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Abstract 

 
Efforts of electrical utilities to respond to climate change requires the development of 

increasingly sophisticated, integrated electrical grids referred to as the smart grids. Much of the 

smart grid effort focuses on the integration of renewable generation into the electricity grid and 

on increased monitoring and automation of electrical transmission functions. However, a key 

component of smart grid development is the introduction of the smart electrical meter for all 

residential electrical customers. Smart meter deployment is the corner stone of the smart grid. 

In addition to adding new functionality to support system reliability, smart meters provide the 

technological means for utilities to institute new programs to allow their customers to better 

manage and reduce their electricity use and to support increased renewable generation to reduce 

greenhouse emissions from electricity use. As such, this thesis presents our research towards 

the study of how the data (energy usage profiles) produced by the smart meters within the smart 

grid system of residential homes is used to profile energy usage in homes and detect users with 

high fuel consumption levels. This project concerns the use of advanced machine learning 

algorithms to model and predict household behaviour patterns from smart meter readings. The 

aim is to learn and understand the behavioural trends in homes (as demonstrated in chapter 5). 

The thesis shows the trends of how energy is used in residential homes. By obtaining these 

behavioural trends, it is possible for utility companies to come up with incentives that can be 

beneficial to home users on changes that can be adopted to reduce their carbon emissions. For 

example consumers would be more likely prompted to turn of unusable appliances that are 

consuming high energy around the home e.g., lighting in rooms which are un occupied. The 

data used for the research is constructed from a digital simulation model of a smart home 

environment comprised of 5 residential houses. The model can capture data from this simulated 

network of houses, hence providing an abundance set of information for utility companies and 

data scientist to promote reductions in energy usage. The simulation model produces volumes 
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of outliers such as high periods (peak hours) of energy usage and low periods (Off peak hours) 

of anomalous energy consumption within the residential setting of five homes. To achieve this, 

performance characteristics on a dataset comprised of wealthy data readings from 5 homes is 

analysed using Area under ROC Curve (AUC), Precision, F1 score, Accuracy and Recall. The 

highest result is achieved using the Two-Class Decision Forest classifier, which achieved 

87.6% AUC. 
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Chapter 1 Introduction 
1.1 Foreword 

The smart meter is an integral part of the smart grid system, with various social, economic, and 

environmental benefits for society. For example, the technology has been used widely for 1) 

remote health monitoring [1] The ageing population is of great concern in modern society. One 

way to assist with this is by the behavioural patterns which can be monitored by the daily 

alterations of routines; 2) Age group detection [2] This is usually when greater variance can be 

noted in the usage of some age groups more likely to use gadgets, television or console usage 

3) Unemployment detection [3] when the occupant is constantly at home, even during working 

hours and using a lot of appliances like gas cookers or wash and dryers frequently; 4) 

autonomous home profiling [4] This is where the user is able to control  appliances in the house 

via a mobile phone interconnected with technology at both ends. The user can turn the heating 

on to make the house warm in winter or turn the coffee machine on etc; 5) Load-balancing and 

forecasting [5] Utility companies are able to forecast/ predict the load required for residential 

houses and that gives them the opportunity to balance resources for the future;  6) Fuel poverty 

detection [6] Some households risk experiencing energy poverty due to a decreased quality of 

life and wellbeing in low-income housing where occupants might choose not to use energy to 

heat up the house due to the costs associated with high energy usage; 7) [7]  

This is when energy meters are tampered with or bills are wrongly generated as a result of 

fictitious numbers, to name but a few issues. The reasoning behind the multitudinous use of 

smart meters is because the data generated has been shown to be technically reliable. 

Household smart meters measure power consumption, in real-time, at fine granularities, and 

are the foundation of the future smart electricity grid. Specifically, their main functionalities 

are measuring and capturing data related to the usage or consumption of energy (e.g., electricity 

and gas) patterns with more granular detail than conventional analogue meters.  
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Smart meters incorporated with Internet communication Technology, network, and data 

management systems, make up the Advanced Metering Infrastructure (AMI). These are 

systems that are installed to gather localized information and to frequently acquire energy 

consumption data, which comprises a core component of the smart grid. These systems 

communicate and work together via wireless technologies, such as Wi-Fi, and play an 

important role in data capturing by recording load profiles of how consumers use energy in 

their daily lives. 

The extensive popularity of smart meters globally has resulted in an expansive amount of fine 

granular information to be collected. This data is not solely beneficial to utilities for just billing 

purposes. The information collected also gives us an insight into the energy consumption 

behaviours and lifestyles of consumers after it has been collected and analysed. Therefore, 

implementing massive energy saving techniques and educating consumers on energy saving 

tips based on their own unique consumption patterns would be beneficial for helping towards 

a reduction in greenhouse emissions; a topic that has become prominent world-wide.  

Technology improvements in the energy sector, have added to new opportunities arising. Smart 

meter technologies can now play a key role in improving the energy industry of households 

through the use of existing digital technologies. Particularly, this technological industry has 

witnessed important developments in the real-time data capture of energy usage profiles and 

the surrounding generation, transmission, and consumption of water. An example is the smart 

meter, a technology that provides real-time consumption information and automates the billing 

process for the customer and supplier. The data profiles generated through energy use in 

households, creates unique profiles that have the capacity to educate consumers in how they 

can change their living lifestyles by reducing carbon emissions but also saving on their own 

finances. This may involve changes of everyday behaviour and routines, e.g., using high energy 

consuming appliances like a washing machine at a different time of the day when the electricity 
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tariff is at a lower peak period etc. Secondly ii), to promote measures through utility companies 

that would influence and help reduce the overall energy demand of households, such as 

introducing variable electricity tariffs and educating the consumer on how to best make use of 

them through self-monitoring energy usage or by adopting smart appliances [1]. For example, 

the AMI is an infrastructure, as mentioned earlier, that facilitates real-time two-way 

communication between the consumer and the rest of the energy grid. Information concerning 

electricity consumption, demand and response and home energy generation is communicated 

back to the local utility in real time. In this thesis, we propose a novel approach of using smart 

meter data that we obtain though profiling users remotely and that enables us to detect abnormal 

user behaviours with the help of advanced analytics tools for machine learning to study the 

patterns of data and profile the user’s behaviour. 

As part of the AMI, the smart meter reports continuously recorded energy consumption to the 

grid, whilst also allowing the smart grid to push information, such as dynamic pricing, back to 

the house. Many countries such as the UK, USA, Australia, Sweden, Germany, and Italy are 

already advanced in their smart meter implementation. The UK alone is aiming to install over 

50 million gas and electricity smart meters to UK households by the end of 2020 [2]. Elsewhere 

in Europe, Denmark is aiming to have 50% electricity consumption from wind power by the 

end of 2020 and 100% of total energy consumption covered by renewables by 2050. 

Furthermore, the Dutch Electricity Act in the Netherlands implemented a requirement to offer 

all households and small businesses an electric smart meter from 2012, and to achieve a 

penetration rate of at least 80% by the end of 2020 [3]. The smart meter system is equipped 

with a large number of sensors and actuators placed in all parts of the grid to monitor and 

control the operational characteristics and behaviour [4]. Based on the data collected from these 

smart meter sensors, smart meter entities and electricity suppliers (utility companies) can offer 

intelligent and better decisions [5]. They are able to 1) manage and optimise electricity flows, 
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2) forecast users’ demand for electricity, 3) balance the grid more efficiently and 4) detect when 

there is abnormal energy usage in homes. However, it has now emerged that an anti-theft 

database is also being launched in the UK by energy suppliers, which could help police to 

gather intelligence on electricity misuse [6]. 

1.2 Motivation 

One of the main objectives of smart metering in the residential sector is to encourage consumers 

to use less energy by raising awareness of consumption levels. Incentivisation programs would 

benefit the consumer in ways that it would help them to reduce their energy usage during peak 

hours and schedule high energy use of appliances during low peak hours. We all at one point, 

unthinkingly, leave lights on when we are not in a room, or switch off the TV via the remote 

control instead of at the socket, the remote instead of at the wall, turn up the heater on when 

we could put on an extra layer of clothing, or turn on the air conditioning when we could open 

the window and turn on a fan. It is force of habit, a bad habit we can break, with just a little 

thought. Behaviour change lies at the heart of most individual actions on reducing our 

individual carbon footprint. By being sensible about household energy use and making sure 

that the house is well insulated, we can make a huge dent in our (CO2) emissions. This will 

also save all of us the money that we would no longer spend on wasted energy, year in, year 

out. Many studies have benefited from smart metering data to develop more advanced models 

for load forecasting at individual building levels. The motivation to conduct a study on 

behavioural studies on occupants in a residential setting came from this as our study is data 

driven. The methods for predicting load forecast consumption are more complicated in that it 

uses engineering methods that use mathematical equations to present the physical components 

and thermal performance of buildings. Load forecasting at building level requires high details 

about different parameters of the buildings that are not always readily available and mostly are 

expensive and needs a lot of computations. However, our research uses a data-driven approach 
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and instead uses consumption data from real-time or historical data which is collected from 

smart meters and analysed to predict consumption behaviour. The use of smart systems 

provides the benefit of measurement of customer energy demands, thus enabling the system to 

provide energy in the most carbon-efficient and cost-effective way.  

The adoption of a Climate Act in 2008 committed the UK to reduce greenhouse emissions by 

80% by 2050 [7]. That said, smart meters today are already helping users engage with their 

daily energy usage and make more informed decisions and encourage consumers to participate 

in a range of services aimed at reducing CO2 emissions and costs [8]. Around 27% of the UK’s 

greenhouse gas emissions came from the supply of energy, virtually all being CO2. Transport 

accounts for about 34% of total emissions, with a further 18% from business, 19% from the 

residential sector and 5% from agriculture. Non-CO2 greenhouse gases account for -5% of total 

emissions [9]. This data is presented in the figure below: 

 

Figure 1 UK Emissions by Sector 
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Therefore, this research concerns the analysis of energy usage obtained from smart meters, and 

the wider distribution network, for supporting a reduction in carbon emissions. The aim is to 

provide the user with a bigger and more detailed picture of their consumption patterns through 

advanced profiling, in order to educate the consumer and instil a change in home activity that 

will lead to a reduction in carbon emissions. [7][8][10]. The Load forecasts are also an 

important part for electricity utilities to enable them to balance their electricity and sales and 

forecast for the future demand and little or less research has been done to profile the energy 

consumption in residential homes to learn consumer behaviours and predict high energy use 

which is the main focus of our research. 

The novel framework presented in this thesis affords the ability to analyse hidden patterns in 

the large quantities of the data collected and gains an insight into how energy is used in 

residential homes. The results show that the more data that is analysed by the system, the higher 

the classification score. The experiments are facilitated through simulation data collected from 

a residential model. As such, in the following section, the aims and objectives for the 

completion of this research are identified. 

1.3 Aims and Objectives. 

The aim of this thesis is to illustrate and evidence how data collected from the smart meters in 

houses can help contribute towards meeting our carbon reduction challenge by profiling energy 

usage profiles of consumers. As such, much emphasis of this work is to provide a case study 

on the analysis of energy usage in residential homes. In light of considering the above, the aims 

and objectives of this research are listed below: 
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1.3.1 Aims 

1. The main aim of the research is to simulate energy usage in residential homes which 

would be able to give us electricity data that is obtained in a house installed with a 

smart meter to detect user behaviour of energy. 

2. To use the electricity data to profile consumer user activities in the residential 

homes for 24-hours periods over 5 days, as discussed in chapter 5. Analyse and 

profile the data collected from the simulation tool to generate usage profiles.  

3. Provide feedback to the utility companies about the usage patterns of energy by the 

consumers, such that they could come up with awareness techniques and inform the 

consumers, how to switch to using low energy appliances, or additionally, to advise 

on home behavioural changes to help consumers become more energy efficient.  

4. To disseminate information, research and conclusions from the thesis for the benefit 

of the wider academic community through conference and journal publications 

1.3.2 Objectives 

1. Use an energy simulation tool to simulate a residential house which is either 

occupied or not occupied to be able to collect energy consumption data at an 

aggregated level. Further detail about the energy simulation tool explained later in 

the thesis. 

2. Use the data extracted from the simulation to enable us to identify or establish 

patterns and trends in home activities based solely on consumption readings in a 

residential home.  

3. To propose a system framework, which analyses the data collected from smart 

meters autonomously. 

4. To investigate Microsoft Azure tools for analysing and predicting behavioural 

profiles 
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1.4 Novelties 

The research project has the following novel contributions: 

1. The develop a simulated energy system that can construct residential home energy 

usage data.  

2. To model and predict household behaviour patterns from smart meter electricity 

readings. Previous studies have shown that smart meters alone do not lead to energy 

savings in the residential sector unless consumers actively use them and are 

encouraged to modify their everyday practices by utility companies. Our research 

intends to fill in this gap, while also working hand in hand with the providers to 

raise awareness on energy serving services.  

3. The system offers a unique prediction methodology for the construction of detailed 

power profiles by assessing the cumulative energy consumption. However, to 

achieve this, smart meter energy samples are required. Therefore, the dataset used 

in this research is constructed through use of a simulation environment, in which a 

network of home appliances and smart meters is modelled. Our simulation 

environment is able to show us exactly how consumers use energy in their homes. 

We are able to identify high energy usage of appliances.  

4. The proposal of a novel behavioural algorithm (constructed in MS Azure) that 

learns the distinct attributes of home energy profiles, based on time-of-day and the 

autonomous feedback of recommended home activity changes. 

1.5 Research Methodology 

The dataset used in this research is collected from a simulation environment and compared 

with real energy data to better understand residential energy performance and energy related 

behaviours. This data is used to investigate the behaviour of a household’s occupants. The 
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collected data is comprised of five households. The houses each provide their own unique 

energy consumption patterns. They are also subject to functions of three principal time factors: 

1) the season, 2) the weekly/daily cycle and 3) the occurrence of public holidays. Other factors 

come into play relating to school holidays, daylight saving and weather conditions that can 

have large short-term effects on the longer-term patterns.  

This data can then be categorised by season and type of day (e.g., weekend) and then averaged 

to create a load profile for the customer. Simulation modelling makes use of the historic load 

shapes (as with static load profiling) but also includes a climate adjustment mechanism. The 

load profiling method relies on load data being read regularly (daily) with “new” load profiles 

being produced daily.  

To evaluate the baseline performance, a framework for measuring the quality of the profiles is 

defined in later chapters names as the Muschan, which is a system we have developed and 

named in this thesis. This method produces a single statistic that is built up from several 

profiling statistics, each of which are widely used approaches to measure the output results 

from the simulation. When data is collected at a high frequency, this produces many 

dimensions for the profiling exercise (i.e., the number of samples per day). Meter readings 

generate absolute values (often normalised so that the readings fit within a 0-1) the analysis of 

the differences in meter readings is of more interest as this reflects the changes in usage 

resulting from turning an appliance on or off. Demand side management techniques and 

interventions are intended to influence the consumptive behaviour in turning the appliance 

on/off; therefore, the usage of the different data as the basis for the load profiles is more relevant 

and is usefully used in the analysis of the results.  

1.6 Thesis Structure 

The remainder of the report is as follows.  
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• A literature review and background research on smart meter data analysis and associated 

technologies is put forward in Chapter 2. This chapter discusses smart meters and the 

actual data we collect from them to analyse and profile occupant behaviour patterns. It 

also looks at the research objectives and assumptions also included is the methodology 

and techniques used for profiling users.  

• Chapter 3 This section discusses the machine learning algorithm models, learning 

algorithms and classification techniques used for profiling users and data processing 

within the wider smart system.  

• Chapter 4 discusses the system development life cycle which is the proposed objective 

to develop a model that can analyse the general energy consumption patterns in residential 

homes to provide a holistic overview of the energy patterns. 

• Chapter 5 presents a simulation approach which has been adopted for the construction 

of residential electricity consumption data that is used for testing the system and gathering 

data that we use in machine learning to come up with patterns to read consumer 

consumption in residence homes. 

• Chapter 6 This chapter discusses the simulation results and analysis for the various 

machine-learning models that have been selected in this experiment. The chapter 

elaborates more on the metric techniques such as ROC, AUC, Accuracy, Precision and 

F1-Score. 

• Chapter 7 The conclusion section presents the entire research and discusses its outcomes. 

This chapter demonstrates the constraints on the methodology framework the experiments 

undertaken and outlines for the future work, which I would recommend other researchers 

to research the work further and improve the domain. 
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Chapter 2 Background Review  

 

The main aim of the smart meter is to facilitate real time energy usage readings, at granular 

intervals, to both the consumer and smart grid stakeholders [14]. In order to achieve this aim, 

consumer energy load information is obtained from electrical devices that communicate via the 

smart meter installed in house connected to the internet, while collecting the total energy 

consumption watts for the given property. To describe the components of smart meter data 

intelligence, it is necessary to understand the environment in which they operate.  
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Figure 2 Smart Meter Infrastructure 

Figure 2 above illustrates a diagram of a residential house, which has a smart meter Installed, 

and illustrating how the meter communicates with the different appliances in the home via the 

internet and how then the data collected is transmitted to the utility office via the WAN. 
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Smart house appliances are expected to be able to communicate with smart meters via a Home 

Area Network (HAN), which is an efficient energy intake and control to all home devices. 

