by comparing

with the BAHAMAS simulations (grey lines) and observational results from Planck

observations (Hill & Spergel, 2014). In the left plot, I present the result using a fixed

halo mass when computing the tSZ power spectrum and, on the right-hand side, the

ones obtained by computing the total halo mass by integrating the density profiles.

It is possible to see that the BAHAMAS results are a narrow band that is well reproduced

by the largest halo mass definitions. In particular, there is a good agreement (< 10%)

when AGN HMF is adopted (please remember that the light-cones were built on the

calibrated AGN BAHAMAS runs). It is interesting to see that using different mass

definitions the power spectrum is shifted to lower values, which is something similar

8Dark Energy Survey, https://www.darkenergysurvey.org/.

https://www.darkenergysurvey.org/
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Figure 4.12: Cross correlation between the thermal Sunyaev-Zel’dovich and CMB
weak lensing. As done previously in fig. 4.7 I explore on the left plot the predictions
using the tSZ with fixed mass and on the right the one using the halo masses inferred
from the integral of the density profiles for both the DM-Only and AGN cases. The
grey lines (and shaded area) represents the BAHAMAS light-cone results (with scatter),
the black dots the data from Hill & Spergel (2014) and the halo model predictions are
shown in blue for the DM-Only cases and orange for the AGN. The different line styles
represents the different mass definitions. In the bottom panel I present the residuals
between the halo model predictions and the BAHAMAS results. The main difference
between using the fix mass (left plot) and the integrated mass (right plot) is that the
largest mass definitions (200m and 200c) tend to have a similar accuracy in the latter
case. Using a fix mass, instead, each prediction shifts to lower and lower accuracy (all

inside the data measurements) instead of being more clustered.

I have found in the tSZ modelling in section 4.4. This can be explained by the way

the halo model, particularly the tSZ 1-halo component, traces efficiently the electron

pressure distribution inside haloes and the broad impact on the size and outskirts of

haloes.

It is, also, interesting to see that the use of fixed masses or the integrated ones pro-

vide some differences in the way the predictions match the expected results. With

the integrated masses the largest mass definitions are more clustered, same as for the

smaller mass definitions (500m and 500c). While, for the fixed masses, there is a broader

spread of the predictions making it, on insight, more difficult to distinguish from other

physical effects (similar suppression can be associated with neutrino feedback, see again

McCarthy et al. (2018)).

Concluding the analyses on the cross-correlations explored, there are two interesting

points to discuss: the pressure modelling in the tSZ shows broader and more complex

effects on the probes sampled (together with baryonic effects). Weak lensing probes

present, instead, a more clear baryonic signature and independent from other effects

surveyed here (mainly the accuracy of the matter clustering). Those probes together,
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with a more sophisticated and thorough approach, can, in principle, provide better

constraining power to some modelling and baryonic uncertainties.

4.7 LSS baryonic suppression

In the previous sections, I have explored extensively the auto and cross-correlations of

different LSS tracers using the four mass definitions and using collisionless and hydro-

dynamical setups. To quantify further the relative impact of baryons, as I have shown

in Section 3.4.3, I analyse this quantity in the LSS probes surveyed highlighting where

and how much the baryons play a role.

As stated earlier, the flaws in the modelling can bias, quite significantly, the LSS pre-

dictions, nevertheless, the use of the ratio between the DM-Only and AGN predictions

could avoid the introduction of further uncertainties. These predictions can be used to

quantify the impact of baryons and validate how much galaxy feedback can influence

the relative cosmological and astrophysical parameters estimation.

In fig. 4.13 I present the baryon effects in the previously presented LSS probes. In

the top left panel, I present the tSZ (noted also as y × y) power spectrum, in the top

right the CMB weak lensing (kΦ × kΦ). In the centre-left the tSZ-CMB weak lensing

cross-correlation (y× kΦ), in the centre-right the weak lensing power spectra from both

auto-correlation (k×k) cases as the CFHTLenS cases (blue lines) and cross-correlations

using the KiDS-450 bins (examples in red and orange lines). Bottom left, tSZ-Galaxy

lensing power spectrum (y × k, using RCSLenS source redshift distribution presented

in eqn. 4.2 and fig. 4.2) and in bottom right the galaxy - CMB weak lensing (k × kΦ).

Please note that the top panels span from 102 < ` < 104, while the cross-correlation

cases with tSZ and CMB weak lensing are presented up to a maximum of ` ≈ 2500

(for observational reasons due to Planck beam size) and the cosmic shear values are in

angular scales 0.7 < θ < 300 arcmins.

In the tSZ panels, I present, again, the two separate approaches on the masses: one with

just the correction on the halo mass function (blue line) with the fixed halo masses and

the other with also a mass correction (orange lines). In the latter, the mass correction

is computed by using the density profiles and integrating those up to R∆ obtaining

the final M∆ mass using the DM-Only and AGN density profiles. While the first case

presented, I have kept fixed the halo masses and changed only the halo mass function

accordingly, as presented and explored in Section 4.4.

In the weak lensing panel, I present the results for the auto-correlations using CFHTLenS

source redshift distribution (blue lines) and auto and cross-correlation examples using
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Figure 4.13: Baryonic effect in several LSS tracers. In the top left panel I present
the tSZ case with the two approaches used. In the top right panel I present the CMB
weak lensing power spectrum suppression comparing against BAHAMAS predictions
from Chung et al. (2020) and in the bottom panel the ratio between the halo model
predictions and the simulations. Central left plot I present the cross-correlation between
the tSZ and CMB weak lensing. In the central right plot the weak lensing suppression
(ξ±). In the bottom left plot I present cross-correlation between tSZ and galaxy weak
lensing (using RCSLenS source redshift distribution). In the bottom right plot I present
the cross correlation between the CMB weak lensing and galaxy lensing using KiDS-2D

source redshift distribution.
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different KiDS-450 tomographic bins (red lines for 1-1 and orange lines for 1-4). The

full KiDS-450 suppression analysis is presented in fig. 4.14 for the ξ+ case and fig. 4.15

for the other. I present these two examples just as a comparison of the different scales

and effects that can be measured and are not fully appreciable in the triangular plots

below.

