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Abstract: When fire occurs in an offshore platform, evacuation plays a vital role in safeguarding the evacuees’ 

lives. How to efficiently evacuate to minimize the loss of life is a dynamic problem, requiring a continuing research 

effort with changing technologies. In this research, a dynamic optimization model is proposed to determine the 

optimized evacuation route in the fire scenarios of offshore platforms. Firstly, the road network model of an offshore 

platform is built in a Geographic Information System (GIS) environment based on the data from a real drilling 

platform. Secondly, drilling platform fires are simulated using Fire Dynamics Simulation (FDS), and then the fire 

simulation data is input into the proposed road network model. Thirdly, the traditional Ant Colony Optimization 

(ACO) Algorithm is improved by considering the influence of fire on evacuation to study the impact of high 

temperature, smoke and toxic gases on evacuation. Next, the improved route optimization algorithm and a road 

network model of the offshore platform are integrated to formulate a dynamic route optimization model for 

evacuation in fire scenarios. Finally, a case study is conducted to demonstrate the model on a drilling platform of 

Nan Hai in China. The results reveal that the equipment area around the fire source on the lower deck is mostly 

affected by the smoke. It is validated that the proposed model can be used to optimize the evacuation route to guide 

evacuees avoid the hazardous area according to the dynamic spread of smoke. This study can provide fast real-time 

guidance for the trapped evacuees during the evacuation process on offshore platforms by considering the influence 

of fire on evacuation. 

 

Keywords: Offshore platform; Fire simulation; Geographic Information System; Optimal evacuation route; 

Dynamic optimization 

1. Introduction 

Accidents such as the Piper Alpha and Deepwater Horizon tragedies have been stimulating fire 

and evacuation research on offshore platforms. Once the fire occurs, it is often difficult for evacuees 

to evacuate from the extremely dangerous environment [1], and it is evident that most of the 

casualties occur during evacuation [2]. Therefore, it is important to study how to evacuate effectively 

and reduce the casualties during the evacuation on offshore platforms. 

Previous research has been conducted on emergency evacuation on offshore platforms. These 

studies mainly focus on the following three aspects. Firstly, the evacuation on offshore platforms 

was investigated using risk assessment methods. For example, a risk assessment model was 

developed for escape and evacuation systems in harsh environmental conditions [3] and a 

methodology was introduced for identifying critical human and organizational factors in the escape, 

evacuation and rescue systems of offshore installations [4, 5]. Secondly, computer technology has 
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been used to simulate the emergency evacuation on offshore platforms [6, 7]. The research in this 

field is mainly divided into two categories: the evacuation simulation using some commercial 

software, such as Fire Dynamics Simulator with Evacuation (FDS+EVAC), Pathfinder, STEPS, 

Building Exodus, and the development of new evacuation models [8]. Thirdly, models have been 

proposed for buildings and other public places [9, 10]. Comparatively, there are very few previous 

studies about evacuation route optimization on offshore drilling platforms, which have unique 

features in terms of fire and evacuation. Furthermore, a limited number of studies have investigated 

the effect of smoke on dynamic adjustment of evacuation routes in offshore platforms. Given the 

risk contribution on offshore platforms, overlooking the impact of smoke spreading on the 

evacuation will lead to significant gaps between theoretical studies and practical scenarios.  

Soft computing techniques including artificial neural networks (ANN), support vector 

regression (SVR) and fuzzy logic (FL), are becoming more and more popular in solving real-

life problems. For example, ANN becomes a research hotspot emerging in the field of artificial 

intelligence [11]. Based on ANN, Taormina used the Lower Upper Bound Estimation method and 

Multi-Objective Fully Informed Particle Swarm optimization algorithm to predict the 

streamflow discharges of rivers [12].  

Computational Intelligence methods including computational intelligence (CI) and 

machine learning techniques, have become a significant tool in production and optimization of 

renewable energies [13]. It is highlighted that some computing techniques are used in exploring 

the evacuation optimization in emergency situations, such as, the Bayesian Network, Particle 

Swarm Optimization (PSO). Some algorithms like the Dijkstra, Floyd, A* algorithm and Ant 

Colony Optimization (ACO) have become more and more popular. Among them, ACO has the 

advantages of having a distributed parallel mechanism, strong adaptability and easy combination 

with other algorithms. However, the traditional ACO cannot be used to study the dynamic impact 

of fire on the routes. Therefore, it is modified to consider the real-time impact of fire, which can be 

used to adjust the optimal route dynamically according to the spread of smoke. The paper is 

organized as follows. In Section 2, FDS, ACO and their applications in fire and evacuation are 

reviewed. The concept of equivalent length is integrated with the road network model to study the 

influence of smoke spreading on evacuation in Section 3, and the influences of smoke temperature, 

visibility and carbon monoxide (CO) concentration are taken into account to determine the optimal 

evacuation route in fire scenarios. The methodology and its new features are demonstrated in a real 

case study in Section 4 before the conclusion in Section 5.  

