
Bell, PC

 Polynomially Ambiguous Probabilistic Automata on Restricted Languages

https://researchonline.ljmu.ac.uk/id/eprint/16436/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Bell, PC (2022) Polynomially Ambiguous Probabilistic Automata on 
Restricted Languages. Journal of Computer and System Sciences. ISSN 
0022-0000 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Polynomially Ambiguous Probabilistic Automata on
Restricted Languages

Paul C. Bell

Department of Computer Science, Byrom Street, Liverpool John Moores University,
Liverpool, L3-3AF, UK, p.c.bell@ljmu.ac.uk, https://orcid.org/0000-0003-2620-635X

Abstract

We consider the computability and complexity of decision questions for Proba-

bilistic Finite Automata (PFA) with sub-exponential ambiguity. We show that

the emptiness problem for strict and non-strict cut-points of polynomially am-

biguous commutative PFA remains undecidable, implying that the problem is

undecidable when inputs are from a letter monotonic language. We show that

the problem remains undecidable over a binary input alphabet when the input

word is over a bounded language, in the noncommutative case. In doing so, we

introduce a new technique based upon the Turakainen construction of a PFA

from a Weighted Finite Automata which can be used to generate PFA of lower

dimensions and of sub-exponential ambiguity. We also study freeness/injectivity

problems for polynomially ambiguous PFA and study the border of decidability

and tractability for various cases.

Keywords: Probabilistic finite automata; ambiguity; undecidability; bounded

language; formal language theory.

1. Introduction

Probabilistic Finite Automata (PFA) are a simple yet expressive model of

computation, obtained by extending Nondeterministic Finite Automata (NFA)

so that transitions from each state (and for each input letter) form probability

distributions. As input letters are read from some alphabet Σ, the automaton

transitions among states according to these probabilities. The probability of a
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PFA P accepting a word w ∈ Σ∗ is given by the probability of the automaton

being in one of its final states, denoted fP(w) = xTMw1
Mw2

· · ·Mwk
y, where

x represents the initial state, y represents the final state and each Mwi
is a row

stochastic matrix representing the transition probabilities for letter wi ∈ Σ.

The PFA model has been studied extensively over the years, ever since its

introduction by Rabin [1]; for example see [2] for a survey of 416 research papers

related to PFA in the eleven years since their introduction to just 1974. They

have been used to study Arthur-Merlin games [3], space bounded interactive

proofs [4], quantum complexity theory [5], the joint spectral radius and semi-

group boundedness [6], Markov decision processes and planning questions [7],

and text and speech processing [8] among many other applications.

There are a variety of interesting questions that one may ask about PFA. A

central question is the emptiness problem for cut-point languages; given some

probability λ ∈ [0, 1], does there exist a finite input word whose probability of

acceptance is greater than λ (i.e. does there exist w ∈ Σ∗ such that fP(w) >

λ, see Section 2.2). This problem is known to be undecidable [9], even for

a fixed number of dimensions and for two input matrices [10, 11]. A second

natural question is the freeness problem (or injectivity problem) for PFA, studied

in [12] - given a PFA P over alphabet Σ determine whether the acceptance

function fP(w) is injective (i.e. do there exist two distinct words with the same

acceptance probability).

When studying the frontiers of decidability of a problem, there are two

competing objectives, namely, determine the most general version of the problem

which is decidable, and the most restricted specialization which is undecidable;

the latter being the main focus of this paper.

Various classes of restrictions may be studied for PFA, depending upon the

structure of the PFA or on possible input words. Some restrictions relate to

the number of states of the automaton, the alphabet size and whether one de-

fined the PFA over the algebraic real numbers or the rationals. One may also

study PFA with finite, polynomial or exponential ambiguity (in terms of the

underlying NFA), PFA defined for restricted input words (for example those
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coming from regular, bounded or letter monotonic languages), PFA with iso-

lated thresholds (a probability threshold is isolated if it cannot be approached

arbitrarily closely) and commutative PFA, where all transition matrices com-

mute, for which cut-point languages and non-free languages generated by such

automata necessarily become commutative.

The cut-point emptiness problem for PFA is known to be undecidable for

rational matrices [9], even over a binary alphabet when the PFA has dimension

46 in [10]; later improved to dimension 25 [11]. The authors of [13] show that

the problem of determining if a threshold is isolated (resp. if a PFA has any

isolated threshold) is undecidable and this was shown to hold even for PFA with

420 (resp. 2354) states over a binary alphabet [10].

A natural restriction on PFA was studied in [14], where possible input words

of the PFA are restricted to be from some letter monotonic language of the

form L = a∗1a
∗
2 · · · a∗k with each ai ∈ Σ (analogous to a 1.5 way PFA, whose

read head may “stay put” on an input word letter but never moves left). In

other words, we ask if there exists some w ∈ L such that fP(w) > λ. This

restriction is inspired by the well-known property that many language-theoretic

problems become decidable or tractable when restricted to bounded languages,

and especially letter monotonic languages [15]. Nevertheless, the emptiness

problem for PFA on letter monotonic languages was shown to be undecidable

for high (but finite) dimensional matrices over the rationals via an encoding

of Hilbert’s tenth problem on the solvability of Diophantine equations and the

utilization of Turakainen’s method to transform weighted integer automata to

probabilistic automata [16].

The authors of [17] recently studied decision problems for PFA of various

degrees of ambiguity in order to map the frontier of decidability for restricted

classes of PFA. The degree of ambiguity of a PFA is a structural property, giv-

ing an indication of the number of accepting runs for a given input word and it

can be used to give various classifications of ambiguity including finite, polyno-

mial and exponential ambiguity (formal details are given in Section 2.3). The

ambiguity of a PFA is a property of the underlying NFA and is independent
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of the transition probabilities in so much as we only need care if the probabil-

ity is zero or positive. The degree of ambiguity of automata is a well-known

and well-studied property in automata theory [18]. The authors of [17] show

that the emptiness problem for PFA remains undecidable even for polynomially

ambiguous automata (quadratic ambiguity), before going on to show PSPACE-

hardness results for finitely ambiguous PFA and that emptiness is in NP for

the class of k-ambiguous PFA for every k > 0. The emptiness problem for PFA

was later shown to also be undecidable even for linearly ambiguous automata

in [19].

1.1. Our Contributions

In this paper, we show that the strict and nonstrict emptiness problems

are undecidable even for polynomially ambiguous commutative PFA when all

matrices are rational. This implies that undecidability holds even when the

input words come from a letter monotonic language (since the order of input

words is irrelevant, only the number of occurrences of each letter is important).

This combination of restrictions on the PFA significantly increases the difficulty

of proving undecidability. The study of PFA over letter monotonic languages is

a particularly interesting intermediate model, lying somewhere between single

letter alphabets (equivalent to Skolem’s problem [20]) and PFA defined with

multi-letter alphabets, for which most decision problems are undecidable. We

also show that the problem remains undecidable even for binary input alphabets,

although we only obtain the result for noncommutative PFA and when the input

words are from bounded, rather than letter monotonic, languages.

Theorem 1. The emptiness problem for polynomially ambiguous commuta-

tive probabilistic finite automata (and thus when inputs are restricted to letter

monotonic languages) is undecidable for strict/non-strict cut-points. The prob-

lem remains undecidable for a binary alphabet if letter monotonic languages are

replaced by bounded languages and we remove the commutativity restriction on

the PFA.
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We note a few difficulties with proving this result. Firstly, Post’s correspon-

dence problem, whose variants are often used for showing undecidability results

in such settings, is actually decidable over letter monotonic languages [21]1.

