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Abstract 79 

The kidneys, heart and lungs are vital organ systems evaluated as part of acute or chronic toxicity 80 

assessments. New methodologies are being developed to predict these adverse effects based on in vitro and 81 

in silico approaches. This paper reviews the current state of the art in predicting these organ toxicities. It 82 

outlines the biological basis, processes and endpoints for kidney toxicity, pulmonary toxicity, respiratory 83 

irritation and sensitization as well as functional and structural cardiac toxicities. The review also covers 84 

current experimental approaches, including off-target panels from secondary pharmacology batteries. 85 

Current in silico approaches for prediction of these effects and mechanisms are described as well as obstacles 86 

to the use of in silico methods. Ultimately, a commonly accepted protocol for performing such assessment 87 

would be a valuable resource to expand the use of such approaches across different regulatory and industrial 88 

applications. However, a number of factors impede their widespread deployment including a lack of a 89 

comprehensive mechanistic understanding, limited in vitro testing approaches and limited in vivo databases 90 

suitable for modeling, a limited understanding of how to incorporate absorption, distribution, metabolism, 91 

and excretion (ADME) considerations into the overall process, a lack of in silico models designed to predict a 92 

safe dose and an accepted framework for organizing the key characteristics of these organ toxicants. 93 

  94 



1. Introduction 95 

Chemical safety assessment of substances encompasses the assessment of acute and chronic toxicities, 96 

which in turn often includes examination of the adverse effects induced on different organs (e.g., kidney, 97 

heart, lung). In repeated-dose toxicity studies, organs and tissues are investigated to monitor changes (e.g., 98 

physiological, functional and morphological), leading to an adverse effect and to identify organs that are most 99 

affected (i.e., target organs) by a particular chemical [1,2]. Adverse effects on target organs are also relevant 100 

in the context of acute systemic toxicity [3]. Whereas, dysregulations and alterations of complex biological 101 

pathways result in organ toxicity that can occur as a primary effect on a given organ, they can also be a result 102 

of secondary effects in organs and tissues that have a physiological dependence on the primary target [4]. 103 

Use of in silico toxicology (IST) methods to predict organ toxicity can be sustained and advanced by 104 

development of IST protocols that are formulated to offer a standardized way to exploit in silico methods [5]. 105 

Such a standardization process promotes acceptability of both the methods and the corresponding 106 

predictions by end users, colleagues, collaborators, and regulators as well as provides a means to support a 107 

more transparent analysis of the results. Protocols that describe the integration of in silico methods with 108 

existing experimental data to identify potential genotoxicants [6] and skin sensitizers [7] have been 109 

developed based on the experience of a cross-industry consortium comprising many organizations. 110 

An IST protocol is a description of the in silico prediction workflow within a consistent and well-documented 111 

structure and includes [5]: 112 

 identification of adverse effects or mechanisms to predict alongside the corresponding experimental 113 

data and/or in silico methodologies and approaches to use; 114 

 recommendation on generation of the predictions and on assessment of relevant experimental data; 115 

 indications on the performance of the in silico analysis to generate results including expert review; 116 

 recommendation on the reporting formats to share the results and the corresponding uncertainties. 117 

An IST protocol then consists of the definition of experimental data and in silico methodologies associated 118 

with each effect or mechanism, the definition of rules underlying the combination of information, the 119 

definition of expert review guidelines, and the definition of a documentation guideline (see Figure 1). Hence 120 

the development of an IST protocol first requires the definition of an assessment framework that outlines 121 

how to integrate data originating from different sources, e.g., in vivo and alternative methods including in 122 

silico predictions. A basic assessment framework has been drafted and proposed for liver toxicity and this is 123 

shown in Figure 2 [8]. The current work is a preparatory step for the development of IST protocols for other 124 

organ toxicities, and more specifically for the development of a framework that integrates in silico methods 125 

predicting potential adverse effects from the molecular structure of chemicals. The focus is on toxicity to 126 

specific organ systems, namely kidney toxicity (i.e., nephrotoxicity or renal toxicity), heart toxicity (i.e., 127 

cardiotoxicity or cardiac toxicity), and lung toxicity (i.e., pulmonary toxicity). It was recently noted that the 128 



term kidney should be preferred over the use of either “renal” or the prefix “nephro-” to generally describe 129 

kidney disease and function especially in non-technical contexts [9]. 130 

The review material collected here provides the basis for identification of endpoints and definition of their 131 

relationships in a mechanistically-informed framework that constitutes the basis for the development of the 132 

IST protocol. These organ systems are reviewed, and this includes a description of organ toxicity along with 133 

processes and endpoints. These are outlined to provide context to what needs to be predicted. Current in 134 

vivo and in vitro methods are generally discussed, as this information is essential to incorporate within the 135 

weight of evidence (WoE) in any hazard assessment in addition to supporting the development of in silico 136 

methods. An outline of the current state of the art in predicting organ toxicity is provided together with a 137 

discussion on what progress is needed to improve such predictions. Finally, the discussion summarizes key 138 

issues to address across all organ systems highlighted. 139 

2. Kidney toxicity 140 

Kidney toxicity (nephrotoxicity) is defined as disease or dysfunction of the kidney caused by chemical insult 141 

following acute or chronic exposure to drugs or xenobiotics [10]. It relates to toxicity to the nephron, the 142 

functional unit of the kidney. The primary functions of kidneys are clearance of waste products from the 143 

blood, maintenance of electrolyte and acid-base balance, regulation of extracellular fluid volume, and 144 

endocrine activity [11–13]. Vulnerability of this organ to chemical injury is related to its specialized role in 145 

the filtration, metabolism, and excretion of exogenous compounds [14,15] resulting in high local 146 

concentration of potentially toxic substances and/or formation of reactive metabolites. 147 

A number of physiological and biochemical factors contribute to renal liabilities. First, the small mass of the 148 

kidney as compared to the resting cardiac output that it receives exposes this organ to high levels of 149 

circulating xenobiotics and of corresponding metabolites mainly produced in the liver [12,16]. Second, the 150 

renal processes of glomerular filtration, tubular reabsorption, and secretion contribute to concentrate 151 

toxicants in the kidneys; glomerular filtration is the first step of production of urine and results in an 152 

ultrafiltrate of the plasma; during tubular reabsorption and secretion, glomerular filtrate passes through the 153 

different segments of renal tubules where filtered solutes and water are reabsorbed, allowing the elimination 154 

of waste products [17]. Importantly, transport proteins play a critical role in concentrating potential toxicants 155 

[16]. Third, kidneys have high energy requirements to maintain their reabsorptive and secretory functions 156 

and this makes them susceptible to oxidative stress, resulting in an imbalance between free radical 157 

production and antioxidant defense [10,11]. This effect is particularly exacerbated in patients with common 158 

systemic diseases such as hypertension, diabetes mellitus and hypercholesterolemia [18,19]. Fourth, the 159 

renal system includes enzymes such as CYP450 and flavin-containing mono-oxygenases that mediate the 160 

metabolic degradation of xenobiotics possibly leading to the formation of reactive metabolites that are 161 

nephrotoxic [12]. 162 



Given the central role of this organ in the filtration and active elimination of foreign compounds, kidney 163 

toxicity may arise from exposure to a wide variety of substances including pharmaceuticals, agrochemicals, 164 

and industrial and environmental chemicals; growing concern is also posed by substances such as herbal 165 

remedies, natural products, and nutritional supplements [12,20,21]. After hepatotoxicity, toxicity to kidney 166 

significantly accounts for drug candidate failure in drug discovery and development; it is also a rather 167 

common problem in standard clinical care [22,23] and it contributes to acute or chronic functional changes 168 

of kidneys [24]. Prolonged cumulative lifetime exposure to chemicals in conjunction with age factors may 169 

accelerate the deterioration of kidney function and lead to chronic kidney disease (CKD) [25]. Exposure to 170 

pesticides has been clearly linked to kidney adverse effects [26,27]. As such, kidney toxicity is a specific 171 

concern in the context of occupational health too. 172 

2.1 Kidney toxicity - Processes and endpoints 173 

The spectrum of kidney toxicity manifestations is wide, and it reflects the diverse damage that can occur 174 

along the different segments of the nephron. Each nephron consists of glomerulus, proximal tubule, loop of 175 

Henle, distal tubule, and collecting duct; the different segments of the nephron comprise cells designed to 176 

perform specific functions and express various transporters and receptors. Notably, drug-induced kidney 177 

injuries frequently affect the proximal tubules, and it results in acute or chronic functional changes as a 178 

consequence of their key function in glomerular filtrate concentration and drug transport [24,28]. 179 

