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—— Abstract
(Multi-type) branching processes are a natural and well-studied model for generating random infinite
trees. Branching processes feature both nondeterministic and probabilistic branching, generalizing
both transition systems and Markov chains (but not generally Markov decision processes). We
study the complexity of model checking branching processes against linear-time omega-regular
specifications: is it the case almost surely that every branch of a tree randomly generated by
the branching process satisfies the omega-regular specification? The main result is that for LTL
specifications this problem is in PSPACE, subsuming classical results for transition systems and
Markov chains, respectively. The underlying general model-checking algorithm is based on the
automata-theoretic approach, using unambiguous Biichi automata.
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1 Introduction

Checking whether a (labelled) transition system satisfies a linear-time specification is a staple
in verification. The specification is often given as a formula of linear temporal logic (LTL).
While early procedures for LTL model checking work directly with the formula [25], the
automata-theoretic approach translates LTL formulas into finite automata on infinite words,
such as Biichi automata, and analyzes a product of the system and the automaton [37]. This
approach can lead to clean and modular model-checking algorithms.

Although LTL captures only a subset of w-regular languages, model-checking algorithms
based on the automata-theoretic approach can be made optimal from the point of view of
computational complexity. In particular, model checking finite transition systems against
LTL specifications is PSPACE-complete [32], and the algorithm [37] that, loosely speaking,
translates (the negation of) the LTL formula into a Biichi automaton and checks the product
with the transition system for emptiness can indeed be implemented in PSPACE.

The same approach does not directly work for probabilistic systems modelled as finite
Markov chains: intuitively, the nondeterminism in a Biichi automaton causes issues in a
stochastic setting where the specification should hold with probability 1, i.e., almost surely
but not necessarily surely. A possible remedy is to translate the nondeterministic Biichi
automaton further into a deterministic automaton, e.g., a deterministic Rabin automaton
(deterministic Biichi automata are less expressive), with which the Markov chain can be
naturally instrumented and subsequently analyzed. This determinization step causes a
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(second) exponential blowup and does not lead to algorithms that are optimal from a
computational-complexity point of view. However, for Markov decision processes (MDPs),
which allow for nondeterminism in the probabilistic system, this approach is adequate and
leads to an optimal, double-exponential time, model-checking algorithm.

Checking whether a Markov chain satisfies an LTL specification with probability 1 is
PSPACE-complete, but membership in PSPACE was proved only in [10, 11], not using the
automata-theoretic approach but by a recursive procedure on the formula. This raised the
question if there is also an optimal algorithm based on the automata-theoretic approach; see
[36] for a survey of the state of the art at the end of the 90s.

The answer is yes and was first given in [12], using a single-exponential translation
from LTL to separated Biichi automata. Such automata are special unambiguous Biichi
automata, which restrict nondeterministic Biichi automata by requiring that every word
have at most one accepting run. Another algorithm, using alternating Biichi automata, was
proposed in [6], exploiting reverse determinism, a property also related to unambiguousness.
A polynomial-time (even NC) model-checking algorithm for Markov chains against general
unambiguous Biichi automata was given in [2]. These works all imply optimal PSPACE
algorithms for LTL model checking of Markov chains via the automata-theoretic approach.

In this paper we exhibit an LTL model checking algorithm that has the following features:
(1) it applies to (multi-type) branching processes, a well established model for random trees,
generalizing both nondeterministic transition systems and Markov chains; (2) it runs in
PSPACE, which is the optimal complexity both for nondeterministic transition systems and
Markov chains; and (3) it is based on the automata-theoretic approach (using unambiguous
Biichi automata). The fact that there exists an algorithm with the first two features
might seem surprising, as one might think that any system model that encompasses both
nondeterminism and probability will generalize MDPs, for which LTL model checking is
2EXPTIME-complete [11].

Branching processes (BPs) are a well-studied model in mathematics with applications
in numerous fields including biology, physics and natural language processing; see, e.g.,
[23, 1, 22]. BPs randomly generate infinite trees, and, from a computer-science point of view,
they might be the most natural model to do so: (multi-type) BPs can be thought of as a
version of stochastic context-free grammars without terminal symbols, randomly generating
infinite derivation trees. For example, consider the following BP, taken from [8], with 3 types
1,B,D:

1% B4 D DD
125 1B B2 B (1)
B % BB

This BP might generate a tree with the following prefix:
I B

I VRN
/ 1 \ B B
| |
B B D

cee

The probability that the BP generates a tree with the shown prefix is the product of the
probabilities of the fired transition rules, i.e., (in breadth-first order) 0.1-0.9-0.3-0.1-0.5-0.2.
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BPs generalize transition systems. Consider the following transition system:

—_ 0=

It is equivalent to the BP with X Lyandy <& X Y, which generates with probability 1
the following unique tree:

X
X Y
I
Y

The branches of this unique tree are exactly the executions of the transition system. As a
consequence, any LTL formula holds on all executions of the transition system if and only if
it holds (with probability 1) on all branches of the generated tree.