Secondly, although other reductions of undecidable computational problems to

matrices are possible, the standard technique of Turakainen (shown in [16]) to

modify such matrices to stochastic matrices introduces exponential ambiguity

(indeed all such matrices are strictly positive, and thus we might think of such

matrices as being maximally exponentially ambiguous)2. Finally, we note that

matrix problems for commutative matrices are often decidable; indeed there

are polynomial time algorithms for solving the orbit problem [23, 24] and the

vector reachability problem for commutative matrices [25]. Since the matrices

commute, it is the Parikh vector of letters of the input word which is important.

We use a reduction of Hilbert’s tenth problem and various new encoding

techniques to avoid the use of Turakainen’s method for converting from weighted

to probabilistic automata, so as to retain polynomial ambiguity. We use some

techniques to move from non-strict to strict emptiness and to consider binary

input alphabets. We then move on to the freeness/injectivity problem to show

the following two results.

Theorem 2. The injectivity problem for linearly ambiguous four state proba-

bilistic finite automata is undecidable.

Theorem 3. The injectivity problem for linearly ambiguous three-state proba-

bilistic finite automata, where inputs words are from a given letter monotonic

language, is NP-hard.

These results are proven via an encoding of the mixed modification PCP

and our new encoding technique and the injectivity problem for three state

1Although it is undecidable in general (i.e., not over a letter monotonic language) with an

alphabet with at least five letters [22].
2This is due to an essential step of the Turakainen procedure that adds a positive constant

offset to each element of every generator matrix, thus making all matrices strictly positive

[16].
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PFA over letter monotonic languages is NP-hard via an encoding of a variant

of the subset sum problem and a novel encoding technique.

In Section 2, we define some results and notations from linear algebra that

will be required, as well as some properties of probabilistic finite automata

and define Hilbert’s Tenth Problem which we later use in the main reduction.

Section 3 contains the main theoretical contribution, showing the proof of Theo-

rem 1. The undecidability of injectivity for linearly ambiguous PFA (Theorem 2)

and the NP-hardness of injectivity for letter monotonic languages (Theorem 3)

is then shown in Section 4. We conclude with some open problems.

A preliminary version of this manuscript was presented at [26].

2. Preliminaries

2.1. Linear Algebra

Given A = (aij) ∈ Fℓ×ℓ and B ∈ Fn×n, we define the direct sum A⊕B and

Kronecker product A⊗B of A and B by:

A⊕B =

 A 0m,n

0n,m B

 , A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

am1B am2B · · · ammB

 ,

where 0i,j denotes the zero matrix of dimension i×j. Note that neither ⊕ nor ⊗

are commutative in general. For two vectors u = (u1, . . . , um)T ∈ Fm and v =

(v1, . . . vn)
T ∈ Fn then we define u⊕ v = (u1, . . . , um, v1, . . . , vn)

T ∈ Fm+n by a

minor abuse of notation. Given a finite set of matrices G = {G1, G2, . . . , Gm} ⊆

Fn×n, ⟨G⟩ denotes the semigroup generated by G. We will use the following

notations:

m⊕
j=1

Gj = G1 ⊕G2 ⊕ · · · ⊕Gm,

m⊗
j=1

Gj = G1 ⊗G2 ⊗ · · · ⊗Gm

Given a matrix G ∈ Fn×n, we inductively define G⊗k = G ⊗ G⊗(k−1) ∈

Fnk×nk

for k > 0 with G⊗0 = 1 as the k-fold Kronecker power of G. Similarly,
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G⊕k = G ⊕ G⊕(k−1) ∈ Fnk×nk for k > 0 with G⊕0 being a zero dimensional

matrix. The rationale for the base cases is that G⊗G⊗0 = G⊗ 1 = G and that

G⊕G⊕0 = G as expected.

The following properties of ⊕ and ⊗ are well known and will be useful later.

Lemma 4. Let A,B,C,D ∈ Fn×n. We note that:

• Associativity - (A⊗B)⊗C = A⊗(B⊗C) and (A⊕B)⊕C = A⊕(B⊕C),

thus A⊗B ⊗ C and A⊕B ⊕ C are unambiguous.

• Mixed product properties: (A⊗B)(C⊗D) = (AC⊗BD) and (A⊕B)(C⊕

D) = (AC ⊕BD).

• If A and B are stochastic matrices, then so are A⊕B and A⊗B.

• If A,B ∈ Fn×n are both upper-triangular then so are A⊕B and A⊗B.

See [27] for proofs of the first three properties of Lemma 4. The fourth

property follows directly from the definition of the Kronecker sum and product

and is not difficult to prove.

2.2. Probabilistic Finite Automata (PFA)

A Probabilistic Finite Automaton (PFA) A with n states over an alphabet

Σ is defined as A = (x, {Ma|a ∈ Σ},y) where x ∈ Rn is the initial probability

distribution; y ∈ {0, 1}n is the final state vector and each Ma ∈ Rn×n is a (row)

stochastic matrix. A row stochastic matrix is a nonnegative matrix where each

row forms a probability distribution (i.e., the values in each row are nonnegative

and sum to 1). For a word w = w1w2 · · ·wk ∈ Σ∗, we define the acceptance

probability fA : Σ∗ → R of A as:

fA(w) = xTMw1
Mw2

· · ·Mwk
y,

which denotes the acceptance probability of w.3 If all transition matrices

{Ma|a ∈ Σ} commute, the the PFA is called a commutative PFA.

3Some authors interchange the order of x and y and use column stochastic matrices,

although the two definitions are trivially isomorphic.
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For any λ ∈ [0, 1] and PFA A over alphabet Σ, we define a cut-point language

to be: L≥λ(A) = {w ∈ Σ∗|fA(w) ≥ λ}, and a strict cut-point language L>λ(A)

by replacing ≥ with >. The (strict) emptiness problem for a cut-point language

is to determine if L≥λ(A) = ∅ (resp. L>λ(A) = ∅).

Let Σℓ = {x1, x2, . . . , xℓ} be an ℓ-letter alphabet for some ℓ > 0. A lan-

guage L ⊆ Σ∗
ℓ is called a bounded language if and only if there exist words

w1, w2, . . . , wm ∈ Σ+
ℓ such that L ⊆ w∗

1w
∗
2 · · ·w∗

m. A language L is called letter

monotonic if there exists letters u1, u2, . . . , um ∈ Σℓ such that L ⊆ u∗
1u

∗
2 · · ·u∗

m.

One thus sees that letter monotonic languages are more restricted than bounded

languages. We will be interested in PFA which are defined over a bounded

language or a letter monotonic language L, whereby all input words neces-

sarily come from L. In this case a cut-point language for a PFA A over

bounded/letter monotonic language L and a probability λ ∈ [0, 1] is defined

as L≥λ,L(A) = {w ∈ L|fA(w) ≥ λ}; similarly for nonstrict cut point languages.

We may then ask similar emptiness questions for such languages, as before.

We also study the freeness/injectivity problem for PFA. Given a PFA A over

alphabet Σ, determine whether the acceptance function fA(w) is injective (i.e.

do there exist two distinct words with the same acceptance probability). Such

problems can readily be studied when the input words are necessarily derived

from a bounded or letter monotonic language.

2.3. PFA Ambiguity

The degree of ambiguity of a finite automaton is a structural parameter,

roughly indicating the number of accepting runs for a given input word [18].

We here define only those notions required for our later proofs, see [18] for full

details of these notions and a thorough discussion.