How toxicants cause injury to the nephron has been extensively studied in the context of drug-induced kidney 180 

injury, highlighting that different mechanisms of toxicity exist with drugs selectively targeting specific cell 181 

types, or non-selectively injuring multiple cell types [29]. Chemically induced kidney injury specifically 182 

depends on the intrinsic nephrotoxic potential of the chemical and the corresponding exposure (dose, route 183 

of administration, duration). A simplistic way to picture progression of kidney toxicity involves a first step 184 

where the foreign substances can undergo metabolic degradation that potentially forms reactive 185 

metabolites; toxic compounds can interact with organelles in the cells, interfere with signaling pathways, and 186 

ultimately lead to cell death and inflammation [30]. Kidney injury may progress to specific diseases including 187 

glomerulonephritis (injury to the glomeruli), acute kidney injury (AKI), CKD, and kidney failure. While AKI 188 

entails an abrupt change in kidney function, CKD is characterized by lasting structural and functional 189 

abnormalities. Kidney failure is defined as the final stage of chronic kidney disease (i.e., the disease stage 190 

where kidneys cannot function on their own). 191 

Notably, oxidative stress is known to play an important role in the development of kidney injury or diseases, 192 

where an imbalance between the generation and elimination of reactive oxygen species can elicit damaging 193 

processes including inflammation, cell death (necrosis or apoptosis), fibrosis, tissue damage, and finally 194 

abnormal kidney function [11,30–32]. 195 



Extensive studies on kidney toxicity for pharmaceuticals have linked the adverse effects of kidney toxicants 196 

to general pathogenic mechanisms (see Table 1) that may be further related to specific molecular and 197 

biological events within the Adverse Outcome Pathway (AOP) construct (see Table 2) [33].  198 

The AOPs associated with kidney toxicity as included in the AOP-Wiki are instead listed in Table S1 of the 199 

supplemental material [34,35], which shows that all of the mechanisms need to be finalized. The AOP-Wiki 200 

is a platform overseen by the Organisation for Economic Co-operation and Development (OECD). 201 

Histopathology-related findings included in preclinical toxicity study reports for regulatory submissions can 202 

be organized in two-level clusters of terms (see Table 3) related to similar findings (and, possibly, similar 203 

mechanisms) [36]. As demonstrated in our sister publication on liver [8], such organization is important for 204 

the development of an assessment framework for kidney toxicity (as outlined in Figure 2), where the 205 

consistent use of defined terminology and ontologies is crucial to map actual data. 206 

Table 1. Pathogenic mechanisms of kidney toxicity [12,33,37–40]. It should be noted that rhabdomyolysis and thrombotic 207 
microangiopathy are two forms of kidney toxicity that have a systemic origin [33]. 208 

Pathogenic mechanisms Details 

Altered intraglomerular 
hemodynamics 

Regulation of intraglomerular pressure is mediated by circulation of 
prostaglandins (vasodilation) and the action of angiotensin-II (vasoconstriction). 
Alteration of glomerular pressure and a decrease of the glomerular filtration 
rate can be promoted by substances with antiprostaglandin activity (e.g., 
nonsteroidal anti-inflammatory drugs) or with antiangiotensin-II activity (e.g., 
inhibitors of ACE receptor or blockers of ARB receptor). 

Tubular injury (proximal and 
distal) 

Tubules, especially the proximal segments, are vulnerable to toxicants that can 
elicit cytotoxicity by affecting mitochondrial function, impairing tubular 
transport, increasing oxidative stress, or favoring free radical formation. 

Nephritis (tubular, interstitial, 
and glomerular) 

Nephritis is inflammation of the kidneys that occurs in glomerulus, renal tubular 
cells, and/or the surrounding interstitium to promote regeneration and repair 
of the kidney injury; unresolved inflammation can progressively lead to renal 
fibrosis and impairment of the kidney function. Nephritis involves both cells of 
the immune system and activation of intrinsic renal cells. 

Tubular obstruction  Insoluble crystals are formed in the nephron tubules, primarily in the distal 
segments, obstructing urine flow and driving disorder in kidney function. 

Rhabdomyolysis Rhabdomyolysis is a syndrome caused by skeletal muscle injury leading to death 
of muscle fibers and release of intracellular contents (myoglobin and creatine 
kinase) into the plasma that in turn induce adverse effects in the kidneys. 

Thrombotic microangiopathy Thrombotic microangiopathy is a vascular issue, where platelet thrombi in the 
microcirculation induce kidney damage.  

 209 

Table 2. Molecular initiating events identified for the pathogenic mechanisms of kidney toxicity [33]. The table shows mechanisms 210 
involving enzymes such as cyclooxygenase (COX) and ornithine aminotransferase (OAT). 211 

Pathogenic mechanism Molecular Initiating Event in the AOP 

Hemodynamic alteration COX-1 and/or COX-2 inhibition leading to reduced prostaglandin 
synthesis and uncontrolled renal vasoconstriction [41,42]. 

Proximal and distal tubular cell 
toxicity 

Mitochondrial toxicity pathways: 
a) Mitochondrial DNA incorporation [43]. 
b) Mitochondrial DNA polymerase gamma inhibition [43]. 
c) Depletion of SH-groups leading to reactive oxygen species (ROS) 
induction [44]. 



Metabolization by oxidase in hepatocyte to benzoquinoneimine, 
followed by formation of GSH (glutathione) S-conjugates [45]. 

Tubular, interstitial, tubulointerstitial 
and glomerular nephritis 

Interaction with hOAT1 and 3, accumulation within proximal tubule 
cells, followed by uncoupling/inhibition of mitochondrial oxidative 
phosphorylation and tubular/papillary necrosis [41]. 

Tubular obstruction OAT interaction causing secretion via proximal tubule cells, 
accumulation and crystal formation in urine leading to concentration 
in renal tissue/tubule and obstructive nephropathy [43]. 

 212 

Table 3. The hierarchical organization used to group histopathology terms of similar findings (and mechanism) for kidney toxicity; 213 
findings were extracted from preclinical toxicity study reports for regulatory submissions [36]. 214 

KIDNEY TOXICITY 

General clusters Specific clusters 

Tissue damage Necrosis 

Degeneration 

Nephropathy 

Inflammatory changes Inflammation 

Infiltration 

Structural alterations Dilation 

Adaption cell size / number 

Accumulative lesions Accumulation 

Vacuolation 

Mineralization 

 215 

2.2 Kidney toxicity - In vivo and in vitro methods 216 

Identification of kidney toxicity traditionally relies on in vivo testing. For pharmaceuticals, kidneys do not fall 217 

within the safety pharmacology core battery and supplemental studies on the renal system are required 218 

when there is cause of concern not addressed by the core battery [46] or repeated-dose toxicity studies 219 

[47].Together with histopathological observations, changes in the kidney function are detected by assessing 220 

clinical markers such as glomerular filtration rate (GFR), blood urea nitrogen (BUN) and serum creatinine (sCr) 221 

[11]. Much effort is underway to identify novel biomarkers that could ideally allow for an early detection of 222 

chemically induced kidney toxicity, differentiate it from other causes, and predict long-term kidney outcome 223 

and mortality; some promising biomarkers include Kidney Injury Molecule-1, Beta-2 Microglobulin, and 224 

albuminuria [16,48]. 225 

Animal models have been challenged by the insufficient level of prediction of kidney failure in humans and 226 

their inadequacy has been linked to the significant differences in expressions of transport proteins and 227 

metabolizing enzymes between species [11,29]. Kinetics needs to be evaluated in a human-relevant system 228 

(including a human-based mathematical model) to adequately assess internal exposure and dose-response 229 

relationships over time. 230 

In vitro screens are also being used to evaluate chemically induced kidney injury, but a standardized approach 231 

is not currently available and existing models are found to be poorly predictive of human kidney toxicity 232 



[29,49,50]. Advanced 3D in vitro models such as organoids and kidney-on-a-chip platforms are emerging to 233 

overcome the limitations of the 2D in vitro assays including  and improve kidney safety assessment [51]. 234 

2.3 Kidney toxicity - Molecular targets 235 

In vitro safety pharmacology profiling panels are used by pharmaceutical companies to investigate organ 236 

toxicity [52].In the safety panel by Bowes and co-workers [53], cyclooxygenase 1 (Cox1) and vasopressin V1A 237 

receptor (Table S2 of the supplemental material) are associated with kidney adverse effects. Additional 238 

molecular targets have been associated with [54], and Tables S3 and S4 of the supplemental material provide 239 

lists of targets derived from a genetic and pharmacological phenotype analysis [55] or other data curation 240 

processes [56], respectively. 241 

2.4 Kidney toxicity - In silico methods 242 

An IST protocol for the identification of potential kidney toxicants needs to account for a draft assessment 243 

framework that includes several types of data as depicted in Figure 3. In terms of hazard identification, 244 

available IST approaches for kidney toxicity are based both on statistical-based (or QSAR) methods [36,57–245 