BPs also generalize Markov chains. Consider the following Markov chain:

1

0.3

It is equivalent to the BP with X <—1> Y and Y E) XandY <ﬂ> Y, which generates, with
probabilities 0.3, 0.7 - 0.3, 0.7 - 0.7, respectively, the following prefixes of (degenerated) trees:

X
I
Y
I
Y
I
Y

e — < — e
e — e

Here, each possible “tree” has only a single branch, and the possible “trees” are distributed
in the same way as the possible executions of the Markov chain. As a consequence, any LTL
formula holds with probability 1 on a random execution of the Markov chain if and only if it
holds with probability 1 on the (single) branch of the generated tree.

Hence, both for the transition system and for the Markov chain, the respective model-
checking question reduces to the BP model-checking problem which asks whether with
probability 1 the property holds on all branches.

For LTL specifications, we refer to this BP model-checking problem as P(LTL) = 1.
Our main result is that it is in PSPACE, generalizing the corresponding classical results
on transition systems and Markov chains. As mentioned, our model-checking algorithm is
based on the automata-theoretic approach, in particular on unambiguous Biichi automata.
Another important technical ingredient is the algorithmic analysis of certain nonnegative
matrices in terms of their spectral radius.
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The latter points to the fact that the numbers in the system generally matter, even
though we only consider the qualitative problem of comparing the satisfaction probability
with 1. For example, for the BP given in (1), one can show that the probability that all
branches eventually hit a node of type D is less than 1 (in fact, it is 0). Intuitively, this
is because the probability of “branching” via B g BB is larger than the probability of
“dying” via B <£> D. Were the probabilities 0.3 and 0.2 swapped, the probability that all
branches eventually hit a node of type D would be 1; cf. [8, Section 1].

We also consider the problem P(LTL = 0), which asks whether the probability that
all branches satisfy a given LTL formula is 0. Even though it is trivial to negate an LTL
formula, this problem is (unlike in Markov chains) not equivalent to the complement of
P(LTL = 1), because even when the probability is less than 1 that the formula holds on all
branches, the probability may still be 0 that the negated formula holds on all branches. We
will show that P(LTL = 0) is much more computationally complex than P(LTL = 1): it is
2EXPTIME-complete.

Besides LTL, we also consider automata-based specifications. Biichi automata are relevant
from a verification point of view, as a way of specifying desired or undesired executions of the
system. Unambiguous Biichi automata are useful from a technical point of view, in particular,
to facilitate our main result on P(LTL = 1). See Section 2 and Table 1 for definitions of our
problems and a map of our results.

» Remark 1. Readers familiar with MDPs may wonder how the problem P(LTL) = 1 can
have lower computational complexity than the problem whether all schedulers of an MDP
satisfy an LTL specification almost surely. Consider the BP

x3vyn vy vz v2Bx w2z z42z2,

which might be depicted graphically as follows:

One might view this BP as an MDP where in an X-node the scheduler nondeterministically
picks either the Yi- or the Ys-successor, and in an Y;-node, the X- or the Z-successor is
chosen randomly. In such an MDP, regardless of the scheduler, a random run reaches with
probability 1 a Z-node. However, in the BP above, the probability is positive that some
branch of a random tree never reaches a Z-node. Although each branch of a random tree
could be thought of as being witnessed by at least one scheduler, this is not a contradiction,
as there are uncountably many schedulers (over which one cannot take a sum). Hence, if
an MDP is interpreted as a BP in the way sketched above, then the requirement that the
BP satisfy an LTL formula almost surely on all branches is stronger, and computationally
less complex to check, than the requirement that the MDP satisfy, for each scheduler, the
formula almost surely.

Related work. We have already discussed related work concerning model checking transition
systems and Markov chains.
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In addition to the mentioned applications of BPs in various fields, there has also been
work on BPs in computer science, especially in the last 10 years. This paper builds on [§],
where specifications in terms of deterministic parity tree automata are considered. The
work [8] implies decidability of the problems considered in this paper and some basic upper
complexity bounds. For example, it is not hard to derive from [8] that P(LTL = 1) is in
2EXPTIME. Lowering this to PSPACE is the main achievement of this paper.

A related strand of work considers regular tree languages; i.e., the specification is not in
terms of a word automaton that is run on each branch but in terms of tree automata. Even
measurability is not easy to show in this case [20], and fundamental decidability questions
around computing the measure have been answered positively only for subclasses of regular
tree languages [26, 27].

Fundamental results on the complexity of algorithmically analyzing BPs have been
obtained in [18]. Indeed, in Section 3.1 we build on and improve results from [18] on
finiteness (more often called “extinction” in the literature) of BPs.

Another recent line of work considers extensions of BPs with nondeterminism, focusing
on algorithmic questions about properties such as reachability. Branching MDPs, which
are BPs where a controller chooses actions to influence the evolution of the tree, have been
investigated, e.g., in [16, 17]. Even branching games, featuring two adversarial controllers,
have been studied recently [14].