Let w ∈ Σ∗ be an input word of an NFA N = (Q,Σ, δ, QI , QF ), with Q the

set of states, Σ the input alphabet, δ ⊂ Q×Σ×Q the transition function, QI the

set of initial states and QF the set of final states. For each (p, w, q) ∈ Q×Σ∗×Q,

let daN (p, w, q) be defined as the number of all paths for w in N leading from

state p to state q. We define δ∗ = {(p, w, q) ∈ Q× Σ∗ ×Q|daN (p, w, q) ̸= 0} as
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a transition on words (noting that δ = δ∗ ∩Q×Σ×Q) and we rename δ∗ by δ.

The degree of ambiguity of w inN , denoted daN (w), is defined as the number

of all accepting paths for w. The degree of ambiguity of N , denoted da(N ) is

the supremum of the set {daN (w)|w ∈ Σ∗}. N is called infinitely ambiguous if

da(N ) = ∞, finitely ambiguous if da(N ) < ∞, and unambiguous if da(N ) ≤ 1.

The degree of growth of the ambiguity of N , denoted deg(N ) is defined as the

minimum degree of a univariate polynomial h with positive integral coefficients

such that for all w ∈ Σ∗, daN (w) ≤ h(|w|) if such a polynomial exists, or

infinity otherwise. If such a polynomial does not exist, then we say the PFA

has exponential ambiguity (i.e., non-polynomial ambiguity).

The above notions relate to NFA. We may derive an analogous notion of

ambiguity for PFA by considering an embedding of a PFA P to an NFA N with

the property that for each letter a ∈ Σ, if the probability of transitioning from

a state i to state j is nonzero under P, then there is an edge from state i to j

under N for letter a. The degree of (growth of) ambiguity of P is then defined

as the degree of (growth of) ambiguity of N .

We may use the following notions to determine the degree of ambiguity of a

given NFA (and thus a PFA by the embedding discussed above) A as is shown

in the theorem which follows. A state q ∈ Q is called useful if there exists an

accepting path which visits q. See Figure 1 for examples.

EDA - There is a useful state q ∈ Q such that, for some word v ∈ Σ∗,

daA(q, v, q) ≥ 2.

IDAd - There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈

Σ∗ such that for all 1 ≤ λ ≤ d, rλ and sλ are distinct and (rλ, vλ, rλ), (rλ, vλ, sλ), (sλ, vλ, sλ) ∈

δ and for all 2 ≤ λ ≤ d, (sλ−1, uλ, rλ) ∈ δ.

Theorem 5 ([28, 29, 18]). An NFA (or PFA) A having the EDA property is

equivalent to it being exponentially ambiguous. For any d ∈ N, an NFA (or

PFA) A having property IDAd is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with

IDA1, . . . , IDAd−1. One must be careful with these notions of ambiguity when
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considering NFA/PFA A, where inputs are restricted to a bounded language L.

In such cases, the above criteria do not suffice to determine the ambiguity of

A, since the number of paths must be determined not over Σ∗, but over words

from L. Of course, the degree of ambiguity of A cannot increase by restricting

to a bounded input language, but it may decrease.

As an example, if an NFA N has property EDA, then there exist three words

w1, w2 and w3, as well as a useful state q such that w1w2w3 is an accepting

word and daN (q, w2, q) ≥ 2, thus w1w2w3 has at least two distinct accepting

runs. However, this implies that daN (w1w
k
2w3) ≥ 2k and thus w1w

k
2w3 has

at least 2k accepting runs. Now, if we are given some bounded language L

such that w1w2w3 ∈ L and daN (q, w2, q) ≥ 2 then the same implication is not

possible, unless w2 ∈ Σ is a single letter, otherwise there is no guarantee that

w1w
k
2w3 ∈ L. Nevertheless, in the results of this paper we will use the standard

definitions of ambiguity since the distinction is not relevant in our results as

will become clear (and especially in Theorem 1 for the results on commutative

PFA).

q1

q0start

q2

0 : 1
2

1 : 1
2

{0, 1} : 1
2

{0, 1} : 1
3

{0, 1} : 2
3

{0, 1} : 1

q0start q1

a : 1
2

a : 1
2

a : 1

Figure 1: The binary PFA on the left has polynomial (quadratic) ambiguity since it does not

satisfy condition EDA. Its transition matrices are upper-triangular; no transition leads from

qj to qi with i < j. The unary PFA on the right satisfies EDA and thus it has exponential

ambiguity.

We note the following trivial lemma, which will be useful later.

Lemma 6. Probabilistic finite automata defined over upper-triangular matrices
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are polynomially ambiguous.

Proof. Immediate from Theorem 5 and property (EDA), since a PFA defined

over upper-triangular matrices clearly does not have property (EDA). This is

since a transition matrix (for a letter ‘a’) which is upper-triangular only defines

transitions of the form δ(i, a) = j where i ≤ j and thus the states visited for

any run are monotonically nondecreasing.

2.4. Reducible Undecidable Problems

Our main result, Theorem 1 uses a reduction of Hilbert’s tenth problem: does

there exist an algorithm to determine if, for an arbitrary integer polynomial

P (n1, n2, . . . , nk) with k variables, there exist x1, x2, . . . , xk ∈ Z such that:

P (x1, x2, . . . , xk) = 0? It is well known that this may be reduced to a problem

in formal power series. It was shown in [30, p.73] that the above problem

can be reduced to that of determining for a Z-rational formal power series

S ∈ Z⟨⟨A⟩⟩, whether there exists any word w ∈ A∗ such that (S,w) = 0,

see [30] for details. The undecidability of this problem was shown in 1970 by

Y. Matiyasevich (building upon work of Davis, Putman, Robinson and others).

For details, see the excellent reference [31]. We may, without loss of generality,

restrict solutions to be over natural numbers [31, p.6].

3. Cut-point languages for polynomially ambiguous commutative PFA

It was proven in [14] that the emptiness problem is undecidable for prob-

abilistic finite automata even when input words are given over a letter mono-

tonic language, i.e., given a PFA P, a cutpoint λ ∈ [0, 1] and a letter monotonic

language L, it is undecidable to determine if {w ∈ L|fP(w)∆λ} is empty for

∆ ∈ {≤, <,>,≥}. The constructed PFA of [14] has exponential ambiguity,

due to the well-known Turakainen conversion of arbitrary integer matrices into

stochastic matrices [16]. Here, we show that the emptiness problem for PFA

over letter monotonic languages can also be achieved even when all matrices

have polynomial ambiguity by a modified Turakainen procedure. In fact we
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show that the emptiness problem for PFA with commuting transition matrices

is undecidable, and thus only the number, rather than the order, of the input

letters matter (i.e. the input word’s Parikh vector).

The following property of the Kronecker product will also be required for

the proof of Theorem 1.

Lemma 7. Let A1, . . . , Aℓ ∈ Fn×n. For any index sequence (i1, j1), . . . , (iℓ, jℓ) ∈

[1, n]× [1, n], there exists 1 ≤ i, j ≤ nℓ such that:

ℓ∏
m=1

(Am)im,jm =

(
ℓ⊗

m=1

Am

)
i,j

Proof. The proof proceeds by induction. For the base case when ℓ = 1, we just

set (i, j) = (i1, j1) and we are done. Assume that the result holds for some ℓ−1,

then for sequence (i1, j1), (i2, j2), . . . , (iℓ−1, jℓ−1) there exists 1 ≤ i′, j′ ≤ nℓ−1

such that:
ℓ−1∏
m=1

(Am)im,jm =

(
ℓ−1⊗
m=1

Am

)
i′,j′

By the definition of Kronecker product:((
ℓ−1⊗
m=1

Am

)
⊗Aℓ

)
ni′+iℓ,nj′+jℓ

=

ℓ−1∏
m=1

(Am)im,jm × (Aℓ)iℓ,jℓ

as required.