Smart meters establish a wireless HAN in a consumer’s home. This could be a local ZigBee 

wireless network or the Wifi and PLC, which gas and electricity smart meters and in-home 

displays use to exchange data. Consumers are also able to pair other devices that operate the 

ZigBee Smart Energy Profile (SEP) to this network. Additional information, such as home 

generated electricity is provided to the utility company as well as the system operator for 

enhanced monitoring and accurate billing.  

Some of the core roles and benefits include: 

• Accurate recording, transmitting, and storing of information for defined time periods at a 

minimum of 10 seconds). All UK smart meters must store energy usage readings for a 

maximum of 13 months providing a unique insight into energy consumption. 

• They offer two-way communications to and from the meter so that, for example, suppliers 

can read meters remotely [15], facilitate demand and response and upgrade tariff 

information. 

• Managing metered consumption data where any small improvements in understanding 

patterns of electricity usage and demand could unlock significant economic value, which 

would benefit both the industry and consumer. The advent of a fully smart-metered 

electricity system is the first step, but making these improvements is also heavily dependent 

on our ability to store, manage, process and extract useful information from the smart meter 

data. 

• Smart meters allow the utility company to avert the insinuation that the energy is for 

internal property use only as many issues occur outside of the persons property / sheds / 

neighbours abutting etc at the customer’s premises. The utility can then take the proper 
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action to resolve the problem in a timely and cost-effective manner. Smart meters provide 

power status information automatically upon request. The automatically generated 

information includes the “power fail” indication when power is lost and “power 

restoration” indication when power is restored etc. 

The device retrieves the data and may process it or simply pass it on for processing upstream. 

Data is transmitted via a Wide Area Network (WAN) to the utilities central collection point for 

processing and use by business applications. Since the communications path is two way, signals 

or commands can be sent directly to the meters, customer premises or distribution device. The 

combination of the electronic meters with two-way communications technology for 

information, monitor and control is commonly referred to as the AMI. 

2.1 The Advance Metering System  

The Advance Metering System (AMI) facilitates the bidirectional communication between the 

consumer and the rest of the smart grid stake holders. It reduces the traditional need for energy 

usage readings to be collected manually [16]. The smart meter is able to communicate with a 

gateway through a Home Area Network (HAN), Wide Area Network (WAN) or a 

Neighbourhood Area Network (NAN), which is outlined as follows in Figure 3: 
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Figure 3 Advanced Metering Infrastructure 
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The HAN is housed inside the consumer premises and is made up of different devices e.g., 

Meters, Thermostats, Electric storage devices, Zigbee transmitters. The HAN contains both the 

electrical and gas smart meter, which generates detailed consumption data. The data generated 

is transmitted in NANs and WANs and, eventually, to the control station for power corrective 

measure [17]. The HAN is responsible for providing communication between electrical devices 

and the access points. The WAN handles the communication between the utility companies 

and the HAN. The WAN is responsible for sending all meter data to the utility, using a robust 

backhaul network, such as carrier Ethernet, GSM, CDMA or 3G [18]. 

All the acquired data is sent to the MDMS, which is responsible for storing, managing, and 

analysing the data [19]. The MDMS sits within the data and communications layer of the AMI. 

This component is an advanced software platform, which deploys data analytics while 

facilitating the various AMI applications and objectives. These applications include managing 

metered consumption data, outage management, demand and response, remote connect / 

disconnect, and smart meter events and billing [20]. This information can be shared with 

consumers, partners, market operators and regulators. Additionally, the smart grid introduces 

a number of new opportunities for reducing the carbon footprint and the energy bills of the 

consumers, by employing residential energy management techniques [21]. Energy 

management schemes that are based on time of use rates, encourage consumers to run their 

appliances in off-peak hours and benefit from lower rates. 

2.2 Billing Rates in the AMI 

Currently, residential time of use rates are fixed, however dynamic rates that are based on the 

real-time price of the electricity are also possible. With dynamic billing, following the changes 

in the price of electricity and variations in the emission rates becomes more challenging for 

consumers. For example, consumers might be under one of the four billing/tariff groups 
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outlined in Table 1 1 (where IHD related to In-Home Display unit). The allocation code relates 

to the group code assigned to the customers [22]. 

Table 1 Potential Tariff Options 

Allocation 

code 
Allocation interpretation 

1 Bi-monthly bill 

2 Monthly bill 

3 Bi-monthly bill + IHD 

4 Bi-monthly bill + IHD + variable tariff 

With these different billing options available, it is possible to integrate automated energy 

management systems that help to decrease the energy bills and carbon footprints of the 

consumer. Besides these opportunities, utilities can benefit from reduced residential peak loads.  

Recently, several commercial energy management products have been deployed for residential 

use. Some Apps and be installed and viewed on mobile phones, iPad, computers and IHD 

displays of smart meters, these can give an insight in how people use the applications and to 

what extent the applications can increase households’ insight in their energy consumption and 

stimulated behaviour changes. Apps such as Google Power Meter, for example, is a web service 

that allows consumers to view their energy consumption online on a one-day-after basis, [23]. 

The software can improve the energy efficiency of a house by measuring and profiling the 

power consumption of individual appliances inside the house. Technological advances such as 

this, have made it previously unmeasurable, and hence several online services have been 

introduced that can give a better view of how users consume energy in houses. Just as electricity 

suppliers monitor continuously and predict country-level energy requirements, in order to 

prepare for future energy demands more effectively, researchers are finding increasingly 

innovative approaches to profile individuals at home with a high amount of accuracy. 

Estimates from the European commission find that households can reduce energy consumption 

by 20% with simple behavioural changes alone [24]. This could include switching to more 
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energy efficient appliances energy efficiency appliances [25]. We therefore discuss how 

behavioural changes and energy efficient appliances can benefit us to reduce carbon emissions. 

A behavioural change takes place when a household willingly shifts their energy patterns in 

response to the information provided, based on the three types of change including: 1) 

appliance-based savings, 2) reductions in the total energy consumed daily and 3) load shift by 

changing the times the consumer uses energy. Considering the above energy transition, smart 

meters are also expected to play an important role in facilitating products and services that 

enable households to adjust their consumption patterns and to contribute to the balancing of 

supply and demand in the grid [25]. Abrahamese et al. 2005 [26] states that Behavioural 

interventions may be aimed at voluntary behaviour change, by targeting an individual’s 

perceptions, preferences etc. Alternatively, this may also be in such a way that certain decisions 

are being made, for instance, through offering financial rewards, and laws to consumers. The 

latter strategy is aimed at changing the pay-off structure, to make energy-saving activities 

relatively more attractive.  Behaviours related to household energy savings can be categorized 

into two: efficiency and curtailment behaviours [27]. Efficient behaviours are behaviours that 

involve the purchase of energy efficient equipment, such as insulation or appliances that 

automatically turnoff when not in use. Curtailment behaviours involve repetitive methods to 

reduce energy use, such as lowering thermostat settings. 

Behavioural change may also concern the changing from old appliances to newer more energy 

efficient ones; for example, replacing a washer to an energy saving model and replacing light 

bulbs to more efficient ones. Although not very common, there are also smart homes with 

applications that turn off the lights depending on the occupancy of the rooms or dimming them 

based on outside light intensity and shutter positions [28]. Similarly, R Malekian et al., for 

example, propose an electrical consumption optimization algorithm (Smart-ECO algorithm), 

which has the capability to learn from historical patterns about the energy usage habits of 
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residents in households [28]. To achieve this, R. Malekian et al., employed a regression analysis 

approach in order to analyse energy consumption correlated with the weather conditions [28]. 

Linear regression used by Malekian proved an 80% accuracy in approach when two houses 

were tested, and a good correlation was noted on one of the houses cooling days while the other 

house showed good results on heating days. Better correlations were realised after using 

multiple regression models.  

2.3 Energy Management in the AMI 

Energy management techniques within the AMI are systems that are based on time-of-use-

rates. A smart home system integrates sensors and smart meters that can signal appliances, 

devices, and so forth. Each household might have dozens of nodes to be controlled, such as 

appliances, heating, ventilation, solar panels, electric vehicles, and so forth. These can be 

controlled by the house occupant by switching on and off where appropriate and consumers 

decide to use their appliances in off-peak hours and, in turn, benefit from lower rates. Smart 

meters have In-house display’s that are able to give feedback to the consumers and in turn 

increase awareness and knowledge about energy consumption levels and patterns. This 

encourages consumers to make more informed decisions to reduce consumption for economic 

and environmental reasons. [29] Currently, energy time-of-use-rates are fixed; however 

dynamic rates are based on the time-of-use-pricing approach, meaning the costs will be 

determined and recorded at the time you use an appliance. Dynamic billing is one of the 

emerging areas of research in the energy sector. It is a demand-side response technique that 

can reduce peak load by charging consumers different prices at different times according to the 

demand [29]. Through adopting a dynamic billing approach, energy management systems can 

help to decrease not only energy bills, but also the carbon footprints of the consumers. Besides 

these opportunities, utility providers can benefit from reduced residential peak loads because 

consumers can monitor and optimise their energy usage in a personalised fashion. This is 
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demonstrated in the research by Ji Li et al [30], where he outlines that dynamic energy pricing 

is a technique in the smart grid that incentivises energy consumers to consume electricity more 

carefully in order to reduce their electricity bills and satisfy their energy requirements. 

The residential energy (RE) sector has become key to undertaking rapid emission reductions 

in a two-fold sense. Firstly, because the residential sector represents around 25% of energy 

consumption, and 17% of CO2 emissions, and therefore has direct significant effects on the 

environment [31]. For example, the recent study by Gertler et al., analyses household decisions 

to acquire energy using assets in the presence of rising incomes. Their analysis shows that 

public housing occupies approximately 60% of overall consumptions while private properties 

account for about 40%. Air-conditioners, water heaters, gas/electric and refrigerators account 

for around 76% of total energy consumption in a typical household [32]. The analysis does not 

show or quantify the usage patterns to show high or low energy usage, but measures energy 

consumption through individual appliance usage. 

According to Balta-Ozkan et al., a smart home is equipped typically with connected devices, 

appliances and sensors that can communicate with each other, and can be controlled remotely 

by users. These functions provide consumers with sufficient information to have the flexibility 

to monitor their own electricity consumption and make lifestyle changes to save electricity 

[33]. Estimates from the European commission find that households can reduce energy 

consumption by 20% from simple behavioural changes alone. This could include switching to 

energy efficiency appliances [34]. However, the ownership of the data analytics, understanding 

the home behavioural patterns and intelligent decision-making process is left with the 

homeowner. Therefore, recently, various commercial energy management products have been 

deployed for residential use, such as the google power meter, which is a web service that allows 

consumers to view their energy consumption online on a daily basis [35]. This software can 

improve the energy efficiency of a house by measuring and profiling the power consumption 
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of individual appliances inside the house. The consumer needs to be aware of how the system 

works and learn the readings to get a full understanding of how to save energy, but the learning 

curve with the technology is relatively low. 

High technological advances such as these, have made it increasingly possible to manage 

energy consumption to a more optimal level. Hence, several online services, which have the 

role of educating users, have been introduced that can give a better understanding of energy 

consumption in homes. Examples of online services include IHD (In House Displays) and 

CADs (Consumer Access Device). IHDs are wirelessly connected to a current meter, they 

display exactly how energy is being used in a residential setting. Consumers do have the option 

to purchase advanced IHDs if they to switch more advanced added features. The greatest 

benefit of the IHD is that it displays instantaneous live power consumption of house updating 

every few seconds for gas and electricity. CADs do connect to the smart meters the same way 

as IHDs, it takes live instantaneous feeds of electricity consumption in the house and uses it 

for two-way purposes:  

(i) Uses it locally to help manage appliances in the house and 

(ii) Streams the data via the consumers broadband making the data available to the 

consumer when they need it. 

In the UK, emissions from buildings were found to account for 19% of UKGHG in 2016, 

having increased for the second year running [34]. In its “Energy Roadmap 2050”, the 

European Commission aims to reduce the emissions from houses and offices by around 90% 

in 2050 in stark contrast to 1990 levels) [36]. Research has shown that increased ownership of 

high consuming products and appliances is a key factor contributing to ever-increasing energy 

consumption in homes. There are many different types of behaviour’s that people can adopt to 

save energy. Depending on the disciplinary approach from which the energy-related behaviours 

are approached, the literature shows various types of behaviour. 
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2.4 Smart Energy Feedback 

Smart energy feedback could be able to provide more suitable feedback. Ideally every 

household should be able to see what is happening to consumption and be able to respond to it 

in one way or another. The main advantage to smart energy feedback is that the consumer has 

an easily accessible and easy to understand display which is connected to the smart meter via 

the internet. The utility would be able to give feedback to the consumer through feedback via 

the in-house display on the smart meter or via smart apps installed on phones, computers etc 

[37]. IHDs enable consumers to be in control, have near real-time information on their energy 

consumption to help them manage their energy use, avoid waste, save money, and reduce 

emissions. In a nutshell, SMs and IHDs are meant to solve a lot of problems with conventional 

energy bills.  They provide immediate feedback and make energy consumption visible through 

devices in the home. 

2.5 Machine Learning 

Machine learning is considered a narrow form of artificial intelligence (AI), giving computers 

the ability to solve data problems in various fields without being explicitly programmed [38, 

39, 40]. Such algorithms may be used and applied to problems posed within prediction, pattern 

recognition, and classification settings, using estimated computational procedures to trained 

models using empirical datasets [41]. In recent years there has been several clustering methods 

used for energy profiling for residential smart meter data [2]. These algorithms have been used 

for the improvement of energy profile management. The main motivation for researchers is to 

be able to support utility companies to manage the smart grid efficiently and deliver better 

services to consumers as well as protect the environment.  Another study by Beckel, C et al. 

analyses his approach with data driven energy efficiency model and supervised learning model. 

His data is comprised of data collected from 4232 households in Ireland at a 30-min granularity 

over a period of 1.5 years [43]. Our analysis shows that we can simulate energy data and 
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analyse it to reveal unique consumption patterns. Shapi m k et al. [44] aims to address the 

problem by building a predictive model for energy consumption in Microsoft azure cloud-

based machine learning platforms, he proposes using support vector machines, artificial neural 

networks, and k-nearest neighbour algorithms for the prediction model. The data collected is 

analysed and pre-processed before model training and testing. 

Figure 7 illustrates a general overview of the machine learning classification process. Firstly, 

a training set phase containing instances whose target values are known from the datasets. The 

purpose of the training set is to build a classification model. To evaluate the model that has 

been trained, a testing set phase is implemented, which involves instances with unknown target 

values. Finally, the performance evaluation of a classification approach is based on the counts 

of test instances that have been correctly and incorrectly predicted by the model [45].  

 

Figure 4 General framework for building machine learning classification 

The machine learning model is a systematic approach for constructing a classification 

algorithm from input datasets [46]. Each model applies a learning algorithm to examine the 

relationship between features and class label of the input datasets. However, the main objective 
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behind the learning algorithm is to build a model that can predict the target value that was 

previously unknown. In our case, the target value is the prediction of high usage of energy in 

residential settings. Learning algorithms are mainly divided into three important approaches, 

which are supervised (learning), unsupervised learning, and reinforcement learning models. 

The next sections discuss the three types of learning algorithms.  

2.5.1 Supervised learning algorithm  

Supervised learning techniques is a data mining procedure of inferring a function from labelled 

training datasets [47]. The inferred function is to predict the correct target value (output) for 

any valid categorical label (input object). In this method, each instance is a pair comprising of 

an input object and the desired output value [48]. In supervised learning there are input 

variables(X) and output variable(Y),) and an algorithm is used for learning a mapping function 

from input to output. Y=f(X), here the aim is to estimate this function, so that whenever there 

is new input data the algorithm should predict the output variable(Y) values for that respective 

data [49]. This process is called supervised learning referencing the process of an algorithm 

learning from the training dataset, in the same way as a teacher supervising the learning process 

of a student. We know the correct answers, the algorithm iteratively makes predictions on the 

training data and is corrected by the teacher. Learning stops when the algorithm achieves an 

acceptable level of performance. Supervised learning problems can be further grouped into 

regression and classification problems. 

• Classification: A classification problem is when the output variable is a category, such 

as “red” or “blue”, or “disease” and “no disease”. 

• Regression: A regression problem is when the output variable is a real value, such as 

“dollars” or “weight”. 
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Some common types of problems built on top of classification and regression include 

recommendation and time series prediction respectively [49]. Furthermore, some popular 

examples of supervised machine learning algorithms are: 

• Linear regression for regression problems. 

• Random forest for classification and regression problems. 

• Support vector machines for classification problems. 