The work [21] also considers BPs with “internal” nondeterminism (as opposed to the
“external” nondeterminism manifested as branching in the generated tree), along with model-
checking problems against the logic GPL. This expressive, u-calculus based modal logic
had been introduced in [9]. The system model therein, called reactive probabilistic labeled
transition systems (RPLTSs), is essentially equivalent to BPs as considered in this paper.

BPs are related to models for probabilistic programs with recursion, such as Recursive
Markov chains, for which model-checking problems have been studied in detail; see, in
particular, [19]. Very loosely speaking, a run of a (“l-exit”) Recursive Markov chain can
be viewed as a depth-first traversal of a tree generated by a BP. Indeed, for a lower bound
in the present paper (Theorem 11) we adapt a proof from [19]. However, most qualitative
model-checking problems for Recursive Markov chains are EXPTIME-complete [19], and so
many of the BP problems we study turn out to have different computational complexity.

As a key technical tool we use unambiguous Biichi automata, as recently proposed for
Markov chains [2]. It is non-trivial to extend their use to random trees, as the branching
behaviour of BPs interferes with the spectral-radius based analysis from [2]. One may view
as the main technical insight of this paper that the limited nondeterminism in unambiguous
automata can be combined with the tree branching of BPs, so that, in a sense, BP model
checking reduces to comparing the spectral radius of a certain nonnegative matrix with 1
(Proposition 16).

2 Preliminaries

Let N and Ny denote the set of positive and nonnegative integers, respectively. For a finite
set ', we write I'* (resp., I'") for the set of words (resp., nonempty words) over T'.

Branching processes. A (multi-type) branching process (BP) is a tuple B = (I', =, Prob, Xy),
where T is a finite set of types, — C I' x 't is a finite set of transition rules, Prob is a
function assigning positive rational probabilities to transition rules so that for every X € T’
we have Yy Prob(X < w) = 1, and X, € T is the start type. We write X < w to
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denote that Prob(X — w) = p. Given a BP B and a type X € I" we write B[X] for the BP
obtained from B by making X the start type. For X, Y € " we call Y a successor of X if
there is a rule X < uYv for some u,v € T'*.

A BP with e-rules allowed relaxes the requirement — C I' x 't to — C I' x I'* i.e.,
there may be rules of the form X < ¢, where ¢ denotes the empty word. In the following,
we disallow e-rules unless specified otherwise; but the definitions generalize in a natural way.

Fix a BP B = (I', <, Prob, X)) for the rest of the section.

Trees. Write [B] for the set of trees generated by B; i.e., [B] denotes the set of ordered
I’-labelled trees ¢ such that for each X € I and each X-labelled node v in ¢, there is a rule
X <= X; -+ X}, denoted by rule(v), such that the k ordered children of v are labelled with
Xy,..., Xk, respectively. We say a node has type X € I' if the node is labelled with X. A
finite prefix of a tree t € [B] is an ordered I'-labelled finite tree obtained from ¢ by designating
some nodes as leaves, and removing all their children, grandchildren, etc. Write (B)) for the
set of finite prefixes of trees generated by B. For ¢ € (B]) write ¢t C [B] for the (“cylinder”)
set of trees t' € [B] such that ¢ is a finite prefix of ¢'. For X € I" write [B]x C [B] and
(B)x C (B) for the subsets of trees whose root has type X; the trees in [B]x are called
X-trees. A branch of a tree t is a sequence vgvy - - - of nodes in ¢, where vg is the root of t and
v;41 is a child of v; for all i € Ny. See [8] for equivalent, more formal tree-related definitions.

Probability space. For each X € T" we define the probability space ([B]x,Xx,Px), where
Y x is the o-algebra generated by {t] | t € (B)x}, and Px is the probability measure
generated by Px (tl) := [], Prob(rule(v)) for all ¢ € (B)) x, where the product extends over
all non-leaf nodes v in ¢. This is analogous to the standard definition of the probability space
of a Markov chain. We may write Pg for Px,, omitting the subscript when B is understood.
We often talk about events (i.e., measurable sets of trees) and their probability in text form.
For example, by saying “a B-tree has with positive probability infinitely many nodes of
type X” we mean that Pg(E) > 0 where E C [B]x, is the set of Xy-trees with infinitely
many nodes of type X.

Linear-Time Properties. We are particularly interested in sets of trees all whose branches
(more precisely, their associated sequences of types) satisfy an w-regular linear-time property
L CT¥. Given L C T, we write Pg(L) for the probability that all branches of a B-tree
satisfy L. Linear temporal logic (LTL) formulas specify linear-time properties; see, e.g.,
[34] for a definition of LTL. An important example for us are formulas of the form FT,
where T' C T', which denotes the linear-time property {uXw | v € T*, X € T, w € T%}.
Accordingly, Pg(FT') denotes the probability that all branches of a B-tree have a node whose
type is in T (equivalently, the probability that a B-tree has a finite prefix all whose leaves
have a type in T).