In the CMB weak lensing suppression (top right plot), I compare against the BA-

HAMAS predictions computed by Chung et al. (2020) that have made predictions for

upcoming next-generation Stage IV CMB experiments. In this case the baryons have an

effect in the small scale regime (` > 5000) leading to a suppression that is approximately

comparable to the mean value of the boost factors obtained comparing the DM-Only and

AGN at different redshifts as presented in Section 3.4.3. The agreement between the

halo model predictions, for the four different mass definitions, and the simulations expec-

tation is in line with the agreement shown while analysing P (k) suppression presented

at different epochs (see again Section 3.4.3 and fig. 3.16), reaching a 3% agreement on

all scales below ` ≈ 9000. The bottom panel shows the residuals where we appreciate

an increase of difference above ` ≈ 9000. These increasing differences could be due to

multiple factors: the low mass cut applied (M > 4 × 1011 M�h
−1) and the limit of the

Nyquist frequency, as well as errors in the suppression that are carried on in the halo

model predictions. Effectively quantifying the effect of baryons physics can help identify

cosmological imprints on this probe, such as neutrino feedback (Osato et al., 2016; Green

et al., 2021).

In the tSZ plots (left side plots, both considering auto and cross-correlations), it is

interesting to note the different results for the use of the fixed mass and the integrated

mass. The fixed mass case shows an almost uniform suppression on all scales, excluding

the sharp drop at ` > 5000 in the y × y case where the peak of the distribution is

already reached. In the y× y case, the suppression is around 3% for all mass definitions

for a large part of the spectrum, indicating that the impact of the HMF accounted for

the baryonic effect is important but does not change the predictions significantly. The

cross-correlations with weak lensing observations, however, highlight some interesting

features. The case with CMB weak lensing (y × kφ), shows a constant suppression of

around 9% for all mass definitions for the ` scales taken into consideration (similar to

the flat suppression found in tSZ case on the same scales) while in the case of galaxy

lensing (y × k) the suppression seems to rise at smaller scales, from a starting ≈ 5% to

a final ≈ 9%.

Using the integrated masses the picture is much more varied. For the y × y cases, it

is possible to see that the large scale limit is more suppressed, with a mean value of

≈ 7% for the four solutions provided, and grows back to a 5% at ` ≈ 5000 where, as
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shown before, there is a sharp decrease. In the cross-correlation cases the suppression is

similar to the other approach but higher, with values between 2 to 3% higher, enhancing

a double effect on the baryonic suppression.

The k × k analysis (central right plot) shows the weak lensing statistics (ξ±) using the

CFHTLenS source redshift distribution and the tomographic bins of KiDS-450. As it

was already evident in the comparisons against the observational data, the two statistics

are sensitive to different parts of the spectrum showing a different level of suppression.

The ξ+ cases present a suppression only at angular scales below ≈ 7 arcmins, while for

ξ− the suppression evident on all the sampled range showing also an increase at the

smallest angular scales.

Even using the tomographic bins, the effect of baryons does not vary significantly with

redshift. I present two auto-correlations one at low redshift (1-1, in red line) and one

higher (1-4 in orange line) to highlight that the baryon suppression seems not affected

by the source distribution applied. In fact, these results, shown for clarity only for

∆ = 200m, are 1-2% different to the results from CFHTLenS, highlighting that the

baryonic effects are smoothed in different redshift bins.

It is possible to verify that the differences between the DM-Only and AGN cases are

very small in θ > 10 arcmins for the ξ+ and θ > 30 arcmins for the ξ− case. The

suppression takes place at different θ scales for each of those probes providing, thus a

powerful tool to understand where it will be possible to distinguish baryonic effects from

cosmological inference. The suppression happens in the small scale regimes that is diffi-

cult to distinguish effectively from uncertainties (Joudaki et al., 2017). A recent analysis

of DES Year 1 results (Huang et al., 2021) and an extension of KiDS-450 (Yoon & Jee,

2021) have also found similar and comparable results as ours using different baryonic

feedback and modelling, opening up to further applications in future observations with

more constraining power.

In the last panel, I analyse the galaxy-CMB weak lensing cross-correlations (k× kφ). It

is interesting to see that this probe is quite different from the others since the major

differences between the DM-Only and AGN cases start at relatively small scales (` <

200) and grow back to 10% already at ` ≈ 2000 where there are hints of a flattening of

the curve. This effect might be due to the combined effect from the suppression that

takes place in the CMB signal, which is more sensitive to the distribution of the matter

in the Universe and the cross-correlation with galaxies distributed at different epochs.

This result is particularly interesting since it might open to a variety of applications

in the near future with new observations available. This suppression is also higher at

the same scales when compared to other weak lensing statistics surveyed. This result

reinforces the narrative behind the great significance and power of cross-correlations.
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Figure 4.14: KiDS-450 tomographic weak lensing ξ+ baryonic suppression measure-
ments with the four mass definitions presented in different line styles and colours (blue
for ∆ = 200m, 200c and orange for ∆ = 500m, 500c). The different redshift bins used

are highlighted in the top corner of each panel.
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Figure 4.15: Same as fig. 4.9 but for ξ− case.
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In figs. (4.14)(4.15) I present the baryonic suppression for the ξ± cases using the KiDS

tomographic redshift bins for the four mass definitions highlighting the small effect

present in the different redshift bins considered. In fact, as it was evident in the panel

of fig. 4.13 the cross or the auto-correlations of different source redshift distributions

present only a small difference in the overall baryonic suppression. As presented above,

the ξ+ case shows almost a constant suppression (roughly 0.9 at θ ≈ 1 arcmin) in each of

the redshift bins surveyed. As well, the ξ− case presents a similar constant suppression

in all bins with some differences that rise at the smallest scale (θ < 1 arcmin) with

some spikes (in both directions) that are due to the mismatch in the ratio between the

collisionless and hydrodynamical cases (similar effect that can be visible in fig. 4.8).