Note that we can of course work out the particular value of i and j, but in

general the formula for i, j does not have a nice form when ℓ > 2, and anyway

will not be necessary for us, so we settle for an existential proof of such i and j

(which can be easily computed if necessary).

3.1. Proof of Theorem 1

Proof. We begin with a proof sketch. We use a reduction of Hilbert’s tenth

problem to show our undecidability result. We first modify the Diophantine

equation P (x1, . . . , xt) = 0 to Ph(x0, x1, . . . , xt) = 0 such that Ph is nonnega-

tive and homogeneous (each term having the same degree), which is required for

12



later technical reasons. We then denote Ph as a sum of r terms Ph(x0, . . . , xt) =∑r
j=1 Tj(x0, . . . , xt). For each term Tj , we define a set of t + 1 integer ma-

trices, corresponding to a t + 1-letter weighted finite automaton4 defined by

(u′
j , {Xj,ℓ|0 ≤ ℓ ≤ t}, vj) such that (u′

j)
TXx0

j,0X
x1
j,1 · · ·X

xt
j,tv

′
j = Tj(x0, x1, . . . , xt).

We show how to convert each such weighted automata into a polynomially am-

biguous probabilistic automata with commuting transition matrices. We then

show how to combine these PFA into a larger PFA which encapsulates the sum

of terms, and thus the polynomial Ph and define a suitable cutpoint λ and letter

monotonic language L such that the non-strict emptiness problem for this PFA

is undecidable. We give a technique to obtain the result for strict emptiness

and then conclude by considering a binary alphabet and bounded languages.

Encoding Hilbert’s tenth problem to weighted finite automata - We

begin by encoding an instance of Hilbert’s tenth problem into a set of in-

teger matrices. Let P (x1, x2, . . . , xt) = 0 be a Diophantine equation where

xj ∈ N for each 1 ≤ j ≤ t. Determining if there exists a solution to this

equation over the naturals is undecidable [31]. Homogenenization of poly-

nomials is a well known technique, as is used for example in the study of

Gröbner bases [32], which allows us to convert such a Diophantine equation

to Ph(x0, x1, x2, . . . , xt) = 0 with a new dummy variable x0 such that Ph is a

homogeneous polynomial (each term having the same degree d) and for which

Ph(x0, x1, . . . , xt) = P (x1, x2, . . . , xt) when x0 = 1. We thus assume a homo-

geneous Diophantine equation Ph(x0, x1, . . . , xt) = 0 with implied constraint

x0 = 1 which will be dealt with later. Furthermore, we assume that Ph gives

nonnegative values, which may be assumed by redefining Ph = (Ph)2, which

clearly does not affect whether a zero exists for such a polynomial.

Notice that given A =

1 1

0 1

, then Ak =

1 k

0 1

. We will generalise this

4For our purposes here, a weighted finite automaton (WFA) is similar to a PFA, without

the stochastic restriction on transition matrices and the initial vector, with transition matrices

and initial/final vectors over the rationals.

13



property to a set of t+1 matrices A0, A1, . . . , At ∈ Z(t+3)×(t+3) so that given any

tuple (x0, x1, x2, . . . , xt), then xi appears as an element on the superdiagonal of

Ax0
0 Ax1

1 · · ·Axt
t for each 0 ≤ i ≤ t. We will also have the property that each Ai

has the same row sum of 2 for every row, which will be useful when we later

convert to stochastic matrices.

We define each matrix Ai for 0 ≤ i ≤ t+ 1 in the following way:

Ai =



1 δ0,i 0 · · · 0 0 1− δ0,i

0 1 δ1,i · · · 0 0 1− δ1,i

0 0 1 · · · 0 0 1− δ2,i
...

...
...

. . .
...

...
...

0 0 0 · · · 1 δt,i 1− δt,i

0 0 0 · · · 0 1 1

0 0 0 · · · 0 0 2


∈ N(t+3)×(t+3), (1)

where δℓ,i ∈ {0, 1} is the Kronecker delta (thus δi,i = 1 and δℓ,i = 0 for ℓ ̸= i).

We also denote J = At+1, noting that this is the matrix (1) when all δℓ,i have

the value 0. Notice then that every row sum of Ai and J is 2. The overall

structure of each Ai is retained under matrix powers and it is easy to see that:

Ak
i =



1 kδ0,i 0 · · · 0 0 2k − kδ0,i − 1

0 1 kδ1,i · · · 0 0 2k − kδ1,i − 1

0 0 1 · · · 0 0 2k − kδ2,i − 1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 kδt,i 2k − kδt,i − 1

0 0 0 · · · 0 1 2k − 1

0 0 0 · · · 0 0 2k


∈ N(t+3)×(t+3) (2)

All row sums of Ak
i are 2k and exactly one element of the superdiagonal

is equal to k, with all other elements on the superdiagonal (excluding that on

row t + 2) zero. Taking powers of Ai will allow us to choose any nonnegative

value of variable xi. Note that Jk has the same form as the matrix of (2) with

all δℓ,i = 0 and acts as a kind of identity matrix, (in its upperleft block) while

retaining the 2k row sum.
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Notice that that for 0 ≤ i, j ≤ t + 1 with i + 1 ̸= j, then AiAj = AjAi,

i.e. these matrices commute (similarly for J = At+1). This follows since in a

product AiAj , the main diagonal is always 1 excluding the bottom right element

(which is always 4) because the matrices are upper triangular. Since i+ 1 ̸= j,

if we exclude the right column and bottom row, (Ai)1..t+2,1..t+2 = Ii ⊕A⊕ It−i

with Iℓ the ℓ-dimensional identity matrix and A ∈ N2×2 defined as before. We

also have that (Aj)1..t+2,1..t+2 = Ij⊕A⊕It−j . In this case AiAj and AjAi have

the same upper left block, i.e.,

(AiAj)1..t+2,1..t+2 = (AjAi)1..t+2,1..t+2 = Ii ⊕A⊕ Ij−i−2 ⊕A⊕ It−j .

Since the right column preserves row sums then matrices Ai and Aj commute

so long as i + 1 ̸= j. We note that Ai and Ai+1 do not commute however.

Therefore, in order to get commutative matrices, we may instead use ma-

trices A0, A2, . . . , A2t, A2t+2 = J . This requires an increase of dimension to

N(2t+3)×(2t+3). We proceed with the proof using non-commuting A0, . . . , At+1

for ease of exposition, noting that we will later map Aℓ ∈ N(t+3)×(t+3) to

A2ℓ ∈ N(2t+3)×(2t+3) to obtain commutativity of these matrices. We now show

how to compute terms of Ph.

We may write Ph(x0, x1, . . . , xt) =
∑r

j=1 Tj(x0, x1, . . . , xt), where Tj de-

notes the j’th term of Ph, with Ph having r terms. Since Ph is a homogeneous

polynomial, each term has the same degree d. We may thus write each term as:

Tj(x0, x1, . . . , xt) = cjRj(x0, x1, . . . , xt), (3)

with cj ∈ Z and Rj(x0, x1, . . . , xt) =
∏t

ℓ=0 x
rj,ℓ
ℓ with rj,ℓ ≥ 0 and

∑t
ℓ=0 rj,ℓ = d.

For convenience, we define a d-dimensional vector sj =
⊕t

ℓ=0 ℓ
⊕rj,ℓ ∈ [0, t]d.