Automata. We use finite automata on infinite words over I'; where T is the set of types of
a BP. We use deterministic parity automata (DPAs), deterministic Biichi automata (DBAs),
nondeterministic Bichi automata (NBAs), and unambiguous Bichi automata (UBAs). The
definitions are standard; see, e.g., [34]. In the following we fix some terms and notation.
Let A = (Q,T,9,Q0, F) be an NBA, where @ is a finite set of states, I' is the alphabet,
0 C Q xTI' x Q is the transition relation, Qg C @ is the set of initial states, and F C Q is

the set of accepting states. We write ¢ %, r to denote that (¢, X,r) € 0. A finite sequence
X1 X Xn . . X1 Xn 4
qo — q1 —> -+ = q, is called a path and can be summarized as ¢qg ——=* ¢,. An



S. Kiefer, P. Semukhin, and C. Widdershoven

Table 1 Results and organization of the paper. The complexity classes indicate completeness
results, except “in NC”, which only means membership in NC.

=1 =0 =1 =0
P(finite) in NC P(coNBA) PSPACE EXPTIME
Section 3.1 | Proposition 6 Section 4 Theorem 14 Theorem 15
P(DPA) in NC P P(coUBA) in NC
Section 3.2 Theorem 8 Theorem 9 Section 5 Proposition 16
P(NBA) PSPACE EXPTIME P(LTL) PSPACE 2EXPTIME
Section 3.3 Theorem 10 Theorem 11 Section 6 Theorem 18 Theorem 19
infinite sequence qg BN ¢ X2, ... s called a run of X1X5 . We call the run accepting

if g0 € Qo and ¢; € F holds for infinitely many ¢;. The NBA A accepts (resp., rejects) an
infinite word w € I'* if w has (resp., does not have) an accepting run in .A. The NBA A is
called an unambiguous Biichi automaton (UBA) if every w € T'“ has at most one accepting
run. An automaton A defines w-regular linear-time properties {w € T'Y | A accepts w}
and {w € T'Y | A rejects w}. In keeping with previous definitions, we write P (A accepts)
(resp., Pr(A rejects)) for the probability that all branches of a B-tree (more precisely, their
associated sequences of types) are accepted (resp., rejected) by A.

Problems. We consider the following computational problems. The problem P(finite) = 1

asks, given a BP B with e-rules allowed, whether the probability that a B-tree is finite is 1.
The problem P(LTL) = 1 asks, given a BP B and an LTL formula ¢, whether Pg(¢) = 1.

The problems P(DPA) = 1 (resp., P(NBA) = 1) ask, given a BP B and a DPA (resp.,
NBA) A, whether Ps(A accepts) = 1. The problems P(coNBA) = 1 (resp., P(coUBA) = 1)!
ask, given a BP B and an NBA (resp., UBA) A, whether Pi(A rejects) = 1. The problems
P(LTL) = 0, P(DPA) = 0,... are defined similarly, where “=1" is replaced with “=0". See
Table 1 for a map of our results in those terms, as well as for an overview of the rest of the
paper. As explained in the introduction, the problem P(LTL) = 1 is of particular interest
from a model-checking point of view, and the technically most challenging one.

Complexity Classes. In addition to standard complexity classes between P and 2EXPTIME,
we use the class NC, the subclass of P comprising those problems solvable in polylogarithmic
time by a parallel random-access machine using polynomially many processors; see, e.g., [28,
Chapter 15]. To prove membership in PSPACE in a modular way, we will use the following
pattern:

» Lemma 2. Let P, P> be two problems, where Ps is in NC. Suppose there is a reduction
from Py to Py implemented by a PSPACE transducer, i.e., a Turing machine whose work
tape (but not necessarily its output tape) is PSPACE-bounded. Then Py is in PSPACE.

Proof. Note that the output of the transducer is (at most) exponential. Problems in NC
can be decided in polylogarithmic space [4, Theorem 4]. Using standard techniques for
composing space-bounded transducers (see, e.g., [28, Proposition 8.2]), it follows that P; is
in PSPACE. <

1 'We do not explicitly define or use a notion of “co-Biichi automata” to avoid possible confusion about
accepting/rejecting. If one were to do so, one would define a “co-NBA” A like an NBA A, but the
“co-NBA” A would accept a word w € I' if and only if A viewed as an NBA rejects w. Similarly for
“co-UBAs”.
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Matrices. We use finite sets S to index matrices M € R5*S and vectors v € RS. The graph
of a nonnegative matrix M € [0,00)°*¥ is the directed graph (S, E) with E = {(s,t) € Sx S |
M, > 0}. The spectral radius of a matrix is the largest absolute value of its eigenvalues.
The following lemma allows to efficiently compare the spectral radius of a nonnegative matrix
with 1.

» Lemma 3. Given a nonnegative rational matriz M, one can determine in NC whether
p<lorp=1orp>1, where p denotes the spectral radius of M.

Proof. Use the algorithm from [13, Proposition 2.2], but not with Gaussian elimination as sug-
gested there, but by solving the systems of linear equations described in [13, Proposition 2.2]
in NC. The latter is possible in NC [5, Theorem 5]. <

3 Basic Results

In this section we develop the more basic results indicated in Table 1, on finiteness (Section 3.1),
deterministic parity automata (Section 3.2), and Biichi automata (Section 3.3), on the one
hand rounding off the complexity map in Table 1, and on the other hand building the
foundation for more challenging results in the following sections. In particular, Proposition 6
is indirectly used throughout the paper.