2. Literature review 

2.1 Applications of FDS for evacuation in fire scenarios 

There are some reported research findings on fire or evacuation separately. Recently, researchers 

have also studied the evacuation in fire scenarios. It is impossible to carry out any experiments invovling 

evacuees in any burning buidling, thus, computational tools, like fire models tend to be the best choice 

[14]. FDS is a field model-based software tool for computational fluid dynamics developed by the National 

Institute of Standards and Technology (NIST) [15, 16]. It has been widely used in the field of fire studies 

and has been verified and improved by a large number of experiments [17, 18].  

FDS has often been integrated with evacuation models to study the evacuation in fire scenarios. 

EVAC is an evacuation module based on the social force model integrated in FDS, which can be used to 

simulate the development of fire and the evacuation simultaneously in the fire scenarios. FDS+EVAC 
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was often used to quantify the evacuation process and evacuation efficiency [18-20] or be compared with 

evacuation experiments [21-23]. Building Information Modelling (BIM) has been explored and integrated 

with FDS to evaluate the evacuation in case of fire [14, 24, 25]. Evacuation software tools such as STEPS 

[26], Pathfinder [27] and SIMULEX [28] have also been combined with FDS to study the changes of critical 

factors in fire scenarios and analyze the process of evacuation affected by these factors. 

2.2 Applications of ACO for the optimization of evacuation route 

ACO was proposed initially to solve the Traveling Salesman Problem and has been widely 

used in route optimization. To solve the problem of dynamic change of information and continuous 

uncertainty in the disasters, Yi [29] used ACO to solve the logistics problem arising in disaster relief 

activities and proved the effectiveness of the method. Fang [30] improved the ACO to achieve the 

goals of minimizing the total evacuation time. Considering the distance to the target area, the length 

of waiting area and queue length, Yang [31] used ACO to predict the queue distribution of the 

evacuation process and simulated the evacuation process using FDS+EVAC to verify the accuracy 

of the predicted results. 

While the previous studies focused on minimizing evacuation distance, they failed to take into 

account the dynamic impact of fire (i.e. smoke spreading) on evacuation. In this paper, FDS and 

ACO are integrated for the first time to develop an improved route optimisation algorithm enabling 

the optimal evacuation routing considering the real time impact of fires on offshore drilling 

platforms.  

3. Methodology 

The methodology of developing a new evacuation model is outlined in this section. The steps 

are detailed in the ensuing sections. Firstly, the road network model of an offshore platform is 

established using ArcGIS. ArcGIS is used for compiling geographic data, analyzing mapped 

information and managing geographic information in a database. Secondly, FDS is used to simulate 

the offshore platform fire and then the simulation data is incorporated into the proposed road 

network model. Thirdly, the traditional ACO is improved and applied in the offshore platform fire 

evacuation by taking into account the dynamic impact of fire.  

3.1 Dynamic evacuation route optimisation model 

At present, the most widely used GIS series software in the world is ArcGIS, which has a world 

market share of more than 85% with relatively perfect functions and stable performance. ArcGIS 

has the advantages of spatiotemporal data management, spatial query and analysis functions. 

Furthermore, it can be combined with computer simulation technology to study the evacuation of 

evacuees in the building. Therefore, ArcGIS is adopted to establish the road network model of an 

offshore platform in this section. The evacuation route optimisation model for the fire scenarios of 

offshore platforms is developed using VS2010 and ArcGIS as shown in Fig.1, which includes four 

parts. Part1 includes a common function of a GIS map, such as zooming in and out of the map. Part2 

is used to display the spreading of smoke and the real-time route optimisation results, which 

provides a visualized disaster situation for the emergency decision makers. The red colour indicates 

impassable routes (level 1), the orange colour indicates higher danger at level 2, the yellow colour 

reveals lower danger at level 3 and the black colour means safe (level 4). In Part3, when the starting 

and ending points are set up, the optimal evacuation route, the equivalent length of route and the 

required safe egress time can be determined. Part4 can be used to display the layer and classification 

information relating to the current road network. 

https://www.sciencedirect.com/topics/engineering/building-information-modeling
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Fig.1 Evacuation route optimisation system 

3.2 Fire simulation of offshore platforms 

In this section, FDS software is adopted to establish the physical model of an offshore drilling 

platform (e.g., one in Nan Hai China). The software solves numerically a form of the Navier-Stokes 

equations appropriate for low-speed, thermally driven flows, with an emphasis on smoke and heat 

transportation from fires. The thermal properties of the surface materials are defined and the internal 

structural features are simplified to form a simplified physical model as shown in Fig.2. 

 

Fig.2 Physical model of an offshore platform 

For simulations involving buoyant plumes, a measure of how well the flow field is resolved 

given by the non-dimensional expression 𝐷∗/𝛿𝑥 
[32]. 