61] and expert rule-based (or expert/structural alerts) methods [36,62,63]. Such methods are usually built 246 

on either in vivo data (e.g., rat and mouse) or human data, the latter originating in the pharmaceutical sector 247 

from clinical trials or post-marketing surveillance reports. The resulting in silico models must be expected to 248 

be generalistic in their predictive capabilities as the underlying broad database will be based on many 249 

mechanisms of action and potentially many different effects. As such, they may identify compounds with the 250 

potential for kidney toxicity, but the type of adverse effects and quantitative identification of the Point of 251 

Departure (PoD) will be difficult to determine unless detailed analysis is undertaken. In addition, in terms of 252 

risk assessment, since animal models have been challenged as to their ability to adequately predict kidney 253 

adverse effects in humans, particularly if these are driven by kinetics, integrating human data in predictive 254 

models is vital. 255 

The prediction of the general endpoint (i.e., “kidney toxicity”) can be combined with the prediction of other 256 

toxicity subcategories to gain a better understanding of specific adverse effects. An illustration of this was 257 

reported by Matthews and coworkers, who constructed QSAR models based on the adverse events retrieved 258 

from FDA post-market reports. Their models predict six composite endpoints of the urinary tract: acute 259 

kidney disorders, nephropathies, bladder disorders, kidney function tests, blood in urine, and urolithiases 260 

[60]. Even within these groupings, whilst there will be greater homogeneity of mechanisms of action, there 261 

will be variability. It is likely that these QSARs for “groups” of effects will be more localized models, with less 262 

applicability. An “ontology” of some form, which organizes mechanisms linked to effects in a hierarchical 263 

manner, may be required to gain a more comprehensive overview of kidney toxicity and associated 264 

mechanisms. For instance, a good example of this approach is provided by an appropriate hierarchical 265 

clustering of histopathology data (see Table 3) [36]. The advantage of setting out adverse effects related to 266 



the kidney (or any organ level toxicity) is that Amberg and coworkers developed a number of models (i.e., 267 

structural alerts, fragment-based, molecular descriptor-based machine learning approaches) to predict 268 

specific kidney toxicity findings. This modeling approach, also applied in the context of other target organ 269 

toxicities (i.e., liver and heart), indicates that a proper clustering process, and hence grouping 270 

endpoints/effects in a meaningful way, is crucial for a good predictivity. 271 

A number of structure-activity relationships (SARs) are available for kidney toxicity, as well as focusing on 272 

specific biological pathways [33] such as protein binding [64] and mitochondrial toxicity [65,66]. At the 273 

current time, a comprehensive, publicly available, in silico profiler for kidney toxicity is lacking. However, lists 274 

of alerts for kidney toxicity, e.g. from data mining approaches, are available [63]. These alerts are very useful 275 

starting places, although to allow for greater applicability, especially for regulatory approaches, they require 276 

adequate definition and linkage to mechanisms of action.  277 

SAR based alerts can be used in a variety of ways but are generally useful either as direct predictions of 278 

toxicity, i.e., a qualitative estimation, or as a means of grouping to allow for read-across. There are a small 279 

number of published reports of attempting read-across for kidney toxicity and repeated dose toxicity driven 280 

by effects to the kidney. For instance, Fowles and co-workers identified adverse effects to the kidney as a 281 

significant factor in the toxicological assessment of ethylene glycols [67]. Use of metabolomics was 282 

demonstrated to support read-across for organ level toxicity including that to the kidney [68].  283 

In conclusion, there are a variety of in silico approaches that predict kidney toxicity. At the current time there 284 

is no unified approach to toxicity prediction, for instance that may apply generalistic broad QSAR type models 285 

supplemented by more mechanistic models or confirmation through the use of structural alerts. In addition, 286 

little has been performed in terms of ensuring the toxicokinetic component of kidney toxicity is included [69]. 287 

Whilst the current models are satisfactory for prioritisation and possibly hazard identification, an integration 288 

of approaches (including ADME predictions) will be needed for risk assessment. 289 

2.5 Kidney toxicity - In silico approaches: data gaps and issues 290 

In silico models for kidney toxicity bring with them a number of problems and issues to overcome, some of 291 

which are general for all organs, others are specific to kidney. There is no easy way to approach the topic of 292 

modeling kidney toxicity for two fundamental reasons: (1) the complexity of the endpoint and (2) the quality 293 

and relevance of the data to model. Starting with the complexity of the endpoint, clear guidance, or definition 294 

within a model, is required as to what constitutes kidney toxicity, e.g., general toxicity to the kidney, specific 295 

effects within the nephrons or kidney structure, or related adverse effects such as to the urinary tract or 296 

bladder. As noted above, there are a variety of means to obtain information relating to kidney toxicity from 297 

both in vitro and in vivo methods. It is crucial to decide for the modeling approach, what endpoint is to be 298 

predicted. Thus, a general in silico model for the presence of kidney toxicity from in vivo test results, for 299 

instance from a repeat dose experiment, may include a variety of mechanisms of action and apical effects. 300 



Such models should not be discounted, but they may be most appropriate for screening and prioritisation 301 

purposes, i.e., to identify those compounds with a strong probability of causing kidney toxicity. The use of in 302 

vivo data is also made more complex in that it will be difficult to prove a negative test, i.e., there is no adverse 303 

effect on the kidney. This may be because the test was not performed at a sufficiently high dose, or that 304 

other toxicities were observed at lower doses and no account was taken of adverse effects to kidneys. Thus, 305 

the use of such data must be considered for generalistic models. The biomarker and histopathology data are 306 

likely to be important to gain a more detailed approach of potential kidney toxicity. In other words, it is 307 

probable that there will be models based on localised areas of chemistry which may be suitable for risk 308 

assessment provided the quality of the original data is acceptable. The problem of predicting accurately 309 

Points of Departure (PoD) is particularly relevant for kidney toxicity. As noted above, kidney toxicity is largely 310 

driven by toxicokinetics and the ability to accumulate within the kidney. In terms of modeling, to obtain a 311 

PoD predictions will be required not only for relative hazard but also for bioavailability in the relevant 312 

compartment of the kidney, for which data are currently scarce. The use of techniques such as 313 

physiologically-based mechanistic modeling, an extension of PBK, is likely to become increasingly important 314 

to perform adequate risk assessment. There is also an opportunity for physiologically-based mechanistic 315 

modeling to assist in the proper incorporation of inter-species differences, e.g., for the extrapolation of 316 

rodent data to humans. 317 

3. Lung toxicity 318 

The lung is a primary target organ for potential chemically induced damage caused by inhaled material, such 319 

as gases and particles [70–72]; it acts as portal of entry for airborne chemicals into the human body 320 

facilitating gas exchange between blood and air. While pulmonary toxicity refers to toxicity to the lung as 321 

target organ, inhalation toxicity refers to the route of exposure through the respiratory system that includes 322 

the upper respiratory tract (mouth, nose, and pharyngeal region) and the lower respiratory tract 323 

(tracheobronchial region and the pulmonary parenchyma or alveolar region) [70,73]. Since the lung is highly 324 

perfused and receives the total cardiac output to be replenished with oxygen [74], this organ may also be 325 

injured through the vascular system, namely by xenobiotics entering the systemic circulation irrespective of 326 

the route of absorption [75]. 327 

Toxicity to the lungs may be caused by a great variety of chemical agents from intentional or non-intentional 328 

exposure including natural products, industrial chemicals, pesticides, environmental pollutants, combustible 329 

cigarettes, and drugs. Notably, evaluation of the adverse effects to the lungs is of paramount importance in 330 

the acute inhalation studies for hazard identification and characterization of chemicals, including 331 

classification and labelling [76,77]. Lungs are also a prominent target organ for occupational diseases caused 332 

by accidental or prolonged inhalation of xenobiotics. In the context of pharmaceuticals, drug-induced lung 333 

diseases are reported to be a significant subset of adverse drug reactions [78,79] with the most common 334 



form being the so called drug-induced interstitial lung disease (DILD), which is mainly caused by oral and 335 

parenteral administration [80]. Additionally, in the drug discovery and development of inhaled therapies, 336 

toxicity to the lungs represents a challenging hurdle to overcome [81]. 337 

3.1 Lung toxicity - Processes and endpoints 338 

Lung toxicity following inhalation of airborne chemical agents concerns gases and vapors, as well as aerosols 339 

and particulate matter. Central to inhalation toxicity is the concept of dosimetry (rather than exposure 340 

concentration), that seeks to define the amount, rate, and form of a substance delivered to the target tissue 341 