3.1 Finiteness

In this section we consider BPs with e-rules allowed, i.e., rules of the form X < . Such
BPs may generate finite trees. We are interested in the almost-sure finiteness problem, also
denoted as P(finite) = 1, i.e., the problem whether the probability that a given BP with
e-rules allowed generates a finite tree is equal to 1. In Proposition 6 below we show that this
problem is in NC. All upper bounds on the complexity of P(-) = 1 problems in this paper
build directly or indirectly on this result.

While the almost-sure finiteness (or “extinction”) problem has often been studied and is
known to be in (strongly) polynomial time [18, 13], its membership in NC is, to the best
of the authors’ knowledge, new. For instance, since linear programming is P-complete, one
cannot use linear programming (as in [18]) to show membership in NC. Nor can one directly
use the strongly polynomial-time algorithm of [13], as it computes, in a sub-procedure, the
set of types X for which there exists a finite X-tree. But the latter problem is P-complete.

For the rest of the section, fix a BP B = (I', —, Prob, X) with e-rules allowed. Define
a directed graph G = (I', E) (i.e., the types of B are the vertices of G) with an edge
(X,Y) € E if and only if Y is a successor of X (i.e., there is a rule X — uY v for some
u,v € I'*). Given a strongly connected component (SCC) S CT of G and X € S, define a BP
B[S, X] = (S, —g, Probg, X) obtained from B by restricting the types to S and deleting on
all right-hand sides of the rules those types not in S. The following lemma is straightforward:

» Lemma 4. A B-tree is infinite with positive probability if and only if there exist an SCC
SCT of G and X € S such that X is reachable from Xy in G and a B[S, X]-tree is infinite
with positive probability.

Let M € QT be the nonnegative I x I'-matrix with Mxy = ZX;% plw|y, where
w

|lwly € Ny is the number of occurrences of Y in w. That is, Mx y is the expected number
of direct Y-successors of the root of a B[X]-tree. By induction, M?, the ith power of M, is
such that (M?)xy is the expected number of Y-nodes that are exactly i levels under the
root of a B[X]-tree. The graph of M is exactly the previously defined graph G.
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Let S C T be an SCC of G. Denote by Mg € Q%% the (square) principal submatrix
obtained from M by restricting it to the rows and columns indexed by elements of S. Let pg
denote the spectral radius of Mg. Call S supercritical if pg > 1. Call S linear if for all rules
X — w with X € S there is exactly one occurrence in w of a type in S. Observe that if S is
linear then Mg is stochastic, i.e., Mgl = T where T is the all-1 vector, i.e., the element of
{1}%. In that case, by the Perron-Frobenius theorem [3, Theorem 2.1.4 (b)], we have ps = 1
and, thus, S is not supercritical.

The following characterization can be proved using [13, Section 3] (which builds on [18,
Section 8.1]):

» Lemma 5. A B-tree is infinite with positive probability if and only if there exist an SCC
SCT of G and X € S such that X is reachable from Xy in G and S is supercritical or
linear.

It follows:

» Proposition 6. The problem P(finite) = 1 is in NC.

3.2 Deterministic Parity Automata

In this section we consider deterministic parity automata (DPAs) on words. In [8, Section 3]
it was shown that the problem P(DPA) = 1 can be decided in polynomial time. We improve
this to membership in NC.

By the following lemma we can check in NC whether a B-tree almost surely has a finite
prefix all whose leaves have types in a given set T. The proof is by reduction to almost-sure
finiteness.

» Lemma 7. Given a BP B = (', —, Prob, Xo) and a set of types T C T, the problem
whether Px,(FT) =1 is in NC.

By combining Lemma 7 with results from [8] we obtain:
» Theorem 8. The problem P(DPA) =1 is in NC.

The hardness result in the following theorem highlights the different complexities of
P(-) =0 and P(-) = 1 problems in this paper.

» Theorem 9. The problem P(DPA) = 0 is P-complete. It is P-hard even for deterministic
Biichi automata with two states, the accepting state being a sink.

3.3 Biichi Automata
» Theorem 10. The problem P(NBA) = 1 is PSPACE-complete.

Proof. PSPACE-hardness is immediate in two different ways. It follows from the PSPACE-
hardness of model checking Markov chains against NBAs [35]. It also follows from the
PSPACE-hardness of model checking transition systems against NBAs. (The latter follows
easily from the PSPACE-hardness of NBA universality [32].) Both model-checking problems
are special cases of P(NBA) = 1.

Towards membership in PSPACE, we use a translation from NBA to DPA [29]. This
translation causes an exponential blow-up, but an inspection of the construction [29, Sec-
tion 3.2] reveals that it can be computed by a PSPACE transducer. By Theorem 8 the
problem P(DPA) =1 is in NC. By Lemma 2 it follows that P(NBA) =1 is in PSPACE. <«
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» Theorem 11. The problem P(NBA) = 0 is EXPTIME-complete. It is EXPTIME-hard
even for NBAs whose only accepting state is a sink.

