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A B S T R A C T 

Galaxy cluster masses, rich with cosmological information, can be estimated from internal dark matter (DM) velocity dispersions, 
which in turn can be observationally inferred from satellite galaxy v elocities. Howev er, galaxies are biased tracers of the DM, 
and the bias can vary o v er host halo and galaxy properties as well as time. We precisely calibrate the velocity bias, b v – defined 

as the ratio of galaxy and DM velocity dispersions – as a function of redshift, host halo mass, and galaxy stellar mass threshold 

( M �, sat ), for massive haloes ( M 200c > 10 

13 . 5 M �) from five cosmological simulations: IllustrisTNG, Magneticum, Bahamas + 

Macsis, The Three Hundred Project, and MultiDark Planck-2. We first compare scaling relations for galaxy and DM velocity 

dispersion across simulations; the former is estimated using a new ensemble velocity likelihood method that is unbiased for low 

galaxy counts per halo, while the latter uses a local linear regression. The simulations show consistent trends of b v increasing with 

M 200c and decreasing with redshift and M �, sat . The ensemble-estimated theoretical uncertainty in b v is 2–3 per cent, but becomes 
percent-level when considering only the three highest resolution simulations. We update the mass–richness normalization for an 

SDSS redMaPPer cluster sample, and find our impro v ed b v estimates reduce the normalization uncertainty from 22 to 8 per cent, 
demonstrating that dynamical mass estimation is competitive with weak lensing mass estimation. We discuss necessary steps 
for further improving this precision. Our estimates for b v ( M 200c , M �, sat , z) are made publicly available. 

Key words: methods: statistical – galaxies: haloes – galaxies: kinematics and dynamics. 
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 I N T RO D U C T I O N  

alaxy clusters, and their associated massive dark matter (DM)
aloes, contain rich information on the composition and evolutionary
istory of our Universe. This information can be extracted by
onnecting the observable properties of clusters to the halo mass
unction (HMF) – a number density of haloes as a function of halo
ass – which then translates into constraints on cosmological pa-

ameters. A key component of this inference process is constructing
 probabilistic mapping function between cluster observables and
 E-mail: dhayaa@uchicago.edu 

b  

k  

t  

Pub
he mass of the underlying massive halo. Observable properties with
stablished and understood connections are commonly referred to as
alo mass proxies, and there exist many across multiple wavelengths
see Allen, Evrard & Mantz 2011 ; Pratt et al. 2019 , for re vie ws).
n this work, we focus on connecting satellite galaxy kinematics,
easured via spectroscopy, to the host halo mass. 
The collisionless DM velocity field within a halo is driven by the

alo’s gravitational potential. When virial equilibrium is satisfied,
eaning the average kinetic energy is half the magnitude of the

otential energy, an estimate for the total halo mass can be obtained
y inferring the average kinetic energy from the satellite galaxy
inematics of a halo. Zwicky ( 1937 ) famously used this approach
o estimate a halo mass and argue for the existence of dark matter.
© 2021 The Author(s) 
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ote that this technique of halo mass estimation implicitly assumes 
hat the satellite galaxies fairly trace the DM velocity field. Galaxies, 
o we ver, are kno wn to be biased tracers of the underlying DM density
eld (Kaiser 1984 ; Davis et al. 1985 ; Bardeen et al. 1986 ) and of

he DM velocity field, as shown by the many works that we detail
elow. The bias pertaining to the latter case is commonly denoted 
he velocity bias, b v , and the focus of this work is the mean b v of the
alo population as a function of halo and galaxy properties. 
The velocity bias is linked closely to the physics of galaxy 

ormation, and in particular to when galaxies fall into a DM halo and
ecome subject to dynamical friction, tidal disruption, and other non- 
inear effects (Carlberg, Couchman & Thomas 1990 ; Carlberg 1991 ; 
olafrancesco, Antonuccio-Delogu & Del Popolo 1995 ). Notably, 

he uncertainty in this bias is the dominant systematic uncertainty in 
ynamical mass estimation techniques (henceforth F16 ; Farahi et al. 
016 ; Sif ́on et al. 2016 ); the study of F16 showed that the precision
n halo mass is limited to ≈25 per cent due to poor knowledge of b v .

Previous works have studied the qualitative and/or quantitive 
rends of the satellite galaxy velocity bias as a function of galaxy
roperties (such as stellar mass, galaxy luminosity, and redshift) 
sing simulations (Biviano et al. 2006 ; Lau, Nagai & Kravtsov 2010 ;
unari et al. 2013 ; Old, Gray & Pearce 2013 ; Wu et al. 2013 ;

e et al. 2017 ; Armitage et al. 2018 ; Ferragamo et al. 2020 ) as
ell as observational data (Biviano et al. 1992 ; Stein 1997 ; Adami,
iviano & Mazure 1998 ; Adami et al. 2000 ; Girardi et al. 2003 ;
oto 2005 ; Barsanti et al. 2016 ; Bayliss et al. 2017 ; Nascimento,
ibeiro & Lopes 2017 ). The results of these works are all consistent
ith brighter galaxies being kinematically cooler – and thus having 
 lower velocity bias – than fainter galaxies. 

Ho we ver, Guo et al. ( 2015c , hereafter G15 ), who used measure-
ents of the small-scale redshift-space distortions (RSD) to infer a 

elocity bias as a function of galaxy luminosity, find that brighter 
alaxies have a higher (not lower) velocity bias than fainter galaxies. 
heir estimates are thus in tension with the aforementioned studies. 
 or e xample, Bayliss et al. ( 2017 ) use observ ed spectra from nearly
000 satellite galaxies in 89 clusters identified via the Sunyaev–
el’dovich effect, and find that the velocity dispersion – which 

s the second moment of a velocity field – for brighter galaxies 
s 11 ± 4 percent lower than the velocity dispersion for the full
alaxy population. It is speculated that the discrepancy between G15 
nd the other works arises because G15 uses all galaxies in the
urv e y volume, and not just satellite galaxies hosted in massive
aloes (Ye et al. 2017 , see conclusions). Another difference is
hat G15 use both the one-halo and two-halo components of the 
elocity fields in their RSD analysis, whereas all the cluster-focused 
tudies mentioned abo v e limit themselves to the one-halo component 
lone. 

Given the discrepancy in the G15 result, we require an alternative 
alibration for the satellite galaxy velocity bias as a function of
ele v ant galaxy/halo properties. The other observational works noted 
bo v e hav e studied the relative trends of the velocity bias with
alaxy luminosity but did not estimate the actual values of b v . Some
imulation studies have estimated both b v and its dependence on 
alaxy luminosity, but using alternative methodologies to that used 
n our work: Lau et al. ( 2010 ), Wu et al. ( 2013 ) selected the top
 galaxies per halo according to M �, sat and studied the response of

he velocity bias to varying N , and Ferragamo et al. ( 2020 ) selected
he top N per cent of all satellite galaxies in cluster-scale haloes. 

hile these works have shed light on the velocity bias of galaxies
ithin host haloes, they do not provide a function or mapping for

he velocity bias given a galaxy stellar mass threshold or galaxy 
agnitude threshold. 
The two simulation-based works that have estimated this mapping 
Ye et al. 2017 ; Armitage et al. 2018 ) are limited in either using a
mall sample size of only the most massive haloes, or using a single
imulation model. The former leads to larger statistical uncertainties 
n the bias estimates, in addition to being limited to a narrow mass
ange, whereas the latter cannot quantify the theoretical uncertainty 
n the velocity bias, i.e. the variation in the velocity bias due to
ifferent astrophysical and numerical treatments. 
In this work, we use an ensemble of simulations to calibrate the

atellite galaxy velocity bias, including the rele v ant theoretical un-
ertainty, as a function of the galaxy stellar mass threshold, host halo
ass, and redshift. We extend on the previous body of work in three

ifferent directions: (i) We propose and validate a new likelihood- 
ased estimator for the scaling parameters (normalization, slope, 
nd population intrinsic scatter) of the galaxy velocity dispersion 
ith halo mass in the regime of low-galaxy counts per halo, (ii)
e perform a convergence study of the velocity bias, as well as

alaxy and DM velocity dispersions, across a suite of cosmological, 
ydrodynamics simulations, and also an N -body simulation with 
alaxies painted on using a semianalytical model, and; (iii) Finally, 
sing predictions from the ensemble of simulations, we construct a 
heoretical prior on the velocity bias that incorporates the modelling 
ncertainty associated with varying numerical and galaxy formation 
reatments. We then use this prior to refine the mean halo mass
stimates previously derived in F16 for SDSS redMaPPer galaxy 
lusters. 

A part of our convergence study focuses on the mass-dependent 
opulation statistics – mean and intrinsic scatter – of DM velocity 
ispersion, and is thus a hydrodynamical counterpart to the original 
tudy of Evrard et al. ( 2008 , henceforth E08 ), who used a large
nsemble of mostly N -body simulations to set precise constraints on
hese quantities. Note also that we previously employed a subset of
he simulations used in this work to perform similar convergence 
ests of mass-dependent population statistics for central and satellite 
alaxy properties of cluster-scale haloes; Anbajagane et al. ( 2020 )
nd that the distribution of residuals about the property mean 
elations share similar functional forms, and that the mean relations 
hemselv es hav e moderate offsets between simulations. 

This paper is organized as follows: in Section 2 we describe our
imulation ensemble, and in Section 3 we define the rele v ant halo
roperties and detail the scaling relation estimators, including the 
forementioned ensemble velocity likelihood method. Our results 
or the galaxy/DM velocity dispersion and the velocity bias are 
resented in Section 4, while the impact of our work for dynamical
ass estimation is both demonstrated and discussed in Section 5. 
inally, we conclude in Section 6. Our appendices contain results 
n resolution effects (Appendix A), additional validation tests of the 
ikelihood model (Appendix B), and the impact of radial aperture 
hoices on the velocity bias (Appendix C). 

Throughout this work we use a spherical o v erdensity definition of
alo mass, M � 

= ρ� 

[ 4 π3 R 

3 
� 

], with contrast value, ρ� 

= 200 ρc ( z),
here ρc ( z) is the critical density at redshift z. 