Supervised learning techniques is a data mining procedure of inferring a function from a 

labelled training dataset [50]. The inferred function is to predict the correct target value (output) 

for any valid categorical label (input object). In this method, each instance is a pair comprising 

of an input object and the desired output value [51]. The main point for the training set is to 

learn from labelled instances in the training set to identify unlabelled instances during the 

testing task with high potential accuracy, as demonstrated in Figure 8.  

 

Figure 5 Supervised Learning Workflow 
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The training procedure continues until the algorithm can achieve high accuracy on the training 

data. The correct output should be known, taking the indication there is a relationship between 

the input value and the output value [52]. Machine learning techniques are used to 

automatically find the valuable underlying patterns within complex data that we would 

otherwise struggle to discover [62]. The hidden patterns and knowledge about a problem can 

be used to predict future events and perform all kinds of complex decision making.  

This explanation in this section covers the general Machine Leaning concept and then focusses 

in on each approach. Short- and long-term forecasting of electric loads is an essential function 

required by Smart Grids. Today the vast increasing amount of smart meter data is available 

enabling the development of enhanced data-driven models for short-term load forecasting. 

Many models have been developed, which range from simple linear regression to more 

advanced models such as neural networks and support vector machines. Supervised machine 

learning, such as support vector machines (SVMs) were introduced by Vapnik [50] in the late 

1960s. SVMs are a set of novel machine learning methods used for classification and have 

recently become an active area of intense research with extensions to regression [53]. SVMs 

have been applied successfully to projects to identify and detect activities in the electric utility 

market i.e., customers with irregular and abnormal consumption patterns indicating fraudulent 

activities. Also, an automatic feature extraction method for load profiles with a combination of 

SVMs is used to identify fraud customers [53]. For example, customers with 

irregular/abnormal consumption patterns (indicating fraudulent activities) can be detected 

using SVMs. As such, we infer that this approach can be used similarly to identify unique 

patterns of customer energy usage from smart meter datasets.  

This study uses historical customer consumption patterns are extracted from smart meters 

customer consumption patterns are extracted using data mining and statistical techniques, 

which represent customer load profiles. This is the reason we use supervised machine learning 
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in our research. Our research concentrates only on scenarios where abrupt changes appear in 

load profiles, indicating abnormal or high energy usage, which is our main concern to come up 

with ideas about how we can educate the consumer on energy saving techniques to help reduce 

greenhouse gas emissions.  

Within this research area, Capizzi et al. [54] adopted neural networks to predict both energy 

production and consumption. Their approach uses an Artificial neural network (ANN) with a 

hybrid algorithm of genetic algorithm and particle swarm optimization to improve electricity 

demand forecasting [64]. ANN and SVM are also used for electricity price forecasting [55]. 

Clearly machine learning algorithms have the potential to observe and learn data patterns.  

2.5.2 Support vector machine 

An SVM is a supervised machine learning algorithm that is applied to classification tasks. 

Using training data, it finds the maximum margin hyperplane between two classes by applying 

an optimization method. The decision boundary is defined by a subset of the training data, 

called support vectors [68]. SVM, Paudel et al. predicted heating energy consumption for low-

energy residential buildings based on support vector machine model in France [68]. The 

algorithm tunes the classification function capabilities through maximizing the margin between 

the training patterns and the decision boundaries [56]. 

Support vector regression (SVR) is an extension of the SVM algorithm for numeric prediction. 

The margin is any positive distance from the decision hyperplane. SVR also produces a 

decision boundary that can be expressed in terms of a few support vectors and can be used with 

kernel functions to create complex nonlinear decision boundaries. SVR attempts to uncover a 

function that best fits the training data. SVMs can form complex decision boundaries, because 

they do not over fit the training data, as the decision boundary depends only on a few training 

instances. In addition, they have a much smaller number of parameters to optimise [57]. As 

proposed by Palaniappan et al, to tackle the task of activity recognition in a home setting. In 
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this case, the author employs a multi class SVM for recognizing the normal activities, and the 

anomalous activities are detected by ruling out all possible activities that could be performed 

from the current activity. The whole system is focused on identifying anomalous activities with 

less computational time, to work efficiently in real time [58]. SVMs are considered supervised 

learning with the ability to analyse datasets, utilised for regression and classification tasks in 

particular [59]. The SVM is a class of models that minimise misclassification through a training 

phase, known as maximum margin point [59].  

2.5.3 Unsupervised Learning  

In unsupervised learning, there is only input data(X) and no output variable. In this case, the 

goal is to learn more about the data by modelling the underlying structure. Unsupervised 

learning is also one type of machine learning model applied to drive inferences from training 

datasets involving input data without output (labelled responses) [60]. Unlike with supervised 

learning, in unsupervised learning models the target value is unknown.  

 

                                       Figure 6 Cluster datasets example [96] 

Cluster analysis is the most common method in unsupervised learning that is utilised for 

exploratory analysis to find groupings or hidden patterns in datasets [61]. The main goal of 
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applying this technique is to find the smallest group feature subset (clustering) from the datasets 

according to the chosen criteria [61]. Figure 10. above shows the clustering method.  

The clusters are demonstrated via a measure of similarity, which is indicated upon metrics, for 

example probabilistic distance or Euclidean. It is distinguished from the supervised learning 

method by the fact that the outputs are not supplied to, or required by, the learning algorithm 

during training [62].   

2.5.4 Linear Regression 

Linear regression predicts a real valued output based on one or more input values. A prediction 

of a single output variable from a single input variable is called “univariate linear regression”; 

whereas “multivariate linear regression” indicates multiple features.  

The linear regression model describes the dependent variable with a straight line that is defined 

by the Figure 9. below, the parameters positive regression line below is estimated from the 

dataset used in the system. It can be represented using probability distribution functions 

represented in the equation below. 

                                                           Y = a X+b                                                                (1) 

Where Y is the dependent variable, and X is the independent variable and B is an unknown 

parameter. 
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                                     Figure 7 Simple Linear Regression 

This module is used to define a linear regression method, which trains a model using a labeled 

dataset. The trained model can then be used to make predictions. Among the statistical 

approaches, regression techniques deserve attention due to:  

• They are being relatively straight-forward to implement.  

• Requirement of less computational power than other statistical approaches (genetic 

algorithms, neural networks, support vectors machine).  

• Satisfactory prediction ability.  

• Increased availability of data through smart metering 

Several studies have focused on the use of these techniques for consumption analysis 

depending on the type of heating. For example, Gupta and Greg [63] evaluate the effect of 

climate change on several types of dwellings located in the UK, by means of a simulation 

software IES.  They ascertained that energy would rise significantly especially in flats. 

Bartusch et al [64], however, discovered a significant variance in electricity consumption in 

households with a heat pump and combined electricity heating system. Whereas Gradjean et al 

[65] state that ‘The influence of the human behaviour on the domestic power demand is so 
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important that there is every chance, for instance, that two households with the same daily 

energy consumption will not show a similar load curve’. The power demand approach is of 

interest to study topics mainly related to the need of predicting the peak power demand in order 

to /and analyse issues related to the electric network and energy usage in residential settings.  

2.5.5 Clustering algorithms 

Clustering is one of the well-known techniques that identifies and recognises implicit relations 

and patterns in datasets. Clustering is an unsupervised learning method that can uncover the 

hidden structure in a collection of unlabelled energy data. In residential home energy usage, 

the primary application of this technique is to classify residential buildings using various 

features and characteristics. Clustering for such algorithms consists of four steps being, i) data 

collection, ii) feature identification and selection, iii) adaptation of clustering algorithms and 

lastly iv) placing groups of residential houses in appropriate classified groups [66]. 

The most common clustering algorithm is k-means, which functions by grouping similar data 

points together and, in doing so, discovering underlying patterns. The algorithm begins with 

looking for a fixed number (k) of clusters in a dataset with certain similarities. This process 

continues until it satisfies a stopping criterion (e.g., a minimum aggregation of distances is 

reached). A method used by DD Sharma to relate the load factor to the clustered profile is 

proposed for peak analysis to identify demand requirement in different clusters of different 

regions [67]. 

2.5.6 Machine Learning workflow 

This research aims to address the problem by using Microsoft azure cloud-based learning 

platform to analyse the data provided by smart meters to provide an accurate monitoring 

system. Research has been undertaken to understand the behavioural patterns that are needed 

to conduct this experiment. The first process is to select the data depending on the type of 

predictions we desire to make. In this scenario we want to predict houses which are using so 
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much energy than the average. This thesis describes how to use real-time data from a system 

that uses different sensor data from different appliances in a residential home. The collected 

data cannot be used directly for performing the analysis process as there might be a lot of 

missing data, extremely large values, unorganized text data or noisy data. Therefore, to solve 

this problem cleaning the data step is performed which removes the missing values and selects 

the needed features to be used. Our system then selects the features to be used in the dataset. 

Feature selection is an important tool in machine learning which provides multiple methods for 

performing feature selection, at this stage we choose a feature method based on the type of data 

that you have, and the requirements of the statistical technique that is applied [67].  

In the field of pattern recognition and machine learning domain, dimensionality reduction is a 

significant area, where several approaches have been proposed. The pattern recognition 

technique involves two important phases: feature selection and feature extraction. In order to 

provide optimal representation of a particular field, features are identical input variables or the 

attributes of a dataset [68]. Features can be characterised into redundant or relevant, and 

irrelevant. In this research, the main purpose of using these types of features is to improve the 

predictive accuracy of classifiers and to obtain a high performance of learning algorithms. The 

major objective of this technique is to avoid overfitting that could require further analysis. 

Figure 11. shows the procedure of Feature extraction and feature selection.  

 

Figure 8 Feature extraction and feature selection procedure 
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Feature selection techniques offer a good way to improve prediction performance, reduce 

computation time, and provide better understanding of energy usage in residential settings in 

machine learning algorithms or pattern recognition applications [68].  

AM Pirbazari et al [69] proposed four robust feature selection techniques known as F-

regression, Mutual Information, Recursive Feature Elimination and Elastic Net applied for pre-

processing step in energy data. The authors have indicated the usefulness of the proposed 

approach, towards the development of better classification algorithms through use several 

classification algorithms that covers the current performance evaluation techniques matrices, 

specifically with the area under the ROC curve, sensitivity, and false positive rate.  

In the case of feature selection, it is important to explore into optimizing the model either to 

improve or maintain classification accuracy and to simplify the classifier complexity. 

A study conducted by Dash and Liu [70] indicated that the feature selection algorithm can be 

separated into 6 steps as shown in table 2. 

 

Table 2 Feature Selection procedure 

Feature selection procedures 

1. select a criterion procedure function, 𝑓(𝑥) 

2.  Choose a subset 𝑥′ of the complete features sets X. 

3. Construct a model with the candidate subset 𝑑. 

4. Calculate 𝑓(𝑥) 

5.  Repeat with various subsets 𝑥′ ⊂ X. 

6.  Choose 𝑥 which minimises 𝑓(𝑥) 
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Chapter 3 Literature Review 
 

This thesis addresses the ability how a residential consumer’s energy usage can be monitored 

accurately in real- time. In this chapter, we review the literature on energy feedback that can 

enable the consumer to be aware of their household’s electricity usage and, thereby, induce 

more sustainable energy consumption choices. This research emphasizes the necessity of 

improving energy literacy and encourages energy efficient behaviours with the potential to 

increase energy literacy, to make much greater savings and impact climate change. The study 

includes work on household energy simulation, pattern recognition, behavioural and cognitive 

theories. This chapters identifies gaps in the existing literature that this thesis seeks to address.  

In developed countries the energy sector is important; for example, residential consumption in 

the UK is 29% [1]. This translates to roughly 12% of UK greenhouse gas emissions [2]. Smart 

meter home display systems would provide consumers with more accurate information and 

bring an end to estimated billing. Consumers would be in control, have near real-time 

information on their energy consumption to help them manage their energy use, avoid waste, 

save money, and reduce emissions.  

The benefits of smart energy feedback have been pointed out in many studies, and different 

interventions have investigated factors that might impact the efficacy of feedback on behaviour 

change. Amongst others, these factors are frequency of feedback, historic comparisons to a 

household’s past performance, and social comparisons to other households. 

In this chapter, we describe how machine learning is a powerful tool that can be employed to 

analyse the data collected from smart meters. The patterns uncovered from the data we collect 

from household usage can help us come up with incentives as to how we can educate the 

consumer on how reducing greenhouse gas emissions is possible through lifestyle changes 

around the home in everyday living situations. As such, the system proposed in this thesis aims 

to help society adapt to a changing climate [71]. 
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From data collection and load profiling conducted on smart cities, we are able to point out 

problems where existing gaps can be filled by machine learning techniques, in collaboration 

with other fields. Mitigation of Greenhouse Gas (GHG) emissions requires changes to critical 

infrastructure systems such as the electricity management and distribution process. This is 

being introduced by the AMI, as outlined in the previous chapter. However, other networks 

such as transportation, buildings, industry, and land use must also be adapted to meet the need 

for a reduction in carbon emissions.  

3.1 Microsoft Azure Machine Learning 

Azure Machine Learning empowers data scientists and developers to transform data into 

insights using predictive analytics [72]. Data can hold a lot of meaning especially if you have 

large warehouses. Discovering patterns is interesting but can also help solve problems and this 

is exactly what machine learning does. Machine learning examines large amounts of data 

looking for patterns and therefore generates codes to allow you predict to the patterns. One tool 

used within this domain (and is the focus in the experimentation) is Azure machine learning 

studio, which is a cloud service that helps execute the machine learning process. As its name 

suggests it uses Microsoft Azure a public cloud platform and it can work with very large 

amounts of data which can be accessed from anywhere in the world [72]. In this section, 

specific focus is given to MS Azure as it is the chosen tool for the experimentation and 

evaluation of the system. 

Microsoft Azure Machine Learning use case algorithms to predict a target category. The 

algorithms within this tool include the following: Anomaly detection algorithms, regression 

algorithms, clustering algorithms, linear regression, logistics regression, naïve bayes, support 

vector machines, decision trees, kk-nearest neighbours, random forest, gradient boosting, and 

K means algorithms. The next section discusses the six types of learning algorithms. Below is 

an overview on the MS Azure algorithms presented in the table 3 below: 
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Table 3 Machine Learning Overview in MS Azure 

Anomaly 
detection 
algorithms 
 

Clustering 
algorithms 

Linear 
Regression 

Support 
vector 
machines 

Decision trees K-Nearest 
neighbour 

• Identify data 
points that 
fall outside of 
the defined 
parameters 
for what is 
“normal” 
[73]. 

• Clustering 
algorithms 
discover 
knowledge 
from the 
data set 

• Predicts the 
relationship 
between two 
variables or 
factors by fitting a 
continuous 
straight line to the 
data. 

• Draws a 
hyperplane 
between 
the two 
closest 
data 
points. 

• Splits the data 
into two or 
more 
homogeneous 
sets. 

• KNN is a 
model that is 
easy to 
understand 
but works 
exceptionally 
well in the 
training 
model and 
testing model 
[79]. 

• Collect and 
pre-process 
energy 
consumption 
time series 
data with 
clustering 
algorithms. 

• Identifies 

groups of 

similar 

objects 

that are to 

carry out 

cluster 

analysis 

for 

obtaining 

data 

partitions. 

 • SVMs are 

used to 

identify 

high 

energy 

usage of 

customers 
[77]. 

• Classifications 

can be 

performed 

without 

complicated 

computations 

and the 

technique can 

be used for 

both 

continuous 

and 

categorical 

variables [78]. 

Model is 

used in 

pattern 

recognition 

and 

statistical 

estimation as 

a non-

parametric 

technique 

[79]. 

• Compare the 
smart meter 
measured 
energy 
consumption 
data with the 
model 
predicted 
one. 

• Decision is 
then taken 
to choose 
the best 
data 
partition 
cluster to 
read the 
results. 

    

 

3.1.1 Two-Class Decision Jungle 

The initial performance evaluation technique was performed on the simulated dataset. The 

module returns an untrained classifier. We then train the model by using a training dataset, by 

using a training model that is based on a supervised ensemble learning algorithm called 
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decision jungles. The trained module can then be used to make predictions. Decision jungles 

are non-parametric models that can represent non-linear decision boundaries and they perform 

integrated feature selection; classification is resilient in the presence of noisy features. 

3.1.2 Two-Class Decision Forest 

The principal aims of using several classifiers in comparison with the baseline models is to 

estimate and evaluate each classifier that can perform the best. Decision forests are fast, 

supervised ensemble models. This module is a good comparison tool, that has the capability to 

predict a set of data with a maximum of two outcomes. This is an ensemble learning method 

intended for classification tasks. Ensemble methods are based on the general principle that 

rather than relying on a single model, you can get better results and a more generalized model 

by creating multiple related models and combining them in some way. Decision forest works 

by building multiple decision trees and then voting on the most popular output class. Voting is 

one of the better-known methods for generating results in an ensemble model. The 

classification trees are created, using the entire dataset, but different starting points and only 

use some randomized portion of the data or features. 

Decision trees in general have many advantages for classification tasks: 

• They can capture non-linear decision boundaries. 

• You can train and predict on lots of data, as they are efficient in computation and 

memory usage. 