[76,82]. Dosimetry involves evaluation of the deposition, clearance, and translocation patterns within the 342 

respiratory tract, and two key elements have been singled out to influence these patterns: a) respiratory 343 

anatomy and physiology that differs among species; and b) the physico-chemical characteristics of the 344 

inhaled chemical agents [76]. Deposition, clearance, and translocation patterns of particles are affected by 345 

properties such as size, shape, density, hygroscopicity, and surface characteristics [83]. For gases and vapors, 346 

solubility is critical in determining the depth of penetration of the substance; generally, low-water soluble 347 

substances penetrate lower in the respiratory tract [70]. 348 

Toxicity to the pulmonary tissue following inhalation exposure or systemic circulation of xenobiotics 349 

frequently depends on the metabolizing capability of this organ; phase I and II enzymes are involved in the 350 

lung disposition processes and they can catalyze biotransformation reactions resulting in the formation of 351 

toxic metabolites [71,84]. Potential bioactivation of parent compounds in highly reactive intermediates 352 

together with other factors (e.g., preferential exposure or accumulation of the xenobiotics or metabolites in 353 

given sites, specific cellular defense mechanisms) affect the types of lung cells that are injured by chemicals 354 

[71]. 355 

3.1.1 Irritation 356 

Chemically induced transient effects to the lung are referred to as irritation. Irritation is a nonimmunological 357 

state of the respiratory tract that follows inhalation of substances at doses that cause inflammation [85]. 358 

Within the EU classification and labelling (C&L) perspective, the European Chemicals Agency (ECHA) states 359 

that respiratory tract irritation is “a transient target organ effect, i.e. an effect which adversely alters human 360 

function for a short duration after exposure and from which humans may recover in a reasonable period 361 

without leaving significant alteration of structure or function” [86]. For the U.S. Occupational Safety and 362 

Health Administration (OSHA), irritant chemicals cause a reversible inflammation in contrast to corrosive 363 

damage that is permanent and irreparable [87]. Under the Specific Target Organ Toxicity (Single Exposure) 364 

(STOT-SE) of the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), respiratory 365 

tract irritation falls in category 3, namely in the transient target organ effects category, where respiratory 366 

irritant effects (characterized by localized redness, edema, pruritis, and/or pain) impair function with 367 

symptoms such as cough, pain, choking, and breathing difficulties [88]. The OSHA implementation of the GHS 368 



emphasizes that such adverse effects are of short duration after exposure, and do not result in significant 369 

alterations of structure or function following recovery [89]. 370 

Adverse effects related to respiratory tract irritation are grouped into two different forms [85,86,90]: local 371 

cellular damage and effects caused by airborne chemicals that stimulate the peripheral nerve fibers 372 

innervating the respiratory tract from the nose to the alveoli (sensory irritation) [91]. Inhaled substances 373 

interacting with the nerve endings of the respiratory tract have been classified by Alarie (2014, 1973) 374 

according to the “first level” of the respiratory tract at which they act as the exposure concentration increases 375 

from zero [90]. Sensory irritants, when inhaled via the nose, stimulate the trigeminal nerve endings, evoke a 376 

burning sensation of the nasal passages, and inhibit respiration. Bronchoconstrictors act on the conducting 377 

airways of the lung and induce an increase in resistance to air flow within the airways. Pulmonary irritants 378 

stimulate the nerve endings within the lung, increase the respiratory rate, and decrease tidal volume (rapid 379 

shallow breathing). According to the “by-first-level-of-action” classification by Alarie, respiratory irritants 380 

interacting with peripheral nerve fibers can act as a sensory irritant, a bronchoconstrictor, and a pulmonary 381 

irritant and they are capable of all three actions; there is little difference between the concentrations at 382 

which they induce an effect at the three levels: nose, conducting airways, and deep lung. Physico-chemical 383 

properties of the inhaled substances play a role in the Alarie classification: highly water soluble and/or 384 

reactive chemicals (e.g., formaldehyde) affect the upper airways while less water-soluble compounds deeply 385 

penetrate the lung and affect the lower respiratory tract [90].  386 

3.1.2 Sensitization 387 

In contrast to respiratory irritants, respiratory sensitizers lead to hypersensitivity of the airways following 388 

inhalation [88], an immune-mediated response to an otherwise innocuous antigen [94]. The immune-389 

mediated hypersensitivity reactions are referred to as chemical respiratory allergy [95], and include two 390 

steps. The first phase is sensitization (induction) involving the development of specialized memory cells in 391 

the immune system of an individual following initial exposure to the respiratory sensitizer. The second phase 392 

is elicitation when, on repeated exposure, the heightened immunological responsiveness can provoke allergic 393 

reactions resulting in clinical manifestations such as asthma and rhinitis [95]. The number of chemicals 394 

confirmed with the potential to cause allergic sensitization of the respiratory tract are relatively low (less 395 

than a hundred) in contrast to the hundreds to thousands of confirmed dermal sensitizers [96]. Many dermal 396 

sensitizers have not been regarded as respiratory sensitizers and there are examples of respiratory allergens 397 

that have no potential to cause skin sensitization [97]. Commonly it was assumed that inhalation exposure 398 

was necessary for respiratory sensitization, but there is evidence that respiratory sensitization might also 399 

result from dermal exposure [98,99]. While there are similarities in the biological pathways that lead to the 400 

acquisition of dermal and respiratory sensitization, the differences are important to note. Respiratory 401 

sensitizers preferentially bond lysine and result in a cytokine profile that favors the generation of a T helper 402 

2 (Th-2) response as opposed to a T helper 1 (Th-1) response with skin sensitization [99]. Furthermore, the 403 



Th-2 response promote IgE antibody production but the role of the IgE antibody in respiratory sensitization 404 

remains uncertain  [100]. 405 

3.1.3 AOP 406 

In the context of inhalation toxicity, a field tightly bound to lung toxicity, important global efforts are being 407 

undertaken to advance the use of alternatives methods and promote their global regulatory acceptance 408 

[76,77] and mechanistically-informed Integrated Approaches to Testing and Assessment (IATA) are being 409 

developed using the Aggregate Exposure Pathway (AEP) and AOP frameworks. Table S5 of the supplemental 410 

material lists some AOPs specifically targeting the lung as listed in the AOP-Wiki [34,35]. All of these AOPs 411 

needs further development. 412 

3.2 Lung toxicity - In vitro and in vivo methods 413 

Toxicity to lung can be induced by inhaled substances and several OECD Test Guidelines (TGs) provide the 414 

framework to measure the adverse effects in the upper part and lower part of the respiratory tract following 415 

inhalation exposure. More specifically, inhalation studies are conducted in animals and include tests for acute 416 

inhalation toxicity with death as endpoint (TG 403 [101], TG 436 [102], tests based on clear signs of toxicity 417 

as endpoint (TG 433 [103]), and repeated-dose inhalation testing (TG 412 [104], and TG 413 [105]) 418 

[76,77,106]. For pharmaceuticals, adverse effects to the respiratory tract are identified at a relatively late 419 

phase during the comprehensive pre-clinical assessment undertaken during in vivo toxicity studies [81]. 420 

Inhalation in vivo studies using rodents must account for significant species differences (e.g., different 421 

nasal/pharyngeal anatomy and obligate nose breathing) and translation of results to humans needs to be 422 

critically evaluated [107].  423 

Inhalation toxicology studies are increasingly taking advantage of the 3D in vitro models (e.g., organ-on-chip, 424 

organoids) that better reflect cell interactions in their natural environment as compared to traditional 2D in 425 

vitro assays [108–111]. However, it is important when using these more sophisticated 3D tissues to mimic 426 

the in vivo exposure route with a more relevant exposure system to dose at the air/liquid interface [112,113]. 427 

3.2.1 Irritation 428 

Whilst inhalation studies provide information related to respiratory irritation, in vitro methods that address 429 

lung irritation are limited compared to other organs (skin and eye). The use of cytotoxicity as a surrogate to 430 

investigate irritation is widely accepted in the development of in vitro models to predict irritation potential 431 

of chemicals [114,115]. Neilson and co-workers took this approach to develop an in vitro 3D airway tissue 432 

model to assess the potential irritancy of e-cigarette aerosols compared to cigarette smoke [116]. The Alarie 433 

test assesses the sensory irritation potential by measuring the inhaled concentration of a substance 434 

necessary to cause a 50% reduction in the respiratory rate in mice allowing for the quantification of irritating 435 

concentrations and ranking of chemicals for their sensory irritancy potential [117]. Sensory irritation is 436 



frequently identified as a critical endpoint for setting occupational exposure limits [118,119]. Notably, there 437 

is no generally accepted in vitro model for assessing respiratory irritation [119]. 438 

3.2.2 Sensitization 439 

To date, no in vitro/in vivo test methods have been validated for the assessment of respiratory sensitization 440 

and test methods used for skin sensitization hazard assessment are employed as a surrogate for respiratory 441 

sensitization [86,98,120]. Of these, the Direct Peptide Reactivity Assay (DPRA) and Amino Acid Derivative 442 