 DATA  

e use samples of haloes realized in the following five simulations:
i) ILLUSTRISTNG , (ii) MAGNETICUM PATHFINDER , (iii) a superset 
f BAHAMAS and MACSIS , (iv) MULTIDARK PLANCK 2 , and (v) THE

HREE HUNDRED PROJECT . Key properties of the simulations are 
ummarized in Table 1 , and a brief description of each follows. The
ost halo and satellite galaxy samples of each simulation are also
ompared in Fig. 1 . 
MNRAS 510, 2980–2997 (2022) 
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Table 1. Simulation characteristics for the z = 0 halo samples. Table adapted from Anbajagane et al. ( 2020 ) with modifications. Note that for MGTM alone 
we do not have a z = 0 data set and thus characterize the z = 0.06 output instead. From left to right, we show: (i) simulation acronym as used in this work, 
(ii) comoving box size, (iii) cosmic matter density parameter at the present epoch, (iv) Hubble constant, (v) force softening scale, (vi) initial mass of stellar 
particles, (vii) mass of DM particles, (viii) number of haloes with M 200c > 10 13 . 5 M �, (ix) number of satellite galaxies within r < R 200c of host haloes with 
M 200c > 10 13 . 5 M � and abo v e the minimum stellar mass threshold used for each simulation, and (x) empirical sources used for tuning sub-grid parameters of 
each simulation, which consist of the Galaxy Stellar Mass Function (GSMF), supermassive black hole scaling (SMBH), metallicity scaling (metals), and cluster 
hot gas mass fraction < R 500 c (CL f gas ). All simulations assume a flat � CDM cosmology, with �� 

= 1 − �m . See text for references. MDPL2 is an N -body, 
DMO simulation, and does not have stellar particles, and The300 consists of zoom-in (re)simulations of the 324 most massive haloes drawn from MDPL2. 

Simulation L [Mpc] �m H 0 [ km s −1 

Mpc ] εz= 0 
DM 

[kpc] m � [ M �] m DM 

[ M �] N haloes N sat, tot Calibration 

TNG300 303 0 .3089 67 .74 1 .48 1.1 × 10 7 5.9 × 10 7 1146 40436 See Pillepich et al. ( 2018a ) 
MGTM 500 0 .2726 70 .40 5 .33 5.0 × 10 7 9.8 × 10 8 4207 90255 SMBH, Metals, CL f gas 

BM 596 0 .3175 67 .11 5 .96 1.2 × 10 9 6.6 × 10 9 9430 132334 GSMF, CL f gas 

MDPL2 1475 0 .3071 67 .77 7 .4 – 2.2 × 10 9 157051 2339642 See Behroozi et al. ( 2019 ) 
The300 – 0 .3071 67 .77 9 .6 3.5 × 10 8 1.9 × 10 9 3180 156662 See Cui et al. ( 2018 ) 
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The ILLUSTRISTNG project (Marinacci et al. 2018 ; Naiman et al.
018 ; Nelson et al. 2018 ; Springel et al. 2018 ; Pillepich et al.
018b ) is a follow up to the ILLUSTRIS project (Vogelsberger et al.
014 ). It is run with the moving mesh code AREPO (Springel
010 ), and includes a full magnetohydrodynamics treatment with
alaxy formation models, as detailed in Weinberger et al. ( 2017 )
nd Pillepich et al. ( 2018a ). We use the highest resolution run from
he TNG300 suite for our main analysis, but also utilize the lower
esolution runs in an appendix to perform numerical resolution tests.
aloes are identified via a friends-of-friends (FoF) algorithm, and

ubhaloes via the SUBFIND algorithm (Springel et al. 2001 ; Dolag
t al. 2009 ) which applies a binding energy condition to link particles
o substructure. Our galaxy catalogues and host halo properties are
btained/computed from the public data release 1 (Nelson et al. 2019 ).
MAGNETICUM PATHFINDER (MGTM; Hirschmann et al. 2014 ) is a

uite of magnetohydrodynamics simulations run using the smoothed
article hydrodynamics (SPH) solver GADGET-3 (last described
n Springel 2005 ). Haloes are identified using a FoF algorithm, and
ubhaloes are identified using SUBFIND . We make use of the box
 h run for this work, and the corresponding galaxy catalogues are
btained from the public data base 2 (Ragagnin et al. 2017 ). Note that
e do not have the z = 0 catalogue for this simulation, and instead
se the z = 0.06 catalogue in its place. Results for other redshifts
se the correct catalogues. MGTM also has the most different
osmology to all other simulations in the ensemble (see Table 1 );
t is based on a WMAP7 cosmology (Komatsu et al. 2011 ) whereas
ll other runs have used Planck cosmologies (Planck Collaboration
VI XIII 2014 , 2016 ). 
BAHAMAS (McCarthy et al. 2017 ) and its zoom-in companion

ACSIS (Barnes et al. 2017 ) – which we collectively denote with the
cronym ‘BM’ – are hydrodynamics simulations run using a version
f GADGET-3 developed independently of the MGTM version. The
ACSIS ensemble contains 390 haloes, with each halo first drawn

rom a parent 3 . 2 Gpc N -body, dark-matter only (DMO) simulation
nd then re-simulated in individual, separate volumes with a full
ydrodynamics prescription aligned with the BAHAMAS treatment.
ACSIS extends the high-mass end of BM sample to M 200c ≈ 4 ×
0 15 M � at z = 0. Haloes are once again identified via the FoF
lgorithm and substructure is identified via SUBFIND . 

MULTIDARK PLANCK 2 (MDPL2) is part of the MultiDark suite
Klypin et al. 2016 ) and is an N -body, DMO simulation run using
he L-GADGET-2 solver – a memory-efficient variant of GADGET
ptimized for simulations with a large number of particles. Haloes
 https://www.tng-pr oject.or g/
 ht tp://magnet icum.org/dat a.ht ml 

3

4

NRAS 510, 2980–2997 (2022) 
nd subhaloes were identified using the ROCKSTAR halo finder
Behroozi, Wechsler & Wu 2013 ), which identifies structure in the
ull 6D position-velocity phase-space as opposed to the 3D position-
pace used by the other halo/subhalo finders mentioned in this work.

hile MDPL2 is a DMO simulation with no galaxies (and only
ubhaloes), galaxies can be ‘painted’ on to the subhaloes using the
ssembly histories of the latter. Galaxy catalogues for MDPL2 have
een generated using a variety of different semianalytical models
SAMs) of which we use public catalogs 3 from the UNIVERSEMA-
HINE (UM) prescription (Behroozi et al. 2019 ). The host halo
uantities are obtained from the public data base for MDPL2 4 (Riebe
t al. 2011 ). UM , like many other SAMs, artificially adds so-called
orphan’ galaxies – defined as galaxies whose host subhaloes have
een tidally destroyed – back to the catalogue so that the two-
oint galaxy correlation function in the simulated catalogue matches
bservational constraints. For these artificially added galaxies, which
eside preferentially near the halo core, UM can only approximately
volve their velocities (see appendix B of Behroozi et al. 2019 ), and
o the velocity statistics of this orphan galaxy population can be
iscrepant from the ‘truth’. 
THE THREE HUNDRED PROJECT (The300; Cui et al. 2018 ) is a

et of 324 massive haloes that were first identified in the MDPL2
imulation, and then re-simulated within spheres of radius 22
comoving) Mpc with a full hydrodynamics prescription (Rasia
t al. 2015 ) using the GADGET-X SPH solver (Beck et al. 2016 ).
aloes and subhaloes are identified with Amiga’s Halo Finder ( AHF ;
nollmann & Knebe 2009 ), which uses an adaptive mesh refinement
rid to represent the density field/contours and also has a binding
nergy criterion similar to that of SUBFIND . While The300 is mass-
omplete only abo v e M 200c ≈ 10 15 M � at z = 0, it still resolves many
aloes at masses below this mass scale. We continue using all haloes
bo v e M 200c > 10 13 . 5 M � and demonstrate in Appendix B1 that the
election effects in the mass-incomplete part of the halo sample do
ot impact the quantities of interest to us. 

.1 Study limitations 

n the strongly non-linear regime of � CDM structure formation,
erification studies of the statistics from different simulations is an
mportant way to assess modelling uncertainties. While our ensemble
f simulations is e xtensiv e, with a variety of astrophysical treatments
nd a moderate range in numerical resolution, we note that in all cases
he collisionless dark matter component was evolved using some
 https:// www.peterbehroozi.com/ data.html 
 https:// www.cosmosim.org/ 

https://www.tng-project.org/
http://magneticum.org/data.html
https://www.peterbehroozi.com/data.html
https://www.cosmosim.org/
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ersion of GADGET . ILLUSTRISTNG may seem to be an exception, but
ts solver, AREPO , inherits its N -body methodology from GADGET
s well. Previous results have shown that solutions from different 
 -body, gravity-only solvers for the matter power spectrum can 
iffer on their estimates of the small scales ( k > 1 Mpc −1 ) by more
han 3 per cent (see fig. 1 of Schneider et al. 2016 ). Thus, our ideal
imulation ensemble would also include cosmological hydrodynam- 
cs simulations based on other N -body solvers, such as RAMSES
Teyssier 2002 ) and PKDGRAV (last described in Stadel 2001 ), but
e are not aware of any such simulations that also contain a large

nough population of cluster-scale haloes to be used in this work. 
Mansfield & Avestruz ( 2021 ) also show that the scaling relations

f internal DM halo properties realized by different suites of N -
ody simulations do not al w ays converge to the same result – even
hose that share the same N -body solver, but differ in their choice of
ontrol parameters such as force softening scales and DM particle 
ass – with the level of non-convergence varying according to halo 

roperty. We stress that the cluster-scale haloes studied in this work 
re resolved by at least N > 10 5 particles, where Mansfield &
vestruz ( 2021 ) find that velocity-based properties of interest are 

trongly converged. Further evidence of this comes from the nIFTy 
omparison project, who simulated the same cluster-scale halo using 
ifferent codes and found that the bulk halo properties – such as
elocity dispersion and shapes – agree at the per cent-level across 
odes (Sembolini et al. 2016a , b ). Note that while we also study
alaxies resolved by as few as N ∼ 100 DM particles, we do not focus
n the internal DM distributions and dynamics of these structures (the
rimary target for such non-convergence issues) and only concern 
urselves with their bulk kinematic properties. 
How haloes are identified is also a rele v ant factor. Throughout

ur work we rely on catalogues that were constructed by running 
alo/subhalo finders on a simulation’s particle data set. Differences 
etween the finders can impact the identification of objects in the 
imulations and affect the derived population statistics. Previous 
omparison studies of commonly used finders have found some 
ignificant differences (Knebe et al. 2011 ; Onions et al. 2012 ). The
imulations in our work use a variety of different finders – three sim-
lations use SUBFIND , one uses AHF and one uses ROCKSTAR . Thus,
ome part of the simulation-to-simulation variance in population 
tatistics will also come from differences across the finders. 