Proof. Towards membership in EXPTIME, an NBA can be translated, in exponential time,
to a DPA of exponential size; see, e.g., [29]. Since P(DPA) = 0 is in P by Theorem 9, it
follows that P(NBA) = 0 is in EXPTIME.

Concerning EXPTIME-hardness, we adapt the proof (in the online appendix) of [19,
Theorem 17] on model checking recursive Markov chains against NBAs. The details are
in [24]. <

4 Co-Buchi Automata

In this section we consider the problem P(coNBA) = 1, which asks, given a BP B and a Biichi
automaton A, whether 15 almost surely generates a tree whose branches are all rejected by A;
i.e., whether P (A rejects) = 1. Dually, one might ask whether the probability is positive
that a B-tree has a branch accepted by A. Intuitively, we view the Biichi automaton A as
specifying “bad” branches, and we would like the tree almost surely not to have any bad
branches.

This problem is in PSPACE, which can be shown via a translation to DPAs, as in The-
orem 10. However, with a view on the following sections, in particular on LTL specifications,
we pursue a different approach to the problem P(coNBA) = 1. In this section we lay the
groundwork for arbitrary Biichi automata A. By building on these results, we will show in
the next section that if A is unambiguous then the problem is in NC, which will allow us to
derive our headline result, namely that P(LTL) = 1 is in PSPACE.

Let B = (I',—, Prob, Xy) be a BP and A = (Q,T', 9, Qo, F) a (not necessarily unambigu-
ous) Biichi automaton.

Define a Biichi automaton, A x B, by Ax B := (Q xT,T,d ax5, Qo X {Xo}, F x '), where

8(q1,X1) x {Xo} if X5 is a successor of X;

) , X1), X2) =
axs((q1, X1), X2) {@ otherwise.

The remainder of the section is organized as follows. In Section 4.1 we show that the
problem P(coNBA) = 1 reduces to the analysis of certain SCCs within A x B. In Section 4.2
we introduce a key lemma, Lemma 13, which allows us to “forget” about the distinction
between accepting and non-accepting states: the lemma reduces P(coNBA) =1 to a pure
reachability problem in an exponential-sized BP, Bge;. This leads us to prove PSPACE-
completeness of P(coNBA) = 1, but more importantly, Lemma 13 plays a key role in the rest
of the paper. We prove it in [24].

4.1 The Automaton A[f, X¢]

For any (f,Xy) € F x T on a cycle of the transition graph of A x B, define the Biichi
automaton

'A[f7 Xf] = ({60} U Q[f’ Xf]’ F75[f’ Xf]’ {60}’ {(f’ Xf)})

as the Biichi automaton obtained from A x B by

1. making (f, Xy) the only accepting state,

2. restricting the set of states, Q[f, X;] € Q x T, to those (¢, X) that, in the transition
graph of A x B, are reachable from (f, Xy) and can reach (f, Xy), i.e., those (¢, X) in
the SCC containing (f, X),
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3. restricting the transition function 6[f, X | accordingly, i.e.,

5[fa Xf]((QaX)vy) = 5.A><B((q7X)aY) N Q[fa Xf] ;

4. making gg the only initial state, and
5. setting 0[f, X¢](qo, Xr) := {(f, X)} and 0[f, X¢](qo, X) := 0 for all X € T\ {X}.

The following lemma follows from the pigeonhole principle and basic probability argu-
ments:

» Lemma 12. The probability that some branch of a B-tree is accepted by A is positive if and
only if there are go € Qo and f € F and Xy € T' such that (f, Xy) is reachable from (qo, Xo)
in the transition graph of A x B and the probability that some branch of a B[Xy|-tree is
accepted by A[f, X¢] is positive.

For the rest of the section let (f, X) € F' x I" be on a cycle of the transition graph of
A x B.

4.2 The Determinization A, and the BP B,
Let

Adet = (2{60}UQ[f7X'f]a F7 5det7 {q0}7 Q{QU}UQU’XH \ {@})

be the determinization of A[f, X ] obtained by the standard subset construction. Which
states are accepting will not actually be relevant. Note that every state reachable via a
nonempty path from {go} is of the form P x {X} with P C @ and X €T

Define a BP Bg.; based on Ay as

Baer == (I, =, Prob’ . {(f, X¢)}).

where the set of types IV C 2QUf: X1l is the set of those states in Age; that are reachable
(in Aget) from {qo} via a nonempty path (recall that they are of the form P x {X} with
PCQand X €T'), and

X' D 0get (X, X1) - 0ger (X', Xi)
forall X’ = P x {X} €IV with P # () and all X L x, <+« Xp, and 0 <47 . Here is the key
lemma of this section:

» Lemma 13. The following statements are equivalent:
(i) The probability that some branch of a B[Xy|-tree is accepted by A[f, X¢] is positive.
(ii) The probability that some branch of a Bgei-tree does not have any nodes of type 0 is
positive.
We prove Lemma 13 in [24]. It will be used in the proof of Theorem 14 below; but more
importantly, Lemma 13 is the foundation of Section 5.