Reactivity Assay (ADRA) both assess activation of the molecular initiating event (MIE), covalent modification 443 

of proteins. While respiratory sensitizers preferentially bind to lysine (a comparatively hard nucleophile), this 444 

selectivity is not absolute, and reactivity with cysteine also occurs with some respiratory sensitizers [121]. 445 

However, in more recent studies [122], the preference for lysine binding was not as apparent, but the use of 446 

the DPRA assay was still deemed useful within the testing strategy. The Local lymph Node Assay (LLNA) and 447 

Guinea Pig Maximization Tests (GPMT) also supports the weight of evidence assessment of respiratory 448 

sensitization [98,123]. Dermal exposure to a respiratory sensitizer triggers an immunological effect that could 449 

be detected in methods that assess skin sensitization; it is not possible to distinguish between the respiratory 450 

and dermal effects using standard methods. As such, a negative LLNA result is part of the evidence in support 451 

of a negative assessment for respiratory sensitization [100,123], although the possibility of false negatives 452 

needs to be considered carefully [124]. Modifications to the LLNA allow for cytokine profiling which can 453 

distinguish between the Th2 versus Th1 response types following either dermal or inhalation exposures [86]. 454 

Total IgE measurements have also been used to support an assessment of respiratory sensitization. None of 455 

these approaches, however, are validated or standardized. Additional experimental approaches that may 456 

support a weight of evidence assessment of respiratory sensitization could be found in the ECHA guidance 457 

[86]. 458 

3.3 Lung toxicity - Molecular targets 459 

The molecular targets associated with lung toxicity as derived from the in vitro safety pharmacology 460 

profiling panel of 44 targets discussed by Bowes and coworkers [53] are listed in Table S6 of the 461 

supplemental material. Additional molecular targets associated with liabilities to the respiratory system 462 

have been discussed in the literature [54], and Tables S7 and S8 of the supplemental material report some 463 

collections as derived from the analysis of human genetics and pharmacology data [55] and other data 464 

curation processes [56]. 465 

3.4 Lung toxicity - In silico methods 466 

An IST protocol to predict lung toxicity will be based on a draft assessment framework that accounts for 467 

different types of endpoints such as irritation and sensitization and that integrates information from several 468 

sources, e.g., human data, animal in vivo data, specific biologic responses (Error! Reference source not 469 

found.) [5,8] and ADME information (Figure 2). 470 



In silico methods to predict lung toxicity can be sorted according to the type of adverse effects they predict 471 

and thus according to the type of data they are built on, including sensitization, irritation (i.e., cellular 472 

damage, sensory effects), other acute lung injury, and chronic effects (i.e., asthma, fibrosis, chronic 473 

obstructive pulmonary disease). Examples of in silico models are given in Table 4. In silico methods for the 474 

prediction of GHS classes based on acute inhalation toxicity studies address systemic toxicity rather than 475 

specifically pulmonary toxicity.  476 

Several in silico systems have been developed to predict respiratory sensitization including both expert 477 

systems and QSAR models [125–131] with some respiratory sensitization models specifically built on a 478 

dataset of asthmagenic chemicals [132]. Enoch et al. defined structural alerts which describe covalent protein 479 

binding in the lung; each structural alert is associated with a mechanistic domain, which could be used to 480 

support a read-across assessment [127]. Similarly, Mekenyan et al. reported a mechanistic approach for the 481 

assessment of respiratory sensitization potential or for grouping chemicals for subsequent read-across 482 

application [133]. Other efforts have resulted in similar profilers [134].  483 

Within the project “Respiratox”, models for pulmonary irritation have been developed to predict the 484 

potential to induce tissue damage and/or sensory irritation effects [135]. Some other models have been 485 

developed using lung injuries data [59]. Jeong et al. reported the development of an adverse outcome 486 

pathway (AOP) to better define the linkage of PPARγ antagonism to the adverse outcome of pulmonary 487 

fibrosis using the ToxCast Database and a Deep Learning Artificial Neural Network Model-Based Approach 488 

[136]. 489 

 490 

Table 4. Some models for lung toxicity. Models for the prediction of inhalation toxicity are not included. 491 

Endpoint Endpoint details References 

Irritation 
(sensory) 

Model based on set of 145 diverse volatile organic compounds as 
sensory irritants  

[137] 

Irritation 
(pulmonary) 

Data (either sensory irritation or tissue damage) on 1997 organic 
compounds 

[135] 

Respiratory 
sensitization 

Training and validation sets have been built from chemicals that are 
negative for human sensitization potential (Graham et al 1997), 
tested negative in the LLNA, non-sensitizers based on occupational 
exposure limits (OELs) and no cases of occupational asthma (OA); in 
addition to, chemicals that are identified as respiratory sensitizers 
through case-reports, and asthmagens that cause OA 

[126–130,132] 

Inflammation IL-8 gene expression: in vitro data on gene expression in A549 cells 
of IL-8, a well-known inflammatory cytokine 

[138] 

Drug-induced 
respiratory 
toxicity 

Dataset with a series of toxicological end points of mouse 
intraperitoneal respiratory toxicity including: focal fibrosis 
(pneumoconiosis), acute pulmonary edema, bronchiolar 
constriction, bronchiolar dilation, changes in pulmonary vascular 
resistance, chronic pulmonary edema, cyanosis, dyspnea, pleural 
thickening, respiratory depression, respiratory obstruction, 
respiratory stimulation, structural or functional change in trachea or 
bronchi, and other changes 

[59] 



 492 

3.5 Lung toxicity - In silico approaches: data gaps and issues 493 

As noted for other organ toxicities, the complexity of the pathways leading to adverse effects on the lung 494 

poses an obstacle for the development of in silico models, as does the heterogenous nature of compound 495 

properties (and their interplay) which can lead to lung toxicity. Such biological pathways that may lead to 496 

different types of adverse effects (e.g., sensitization, sensory irritation, tissue damage) need to be accounted 497 

for in the development of in silico models. 498 

In relation to respiratory sensitization, it can be noted that the limited acceptance of in vitro/in vivo 499 

approaches for respiratory sensitization presents a challenge to the standardization of a robust training set. 500 

A tiered in silico approach using two SAR models could not conclude with a reliable classification on 65% of 501 

the chemicals tested in an external evaluation set [126]. While read-across could be used to fill these gaps, 502 

the overall conclusion points to the need for standardized testing methods for respiratory sensitization.  503 

Future assessment of chemical respiratory sensitizer potential should take advantage of multiple lines of 504 

evidence to draw conclusions. While not the sole method to assess hazards, the weight of evidence approach 505 

remains the only available option within the absence of validated methods for hazard assessment.  506 

It should then be noted the close relationship between toxicity to the lung and inhalation toxicity with the 507 

latter mostly referring to systemic toxicity rather than lung toxicity. An ontology that unifies existing 508 

knowledge on lung adverse effects may facilitate the advancement of in silico methods and their 509 

corresponding applications.  510 

4. Heart toxicity 511 

Toxicity affecting the heart, namely cardiac toxicity or cardiotoxicity, is particularly important in the context 512 

of pharmaceuticals, where it significantly contributes to the attrition of drug candidates in the pre-clinical 513 

phase of drug discovery and development. It is one of the major causes of human adverse drug reactions 514 

occurring both in the clinical phase and post-market approval phase [139,140]. Not only do cardiac safety 515 

liabilities remain a major obstacle for the pharmaceutical industry, they also pose an increasing concern in 516 

the context of environmental risks [141] as they have been associated with exposure to environmental 517 

chemicals [142] such as pesticides [143,144], flame retardants [145,146], and polycyclic aromatic 518 

hydrocarbons (PAHs) [147,148]. Cardiac safety is also becoming recognized as an issue with dietary 519 

supplements and herbal products [149]. 520 

4.1 Heart toxicity - Processes and endpoints 521 

Chemical insults initiate a series of events in cardiac cells (see Figure 5) that may manifest as functional 522 

and/or structural perturbations of the heart [150–152]. Functional effects correspond to alteration of the 523 

mechanical (contractility) or electrical (ECG) function whereas structural effects correspond to morphological 524 



damage or loss of cellular/subcellular components. Structural change may precede dysfunction, or occur as 525 

a result of it [153–155]. In contrast, chemically-induced changes on myocardial contractility can arise from 526 

both electrophysiological and structural elements [150,153,156]. 527 

Pharmaceutical companies have summarized cardiac key liabilities faced throughout drug discovery, drug 528 

development and clinical practice (see Table 5). These include proarrhythmic potential, myocardial ischemia, 529 

myocardial necrosis, heart failure, coronary artery disorders, cardiac valve disorders and endocardial 530 

disorders [139]. 531 

Drug-induced QT prolongation (delayed ventricular repolarization of the cardiac action potential) is one of 532 

the most investigated cardiac safety concerns. QT prolongation is a surrogate marker of proarrhythmia, for 533 

example Torsades de Pointes (TdP), a rare form of arrhythmia that is potentially lethal and has caused the 534 

removal from the market of several drugs [139,157–159]. QT prolongation has thus been extensively studied 535 

and the understanding of the underlying biological mechanism led to the development of a successful cardiac 536 

safety assessment paradigm for use in drug discovery and development. This paradigm was formalized in 537 