 M E T H O D S  

e emplo y tw o different methods to measure the virial (or velocity
ispersion) scaling relation for DM and galaxies, respectively. The 
M virial scaling (Section 3.1) is obtained by first measuring the 
M velocity dispersion for individual haloes and then summarizing 

he mass-dependent statistics of the population using KLLR , a 
ocal linear regression method described further in Section 3.1.1. 
or the galaxy virial scaling (Section 3.2), on the other hand, the
parseness of the satellite galaxy counts moti v ates us to employ an
nsemble likelihood estimator, described further in Section 3.2.1, 
hat circumvents the need to measure the galaxy velocity dispersion 
or individual haloes. In Section 3.3, we sub-sample DM particles 
nd verify that the likelihood method returns scaling parameters 
onsistent with the KLLR estimates. The reader wishing to skip the 
echnical details of the measurement can go directly to the definition 
f velocity bias in Section 3.4. 

.1 Dark matter virial scaling 

y convention (Yahil & Vidal 1977 ), the DM velocity dispersion,
DM 

, of the host halo is defined as the average of the dispersion
long the three Cartesian components 

2 
DM 

= 

1 

3( N part − 1) 

N part ∑ 

i= 1 

3 ∑ 

j= 1 

( v ij − 〈 v j 〉 ) 2 . (1) 

ere, N part is the number of DM particles within R 200c of the
alo centre, v ij is the velocity of particle i along the j th Cartesian
omponent, and 〈 v j 〉 is the mean velocity of all N part DM particles
long that same component. All velocities here are peculiar velocities 
n the proper frame. 

Since the haloes are well-resolved, containing N � 10 4 DM 

articles, we measure the DM velocity dispersion for each individual 
alo and use a localized linear regression approach, described 
urther below, to infer the σ DM 

−M 200c scaling relation. The study 
f E08 showed that scaling DM velocity dispersion with h ( z) M 200c 

instead of M 200c ) leads to a more universal relation across different
osmologies and redshifts, and so we employ this ef fecti ve mass as
ur independent variable. Here, h ( z) = H ( z)/100 is the dimensionless
ubble parameter. The utility of this h ( z) factor in capturing the

osmological dependence of the DM virial relation was recently 
onfirmed by Singh et al. ( 2020 , see their section 4.6). 

.1.1 Kernel-Localized Linear Regression ( KLLR ) 

n this work, we employ KLLR 

5 (Farahi, Anbajagane & Evrard, 
n preparation; Farahi et al. 2018a ), a localized linear regression
ethod, to derive the scale-sensitive estimates of the mean, slope, 

nd intrinsic scatter of the DM virial relation. The KLLR method is
articularly useful for estimating scaling relations in simulations that 
nclude baryonic processes. Recently, Anbajagane, Evrard & Farahi 
 2022 ) used KLLR to study the population statistics of key DM halo
roperties – including σ DM 

– across six decades in halo mass and 
howed that all relations have clear mass-dependent features that 
riginate from galaxy formation processes. 
In brief, KLLR applies a weight to the halo population – where

he weight is given by a Gaussian kernel in log-mass, log 10 M , with
ariance σ 2 

KLLR – and then performs linear regression on the weighted 
ata set. Systematically shifting the center of the kernel provides 
ass-dependent estimates of the fit parameters. The kernel width is 
 free parameter and for this work we choose σKLLR = 0 . 3 dex. In
eneral, wider k ernels w ash out small-scale features while smaller
ernels increase the noise of the estimates. Our choice here is
ptimized to reduce the uncertainty of the estimates while still 
apturing the rele v ant parameter evolution with halo mass. 

Given that we use a Gaussian kernel, the KLLR estimates at a
ass-scale M are still informed by haloes with M 200c < M . So, KLLR

arameters at the mass threshold of our analysis, 10 13 . 5 M �, must be
stimated from a sample that extends sufficiently below this value. 
e therefore include haloes with masses, M 200c ≥ 10 13 M �, which

o v ers the lower ≈2 σ KLLR tail of a Gaussian kernel centered on
0 13 . 5 M �. We have confirmed that this choice leads to a negligible
dge-effect bias of < 0 . 1 per cent in the expectation value of σ DM 

. 

.2 Galaxy virial scaling 

he quantity available to spectroscopic measurements is the line-of- 
ight velocity of galaxies within a cluster. Since the cosmic distances
o clusters are typically much larger than their sizes, the radial
omponent of the velocities is close to a simple Cartesian projection.
MNRAS 510, 2980–2997 (2022) 
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easured along a single projection direction, the quantity of interest
s the peculiar velocity difference, 

v ik = v i − v halo ,k , (2) 

f a galaxy i lying within R 200c of the centre of host halo k . Here,
 halo, k is the host halo k ’s mean velocity along the chosen projection
irection, computed as the mass-weighted mean velocity of all matter
omponents (DM and all phases of baryons) within R 200c . 6 Note that
his halo reference velocity can differ very slightly from the reference
sed previously for DM, as the latter is computed using only DM
articles whereas here we include the baryonic component as well.
o we ver, the characteristic scale of this difference – estimated using
NG300 – is small, at ≈15 km s −1 . 
Again, we do not include the effect of the Hubble flow in the

elocities; its inclusion changes the scaling relation parameters by
0 . 1 per cent and is thus negligible in our analysis. We use all

hree orthogonal Cartesian axes to triple the number of independent
easurements for each host halo. Thus, the ef fecti ve halo sample

ize per simulation in analyses of σsat, 1D is three times that shown in
able 1 . 

.2.1 Ensemble Velocity Likelihood (EVL) 

iven the sparseness of satellite galaxy counts per halo, particularly
t high galaxy stellar mass thresholds, we do not estimate galaxy
elocity dispersion for individual haloes like we do for DM. This
s because the standard deviation is a biased estimator of σsat, 1D 

hen the galaxy count per halo is low, which can be a common
ccurrence in our analyses. Alternative estimators, such as GAPPER
nd bi-weight, can provide a more accurate estimate of the dispersion
Beers, Flynn & Gebhardt 1990 ), with the level of accuracy varying
cross estimators (Ferragamo et al. 2020 ). Ho we ver, one must also
ake robust estimates of the uncertainty in each measurement in

rder to properly infer scaling parameters via regression. This can
e a particularly difficult task when the halo is sampled by only two
r three galaxies. 
To a v oid these sparse-sampling complications, we use an extended

ersion of an ensemble likelihood originally developed by Rozo et al.
 2015 ) to assess cluster membership and then used by F16 and Farahi
t al. ( 2018b ) for mass estimation. The basis of the method is an
ggregate model for the set of satellite galaxy relative velocities,
quation (2), conditioned on host halo mass. For fixed host halo
ass and redshift, we write an ensemble population likelihood for

he collection of 1D galaxy–halo relativ e v elocities. This likelihood
s modelled as a convolution of a Gaussian, representing the thermal
ath (or velocity distribution) of a single halo, and a lognormal,
epresenting the range of temperatures (or velocity dispersions) at a
iven halo mass 

 ( �v ik | M k , θ ) = 

∫ 

P ( �v ik | σk ) × P ( σk | M k , θ ) d σk , (3) 

here index k runs over all host haloes, and index i runs over the
atellite galaxies of host halo k . Here, P ( �v ik | σk ) is a Gaussian
istribution with zero mean and variance, ( σ k ) 2 . The distribution,
 ( σk | M k , � θ ) is modelled as a Gaussian in log 10 σ k , with a mean
[ log 10 σk | M k ] – described below in equations (4) and (5) – and a

onstant, mass-independent variance, ε2 . 
 For MDPL2, which is a DMO simulation, v halo is computed using only DM 

articles. 

a  

7

NRAS 510, 2980–2997 (2022) 
The vector, � θ = { π, α, ε} , contains the log-mean normalization,
lope and intrinsic scatter of the pure power-law scaling relation 

 lin [ log 10 σsat, 1D | M, � θ ] = π + α log 10 

(
h ( z) M 

10 14 M �

)
, (4) 

here σsat, 1D is the satellite galaxy velocity dispersion in km s −1 , π
s the normalization in decimal log, and α is the slope. We choose
0 14 M � as the pivot mass scale because it lies close to the midpoint
f the halo mass ranges spanned by the different simulations. 
We have also extended our model to include a quadratic term with

 coefficient, β, that captures any ‘running’ of the power-law slope
ith host halo mass 

 quad [ log 10 σsat, 1D | M, � θ ] = E lin [ ... ] + β

[
log 10 

(
h ( z) M 

10 14 M �

)]2 

. (5) 

o we ver, upon constraining the σsat, 1D –M 200c relation for different
alo populations using equation (5), we find that | β| < 0.01 and that
he parameter’s 68 per cent confidence intervals al w ays contain β =
. Thus, the data show no preference for the quadratic term and so β is
ot included in the results shown in Section 4.2 nor in the parameter
et, � θ . On the other hand, our validation tests with DM velocity
ispersion, presented below, indicate support for β = 0.01 ± 0.006
hich deviates moderately from β = 0 at 1.7 σ significance. 
In principle, one could also add other halo properties to the

caling relation; studies of the ILLUSTRISTNG simulations find that
he scatter in σ DM 

is strongly correlated with secondary DM halo
roperties such as concentration and shape (Anbajagane et al. 2022 )
nd so it is plausible, though not necessary, that these secondary
roperties correlate with σsat, 1D as well. Anbajagane et al. ( 2022 )
lso show that for the halo mass-scales of our study, the intrinsic
catter in σ DM 

can be reduced by a factor of two when concentration
nd velocity anisotropy are included in the regression. 

Using equations (3) and (4), we can estimate the scaling relation
arameters via Bayesian inference. In our model, posteriors for
he parameters are obtained after marginalizing/integrating over the
istributions of σsat, 1D ; one distribution per halo as denoted by the
ntegral in equation (3). For halo samples of N = 10 3 −10 4 , this
arginalization step leads to a high-dimensional sampling problem

nd so we employ the Hamiltonian Monte Carlo method to efficiently
ample this space of parameters. Our implementation makes use
f existing routines provided by the PYMC3 open-source PYTHON

ackage 7 (Salvatier , W iecki & Fonnesbeck 2015 ). 