In drawing to a close, I have explored in this section the effects of baryonic feedback on

several LSS probes. It is possible to see that the baryonic feedback appears in different

shapes and areas in each of the LSS surveyed allowing us to explore, efficiently, the

whole spectrum. The most sensitive observations are the ones from tSZ auto and cross-

correlations. Where the ability of the model to trace efficiently the pressure distribution

can significantly be distinguished and it is possible to say the same for the baryonic

effects. For weak lensing probes, I have verified that auto-correlations (like kφ×kφ) show

a smoothed suppression similar to the matter power spectrum suppression, occurring

at the same scales as well, whilst in the cross-correlation cases (e.g., kφ × k), present a

suppression on different scales and generally broader in comparison to the first presented.

For the shear measurements, the suppression happens in amplitude and scales, differently

between the ξ+ and ξ− cases, with small differences (< 3%) between the mass definitions

as well as using a unique or a multiple source redshift distributions. More stringent and

detailed observations (e.g. Dark Energy Survey or KiDS-1000) can constrain better the

different mass definitions in addition to baryonic effects.

4.8 Summary and Conclusions

In this Chapter, I have presented an exploration of several LSS observables using the

BAHAMAS calibrated halo model approach focusing on both the effects of different

mass definitions and the role of baryons on those predictions.

I have compared the halo model predictions against observational results and observational-

like maps built from the BAHAMAS light-cones for a fairer and more complete test of

these analyses.

The weak lensing probes have shown some interesting features. The first set of tests

provided, the comparison against single source distribution built from BAHAMAS maps,
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showed a good agreement on the large-scale limit and some differences in the small scales,

highlighting the limits of the calibrated halo model approach and its overall accuracy.

Larger differences can be seen when using the lowest source redshift (zs = 0.5) due to a

major influence of the accuracy of the starting P (k). It is possible to see a similar picture

for all mass definitions involved. The sharp drop that happens at small scales (` > 8000)

can be associated with the limit of the halo model in reproducing accurately the matter

distribution at k scales around 8 hMpc−1 (also where the simulation Nyquist frequency

starts to influence the results). The results are coherent for both the DM-Only and

AGN realisations.

Using the wide source redshift distribution, Section 4.5, I have studied the accuracy of

the halo model against real observations and against the BAHAMAS predictions. This

observable shows a similar level of agreement on both cases, ξ+ and ξ−, with differences

that arise only in the large-scale regime (still below 20% at all scales). Both the halo

model predictions and the simulations are above the data points in a significant portion

of the spectrum, suggesting that the cosmology adopted could be a non-negligible factor.

Very small differences can be found while comparing the collisionless and hydrodynam-

ical cases on similar scales.

The tomographic weak lensing analysis using the KiDS-450 source redshift distributions

instead highlighted that the poor halo model accuracy at high redshift reflects on a non-

negligible impact in the auto-correlation cases (for instance in the 4-4 case, where it is

possible to see the larger differences between the mass definitions). These differences are

verifiable in both ξ− and ξ+ cases. In general terms, there is an overall good agreement

between the observational data and the halo model predictions.

The tSZ power spectrum presented in Section 4.4 shows a good agreement between the

halo model predictions, observational data and BAHAMAS results. I have explored a

different approach for what regards the halo masses making clear when using a fixed

halo mass or the one obtained by integrating the density profiles. Those two separate

ways of computing the halo masses, and consequently the shift of the associated pressure

profiles and halo mass functions, have a double effect on the power spectrum but, the

baryonic feedback is still the most predominant. It is possible to verify those larger mass

definitions (200m or 200c) trace better the power spectrum matching the simulation

expectations but overestimating, as seen in the simulations, the Planck observational

data. In the scales 400 < ` < 2000 we find larger differences, where I measure a

minimum of 20% in comparison to the BAHAMAS predictions. This could be driven by

the exclusion of outskirts of haloes that are still relevant for the tSZ signal. Smaller mass

definitions have much more agreement with observational data (for observational data

I always exclude ACT and SPT since those are in tension with BAHAMAS results as
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well, see the discussion earlier). The peak of the distribution is fairly well reproduced by

all mass definitions (< 15%). The tSZ power spectrum is dominated by the 1-halo term

contribution, when we use smaller mass definitions we, effectively, cut out gas particles

reducing, artificially, the actual signal. One reason why the largest mass definitions and

the BAHAMAS simulations predictions are higher in comparison to Planck results can

be traced in the different cosmology adopted. It is still worth mentioning, again, that

the tSZ predictions are dependent on many assumptions and adjustments such as the

hydrostatic mass bias or the modelling of the pressure distribution inside haloes and

outside the halo boundary chosen, those might alter, significantly, the final results.

The cross-correlations have opened up a world of possibilities in combining several ob-

servables and obtaining interesting constraints on both cosmological and astrophysical

parameters (Shirasaki et al., 2020; Osato et al., 2016; Lu et al., 2021; Tröster et al.,

2021; Schneider et al., 2021). In this thesis, I have explored the cross-correlations be-

tween galaxy and CMB weak lensing (k×kφ) and tSZ with CMB weak lensing (y×kφ).

The first analysis provided an interesting picture, where the different mass definitions

trace well the data however all tend to overestimate the simulation predictions in both

collisionless and hydrodynamical cases. For the latter case, I see, instead, that the tSZ

accuracy is different and the predictions span evenly the data points available. Again,

only the largest mass definitions are comparable with the simulations results (similarly

to what happened in the tSZ power spectrum). The last result hints, significantly, that

the tSZ accuracy is the main driver on those probes.

The overall impact of baryons is extremely more intricate and complex in the analysis on

such a variety of probes. I have shown to what extent the right treatment of baryons is

needed for upcoming observational results. With the observational results considered, it

is almost impossible to effectively distinguish between the DM-Only or AGN modelling.

However, the knowledge of the overall baryonic suppression is fundamental for upcoming

observational results. The weak lensing probes, as CMB or galaxy weak lensing in Fourier

space, present a smoothed version of the matter-matter power spectrum suppression,

allowing to constrain, efficiently, the influence of galaxy formation feedback present. In

the case of angular correlations (ξ+ and ξ− cases), the differences are more evident.

Thus, those allow distinguishing between accuracy and baryonic effects, even though

the portion of the spectrum is subject to other small-scale effects and uncertainties.