• Feature selection is integrated in the training and classification processes. 

• Trees can accommodate noisy data and many features. 

• They are non-parametric models, meaning they can handle data with varied 

distributions. 
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3.1.3 Two-Class Adopted Perception  

This classification algorithm is a supervised learning method, and requires a tagged dataset, 

which includes a label column. You can train the model by providing the model and the tagged 

dataset as an input to train module. The trained model can then be used to predict values for 

the new input examples. The averaged perceptron method is an early and very simple version 

of a neural network where inputs are classified into several possible outputs based on a linear 

function, and then combined with a set of weights that are derived from the feature vector, 

hence the name "perceptron." 

3.1.4 Two-Class Logistic Regression 

Logistic regression is a well-known method in statistics that is used to predict the probability 

of an outcome and is especially popular for classification tasks. The algorithm predicts the 

probability of occurrence of an event by fitting data to a logistic function. 

3.1.5 Two-Class Neural Network 

Classification using neural networks is a supervised learning method, and therefore requires a 

tagged dataset, which includes a label column. For example, you could use this neural network 

model to predict binary outcomes such as whether an occupant uses a lot of energy or less 

during a particular day. After we define the model of how we want the dataset to be, we train 

it by providing a tagged dataset and use the trained model to predict values for new inputs. 

3.1.6 Two-Class Support Vector Machine 

Support vector machines (SVMs) are a well-researched class of supervised learning methods. 

This implementation is suited to prediction of two possible outcomes, based on either 

continuous or categorical variables. Support vector machines are among the earliest of machine 

learning algorithms, and SVM models have been used in many applications, from information 

retrieval to text and image classification. SVMs can be used for both classification and 

regression tasks. In the training process, the algorithm analyses input data and recognizes 
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patterns in a multi-dimensional feature space called the hyperplane. All input examples are 

represented as points in this space and are mapped to output categories in such a way that 

categories are divided by as wide and clear a gap as possible. For prediction, the SVM 

algorithm assigns new examples into one category or the other, mapping them into that same 

space. As such, the classifiers’ effectiveness is evaluated as follows in Table 14. below. 

3.2 Smart Residential Simulator 

Technical and physical installations of smart meters in home’s may not be enough to guarantee 

reduced energy consumption, so the research and consumer education of domestic energy 

regulations will   continue   to   be   on-going which is main focus of this research as we have 

seen the weaknesses of current research.   This focuses onto understanding how occupants are 

using energy within these residential buildings. Energy use is different among identical houses 

with similar appliances occupied by people from different backgrounds. These large 

differences in energy consumption are more concerned to differences in consumption 

behaviour. If the house provided better feedback about which devices used the most energy, 

then users could adjust their behaviour to make more efficient use of appliances. ‘Smart 

electricity meters’ are one such feedback mechanism.  

Many recent studies have developed models and simulators that model heating, electrical and 

ventilation systems in buildings. For example, the energy plus software [5], designed to model 

thermal energy in buildings from a thermal perspective. The system has not been designed to 

collecting electrical load profiles for households, which is where the emphasis of our thesis is 

directed too. Simulation model used in this thesis research is Beopt energy software which 

collects data in a residential household with all appliances interconnected via a smart meter 

installed in the house. The data collected is then profiled using machine learning techniques to 

analyse and come up with unique energy load profiles to determine energy use in residential 

homes. These energy profiles are important to determine an occupant’s energy usage to give a 
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clear indication how much carbon emissions are released into the atmosphere with respect to 

energy consumption which is the main purpose of the work presented here. 

Work carried out by Lopez et al. 2018 uses the novel toolbox, called the smart residential load 

simulator (SRLS), with a user-friendly graphical interface to simulate optimal on/off decisions 

of residential appliances to study residential energy profiles on a 24-hour timescale [6]. In 

Lopez research it is mentioned that factors such as ambient temperature play an important role 

in the energy consumption of a household and are user defined inputs to the residential load 

simulator other inputs considered are the rates of the day like off-peak, mid-peak and on-peak 

to represent the time of use prices. 

Past studies such as J. Venkatesh et al. 2013 have developed simulation platforms such as 

Homesim which is a simulation platform capable of modelling the energy consumption of the 

typical loads and sources of a home. Much of his work has focused on characterizing green 

energy consumption within the home, with appliances accounting for 74% of total energy. 

In a smart house people tend to follow specific patterns in their daily lifestyles. The user’s 

activities in a house with regards to energy and the appliances in-house generate patterns that 

play an important role in predicting usage profiles in the smart house [7]. A user generates a 

pattern when they use energy in the house, usage of too much energy can be exposed by the 

construction of patterns. The user’s behaviours can be used to predict and determine future user 

trends which are beneficial for energy utility companies.  

For example, W. Hurst et al. 2020 in their research demonstrate how user models, can be used 

to identify anomalous energy consumption points within granular datasets.  These anomalous 

patterns cab be fed back to the homeowner (or utility provider) as key indicators of high carbon 

emissions [7]. This research focuses on electricity consumption smart meter, where most of the 

research in the area of smart meter profiling concentrates on gas or water meter data. 
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Yi Wang et al.2018 explains how customer behaviour trials are used as part of low carbon 

emission projects of over five thousand households in the London area. Smart meter data, time-

of-use tariff data and survey data were collected to investigate the impacts of carbon emissions 

on London’s electricity distribution network [8].  Zhang et al. [9] analyses energy consumption 

data on a household level to identify when the residents have been not doing any activities in 

the house or rather when the house is not occupied. In this research there no profiles generated 

from the smart meter data collected which indicates there was no activities in house at the time 

the experiment was done and with this behaviour, it would be easy to determine if the user is 

deviating from the norm. 

However, some research has used indirect feedback which has shown the potential for helping 

to reduce domestic energy consumption, primarily by improving end user knowledge and 

inciting changes in occupants’ energy usage patterns. This method appears to work better when 

the analytical process is completed by an external body, whether that be a utility company or a 

research team. Once the actual meter readings have been collected, analysed, presented and 

even explained to the occupants, the past literature suggests that savings can be achieved, and 

behaviour can be changed. The progress with such systems is labour intensive for the party 

providing the service and may not be easy to replicate across all households.  

Our research focuses on developing a system that can be useful over the internet with smart 

meters installed in houses and interconnected with appliances via the internet.  

Energy wasting types of behaviours are not known by people, hence a smart meters and 

consumer education are key to people knowing how to save energy and therefore less carbon 

emissions. Darby et al. [10] 2006 suggests the theory and field research, that if residential 

consumers had more detailed and/or frequent information about their consumption, physical 

systems, infrastructure, social norms, comfort preferences and options for control to better 

understand their energy use patterns and be able to change them effectively.  
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Technical and physical improvements to the smart meter system may not be enough to 

guarantee reduced energy consumption, because some consumers might not really understand 

the system, so tightening and education of energy regulations will continue to be on-going.  

In the residential building sector, education and knowledge of how to preserve energy is a 

critical objective for low carbon economy, from a science point of view, a better understanding 

of occupants behaviour is a critical component to achieve this goal and that is why this research 

developed a system called the Muschan system which is discussed in latter chapters in the 

thesis to profile residential energy and do a comparison with real life residential data to 

compare the energy profiles generated. Some studies focus on modelling occupant’s presence 

and absence in monitored spaced using machine learning algorithms. Ortega et al. [11] 2015 

used support vector machines to model occupant’s presence and activity patterns based on data 

collected from sensors in 3 houses. 

In a simulation-based platform, Lu et al. [12] 2010 predicted occupant’s departures, arrivals, 

and sleeping patterns by the patterns collected from the datasets of the sensors. The above 

studies and their related works stipulate insights on learning occupant’s behaviour in buildings 

using machine learning techniques and exploits energy saving potentials. 

A smart meter is an electronic device that records consumption of utility services (such as 

electricity and gas) at fixed intervals. It replaces existing analogue meters where energy usage 

readings are collected manually, usually over a long period. The system automatically 

communicates consumption information, using a predefined schedule, to the Meter Data 

Management System (MDMS). It is predicted that smart meters will contribute to a 25% carbon 

emission saving in U.K. homes by 2035. This is according to a new report by independent 

smart meter data company Smart Energy GB [13]. The smart meters will help reduce emissions 

by decreasing the energy demands and changing the behaviour of consumers towards their own 

personal usage, which will, in turn, enable dynamic pricing tariffs to support low carbon 
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emissions. Smart meters have received wide-spread popularity over the last ten years. This is 

due to many reasons, including: 1) the applications for the use of the technology in supporting 

a reduction in carbon emissions; 2) the granularity of the data generated be used in modelling 

and predicting home activities and 3) the benefit the data has for the energy provider when 

forecasting energy load demands [13]. 

Other benefits could be that consumers would opt to use a smart thermostat that communicates 

with the grid which comprise of remote management in order to balance supply and demand at 

any instant. This would enable consumers to control their energy usage themselves, by, for 

example, switching the heating on or off from work or wherever they might be. Customers 

would be able to choose real time pricing signals from their home smart meters that typically 

suit their daily consumption patterns and they may decide to change their normal practices and 

behaviour to suit their daily needs.  

In summary, smart metering is heavily promoted as an essential part of the transition to lower 

energy systems, and as a means of customer engagement. For electricity, where most attention 

is concentrated, it is also considered as a step on the road to the ‘smart grid’, an extremely 

complex system. It has also been indicated that smart meters can bring about carbon emission 

reductions along with better supply management. 

3.3 Behaviour Patterns of Occupants. 

Behavioural change concerns the changing of general patterns of activity around a home, such 

as the way the occupants use their energy, devices, or the time of day at which they use certain 

devices. However, as previously outlined, it can also refer to the exchange of old appliances to 

newer more energy efficient ones. Research in recent years, has considerably investigated and 

attempted to address issues related to detecting abnormal behaviour using energy consumption 

data [37]. As smart meters are being deployed worldwide, there is an opportunity to provide a 

low-cost approach to remote monitoring residents from the data. clustering is a machine 
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learning scheme used to split power consumption data into various clusters and hence helps in 

classifying them into normal or abnormal behaviour in datasets (even with many dimensions). 

Clustering has attracted a lot on attention to the research industry due to its simplicity in 

systems such Intrusion detection systems in networks, ATM bank cash machines fraud systems 

etc, [80]. In addition, clustering has the capability for learning and detecting anomalies from 

the consumption’s time-series without explicit descriptions [80]. 

3.4 Energy Usage Influencing Human Behaviour 

The need to mitigate energy use in residential buildings is more pressuring now than ever 

before, and that is why we have used a simulation tool to derive energy usage data to do our 

research. Importantly behaviour can vary from house to house, as occupancy hours, lifestyles 

and family composition vary from every household. For further information, Yan et al. 

provides a thorough literature on occupant behaviour as well as proving information how 

occupants interact with homes [81]. Household behaviours include and is not limited to 

occupants’ interactions with windows, lights and bulbs, thermostats and plug-in appliances 

[82]. Occupant behaviour studies have uncertainty in household energy models, Guerra Santin 

et al. [82] studied the influence of occupant behaviour on heating, and found that occupants 

used heating differently in households, which can be concluded that occupants’ presence and 

interaction with various household appliances significantly affect the energy consumption 

predictions made by energy simulation. For example, Figure 4 below demonstrates an example 

of the energy usage and the behaviour trend over a 24-hour period for an individual user. 
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Figure 9 (a) Statistical analysis of a 24-hour peak day’s usage. (b) Statistical analysis of 

a 24-hour off-peak day’s usage. 

These graphs show how smart meter data trends are shown in graph format to give us the 

individualised household patterns over a 24-hour period. This graph could show, for example, 

that the house is mostly unoccupied during the day. A similar plot displayed in Figure 5. shows 

a summary of the usage for 5 households over 12 months. However, identifying trends, 

grouping similar socio-demographic types, or detecting anomalies is an impossible challenge 

without the use of advanced data analytics as a supporting metric. The graphs are for analysis 

purpose and can be made available to the consumer upon request from the utility company. 

 

 

Figure 10 Summary of Electricity Usage Consumption 

Various methods of profiling have previously been defined in the field of data analytics and an 

increasing number of researchers have applied machine learning and data mining techniques, 

to model and analyse electricity consumption data [83]. The few techniques we can use include 

and not limited to: Data processing, Statistical analysis, Frequent patterns and association, 

(a)    (b)  
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Clustering and Data classification [84]. Yet, in a broader approach, energy behaviour modelling 

consists of two types:  

1. Investment behaviours. 

2. Habitual behaviours. 

Investment behaviour occurs occasionally; typically involving the adoption of new 

technologies or the purchase of new appliances. There are quite a number of energy saving 

appliances available that are eco-friendly that consumers can invest in.  Habitual behaviour is 

a routine behaviour in which individuals repeat automatically without conscientiously 

weighting the pros and cons, such as switching off the lights when leaving a room [85]. A 

useful way to categorise behaviours, based on the economic cost associated with a particular 

behaviour and the frequency with which people need to engage in a particular behaviour, has 

been proposed by Laitner, Ehrhardt-Martinez, and McKinney [86]. According to this 

classification, three categories of behaviours emerge:  

1. Energy stocktaking behaviours. 

2. Habitual behaviours. 

3. Consumer behaviours, technology choices, or purchasing decisions. 

Energy stocktaking behaviours include behaviours that are performed frequently but at a 

relatively low (or no) cost, such as installing compact fluorescent lamps and weather-stripping. 

Routine or habitual behaviours include behaviours that must be performed or repeated 

frequently, and examples include habits associated with appliance use and lighting. Consumer 

behaviours, technology choices, or purchasing decisions include behaviours that are infrequent 

and of higher cost and involve the purchase of more energy-efficient products and appliances. 

A significant proportion of research on energy behaviour studies focuses on the residential 

sector and has been developed around two main directions. Physical modelling and data-driven 

approach [87]. Physical models rely on thermodynamic rules for detailed energy modelling and 
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analysis. Examples of energy simulation software that utilize physical models include 

EnergyPlus, eQuest, and Ecotect. [88] These types of software calculate building energy 

consumption based on detailed building and environmental parameters such as building 

construction details, operation schedules, climate, and solar/shading information. While Data-

driven building energy consumption prediction modelling, does not perform such energy 

analysis or require such detailed data about the simulated building, and instead learns from 

historical/available data for prediction. Which is the main part of our thesis as we learn and 

predict energy patterns from historical data. Consumers can invest in energy savings light 

bulbs, recycle household rubbish, and cut down on car use to mention a few all fall under the 

category of energy saving. [89] This research direction is theory driven and aims to provide an 

outline of behaviour change theory and establish behavioural determinants for energy use [90].  

The effectiveness of intervention strategies is concerned with creating a change in CO2 

emissions, the reviews that summarise the research in the field have been presented by 

Abrahamse [26]. In their study, Abrahamse et al., reviewed 38 field studies that use a variety 

of interventions aimed at encouraging households to reduce energy consumption. In general, it 

is found that most studies addressing feedback find it to be an effective means to generate 

energy savings, with more frequent feedback leading to greater effectiveness. When consumers 

get feedback on their energy use, they are more likely to adapt to at least a few energy saving 

methods, without feedback I would not be able to know how my energy consumption is and 

this is the novel part on this these, learning consumer patterns and educating the consumers. 

The authors express some scepticism of the conclusions drawn from many studies, noting that 

many have lacked appropriate experimental conditions, such as significant sample sizes or 

appropriate control groups to validate findings [90]. 
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3.5 Occupant Behaviour Monitoring 

Occupant behaviour is now widely recognized as a major contributing factor to energy 

conservation [91]. Most   building   simulation tools   put together   the   effects   of   occupant   

presence within their simulations in a very simplified way, usually   considering   all   occupants   

to   be   present. Our research simulates household whether there is an occupant in a house or 

not. These behaviours include occupants interacting with plug-in appliances, operating 

windows, lights, blinds, thermostats etc. Guera Santin et al., studied the influence of occupant 

behaviours on heating, and found a way that occupants use the heating system differently. 

Some occupants would only use it for a short period while others for longer periods of time 

[92]. Occupant behavioural monitoring is the scientific collection of behaviour data to 

understand normal patterns of behaviour and changes in energy data collection. Behaviour 

profiling is utilised to identify energy usage of a   single household or multiple households 

based on the previous history. It then creates a user/multiple household energy usage profile 

depending on the simulation settings, which can be used to decide whether this kind of activity 

is normal or abnormal behaviour. The data collected is used to detect the abnormal behaviours 

of residents by fitting a time series data to a model. The model modelling the normal behaviour, 

is then used to predict consumption data values, the predicted data values are then compared 

against real life energy data profiles; the graph produced is used with statistical tests to 

determine if it is an anomaly or not [18]. 

This information is available in a range of forms, relating to the way in which it is used. The 

time could be daily, weekly, monthly, or yearly with a definite time resolution, such as hourly 

or daily. In other words, energy profiles demonstrate the relationship between consumer 

behaviour during the day and the resulting energy demand. The occupants influence the use of 

electricity by the number of electrical appliances they own and how they use them. For 

example, when there is nobody at home during the day, the usage of energy would be low, as 
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nobody would be using any appliance at the time. This is demonstrated below in Figure 6, 

which displays real-world energy readings from a single home. 