D∗ = (
Q̇

ρ∞cpT∞√g
)

2
5

(1) 

4 ≤
D∗

𝛿𝑥
≤ 16 (2) 

where, 𝐷∗ is the characteristic diameter of the fire source (m), 𝛿𝑥 is the nominal size of a mesh 
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cell (m), �̇� is the total heat release rate of the fire source (kW), 𝜌∞ is the air density (kg/m3), 𝑐𝑝 

is the thermal capacity of air (J/K), 𝑇∞ is the ambient air temperature (K) and g is gravitational 

acceleration (m/s2).                           

The quantity 𝐷∗/𝛿𝑥  can be considered as the number of computational cells spanning the 

characteristic diameter of the fire, which should range between 4 and 16 according to the validation 

study sponsored by the U.S. Nuclear Regulatory Commission [33]. To ensure that 𝐷∗/𝛿𝑥 varies from 

4 to 16, 𝛿𝑥 should range from 0.2 to 0.8m. Therefore, a relatively coarse mesh (0.8 m × 0.8 m × 0.8 

m) was built firstly, and then gradually refined until no appreciable differences can be seen from the 

results. Based on the mesh independent tests, the mesh around the oil pool is determined as 0.25 m 

× 0.25 m × 0.25 m and in the remaining part 0.5 m × 0.5 m × 0.5 m.  

The computational domain refers to an external volumetric region that surrounds the offshore 

platform model, where the basic flow equations are solved. A key factor that influences the accuracy 

and computational expense of FDS simulations is the size of the computational domain. The effect 

of the computational domain on FDS simulation results is investigated with a series of sensitivity 

studies.  

Thermocouples are designed in the downwind direction to record the temperature data for 

different computational domains. As shown in Fig.3, the thermocouples are set on the south side of 

the platform considering the north wind is the dominant wind direction all year round. 

 

Fig.3 Schematic diagram of thermocouples arrangement 

Different computational domains, such as twice/ 3-times/ 4-times/ 5-times/ 6-times the height 

of the platform are considered here. The temperature profiles with different domain heights are 

shown in Fig.4 (a). It can be observed that the distribution of temperature for twice, 3-times and 4-

times the height of the platform has a large gap with 5-times and 6-times. Therefore, 5-times the 

height of the platform is selected for further study to be the suitable computational domain in Z 

direction.  
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(a) Z direction 

 

(b) Y direction 

Fig.4 Temperature for different simulation domains 

Computational domains with 1-time/ twice/ 3-times/ 4-times the width of the platform are 

compared. The temperatures for different computational domains in Y direction are shown in Fig.3 

(b). From Fig.3 (b), the distribution of temperature for 1-time the width of the platform has a large 

gap when compared with twice/ 3-times/ 4-times the width of the platform. Therefore, twice the 

width of the platform is determined in Y direction. In summary, 5-times the height and twice the 

width of the platform are selected to be the suitable computational domain in Z and Y directions. 

For the boundary conditions, ambient temperature is 15℃ and the relative humidity is 60%. 

The surface type of all the mesh boundary is defined as “Open”. The simulation time is set 650s. 

The properties of the materials used in the case study are shown in Table 1 [32, 34-36]. 
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Table 1. Properties of the materials used in the simulation model 

 Concrete Steel Crude oil 

Emissivity [-]  0.85 0.80 0.85 

Density [kg/m3]  2300 7850 830-880 

Specific heat capacity [kJ/kg∙K]  1.05 0.60 2 

Heat conductivity [W/m∙K]  1.40 45 0.14 

Heat of combustion [kJ/kg]  - - 42.6 

Based on the statistical analysis of fire accidents in the Gulf of Mexico reported by the Bureau 

of Safety and Environmental Enforcement [37], the fire scenario with the highest frequency is that 

the crude oil in the pipeline leaks in the equipment area of the lower-deck, causing pool fire. Because 

the fire development growth rate of oil pool fire belongs to the ultrafast fire of the t2 fire model, the 

t2 fire model is adopted here to effectively describe the characteristics of the oil pool fire [38]. In the 

t2 fire model, the heat release rate is assumed to be proportional to the square of the burning time: 

Q(t) = αt2 

where: 

Q = the heat release rate of the fire at any time (kW); and 

α = the coefficient for t2 fire is fuel dependent, 0.1876 (kW/s2). 

The value of α can be selected according to Table 2.  

 Table 2. The value of α 

Description Value of α (kW/s2) 

Slow 0.00293 

Medium 0.01172 

Fast 0.0469 

Ultrafast 0.1876 

High-temperature smoke may cause panic and reduce the judgment ability of evacuees. 

According to the relevant literatures [39], temperature [40], visibility [41] and CO concentration [42] are 

defined as the key risk indexes. The hazards of various factors are divided into 4 levels [39] and the 

critical values are determined as shown in Table 3, which is used to define the status of the 

evacuation route. 