The tSZ showed a great variety of interesting features that have demonstrated that

the baryonic effects can be separated by about 5% from a DM-Only treatment. More

complex, and more evident, is instead the tSZ impact in the cross-correlations with

weak lensing probes (both from galaxy lensing or CMB) with a suppression, on scales

100 < ` < 2000, around 9% and 7% independently from the mass definition adopted.
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New deeper and detailed observations will reduce, significantly, the uncertainties as-

sociated with the measurements. At the same time, improved treatments of the mass

definitions in the halo model approach (to a comparable accuracy level as the one needed

from P (k)) will allow putting tighter constraints on the baryonic feedback parameters.

These efforts in improving the modelling and the treatment of baryons are one of the key

factors aimed to obtain the most unbiased constraints on the cosmological parameters

in the near future.



Chapter 5

Summary and future work

5.1 Summary

In this Thesis, I have walked the reader on a journey trying to understand a bit more

the halo model formalism and how, in its simplistic formulation, may fail and be in-

accurate. Making use of detailed numerical simulations, I have explored how the halo

model fails in reproducing the non-linear matter clustering accurately and how it is,

strongly, dependent on the mass definitions, meaning on the size of the haloes consid-

ered. This picture here presented is not drawn from any analytic profiles but from the

density profiles, spherically averaged, obtained directly from the simulations, both in the

collisionless and hydrodynamical setups. Furthermore, the use of the number density

of haloes from simulations (namely the halo mass function) shows that the difference is

small (few %) compared to other analytical arguments (as the Press & Schechter (1974)

or Tinker et al. (2008)).

The main and most important result of this work is that both using the tabulated density

profiles or a calibrated fitting profile (using the Einasto fitting function), the halo model

fails to reproduce the matter power spectrum accurately, but the relative impact of

baryons, evaluated using the ratio between the collisionless and hydrodynamical cases,

is recovered to % level accuracy, that is a competitive measure in the era of precision

cosmology.

In fact, in the analysis presented the standard halo model shows a lack of power in

certain parts of the spectrum, mainly the 1 to 2 halo transition region and the smallest

scales, where smaller haloes are not fully incorporated (see the discussion about the role

of the Nyquist frequency and the discrepancy at k≈ 8hMpc−1 in Section 3.4.1). These

issues are present in both setups (DM-Only and AGN ) and they cancel each other out

while evaluating the ratio, leaving the pure clustering signal.
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In a broader way, this result follows what other authors have found in exploring non-

standard cosmologies using the halo model approach. Recently, Cataneo et al. (2019,

2020) and Bose et al. (2020, 2021), with their ReACT1 software, have shown that the

standard halo model formalism is not accurate enough, if not after adding multiple

components or exploring further the density fields (Mead et al., 2016; Philcox et al.,

2020; Garćıa et al., 2021), in light of the requirements for next-generation weak lensing

and CMB experiments. In spite of everything, the relative cosmological impact, whether

it be the signature of massive neutrinos or the presence of dynamical dark energy, can be

effectively and accurately constrained using the ratio respect to a standard cosmology.

The assessment of the power spectrum suppression due to baryonic feedback, theoreti-

cally, is the strongest constrain available that can be built from a variety of observations.

In fact, the distribution of matter in the Universe can be explored under multiple point

of view using different independent tracers.

Upcoming all sky surveys of several observables (tSZ, CMB and cosmic shear) will

provide strong constraints on the cosmological parameters showing, again, the need of

methods to understand better the Universe we observe.

To make fairer and more detailed comparisons with the upcoming surveys, I have ex-

plored how the halo model can reproduce LSS tracers and tested how much the different

mass definitions impact the overall accuracy of these predictions. Additionally, I have

explored the relative impact of baryons on those probes, understanding in which parts

and how much the signature of galaxy formation processes can be detected.

Regarding the latest development, some recent weak lensing analyses (see Yoon & Jee

(2021); Huang et al. (2021)) have explored the role of feedback parameters on KiDS-

450 and DES year 1 results finding similar and comparable results as the one I have

presented, reinforcing the idea that this type of approach and analysis will become more

and more common in the years to come.

To wrap up the most relevant analyses and findings of this Thesis, I summarise here

the most interesting points I have explored in the previous Chapters. In Chapter 3, I

have presented an in-depth analysis of how accurately the halo model can reproduce

the matter distribution making comparisons with the BAHAMAS suite of simulations

and other linear and non-linear predictions. I have used products directly from the

simulations (stacked density profiles and HMFs) to enhance the reliability of the tests.

For comparison, I have calibrated an analytic fit, using Einasto profile, and used a

standard HMF (Tinker et al., 2008), calibrating the baryonic correction accordingly

when discussing the AGN cases. The results of these analyses found that the halo model

1https://github.com/nebblu/ReACT.

https://github.com/nebblu/ReACT
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is able to partially recover the overall matter power spectrum, both from the simulations

and other results, and the accuracy is strongly dependent on the mass definitions. I find

that using both the stacked density or the fitting profiles, the differences are relatively

small compared to the overall difference with the expected results. In analogy with the

two different HMFs. The differences grow at higher redshift, which means that the halo

boundaries are not capable of fully reproducing the matter distributed in the simulations

accurately.

However, we have found the same differences in the P (k) modelling, both the DM-

Only and AGN setups. Instead, while considering the baryonic suppression, S(k) =

PAGN (k)/PDM (k), those discrepancies cancel out, which leaves the signal almost in-

dependent from mass definition and redshift and within 5% compared to simulation

results.

In Chapter 4, I have explored beyond the matter clustering, using the halo model pre-

dictions in reproducing LSS tracers as galaxy lensing, CMB weak lensing, tSZ and

cross-correlations between those probes. The interest in doing such analyses using LSS

probes comes from the need to assess the possibility to distinguish between the halo

model accuracy and baryonic effects.

I have presented the tSZ predictions that show that the largest mass definitions (namely

the ∆ = 200m and ∆ = 200c) are able to trace better the pressure distribution inside

haloes and reproduce better the simulations results. Smaller haloes definitions, instead,

are not able to fully recover the largest scales but can correctly model the smallest scales

and the peak of the distribution. The galaxy lensing analysis showed that both in the

case of a single wide source redshift distribution, as for CFHTLenS, or different tomo-

graphic bins, see KiDS-450 instead, there is a good general agreement with observations

and simulations. This is valid for both ξ+ and ξ− statistics.