2005 by the International Council on Harmonization (ICH) through the release of the S7B- and E14 regulatory 538 

guidelines [160,161]. From a mechanistic point of view, QT prolongation is associated with prolonged 539 

ventricular cardiac action potential, with the potassium channel encoded by the human ether-à-go-go related 540 

gene (hERG) being responsible for cardiac repolarization [162–165]. QT prolongation and associated 541 

arrhythmia arising from the inhibition of the hERG potassium channel is an example of functional 542 

cardiotoxicity. 543 

The safety paradigm for cardiotoxicity defined by the ICH S7B and E14 guidelines focuses on the assessment 544 

of QT interval as marker of proarrhythmia [157]. ICH S7B addresses the nonclinical evaluation of the QT 545 

interval prolongation, recommending a testing strategy that includes both an in vitro assay to assess whether 546 

a compound or its metabolites block the repolarizing ionic current through inhibition of hERG and an in vivo 547 

animal assay to assess ventricular repolarization (it should be noted that hERG assessment is not appropriate 548 

for all pharmaceuticals). ICH E14 establishes the quality of the clinical evaluation required to understand 549 

drug-induced QT prolongation. 550 

In contrast to pharmaceuticals, the hERG channel activity of dietary supplements and herbal products is not 551 

routinely assessed nor have regulatory guidelines been developed that specifically address this issue, despite 552 

their widespread use and evidence that some are potent hERG blockers [166]. 553 

 554 

Table 5. Key cardiac liabilities reported by pharmaceutical industry (adapted from Laverty et al., 2011b). 555 

Toxicity Common standard assessment strategies§ 

Proarrhythmic potential Drug discovery: hERG screening, other cardiac ion channel screening, in vitro profiling 
in cardiac tissue, in silico hERG and cardiac action potential assessment 



Drug development: QT interval determination in telemetry and or toxicology studies 
and mechanistic investigations (e.g., hERG trafficking, metabolites effects) 
Clinical practice: QT interval determination including concentration QTc modeling and 
assessment of other ECG parameters 

Myocardial ischemia Drug discovery: assessment of ECG morphology changes, histological examinations and 
functional assessments (e.g. LVEF)  
Drug development: observation of clinical signs, assessment of ECG morphology 
changes, histological examinations and functional assessments (e.g. LVEF) 

Myocardial necrosis Drug discovery: few predictive in vitro methods, histological examination from early 
repeated-dose toxicity studies 
Drug development: some reflective biomarkers available (e.g., troponin), histological 
examinations, imaging (e.g., echocardiography) 

Heart failure Drug discovery: assessment of some functional endpoints in vitro and in vivo (e.g., 
contractility), histological examinations and cardiac biomarkers (e.g. pro NT-BNP) 
Drug development: observation of clinical signs, imaging and cardiac biomarkers 

Coronary artery 
disorders 

Drug development: observation of clinical signs and imaging 

Cardiac valve disorders Drug discovery: evaluation of alerts from receptor (e.g., 5-HT2B) binding data 
Drug development: imaging, histological examinations 

Endocardial disorders Drug development: histological examinations 
§hERG (human ether-à-go-go related gene); ECG (electrocardiogram); LVEF (left ventricular ejection fraction); pro-N terminal B-type 556 
natriuretic peptide; QT (duration of ventricular depolarization and repolarization); QTc (corrected QT interval); 5-HT2B (5-557 
Hydroxytryptamine receptor 2B). 558 

 559 

Regarding structural cardiotoxicity, this may be described by a continuum of progression of cardiac cell injury 560 

spanning through degeneration, necrosis, responding inflammatory changes (inflammatory cell infiltrate) 561 

and eventually fibrosis, with the latter being a repair process which does not generate functional contractile 562 

tissues [152]. The number and distribution of the injured cells determines the ultimate effects on the 563 

myocardial contractile function [152].  564 

Histopathological observations included in preclinical toxicity study reports for regulatory submissions have 565 

been organized in groups of similar findings (and mechanism) [36]; as in the case of other organ toxicities 566 

(i.e., toxicity to liver and kidney) [8], heart-related histopathology data can be structured in two-level clusters 567 

(i.e., tissue damage, inflammatory changes, structural alterations), that can be further separated into more 568 

specific groups of terms as shown in Table 6. As in case of other organs, the consistent use of terminology is 569 

key for later re-use of the data generated. 570 

 571 

Table 6. The hierarchical organization used to group histopathology terms of similar findings (and mechanism) for heart toxicity; 572 
findings were extracted from preclinical toxicity study reports for regulatory submissions [36]. 573 

HEART TOXICITY 

General clusters Specific clusters 

Tissue damage Necrosis 

Degeneration 

Myopathy 

Inflammatory changes Inflammation 

Infiltration 



Structural alterations Dilation 

Adaption cell size / number 

 574 

In contrast to ion-channel mediated mechanisms, other biological pathways leading to heart toxicity are in 575 

general poorly understood, particularly those underlying cardiac contractility and structural cardiotoxicity. 576 

Efforts are underway to elucidate such mechanisms possibly within an AOP framework [155]; this offers a 577 

means to organize the existing knowledge of adverse outcomes and to advance the mechanistic 578 

understanding of heart toxicity [140]. However, data coverage in both the chemical and biological domain is 579 

a limiting factor in the field. 580 

Information on biological pathways that are associated with cardiac liabilities is being collated in the AOP-581 

Wiki, and Table S9 of the supplemental material lists several AOPs as included in this repository [34,35]. The 582 

AOPs cited in the AOP-Wiki focus on ion channel activity. 583 

4.2 Heart toxicity - In vivo and in vitro methods 584 

In drug discovery and development, functional and structural cardiotoxicity is assessed using a variety of in 585 

vitro (e.g., over expressing cell lines, primary cardiomyocytes, stem cell derived cardiomyocytes), ex vivo (e.g., 586 

isolated heart, ventricular wedge) and in vivo (e.g., single and repeat-dose rodent and non-rodent species) 587 

models. In vitro approaches can be divided into molecular- and phenotypic-based assays. Phenotypic-based 588 

assays are primarily used to identify a potential cardiac safety risks (hazard detection) that can be further 589 

characterised in a more complex model system. These approaches allow the investigation of multiple cardiac 590 

effects, for example the assessment of cardiac contractility via measurement of calcium transients or 591 

impedance and cardiac structure via high content biology imaging. The phenotypic endpoints typically use 592 

integrated in vitro models, such as human induced pluripotent stem cell-derived cardiomyocytes that contain 593 

a milieu of kinases, ion channels, enzymes and receptors present within the heart facilitating the detection 594 

of potential adverse cardiac effects where the molecular understanding is limited [156].  595 

Molecular in vitro approaches mainly focus on prediction of electrocardiogram abnormalities and QT-interval 596 

prolongation by ion channel screening and measurement of cardiac action potentials [152]. The assessment 597 

of QT interval prolongation and hERG inhibition has proven to be very sensitive and thus successful in 598 

eliminating drug candidates at risk of causing TdP. On the other hand, assessment of hERG block and QT 599 

prolongation is an imperfect biomarker for predicting proarrhythmia risk since it is known that multiple drugs 600 

inhibit hERG and/or prolong QT, albeit, not leading to TdP [159,167]. 601 

The current proarrhythmia testing paradigm relies on the predictive link between drug-induced hERG block 602 

and in vivo/clinical QT interval prolongation and TdP [157,159]. It provides a valuable example of a screening 603 

approach for hazard identification and elimination of compound with predicted toxicities on humans based 604 

on the AOP concept. Given the observation that blockade of multiple cardiac ion channels might be predictive 605 



of torsadogenic potential [167,168], the scientific community is moving towards an updated proarrhythmia 606 

paradigm promoted by the CIPA (Comprehensive in vitro Proarrhythmia Assay) initiative. This initiative is 607 

based on the integration of data from in vitro testing of multiple cardiac ion channels with mechanistic in 608 

silico electrophysiology modeling to predict proarrhythmic risk [159,169–173]. The ongoing improvements 609 

of the assessment strategy [157,159] through the CIPA initiative is expected to lead to further refinements 610 

via an ICH S7B-E14 Questions and Answers process enabling a more efficient, comprehensive and mechanism 611 

driven process with greater emphasis of non-clinical data [174–176]. 612 

Improved in vitro models are required to further enhance the ability to detect and risk assess heart toxicity 613 

in vitro,. 3D in vitro models are attracting interest and attention in drug discovery as promising approaches 614 

to investigate both structural and functional toxicity affecting the heart [177–179]. For example, human 3D 615 

cardiac microtissue is proposed as a model to capture drug-induced structural cardiotoxicity and gain 616 

mechanistic insights [180]; it is noted that this type of model overcomes some of the limitations of current 617 

in vitro preclinical testing that predominantly focuses on the prediction of functional changes.  618 