.3 Validation of the EVL estimator 

he mean velocity bias of a halo population depends on the
sat, 1D –M 200c and σ DM 

−M 200c scaling relations, which are estimated
sing EVL and KLLR , respectively. Here, we use the DM particles in
he TNG300 simulation at z = 0 to demonstrate consistency in the
caling parameters returned by the two methods. For our baseline
esults, we use both a simple least-squares linear regression and
LLR . In this case, σ DM 

is first computed for individual haloes using
ll available DM particles in each halo and the regression methods
re used to estimate the scaling relation. The EVL method we are
alidating is the same as in equations (3) and (4) but the inputs are now
M particle velocities, not satellite galaxy velocities. We randomly

elect 100 DM particles from each halo and input the velocities from
ll three Cartesian directions since we are computing the isotropically
 https:// docs.pymc.io/ 

https://docs.pymc.io/
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Figure 1. The HMF of host haloes (upper) from the full simulation volume, 
and the conditional Satellite Galaxy Stellar Mass function (S-GSMF, lower) of 
all galaxies within R 200c of haloes with M 200c > 10 13 . 5 M �, at z = 0 (MGTM 

only is shown at z = 0.06). We only show the mass-complete part of The300, 
and do not include its S-GSMF as it is mass-complete only abo v e M 200c � 

10 15 M � at z = 0. We also only show the BAHAMAS component of BM in 
both panels, as it is a cosmological halo sample while the complementary 
MACSIS component is not. 
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Figure 2. Comparisons of the scaling parameters of DM velocity dispersion 
with halo mass, extracted via least-squares linear regression (LR, Model I), 
local linear regression ( KLLR , Model III), and EVL with a constant slope 
(lin., Model II) or a running of the slope with log-mass (quad., Model IV). 
Models I and II, as well as model III and IV, are in statistical consistency for 
both the slope (top panel) and the scatter (bottom panel). The mean relations 
of the pairs of models (in Fig. B2 ) are also statistically consistent with each 
other. The rest of this work uses the EVL model with a linear, constant slope. 
The uncertainties are 68 per cent intervals determined via bootstrap sampling 
for models I and III, and the marginalized 1D posteriors for models II and IV. 

Table 2. The methods corresponding to each model used 
in the validation tests shown in Fig. 2 . 

Name Method 

Model I Linear regression (LR) 
Model II Linear EVL, equation (4) 

Model III KLLR (Section 3.1.1) 
Model IV Quadratic EVL, equation (5) 
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vera g ed – and not line of sight – DM velocity dispersion. Thus each
alo is associated with 300 different velocities. 
Fig. 2 shows a comparison between the different models, which 

re listed in Table 2 . The right-hand panels compare the linear
egression and linear EVL (models I and II) which return single 
alues of slope and scatter, and the left ones compare KLLR and
he quadratic EVL (models III and IV). The slopes (top panels) 
nd the scatter (bottom panel) are in statistical agreement for both 
airs of model comparisons. The normalizations are also statistically 
onsistent, as shown and discussed in Appendix B2; this is true even
hen we input only N = 10 DM particles per halo in the EVL
ethod. 
To make a fair comparison between these methods, we ensure their 

stimates are derived from the same sample of haloes, and thus all
ethods only use haloes with M 200c > 10 13 . 5 M �. This notably leads

o an edge effect at the lower mass threshold of the KLLR estimates
n Fig. 2 , observed as the plateauing of the slope. We reiterate that all
ducial KLLR -based estimates in this work (e.g . Fig. 3 ) are derived
rom samples with appropriate halo mass ranges and do not suffer
rom any edge effects. 

.4 Velocity bias definition 

he conventional definition of velocity bias is the ratio of the galaxy
nd DM velocity dispersions conditioned on host halo mass and 
edshift. Given the population statistics methods described abo v e, we
easure the velocity bias scaling relation, b v , using the difference in

he log-linear virial scaling relations 

log 10 b v = E[ log 10 σsat, 1D | M 200c , M �, sat , z] 

− E[ log 10 σDM 

| M 200c , z] , (6) 

here E [ x ] represents the expectation value of x derived by either the
LLR or the EVL method. Here, b v is implicitly a function of M 200c ,
 �, sat , and z. 

 V I R I A L  SCALI NG  R E L AT I O N S  A N D  

ELOCI TY  BI AS  

e first present results for the DM and galaxy velocity dispersion
caling relations in Sections 4.1 and 4.2 before showing the velocity
ias scaling relation in Section 4.3. Our scatter is expressed as
 natural log – thus, a fractional scatter – and uncertainties on 
ll estimates are 68 per cent confidence intervals, determined from 

he marginalized posteriors for the likelihood-based estimates (for 
alaxies) or from 1000 bootstrap resamplings of the KLLR sample 
for DM). 
MNRAS 510, 2980–2997 (2022) 
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Figure 3. KLLR -derived scaling parameters of the DM velocity dispersion with halo mass at z = 0 (left column) and z = 1 (right column), from four different 
simulations (see legend). We follow Evrard et al. ( 2008 , E08 ) in using h ( z) M 200c as the mass scale; see text for details. The upper middle panel shows the fractional 
difference between each simulation and the E08 prediction, δE08 = ln ( σDM 

/σE08 
DM 

), with coloured (grey) bands showing the uncertainty in the simulation ( E08 ) 
estimates. The slopes (lower middle panel) at low halo masses are shallower than the α = 1/3 self-similar expectation, and at high masses agree well with the 
E08 result, α = 0.3361 ± 0.0026, shown in grey. The scatter (bottom panel) is relatively similar across the simulations and generally consistent with the E08 
result, 0.0426 ± 0.0015, also shown in grey. THE300 has a significantly larger scatter at low halo masses due to the environment-selected nature of the low-mass 
sample, and so we omit it from the bottom panel for clarity but provide additional details in Appendix B1. 
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.1 DM velocity dispersion, σ DM 

nder self-similar evolution of haloes in virial equlibirum, the slope
f the σ DM 

−M 200c relation is expected to be α = 1/3 (Kaiser 1986 ;
ryan & Norman 1998 ). This expectation has since been confirmed

or DMO and non-radiative simulations by Evrard et al. ( 2008 ),
hose meta-analysis found α = 0.3361 ± 0.0026. Simulations
ith full baryonic physics treatments of galaxy formation find

imilar results for high-mass haloes (Lau et al. 2010 ; Armitage
t al. 2018 ), but deviations of order 10 per cent in amplitude
re found as one mo v es towards lower mass haloes (Anbajagane
t al. 2022 ). 

In Fig. 3 , we show the σ DM 

–M 200c relation of four simulations for
 = 0 and z = 1. MDPL2 is omitted as we do not have access to the
equisite data. Note that we regress against h ( z) M 200c as, under self-
imilar evolution, the normalization of σ DM 

when using this ef fecti ve
ass scale should have no redshift evolution (Kaiser 1986 ; Evrard

t al. 2008 ; Singh et al. 2020 ). The normalizations are generally in
ood statistical agreement with E08 at z = 0 (upper middle panel,
ig. 3 ), although there is moderate tension with the BM simulation
t the high-mass end. 

The300 haloes at z = 0 have normalizations of up to 4 per cent
igher than E08 for mass scales M 200c < 10 14 . 5 M �. The sample at
hese lower halo masses is incomplete, as they only contain haloes
hat are within 22 Mpc of the 324 most mass haloes from MDPL2
hat were selected for resimulation in The300. Thus, these lower

ass haloes preferentially lie in regions with strong gravitational
NRAS 510, 2980–2997 (2022) 
idal fields, and some will have experienced fly-throughs or near
ncounters with their larger neighbours. 

At z = 1, discrepancies of up to 2 per cent exist at M 200c >

0 14 M �, and BM deviates by 4 per cent at the lowest masses. These
eviations are significant at the > 4 σ level in MGTM and BM, but
he TNG300 and The300 normalizations exhibit less tension. We
ote that E08 quoted a normalization uncertainty of 0 . 5 per cent at
0 15 M �, rising to 1 per cent at 10 13 . 5 M �. Oddly, a normalization
pturn at low masses is seen at z = 1 in BM but not in The300. 
The slopes in the lower middle panel show a clear mass-

ependence, as anticipated analytically (Okoli & Afshordi 2016 ),
ith nearly 5 per cent variation across the whole mass range, and
ith most of the deviations coming at low halo masses. This justifies
ur use of the KLLR method o v er a re gular linear re gression. The
edshift evolution of this feature does have some discrepancies – the
M runs have shallower slopes at higher redshifts, whereas all other

imulation populations have slopes either steeper or comparable to
heir z = 0 slopes. 

We note the rele v ance of multiple full physics simulations
xhibiting a mass-dependent slope across the range of redshifts
robed in this analysis. The study of Anbajagane et al. ( 2022 ),
hich spans six decades in halo mass across three ILLUSTRISTNG

imulation volumes, finds that the population statistics of multiple
M properties – velocity dispersion, concentration, halo shapes,

ormation histories etc. – contain non-monotonic, mass-localized
eatures which originate from the interplay between AGN feedback

art/stab3587_f3.eps
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Figure 4. EVL-derived parameters of the σsat, 1D ] –M 200c scaling relation, equation (4), as a function of galaxy stellar mass threshold (denoted here as M 

min 
�, sat ), 

for all simulations at redshifts, z ∈ { 0, 0.5, 1 } . We use all galaxies within R 200c of a host halo, and all host haloes with M 200c > 10 13 . 5 M �; the exception is 
MDPL2 whose large halo population is subsampled, while preserving the shape of the HMF, to keep our computation time manageable. All simulations display 
the ‘brighter is cooler’ effect; normalizations (top, in decimal log) consistently decrease with increasing M �, sat threshold, and slopes (middle) consistently 
increase. The scatter (bottom, in natural log) shows some dependence on M �, sat threshold, particularly at higher redshifts. Most of the errors bars are smaller 
than the size of the circles. We artificially offset the points horizontally to enhance their visibility. The brackets in the axis labels of the top and bottom panels 
denote the log base of the quantities shown in each panel (either natural log, ln , or decimal log, dex). 
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nd gas cooling. For σ DM 

, the inclusion of such processes results
n the slope decreasing to α < 1/3 towards group-scale haloes, and 
ere we confirm consistent behaviour in three other hydrodynamical 
imulations. 

.2 Galaxy velocity dispersion, σsat , 1D 

n moving to the σsat, 1D relation, we examine the linear parameters 
or a pure power-law assumption for EVL, and utilize a range of
tellar mass thresholds. For TNG300 we do not show results for
 �, sat > 10 11 M � due to the small sample size. Some simulations

re unavailable at low M �, sat due to resolution limits. 
Fig. 4 shows the derived parameters at z ∈ { 0, 0.5, 1 } . All

imulations – both hydrodynamics and semianalytical variants –
how a clear trend of the scaling relation normalization, π , decreasing 
s we increase the stellar mass threshold of the galaxy sample
top panel). This is qualitatively consistent with the signal found 
n the observational and simulation-based works previously noted 
discussed further in Section 4.3), and is therefore also in tension
ith G15 . The drop in normalization also steepens considerably 
eyond M �, sat > 10 10 . 5 M �, and this agrees with similar transition
oints from previous work 8 – r -band magnitude M r ≈ −21.5 
Adami et al. 1998 , 2000 ), z -band magnitude M z ≈ −22 (Goto
005 ), and i -band magnitude M i ≈ −22 (Old et al. 2013 ), where
he last result is from simulations whereas the rest are from
bservations. 
MNRAS 510, 2980–2997 (2022) 
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Figure 5. The normalizations (top panel, in decimal log) and slopes (bottom 

panel) of the σsat, 1D –M 200c scaling relation, as shown in Fig. 4 , but offset from 

their values at M �, sat > 10 10 M �. All sims show a 5 –10 per cent difference 
in both parameters o v er the three-decades of M �, sat threshold values used in 
this work. The dashed black lines are linear fits, equation (7), with parameters 
given in Table 3 . The grey bands show the points that are excluded from the fit. 