  

  

 

Figure 11 Statistical analysis of a 5-day period of a Single Household 

The energy usage in Figure 6 is in KWH and is shown in the y-axis, while the time the reading 

was taken is shown on the x-axis. The graphs indicate the time when the consumer becomes 

active in the morning. The start times vary depending on each user and readings are captured 

the whole 24-hour period. These types of behaviour can be attributed to the consumer’s 

morning, afternoon and evening activities and they are a key indicator for understanding and 

identifying alterations in routine. The data which we use for the visualisations and comparisons 

between real life data set and the data produced by the energy simulation used in this research 

is a sample taken from a smart meter dataset comprised of 70,000 homes in Australia. 
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Furthermore, it is noted that feedback of the usage profiles is given to the utility companies, 

this is necessary for energy savings and can be a valuable learning tool to help consumers in 

adjusting their daily behaviour with respect to energy consumption. In the longer-term and on 

a larger scale, feedback can promote investment and influence behaviour as well. For example, 

the research of Steg and Vlek proposes a general framework for a planning process for 

interventions directed at encouraging behaviour, comprising of four steps: 1) identification of 

the behaviour to be changed, 2) examination of the main factors underlying this behaviour, 3) 

design and application of interventions to change behaviour to reduce environmental impact, 

and 4) evaluation of the effect of interventions [93]. This is beneficial to our research because 

first step in our research is to identify consumer energy behaviours and learn their energy 

patterns. High energy users are clustered and utility companies intervene. 

Researchers have tackled the problem of disaggregating the consumption of individual 

appliances. By this we mean identifying high usage appliances. This information allows, in 

turn, the provision of detailed consumption feedback to the households. Feedback and 

education can be given to consumers to opt for low energy saving appliances. Other authors 

have focused on the analysis of coarse-grained consumption data (i.e., data sampled at a 

granularity of several minutes or higher). These basically sample historical data for example 

after 12 months. Here, we distinguish between (1) analysing consumption data only and (2) 

relating it to side information such as the geographic location of the dwelling or the socio-

economic status of the household. Since the first approach imposes less requirements on the 

collected data, many researchers have investigated unsupervised techniques, such as clustering, 

to detect patterns and usage categories in the consumption profile [94]. 

A few several authors have also investigated the problem of clustering consumers into groups 

that exhibit similar consumption patterns. Knowledge about the existence and characteristics 

of such clusters can be used to develop novel tariff schemes, improve network management, 
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or to perform behavioural monitoring. Chicco et al, for example, use consumption traces from 

471 customers of an electricity provider to perform automatic clustering, provide an early 

example of this class of approaches. Analysing the resulting clusters and current tariffs of non-

residential customers, the authors detect examples of inefficient billing practices (e.g. in case 

there is a poor correlation between discriminatory factors and actual load patterns) [95]. 

However smart meters are often used in conjunction with smart plugs to detect abnormal 

behaviours for health care applications, to achieve this they must be accompanied with a system 

that is able to integrate health data systems, to determine if a resident is deviating from their 

normal behaviour [96].  

3.6 Summary 

The introduction of smart meters is changing the element of energy infrastructure’s as it is 

heavily promoted to be a major part that could assist in lowering carbon emissions and better 

supply management. When all households accept and adapt their energy use during low peak 

times, the availability and reliability of supply would be improved, energy savings would be 

improved, and awareness enhanced. These long-term changes would be well attributed to the 

reduction of carbon emissions in the future Smart grids introduce several new opportunities for 

reducing the carbon footprint by employing residential energy management techniques [17]. 

Yet for effective contributions to carbon emissions reduction, the datasets must be analysed by 

means of advanced data analytics. This approach allows for the extraction of meaningful values 

from the data collected and we thus use the data to extract different patterns. In the following 

section, research into advanced data analysis techniques is presented. This chapter has 

elaborated on machine learning algorithms and the techniques associated with it. The different 

kinds of learning architectures with a further explanation of supervised and unsupervised 

machine learning approaches. Furthermore, Microsoft azure, as a cloud platform used during 

our research, is presented. This section also highlighted several statistical tools that can be 
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applied to provide optimal visualisations. It explains what is required to discover more efficient 

and effective patterns and models that are appropriate for our datasets, in terms of high 

efficiency and accuracy for the predictions of high carbon emissions.  
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Chapter 4 Proposed System Framework 
 

This chapter discusses the system framework and the design of the experimental set-up to solve 

the key challenges identified in the literature review chapter relating to identifying high energy 

users to help the utilities to come up with incentives on how to educate the consumer on how 

to use low energy and help towards reducing greenhouse gas emissions. We introduce the 

Muschan system in this chapter. Our system will work with six classifiers to select the best 

classifier with the highest AUC results, and full details are mentioned latter in chapter 5. The 

Muschan is the unique name we have decided to call the system in this research and can confirm 

there is no copyright associated to naming our system that. Muschan system is developed to 

help with the data processing of the data collected from the Beopt energy simulation tool used.   

As outlined in the background and literature review, there are several studies into applying 

machine learning systems and information technology which contribute towards the knowledge 

of how energy is being used in residential homes. The main purpose of this chapter is to explain 

the way the data is collected from a residential house with a smart meter connected with 

household appliances via the internet until the energy usage data is profiled to come up with 

meaningful data interpretation patterns. 

4.1 Proposed Model 

The main objective of the proposed approach is to develop a model that will extract residential 

energy usage data at an aggregated level from the simulation tool and identify or establish 

patterns and trends in home activities based solely on energy readings collected from the smart 

meter. The aim is to analyse the data, predict and construct detailed power profiles by assessing 

the cumulative energy consumption for each household.  This would enable the consumers to 

receive feedback of their energy use, from the utility companies. The feedback would be in 



62 | P a g e  

 

terms of how to switch to using low energy appliances in order to reduce high energy usage, or 

additionally, to advise on home behaviours in relation to energy usage.  

This proposed framework shows how data is collected from the data source and is processed 

through the stages shown below to produce classification scores which predict energy usage 

patterns (i.e., customers with irregular and abnormal consumption patterns indicating too much 

use of energy and contributing to high greenhouse emissions). Below is the proposed 

methodology framework.  

 
Figure 12 Proposed Methodology Framework 
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The model in Figure 12. is a 3 multi-stage process. A dataset of energy consumption of five 

residential houses over a 24- hours period for five consecutive days is used in the experiment. 

The daily collection for each house, time and kilowatt usage are selected from the overall 

dataset to make the data pre-processing less intensive which makes the experiments more 

realistic in a real time setting. The next stage is where the features of the data are selected for 

classification purposes. The main features selected at this stage are; Min, Max, Mean and 

Standard Deviation. Stage 3 is where the classification scores are shown, and classification 

validation is performed using machine learning algorithms of which full details are mentioned 

in the sections below. After classification, the system reaches its final stage where visualisation 

is performed, and predictions are made. 

Customer consumption patterns are extracted for each individual household which represent 

customer load profiles. Based on the assumption (an assumption that is evidenced in the 

following chapter) that load profiles contain abnormalities of high usage events, the Muschan 

system will analyse and classify load profiles of customers for the detection of high usage.  

4.1.1 Stage one: Data Pre-processing 

In stage one of the system design, data pre-processing is performed. For the data to be 

processed, the data has to be in comma-seperated values (CSV format) which is the popular 

format supported.  During this stage data cleaning and formatting is conducted. We format the 

data to ensure that all the variables within the same attributes are consistently captured. 

Secondly, data cleaning is applied to remove noise from the data which manages the missing 

values. At this step, the system removes duplicates and even outliers from the dataset. Data 

cleaning includes filling in the missing values with mean values, or the most frequent items, or 

just dummy values thereafter the cleaned data is sampled and is moved to the next stage of the 

system. When the system is in training mode normal and abnormal data is collected from the 

data store. Normal data refers to a consumer’s energy usual behavioural routines in a 
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household. Abnormal data relates to a deviation from expected patterns of behaviour. Figure 

13 below highlights the data cleaning process in Microsoft azure portal. 

 

Figure 13. Data cleaning process 

Data processing is also considered a significant part in machine learning and should be applied 

before any model to classify or predict any type of features in the dataset. This technique is 

employed to convert the raw dataset into clean data before being used for the machine learning 

process. Below diagram explains the temp data store where the dataset is stored and shows 

what features have been stored. 

 

Figure 13 Muschan Temp Data Store 

However, the primary procedure and vital part is to identify the insufficiencies and limitations 

of the dataset as explained in the context above.  
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The main data types collected and stored in the Temp data store pre-processing stage are 

explained below: 

• Half-hourly consumption and generation, contains the half-hourly usage residential 

readings. Meter ID is a unique ID for each household which is similarly to residential 

ID but have different identification purposes to help with billing households. 

•  Where possible, the household demographics providing information relating to the 

occupancy of the household.  

Smart metering data consists of consumption data recorded in a smart meter device in intervals 

of half-hourly rates or less. In order to obtain the profiles of consumers for an easier 

interpretation and analysis, pre-processing is performed. The data pre-processing adopted is 

represented in Figure 15. 

The figure outlines the data pre-processing steps. Data collected from smart meters may exhibit 

missing values, e.g., due to noise. The missing data may be replaced by appropriate values or 

left as missing. In the Muschan system diagram, the missing data analysis was followed by a 

process of context filtering, which involved the selection of data representing a specific context 

such as a temporal window, type of day and location etc. Regarding the outliers’ analysis, all 

households with a significant percentage of zero consumption measurements were considered 

outliers and excluded. In the data aggregation stage, the period used for the analysis consists 

of (e.g., monthly, weekly, daily). Figure 15 below is the diagram representation of the data pre- 

processing stage. 
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Figure 14 Muschan Pre-Processing Data 

4.1.2 Stage Two: Feature extraction and Data Classification 

In order to reduce the dimensionality of the input data, while maintaining the necessary 

information for classification. A classification of techniques is available, such as clustering for 

consumer segmentation with demand time series clustering [97]. For example, feature 

extraction method is the classification method we used, because it can identify the optimal 

features for classification and can compress time series datasets for both normal and abnormal 

datasets. We use feature extraction and data classification with dimensionality reduction which 

we use in the system to extract the features needed for analysis. During the training mode 

features of the dataset are extracted which in later stages form feature vectors. Features are 

given aspects of the data which provide an overall representation of both normal and abnormal 

energy usage behaviours. Training data can be enhanced by the extraction of features from the 
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raw dataset as they increase the efficiency of the training process which attempts to extract 

important information contained in the dataset. 

Azure SQL
Normal Data

Azure SQL
Abnormal Data

Run Statistical 
Calculations

Prepared Data 

Features

 

Figure 14. Feature Extraction Model 

 

4.1.3 Stage Three: Classification and Visualisation 

The goal of classification in this system is to assign a household composition category to a 

household based on its household electricity usage. The specific classifiers used in this analysis 

are the Microsoft azure classifiers and include: Two-class averaged perception, Two-class 

decision forest, Two-class neural networks, Two-class support vector machines, Two-class 

decision jungle, Two-class logistics regression. [93].  Each of these classifiers were chosen 

because they have the ability to learn how to recognise a target with two outcomes and unusual 

values in a dataset. Once the classification stage is complete the data then is visualised into 

meaningful graphs and interpreted accordingly and then the final stage is when the data is sent 

to the utility companies for reporting purposes. The confusion matrix is a table with two 

dimensions (“Actual” and “Predicted”) and sets of “classes” in both dimensions. The Actual 

classifications are columns and Predicted ones are Rows. 
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Figure 15 Confusion Matrix 

The Confusion matrix is not a performance measure as such, but almost all the performance 

metrics are based on Confusion Matrix and the numbers inside it. TP (True Positives) means 

the number of positive patterns classified as positive. True positives are the cases when the 

actual class of the data point was 1 (True) and the predicted is also 1 (True). TN (True 

Negatives) means the number of negative patterns classified as negative. True negatives are 

the cases when the actual class of the data point was 0 (False) and the predicted is also 0 (False). 

FP (False Positives) means the number of negative patterns declared positive. False positives 

are the cases when the actual class of the data point was 0 (False) and the predicted is 1 (True). 

False is because the model has predicted incorrectly and positive because the class predicted 

was a positive one. (1) FN (False Negatives) means the number of positive patterns declared 

negative. False negatives are the cases when the actual class of the data point was 1(True) and 

the predicted is 0(False). False is because the model has predicted incorrectly and negative 

because the class predicted was a negative one. (0) 



69 | P a g e  

 

4.1.4 UML Process Flow 

This process is outlined in the UML diagram displayed in Figure 13, explaining the process 

flow.  

 

Figure 16 Muschan UML Diagram 

Data warehouse is where the household raw energy load profiles generated are stored awaiting 

to be extracted to useful data set e.g., smart meter data residential address etc, as shown in 

figure 13 above. The extracted data in then profiled in readiness for data representation and 

segmentation. Representation of time series data is done where the data is kept for a temporal 

point of view and then segmentation is followed where the data is allocated in segments 

according to time series, also called time windows. We use piecewise linear segmentation, with 

two ways to define the lines Keogh et al. 2004. The segmented dataset is analysed for any 
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outliers and stored in a data store. Regression analysis is for the dataset to attempt to establish 

a relationship between one or more independent variables in the data and give a dependent 

variable which is either abnormal data or normal data usage which normal data usage is sent 

straight to analyst reporting to generate report. The Abnormal dataset is looped back into the 

regression model and the step repeated but this time the dataset is automatically sent for feature 

extraction to extract the features needed for training the classifiers. The features relate to 

behavioural patterns of everyone (feature selection). The data is checked for incomplete 

datasets and then consistency to check the dataset is valid and knowledge discovery is shared 

to the analyst for reporting or system control for display. 

The system collects data at 30-minute intervals on a daily basis and stores it in the cloud. 

Various data points are collected for different variables in each household daily. The diagram 

below shows us what type of data is collected from each household. The data is stored in the 

data store then sent to a data cloud where feature selection procedure is completed. Finally, 

data goes for validation and is then stored in a meter data management system. Therefore, this 

is the type of information that we can derive from monthly, daily, and yearly statistics for 

analysis purposes.  
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Figure 17 Muschan Processed Data Store 

This phase integrates multiple databases, data cubes, and files to produce a single database with 

useable format for training purposes. All the devices level data collected at pre-processing stage 

merge into one file for each customer. This requires making all data sources consistent before 

Feature selection. Attributes or dimension inconsistencies are removed at this stage. This 

process takes place in MS Azure and will be demonstrated in the results section. Therefore, we 

move on to the next stage which is feature extraction. 
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Figure 18 Muschan Data to Cloud Diagram 

4.3 Data Normalisation 

Data normalization in machine learning azure studio is to combine data from several resources 

into one database to transform the data into normalised data. Throughout the data normalisation 

process, it is essential to distinguish and resolve data error problems. Errors could be due to 

different values that come from different sources or different attributes (features) formats. In 

this scenario, the final datasets must deal with these types of redundant data to produce better-

quality data. After performing cleaning, this method deals with the datasets and converts them 

into single datasets that can be ready for machine learning models. The data needs to be 

formatted correctly without any missing values so that machine-learning classifiers can deal 
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with data analytics. Normalisation is the optimal option used for transformation of the data 

structure.  

There are a different number of methods, which are applied to data normalisation. These are: 

• Min-Max scaling. In this approach, the data is scaled to a fixed range which is usually 

0 to 1. The cost of having this bounded range in contrast to standardization is that we 

will end up with smaller standard deviations, which can suppress the effect of outliers. 

• Z-score, converts all values to a z score. Mean and standard deviation are computed for 

each column separately. 

• Log-Normal, this option converts all values to a lognormal scale [100]. 

4.4 Feature Extraction Module 

From the customer database, 24-hrs daily energy consumption values were extracted for each 

customer, corresponding to customer load profile features. This is to ensure energy usage is 

collected in a house over a 24-hour period. When the system is in training mode, data is 

collected from the data store in order to extract the features which are needed for training the 

classifiers. The features relate to behavioural patterns of the individual. While in the training 

mode, the information clearing component runs a set of linear regression queries against the 

data store for the specific condition or application.  

 

Figure 19 Feature Extraction 
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Each query returns a balanced data set for both normal and abnormal behaviours. A balanced 

dataset is required for the classification process. Based on the query, the learned model will 

predict the household characteristic. A view of the data feature extraction process collection is 

shown in Figure 19. 

 

                      Figure 19 Extracted Features 

Features are aggregations of behaviour exhibited in time series data [101]. The features 

extracted summarize sensor information collected by smart meters as a means of training data 

in a model. It is a step done in machine learning and is a form of dimensionality reduction of 

data.  