Table 3. Hazard Classification of Influential Factors 

Hazardous 

factors 

Safe Dangerous More Dangerous Extremely Dangerous 
Critical 

value 
Level 4 Level 3 Level 2 

(Causing death) 

Level 1 

Temperature/℃ <42 42~65 65~100 >100 65 

Visibility/m >20 5~20 1~5 <1 5 

CO/% <0.08 0.08~0.16 0.16~0.32 >0.32 0.16% 

3.3 Evacuation route optimisation algorithm  

The fire spreads rapidly on offshore platforms because there are many ignitable materials. With 

the spreading of smoke, some evacuation routes are not accessible. In this section, an improved 

ACO is developed to supply guidance for personnel to evacuate according to the dynamic spreading 

of smoke.  

In the equation, 
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𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘: Location nodes to be visited by ant k positioned on point i; 

𝜏𝑖𝑗(𝑡) : Pheromone concentration between two points; 

𝜂𝑖𝑗(𝑡) ∶ Heuristic factor, which stands for the visibility of the edge (i, j) between two points; 

𝑑𝑖𝑗 ∶ Distance between two points, m;  

α: Relative importance of pheromone concentration 𝜏𝑖𝑗(𝑡); and 

β: Relative importance of heuristic factor 𝜂𝑖𝑗(𝑡). 

Pheromone on the route will be updated. The route selected by the ant who found the feeding 

source is compared with the existing optimal route. If the new route is better than the old one, the 

optimal route will be updated, and the pheromone on the new route will be updated according to the 

pheromone update rule. When all ants complete a search, the pheromone concentration on each 

route is adjusted according to the following equation. 

(3) Termination criteria: If the maximum number of iterations has been reached, the algorithm 

terminates and the optimal route is obtained. 

3.3.1 Improved ACO for Fire Scenarios 

The traditional ACO cannot reflect the influence of smoke. In the fire scenarios, the available 

route of an offshore platform varies with time under the influence of fire. Hence, it is necessary to 

improve the traditional ACO to characterize the dynamic influence of fire. 

Because an offshore drilling platform has the characteristics of intensive equipment, numerous 

cabins, limited area and narrow escape route, it is difficult for evacuees to evacuate fast. When one 

chooses the route in the fire scenarios of an offshore platform, he/she should consider not only the 

actual length of the route but also the influence of smoke. There are two-categories of relevant 

influential factors. One is the route-related influential factors, including the width, passable state 

and the type (horizontal escape route and stairway, etc.) of the route, which are known before the 

occurrence of fire. The other is smoke-related influential factors, which are closely associated with 

the dynamic propagation of smoke, including temperature, visibility and CO concentration. 

From the state transition probability equation of the ACO, it can be deduced that visibility 𝜂𝑖𝑗 

is equal to 
1

𝑑𝑖𝑗
 , where 𝑑𝑖𝑗  is the linear distance between the nodes i and j. Obviously, it is 

unreasonable to use a linear distance directly to calculate the state transition probability in the fire 

scenario, thus, it is necessary to improve the calculation equation of linear distances when taking 

into account the real-time influence of smoke.  

In this research, the concept of equivalent length is incorporated into the state transition 

probability equation to characterize the influence of the above two types of factors on the evacuation. 

𝑊𝑖𝑗 represents the equivalent length of the route between nodes i and j. 𝑊𝑖𝑗 is calculated as follows: 

𝑊𝑖𝑗 = (𝑘𝑔𝑖𝑗  𝑘𝑣𝑖𝑗) 𝑑𝑖𝑗 （3） 

where, 

 𝑊𝑖𝑗 : the equivalent length of route, m; 

 𝑘𝑔𝑖𝑗 : the route influential coefficient; 

 𝑘𝑣𝑖𝑗 : the smoke influential coefficient; and 

 𝑑𝑖𝑗  : the actual length of the route, m. 

The route influential coefficient is calculated as follows [43]. 

𝑘𝑔𝑖𝑗 =
𝑀𝑔𝑣0𝑠𝑖𝑛𝜃𝑖𝑗

𝑃0
+ cos𝜃𝑖𝑗 

（4） 

where, 
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M: the mass of the human body (M = 80kg in the case of a male adult); 

g: the acceleration of gravity, m / s2;  

𝑣0 is the normal velocity, m/s (𝑣0=1.2m/s in the case of a male adult); 

𝜃𝑖𝑗: Angle of inclination, degree; and 

𝑃0: Mobility (𝑃0 = 200 W in the case of a male adult), W; 

The smoke influential coefficient is calculated as follows [42, 44]. 

𝑘𝑣𝑖𝑗 = (1 + 𝐿𝑟 + 𝑤𝑐𝑜 + 𝐿𝑇) （5） 

where, 

 𝐿𝑇: The temperature influential coefficient; 

 𝐿𝑟 : The visibility influential coefficient; and 

 𝑤𝑐𝑜: The toxicity influential coefficient.  