Table 3. Variation of the scaling relation 
parameters, π and α, with stellar mass 
threshold, equation (7). 

Parameter q 

Normalization, π − 0.015 ± 0.001 
Slope, α 0.008 ± 0.001 
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The physical origin for the dependence of the normalization on
 �, sat requires closer investigation, but dynamical friction (Chan-

rasekhar 1943 ) has been shown to reduce the velocities of a satellite
alaxy sample o v er time (Ye et al. 2017 ; Armitage et al. 2018 ).
atellite galaxies of a larger mass (or mass-proxy, such as M �, sat )
xperience stronger dynamical friction, and this naturally leads to the
ormalization of σsat, 1D decreasing towards more massive galaxies.
n addition, massive central galaxies are born at rest in their parent
aloes, and therefore form a cooler sub-population during mergers
ompared to their satellite counterparts. After merging, most of
he previously central galaxies will be classified as satellites of the
arger system, and the most massive of these satellites would have
stablished a lower velocity due to their prior role as centrals in the
re-merger phase. 
At fixed M �, sat and z, the simulations’ normalizations vary by

bout 0 . 02 dex, or ∼5 per cent . There is some striation between
imulations, with BM preferring a higher normalization than most
thers, possibly due to its lower resolution. In Appendix A, we
se multiple TNG300 runs to study resolution effects and show the
ormalization is amplified by decreased resolution. Such resolution
ffects also show up in other integral halo properties based on satellite
 alaxies – Anbajag ane et al. ( 2020 ) studied the M �, sat -thresholded
atellite galaxy counts of massive haloes in multiple simulations
TNG300, MGTM, and BM) and found that increasing resolution
an lead to 50 −90 per cent more galaxy counts at a given host halo
ass. 
The normalizations in Fig. 4 also show stronger redshift evolution

t higher M �, sat . This is expected as the knee of the S-GSMF evolves
ore dramatically with redshift compared to the low M �, sat end. Thus,

y fixing the M �, sat threshold at high values and varying redshifts, we
ample significantly different parts of the S-GSMF. Note also that
he velocity dispersion is al w ays lower at higher redshifts, and this
an be understood as follows. Let us define the ‘rank’ of a galaxy
s its place in the M �, sat -ordered list of galaxies at a given redshift;
 rank of 1 implies the galaxy is the most massive in the sample.
 or a fix ed M �, sat threshold, a low-redshift galaxy sample contains
ore low-rank galaxies (‘low’ meaning a larger rank) than the high-

edshift sample. This, in the context of more massive galaxies being
inematically cooler, naturally implies that the higher redshift sample
ill have a lower velocity dispersion. Thus, the physical picture
f dynamical friction discussed previously can explain the redshift
volution of the normalization as well. 

The slopes of the σsat, 1D –M 200c relation are constrained within 0.33
 α � 0.40 for all simulations across all redshifts and stellar mass

hresholds (middle panel, Fig. 4 ), and have a redshift evolution in
greement with Munari et al. ( 2013 ), who found a range 0.35 < α

 0.37 o v er 0 < z < 1 for M �, sat > 10 9 . 5 M �. Armitage et al. ( 2018 )
lso computed the slopes at different redshifts, but given the large
ncertainties on their estimates (resulting from a small sample size)
heir results are statistically consistent with no redshift evolution. 

Compared to the σ DM 

−M 200c relation (Fig. 3 ), the σsat, 1D –M 200c 

elations in all simulations scale more steeply with halo mass. This
eature could be due to dynamical friction – a satellite galaxy of a
iv en size e xperiences more dynamical friction from a less massive
ost halo (see equation 4.2 and Appendix B Lacey & Cole 1993 ), and
his additional host halo mass dependence can increase the slope of
he σsat, 1D –M 200c relation. The cold birth persistence after a merger
ay also play a more significant role in lower mass haloes. The
ismatch of slopes between DM and galaxies naturally results in a

alo-mass dependence of the velocity bias (see Section 4.3). 
Finally, the scatter depends weakly on M �, sat (bottom panel, Fig. 4 ),

hough this dependence becomes stronger at higher redshifts. In
NRAS 510, 2980–2997 (2022) 
eneral, the halo samples at z = { 0, 0.5 } find ε ≈ 0.1 and this is
roadly consistent with previous findings that lie in the range ε ∈
0.06, 0.15] depending on galaxy stellar mass and redshift (Munari
t al. 2013 ; Armitage et al. 2018 ). 

.2.1 Relative trends with stellar mass threshold 

e next focus on the relative trends of EVL parameters with M �, sat .
n Fig. 5 , the normalizations and slopes of each run and redshift, as
hown in Fig. 4 , have been normalized to their values for the threshold
 �, sat > 10 10 M �. At this threshold, all runs have well-constrained

stimates for the parameters. The variation in the normalization and
lope with M �, sat threshold is well fit by a linear relation 

 

(
M 

min 
�, sat 

) − x 10 = q log 10 

(
M 

min 
�, sat 

10 10 M �

)
, (7) 

here x is either π or α and x 10 is the value for the thresh-
ld M �, sat > 10 10 M �. Fits are performed only using results for
0 9 M � < M 

min 
�, sat < 10 10 . 5 M �; at lower masses, we only have es-

imates for TNG300 while at higher masses the data trends deviate
ignificantly from just a simple linear relationship. The data points are
lso not weighted by their errors during fitting as these errors are set
y sample size, and so would cause the fitting procedure to strongly
eight larger simulations with more haloes while not accounting for
umerical resolution. Instead, in this fit, all simulations are equally
eighted regardless of sample size. 
The fit parameters for equation (7) are presented in Ta-

le 3 and the fits are shown in Fig. 5 as dashed black lines.
he fractional scatter about the fit is ≈1 per cent in the region

art/stab3587_f5.eps


Calibrating the galaxy velocity bias 2989 

Figure 6. The satellite galaxy velocity bias for four simulations (different colors) as a function of halo mass, galaxy stellar mass threshold (different linestyles), 
and redshift (different panels). The velocity bias, b v , increases with host halo mass, and decreases with redshift and galaxy stellar mass threshold. At fixed 
M 200c , M �, sat , and z, the simulations tend to vary by ≈2 –3 per cent . The horizontal grey lines in all panels shows the unbiased case, b v = 1, and the grey bands 
in the bottom row show the 68 per cent confidence interval of our theoretical prior on b v estimated using all four simulations. 
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0 9 M � < M 

min 
�, sat < 10 10 . 5 M �. Given a velocity bias (or galaxy

elocity dispersion) estimate from a specific sample with a M �, sat 

hreshold, these fits can be used to ‘translate’ that constraint to 
ifferent galaxy stellar mass/magnitude thresholds. Note that our 
hosen analytical model is simplified, and thus approximate, given 
t does not include (i) redshift evolution of the parameters, and; 
i) quadratic log-linear and higher order terms in the fit, which are
articularly rele v ant to wards high M �, sat . 

.3 Galaxy velocity bias, b v 

he velocity bias, defined in equation (6), is the ratio of the mean
caling relations of galaxy and DM velocity dispersion with halo 
ass (Sections 4.2 and 4.1). Fig. 6 presents the velocity bias inferred

rom four simulations, as functions of M 200c , for two choices of M �, sat 

hreshold, and two choices of redshift, z. MDPL2 is omitted as we
id not have the requisite data for the σ DM 

−M 200c relation. 
At fixed M �, sat and z, the velocity bias increases nearly linearly with 

og 10 M 200c , with ∼20 per cent variation o v er the range presented.
here is good constistency in values among the simulations. At 
xed M 200c , M �, sat , and z, the variation in b v across simulations is
 –3 per cent for more than 90 per cent of the 3D parameter space, and
mpro v es to nearly percent-level precision if we consider the three
ighest resolution simulations (TNG300, MGTM, and The300). In 
eneral, this precision degrades the most at regimes of high z, 
 200c , and/or M �, sat , where it is amplified by the larger statistical

ncertainties due to the smaller sample sizes. 
We then construct a theoretical prior for b v by first representing
ach simulation’s b v estimate as a Gaussian with a standard deviation
iven by the statistical uncertainty in b v . Then, we sum the individual
aussians to form a multimodal distribution, and compute its 
ean and standard deviation. These provide the moments for a 
aussian representation of the ensemble-based theoretical prior on 
 v . Examples of these priors are shown in the bottom panels of Fig. 6 .
The stellar mass dependence of b v comes solely from the 

sat, 1D –M 200c relation shown in Section 4.2. Previous observational 
nd simulation-based works have studied the dependence of σsat, 1D 

and thus, b v ) on different galaxy/subhalo properties and have found
imilar trends to us. This is because their chosen properties, and
ubsequent analyses frameworks, are qualitatively related to the 
 �, sat threshold-based analysis we employ here, and we detail these 

onnections below. 
Prior observational works all threshold on either absolute magni- 

udes (Stein 1997 ; Adami et al. 1998 , 2000 ; Goto 2005 ; Bayliss et al.
017 ; Nascimento et al. 2017 ), or the difference m − m 3 , where m is
he galaxy apparent magnitude and m 3 is that of the third brightest
alaxy in the cluster (Biviano et al. 1992 ; Girardi et al. 2003 ; Barsanti
t al. 2016 ). Absolute magnitude thresholds are nearly equi v alent to
 �, sat thresholds given the close link between the two quantities, 

nd a threshold on m − m 3 is equi v alent to a M �, sat threshold that is
llowed to vary across host haloes. 

Simulation-based works have also used a variety of techniques –
iviano et al. ( 2006 ) studied b v separately for early-type and late-

ype galaxies, and this corresponds to selections of high M �, sat and
o w M �, sat , respecti vely. Lau et al. ( 2010 ) and Wu et al. ( 2013 ) select
MNRAS 510, 2980–2997 (2022) 
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he top N galaxies in each host halo according to M �, sat which, like m
m 3 , is equi v alent to using an M �, sat threshold that varies across host

aloes. Ye et al. ( 2017 ) and Armitage et al. ( 2018 ) used differential
tellar mass bins instead of cumulative ones but this method can still
referentially select galaxies based on M �, sat . Finally, Ferragamo
t al. ( 2020 ) took all the satellite galaxies belonging to cluster-
cale haloes, rank-ordered them according to galaxy mass, and then
elected only the top N per cent . This is equi v alent to an M �, sat 

hreshold that is set by the galaxy number counts. So all of the abo v e
orks – both observation- and simulation-based – use frameworks

hat are qualitatively equivalent to the M �, sat thresholds used here, and
hus show the same qualitative trends of more massive, or brighter,
alaxies being kinematically cooler than their less massive, or fainter,
ounterparts. 