The weak lensing cross-correlations between the CMB and galaxy sources (in this case

using a wide redshift bin of KiDS-450) show a generally good agreement between the

data and simulations but, in fairness, it is not easy to distinguish accurately between

the baryonic effects or the overall accuracy of the halo model. The tSZ-CMB weak

lensing cross-correlation analysis shows interestingly a further dependence on the mass

definitions, driven most likely by the tSZ probe that separates larger to smaller mass

definitions by more than 20% difference.

The baryonic effects on the LSS probes show different and interesting results as well

as possible applications in the near future. Starting with the CMB weak lensing auto-

correlation which shows a suppression, similar to the matter power spectrum at fixed
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redshift but more smoothed over a wider range of modes comparable with other sim-

ulations results (Chung et al., 2020). A similar result can be obtained using the C(`)

of the galaxy lensing cosmic shear. While using the angular correlations, ξ±, the sup-

pression takes place at different scales and, in a significantly larger way in the ξ− cases

and smaller in ξ+. Very small differences (below 3%) can be found using a wide source

redshift bin or different redshift bins (i.e., different tomographic bins using KiDS-450

data).

The cross-correlation case between the galaxy and CMB lensing shows a strong sup-

pression (≈ 10%) already in the largest scale regime (200 < ` < 2000), stronger and

more diffused compared to the previous ones analysed. We obtained a similar result con-

sidering the tSZ auto and cross-correlations, as explained in the text, I have used two

separate approaches while dealing with halo masses: one is fixing a halo mass and using

that for the profiles and HMFs and the other, instead, is using the halo masses obtained

from the integration of the density profiles (accordingly for both the DM-Only and

AGN cases). The suppression in those cases is slightly different, for instance, in the tSZ

predictions with the fixed mass show less suppression (around 2.5%) that decreases only

on the smaller scales (` > 7000), while the case with integrated masses shows higher

suppression, roughly 6.5% and a smoother fall on the same regime as before. The cross-

correlations show, for the smaller range sampled, an almost flat suppression, larger for

the CMB cases (around 9% for the fixed mass and 10.5% for the integrated) and slightly

lower for the galaxy lensing case (using RCSLenS source redshift distribution, around

5% for the fixed and 7% for the other case).

5.2 Future work

The halo model, in its ‘vanilla’ formulation, might be overrun in the next years in favour

of better emulations techniques and extensive implementation of machine learning tools.

Nevertheless, it is possible that it will still be used for quicker broader comparisons.

As I have pointed out, the transitional region between the 1-halo and the 2-halo terms

is the most intriguing open question to answer. A non-linear bias treatment seems to

provide a better description of that region (Mead & Verde, 2021) but there is also some

work on a better characterisation of the halo extensions and halo boundaries (Garćıa &

Rozo, 2019; Garćıa et al., 2021). Effective field theory applications are, as well, viable

options that might result in a significant impact on the overall accuracy of the method

(Philcox et al., 2020; Sullivan et al., 2021).
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One of the most intriguing approaches that could be introduced in this formalism is

the dropping of static definitions for the halo boundaries, as ∆ = 200m or ∆ = 500c

can be considered, and start to define a more realistic, and dynamically motivated,

boundary such as the ‘splashback’ radius. This new definition will enhance and expand

the halo dimensions allowing to identify more efficiently the haloes, in particular at

higher redshift, where those are expected to be undergoing more dynamical interactions.

A dynamical identification of the size of haloes, with the right association of particles,

could, in theory, fill the gap between the two separate terms in the halo model accurately.

Allowing to extend to lower density thresholds, e.g. ∆ = 100, could do a similar re-

duction in the tension between the halo model and the simulation results thanks to the

inclusion of external particles, therefore adding clustering signal. But it might open

up to more complex adjustments such as a greater chance of overlaps between haloes

(mainly larger objects with multiple systems nearby) as well as further deviation from

the spherical symmetry due to the inclusion of broader cosmic web structures. More

complex treatment of the halo dimensions and shapes (e.g., allowing triaxiality of haloes,

Smith & Watts (2005)) could be an interesting challenge for upgrading the halo model

to a more flexible tool.

In the analysis of the LSS probes, I have shown that the overall accuracy of the halo

model has a non-negligible impact, larger or smaller depending on each tracer surveyed,

but the effects of baryons can be effectively distinguished. With the data used in this

thesis, it is not possible to fully distinguish between the accuracy of the predictions from

simple baryonic effects, therefore, better observations should identify more clearly the

most accurate model.

Future all-sky surveys of different probes will open up a world of opportunities in LSS

cosmology challenging the 1% accuracy, target for those observations. These predictions

will lead to extremely tight constraints on both the growth of structures and galaxy

formation parameters.

CMB weak lensing and tSZ observations from Simons Observatories and other stage IV

submillimeter observations, in union with weak lensing from Vera Rubin observatory

and Euclid, will provide data with unprecedented quality. This new data available will

clear the table from theories and hypotheses no longer supported by observations.

To answer the needs of those high-quality data, the need for new hydrodynamical sim-

ulations with greater resolution on smaller haloes could push the modelling to smaller

and smaller scales (k � 10hMpc−1) allowing to put further constraints on many cos-

mological parameters (such as the spectral index or different flavours of dark matter).

With high-resolution hydrodynamical simulations, as well as N-Body simulations, we
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will have the chance to characterise the halo model to similar smaller scales, adding

more physically motivated density profiles of haloes as well as more realistic HMFs in

a wider range of masses, allowing us to use this method in both large and small-scale

cosmology.
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Appendix A

A.1 ∆ = 2500 case

In Chapter 3, I have presented an in-depth analysis of how the mass definitions (200 and

500 times the mean or the critical density of the Universe) have an impact on the overall

accuracy of the halo model predictions. In this appendix, I present a short exploration

of a smaller mass definition, ∆ = 2500, both in the mean and critical case.

This exploration aims to strengthen, further, the narrative presented earlier of how

selecting particles associated and the size of haloes can track, poorly, the matter distri-

bution in the simulations.