 The influence of temperature on the evacuation velocity in the fire scenarios was studied 

through a series of experiments and deduced the equation for calculating the temperature influential 

factors [45]: 

𝑓1(T) =

{
 
 
 

 
 
 

1,                                             𝑇𝑠 ≤ 40℃

(𝑣𝑚𝑎𝑥 − 1.2) (
𝑇𝑠 − 𝑇𝑐1
𝑇𝑐2 − 𝑇𝑐1

)
2

1.2
+ 1,             40℃ < 𝑇𝑠 ≤ 65℃

𝑣𝑚𝑎𝑥
1.2

[1 − (
𝑇𝑠 − 𝑇𝑐2

𝑇𝑑𝑒𝑎𝑑 − 𝑇𝑐2
)
2

],              65℃ < 𝑇𝑠 ≤ 100℃

0,                                                𝑇𝑠 > 100℃

 

（6） 

where, 

vmax: The max movement speed of evacuee, m/s;  

Ts: Environment temperature, ℃; 

Tc1: Temperature at which evacuee feel uncomfortable, ℃.; 

Tc2: Temperature at which evacuee are injured, ℃; and 

Tdead: Temperature at which evacuee are dead, ℃. 

The temperature influential coefficient is 𝐿𝑇 =
1

𝑓1(T)
− 1. 

To study the influence of visibility, a number of experiments were carried out [45] and the 

equation of the visibility influential factor was deduced as follows [46]: 

𝑓2(k) = {
1

−0.618𝑘−0.26

0.1

𝑘 ≥ 20
1 ≤ 𝑘 < 20
𝑘 < 1

 

 

（7） 

where，k: visibility, m; and 

Visibility influential coefficient 𝐿𝑟 =
1

𝑓2(k)
− 1. 

Smoke contains a large amount of toxic and harmful gases due to incomplete combustion, 

while the most dangerous component is carbon monoxide (CO). The influence of carbon monoxide 

concentration is characterize by the following equation [37, 44]: 

𝑓3(c) = {
1

1 − (0.2125 + 1.788𝑐) · 𝑐 · 𝑡
0

𝑐 ≤ 0.1
   0.1 < 𝑐 < 0.32

𝑐 ≥ 0.32
 

 

（8） 

The toxicity influential coefficient is  𝑤𝑐𝑜 =
1

𝑓3(c)
− 1 
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where: 

 𝑐: Carbon monoxide concentration (%); and 

t : Exposure time of evacuee, s. 

The total smoke influential coefficient is calculated using Eq.9. 

𝑘𝑣𝑖𝑗 = (1 + 𝐿𝑟 + 𝑤𝑐𝑜 + 𝐿𝑇) = (
1

𝑓1(T)
+

1

𝑓2(k)
+

1

𝑓3(c)
− 2) 

（9） 

The heuristic factor is obtained using Eq.10. 

𝜂𝑖𝑗 =
1

𝑊𝑖𝑗

=
1

(𝑘𝑔𝑖𝑗  𝑘𝑣𝑖𝑗) 𝑑𝑖𝑗
 

（10） 

The transition probability is obtained using Eq.11.  

𝑃𝑖𝑗
𝑘(𝑡) =

{
 
 

 
 𝜏𝑖𝑗

𝛼 (𝑡)(
1

（𝑘𝑔𝑖𝑗  𝑘𝑣𝑖𝑗）𝑑𝑖𝑗
)𝛽(𝑡)

∑ 𝜏𝑖𝑠
𝛼(𝑡)𝜂𝑖𝑠

𝛽
(𝑡)𝑠∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

, j ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0                       , otherwise

 

（11） 

 

The optimal evacuation route between h and j (safety location) should satisfy the following 

objective function. 

𝐹 = {
0

𝑚𝑖𝑛 𝑊ℎ𝑗
     
(ℎ = 𝑗)
(ℎ ≠ 𝑗)

 
（13） 

3.3.2 Significance of Ant Colony Optimisation Parameters 

The relevant parameter settings of ACO affect the final results directly. A reasonable parameter 

setting can not only improve the calculation efficiency, but also ensure the quality of the optimal 

solution. As there is no exact mathematical calculation formula for the relevant parameters of the 

ACO method available, some data is preliminarily set based on the literatures and a series of tests 

are carried out to analyze the influence of each parameter on the optimisation performance. In these 

sensitivity tests, based on the optimal parameter setting determined by Marco Dorigo’s experiments 

[53], the initial values are set as: N = 90 (N is the number of ants),α = 1  (α  is the heuristic 

factor),β = 2 (β is the expected heuristic factor), ρ = 0.3 (ρ is the Pheromone volatilization 

factor)，Q=1000 (Q is pheromone intensity) [47, 48]. Because the ACO method is a heuristic algorithm, 

the results have a certain degree of randomness, and multiple experiments should be carried out to 

reduce the error caused by this contingency. One parameter is changed in each group and the 

simulation is run for 10 times, then the average value is taken. The road network model of the 

offshore platform in Fig. 1 is taken as an example for testing, the same starting and ending points 

are defined for all the tests. The starting point (node 25) is the equipment area in the middle of the 

lower deck and the end point (node S1) is the lifeboat assembly area. 