We also find qualitativ e consistenc y with previous simulation-
ased analyses for the trends of velocity bias as a function of host
alo mass (Munari et al. 2013 ; McCarthy et al. 2017 ; Ye et al. 2017 )
nd redshift (Lau et al. 2010 ; Munari et al. 2013 ). Note also that the
ange of values we find, b v ∈ [0.8, 1.1], o v erlaps with those from
hese previous simulation studies (Lau et al. 2010 ; Munari et al. 2013 ;

u et al. 2013 ; Ye et al. 2017 ; Armitage et al. 2018 ; Ferragamo et al.
020 ). 

 REVISED  MASS  SCALE  O F  LOW-  z SDSS  

L USTERS  

ncertainty in cluster mass calibration is a key systematic in
osmological analyses of galaxy cluster abundances (e.g. Murata
t al. 2019 ; Costanzi et al. 2021 ). Weak lensing mass calibration
s the current gold standard of mass calibration techniques (e.g.
ellagamba et al. 2019 ; McClintock et al. 2019 ; Miyatake et al.
019 ; Murata et al. 2019 ; Kiiveri et al. 2021 ; Wu et al. 2021 ), while
ynamical mass calibration using ensemble virial scaling is currently
imited by the uncertainties in b v ( F16 , Sif ́on et al. 2016 ). Increasing
he precision of dynamical mass estimation, potentially to the level
f weak lensing mass estimation, is also a prerequisite to enabling
luster-based tests of general relativity (e.g. Shirasaki et al. 2021a ),
hich require comparisons of weak lensing and dynamical masses. 
In Section 5.1 below, we update the analysis of F16 using our

ew theoretical prior for b v , and show that we impro v e the precision
n the mean log-halo mass by a factor of 3. Then, in Section 5.2,
e discuss necessary future impro v ements for further improving the
recision of dynamical mass estimates. 
We also stress that while we focus on one example (an update

o F16 ) to demonstrate the impacts of our work, improving dy-
amical mass estimation via our theoretical b v priors has broader
mplications for cluster-based science that we do not explore here.
 or e xample, Bocquet et al. ( 2015 , see Sections 3 and 5.1) discuss

hat a 1 per cent prior on the velocity bias impro v es constraints on
oth astrophysical and cosmological parameters connected to galaxy
lusters by ≈30 per cent . Cluster counts as a function of their galaxy
elocity dispersion and redshift has also emerged as an alternative
pproach for cluster cosmology (Caldwell et al. 2016 ; Ntampaka
t al. 2017 ; Ntampaka, Rines & Trac 2019 ; Kirkpatrick et al. 2021 ),
nd the velocity bias is a critical component in forward modelling
he rele v ant observ able from cosmological parameters. 

.1 Updating the mass–richness normalization of F16 

he work of F16 uses a slightly older version of EVL to estimate the
he velocity dispersion of galaxies for an SDSS redMaPPer cluster
ample, and then employs the velocity bias constraints from G15 to
NRAS 510, 2980–2997 (2022) 
stimate the normalization of the halo mass–optical richness scaling
elation 〈 M 200c | λ, z〉 , where the richness λ is an observational analog
or the counts of red sequence satellite galaxies in a halo. We
ill henceforth refer to masses estimated using this approach as

EVL masses.’ Our update here replaces the G15 estimates with
he theoretical b v prior estimated in this work and recomputes
he F16 normalization. While we focus primarily on updating the
ormalization, the slope of the scaling relation will also shift as G15
and thus, F16 ) assumed that b v did not vary with halo mass, whereas
ig. 6 shows that there is a significant mass dependence. 
The pivot scales of F16 are z = 0.2 and λ = 30 for which the

ormalization, derived with the G15 estimate of b v = 1.05, is M 200c =
 . 56 ± 0 . 35 × 10 14 M �. We are fortunate that we have b v estimates
ear this halo mass scale from all four simulations (see Fig. 6 ).
he ensemble-estimated theoretical prior for b v is most accurate in
alo mass ranges where all simulations are available, and gets more
imited towards high halo masses, with only two simulations (BM and
he300) sampling M 200c > 10 15 M � at z = 0 and M 200c > 10 14 . 5 M �
t z = 1. 

To update the F16 mass normalization, we use the Gaussian
epresentation of the theoretical b v prior as described in Section 4.3
nd shown in Fig. 6 . The first two moments of the Gaussian prior are
nterpolated o v er M �, sat , M 200c , and z as necessary. F16 employed an
pproximate magnitude threshold of M r ∼−21.5 for their redMaPPer
ample, and this corresponds to a stellar mass of M �, sat ≈ 10 10 . 3 M �
n the TNG300 simulation. We tested the inclusion of a 50 per cent
ncertainty ( ≈0 . 2 dex) on this threshold, and note that our results are
ot that sensitive to this choice. At a halo mass of 10 14 . 2 M � at z =
, the dependence of velocity bias on stellar mass threshold is weak,
 v ∝ ( M �, sat ) −0 . 015 . Since the EVL mass estimate scales as M ∝ b −3 

v ,
 50 per cent uncertainty in M �, sat translates to an 2 . 3 per cent error in
he mass scale. This is currently not a significant source of uncertainty
nd alters our total uncertainty estimates, presented further below,
y ≈0 . 2 per cent . 
The velocity bias is also a function of halo mass. Given the stellar
ass threshold of M �, sat > 10 10 . 3 M � at z = 0.2, we solve for the
ass normalization iteratively. We first make an initial guess for the

elocity bias, and derive a mass normalization constraint. Then we
ompute the simulation ensemble-estimated velocity bias at that mass
cale and re-derive the mass normalization. This step is repeated until
he normalization converges to within 0 . 01 per cent , which takes < 10
terations. 

The mean and uncertainty of the normalization are determined
ia Monte Carlo sampling. We first draw a large number of random
amples – we choose N = 10 7 for which our uncertainty estimates
onverge to within absolute deviations of 10 −4 – from Gaussian
riors for each of the following: the σsat, 1D measurement from F16 ,
he central galaxy velocity bias used in F16 (which comes from
15 ), the satellite galaxy velocity bias as constrained in this work,

he normalization and slope of the σ DM 

−M 200c relation from E08 ,
nd finally, the cosmological parameters �M 

and h from Planck
ollaboration XIII ( 2016 ). The mean and variance we use for
ach Gaussian prior come from the works listed abo v e alongside
ach quantity. For b v , these are obtained from the ensemble-
stimated theoretical prior. Then, we once again compute the mass
ormalization iteratively, and the mean and standard deviation of the
esulting distribution of 10 7 normalizations is the quoted mean and
ncertainty. 
Fig. 7 presents two variants of the updated F16 constraints – one

here we use all four simulations (TNG300, BM, MGTM, and
he300), and one where we exclude BM and use only the three
ighest resolution ones. The latter is moti v ated by the resolution
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Figure 7. Mass–richness normalization at fixed redshift, 〈 log 10 M 200c | λ = 30 , z = 0 . 2 〉 derived from different measurement methodologies (left-hand panel, 
see also Table 4 ), and the fractional uncertainty on each estimate (right-hand panel). First two points from the top are our updates to F16 using the theoretical b v 
prior from either all four cosmological hydrodynamics simulations or the three highest resolution ones. Either estimate reduces the uncertainty from the original 
F16 estimate by a factor of ≈3. The last three results were e v aluated away from their calibrated pivot points and thus include uncertainties from the evolution 
with redshift and richness as well. 
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onsiderations mentioned previously and discussed further in Ap- 
endix A. Since the mean velocity bias has declined, to b v = 0.98
ompared to the original G15 estimate of b v = 1.05, the inferred
ass scale (which goes as M ∝ b −3 

v ) rises by nearly 0.1 dex. The
.07 shift in b v is within the stated 1 σ error of G15 ( � b v = 0.08) so the
evised mass estimate remains consistent with the wide 68 per cent 
onfidence interval of the original F16 estimate determined using 
he G15 constraints. The revised EVL normalization also remains 
onsistent with existing weak lensing estimates, including the recent 
ultiprobe estimate of To et al. ( 2021 ). 
F16 report a slope of α = 1.31 ± 0.06 stat ± 0.13 sys for the mass–

ichness relation, but this value was derived assuming a constant 
 v . At low redshift, the simulations display a weak halo mass
ependence, b v ∝ ( M 200c ) 0.03 , which would imply a shift of −0.09,
eaning a revised slope of α ≈ 1.22. The shallower slope of the 
DSS redMaPPer mass–richness relation still lies between values 

n the literature derived from different methodologies; Simet et al. 
 2018 ) find α = 1.30 ± 0.10 while Murata et al. ( 2019 ) find α =
.00 ± 0.05. 
Fig. 7 and Table 4 compare our revised EVL mass normalization 

ith those from pre vious observ ational studies. When a published 
alue is quoted at a different richness and redshift, we translate it to
he pivot richness and redshift of F16 – λ = 30 and z = 0.2 – while
ncorporating the extra uncertainty from moving off the fiducial pivot 
cale due to slope or redshift evolution uncertainties. When other 
orks only quote the richness–mass normalization, 〈 λ | M 200c , z〉 ,
e use the formalism of Evrard et al. ( 2014 ) to invert the scaling

elation and obtain the mass–richness normalization, 〈 M 200c | λ, z〉 .
any studies also quote their halo mass in M 200m 

, which is defined
imilar to M 200c but now with ρ� 

= 200 ρm 

( z), where ρm is the
ean matter density at redshift z. We convert M 200m 

→ M 200c 

sing the COLOSSUS 

9 open-source python package (Diemer 2018 ) 
hile employing the concentration–mass relation from Diemer & 

oyce ( 2019 ). The uncertainty from the concentration relation is not
ncorporated into our final estimate. 
 https:// bdiemer.bitbucket.io/colossus/ 

a
s  

C  

a

The right-hand panel of Fig. 7 shows the magnitude of the
otal uncertainty in the various mass normalizations. The specific 
alues we constrain, as well as those of the comparison works,
re found in Table 4 . The impro v ed precision on b v , due to the
imulation ensemble-estimated theoretical prior, reduces the original 
16 uncertainties by a factor of 3, and makes dynamical mass
stimation a competitive technique in determining the normalization 
f the mass–richness relation. 