The ∆ = 2500 is a very small overdensity that identifies only the innermost and most

bounded particles of haloes. As previously done, I present the density profiles, the

halo mass function and then I show the P (k) predictions for both the DM-Only and

AGN cases. Finally, I comment on the suppression of the matter power spectrum in

these two mass definitions.

In fig. A.1 I present a test that shows the result of integrating the density profiles (using

eqn. 3.5) compared against the starting M∆,FOF for the DM-Only and AGN cases and

the HMFs. The DM-Only cases are shown in blue lines while the AGN ones are in

orange, the solid lines represent the ∆ = 2500m case while the dashed the other one.

It is possible to see that the test on the integration of the profiles has an overall accuracy

of 1% in the mass range considered, with larger differences on the smaller haloes for the

DM-Only cases. Comparing the HMFs highlights how many and massive haloes are be

used to trace the matter power spectrum.
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Figure A.1: Profile accuracy in the top panel, DM-Only HMF in the middle panel and
AGN HMF in the bottom panel in the ∆ = 2500 cases for both the mean and critical
cases. In blue I present the DM-Only cases while in orange the AGN counterparts.

The ∆ = 2500m case is shown in solid line and the ∆ = 2500c in dashed lines.

To obtain the matter power spectrum I use the density profiles and the HMFs computed

from the simulations, for the linear bias I use the Tinker et al. 2010 formalism for

both the DM-Only and AGN runs as discussed in Chapter 3. Considering the halo

fraction, as discussed in Section 3.3.1.1, I verify that at the minimum halo mass, Mmin =

4× 1011 M� h
−1, the fh(M > Mmin) for the mean cases is 0.14 and for the critical case

is 0.07. That means that the haloes taken into consideration in this analysis are able to

reproduce only the 14% and the 7% of the overall total mass in the simulations. The

values do not differentiate much between the collisionless and hydrodynamical cases.

In fig. A.2 I present the matter power spectrum cases ∆ = 2500m and ∆ = 2500c

using the stacked density profiles and the HMF directly from the simulations in both

DM-Only and AGN. I compare against halofit, camb and BAHAMAS (DM-Only and

AGN ) matter power spectra at z=0 and I evaluate how accurately the mass defini-

tion is able to reproduce the expected signal. I note the residual plot using the nota-

tion R(k) defined as [P (k) − PHM (k)]/P (k) and S(k) for the suppression defined as

PAGN (k)/PDM (k). The dashed vertical line identifies half the Nyquist frequency of the

simulations.

It is possible to see that, as expected, these small mass definitions are able to capture

only partially, and not better than 25%, the matter distribution even in the deep 1-halo

regime. The lack of massive haloes, as can be seen in the HMFs plots, influences strongly

the accuracy as well as the small volume of haloes explored. The picture is coherent
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Figure A.2: Matter power spectrum and baryonic suppression for the ∆ = 2500m (left
column) and ∆ = 2500c (right column) mass definitions in both DM-Only (top panels)
and AGN (middle panels). In the bottom panels there is the matter power spectrum
suppression compared against the BAHAMAS simulations results. The top and middle
panels are presented, as before, the residuals as follow: R(k) = [P (k)−PHM (k)]/P (k).

from the previous findings, also, for the AGN cases. The suppression, shown in the

bottom panels of the fig. A.2, shows quite interesting features. The suppression is not

well recovered (≈ 15% − 20%) in the 1-halo region (k ≈ 0.8 − 3hMpc−1) in both the

mean and critical cases, but in the mean case, the suppression actually happens, while in

the other case there is an enhancement (≈ 15% at k = 2.5hMpc−1). The small volume

of haloes sampled with these mass definitions1 does not allow to accurately explore the

baryonic effects that impact these objects. A possible explanation is that the critical

case (which is smaller compared to the mean ones) is capturing only the innermost part

of haloes and effects such as gravitational softening overcome the baryonic feedback

present. Another possible explanation is the small population of the largest mass bins

in the critical case, which might influence the overall accuracy in the predictions and

suppression.

A.2 Matching technique using Particles IDs

In this short appendix, I summarise the method behind the matching procedure between

two sets of simulations by using particles IDs. The method was firstly presented in

1For reference the R2500c ≈ 1/3R200c and R2500m ≈ 1/2R200m for the cosmology adopted.
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Velliscig et al. (2014) and have been used in many different works (Mummery et al.,

2017; Pfeifer et al., 2020; Stafford et al., 2020a).

Each particle in the simulation has associated an unique IDs, particles belonging to the

same haloes are associated a groupnumber by the FOF algorithm used to identify the

haloes. This can, also, be applied to group-subhaloes groupnumbers.

Given this overview, I now explain, briefly, how the matching works:

• Select the DM particles data from a DM-Only and AGN simulations and assign

an unique haloID;

• Match the DM particles as IDAGN → IDDM-Only, with a minimum of N most-

bound particles to identify the same halo between the two simulations;

• Check the goodness of the match by doing the inverse match IDDM-Only → IDAGN,

• Obtain a catalogue of matched haloes between the two simulations.

With BAHAMAS particles mass I have imposed a cut at N=50 particles. This lim-

its us in going below ≈ 3 × 1011 M� h
−1 given the mass resolution available in the

BAHAMAS simulations. With the matched catalogue of haloes we can compare the

different effects on the masses due to the baryon feedback. This matching, since it is

based on the particles IDs, is independent on the mass definition chosen.

A.3 Direct baryonic HMF correction

In Section 3.3.1, I have presented how the baryons influence the masses of the haloes

in hydrodynamical simulations and how that is relevant for the halo mass function

baryonic characterisation. In this short appendix, I present an equivalent, but less

accurate, method to correct directly the HMF for baryonic effects. The overall accuracy

is lower compared to changing the masses beforehand but it might be useful in some

applications.