Recall that the direct sum of vectors gives a vector so sj is a monotonically

nondecreasing sequence of vectors with integer ℓ appearing rj,ℓ times for 0 ≤

ℓ ≤ t, i.e.,

sj =
(
0, . . . , 0︸ ︷︷ ︸

rj,0

, 1, . . . , 1︸ ︷︷ ︸
rj,1

, . . . , t, . . . , t︸ ︷︷ ︸
rj,t

)T ∈ [0, t]d

For example, if t = 3, d = 5 and Tj(x0, x1, x2, x3) = 6x0x
2
1x

2
3, thenRj(x0, x1, x2, x3) =
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x1
0x

2
1x

0
2x

2
3 and thus sj = (0, 1, 1, 3, 3)T ∈ [0, 3]5. By sj [i] we denote the i’th ele-

ment of vector sj .

We now define t+ 1 matrices corresponding to term Tj :

Xj,i =

i−1⊗
ℓ=0

J⊗rj,ℓ ⊗A
⊗rj,i
i ⊗

t⊗
ℓ=i+1

J⊗rj,ℓ ,

where 0 ≤ i ≤ t. The dimension of such matrices is (t + 3)d × (t + 3)d since

each submatrix has dimension (t+3)× (t+3) and we take the d-fold Kronecker

product. Similarly, we see that the row sum of each Xj,i is 2
d since the row sum

of each Ai and J is 2 and we take a d-fold Kronecker product. Clearly then, by

the mixed product property (see Lemma 4):

Xk
j,i =

i−1⊗
ℓ=0

(Jk)⊗rj,ℓ ⊗ (Ak
i )

⊗rj,i ⊗
t⊗

ℓ=i+1

(Jk)⊗rj,ℓ ,

for any k ≥ 0. In the example when rj,0 = 1, rj,1 = 2, rj,2 = 0, and rj,3 = 2,

then Xj,1 = J⊗1 ⊗ A⊗2
1 ⊗ J⊗0 ⊗ J⊗2 = J⊗1 ⊗ A⊗2

1 ⊗ J⊗2. We then see that

Xk
j,1 = (Jk)⊗1 ⊗ (Ak

1)
⊗2 ⊗ (Jk)⊗2.

Now, we see that:

Xx0
j,0X

x1
j,1 · · ·X

xt
j,t =

t∏
i=0

(
i−1⊗
ℓ=0

(Jxi)⊗rj,ℓ ⊗ (Axi
i )⊗rj,i ⊗

t⊗
ℓ=i+1

(Jxi)⊗rj,ℓ

)
(4)

=

d⊗
ℓ=0

(
Dx0

ℓ,0D
x1

ℓ,1 · · ·D
xt

ℓ,t

)
, (5)

where Dℓ,i ∈ {J,Ai} for 0 ≤ i ≤ t. The derivation of Eqn (5) from Eqn (4)

follows by the mixed product property of the Kronecker product (Lemma 4).

For each product Dx0

ℓ,0D
x1

ℓ,1 · · ·D
xt

ℓ,t, we see that Dℓ,sj [ℓ] = Asj [ℓ] and Dℓ,j = J

for all 0 ≤ j ≤ d with j ̸= sj [ℓ]. To continue our running example of sj =

(0, 1, 1, 3, 3)T ∈ [0, 3]5, we see that:

Xk0
j,0 = Ak0

0 ⊗ (Jk0)⊗2 ⊗ (Jk0)⊗0 ⊗ (Jk0)⊗2

Xk1
j,1 = Jk1 ⊗ (Ak1)⊗2 ⊗ (Jk1)⊗0 ⊗ (Jk1)⊗2

Xk2
j,2 = Jk2 ⊗ (Jk2)⊗2 ⊗ (Ak2)⊗0 ⊗ (Jk2)⊗2

Xk3
j,3 = Jk3 ⊗ (Jk3)⊗2 ⊗ (Jk3)⊗0 ⊗ (Ak3)⊗2
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Note that in each ‘column’ of the Kronecker product above, we have exactly

one Ai matrix, with the other elements J matrices. Then we see that, assuming

matrices {Ai|1 ≤ i ≤ t} ∪ J commute (e.g. by using our previous mapping to

increase the dimension of each Ai which we now assume), then by the mixed

product property of Kronecker products:

Xk0
j,0X

k1
j,1X

k2
j,2X

k3
j,3 = (Ak0

0 Jk1+k2+k3)⊗ (Ak1
1 Jk0+k2+k3)⊗2 ⊗ (Ak3

3 Jk0+k1+k2)⊗2

Back to the more general case since now {Ai|1 ≤ i ≤ t} ∪ J commute, we

may thus rewrite (5) as:

Xx0
j,0X

x1
j,1 · · ·X

xt
j,t =

d⊗
ℓ=0

(
A

xsj [ℓ]

sj [ℓ]
Jxsj [ℓ]

)
, where xsj [ℓ] =

∑
0≤q≤t
q ̸=sj [ℓ]

xq (6)

By Lemma 7, we see that some element of Xx0
j,0X

x1
j,1 · · ·X

kt
j,t is thus equal to

Rj(x0, x1, . . . , xt), since there is an element on the superdiagonal of A
xsj [ℓ]

sj [ℓ]
Jxsj [ℓ] ,

namely (A
xsj [ℓ]

sj [ℓ]
Jxsj [ℓ])sj [ℓ],sj [ℓ]+1, equal to xsj [ℓ] for each 0 ≤ ℓ ≤ d. Let us

assume that Rj(x0, x1, . . . , xt) appears at row i1 and column i2. Now, we may

define a vector u′
j = cjei1 and v′j = ei2 where cj is the coefficient of term Tj as

in Eqn (3) and ei1 , ei2 ∈ Z(2t+3)d are standard basis vectors. We may now see

that:

(u′
j)

TXx0
j,0X

x1
j,1 · · ·X

xt
j,tv

′
j = cjRj(x0, x1, . . . , xt) = Tj(x0, x1, . . . , xt) (7)

In order to derive the sum of the r such terms
∑r

j=1 Tj(x0, x1, . . . , xt), we

will utilise the direct sum. For 0 ≤ ℓ ≤ t, we define Y ′
ℓ by:

Y ′
ℓ =

r⊕
j=1

Xj,ℓ ∈ Nr(2t+3)d×r(2t+3)d

Defining u′′ = ⊕r
j=1u

′
j and v′′ = ⊕r

j=1v
′
j (recalling from Section 2.1 that the

direct sum of vectors is a vector), we now have a weighted finite automaton

(u′′, {Y ′
ℓ |0 ≤ ℓ ≤ t}, v′′) such that:

Ph(x0, x1, . . . , xt) = u′′T (Y ′
0)

x0(Y ′
1)

x1 · · · (Y ′
t )

xtv′′
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We now work to show how this can be converted to a probabilistic finite au-

tomaton, while retaining polynomial ambiguity and the commutativity of all

matrices.

Encoding to a probabilistic finite automaton - We first modify each Y ′
ℓ

so that they are row stochastic. We recall that the row sum of each Aℓ and J

is 2. Therefore, the row sum of each Xj,ℓ is 2d, since Xj,ℓ is a d-fold Kronecker

product of Ai and J matrices. Then the row sum of each Y ′
ℓ is also 2d since

direct sums do not modify the row sum. We thus see that Yℓ = 1
2d
Y ′
ℓ is row

stochastic.

We now consider the coefficients of each term. We previously defined u′
j by

u′
j = cjei1 and we may consider taking the Kronecker sum of each u′

j before

normalising the resulting vector (normalising according to L1 norm). We face an

issue however, since some coefficients cj may be negative and thus the resulting

vector is not stochastic (it must be nonnegative). Fortunately we may modify

a technique utilised by Bertoni [33] to solve this issue. Given a PFA for which

uTXv = λ ∈ [0, 1], then by defining v′ = 1− v where 1 is the all-one vector of

appropriate dimension (i.e. swapping between final and non final states), then

uTXv′ = 1− λ ∈ [0, 1].