.2 Roadmap to more precise EVL mass estimates 

o moti v ate potential impro v ements in future analysis, we illustrate
n Fig. 8 the importance of difference sources of the uncertainty in the
VL mass normalization. The figure shows the fraction of the o v erall
ariance contributed by the uncertainty in each individual source. For 
he purpose of illustration, we assume z = 0.5, M �, sat > 10 10 M �,
nd exclude BM when determining the theoretical prior for b v, sat .
he statistical uncertainty is the SDSS value from F16 . The o v erall

ractional uncertainty in the mass scale is σerr = 7 . 8 per cent , not
ncluding the M �, sat uncertainties discussed previously. 

The halo velocity we employ as the theoretical reference rest 
rame in equation (2) is unavailable to observers. Instead, F16 uses
he central galaxy velocity as a proxy, thereby bringing the central
alaxy velocity bias, b v, cen , into the analysis. Uncertainty in that
omponent is comparable to the current SDSS statistical error in 
he velocity dispersion normalization at λ = 30. So satellite galaxy 
elocity bias is now a sub-dominant source of systematic uncertainty, 
hile the central galaxy velocity bias becomes the dominant source. 
Prospects for impro v ements to the dominant sources of uncertainty 

re good. The statistical uncertainty of the measurement will impro v e
ust by increasing the size and depth of spectroscopic samples. The
riginal analysis of velocity dispersion scaling with optical richness 
y Rozo et al. ( 2015 ) employed roughly 9000 clusters, each sampled
y 20 or more spectroscopic galaxy members, for a sample size of
pproximately 200 000 galaxies. Recent wide-area imaging surv e ys, 
uch as the Dark Energy Surv e y (DES; The Dark Energy Surv e y
ollaboration 2005 ) and Hyper Suprime-Cam (Aihara et al. 2018 ),
re producing much larger optically selected cluster samples, and 
MNRAS 510, 2980–2997 (2022) 
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Table 4. The mass–richness normalization from this work and from previous works that estimated the same using different techniques: a slightly 
older version of EVL ( F16 ), weak lensing (McClintock et al. 2019 ), CMB lensing (Baxter et al. 2018 ), and from a combined cosmological 
analysis of different probes, including cluster-scale haloes (To et al. 2021 ). The estimates for McClintock et al. ( 2019 ) and To et al. ( 2021 ) are 
quoted away their respective pivot points, and thus their errors include additional uncertainties coming from the redshift and richness evolution. 
The uncertainties at their pivot scales are 5 . 1 and 4 . 6 per cent , respectively. 

Source Technique 〈 log 10 M 200c | λ = 30, z = 0.2 〉 Error 

This work, All sims Ensemble velocity likelihood (EVL) 14.28 ± 0.037 8 . 7 per cent 
This work, Sims w/o BM EVL 14.30 ± 0.031 7 . 4 per cent 

Farahi et al. ( 2016 ) Older EVL 14.19 ± 0.096 22 per cent 
McClintock et al. ( 2019 ) Background galaxy weak lensing 14.22 ± 0.035 8 . 1 per cent 
To et al. ( 2021 ) Galaxy/DM clustering + cluster abundance 14.30 ± 0.079 18 per cent 
Baxter et al. ( 2018 ) CMB lensing 14.19 ± 0.074 17 per cent 

Figure 8. The percentage contribution of each component X to the total 
variance of the mass normalization. From top to bottom X is: (i) the statistical 
uncertainty from the σsat, 1D observational measurement, (ii and iii) the central 
and satellites galaxy velocity biases, (iv) the σDM 

−M 200c relation from 

E08 , and (v) the cosmology uncertainty from H ( z) assuming Planck-like 
constraints. The open green circle is the previous result using G15 . We show 

results for z = 0.5 and M �, sat > 10 10 M �, but the qualitative behaviour is 
similar across a large part of the parameter space. We have used only the 
three highest resolution simulations (TNG300, MGTM, and The300) for this 
analysis. See text for details. 
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 v erlapping areas of sky are being probed by Sun yaev–Zel’do vich
bservations from the Atacama Cosmology Telescope (Choi et al.
020 ) and South Pole Telescope (Carlstrom et al. 2011 ), and also
-ray observations from the eROSITA mission (Merloni et al.
012 ). Spectroscopic surv e ys such as the Dark Energy Spectroscopic
nstrument (DESI; Dey et al. 2019 ), Euclid (Laureijs et al. 2011 )
nd, in the longer term, the Nancy Grace Roman Telescope (Akeson
t al. 2019 ) and Extremely Large Telescope MOSAIC (Evans et al.
015 ), will produce samples larger by an order of magnitude or more
ompared to the SDSS analysis of F16 . 

The central galaxy velocity bias, on the other hand, will need to be
tudied more e xtensiv ely via simulations to quantify the theoretical
ncertainty by constructing an ensemble-estimated theoretical prior
n a manner similar to that of this work. Previous works have cali-
rated this bias as a function of galaxy and/or host halo properties, but
ither do not adequately describe galaxy velocities within clusters,
.e. the one-halo term ( G15 ), or are unable to quantify the theoretical
ncertainty due to the study being limited to a single simulation
Martel, Robichaud & Barai 2014 ; Ye et al. 2017 ). 

Other sources of systematic uncertainty, such as miscentering and
rojection, will also need to be precisely calibrated. A promising
pproach for the former may be to use multiwavelength observations,
uch as X-ray and optical (Zhang et al. 2019 ), to define a well-centred
ubset of clusters. Application of EVL and other dynamical mass
echniques to this subset would produce estimates more reflective of
he underlying massive halo population. 
NRAS 510, 2980–2997 (2022) 
Note that the EVL method focuses solely on a line-of-sight velocity
ispersion. Other methods, such as those using caustics (Rines et al.
003 ; Rines & Diaferio 2006 ; Gifford, Miller & Kern 2013 ; Gifford,
ern & Miller 2017 ), or the Jeans equation (Mamon, Biviano &
ou ́e 2013 ), also employ the transverse radial distances. Recent
eep learning techniques also make full use of the 2D phase space
onsisting of line-of-sight velocities and transverse radial distances
Ho et al. 2019 ). 

Additionally, while we have discussed and documented the
brighter is cooler’ effect in the context of a velocity dispersion/bias,
he effect impacts the full 6D position–velocity phase space of the
alaxies. So other rele v ant features in this phase space – such as
he outer caustic surface, or splashback feature (Adhikari, Dalal
 Chamberlain 2014 ; Diemer & Kravtsov 2014 ; More, Diemer &
ravtsov 2015 ) – will also be impacted by this ef fect. Pre vious

tudies of both observations and simulations have found that the
adial location of the splashback feature, as estimated via the galaxy
umber density profile, depends on galaxy properties such as colour
nd mass (Adhikari et al. 2021 ; Dacunha et al. 2021 ). 

 C O N C L U S I O N S  

stimating the mass scale of galaxy clusters from the ensemble
elocity statistics of satellite galaxies is a method that is cur-
ently limited by uncertainties in how well galaxies trace the
M velocity field. The velocity bias, b v – which is the ratio of
elocity dispersion of satellite galaxies to that of dark matter – is
 key source of uncertainty that we address using new statistical
ethods applied to an ensemble of cosmological hydrodynamics

imulations that include an e xtensiv e range of galaxy formation
hysics. 
We extract estimates of b v as a function of host halo mass,

atellite galaxy stellar mass threshold, and redshift using a set of
our independent cosmological hydrodynamics simulations. This
s done using both a local linear regression, as well as a new
nsemble velocity likelihood method that is unbiased for low galaxy
ounts per halo. The collective analysis of the multiple simulations
llows us to derive an ensemble-estimated theoretical prior on b v 
hat quantifies the uncertainty driven by different astrophysical and
umerical treatments. Our main results are as follows: 

(i) At z = 0, the DM velocity dispersion scaling relation is
onsistent across all simulations at the one percent level and agrees
ith prior expectations from E08 (Fig. 3 ), but larger deviations are

een at z = 1. The slopes in all simulations have a consistent mass
ependence, and are shallower than the self-similar expectation ( α
 1/3) at halo masses below M 200c < 10 14 M �. 
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(ii) The normalization of the galaxy velocity dispersion scal- 
ng relation decreases with stellar mass threshold, indicating that 

ore massive galaxies are kinematically cooler than their lighter 
ounterparts (top panel, Fig. 4 ). The redshift and stellar mass
ependence of this feature is consistent across an ensemble consisting 
f four hydrodynamics simulations and one N -body/semianalytical 
imulation (Fig. 5 ). 

(iii) In all simulations, the slopes of the σsat, 1D –M 200c scaling 
elation are greater than the self-similar expectation, and the relation 
teepens with both stellar mass threshold and redshift (middle panel, 
ig. 4 ). 
(iv) The ratio of the σsat, 1D –M 200c and σ DM 

−M 200c scaling rela- 
ions yields a velocity bias, b v , that varies as a function of host
alo mass, galaxy stellar mass threshold, and redshift (Fig. 6 ).
he simulation-to-simulation variation is 2 –3 per cent for more than 
0 per cent of the 3D parameter space constituting M 200c , M �, sat , and
. Ho we ver, this reduces to percent-level precision when considering 
nly the three highest resolution simulations (TNG300, MGTM, 
nd The300). The uncertainty is larger at higher redshift and higher 
alo/stellar mass scales where the halo samples are sparse. 
(v) We update the mass normalization of optically selected SDSS 

lusters studied in F16 by using the ensemble-estimated theoretical 
 v prior derived in our work. Our more precise estimate improves 
he uncertainty on the normalization from 22 per cent to 7 –8 per cent
Figs 7 and 8 ), and makes dynamical mass estimation using the
nsemble velocity of satellite galaxies a technique that is competitive 
ith weak lensing. 

The trends in velocity bias discussed in this work are all empiri-
ally testable with ongoing spectroscopic campaigns of clusters such 
s SPIDERS (Kirkpatrick et al. 2021 ) and DESI. The dependence 
f σsat, 1D on M �, sat (or more precisely, the galaxy luminosity) has 
lready been observationally studied for many different modestly 
ized samples of clusters ( N ∼ 100) as was noted before, while such
bservational studies of the redshift and halo mass trends have not yet
een well-explored. The same data sets could be used to derive EVL-
ased constraints on the mass–richness normalization for cluster 
amples selected by different methods. Comparisons of precise mass- 
cale estimates between X-ray, SZ, and optically selected samples 
ould offer insights into sample selection models, the strength of 
rojection effects, and intrinsic covariance among stellar, hot gas 
nd dark matter properties. 