4.3 Heart toxicity - Molecular targets 619 

Heart toxicity is investigated by pharmaceutical companies using panels of safety molecular targets that have 620 

been associated with different adverse effects [52]. The molecular targets associated with cardiac liabilities 621 

as derived from the safety panel by Bowes and co-workers [53] are listed in Table S10 of the supplemental 622 

material. This target list is complemented with other off-target panels (see for example Tables S11 and Table 623 

S12 of the supplemental information) derived from different studies such as the analysis of human genetic 624 

and pharmacology data [55] or other data curation processes [54,56,181]. Associations between molecular 625 

targets and structural cardiotoxicity have also been investigated by mining data from FDA Adverse Event 626 

Reporting System and assay outcomes from ToxCast leading to the formulation of mechanistic hypotheses 627 

of toxicity [155]. 628 

4.4 Heart toxicity - In silico methods 629 

The schema for the development of an IST protocol for the prediction of potential cardiotoxicants is shown 630 

in Figure 6, which combines different types of information and where in silico methods can be integrated. 631 

Current in silico models for the prediction of cardiac toxicity mainly address hERG inhibition, a surrogate 632 

marker for proarrhythmia, and they build on the in vitro hERG-related data from early screening in drug 633 

discovery and development. The most popular approaches for predicting pharmacological hERG blockade 634 

are ligand-based methods that correlate the biological activity to the structural information of chemicals 635 

[182,183]. Such methods use approaches such as QSAR (based on different techniques including machine 636 

learning), pharmacophore, and 3D QSAR methodologies. Most of these models are classification-based 637 

QSARs, but regression-based QSARs have also been proposed to predict activity [184]. In silico models using 638 

multiple ion channel data (hERG, Cav1.2 and Nav1.5) have been shown to more accurately predict TdP than 639 



models based on hERG effects alone [167,185]. Improving chemical space coverage and quantitative activity 640 

prediction remain areas of current research. 641 

Structure-based approaches (e.g., docking) that make use of structural knowledge of the biological target 642 

(i.e., hERG) have also been applied to identify hERG blockers [164,186,187]. 643 

In silico predictions of inhibition of ion channels were integrated in the CIPA approach [188], the paradigm 644 

for the assessment of ventricular proarrhythmic liabilities based on in vitro methods and mathematical 645 

models simulating cellular cardiac electrophysiologic activity [169,172]. QSAR models based on human data 646 

[189–191] have been developed for the prediction of several cardiac adverse effects such as: arrhythmia, 647 

hypertension, bradycardia, conduction disorder, electrocardiogram, palpitations, QT prolongation, rate 648 

rhythm abnormality, tachycardia, Torsades de pointes, coronary artery disorders, heart failure, myocardial 649 

disorders, and myocardial infarction. One of the strengths of using post-market data is that idiosyncratic 650 

toxicities can be identified and incorporated into a QSAR model. Unfortunately, such databases suffer from 651 

various reporting biases and confounding factors and have been said to be more suitable for signal detection 652 

rather than validation (other types of data would be needed to draw reliable conclusions on the observed 653 

effects) [192]. Nonetheless, development of QSAR models using these data have been shown to provide 654 

useful predictions [190].  655 

Using the hierarchical organization of similar findings (and mechanisms) collated from preclinical toxicity 656 

study reports for regulatory submissions (see Table 6), in silico models built on different methodologies (e.g., 657 

statistical fragment/fingerprint-based models, molecular descriptor-based machine learning models, expert-658 

rule based models) were developed by Amberg and co-workers [36]. It was noted that the initial clustering 659 

of the effects affected the resulting predictivity of these models. 660 

4.5 Heart toxicity - In silico approaches: data gaps and issues 661 

Currently, alternative approaches for heart toxicity prediction focus on cardiac electrophysiological effects, 662 

that pharmaceutical research investigates through an integration of in silico and in vitro methods; this is then 663 

supported by short-duration in vivo studies [152]. Regarding structural cardiac toxicity, integrated tiered 664 

approaches that exploit predictivity of in vitro and in silico models are instead generally limited [151]. 665 

Development of alternative methods (e.g., in silico and in vitro) that accurately predict the entire spectrum 666 

of cardiac toxicity must rely on robust understanding of the cellular and molecular mechanisms leading to 667 

cardiac liabilities. The AOP framework sustains the advance of such understanding (see Table S9 of the 668 

supporting material addressing AOPs related to cardiotoxicity).  669 

Available in vitro, in vivo, and human data on which in silico model can be constructed are sparse. As observed 670 

by Laverty and coworkers [139], the majority of the adverse effects reported in the FDA’s Adverse Event 671 



Reporting System are often not described in detail, and the causal relationship between an adverse effect 672 

and a drug is generally not established in the reports provided. 673 

5.  Discussion 674 

Different computational methods (e.g., statistical-based methods, rule-based methods) can exist to identify 675 

chemicals that potentially induce organ toxicity. These methodologies can be used in a complementary 676 

manner, e.g., a statical-based method together with structural alerts. They can also be linked to the AOP 677 

framework. For example, structural alerts can be applied to categorize chemicals potentially linking a given 678 

class of compounds to a specific mechanism or even MIEs [193]. 679 

Application of in silico approaches should account for the specific use case, context and thus purpose (e.g., 680 

screening, prioritization, classification and labelling, risk assessment, and product development) [193,194]. 681 

For example, for consumer safety, a missed hazard may be crucial and lead to subsequent risks; in product 682 

development, in silico predictions may be used for flagging organ toxicity and prompting scientists to monitor 683 

the corresponding liability as the compound advances through discovery. 684 

The present mechanistically-driven analysis of in silico methods to predict organ toxicity highlights a number 685 

of areas for further research that would enhance such predictions. 686 

It is noted how organ toxicity involves a multitude of biological pathways associated with a plethora of 687 

endpoints, and how the underlying molecular mechanisms are often poorly understood. This complicates the 688 

development of predictive in silico models that are mechanistically-informed. Advances in the understanding 689 

of biology at a molecular level would fuel strategies for organ toxicity prediction, based on the integration of 690 

different alternative approaches and combination of information in a quantitative manner, such as through 691 

defined approaches or on the transcriptomics, proteomics, and metabolomics levels, that are currently 692 

lacking to a large extent. 693 

As most in silico modeling approaches require a database of historically performed experimental in vivo or in 694 

vitro test results to build such models, the lack of appropriate experimental tests in certain areas provides 695 

some challenges. For example, a number of MIEs or key events (KEs) within existing organ toxicity AOPs do 696 

not have a corresponding experimental assay or the available assays have limitations such as the lack of 697 

metabolic competency. In some situations, as in the case of pulmonary toxicity, the in vivo models have 698 

strong limitations themselves, which are being addressed with the development of next generation in vitro 699 

models. Subjective grading (and terminology) of histopathology endpoints represents one of the problems 700 

with existing data; however, current digital pathology developments may help come up with more objective 701 

and consistent assessments in the future. 702 

Databases containing appropriately annotated information are essential to support any in silico model 703 

building as well as to support an expert review of the results. There is currently a lack of large in vivo 704 



databases covering organ toxicity that (1) are linked to chemical structures, (2) are annotated with the 705 

necessary experimental design information, and (3) document both positive and negative (i.e., no treatment 706 

related findings) results on findings at tested timepoints and concentrations. These findings should also be 707 

linked to the endpoints within the assessment frameworks. Ontologies, standardized terminology, and other 708 

technology to support integration and linking of information from different sources are critical. The use of 709 

SEND and documents produced through the INHAND working groups will be important to support these 710 

databases [195,196]. Toxicogenomic databases are emerging tools that can be used to develop predictive 711 

approaches for the classification of chemicals in terms of their toxicogenomic signatures which are, in turn, 712 

related to the mechanisms underlying their toxicity. Toxicity is directly linked to gene expression data in 713 

databases [197] such as DrugMatrix [198], Open TG-GATEs (Toxicogenomics Project-Genomics Assisted 714 

Toxicity Evaluation System) [199] and the Comparative Toxicology Database (CTD) [200].  715 