In fig. A.3 I show the logarithmic suppression of the HMFs (Φ), as log10(ΦAGN/ΦDM ),

by comparing the simulations outputs (solid lines) and the best fit results (dashed lines)

at the three redshifts bins. I have built the data to fit on, using the HMFs for the four

mass definitions and I have computed the mean of those predictions and computed the

scatter (shaded area). The scatter of the data is mainly due to the intrinsic differences

between the HMFs and the ratio between the AGN and DM-Only cases. I have applied

a cut at 2 × 1014 M� h
−1 for the z = 1 case and at 8 × 1013 M� h

−1 for z = 2 due to
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Figure A.3: Comparison plot between the best fit results and the data from the
simulations for the HMF suppression. I present the three redshift bins z = [0, 1, 2]
using solid lines and different shades of blue. The 1σ scatter is obtained by computing
the scatter from the mean of the four different mass definitions. In dashed lines I show
the best-fitting analytic predictions. It is possible to see that there is a good agreement
in the deep in the range 1013 < M [M� h

−1] < 3× 1014. At larger masses the scatter is
larger due to cosmic variance.

Table A.1: Best-fitting parameters of the baryon correction for the HMF. In fig. A.3
I present the comparison between the BAHAMAS HMFs and the analytic results using

this set of parameters.

P A B C D

a0 27140.1 −0.312 −13.474 −1.148
az −0.288 −0.546 0.029 −1.843

fact that there are very few haloes above those mass thresholds. Applying these cuts I

have imposed that the two HMFs should have the same values above. We see that our

fitting function reproduce well the data at z = 0 over a wide mass range and, for the

other redshifts, it is possible to verify that the most suppressed part is well recovered

alongside the rise at small halo masses.

The fitting procedure was done using the same idl tools used previously for the mass

correction. I provide here the best-fitting values for the eight parameters in Table A.1

for the eqn. 3.7 specified for log10(ΦAGN/ΦDM ):

log10

(
ΦAGN

ΦDM

)
=

A

cosh(log10(MDM ))
+

B

1 + exp
(
− log10(MDM )−C

D

) . (A.1)
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Figure A.4: Ratio plot between the BAHAMAS HMFs for the AGN case over the
corrected DM-Only using the baryonic HMF correction. I present the three redshifts
bins and all four mass definitions (orange for the critical mass definitions and blue for
the mean ones). It is possible to see that the baryonic correction helps recover the
HMFs better than 15% over a wide mass range and all redshifts. A better agreement
is achieved on the regime above 5 × 1013 M� h

−1. Below 3 × 1011 M� h
−1 I have not

applied the correction because of the small reliability of our predictions.

I find that two parameters (B and D) have a slight cosmology dependence built in terms

of baryon fraction, similarly to eqn. 3.7, fb as follows : F (fb) =
(

1 + fb
fWMAP9
b

)−0.95
,

where fWMAP9
b = 0.165, as was already shown in the baryonic mass correction.

In fig. A.4 I present the result of the application of the baryonic correction (eqn. 3.7) on

the DM-Only HMF from BAHAMAS and I compare against the AGN version at the

three redshifts considered. It is possible to see that for the four different mass definition,

the correction helps recover the expected AGN HMF better than ≈ 15% in most mass

bins and for all mass definitions at z = 0.

The ratio plot is noisier at larger masses due to cosmic variance, as I have explained

regarding fig. A.3.

In the first application presented, the agreement was better than 5% at all redshifts

and over a wide range of masses. With this application, instead, we see at least a 15%

discrepancy between the corrected halo mass function and the expected one. This poorer

result is driven by the loss of details that comes from computing a general function as

the HMFs where most of the effects on haloes are smoothed out by the statistics and it

is harder to encapsulate the baryonic feedback accurately.
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B.1 Einasto profile partial derivatives

In Section 3.2, I have presented the fitting functions of the DM-Only and AGN density

profiles using the Einasto profile. To improve the convergence of the fit I have calculated

the partial derivatives for each of the nine free parameters used to maximise the reliability

of the fit and quicken the parameter space exploration. I remind that the Einasto profile

has this form:

F (r,M, z) = f0(M, z) exp
(
−A(M, z)rα(M,z)

)
, (B.1)

with the three main parameters f,A and α have a double dependence on mass and

redshift as shown in eqn. 3.4. I remind, also, that the fit we have performed in these

analyses were meant to provide a description of how the matter is distributed inside

the haloes and we have not put any physical constraint on the parameters, allowing for

degeneracies between them. This applies as well for the pressure profiles, described in

Section 4.2.2.

The partial derivatives for each free parameters are presented here:

124
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∂F

∂f0,int
= F/f0,int;

∂F

∂fM
= F × ln

(
M

Mpivot

)
;

∂F

∂fz
= F × ln(1 + z);

∂F

∂A0,int
= F ×

(
A(M, z)

A0,int

)
× rα;

∂F

∂AM
= −F ×Arα × ln

(
M

Mpivot

)
;

∂F

∂Az
= −F ×Arα × ln (1 + z) ;

∂F

∂α0,int
= −F ×Arα ln(r)

(
α

α0,int

)
;

∂F

∂αM
= −F ×Aαrα ln(r) ln

(
M

Mpivot

)
;

∂F

∂αz
= −F ×Aαrα ln(r) ln(1 + z).

B.2 Updated Velliscig’s fitting function partial derivatives

As I have done for the Einasto profile used for haloes profiles, I provide here the partial

derivatives for the baryonic correction functions I have calibrated for masses and HMFs

presented in Chapter 3.2. I remind the original fitting function expressed in terms of

∆mass defined as:

∆mass =
MAGN −MDM−Only

MDM−Only
,

∆mass(M, z) =
A(M, z)

cosh(log10(M))
+

B(M, z)

1 + exp
(
− log10(M)−C(M,z)

D(M,z)

) .
(B.2)

So the partial derivatives are:
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∂∆mass

∂AM
=

(1 + z)Az

cosh(log10(M))
;

∂∆mass

∂Az
=

A ln(1 + z)

cosh(log10(M))
;

∂∆mass

∂BM
=

(1 + z)Bz

1 + exp
(
− log10(M)−C

D

) ;

∂∆mass

∂Bz
=

B ln(1 + z)

1 + exp
(
− log10(M)−C

D

) ;

∂∆mass

∂CM
=
B(1 + z)Cz exp

(
− log10(M)+C

D

)
D

[
1 + exp

(
− log10(M)+C

D

)2
] ;

∂∆mass

∂Cz
=
BC ln(1 + z) exp

(
− log10(M)+C

D

)
D

[
1 + exp

(
− log10(M)+C

D

)2
] ;

∂∆mass

∂DM
=
−B(1 + z)−Dz(log10(M) + C) exp

(
(1 + z)−Dz − log10(M)+C

DM

)
D2
M

[
exp

(
(1 + z)−Dz − log10(M)+C

DM

)
+ 1
]2 ;

∂∆mass

∂Dz
=
−B(log10(M) + C)(1 + z)−Dz ln(1 + z) exp

(
−(log10(M)+C)(1+z)−Dz

DM

)
DM

[
exp

(
−(log10(M)+C)(1+z)−Dz

DM

)
+ 1
]2 .