Let us define uj = |cj |ei1 , which is similar to u′
j defined previously, but using

the absolute value of the corresponding coefficient. Now, since each Xj,ℓ has a

row sum of 2d and uj is of length |cj | (L1 norm), then Eqn. (7) can be adapted

to the following:

(uj)
TXx0

j,0X
x1
j,1 · · ·X

xt
j,t(1− vj) = |cj |2d(x0+x1+...+xt) − |cj |Rj(x0, x1, . . . , xt)

= |cj |2d(x0+x1+...+xt) + Tj(x0, x1, . . . , xt) (8)

Let us assume, without loss of generality, that we have arranged the terms

of Ph such that those terms with a positive coefficient (positive terms) appear

first, followed by those with a negative coefficient (negative terms). Since we

have r terms in Ph, there exists some 1 ≤ r′ ≤ r such that we have r′ postive

and r − r′ negative terms.

We define v =
⊕r′

j=1 vj⊕
⊕r

j=r′+1(1−vj) ∈ {0, 1}r(2t+3)d as the final vector,
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so that we take the Kronecker sum of all final vectors, but we swap final and

non-final states for the negative terms.

We now define the initial vector u, which must be a probability distribution.

Let g =
∑r

j=1 |cj | be the sum of absolute values of coefficients and define u =

1
g

⊕r
j=1 uj ∈ [0, 1]r(2t+3)d . Note that u is stochastic (a probability distribution).

We now see that:

uTY0Y
x1
1 · · ·Y xt

t v (9)

=

∑r′

j=1 uj

(⊗d
ℓ=0 A

xsj [ℓ]

sj [ℓ]
⊗ Jxsj [ℓ]

)
vj +

∑r
j=r′+1 uj

(⊗d
ℓ=0 A

xsj [ℓ]

sj [ℓ]
⊗ Jxsj [ℓ]

)
(1− vj)

g2d(1+x1+···+xt)

Here we used the definition of matrices Yi and Eqn. (6) to rewrite the expressions

for Xj,0 · · ·Xj,t. Notice that the power of Y0 (i.e. x0) is set at 1, since that

constraint is required by the conversion from a standard Diophantine polynomial

to a homogeneous one as explained previously. Now, using Eqn. (7) and Eqn. (8),

we can rewrite Eqn. (9) as:∑r′

j=1 Tj(1, x1, . . . , xt) +
∑r

j=r′+1

(
|cj |2d(1+x1+...+xt) + Tj(1, x1, . . . , xt)

)
g2d(1+x1+···+xt)

(10)

=

∑r
j=r′+1 |cj |

g
+

∑r′

j=1 Tj(1, x1, . . . , xt) +
∑r

j=r′ Tj(1, x1, . . . , xt)

g2d(1+x1+···+xt)
(11)

=
g′

g
+

Ph(1, x1, . . . , xt)

g2d(1+x1+···+xt)
, (12)

where g′ =
∑r

j=r′+1 |cj |. We therefore define P = (u, {Ya|a ∈ Σt}, v) and

Σt = {0, 1, . . . , t} as our PFA, with letter monotonic language L = 01∗2∗ · · · t∗

and λ = g′

g ∈ [0, 1] ∩ Q as the cut-point. There exists some word w =

01x12x2 · · · txt ∈ L such that fP(w) ≤ λ if and only if Ph(1, x1, x2, . . . , xt) =

0. To see this, assume that Ph(1, x1, x2, . . . , xt) = 0, then Eqn. (12) says

that uTY0Y
x1
1 · · ·Y xt

t v = g′

g . For the other direction, Eqn.( 12) implies that

uTY0Y
x1
1 · · ·Y xt

t v > g′

g if Ph(1, x1, x2, . . . , xt) ̸= 0 since Ph is a nonnegative

polynomial as defined.

Therefore the non-strict emptiness problem for P is undecidable on letter

monotonic languages. Since P is upper-triangular, then it is polynomially am-

biguous. We note the surprising fact that all generator matrices are in fact
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commutative (each Xj,i is commutative and direct sums do not affect commu-

tativity), which leads to the undecidability of non-strict cut-points for polyno-

mially ambiguous PFA defined over commutative matrices. In this case, the

order of the input word in irrelevant, only the Parikh vector of alphabet letters

is important. To remove the constraint on using letter ‘0’ once, we may redefine

u = uY0 and L = 1∗2∗ · · · t∗ to remove Y0 and all constraints on L. The result

now holds for commutative PFA as required.

We have shown the undecidability of emptiness of {w : fP(w) ≤ λ and w ∈

L}. It remains to show how to modify the PFA so that we obtain undecid-

ability for inequalities ≥, <, and >, and when the alphabet is binary (but then

over a bounded language rather than letter monotonic language and for non-

commuting matrices).

Emptiness for strict cutpoints is undecidable - Let us first prove that

determining the emptiness of {w : fP(w) < λ and w ∈ L} is undecidable; i.e.

the strict emptiness problem. We proceed with a technique inspired by [34].

Notice that for all w ∈ L, then fP(w) is of the form:

g′

g
+

Ph(1, x1, . . . , xt)

g2d(1+x1+···+xt)
= λ+

Ph(1, x1, . . . , xt)

g2d|w| , (13)

as can be seen from (12), where λ = g′

g ∈ Q ∩ [0, 1] and Ph(1, x1, . . . , xt) ∈ N,

since Ph is nonnegative and Diophantine. Therefore fP(w) ≤ λ if and only if

fP(w) < λ + 1
g2d|w| . Let us adapt P in the following way. We add three new

states, denoted q0, qF and q∗. State q0 is a new initial state which, for any

input letter, has probability 1
2r of moving to each of the r initial states of P and

probability 1
2 to move to new state qF . Recall that P has r initial states, one

for each term. State qF is a new final state that remains in qF for any input

letter with probability 1− 1
g2d

and moves to a new non accepting absorbing sink

state q∗ with probability 1
g2d

. Let us denote the new PFA P<. We now see that

for any a ∈ Σt:

fP<
(aw) =

1

2
fP(w) +

1

2

(
1− 1

g|w|2d|w|

)
If there exists some word w1 ∈ L such that fP(w1) ≤ λ then fP(w1) = λ and
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thus:

fP<
(aw1) =

1

2
λ+

1

2

(
1− 1

g|w1|2d|w1|

)
<

1

2
(λ+ 1).

For any w2 ∈ L such that fP(w2) > λ then fP(w2) ≥ λ+ 1
g2d|w2| by (13). Thus:

fP<(aw2) ≥
1

2

(
λ+

1

g2d|w2|

)
+

1

2

(
1− 1

g|w2|2d|w2|

)
>

1

2
(λ+ 1).

Therefore determining if there exists w ∈ A such that fP<
(w) < 1

2 (λ + 1), i.e.

the strict emptiness problem for P< on cutpoint 1
2 (1+λ) with letter monotonic

language L, is undecidable as required. Note that the modifications to P retain

polynomial ambiguity since q0 has no incoming edges, qF has only one outgoing

edge (to q∗) and one self loop and q∗ has no outgoing edges other than a self loop,

therefore property EDA does not hold. We may also see that commutativity of

the PFA is unaffected since P< is identical to P except for adding three new

states, each of which behave identically for all input letters.