Statistical based features are developed using variance, mean, max   and several percentiles on 

daily, monthly and seasonal time frames. Temporal patterns feature’s extracts various models 

in the meter data, and the model-based features predicts consumption of each household. The 

visualisation is simply the extracted features from the dataset. Regarding feature extraction, the 

extracted information is: 1) energy, 2) auto correlation, 3) linear trends, 4) wavelets, 5) 

statistics, 6) mean absolute estimation and 7) number of crossings and peaks as shown in figure 

20 below. 
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Figure 20 Temp Feature Store 

The algorithm applied is capable of finding the quantitative characteristics of time-series data 

and indicates the dynamics of energy usage. A single feature is not adequate to predict the 

inhabitant characteristic and extracted features assist the machine learning model to predict the 

inhabitant’s characteristics.  

After feature extraction the data extracted is stored in a temp feature store and at this stage the 

feature selection process is performed, which reduces the dimensionality of the extracted data 

the most relevant features highlighted. This process allows our model to learn more efficiently. 

 

4.5 Data Classification 

Our system deploys a supervised learning approach in order to distinguish between normal and 

abnormal energy usage. Supervised machine learning algorithms make predictions based on a 

set of training examples. Each example used for training is labelled as either normal or 

abnormal to allow the algorithm to look for patterns in the data. As there are only two choices 
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for the label our classification is a two class or binomial classification. A binomial classifier is 

a classifier that asks a binary question, whether a particular meter belonged to a particular 

household category. This is so that the energy loads are not mixed up and mistakenly assigned 

to wrong household, which would lead to wrong billing for consumers. Classifier outputs that 

are greater than 0.5 are labelled as true (yes). Classifier output less than 0.5 are labelled as false 

(no). The advantage of a binomial approach is that only a single output is required. It is 

expected in our analysis that the classifier would be better able to partition the data set. The 

disadvantage is that the model had to be run separately for each household category and so 

involves extra data manipulation. In this thesis we use regression model which is a binomial 

classifier to identify the relationship between two or more variable classes in order to produce 

an ensemble of model parameters to predict the output of abnormal power usage [102]. Various 

regression models have been introduced to identify abnormalities in household energy 

consumption linear regression, support vector regression, auto regressive models etc Some 

Authors have opted to use linear regression techniques to determine the anomalous patterns for 

residential houses to provide precise assessment of energy consumption pattern [103]. The 

second approach is a multinomial classifier asking which household category a meter belonged 

to. The output produced by the classifier is a vector of values between zero and one. These 

vector components are interpreted as probabilities that the meter belongs to the household 

categories. The household category with the highest probability is the most likely category to 

which the meter belongs. The advantage of the multinomial approach is that only one model is 

required, and less manipulation of the data is needed. However, as the multinomial classifier 

has multiple outputs, it could potentially lead to a reduction in accuracy. After the algorithm 

has identified the best pattern, it uses that pattern to make predictions for unlabelled testing 

data to assess the performance of the classifier. We can use classification performance metrics 

such as Log-Loss, Accuracy, AUC (Area under Curve) etc which is detailed latter in chapter 
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7. Another example of metric for evaluation of machine learning algorithms is precision, recall, 

etc also detailed in chapter 7 as we use it in our research to compare which classification bring 

out the best results. The metrics that we choose to evaluate our machine learning model is very 

important and influences how the performance of machine learning algorithms is measured and 

compared. 

4.6 Smart Meter Training Data Process 

Our system is trained with sufficient amounts of data collected from residential smart meters, 

that is used to predict targets for unseen profiles. The training procedure in our system uses the 

supervised learning approach as it operates as a teacher and needs no information on building 

systems. The system discovers the relationship between various input features and output 

targets (e.g., energy performance) using the data provided. Recent researchers have illustrated 

how they use artificial neural networks (ANN) to detect normal and abnormal consumption of 

energy usage [104]. Supervised learning approaches can provide high identification of anomaly 

and or normal patterns of energy consumption results and we use this in our thesis because we 

have annotated simulation energy datasets. The general process of supervised learning for 

modelling residential energy is illustrated in Figure 21 below.  
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Figure 20 Machine Learning Process 

4.7 Summary 

This chapter has elaborated about the machine learning algorithm methodology to predict 

electricity energy scenarios for small residential local communities and has presented the 

essential help local utility entities decide on measures such as embedding renewable energy 

techniques to help reduce climate change.  This section has highlighted several statistical tools 

that can be applied to provide such optimal visualizations. It explains what is required to 

discover more efficient and effective models that are appropriate for our datasets, in terms of 

discovering essential profiles from smart meter data. 
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Chapter 5 Simulation and House Design Specification 
 

In this chapter a simulation approach has been adopted for the construction of residential 

electricity consumption data. Within the simulation model, each appliance in each household 

and the user, behave as an agent, with states such as on, off and standby. 

The simulation integrates three important elements including 1) energy management 

technologies; 2) electrical read better appliances which communicate with the smart meter in 

house via internet 3) realistic human behaviour patterns such as cooking, switching the kettle 

on, switching light bulbs on and off etc. These three elements, when combined, provide a 

solution for residential electricity consumption dataset construction that is realistic and valid 

for research purposes because of the usage energy data collected. The research outlines how 

electrical usage data readings collected by the smart meter can be used to profile user routines 

and identify user behaviour. The electricity data patterns facilitate in the identification of the 

persons routines for certain periods of the day when in a house. 

The simulation used in this thesis generates electrical energy usage data in real-time by 

collecting and measuring electricity usage flow in a residential house at regular intervals and 

employs time-of-use data to record consumption for households at thirty-minute granularity 

intervals. While considering seasonality data such as weekdays, weekends, holidays, summer 

or winter times, the number of occupants in each household   determines how energy is used 

in each house. The simulation environment used in this research is comprised of five typical 

UK households (as defined in more detail in section 5.2). A high-resolution model is used with 

the combination of patterns of active occupancy and daily energy usage activity profiles. Each 

household in our study has energy data usage collected over a 24-hour period. The smart meter 

collects data every 30 minutes. The figures 34-38 highlight 5 individual households we use in 

our thesis and shows data collected with the Beopt energy simulation software used in our 

research. The energy usage data collected is, in kilowatts, as shown in the y-axis of figure 34, 
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and the time the energy data readings were recorded by the smart meter for user 1 is shown in 

the x-axis. 

(a)  (b) 

Figure 21 House 1 Simulation Data Overview. a) Off Peak Rate b) Peak Rate  

Figure 34 displays the energy load profile for user 1 for a 24-hour period. The y-axis 

displays the KWH energy reading for each hour on the x-axis. Figure (a) shows us usage 

readings in the early hours of the morning which is usually the off-peak rate and (b) shows 

energy usage for the user during the peak period. 

(a)  (b) 

Figure 22 House 2 Simulation Data Overview. a) Off Peak Rate b) Peak Rate  

Figure 35 displays the energy load profile for user 2, over a 24-hour period. User 2 displays 

off peak usage when it is meant to be used during peak usage times.  This would be a 

concern, as the meter is capturing incorrect usage peak at incorrect times of the day. This 

could be caused by a defective meter, or the meter being tempered with. Figure (b) shows 

us that at 8pm the meter recorded only an hour supply of peak usage data. 
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(a) (b) 

Figure 23 House 3 Simulation Data Overview. a) Off Peak Rate b) Peak Rate  

Figure 36. displays the load profile for user 3 over a 24-hour period. The y-axis displays 

the KWH energy reading for the hourly time stamp which is indicated on the x-axis. The 

Figure (a) shows us energy usage readings from about 23:30 leading into past midnight. 

Figure (b) shows usage for the peak period. This shows that user 3 becomes active from 

around 10:00 in the morning.  

(a) (b) 

Figure 24 House 4 Simulation Data Overview. a) Off Peak Rate b) Peak Rate  

(a) (b) 

Figure 25 House 5 Simulation Data Overview. a) Off Peak Rate b) Peak Rate  
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Figure 37 displays the load profile for user 4, over a 24-hour period. User 4 displays 

minimal off-peak usage as well as few hours of usage during the peak period, indicates to 

us the house is mostly un-occupied.  

Figures 38 display the load profiles of user 5. User 5 basically uses a considerably larger 

amount of energy compared to usage with the other households, as shown in the above 

diagram. This shows us that the data collected by the smart meter with the energy 

simulation software can be analysed and profiled to learn behavioural patterns of residential 

houses. 

5.1 Specification of a Typical Household 

The house below is an example of one of the simulated houses in our thesis, which is an 

example of a constructed residential house in the simulation environment. The overall 

architecture shown in Figure 23 is a representation of a smart home system, installed with a 

smart meter and household appliances which communicates with the smart meter via the home 

area network. The occupant generates 90% of the energy usage by usage of the electrical 

appliances in the house, and 10% usage is generated from appliances such as fridge/freezers 

etc.  The architecture includes a centralized smart controller to provide the homeowner with 

monitoring modules which is the screen on the smart meter device and control functionalities 

based on the home communication network with an app which is downloaded on an occupant’s 

mobile device [90]. The real-time electricity consumption data from the appliances, including 

schedulable and non-schedulable appliances can also be extracted for analysis.  
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Figure 26 Residential Smart House Design  

 

A typical residential setting can be populated with appliances as listed in Table 3. 

Table 4 Statistics of energy usage in a residential home in UK.  

Appliance Type Household Contribution 

(%) 

Cold Appliances 20 

Wet Appliances 15 

Lighting 17 

Audio/Visual 19 

Computing Devices 7 

Cooking 16 

Water/Heating/Showers 6 

Overall KWh 2851 
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Alongside, is the percentage usage of kWh usage of these appliances throughout the day in a 

single household. For example, cold appliances in this household use up to 20% of the total 

energy usage. The modelled usage of these appliances is closely related to the active occupancy 

[89].  The simulation design model is shown in Figure 24. Shows us the Input parameters and 

outputs for the system. The input parameters have a huge influence when in the home 

environment, for example the number of occupants in a household can influence how much 

energy that household is using a particular day, the weather for example in winter seasons, you 

expect the energy to go high as central heating is being used to keep the house warm. 

Figure 27 System Simulation Overview 

The main data design input is relating to the building set up, climatic conditions, efficiency 

options and energy parameters. Once the simulation is done, Energy usage profiles are 

generated, and consumption profiles created.  

5.2 UML Simulation Framework 

The simulation functionality is displayed in the UML diagram in Figure 26. For example, the 

smart meter is correlated with the home ID. This enables the measurement of energy 

consumption of all the home appliances via the appliance meter model via the internet in the 
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house. When an occupant triggers an event, by using any appliance or energy source in the 

house, an event is created by the user interface. The simulation was set to run simulations for 

five consecutive days for each household. Each smart meter has a unique smart meter ID, and 

each household will generate abnormal/normal behaviour’s which we can only find out after 

data analysis and machine learning techniques performed on the dataset. 

Figure 28 Simulation UML Framework 

The event consists of instances for every appliance that has been added to the scene and the 

command state of the appliance is logged in the meter. Usage analysis is performed according 

to the usage frequency.  
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(a) (b) 

(c) 

 
(d) 

(e) 

Figure 29 a) Simulation Engine time selection, b) My Design default timing is 30min 

Intervals, c) House project data entry field, d) Demand response simulation number of 

events, e) Utility rates settings 

The Smart User display will display the usage statistics and a user can see the daily correlation 

of usage for better understanding of daily energy usage. After analysis the data is stored and is 

shared to utility companies for billing purposes. The simulation screens in figure 32 includes a) 

a simulation engine time selection to enable simulation playback customisations (for our design 

the default is 30 min); b) A main display showing the 30-min time default selection for our 
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units; c) The data entry field where the house address is inserted (e.g. street name) for 

identification purposes; d) Demand response to display the number of events the simulation is 

running and the days of the week when simulation is initiated; and e) The utility rates settings 

input screen allows for the selection of many predefined options (such as state rates or city 

rates) according to the utility service provider.  

 

(a) (b) 

Figure 30 Simulation Running Window 

These are the simulations windows shown in Figure 32 above. To run a house energy 

simulation, we click the run button and define the timestamp on the drop-down menu shown 

above. Once simulation is done the system will display a pop-up window with a message 

showing the simulation run has ended and energy statistics are pulled out for analysis purposes. 

5.3 Smart Meter Data Fields 

The data output contains measurements of electricity consumption gathered from smart meter 

readings from 5 household models over a five-day period.  

The energy consumption collected is reported as domestic load or controlled load (i.e., off-

peak or peak period) usage data. The simulation software allows for the user to navigate to 

optimal points at specified energy savings. The user can also zoom in and select any point (or 

points) on the graph as shown below on the left graph. Whilst this is beneficial for the 

simulation software, it is not usable in a real-life setting; meaning our system has merit outside 

of the simulation environment. The sequence through which the BEopt software determines 
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the optimal points during the optimisation can be followed one iteration at a time or replayed 

entirely by clicking the stop and play buttons on the results toolbar.  

(a)  (b) 

Figure 31 Simulation Data Overview. a)  Source energy savings/Y, b) My design sources 

This is an overview of the simulation’s accumulative energy consumption, as well as the 

detailed profiles of individual appliances over a 24-hr period. The x-axis displays the 

percentage of energy saved while the y-axis shows annual energy-related costs. Energy 

savings are calculated relatively to a reference, either a user-defined unit model or a climate-

specific model.   

Tables 5 – 9 present samples of the data generated by the simulation for each home. The general 

supply of energy used daily (the energy consumed) is measured in KWH and can be described 

as what is used to bill the customer. The User-ID would be the customer key (the primary key 

used to identify the consumer); while the End Date Time highlights the time and date of the 

acquired reading. Both the general supply and off-peak supply are recorded based on the 

specified tariff 
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Table 5 Smart Meter Data Sample– Home 1 

User ID Date/Time General Supply (KWH) Off Peak (KWH) 

1 01/01/2013 03:59 0.076 0.3 

1 01/01/2013 04:29 0.051 0.12 

1 01/01/2013 04:59 0.041 0.31 

1 01/01/2013 05:29 0.041 0.36 

1 01/01/2013 05:59 0.034 0.4 

 

Table 6 Smart Meter Data Sample – Home 2 

User ID Date/Time General Supply (KWH) Off Peak (KWH) 

2 01/01/2013 03:59 0.476 0.9 

2 01/01/2013 04:29 0.061 0.11 

2 01/01/2013 04:59 0.078 0.16 

2 01/01/2013 05:29 0.040 0.19 

2 01/01/2013 05:59 0.028 0.14 

 

Table 7 Smart Meter Data Sample – Home 3 

User ID Date/Time General Supply (KWH) Off Peak (KWH) 

3 01/01/2013 03:59 0.091 0.15 

3 01/01/2013 04:29 0.062 0.19 

3 01/01/2013 04:59 0.023 0.17 

3 01/01/2013 05:29 0.064 0.11 

3 01/01/2013 05:59 0.030 0.6 

 

Table 8 Smart Meter Data Sample – Home 4 

User ID Date/Time General Supply (KWH) Off Peak (KWH) 

4 01/01/2013 03:59 0.100 0.70 

4 01/01/2013 04:29 0.231 0.76 

4 01/01/2013 04:59 0.350 0.58 

4 01/01/2013 05:29 0.600 0.78 

4 01/01/2013 05:59 0.115 0.68 

Table 9 Smart Meter Data Sample – Home 5 

User ID Date/Time General Supply (KWH) Off Peak (KWH) 

5 01/01/2013 03:59 0.123 0.89 

5 01/01/2013 04:29 0.213 0.76 

5 01/01/2013 04:59 0.241 0.87 

5 01/01/2013 05:29 0.300 0.32 

5 01/01/2013 05:59 0.340 0.28 

    

5.4 Simulation Data Case Study 

In figure 40 below, the graphs show the usage of energy in the 5 homes simulated in the 

research with different appliances and electricity sources. This is to visualise the total energy 

trend usage patterns over a 12-month simulation period. The graph displays the general energy 

distribution and highlights the energy consumption levels for the different households on a 
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month-by-month basis. Houses with an increased number of occupants usually show an 

increased amount of energy used. 

Below is the colour code for the house readings in figure 39 below. 

 

Figure 32 Colour Code for the Simulation Graphs below 

During the Months January to April, the usage of energy is on the higher side which is due to 

the season being the winter months /period when energy is consumed in greater quantities. The 

months May to August months have lower usage showing the weather is warmer and a lot of 

energy is not being used in the houses apart from user 5 who shows a high usage trend 

consistently throughout the year which would be a source of concern that would need to be 

investigated by the utility providers. Lastly, the months September to December start showing 

an increase in energy usage as the season starts changing from cooler temperatures to cold and 

a lot of energy is consumed. 
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Figure 33 All Units Simulation Data Overview 

The energy readings presented in Figure 40. shows scatterplots of energy usage. The drop-

down on the right of the graphs provides the option to select which unit we want to visualise 

and what energy source we would want to see. The shaded box is selected to depict usage of 

appliances in the selected unit. 
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Figure 34 Appliance Simulation Data Overview 

Figure 41. shows the total energy usage over a 24hr period for all households in our research 

simulation as highlighted on the left in my design mean all households with the site energy 

usage readings shown in the graph. 