Given that Lemma 13 reflects the key insight of this section, let us comment further.

Considering that condition (ii) does not mention a notion of acceptance, one might have two

concerns at this point:

(a) Condition (ii) does not obviously imply that with positive probability there is even a
branch with infinitely many nodes of types containing (f, Xy).

(b) Even if with positive probability there is such a branch, it is not obvious that such

branches would necessarily correspond to branches of B[X ] that are accepted by A[f, X].

6:11
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Even for the special case of Markov chains (i.e., every tree has only a single branch),
Lemma 13 is not at all obvious, and both concerns (a) and (b) apply. Indeed, for Markov
chains, Courcoubetis and Yannakakis prove a statement related to Lemma 13, namely [11,
Proposition 4.1.4], with a proof related to ours and dealing explicitly with concern (b) above.
For the special case of transition systems (i.e., the BP generates exactly one tree), Lemma 13
is simple though: consider the branch that follows a cycle around (f, X¢). For the general
case, we need a result on BPs from [8], dealing with concern (a) above. The high-level
principle behind the proof of Lemma 13 is often used in the analysis of Markov chains: if it
is possible, infinitely often, to reach a state with a probability bounded away from 0, then
this state is almost surely reached infinitely often. See [24] for a full proof of Lemma 13.

We can now derive a PSPACE procedure for the problem P(coNBA) = 1 without resorting
to DPAs:

» Theorem 14. The problem P(coNBA) =1 is PSPACE-complete.
Theorem 11 (for NBAs) has a coNBA-analogue:

» Theorem 15. The problem P(coNBA) = 0 is EXPTIME-complete. It is EXPTIME-hard
even for NBAs all whose states are accepting.

5 Co-Unambiguous Biichi Automata

In this section we build on the previous section, in particular on Lemma 13, to derive our
main technical result: given a BP B and an unambiguous Biichi automaton (UBA) A, one
can decide in NC whether B almost surely generates a tree all whose branches are rejected
by A:

» Proposition 16. The problem P(coUBA) =1 is in NC.

The rest of the section is devoted to the proof of this theorem. Fix a BP B and a UBA A.
Since NC is closed under complement, we can focus on the problem whether the probability is
positive that a B-tree has some branch accepted by A. We use Lemma 12. Since reachability
in a graph is in NL and, hence, in NC, it suffices to decide in NC whether the probability
that some branch of a B[X f|-tree is accepted by A[f, X] is positive. By Lemma 13 it suffices
to decide in NC whether the probability that some branch of a B,.;-tree does not have any
nodes of type @ is positive. The challenge is that Bge; may be exponentially larger than A,
so we need to exploit the unambiguousness of A and the regular structure it gives to Bge;-

Let B/, be the BP (with e-rules allowed) obtained from Bg.; by removing the type
and eliminating all occurrences of type () from all right-hand sides. The probability that a
Bei-tree has an infinite branch of non-) nodes is equal to the probability that a B/, ,-tree is
infinite. Hence, it remains to show that one can decide in NC whether the probability that a
B!}, ;-tree is infinite is positive.

Define a matrix M e QQU-Xs1xQlf-Xs] whose rows and columns are indexed with the
non-go states of A[f, Xy|:

. Y .
D opluly if (¢, X) = (nY) in A[f, X/]
Mg.x),ry) = x5
0 otherwise,

where |uly € Np is the number of occurrences of Y in w. (Think of M, x) (ry) as the
expected number of (r, Y)-“successors” of (¢, X).) The graph of M is equal to the transition
graph of A[f, X ] (excluding go), which is strongly connected.
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Say that A[f, Xf] has proper branching if there exist (¢,Y") 2, (r1,Z1) and (q,Y) EZN

(ro,Zs) in A[f, Xs] and a rule YV & u1Z1usZousz in B with uy,us,uz € I'*. Now we can
state the key lemma:

» Lemma 17. Let p be the spectral radius of M. The probability that a Blj,,-tree is infinite
is positive if and only if either p > 1 or p =1 and A[f, Xf] does not have proper branching.

Observe the similarity between Lemmas 5 and 17. In fact, the proof of Lemma 17,
given below, is based on Lemma 5. Lemma 17 shows that properties of A[f, X;] and M
(which are polynomial-sized objects) determine a property of the exponential-sized BP B_,.
Unambiguousness of A[f, X] is crucial for that connection.

Given that Lemma 17 reflects the key insight of this section (if not of this paper), let
us comment further. Suppose A[f, X]| has two outgoing transitions in a state (¢,Y’), say
(¢,Y) N (r1,71) and (q,Y) 2, (r9, Z). This branching could be “proper branching” as
defined before Lemma 17, or the original UBA A could be nondeterministic when reading Y
in g and have transitions ¢ X, r1 and ¢ X, ro. Either type of branching causes non-0 entries
in the matrix M and, intuitively, increases its spectral radius p. Lemma 17 tells us that
the probability that a B/ ,-tree is infinite is governed by the combined effect on p of both
types of branching: if p > 1 then a B/ -tree is infinite with positive probability; only in the
borderline case, p = 1, the type of branching matters. Again, this characterization is only
correct if the nondeterminism in A does not cause ambiguousness.