Finally, let P≥ be a PFA identical to P except that all final states and

non-final states are interchanged. Clearly then fP = 1 − fP≥ and thus since

emptiness of {w : fP(w) ≤ λ and w ∈ L} is undecidable, we see that emptiness

of {w : fP≥(w) ≥ λ and w ∈ L} is also undecidable. To see that fP = 1− fP≥

retains polynomial ambiguity, note that the only change is to the final state

vector. The introduction of states q0, qF and q∗ cannot lead to a violation of

the EDA property since q0 has no incoming transitions, q∗ only has a self loop

and qF has a self loop and a transitions to q∗ and thus there cannot be two

distinct transitions from qF back to itself. A similar idea shows undecidability

for inequality >, mutatis mutandis.

Binary alphabets and bounded languages - We conclude this section by

showing the undecidability of emptiness of polynomially ambiguous PFA over a

binary alphabet and bounded languages (i.e., for a PFA defined on two letters,

where the input words can come from a defined bounded language). To do so, we

utilise a modification of a standard trick. Let P≥ = (u, {Ya|a ∈ Σt}, v) as above,

where the dimension of the vectors (and square matrices) is ς = r(2t+3)d. Let

Ik denote the k × k identity matrix for k > 0. Define Y = Y0 ⊕ Y1 ⊕ · · · ⊕ Yt
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and Z =

 0 Itς

Iς 0

 so that Y,Z ∈ Q(t+1)ς×(t+1)ς and let u′ = (uT , 0, . . . , 0)T

and v′ = (vT , 0, . . . , 0)T , with u′, v′ ∈ Q(t+1)ς . It is not difficult to verify that

Zt+1 = I(t+1)ς and:

ZiY Zt+1−i = Yi ⊕ Yi+1 ⊕ · · · ⊕ Yt ⊕ Y0 ⊕ · · ·Yi,

where 0 ≤ i ≤ t, thus we permute the blocks of Y . Any product containing

at least one Y factor thus has a top left ς × ς block of either the zero matrix

or some Yi. For any matrix Yi1 · · ·Yip ∈ ⟨Y0, . . . , Yt⟩, there exists a matrix in

⟨Y,Z⟩ where Yi1 · · ·Yip appears as the top left block, specifically:

Zi1Y Zt+1−i1 · Zi2Y Zt+1−i2 · · ·ZipY Zt+1−ip

Since only the first ς elements of u′ and v′ are nonzero, then:

u′TZi1Y Zt+1−i1 · Zi2Y Zt+1−i2 · · ·ZipY Zt+1−ipv′ = uTYi1 · · ·Yipv

If the top left ς × ς block of some F ∈ ⟨Y,Z⟩ is zero, then clearly u′TFv = 0.

Notice that Y and Z are stochastic matrices (though no longer commutative)

and remain polynomially ambiguous (since only the product of the top left blocks

of Y,Z is important given that u′, v′ are only nonzero for their first ς elements

and the top left blocks are upper triangular), therefore the strict emptiness

problem for P ′ = (u′, {Y,Z}, v′) is undecidable over bounded language L′ =

(z0yzt+1)∗(z1yzt)∗ · · · (ztyz1)∗ with y mapping to Y and z mapping to Z.

4. Injectivity problems for polynomially ambiguous PFA

We now study the injectivity of acceptance probabilities of polynomially am-

biguous PFA. The next result begins with an adapted proof technique from [14],

where the undecidability of the injectivity problem (called the freeness problem

in [14], although we here rename it injectivity) was shown for exponentially

ambiguous PFA over five states. We show that the injectivity problem remains

undecidable even when the PFA is polynomially ambiguous and over four states
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by using our new encoding technique (avoiding the Turakainen procedure which

increases the matrix dimensions by two and generates an exponentially ambigu-

ous PFA). We will require the following undecidable problem for our reduction,

which is a variant of the famous Post’s Correspondence Problem (PCP).

Problem 8 (Mixed Modification PCP (MMPCP)). Given a binary alphabet

Σ2, a finite set of letters Σ = {s1, s2, . . . , sℓ}, and a pair of homomorphisms

h, g : Σ∗ → Σ∗
2, the MMPCP asks to decide whether there exists a word w =

x1 . . . xk ∈ Σ+, xi ∈ Σ such that:

h1(x1)h2(x2) . . . hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj ̸= gj .

Theorem 9. [35] - The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

4.1. Proof of Theorem 2

Proof. Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets

and h, g : Σ∗ → ∆∗ be an instance of the mixed modification PCP. The naming

convention will become apparent below. We define two injective mappings α, β :

(Σ ∪∆)∗ → Q by:

α(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)j−1,

β(xi1xi2 · · ·xim) = Σm
j=1ij(n+ 1)−j ,

where α(ε) = β(ε) = 0 and each 1 ≤ ij ≤ n. Thus α represents xi1xi2 · · ·xim

as a reverse (n+ 1)-adic number and β represents xi1xi2 · · ·xim as a fractional

number (0.xi1xi2 · · ·xim)(n+1) (e.g. if n = 9, then x1x2x3 is represented as

α(x1x2x3) = 32110 and β(x1x2x3) = 0.12310, where subscript 10 denotes base

10). Note that ∀w ∈ (Σ ∪ ∆)∗, α(w) ∈ N and β(w) ∈ [0, 1) ∩ Q. It is not

difficult to see that ∀w1, w2 ∈ (Σ ∪ ∆)∗, (n + 1)|w1|α(w2) + α(w1) = α(w1w2)

and (n+ 1)−|w1|β(w2) + β(w1) = β(w1w2).

Define γ′′ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3 by:

γ′′(u, v) =


(n+ 1)|u| 0 α(u)

0 (n+ 1)−|v| β(v)

0 0 1

 .
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It is easy to verify that γ′′(u1, v1)γ
′′(u2, v2) = γ′′(u1u2, v1v2), i.e., γ

′′ is a ho-

momorphism.

Let G′′ = {γ′′(xi, g(xi)), γ
′′(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n − 2}, S ′′ = ⟨G′′⟩,

ρ′′ = (1, 1, 0)T and τ ′′ = (0, 0, 1)T . Assume that there existM1 = Gi1Gi2 · · ·Git ∈

⟨G′′⟩ and M2 = Gj1Gj2 · · ·Gjt′ ∈ ⟨G′′⟩ such that t ̸= t′ or else at least one

Gip ̸= Gjp where 1 ≤ p ≤ t and λ = ρ′′TM1τ
′′ = ρ′′TM2τ

′′ (i.e., M1 and M2 are

generated in two different ways). We see that:

λ = ρ′′TM1τ
′′ = α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit)),

λ = ρ′′TM2τ
′′ = α(xj1xj2 · · ·xjt′ ) + β(f ′

1(xj1)f
′
2(xj2) · · · f ′

t′(xjt′ )),

where each fi, f
′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1)∩Q, ∀w ∈ (Σ∪∆)∗,

injectivity of α and β implies that if ρ′′TM1τ
′′ = ρ′′TM2τ

′′, then t = t′

and ik = jk for 1 ≤ k ≤ t. Furthermore, if ρTM1τ = ρTM2τ , we have

that β(f1(xi1)f2(xi2) · · · ft(xit)) = β(f ′
1(xi1)f

′
2(xi2) · · · f ′

t(xit)) and since at least

one fp ̸= f ′
p for 1 ≤ p ≤ t by our above assumption, then this corresponds

to a correct solution to the MMPCP instance (h, g). On the other hand, if

there does not exist a solution to (h, g), then β(f1(xi1)f2(xi2) · · · ft(xit)) ̸=

β(f ′
1(xi1)f

′
2(xi2) · · · f ′

t(xit)), and injectivity of β implies that ρ′′TM1τ
′′ ̸= ρ′′TM2τ

′′.