(1) Influence of ants’ number (N) on the algorithm performance  

Ants cooperate with each other to find the optimal route. The route selected by each ant is a 

sub-scheme of the feasible solution sets. The number of ants directly affects the quality of the 

optimal solution. Therefore, the global optimisation capability and stability of the algorithm can be 

improved by increasing the number of ants. However, when the number is too large, the pheromone 

concentration on the searched route will tend to be average, and the positive feedback effect will be 

weakened and the operating efficiency of the algorithm is therefore reduced. Oppositely, the number 

should not be too small; otherwise, it will reduce the search accuracy of the algorithm and the global 

optimisation ability. The influence of the ant number is shown in Fig.5. 
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Fig.5 The effect of ant number on experimental results 

From Fig. 5, it can be seen that when N < 120, the global optimisation ability of the algorithm 

is weak, and it is easy to fall into the local optimum. As the quantity of the ants continues to increase, 

the global optimisation ability of the algorithm is gradually improved with a marginal effect when 

N is over 160.  

(2) The impact of α on algorithm performance 

The heuristic factor α reflects the influence of the pheromone concentration on the route finding 

process. Normally, the larger α is, the more significant the influence of the pheromone on the route 

finding process. If α is too small, the positive feedback effect will be weakened, the sensitivity of 

ants to the pheromone on the route will be lower and the randomness of the route chosen by the ants 

will be increased, which will reduce the computational efficiency of the algorithm. The ants tend to 

choose a route with a higher pheromone concentration. The influence of the heuristic factor on the 

optimisation results is shown in Fig.6. 
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Fig.6 The effect of 𝛂 on optimisation results 

As Fig.6 shows, when α is less than 0.8, the positive feedback effect is weak, and the 

optimisation ability of the algorithm is not strong. When α is greater than 1.6, the positive feedback 

effect is enhanced. However, the possibility of stagnation or premature convergence increases, and 

it is easy to fall into a local optimum. Therefore, the value of [0.8, 1.4] is more rational for α. 

(3) The impact of β on algorithm performance 

β is the expected heuristic factor, which mainly reflects the guiding effect of route information 

on the optimisation process. It has important influence on the performance of ACO. The larger the 

β is, the more the ants are affected by the route information, and the higher possibility that the ants 

choose the local optimum. The influence of the expected heuristic factor is shown in Fig.7. 
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Fig.7 The effect of β on optimisation results 

From Fig.7, it can be seen that the route information has a less influence on the ants, and the 

computational efficiency of the algorithm is reduced when β is small. When β is too large, the 

calculation efficiency is improved, but it is prone to premature phenomenon. Therefore, the value 

of [2.8, 4.8] is rational. 

(4) The impact of ρ on algorithm performance 

Pheromone volatilization factor ρ has a direct impact on the global search ability and 

convergence speed. If ρ is too small, the pheromone concentration on each route is similar, the 

positive feedback effect of information is lower. As a result, the calculation efficiency of the 

algorithm may be lower. Conversely, if ρ is too large, although the calculation efficiency can be 

improved, it reduces the algorithm's random searching ability and increases the possibility of the 

algorithm falling into a local optimum. The influence of the pheromone volatilization factor on 

optimisation results is shown in Fig.8. 
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Fig.8 The effect of ρ on optimisation results  

From Fig.8, when ρ is small, because the pheromone concentration difference of each route is 

not large, the ants have a certain degree of blindness when choosing a route, and it is easy to fall 

into a local optimum. When ρ is larger, the global search ability is improved, but the information 

interaction between ants is weakened. Therefore, the value of [0.3, 0.5] is appropriate for ρ. 

(5) The impact of Q on algorithm performance 

The pheromone intensity Q has important influence on the positive feedback performance. The 

larger the Q is, the faster the accumulation of pheromone. The positive feedback effect is therefore 

enhanced. However, if Q is too large, the global optimisation capability will reduce due to excessive 

positive feedback. The influence of the pheromone intensity Q on the optimisation results is shown 

in Fig.9. 
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Fig.9 The effect of 𝐐 on optimisation results 

From Fig.9, it can be seen that the calculation performance is unstable when Q is greater than 

800. The value of [400, 800] is appropriate. In light of the above analysis, the optimal setting of the 

ACO parameters for the proposed road network model are summarized in Table 4. 

Table 4. ACO parameter settings 

Ants’ number N 
Heuristic factor 

α 

Expected 

heuristic factor 

β 

Pheromone 

volatilization 

factor ρ 

Pheromone 

intensity Q 

160 1.1 3.6 0.4 600 

3.4 Validation of the proposed route optimization algorithm 

 In order to validate the proposed route optimization algorithm that can be used to dynamically 

adjust and optimize the routes according to the spread of fire smoke, the following case study is 

designed. Firstly, the road network model of the lower deck is taken. Secondly, the optimal route 

from the exit of the NW3 stairway to the SE3 stairway is found without fire. Then the fire smoke 

data is loaded to determine the optimal route between the two nodes at different times. The route 

optimization results are shown in Fig.10. 