The number of in silico models being developed, as discussed in this paper, is rapidly expanding; however, a 716 

limited number of models fit in specific areas outlined in the proposed assessment framework, and this 717 

limitation concerns models to predict MIE’s or in vivo models for certain major toxicological endpoints such 718 

as kidney toxicity. The training sets used to build any models may also limit the chemical space that such 719 

models may predict (i.e., applicability domain consideration).  720 

It is observed that models that predict dose/timepoints are limited in part due to technical limitations and 721 

the lack of properly annotated data. Current models for organ toxicity are mainly performing classification, 722 

delivering limited information on threshold levels, that, on the other hand, may be evaluated through read-723 

across approaches provided that data on analogues are available (and properly annotated) and that a 724 

thorough analysis of the chemicals establishes a sound similarity between the source chemical and its 725 

analogues. Ordinal models (based on ranges of toxic concentration) that are technically more tractable may 726 

provide a way forward to support necessary risk assessment decisions. Such quantitative models can support 727 

the safety evaluation of compounds in different contexts including those frameworks where in vivo 728 

experiments are limited by regulations (e.g., cosmetics). 729 

The importance of internal exposure and in general of the ADME processes has been highlighted, identifying 730 

factors (e.g., formation of reactive metabolites) that need to be accounted for when developing the IST organ 731 

toxicity protocol. Metabolism is an important element to evaluate for specific organ toxicity (e.g., lung, 732 

kidney). Xenobiotic enzyme activity in different organs should be considered as it affects the rate and extent 733 

of formation of reactive metabolites. For example, in silico technology to predict metabolites, identify the 734 

points of metabolism, or predict binding to CYP enzymes is available and should play a role in the integration 735 

of the information as well as incorporated into any expert review. Currently, the prediction of metabolites 736 

may result in a high number of many predicted metabolites originating from a multitude of potential 737 

pathways, that may need to be critically evaluated. Likewise, it remains difficult to predict absolute 738 



likelihoods (as opposed to relative likelihoods) of metabolism at particular sites. ADME considerations are 739 

also important in support of the extrapolation of any in vitro experiment data (or models derived from such 740 

data) to in vivo outcomes, as well as for inter-species extrapolation. Species differences is another important 741 

element that need to be critically evaluated (e.g., different nasal/pharyngeal anatomy in the context of lung 742 

toxicity) to translate results to humans. 743 

The development of frameworks capturing the key characteristics of toxicants to a specific target organ, 744 

similar to the ten key characteristics of carcinogens [201–203], would provide valuable organizational 745 

principles for the IST framework. Key characteristics do not necessarily represent mechanisms nor are 746 

adverse outcome pathways, but they provide a broad and holistic structure to organize relevant mechanistic 747 

data for human health assessments of possible toxicants. This construct was first introduced for carcinogens 748 

and it is now under consideration in other contexts such as for hepatotoxicants, neurotoxicants and 749 

developmental neurotoxicants and cardiotoxicants [204,205]. 750 

6. Conclusion 751 

This work is a mechanistically-driven analysis of the current state of the art with respect to the in silico 752 

prediction of organ toxicity (with focus on heart, lung and kidney) and it includes an overview of key 753 

characteristics/mechanisms and how they contribute to organ toxicity. A summary of the major topics 754 

discussed throughout the work is summarized in Table 7. 755 

 756 

Table 7. Main topics discussed in the present work. 757 

Main topics 

 Overview of key characteristics/mechanisms is presented with reference to the AOP construct. 

 Importance of mitochondrial dysfunction across different organ toxicities is highlighted. 

 Relevant endpoints for each target organ are discussed. 

 Binding to molecular targets that are associated with adverse effects to specific organs (i.e., off-target panels 
from secondary pharmacology batteries) is discussed. 

 In vitro and/or in vivo models for investigating target organ toxicity and detecting corresponding toxic xenobiotics 
are discussed alongside emerging experimental approaches such as 3D in vitro models and toxicogenomics. 

 An overview is given of computational methods (statistical models, expert alerts, read-across) that can be used 
to identify chemicals that potentially induce organ toxicity with reference to specific key 
characteristics/mechanisms, if any. 

 Data gaps and challenges ahead for the development of computational methods predictive of target organ 
toxicity are discussed. 
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Figure Legends 1419 
Figure 1. Schematic workflow encoded in the in silico toxicology protocols [5]. 1420 

Figure 2. Draft outline of potential hazard assessment framework for organ toxicity (adapted from [8]). The draft framework combines 1421 
information from in vitro approaches (e.g., biological responses from receptor-based assays), in vivo experiments, and human data. 1422 
Other protocols (e.g., ADME or other organs) may feed a protocol for a given organ. Exposure scenarios (e.g., environmental, drug, 1423 
consumer, accidental) may also be used to supplement the protocol. Effects (predicted by in silico methods or measured 1424 
experimentally) are combined for the assessment of a given endpoint. 1425 

Figure 3. Types of data in a draft assessment framework that needs to be considered for the development of an IST protocol for the 1426 
identification of potential kidney toxicants. 1427 

Figure 4. Toxicity to lung includes different endpoints such as irritation (transient effects) and sensitization (immune-mediated 1428 
response). Experimental data on lung toxicity originates from different sources and they are combined in a decision framework for 1429 
hazard assessment; for example, in vitro data may originate from assays investigating molecular targets associated with lung toxicity, 1430 
such as TRPA1, an ion channel whose activation is proposed to induce sensory pulmonary irritation (see supplementary material). In 1431 
silico methods build on available experimental data and they can thus be integrated in the overall hazard assessment framework. 1432 

Figure 5. Heart’s possible response to toxic injury induced by xenobiotics [150,153]. Functional and structural adverse effects are 1433 
interrelated: primary functional effects may occur with possible secondary structural effects; similarly, primary adverse effects on 1434 
cardiac structure may occur with secondary functional changes. Myocardial contractility may be altered by functional effects (effects 1435 
on contractile proteins, Ca2+ or mitochondria) or structural perturbations (loss of cardiomyocytes following apoptosis or necrosis and 1436 
possible replacement with less contractile fibrotic tissue). 1437 

Figure 6. Schema for the assessment framework of heart toxicity. Human data (measured or predicted) include endpoints such as 1438 
arrhythmia and heart failure. In vitro data may be collected from different types of assays such as binding assays, functional flux 1439 
assays, patch clamp, Langendorff perfused heart assay, Microelectrode Arrays, impedance assays, high content imaging assays, 1440 
cytotoxicity assays. Other types of data standardized in different protocols can be integrated such as in vitro ADME profiling and 1441 
toxicokinetics data. 1442 
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Figure 7. Schematic workflow encoded in the in silico toxicology protocols [5]. 1449 
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 1452 

Figure 8. Draft outline of potential hazard assessment framework for organ toxicity (adapted from [8]). The draft framework combines 1453 
information from in vitro approaches (e.g., biological responses from receptor-based assays), in vivo experiments, and human data. 1454 
Other protocols (e.g., ADME or other organs) may feed a protocol for a given organ. Exposure scenarios (e.g., environmental, drug, 1455 
consumer, accidental) may also be used to supplement the protocol. Effects (predicted by in silico methods or measured 1456 
experimentally) are combined for the assessment of a given endpoint. 1457 
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Figure 9. Types of data in a draft assessment framework that needs to be considered for the development of an IST protocol for the 1461 
identification of potential kidney toxicants. 1462 
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 1465 

Figure 10. Toxicity to lung includes different endpoints such as irritation (transient effects) and sensitization (immune-mediated 1466 
response). Experimental data on lung toxicity originates from different sources and they are combined in a decision framework for 1467 
hazard assessment; for example, in vitro data may originate from assays investigating molecular targets associated with lung toxicity, 1468 
such as TRPA1, an ion channel whose activation is proposed to induce sensory pulmonary irritation (see supplementary material). In 1469 
silico methods build on available experimental data and they can thus be integrated in the overall hazard assessment framework. 1470 

  1471 



 1472 

 1473 

Figure 11. Heart’s possible response to toxic injury induced by xenobiotics [150,153]. Functional and structural adverse effects are 1474 
interrelated: primary functional effects may occur with possible secondary structural effects; similarly, primary adverse effects on 1475 
cardiac structure may occur with secondary functional changes. Myocardial contractility may be altered by functional effects (effects 1476 
on contractile proteins, Ca2+ or mitochondria) or structural perturbations (loss of cardiomyocytes following apoptosis or necrosis and 1477 
possible replacement with less contractile fibrotic tissue). 1478 

 1479 

  1480 



 1481 

 1482 

Figure 12. Schema for the assessment framework of heart toxicity. Human data (measured or predicted) include endpoints such as 1483 
arrhythmia and heart failure. In vitro data may be collected from different types of assays such as binding assays, functional flux 1484 
assays, patch clamp, Langendorff perfused heart assay, Microelectrode Arrays, impedance assays, high content imaging assays, 1485 
cytotoxicity assays. Other types of data standardized in different protocols can be integrated such as in vitro ADME profiling and 1486 
toxicokinetics data. 1487 
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