 
 

Figure 35 Miscellaneous Simulation Data Overview 
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The figure 42. above is the Miscellaneous total energy usage over a 24hr period for all users as 

highlighted on the left in my design – site energy readings. 

 

Figure 36 Lights Simulation Data Overview 

The visualisations in Figure 43 shows the total energy usage over a 24hr period for all users as 

highlighted on the left in my design – site energy readings. 

 

Figure 37 Hot Water Simulation Data Overview 
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These scatter graphs are high-level representations of total energy usage for all users in the 

simulation. They demonstrate how the smart meter records and captures data based on the 

observation that almost all daily activities range from making breakfast in the morning, taking 

a shower, to relaxing with a game console (which is a major influence of energy consumption). 

Since the daily routine is influenced by many aspects of the household, for example, 

employment status [92], hobbies or the number of occupants in the house, features of the energy 

consumption data should be enough to identify profiles for many households. Instead of 

striving for very large sets of features or sophisticated algorithms for re-identification, we are 

interested in finding out if rather elementary features and relatively simple statistical measures 

are sufficient for profiling of energy-consumption data. The scatter graphs in the figures above 

identify and analyse energy-consumption features, for example Figure 44. shows the appliance 

usage overview. You can easily predict appliances are more used in this household during the 

early hours of the morning and we quantify to which extent they can be used, for profiling. 

5.5 Outlier Case Study 

A sample of this data is presented in Figure 5. Graph a and b shows a consumer with normal 

usage over a 24-hour period. Graph c and d are readings of a consumer which shows some 

parts of the day not having recorded usage. The outage could be for various reasons and such 

trends are novel for our research. Clearly the behaviour trends which reflect a normal usage 

day are shown in graphs a, b and e.  

(a) (b) 
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(c) (d) 

 

(e) 

Figure 38 Simulation Data Overview 

5.6 Summary 

 

In order to detect and support reduce greenhouse emissions, we need to be able to identify 

individual households that are using more energy without knowing the impact they are causing 

and then the utility companies can hence go ahead and educate the consumers on the need to 

lower their energy usage trends. The autonomous detection of such households would enable 

utility companies to make changes and reduce greenhouse emissions on the residential sector 

domain. 
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Chapter 6 Results and Discussion 

 

This chapter discusses the results and analysis of the smart meter data constructed in chapter 5 

from the energy simulation tool. The performance of the classifiers is visualised in the ROC 

curves presented in the chapter by comparison of two datasets, the first dataset is small and 

consists of 5 days’ worth of data and the second dataset is large and consists of 6 months’ worth 

of data, both collected from smart meter data simulation. The reason for using these two 

datasets is to show that the system gets better as we collect more data in this case 6 months as 

the AUC results indicate the more data the system produces, the higher AUC results as 

demonstrated in table 14 and table 15. 

Six machine learning classifiers (Two-class averaged perception, Two-class decision forest, 

Two-class decision jungle, Two-class support vector machines, Two-class neural networks, 

Two-class logistics regression) are used to evaluate the proposed system outlined in chapter 4 

in depth. The binary classifiers are an efficient choice for predicting a target with a maximum 

of two outcomes. They train and predict efficiently using large data sets, as they are efficient 

in computation and memory usage, and feature selection is integrated in the training and 

classification processes. The adopted machine learning classifiers provide various significant 

properties, such as non-linear mapping, universal approximation, and parallel processing. 

Secondly, we have combined a weak classifier with a strong classifier in order to produce a 

productive model, which can provide better results using the same standard performance 

evaluation measurements.  

6.1 MS Azure Data Pre-Processing and Feature Extraction 

MS Azure is selected as the platform for the experimentation as it is cloud based and it is 

scalable, which makes it readily available and runs quickly without the need to invest in a lot 

of hardware and infrastructure. The first process involves feature extraction. Feature extraction 
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involves removing redundant information from a dataset, by selecting key aspects of the dataset 

as a whole [93]. For this process, standard time-series based features were selected. Min, Max, 

Mean, and Standard Deviation are the chosen features (calculated in one-hour time blocks, 

from two 30-minute readings).  

Feature selection is the process of selecting a subset of relevant, useful features to use in 

building an analytical model. During the training mode, features of the data are extracted which 

in later stages form feature vectors. Features contain aspects of information from the data, 

which provides an overall representation of both normal and abnormal behaviours, the features 

selected are meter ID, consumption, time of usage, and kilowatts per hour. Training data can 

be enhanced by the extraction of features from the raw dataset, as they increase the efficiency 

of the training.  

 

Figure 39 Data Processing Feature Extraction 
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In this thesis, feature extraction is used to extract meaningful and interpretable features, such 

as daily mean, Min, Max and Standard Deviation. Smart metering data features are extracted 

across different time horizons, which are depicted in Figure 46. Specifically, the features are 

extracted from annual data, winter data, spring data, summer data and autumn data. For the 

winter season, the extraction is performed on finer time horizons, i.e., weekday, weekend and 

holidays. For each specific time interval, four types of features are extracted:  

1) Consumption figure related features, such as daily average demand, evening average 

demand, the average of daily peak demand, etc; 2) Ratio features. For example, the ratio of 

mean demand over peak demand; 3) Occurrence/time-related features. For instance, the time 

of peak demand. 4) Statistical features, such as the average of daily standard deviation.  

 (a)       (b)      (c) 

Time IntervalsGeneral Supply KWH 1
6:00 AM 0.044

7:00 AM 0.039

8:00 AM 0.033

9:00 AM 0.039

10:00 AM 0.036

11:00 AM 0.026

12:00 PM 0.036

1:00 PM 0.045

2:00 PM 0.025

3:00 PM 0.036

4:00 PM 0.044

5:00 PM 0.028

6:00 PM 0.045

7:00 PM 0.04

8:00 PM 0.055

9:00 PM 0.027

10:00 PM 0.035

11:00 PM 0.044

12:00 AM 0.023

1:00 AM 0.036

2:00 AM 0.027

3:00 AM 0.032

4:00 AM 0.035

5:00 AM 0.03

USER 1

Time IntervalsGeneral Supply KWH 1
6:00 AM 0.045

7:00 AM 0.048

8:00 AM 0.051

9:00 AM 0.057

10:00 AM 0.056

11:00 AM 0.052

12:00 PM 0.046

1:00 PM 0.039

2:00 PM 0.042

3:00 PM 0.083

4:00 PM 0.085

5:00 PM 0.08

6:00 PM 0.115

7:00 PM 0.065

8:00 PM 0.1

9:00 PM 0.094

10:00 PM 0.098

11:00 PM 0.106

12:00 AM 2.296

1:00 AM 0.146

2:00 AM 0.08

3:00 AM 0.061

4:00 AM 0.038

5:00 AM 0.04

USER 2

Time IntervalsGeneral Supply KWH 1
6:00 AM 0.077

7:00 AM 0.082

8:00 AM 0.089

9:00 AM 0.095

10:00 AM 0.114

11:00 AM 0.135

12:00 PM 0.114

1:00 PM 0.093

2:00 PM 0.084

3:00 PM 0.072

4:00 PM 0.252

5:00 PM 0.13

6:00 PM 0.096

7:00 PM 0.052

8:00 PM 0.079

9:00 PM 0.128

10:00 PM 0.206

11:00 PM 0.278

12:00 AM 0.28

1:00 AM 0.283

2:00 AM 0.252

3:00 AM 1.205

4:00 AM 0.751

5:00 AM 0.616

USER 3
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  (d)             (e) 

Figure 40 Energy Reading before Feature Extraction for a) User 1, b) User 2, c) User 3, 

d) User 4 and User 5. 

An example overview of the data is as follows. Figure 47. displays an overview of 24 hours’ 

worth of consumption data for user (house) 1 to 5. The simulation has the advantage that the 

data can then be categorised by season and day of the week e.g., weekend. As the graphs 

display, all five houses follow a similar data trend. However, with some variance in the output. 

Data is collected at a high frequency of 30 minutes granularity. As the graphs display, each of 

the households have a similar consumption range, with relatively few outliers above 0.2.  

 

 (a)  (b) 

Time IntervalsGeneral Supply KWH 1
6:00 AM 0.062

7:00 AM 0.066

8:00 AM 0.061

9:00 AM 0.066

10:00 AM 0.058

11:00 AM 0.061

12:00 PM 0.06

1:00 PM 0.057

2:00 PM 0.047

3:00 PM 0.039

4:00 PM 0.046

5:00 PM 0.058

6:00 PM 0.039

7:00 PM 0.038

8:00 PM 0.034

9:00 PM 0.035

10:00 PM 0.033

11:00 PM 0.042

12:00 AM 0.034

1:00 AM 0.051

2:00 AM 0.053

3:00 AM 0.05

4:00 AM 0.051

5:00 AM 0.05

USER 4

Time IntervalsGeneral Supply KWH 1
6:00 AM 6.121

7:00 AM 7.123

8:00 AM 5.136

9:00 AM 5.142

10:00 AM 4.649

11:00 AM 4.157

12:00 PM 3.664

1:00 PM 3.172

2:00 PM 2.679

3:00 PM 2.187

4:00 PM 4.12

5:00 PM 6.13

6:00 PM 8.14

7:00 PM 10.15

8:00 PM 12.16

9:00 PM 14.17

10:00 PM 16.18

11:00 PM 18.19

12:00 AM 20.2

1:00 AM 22.21

2:00 AM 24.22

3:00 AM 26.23

4:00 AM 28.24

5:00 AM 30.25

USER 5
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 (c)  (d) 

Figure 41 Box Plot for a) Home 1, b) Home 2, c) Home 3 and d) Home 4 

User 5 was introduced to the simulation as shown in figure 47. The aim is to create a home 

within the same constraints as a normal home but introduce subtle changes. Figure 49 displays 

a box plot of the general consumption behaviour for the fifth home. Most of the energy 

consumption is under 0.2 (as with the ‘normal’ homes); however, there are more outliers from 

the main cluster compared with the other home, but the  

differences are subtle. This is for two reasons, 1) to ensure that the simulated home is realistic 

and not an overly ‘anomalous’ home.  

 

Figure 42 Fifth Home with Changed Routine 

For example, we could have modelled a home with 20 fridges or 500 freezers, but this would 

mean that the classification results would be abnormally high. Also 2) in order to perform an 

experiment that is realistic. Often users with higher consumption levels will have small/subtle 
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behavioural routines in the home which are difficult to detect with a visual inspection of the 

data.  

Table 10, 11, 12, 13 and 14 display a sample of the data post-feature extraction for the 5 

different homes. The features contain information relating to the behavioural patterns of the 5 

different homes. To ensure accuracy, the features are generated for each 1-hour period from 

the 30-minute intervals. The entire set of extracted feature vectors are stored in the future 

vectors database.  

Table10 User 1 Features Before Classification 

Label Mean Max Min STD 

1 0.023 0.023 0.023 0.023 

1 0.041 0.041 0.041 0.041 

1 0.028 0.028 0.028 0.028 

1 0.038 0.038 0.038 0.038 

1 0.034 0.034 0.034 0.034 

 

Table 11 User 2 Features Before Classification 

Label Mean Max Min STD 

2 0.074 0.074 0.074 0.074 

2 0.069 0.069 0.069 0.069 

2 0.106 0.106 0.106 0.106 

2 0.063 0.063 0.063 0.063 

2 0.096 0.096 0.096 0.096 

Table 12 User 3 Features Before Classification 

Label Mean Max Min STD 

3 0.074 0.074 0.074 0.074 

3 0.069 0.069 0.069 0.069 

3 0.106 0.106 0.106 0.106 

3 0.063 0.063 0.063 0.063 

3 0.096 0.096 0.096 0.096 

 

Table 13 User 4 Features Before Classification 

Label Mean Max Min STD 

4 0.074 0.074 0.074 0.074 

4 0.069 0.069 0.069 0.069 

4 0.106 0.106 0.106 0.106 

4 0.063 0.063 0.063 0.063 

4 0.096 0.096 0.096 0.096 
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                                                        Table 14 User 5 Features Before Classification 

Label Mean Max Min STD 

5 0.074 0.074 0.074 0.074 

5 0.069 0.069 0.069 0.069 

5 0.106 0.106 0.106 0.106 

5 0.063 0.063 0.063 0.063 

5 0.096 0.096 0.096 0.096 

(a)  (b) 

 

(c)  (d) 

Figure 43 Feature Extraction Results for all houses: a) Components of the energy 

balance log(min) Vs max b), Components of the energy balance log(mean) Vs standard 

deviation c), Standard deviation box plot, d) log average box plot 

The figures 50 a and b are graphs displaying a comparison of the features. Figures 50 c and d 

include box plots, which identifies the middle 50% of the data, the median, and the extreme 

points. The graphs are a visual demonstration of the feature vector structures.  
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6.2 MS Azure Normalisation 

Normalisation is the optimal option used for the transformation of the data structure. This step 

is often applied as part of data preparation for machine learning. The goal of normalisation is 

to transform the numeric value columns in the dataset to use a common scale. Normalization 

is also required for some algorithms to model the data correctly. There are a different number 

of methods, which are applied to data normalisation. These include Zscore, MinMax, Logistics 

and LogNormal.  The vast majority of normalisation methods convert values of the quantitative 

features to belong to the two values, such as (0, 1) or (-1, 1). In our experiment, we use Zscore 

as mentioned below. This formula converts all values to a z-score. The values in the data are 

transformed using the following formula: 

𝑧 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑𝑒𝑣(𝑥)
 

(1) 

Mean and standard deviation are computed for each column separately. Population standard 

deviation is used. Figure 51 shows us the normalisation technique performed on our dataset in 

Azure. Figure 52 shows us the dataset before it has been normalised, while in Figure 53, we 

see the dataset after it has been normalised. 

Figure 44 ZScore Normlisation Process 
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  Figure 45 Un-

Normalised Dataset 

 

   

Figure 46 Normalised Dataset 

6.3 Machine Learning Results for Classification 

This section presents the classification outcomes for the simulated smart meter data sets. This 

is analysed using the features based on the energy analysis output from the five units described 

in the thesis. In order to deal with the models, each single classifier is provided with a dataset 

consisting of four features: Min, Mean, Max and Standard deviation. 
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Following on from the normalisation process, the dataset is then split into two distinct sets 

which separates the date into training and testing sets. The purpose of dividing the datasets is 

to offer a comparison against all performance evaluation metrics that are performed. Typically, 

80% of the data is used for training the classifier, where a particular attribute defines the 

response, this data representation is often known as a response class. The remaining 20% of 

the data is used for testing and is referred to as withhold data. Introducing this withhold data 

enables the ability to score the performance of the model and to evaluate how well the model 

can predict future or unknown values. Figure 54 shows the validation process in Azure using 

the data set from our case study. The first stage splits the data into the training and test data, 

secondly the model is trained using the classifiers. The model is then scored using the test data 

with the final step evaluating the model’s performance.  

 

Figure 47 Data Processing Feature Extraction 

The following section presents the binary classifications used in our experimental study. 

6.3.1 Classification 

The classifiers chosen for evaluation include; Two-Class Decision Jungle, Two-Class Decision 

Forest, Two-Class Boosted Decision Tree, Two-Class Logistic Regression, Two-Class Neural 
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Network and Two-Class Support Vector Machine. The classification model allows for all 

experiments to be conducted simultaneously and is presented in Figure 55. 

 

Figure 48 Classification Model in MS Azure 

The aim of the classification process is to detect high energy users. In other words, users who 

have an unusually high energy usage from within large datasets and present them as outliers.  

6.4 Results 

Two sets of smart meter readings are analysed one is 5days worth of data and the other 6 

months, this experiment serves as a benchmark test of the machine learning approach to see if 

the detection of high energy usage in the dataset is possible. Features are extracted from the 

data set to adopt an in-direct classification. Statistical features including max, max, mean and 

standard deviation. Given the nature of a cloud processing platform, the classifiers can be run 

simultaneously. The first stage of the classification uses data for 5 days, and the second data 

set comprises 6 months’ worth of data. This serves as a standard experiment for comparison as 

the results get better as more data is added to the experiment. Table 15 below, displays the 
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classification results from the smaller dataset. The decision jungle is the highest scoring 

classifier and can separate the data with 83.5% AUC and the decision forest is able to perform 

with 78.8% accuracy with a lowest classification AUC of 63.5% for the Neural Network.  

Table 15 Classifier Performance 

Evaluation 

Two-

Class 

DJ 

Two-

Class 

DF 

Two-Class 

AP 

Two-Class 

LR 

Two-

Class 

NN 

Two-Class 

SVM 

Accuracy 0.748 0.732 0.685 0.577 0.698 0.567 

Precision 0.734 0.730 0.900 1.000 1.000 0.000 

Recall 0.635 0.579 0.286 0.000 0.286 0.000 

F1 Score 0.681 0.646 0.434 0.000 0.444 0.000 

AUC 0.835 0.788 0.636 0.636 0.635 0.636 

The performance of the classifiers is visualised in the ROC curves presented in Figure 56 a-f. 