 

(a) Optimal evacuation route without considering the impact of fire 
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(b) Optimal evacuation route at 30s after the fire occurs 

 
(c) Optimal evacuation route at 60s after the fire occurs 

Fig.10 Verification of the proposed optimization algorithm 

 From Figure10(a), the optimal route from node 6 to node 46 is 6->11->12->23->24->25->26-> 

27->28- >46 , its equivalent length is 75m without considering the influence of fire smoke. After 

the smoke data is loaded, the danger of route 24->26 is increased and the improved ant colony 

algorithm is used to re-plan the optimal route as shown in Figure 10 (b). The optimal route from 

node 6 to node 46 changes to 6->11->12->10->18->19->20->27->28->46, avoiding the dangerous 

route 24->26. Its equivalent length is 75m. As the fire spreads, some routes are unavailable. The 

route is optimized again at 60s after the fire occurs as shown in Figure 10(c). The optimal route from 

node 6 to node 46 changes to 6->7->5->8->9 ->15->16->21->28->46, the equivalent length 

becomes 98.4m. This validates the feasibility that the proposed route optimization algorithm can be 

used to consider the effects of smoke on evacuation routes. 

4. A case study and result discussions 

4.1 Road network of an offshore platform in Nan Hai China 
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Fig.11 Road network of an offshore platform 

In this section, the road network model of the offshore platform in Section 3.2 is established 

using the graph theory method. As shown in Fig.11, the model is mainly composed of nodes and 

routes. The key equipment points and the intersections of two routes are defined as nodes. The edge 

between two points represents the route. 

4.2 Fire simulation  

In this section, the t2 fire model is adopted to effectively describe the development 

characteristics of fire. For the crude oil, the value of soot production should be set as 0.097, and the 

other fire source parameters are shown in Table 5 [41]. 

Table 5. Parameter settings of fire source 

Diameter of leakage 

source, mm 

Release rate, 

kg/s 

Pool diameter, 

m 

Pool area, 

𝑚2 

Combustion mass 

loss rate, 𝑘𝑔/

（𝑚2 ∙ 𝑠） 

Fire 

development 

time, s 

50 24.5 4.62 21.34 0.098 323 

4.2.1 Smoke propagation 

The smoke propagation at different times after the start of a fire is shown in Fig.12. 

  

25s after the start of the fire 90s after the start of the fire 
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190s after the start of the fire 600s after the start of the fire 

Fig. 12 Smoke propagation of the offshore platform 

It can be seen that the smoke begins to spread from the oil pipeline to nearby equipment on the 

lower deck after 25s. The rising smoke plume forms above the fire source. The high-temperature 

smoke gradually gathers under the mezzanine deck and begins to spread around. At approximately 

90s, the smoke extends to the boundary of mezzanine deck and begins to spread to the other areas 

of mezzanine deck and upper deck. At 190s, the mezzanine deck is filled with smoke and some 

smoke also propagates to the area of the upper deck. Due to the blocking of the firewall, the cabins 

on the east area of the lower deck and mezzanine deck are less affected by the smoke during the 

early stage. However, with the spread of smoke, the cabins on the east area of the two decks were 

almost surrounded by smoke at 600s. Due to the blocking of the firewall, the living area located at 

the open area of the upper deck is less affected by smoke.  

4.2.2 CO Concentration 

In this section, the CO concentration around the stairways of the mezzanine deck and upper 

deck are shown in Fig.13. As shown in Fig.11, SW2 is the south west stairway of the mezzanine 

deck, NW2 is the north west stairway of the mezzanine deck, SE2 is the south east stairway of the 

mezzanine deck and NE2 is the north east stairway of the mezzanine deck. SW1 is the south west 

stairway of the upper deck, NW1 is the north west stairway of the upper deck, SE1 is the south east 

stairway of the upper deck and NE1 is the north east stairway of the upper deck.  

 

(a) CO concentration around each stairway on the mezzanine deck 
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(b) CO concentration around each stairway on the upper deck 

Fig.13 CO concentration around each stairway on the mezzanine deck and upper deck 

From Fig.13, the CO concentration around the north west and south west stairways increases 

rapidly. During the stable stage of fire development, the CO concentration exceeds the critical value 

(0.16%). If the evacuees stay in this environment for a few minutes, they may become injured. The 

CO concentration around the north east and south east stairways is smaller than the north west and 

south west stairways.  

4.3 Optimisation of evacuation route for fire scenarios 

For the case study of the oil pool fire caused by the leakage of the oil pipeline at the lower deck 

of the offshore drilling platform, the influence of smoke spreading on the availability of the 

evacuation route is mainly analysed. Lifeboats are usually selected as the escape tool once fire 

occurs. The evacuation route to the muster station is investigated to obtain the optimal route at 

different times. The road network model of offshore platform is established using ArcGIS software. 

The influential functions and the equivalent length of each evacuation route are determined 

according to the maximum value (such as the maximum temperature, visibility and toxicity) along 

the evacuation routes. Then, the optimal evacuation route can be determined using the improved 

ACO method. 