Finally, while we have focused on galaxy cluster mass calibration 
s the premier application of our velocity bias constraints, our results
an also be rele v ant for models of small-scale RSDs measurements
e.g . , Tinker 2007 ; Reid et al. 2014 ; Guo et al. 2015a , b , c ; DESI
ollaboration 2016 ; Yuan, Eisenstein & Garrison 2018 ; Zhai et al.
019 ; Tone ga wa et al. 2020 ; Alam et al. 2021 ; DeRose, Becker
 Wechsler 2021 ; Shirasaki et al. 2021b ; Lange et al. 2022 ) and
ore generally, any small-scale N -point auto- or cross-correlation 

unction that uses galaxy kinematics as an observational tracer of 
he DM velocity field. Such cosmological probes will also be highly 
ele v ant o v er the ne xt decade giv en the e xpected large sk y co v erage
nd redshift range of DESI and future spectroscopic surv e ys. 10 
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ttps:// github.com/DhayaaAnbajagane/ VelocityBias . We also pro-
ide a convenience script that parses the scaling parameter files, and
lso provides the theoretical b v prior while being able to interpolate
 v er host halo mass, galaxy stellar mass threshold, and redshift, as
eeded. 
The galaxy and halo catalogs for ILLUSTRISTNG , MAGNETICUM

ATHFINDER 

11 , and UNIVERSEMACHINE are all publicly available at
he repositories linked in Section 2. The data for THE300 , BAHAMAS ,
nd MACSIS are not available at a public repository, but can be
rovided on request. 
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Figure A1. The conditional satellite subhalo mass function for TNG300 
runs of different resolution (colours) for two redshifts (tones). We only show 

subhaloes within R 200c of host haloes with M 200c > 10 13 . 5 M �. The two 
higher resolution runs converge to the same answer across the whole mass 
range shown here, whereas the lowest resolution run begins diverging below 

M sub < 10 11 . 5 M �. 

Figure A2. The normalization of the satellite subhalo velocity dispersion 
scaling with host halo mass, for different subhalo mass thresholds (denoted 
here by M 

min 
sub ), and for the three different resolutions of the TNG300 suite. 

The normalizations of the TNG300-1 and TNG300-2 runs are quite similar, 
whereas the TNG300-3 run has a consistently larger normalization. The 
results for M sub > 10 11 M � are shown as open symbols to highlight that the 
different resolution runs have significant divergence in the satellite subhalo 
mass function at this subhalo mass, as shown in Fig. A1 . 
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PPEN D IX  A :  RESOLUTION  EFFECTS  

he simulations we consider in our analysis all have different 
strophysical model prescriptions, but the y also hav e different reso-
utions, and it is difficult to fully disentangle how much each effect
ontributes to the o v erall differences we observ e between simulations 
e.g. Fig. 4 ). To shed light on the impact of resolution, we use the
NG300 suite, which has three different resolution runs – TNG300-1, 
NG300-2, and TNG300-3 – to test the resolution dependence of our 
esults. Conveniently, the resolutions of TNG300-2 and TNG300-3 
re approximately that of MGTM and BM, respectively. Note that 
NG300-1 is the fiducial run that we have used throughout our main
nalysis. 

For this analysis, we focus only on the subhaloes, not galaxies. The
tellar mass in galaxies is lower in the lower resolution runs (Pillepich
t al. 2018b ) because the TNG astrophysical model parameters are
xed for all runs and are not re-tuned for each resolution level
Pillepich et al. 2018a ). Thus, the three TNG300 runs have different
-GSMFs, and a resolution test that uses galaxy properties would be
ffected by the absence of the recalibration step. As an alternative,
e use the subhalo mass, and limit this study to masses abo v e which

he satellite subhalo mass function of the three TNG300 runs, shown
n Fig. A1 , has approximately converged. 

Upon performing EVL for subhaloes, we find clear evidence that 
he normalizations increase with decreasing resolution (Fig. A2 ). 
he TNG300-1 and TNG300-2 runs show consistency amongst one 
nother for all redshifts, but TNG300-3 differs significantly from 

hese two. This is particularly interesting, as it mirrors our main result
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Figure B1. Evolution of the scaling parameters as a function of halo mass. 
We choose bins of width �M = 0 . 2 dex centered on an M 200c mass scale 
and compute the parameters using only haloes in those bins. Cosmologically 
mass-complete (mass-incomplete) simulations are shown with closed (open) 
circles. MDPL2 has both the original mass-complete sample, and a modified 
sample that mimics the mass-incompleteness resulting from the zoom-in 
nature of The300 simulations. The normalizations and slopes are statistically 
consistent with no mass-dependence. For the scatter, ho we ver, THE300 sho ws 
a strong dependence on halo mass, and the ‘incomplete’ MDPL2 sample 
captures this behaviour very well. 

Figure B2. The fractional difference between the EVL-derived and KLLR- 
derived estimate of the σDM 

–M 200c relation. For the likelihood, we present 
two versions – one where we use N part = 100 particles, and another where 
we use only N part = 10 particles. 
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here MGTM and TNG300 show similar normalizations, but BM
as a significantly higher one. Given that TNG300-2 and TNG300-3
hare similar resolution scales with MGTM and BM, respectively,
t is possible – though not necessary – that a significant part of the
iscrepancy in BM arises from just resolution differences. The slopes
nd scatters of the different runs (not shown here) are statistically
onsistent with one another. 

Note that the velocity bias is a ratio between the galaxy and DM
elocity dispersions and thus will be unaffected by resolution as
ong as both dispersions are similarly biased by resolution effects.
o we ver, in this section, we are not studying the impact of resolution
n b v , but rather pointing out that simulations that exist in the high-
ormalization end of our σsat, 1D results (Fig. 4 ) may suffer from
otential resolution issues. 

PPENDIX  B:  A D D I T I O NA L  M O D E L  TESTS  

ere, we detail two additional tests of the EVL model. We have
ssumed throughout our main analysis that our scaling parameters do
ot run with halo mass, and we validate this assumption in Section B1.
ext, in Section B2, we demonstrate the power of our likelihood
ethod in obtaining constraints even from very sparsely populated

ata 

1 Mass-dependence of galaxy EVL scaling parameters 

n our likelihood model, we assume that the slope α and scatter
are independent of host halo mass M 200c . We explicitly test this

ssumption by measuring the scaling relation parameters only using
ost haloes within mass bins of width 0.2 dex. The results are shown
n Fig. B1 , where the normalization is still quoted at a scale of
 ( z) M 200c = 10 14 M �. There are two sets of grey symbols (open
nd closed) – the closed grey symbols are results from the fiducial
DPL2 sample while the open grey symbols are results from the
DPL2 sample that has been modified to replicate the incomplete
ass function of THE300 . The latter is constructed by selecting all
DPL2 haloes of masses below which The300 sample is incomplete,

nd then preferentially selecting only those MDPL2 haloes that are
ithin 22 (comoving) Mpc of the larger haloes from the mass-

omplete part of the MDPL2 halo sample. We have verified the
onsistency between the mass functions of The300 and the modified
DPL2 sample. 
From our analysis we are able to mak e tw o claims: (i) TNG300,
GTM, and BM show no clear mass dependence in the parameters.

he variations are either stochastic, or are within the errorbars of the
easurements. (ii) The increased scatter in The300 at low halo mass

an be mimicked by a similar sample constructed using MDPL2.
hile we cannot make any robust claim on the cause of the increased

catter, this result implies the underlying cause is at least correlated
o a selection effect on the local environment of the low-mass haloes.

The slopes and normalizations shown in Fig. B1 are all statistically
onsistent with one another, with no preference for any mass
volution. Note that this is the case even for the modified MDPL2
ample. We take this as validation that THE300 sample’s mean
sat, 1D –M 200c relation is quite insensitive to the environment-based
ample selection for low-mass haloes, whereas the scatter is clearly
mpacted by this. Ho we ver, gi ven the velocity bias only depends on
he mean relation – and not the scatter – we continue using the entire

ass range of THE300 in our main analysis. 
NRAS 510, 2980–2997 (2022) 
2 Sparse sampling 

n our main analysis, we showed that the likelihood estimator
rovides result consistent with those from commonly used regression
ethods, in the limit N part � 1 (Fig. 2 ). Here, we test how well

he likelihood method does when we downsample the data set. We
erform the exact same analysis as in Fig. 2 , but instead of using N part 

 100 DM particles, we use only N part = 10 particles. We also focus
n the mean relation, σ DM 

–M 200c instead of its slope and scatter. 
We find that the results from the likelihood estimator are statis-

ically consistent with those from KLLR (Fig. B2 ). Even the upper

art/stab3587_fB1.eps
art/stab3587_fB2.eps


Calibrating the galaxy velocity bias 2997 

b  

K

A

F
(  

R  

g  

p
o
u  

R  

R  

t  

t  

o
 

b  

o  

A  

t  

d  

i  

v  

r  

c

D
ow

nloaded from
 https
ounds of the N part = 10 result are at most within 1 . 5 per cent of the
LLR estimate. 

PPEN D IX  C :  SENSITIVITY  TO  APERTURE  

or our main analysis, we have computed the velocity dispersion 
both for galaxies and DM) with an aperture defined by the radius
 200c . While this is a common choice for observational work on
alaxy velocity dispersions (e.g . Sif ́on et al. 2016 , F16 ), it is still a
otential free parameter in future analyses. Here, we redo our analysis 
f TNG300 but replace this aperture choice with two other commonly 
sed radii for cluster-scale haloes, R 500c and R 200m 

. Both differ from
 200c in only the density contrast used in the radius definition, with
 500c using ρ� 

= 500 ρc ( z), and R 200m 

using ρ� 

= 200 ρm 

( z). Note
hat our mass variable continues to be M 200c , as we are not studying
he impact of changing the spherical o v erdensity definition, but only
f changing the satellite galaxy (and DM particle) sample. 
We find that using smaller apertures leads to a higher velocity

ias (Fig. C1 ), and this trend was noted in previous studies of both
bservations (Sif ́on et al. 2016 ) and simulations (Lau et al. 2010 ;
rmitage et al. 2018 ; Ferragamo et al. 2020 ). We also find that

he relati ve dif ference between the b v from dif ferent apertures can
epend on M �, sat , M 200c , and z. This dependence arises from changes
n the normalization and slope of the σsat, 1D –M 200c relation due to
arying the aperture of the measurements. Note also that at high
edshift, where we have ρm ( z) ≈ ρc ( z) and so R 200m 

≈ R 200c , the bias
omputed within both radii are statistically consistent as expected. 
MNRAS 510, 2980–2997 (2022) 
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Figure C1. Similar to Fig. 6 , but for a single TNG300 sample with different aperture choices. Smaller apertures lead to a higher b v , and the relative differences 
between the b v of different apertures can depend on all of M �, sat , M 200c , and z. 
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