The Boosted Decision Jungle is the highest performing classifier with a success of 83.5% AUC 

(Area Under Curve) followed by the decision Forest with a success rate of 78.8%. All two of 

the decision tree-based classifiers outperformed the others, with each achieving in the region 

of 70% AUC classification accuracy. The neural network was the lowest performing classifier 

with an AUC of 63.5%. 

(a)  (b) 
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(c)  (d) 

(e)  (f) 

Figure 49 ROC Curve a) Decision Forest, b) Decision Jungle, c) Support Vector 

Machine, d) Averaged Perception 

e) Logistic Regression and f) Neural Networks 
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Figure 50 Classification Model in MS Azure for 6 Months’ worth of data  
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(a) (b)

(c) (d)

(e)

(f)Figure 51 ROC Curve a) Averaged Perception, b) Decision Jungle, c) Support Vector 

Machine, d) Decision Forest, e) Logistic Regression and f) Neural Networks 
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Figure 52 ROC Classification Performance For 5 Days’ worth of Data 

During the testing process, the DJ and DF obtained 0.835, 0.788 AUC respectively; and 0.748, 

0.732 with the accuracy estimation, while the precision received 0.734, 0.730 and F1 Score 

acquired 0.681, 0.646. These outcomes are considered the best outcomes in comparison with 

all classifiers, particularly during the testing set after building the model with the training 

instances.  

Table 16 Classifier Performance 

Evaluation 
Two-

Class DJ 

Two-

Class DF 

Two-

Class AP 

Two-

Class LR 

Two-

Class NN 

Two-

Class 

SVM 

Accuracy 0.735 0.741 0.606 0.622 0.696 0.623 

Precision 0.814 0.817 0.596 0.597 0.900 0.598 

Recall 0.638 0.648 0.926 0.925 0.492 0.918 

F1 Score 0.715 0.723 0.710 0.726 0.636 0.724 

AUC 0.817 0.867 0.774 0.775 0.779 0.775 

 

The performance of the classifiers is visualised in the ROC curves presented in Figure 58 a-f. 

The Boosted Decision Forest is the highest performing classifier with a success of 86.7% AUC 

(Area Under Curve) followed by the decision jungle with a success rate of 81.7%. Both 

decision tree-based classifiers outperformed the others, with each achieving in the region of 

0

0.2

0.4

0.6

0.8

1

1.2

Two-Class DJ Two-Class DF Two-Class AP Two-Class LR Two-Class NN Two-Class SVM

Classification Performance

Accuracy Precision Recall F1 Score AUC
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70% AUC classification accuracy. The Averaged Perception was the lowest performing 

classifier with an AUC of 77.4%. 

 

Figure 53 ROC Classification Performance For 6 Months Data 

During the testing process, the DF and DJ obtained as shown in figure 60 0.867, 0.817 with 

AUC, and 0.741, 0.735 with the accuracy estimation, while the precision received 0.817, 0.814 

and F1 Score acquired 0.715, 0.723. These outcomes are considered the best outcomes in 

comparison with all classifiers, particularly during the testing set after building the model with 

the training instances.  

 

Figure 54 AUC Classification Performance Comparison  
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This is the comparison of the AUC in both datasets used. The with orange bar charts in Figure 

61 above is for the 1st experiment which has less data and the blue bar charts represent the 

experiment with more data, it is clear from the results that the more data we add to the 

experiment the better results we get. A comparison of the results is presented in Figure 61. The 

results display a significant improvement, as expected. The decision forest shows the highest 

increase from 78.8% to 86.7%, the lowest performance classifier was the NN with 63.5% and 

has increased to 77.9%. 

6.5 Discussion 

In this study, a machine learning classifier are used that combines 6 evaluation methods. The 

decision jungle outperforms all the classifiers and has AUC outcomes of the best ensemble 

classifier producing 0.835% for the training sets as shown in Table 14. which is considered a 

good achievement due to the use of nonlinear methods as well as inseparable datasets. The 

main reason that decision jungle and decision forest produced the best results was due to the 

lowest outcome received by other classifiers. For instance, the training set of SVM received 

0.636%. Our experiment produced statistical methods that made us compare our simulation 

data to real world data. 

Overall, the results obtained highlight the potential of utility organisations to have data for the 

classification of segmentation of customers according to energy usage in various households. 

The choice of model is crucial in obtaining a satisfactory result, as is evident in the variation 

of the performance between the models used in our experiment.  

Furthermore, the performance classifiers are powerful models for the analysis of smart meter 

datasets, as has been proven for this domain to offer strong prediction accuracy and 

performance in comparison with other classifiers. 

Additionally, this approach can effectively estimate the significance of features, specifically 

for classification. Some of the variables are mislabelled for our datasets; the algorithm can 
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handle and detect such missing values, in addition to operating effectively on unbalanced and 

categorical data, which is less viable for other classifiers, such as SVMs. The results gained 

from the research investigation into the use of various types of machine learning models show 

that the simulation datasets exhibit significant relevance, to detect user behaviour in households 

and then give utilities insights and knowledge how residential households use energy then they 

can come up with feedback mechanisms to inform the consumer on how to lower energy use 

and reduce carbon emissions. 

6.6 Summary  

This study has conducted an experimental investigation into abnormal and normal usage of 

energy consumption data, by using various machine learning models for the classification of 

smart meter data. Our study sought to investigate the effectiveness of the machine learning 

approach to analyse smart meter data through experimental investigation, to help reduce the 

effects of climate change, by educating and advising the consumer on low energy usage 

techniques from changing lifestyle to investing in low energy appliances. 
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Chapter 7 Conclusion and Future Work 
 

7.1 Thesis Summary 

This completed study proves that it is possible to detect anomalous behaviour using smart meter 

data within a group of homes. Using this approach, it is possible to drastically reduce greenhouse 

gas emissions from residential buildings, by means of communicating energy usage back to the 

end user and the utility companies coming up with feedback mechanisms that could be adopted 

by consumers in residential homes. The use of simulation data has drawbacks (when compared 

with using real world data); however, access to smart meter data is a challenge and often has 

restrictions. By using industry standard simulation software, we are also able to guarantee the 

quality and realism of the data used for generating the results, that’s why in this thesis we use 

our own data. 

The novel system and algorithm presented in this thesis offers a way forward in detecting energy 

user profiles in residential homes and serves as a platform for the prediction of how consumers 

use their daily energy, and how best they can save energy by changing their lifestyles and 

investing in appliances that use low energy. To evaluate our data, we use machine learning 

techniques to analyse consumption usage by profiling the data collected by smart meters of the 

houses and learning the partners of normal and abnormal energy usage. The energy profiles 

discovered in the data is a major contribution to our research as it helps us learn energy profiles 

for consumers which is the main contribution towards our research. This thesis has the potential 

to encourage utility organisations to educate and share knowledge to consumers on the 

importance of reducing greenhouse emissions, which would help the environment in reducing 

climate change. Simulation of energy use in households could be employed to enhance 

understanding in this area, adding useful detail to the findings above and exploring whether the 

behavioural changes are responsive to different types of energy use or appliance usage, 

demographic, income or other restraint, for example. 
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In this thesis, a method that we have worked on which is analysing energy usage data has been 

useful enough to be able to detect high energy users, and intervention can be done to reduce 

greenhouse emissions by analysing smart energy meter readings for residential houses. There 

are different observational characteristics involved in this process, each has proven successful 

in the experiments presented and the results of some experiments can be seen in appendix A – 

appendix E. The results show that assembling models with high AUC, precision, recall, F1-

Score and accuracy values can provide optimal classification with high rate as illustrated in the 

result and simulation analysis chapter. The classifiers can establish the detection of certain 

patterns and trends within a residential setting. These patterns of energy usage once shared with 

the utilities involved can contribute to planning the future ahead. This study used visualisation 

methods and statistical techniques to present our results. This has assisted us to make 

comparison on the outcomes from different aspects and finally to choose the best classifiers that 

can best fit our analysis on the smart meter datasets and can be implemented within the utility 

domains. Future work looks at expanding the project and incorporating more houses both 

detached and terraced. Long term research plan is to develop a system that will be able to 

generate large datasets of energy usage statistics for longer periods of time like a year or a 

couple of years.  Figure 62 below demonstrates our future expansion plans:  
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Figure 55 Expanded Future Simulation Plan 

Figure 63 below simply shows us the 3D view of what our expanded simulation base would 

look like, and this would, in future, be the way to go for utility companies to be able to know 

the energy consumption of a much wider residential setting. 

Figure 56 Expanded Future 3D View Simulation Plan 
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7.2 Research Contributions 

The aim of the project was to develop a novel system framework and devise a novel algorithm 

capable of profiling energy usage in residential homes to detect normal and abnormal energy 

usage and share the findings with the utility organisations so that they can educate the consumer 

on the benefits of saving energy to reduce climate change and for future planning and billing 

purposes. To achieve this aim, a literature review of energy profiling infrastructures was 

performed, in addition to a review of simulation and machine learning techniques. A novel 

system was defined and developed using energy simulation software. The system developed is 

mentioned in chapter 4 and is named Muschan. 

The information drawn from this research. offers a significant contribution to the measures 

taken to reduce greenhouse emissions to help control climate change. Proactive monitoring and 

profiling energy smart meter data is required to achieve comprehensive awareness of smart 

meter importance within the utility sector, which makes the energy profiles presented earlier 

in the research key as a foundation to consumer feedback. The system framework uses 

simulation data and applies machine learning to profile and discover unusual data patterns. The 

system framework can be used in any residential setting as well as the utility organisations to 

identify users/consumers who use energy abnormally overtime and can change their lifestyles 

to save energy and reduce energy bills. By simulating residential homes and discovering energy 

usage trends, the utility analyst can educate the consumer on energy saving as well as plan for 

future energy reserves to prevent power outages. This is a novel approach to utilities and 

consumers because smart meters are already helping households to reduce their energy usage, 

with evaluation of trials showing energy savings.   

This research adds to a growing body of work showing that the deployment of effective and 

evidence-based technology such as smart meters can engage and change occupant behaviour 

to reduce energy consumption. Furthermore, this system is an integral part of the strategy to 
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reduce and maintain low energy demand from carbon sources. Occupant behaviour 

modification have a great potential together to reduce the operating energy demand of new and 

existing homes. Occupant behaviours change encourage consumers to use less grid electricity 

and is an essential element of sustainable living. The framework presented in this thesis is novel 

because of carbon emission that could be enabled by the smart integration of technology into 

new ways of operating, living, working, learning and travelling, making this research in the 

science industry a key player in the fight against climate change. The information provided 

from this research can be used to rethink how we should live, learn, play and work in a low 

carbon economy, initially by optimising efficiency, but also by providing viable low-cost 

alternatives to high carbon activities. This report demonstrates the potential role of how 

profiling energy data in residential settings could play in mitigating climate change. This brings 

a scope for policy makers, industry leaders and the sector itself to make sure this potential is 

realised. 

7.3 Future Work 

With the success of our experiential study, this study considers further work directions, 

including improvements to the proposed machine learning models (Bio classifiers) along with 

the energy simulation software. Further research is recommended to make confirmation on our 

findings, where a large quantity of data from smart meters could be utilised also to advance the 

performance of the results.  

Issues such as consumer engagement, marketing strategies, cultural changes and the way 

feedback is presented were prominent in the utility companies.  Smart meters and real-time 

displays could encourage people to change their behaviour, especially with the introduction of 

time-of-day pricing to give people a financial incentive. However, it was noted that the energy 

efficiency of households should also be improved by implementing other measures such as 
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insulation and improving the energy efficiency of appliances.  I highlight the possible future 

work to be done as discussed below.  

• As smart energy meters are eventually phasing out the analogue meter. Consumers and 

utility companies are increasingly moving towards a complete smart city, and the amount 

of data relating to consumer behaviour will increase significantly. This, new opportunity 

for load profiling and analysis to understand the energy usage trends will increase helping 

researchers to understanding the behaviour of customers and gaining intelligent insight into 

the data energy patterns will grow.  

• More work is needed in the area of consumer feedback and related lifestyles in which 

energy use is a part of a wider set of behavioural change and quality of life balances in the 

household. This step would encourage consumer engagement and acceptance. 

• Research to understand how smart metering and technologies will influence consumer 

behaviours in society more generally. 

• The roll out of smart meters will also help in the reduction in CO2 levels and will help 

towards reducing the carbon footprint.  

• Another direction for the proposed research is to use deep learning technique. Deep 

learning is related machine learning algorithms. With using deep learning, the features 

selection and modelling are selected automatically. 

In this thesis, a method has been proposed to reduce green gas emissions by analysing smart 

energy meter readings. There are different observational characteristics involved in this 

process, each has proven successful in the experiments presented. The results show that 

assembling models with high AUC, precision, recall, F1-Score and accuracy values can provide 

optimal classification with high rate as illustrated in the result and simulation analysis chapter. 

The classifiers can establish the detection of certain patterns and trends within a residential 

setting. These patterns can assist utility companies to plan the future ahead, as well as to come 
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up with incentives to educate the consumer on low energy usage to combat climate change. 

This study used visualisation methods and statistical techniques to present our results. This has 

assisted us to make comparison on of the outcomes from different aspects and finally to choose 

the best classifiers that can best fit our analysis on the smart meter datasets and can be 

implemented within the utility domains. 
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Appendix A: Heat Map for The Whole Simulation 
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Appendix B: Total KWh Energy for Simulation 
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Appendix C: Yearly Total Energy Readings 
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Variable Time Mean Min Max Sum St Dev Avg Daily MinAvg Daily Max
My Design - Source Energy:Total (*) (KWh)Jan 138284 50510 259218 102883000 36506 100870 187840

Feb 119498 37817 268979 80303000 44307 79620 168922

Mar 81536 18680 178032 60663000 27005 48043 125402

Apr 64332 17627 158517 46319000 24642 29777 105909

May 51975 16298 114715 38669500 20672 20237 87432

Jun 55422 14145 131249 39903600 26370 16335 102352

Jul 60854 14835 149714 45275200 28784 18327 110981

Aug 60251 14735 131932 44826400 27765 19409 109383

Sep 53203 14215 135233 38306300 23814 17017 93911

Oct 60474 15607 132652 44993000 22234 27366 94691

Nov 76508 18183 164282 55085800 27859 41718 116444

Dec 101076 19273 202008 75200500 29887 66209 144456

Total 76761 14145 268979 672428000 39522 40368 120621

My Design - Source Energy - Unit 1:Total (*) (KWh)Jan 27419 9196 60621 20399900 8350 19433 43450

Feb 23261 6617 59007 15631300 9787 14771 37636

Mar 15626 3012 46317 11626000 6351 8722 30125

Apr 12178 2936 42074 8768010 5742 5309 25520

May 9706 2850 34833 7221450 5063 3548 22216

Jun 10192 2524 43724 7337980 5964 2606 24220

Jul 11293 2513 31073 8401920 6068 2879 24477

Aug 11002 2453 33140 8185080 5844 2995 22939

Sep 9625 2524 39647 6930220 5192 2628 21436

Oct 11604 2777 32048 8633080 5065 4945 22225

Nov 14829 2768 43727 10676800 6450 7428 27324

Dec 19953 3640 52838 14844700 6878 12415 33643

Total 14687 2453 60621 128656000 8575 7308 27900

My Design - Source Energy - Unit 2:Total (*) (KWh)Jan 28815 9587 61008 21438500 8401 20554 42489

Feb 24725 6789 58421 16614900 9891 15903 37983

Mar 16633 3277 51285 12374900 6453 9257 30803

Apr 13345 3254 38862 9608030 6058 5613 26814

May 10323 3204 37728 7680130 4859 3723 21676

Jun 11593 2890 43088 8347030 6329 3018 25913

Jul 12739 2876 40199 9477870 6815 3370 27243

Aug 12691 2817 37291 9442220 6326 3698 25322

Sep 10736 2890 38933 7729560 5563 3101 22777

Oct 12443 3190 39443 9257540 5428 5222 24107

Nov 16081 3323 48027 11578200 6775 8321 30786

Dec 21018 3887 57116 15637200 7009 13466 33539

Total 15889 2817 61008 139186000 8816 7925 29128

My Design - Source Energy - Unit 3:Total (*) (KWh)Jan 25253 8660 57606 18787800 7388 17649 40793

Feb 22064 6217 66227 14827100 8512 13830 37387

Mar 15455 3277 44391 11498800 5828 8460 28689

Apr 12538 3254 39270 9027130 5789 5229 25956

May 10384 3204 42254 7725600 5149 3531 22536

Jun 10853 2890 56344 7814210 5798 3056 25315

Jul 11684 2876 34173 8693140 5830 3419 24846

Aug 11675 2842 38104 8686530 5603 3660 22873

Sep 10767 2890 48393 7752250 5840 3064 24751

Oct 11664 3190 38809 8678120 5160 4568 23695

Nov 14263 3180 42786 10269600 6118 7025 27263

Dec 18610 3887 50521 13846100 6575 11351 32190

Total 14567 2842 66227 127607000 7744 7060 28040
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Appendix E:  Yearly Total Energy Readings for 

Appliances Site Energy and Unit 1 
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