The optimal evacuation route from the chemical pharmacy area of the lower deck (node 27) to 

the muster station (S1) at different time (0s, 60s and 130s after fire occurs) is shown in Fig.14. The 

optimal evacuation route from the emergency power generation room of the mezzanine deck (node 

93) to the muster station (S1) is shown in Fig.15 at different times (0s, 120s and 300s after fire 

occurs).  

   

0s after fire occurs 60s after fire occurs 130s after fire occurs 
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Fig.14 The optimal evacuation route from the equipment area of lower deck to muster station in fire scenarios 

Starting 

point 

Time/

s 
Optimum route to the muster station S1 

Required safe egress 

time（RSET）/s 

Increment 

rate 

27 

0 
27->26->25->24->23->22->37->42->NE3->NE2->

NE1->147->156->149->150->S1 
128.4 0 

60 
27->28->46->SE3->SE2->SE1->148->155->152->1

51->150->S1 
170.6 32.9% 

130 The node 27 is no longer available —— —— 

93 

0 
93->99->98->97->96->102->NE2->NE1->147->15

6->149->150->S1 
100.3 0 

120 
93->99->98->97->96->102->NE2->NE1->147->15

6->149->150->S1 
106.4 6.1% 

300 
93->99->100->95->101->SE2->SE1->148->155->1

52->151->150->S1 
137.2 36.8% 

From Fig.14 and Fig.15, it can be seen that the equipment area of the lower deck is almost 

engulfed by smoke at 300s after the start of fire. The office area of the mezzanine deck is relatively 

less affected by smoke than the lower deck. At 60s, the route from node 24 to node 56 and the route 

from node 25 to node 56 are already blocked due to the spread of smoke.  

From Table 6, it is known that for the equipment area (node 27 as shown in Fig.11), the optimal 

evacuation route is changed from NE stairway to SE stairway at 60s after the start of fire. For the 

muster station S1, the optimal route becomes 27-28-46-SE3-SE2-SE1-148-155-152-151-150-S1 

and the RSET increases to 170.6s due to the influence of smoke. At 130s after fire occurs, the smoke 

has spread to node 27 and all the route through the node 27 is unavailable. Therefore, it is 

recommended that the evacuees on the equipment area of the lower deck should evacuate before 

130s. The office area of the mezzanine deck is affected by smoke around 120s. The RSET increases 

by 6.1%. With the further spread of the smoke, the optimal evacuation route from node 93 to the 

muster station S1 is changed to 93-99-100-95-101-SE2-SE1-148-155-152-151-150-S1 at 300s after 

the start of fire. The RSET increases by 36.8% considering the influence of smoke.  

   
0s  after fire occurs 120s after fire occurs 300s after fire occurs 

Fig.15 The optimal evacuation route from the office area of mezzanine deck to muster station in fire scenarios  

The detailed optimal evacuation routes at different times are summarized in Table 6. 

Table 6. The optimal evacuation routes taking into account the influence of smoke  
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5. Conclusions and discussions 

The traditional ACO is improved by taking into account the influence of smoke temperature, 

visibility and CO concentration on evacuation. The dynamic optimisation model of the evacuation 

route is proposed by incorporating the real-time propagation of smoke on drilling platforms. The 

purpose is studying the visualization of the influence of smoke on evacuation. It can be tailored to 

cope with evaluations due to fires in other structures.   

The proposed route optimisation algorithm is tested and configured to visualize and optimize 

the evacuation route of an illustrative offshore drilling platform. The case study shows that the route 

optimisation algorithm can be used to adjust the evacuation plan according to the real-time 

propagation of smoke. Therefore, the generic model can be used to aid real-time evacuation 

decisions in fire scenarios. From the case study, the real implications are that when the pool fire 

occurs around the oil pipeline at the lower deck, the equipment area of the lower deck is mostly 

affected by smoke. The office area of the mezzanine deck is relatively less affected at the beginning, 

but the RSET increases due to the influence of smoke.  

FDS simulation of different fire scenarios has been carried out before fire accidents to build a 

database of the offshore drilling platform fire. Once a fire occurs, the fire simulation data of similar 

scenarios is selected to be analysed to determine the optimal evacuation route using the proposed 

dynamic route optimization model in this paper. It will provide the optimal route as fast as possible 

for decision makers to dynamically adjust the emergency evacuation plan and guide the evacuees to 

evacuate as soon as possible. 

There are also some limitations in the current research. Firstly, the approach did not consider 

the different speeds at which evacuees walk while going up the stairs, down the stairs or at a 

horizontal level. Secondly, the total evacuation time including the response time has not been 

investigated. Thirdly, the approach did not take into account the congestion along the evacuation 

routes. The above problems will be further studied to characterize the influence of fire on evacuation 

behaviour and analyse the total evacuation time for all evacuees to assess the fire risk. The accuracy 

of the optimization results for emergency evacuation under fire scenarios will be improved further. 
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