Let us consider what Lemma 17 states for the special case of Markov chains. In that case,
clearly there is no proper branching. One can show, using unambiguousness, that for Markov
chains the spectral radius p of the matrix M is at most 1. Hence, Lemma 17 states for
Markov chains that the probability that a B/ ,-tree (consisting of a single branch) is infinite
is positive if and only if p = 1. Indeed, a related statement can be found in [2, Lemma 6].

To finish the proof of Proposition 16 it suffices to show that we can check the conditions
of Lemma 17 in NC. Indeed, for comparing the spectral radius with 1, we employ Lemma 3.
One can check for proper branching in logarithmic space, hence in NC. This completes the
proof of Proposition 16.

6 LTL

With Proposition 16 from the previous section, we can now show our headline result:
» Theorem 18. The problem P(LTL) = 1 is PSPACE-complete.

Proof. PSPACE-hardness is immediate in two different ways. It follows both from the
PSPACE-hardness of model checking Markov chains against LTL and from the PSPACE-
hardness of model checking transition systems against LTL [31]. Both model-checking
problems are special cases of P(LTL) = 1.

Towards membership in PSPACE, there is a classical PSPACE procedure that translates
an LTL formula into an (exponential-sized) Biichi automaton [37]. As noted by several authors
(e.g., [12, 7]), this procedure can easily be adapted to ensure that the Biichi automaton be a
UBA. By applying this translation to the negation —¢ of the input formula ¢, we obtain
a UBA that rejects exactly those words that satisfy ¢. By Proposition 16 the problem
P(coUBA) =1 is in NC. By Lemma 2 it follows that P(LTL) = 1 is in PSPACE. <

Finally we show the following result, exhibiting a big complexity gap between the problems
P(LTL) = 1 and P(LTL) = 0.

6:13
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» Theorem 19. The problem P(LTL) = 0 is 2EXPTIME-complete.

Proof. For membership in 2EXPTIME, we use again the classical procedure that translates
an LTL formula into an exponential-sized Biichi automaton [37] and then invoke Theorem 11.

For 2EXPTIME-hardness we adapt the reduction from [11, Theorem 3.2.1] for MDPs.
The details are in [24]. <

7 Conclusions

We have devised a PSPACE procedure for P(LTL) = 1, i.e., qualitative LTL model checking
of BPs. The best previously known procedure ran in 2EXPTIME [8]. Since BPs naturally
generalize both transition systems and Markov chains (for both of which LTL model checking
is PSPACE-complete), one might view our model-checking algorithm as an optimal general
procedure. The same holds for NBA-specifications instead of LTL.

The main technical ingredients have been the automata-theoretic approach and the
algorithmic analysis of UBAs, nonnegative matrices, and finiteness of BPs. Our proofs were
inspired by the observation that the spectral radii of certain nonnegative matrices are central
to model checking Markov chains against UBAs, and also determine fundamental properties
of BPs. Very loosely speaking, when model checking Markov chains against UBAs, the
spectral radius measures the amount of nondeterministic branching in the UBA, whereas
when analyzing BPs, the spectral radius measures the amount of tree branching. The “general
case”, i.e., model checking BPs, features both kinds of branching. Serendipitously, an analysis
of spectral radii still leads, as we have seen, to optimal algorithms.

We have also established the complexities of related problems, partially as a tool for the
mentioned LTL and NBA problems and partially to map out the landscape. We have shown
that the P(-) = 0 variants are more complex than their P(-) = 1 counterparts. An intuitive
explanation of this phenomenon is that for an instance of an P(-) = 1 problems to be negative,
tree branching and probabilistic branching “work together” to falsify the specification on
some branch. In contrast, for P(-) = 0 problems, tree branching and probabilistic branching
are “adversaries”, like in MDPs. Indeed, for lower bounds on P(-) = 0 problems we have
encoded alternation in various forms.

One might ask about the complexity of P(UBA) = 1. Indeed, in trying to solve P(LTL) =1
efficiently, the authors set out to solve P(UBA) = 1 efficiently (perhaps in P or even NC),
with the PSPACE transduction from LTL to UBA in mind. However, the complexity of UBA
universality is an open problem [30]; only membership in PSPACE is known. So even for the

fixed transition system with a <& ab and b < ab the problem P(UBA) = 1 cannot be placed
in P without improving the complexity of UBA universality. A PSPACE-hardness proof of
P(UBA) = 1 might have to make use of both types of branching in BPs, as P(UBA) =1 is
in NC for Markov chains [2].

Model checking BPs quantitatively, i.e., computing the satisfaction probability, comparing
it with a threshold, or approximating it, is left for future work. Exact versions of these
problems are computationally complex, as they are at least as hard as the corresponding
P(-) = 0 problem. The paper [8] describes, for DPAs, nonlinear equation systems whose least
nonnegative solution characterizes the satisfaction probabilities. Newton’s method is efficient
for approximating the solution of such equation systems; see [33, 15].
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