We now use our new technique to encode such matrices and vectors to a

linearly ambiguous four state PFA. We first define a mapping γ′ : (Σ ∪∆)∗ ×

(Σ ∪∆)∗ → N3×3 to make all matrices be nonnegative integral:

γ′(u, v) = (n+ 1)|v|γ′′(u, v) =


(n+ 1)|u|+|v| 0 (n+ 1)|v|α(u)

0 1 (n+ 1)|v|β(v)

0 0 (n+ 1)|v|

 ∈ N3×3

We next define the following morphism γ : (Σ∪∆)∗×(Σ∪∆)∗ → Q4×4 to make

all such matrices be row stochastic:

γ(u, v) = (n+ 1)−k


(n+ 1)|u|+|v| 0 (n+ 1)|v|α(u) δ1

0 1 (n+ 1)|v|β(v) δ2

0 0 (n+ 1)|v| δ3

0 0 0 δ4

 ,
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where δj ∈ N are chosen so that the row sum of each row of γ(u, v) is (n+1)k for

some k. Any sufficiently large k can be used so long as each row has the same

sum (n+1)k and thus γ(u, v) becomes row stochastic. We use the same k value

for all matrices of G which we define as G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤

i ≤ n− 2}, so that S = ⟨G⟩, and finally ρ = (1, 1, 0, 0)T and τ = (0, 0, 1, 0)T are

the initial and final state vectors respectively.

Note that the PFA defined by P = (ρ,G, τ) has linear ambiguity which we

now prove. Let Σ be the input alphabet for P. For a PFA to have quadratic

ambiguity it should satisfy the IDA2 property as shown in §4 of [18]. This

would imply that there exist useful states r1, s1, r2, s2 ∈ {1, 2, 3, 4} and words

v1, u2, v2 ∈ Σ∗ with r1 ̸= s1 and r2 ̸= s2 such that the following transitions are

present (i.e., these transitions have nonzero probability):

(r1, v1, r1), (r1, v1, s1), (s1, v1, s1), (s1, u2, r2),

(r2, v2, r2), (r2, v2, s2), (s2, v2, s2). (14)

The only useful states of P for each letter (those leading to the final state 3)

are {1, 2, 3}. If r1 is state 1 then s1 is state 3 but state 3 does not transition to

any other useful state. A similar reasoning holds if r1 is state 2 or 3 and thus

IDA2 does not hold and P has only linear ambiguity.

Assume that there exist M1 = Gi1 · · ·Git ∈ ⟨G⟩ and M2 = Gj1 · · ·Gjt′ ∈ ⟨G⟩

such that t ̸= t′ or else at least one Gip ̸= Gjp for 1 ≤ p ≤ t and λ = ρTM1τ =

ρTM2τ . We see that:

λ = ρTM1τ = (n+ 1)−kt (α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit))) ,

λ = ρTM2τ = (n+ 1)−kt′
(
α(xj1xj2 · · ·xjt′ ) + β(f ′

1(xj1)f
′
2(xj2) · · · f ′

t′(xjt′ ))
)
,

where each fi, f
′
i ∈ {g, h}. If t = t′, then the same argument as previously

shows that ik = jk for 1 ≤ k ≤ t. If t ̸= t′, assume without loss of generality

that t′ < t. In this case we see that:

(n+1)−kt′′ (α(xi1 · · ·xit) + β(f1(xi1) · · · ft(xit))) = α(xj1 · · ·xjt′ )+β(f ′
1(xj1) · · · f ′

t′(xjt′ )),

where t′′ = t− t′. This is a contradiction however since the number of nonzero

digits (where a digit is understood base (n + 1) here) in the left hand side of
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this expression is exactly 2t, and the number of digits in the right expression is

2t′ < 2t. Note that the multiplication by (n+1)−kt′′ does not alter the number

of nonzero digits, it is only a right shift of all digits, kt′′ times. Thus, since the

left and right sides have a different number of nonzero digits they cannot be

equal and thus t = t′ as required.

4.2. Proof of Theorem 3

Proof. We use a reduction from the equal subset sum problem, defined thus:

given a set of positive integers S = {x1, x2, . . . , xk} ⊆ N, do there exist two

disjoint nonempty subsets S1, S2 ⊆ S such that
∑

ℓ∈S1
ℓ =

∑
m∈S2

m? This

problem is known to be NP-complete [36]. Note that although there is a re-

quirement that the sets S1 and S2 be disjoint, this is not crucial so long as

S1 ̸= S2 (since if some element xj is in both S1, S2, then the equality also holds

when xj is removed from both sets). We may therefore require that S1 ̸= S2,

with both nonempty such that the sum of elements of each set is identical. We

define the set of matrices M = {Ai, Bi|1 ≤ i ≤ k} ⊆ Q3×3 in the following way:

Ai =
1

xi + 1


1 xi 0

0 1 xi

0 0 xi + 1

 , Bi =
1

xi + 1


1 0 xi

0 1 xi

0 0 xi + 1


Note that Ai and Bi are row stochastic. Let u = (1, 0, 0)T be the initial

probability distribution, v = (0, 1, 0)T be the final state vector and let P =

(u, {Ai, Bi}, v) be our PFA. Define letter monotonic language L = (a1|b1)(a2|b2) · · · (ak|bk) ⊆

a∗1b
∗
1a

∗
2b

∗
2 · · · a∗kb∗k and define a morphism φ : {ai, bi|1 ≤ i ≤ k}∗ → {Ai, Bi|1 ≤

i ≤ k}∗ as φ(ai) = Ai and φ(bi) = Bi. Now, for a word w = w1w2 · · ·wk ∈ L,

note that wj ∈ {aj , bj} for 1 ≤ j ≤ k. Define that v(ai) = xi and v(bi) = 0. In

this case, we see that (due to the structure of Ai and Bi):

uTφ(w1w2 · · ·wk)v =
1∑k

j=1(xj + 1)

k∑
ℓ=1

v(wℓ)

Note of course that the factor 1∑k
j=1(xj+1)

is the same for any w ∈ L.
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Assume then that there exists two words α, β ∈ L with α ̸= β such that

uTφ(α)v = uTφ(β)v (i.e. assume that P is not injective). Then
∑k

ℓ=1 v(αℓ) =∑k
i∈S1

xi =
∑k

i∈S2
xi =

∑k
ℓ=1 v(βℓ), where S1 = {xi; |α|ai

> 0} and S2 =

{xi; |β|ai > 0}. This is true if and only if the instance S of the equal subset sum

problem has a solution as required (note that only the empty set has a sum of

zero which has unique representation b1 · · · bk).

To show that P is linearly ambiguous, we prove it does not satisfy the IDA2

property [18], i.e., there do not exist useful states r1, s1, r2, s2 ∈ {1, 2, 3, 4},

words v1, u2, v2 ∈ Σ∗ with r1 ̸= s1 and r2 ̸= s2 such that the transitions given

in Eqn. (14) are present.

The only useful states of P for each letter (those leading to the final state

2) are {1, 2}. There is no transition from state 2 to 1 thus r1 = 1, s1 = 2 which

constrains r2 = 2 and s2 = 2 which contradicts r2 ̸= s2 and thus P does not

have quadratic ambiguity.

5. Conclusion

There are a variety of open problems remaining. For example, does Theo-

rem 1 still hold for quadratic ambiguity, when taken alongside the other con-

straints (letter monotonic language and commutative matrices). Another direc-

tion is to improve the complexity lower bound of Theorem 3 to show it is either

PSPACE-hard, EXPSPACE-hard or undecidable, under the same constraints

as in the theorem statement.
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