Bibliography

Abazajian K., et al., 2019, arXiv e-prints, p. arXiv:1907.04473

Abbott T. M. C., et al., 2018, Monthly Notices of the Royal Astronomical Society, 480, 3879

Ade P., et al., 2019, J. Cosmology Astropart. Phys., 2019, 056
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of the Royal Astronomical Society, 507, 5869
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Bahé Y. M., McCarthy I. G., King L. J., 2012, Monthly Notices of the Royal Astronomical Society, 421,

1073

Baldauf T., Seljak U., Desjacques V., McDonald P., 2012, Phys. Rev. D, 86, 083540

Baldi A. S., Bourdin H., Mazzotta P., Eckert D., Ettori S., Gaspari M., Roncarelli M., 2019, Astronomy

& Astrophysics, 630, A121

Barkana R., Loeb A., 2001, Phys. Rep., 349, 125

Barnes D. J., Vogelsberger M., Pearce F. A., Pop A.-R., Kannan R., Cao K., Kay S. T., Hernquist L.,

2020, arXiv e-prints, p. arXiv:2001.11508

Bartelmann M., Schneider P., 1999, Astronomy & Astrophysics, 345, 17

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291

Bartolo N., Komatsu E., Matarrese S., Riotto A., 2004, Phys. Rep., 402, 103

Battaglia N., Bond J. R., Pfrommer C., Sievers J. L., Sijacki D., 2010, The Astrophysical Journal, 725,

91

127

https://ui.adsabs.harvard.edu/abs/2019arXiv190704473A
http://dx.doi.org/10.1093/mnras/sty1939
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3879A
http://dx.doi.org/10.1088/1475-7516/2019/02/056
https://ui.adsabs.harvard.edu/abs/2019JCAP...02..056A
http://dx.doi.org/10.1093/mnras/sts286
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.3375A
http://dx.doi.org/10.1093/mnras/sts286
http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21830.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.2046A
http://dx.doi.org/10.1093/mnras/stab2018
http://dx.doi.org/10.1093/mnras/stab2018
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5869A
http://dx.doi.org/10.1093/mnras/stab1911
http://dx.doi.org/10.1093/mnras/stab1911
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.4070A
http://dx.doi.org/10.1051/0004-6361/200913416
http://dx.doi.org/10.1051/0004-6361/200913416
https://ui.adsabs.harvard.edu/abs/2010A&A...517A..92A
http://dx.doi.org/10.1111/j.1365-2966.2011.20364.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.1073B
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.1073B
http://dx.doi.org/10.1103/PhysRevD.86.083540
https://ui.adsabs.harvard.edu/abs/2012PhRvD..86h3540B
http://dx.doi.org/10.1051/0004-6361/201936165
http://dx.doi.org/10.1051/0004-6361/201936165
https://ui.adsabs.harvard.edu/abs/2019A&A...630A.121B
http://dx.doi.org/10.1016/S0370-1573(01)00019-9
https://ui.adsabs.harvard.edu/abs/2001PhR...349..125B
https://ui.adsabs.harvard.edu/abs/2020arXiv200111508B
https://ui.adsabs.harvard.edu/abs/1999A&A...345...17B
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
https://ui.adsabs.harvard.edu/abs/2001PhR...340..291B
http://dx.doi.org/10.1016/j.physrep.2004.08.022
https://ui.adsabs.harvard.edu/abs/2004PhR...402..103B
http://dx.doi.org/10.1088/0004-637X/725/1/91
https://ui.adsabs.harvard.edu/abs/2010ApJ...725...91B
https://ui.adsabs.harvard.edu/abs/2010ApJ...725...91B


Bibliography 128

Battaglia N., Bond J. R., Pfrommer C., Sievers J. L., 2012a, The Astrophysical Journal, 758, 74

Battaglia N., Bond J. R., Pfrommer C., Sievers J. L., 2012b, The Astrophysical Journal, 758, 75

Battaglia N., Hill J. C., Murray N., 2015, The Astrophysical Journal, 812, 154

Battaglia N., Ferraro S., Schaan E., Spergel D. N., 2017, J. Cosmology Astropart. Phys., 2017, 040

Benjamin J., et al., 2013, Monthly Notices of the Royal Astronomical Society, 431, 1547

Birkinshaw M., 1999, Phys. Rep., 310, 97

Blanchard A., Schneider J., 1987, Astronomy & Astrophysics, 184, 1

Blas D., Lesgourgues J., Tram T., 2011, J. Cosmology Astropart. Phys., 2011, 034

Bocquet S., Saro A., Dolag K., Mohr J. J., 2016, Monthly Notices of the Royal Astronomical Society,

456, 2361

Bocquet S., et al., 2019, The Astrophysical Journal, 878, 55

Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope A., Finkel H., 2020, The

Astrophysical Journal, 901, 5

Bolliet B., Comis B., Komatsu E., Maćıas-Pérez J. F., 2018, Monthly Notices of the Royal Astronomical

Society, 477, 4957

Bolliet B., Brinckmann T., Chluba J., Lesgourgues J., 2020, Monthly Notices of the Royal Astronomical

Society, 497, 1332

Bond J. R., Kofman L., Pogosyan D., 1996, Nature, 380, 603

Bonvin V., et al., 2017, Monthly Notices of the Royal Astronomical Society, 465, 4914

Booth C. M., Schaye J., 2009, Monthly Notices of the Royal Astronomical Society, 398, 53
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