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ABSTRACT 12 

Members of the mammalian order Carnivora are rarely considered as proxies for 13 

palaeoecological reconstructions due to their broad phenotypic plasticity and high climatic 14 

tolerance. However, palaeontologists have traditionally interpreted the appearance of some 15 

particular carnivoran species in relation to major climatic events. The ‘wolf event’ 16 

characterised the inset of climatic deterioration for continental Eurasian fauna, ca 2.0 million 17 

years ago. It was defined as the dispersal of cursorial wild canids from East Asia to Europe 18 

consequently to the spread of the steppe environment. Anecdotal interpretations were never 19 

supported by rigorous testing about the palaeoecological significance of these canid taxa. 20 

Here, we employ two dimensional geometric morphometrics of canid skulls to characterise 21 

and interpret the structure of extant guilds and its relationship with climate and provide 22 
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inferences on the early Pleistocene Valdarno community. Averaged skull size and shape of 23 

canid guilds are currently associated with climatic parameters that reflect annual mean 24 

temperature, seasonality and precipitation. The canid guild from Valdarno showed a clustered 25 

phylogenetic structure and its average shape resembles those of communities characterised by 26 

relatively high seasonal environments. This study supports the use of canid community 27 

structure for palaeoclimatic reconstructions and validate the early Pleistocene as a period of 28 

climatic deterioration for Eurasian large mammal fauna.          29 

 30 

Keywords: Canidae, geometric morphometrics, skull, guild, Quaternary, Plio-Pleistocene, 31 

wolf event, ecometrics, functional richness, paleoecology  32 

 33 

 34 

1. Introduction 35 

Faunal responses to environmental changes are well documented across many 36 

mammalian groups (Blois and Hadly, 2009). Primary consumers such as ungulates or rodents 37 

are expected to be directly influenced by vegetation showing individualistic (Jernvall et al., 38 

1996; Eronen et al., 2010; Damuth and Janis, 2011) and group response to major climatic 39 

events (Fortelius et al., 2002; Mihblacher et al., 2011; Schap et al., 2021). In turn, secondary 40 

consumers such as members of the order Carnivora (=carnivorans) have a comparatively 41 

good record of biological trait changes (i.e., body size) in relation to climate (Klein and Scott, 42 

1989; Meiri et al., 2004, 2009; Clauss et al., 2013), but variation at the community level 43 

through space and time is not well understood. Recently, the employment of ecometrics 44 

(Polly et al., 2011) has provided an explicit tool to test for the response of averaged biological 45 

traits across animal communities through space and time. Polly (2010) and Polly et al. (2017) 46 
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demonstrated that calcaneal gear ratio in Carnivora is a good proxy for locomotor behaviour 47 

as its changes at community level can be tracked in relation to climate on a continental scale. 48 

The same holds for the temporal scale where changes in calcaneal gear ratio have been 49 

identified within fossil cat communities from North America across the Neogene (Polly, 50 

2020).  51 

Other aspects of carnivorans postcranial morphology have been equally investigated 52 

to identify habitat and climatic adaptations in extant and fossil species (Lewis, 1997; Meloro, 53 

2011a; Meloro et al., 2013; Meloro and Louys, 2015; Meachen et al., 2016; Meloro and de 54 

Oliveira, 2019; Tomya and Meachen, 2018) together with cranial and dental metrics. The 55 

latter elements traditionally received much more attention due to their diagnostic taxonomic 56 

significance. In this regard, the seminal work of Van Valkenburgh and many others (Van 57 

Valkenburgh, 1985, 1988, 2007; Turner, 1990; Wesley-Hunt, 2005; Meloro, 2011b) 58 

supported ecomorphological stasis of the carnivoran feeding morphologies across time. 59 

Terrestrial carnivores evolved distinct feeding adaptations very early in their evolutionary 60 

history (Meloro and Raia 2010; Slater and Friscia, 2019; Meloro and Tamagnini, 2021) thus 61 

showing little variation at community level through space and time (Meloro, 2011a). On the 62 

other hand, Dalerum et al. (2009) and Dalerum (2013) noted that modern carnivore guilds are 63 

functionally depleted in several continents and their functional diversity and taxonomic 64 

richness changes at large continental scale. This suggests that trophic morphology can be 65 

confidently used as a proxy to detect subtle changes in carnivore community structures linked 66 

to complex evolutionary processes (Dalerum, 2013). 67 

The end of Pliocene/beginning of Pleistocene was traditionally identified as an important 68 

benchmark for the Eurasian continental fauna due to the renewal of the carnivoran guilds 69 

(defined as a group of species that exploit the same class of environmental resources in a 70 

similar way, Simberloff and Dayan, 1991) concomitant with dramatic climatic changes. 71 
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Azzaroli (1983) proposed the term “wolf event” to characterise the dispersal of large 72 

cursorial canids, i.e., Canis etruscus, Canis arnensis, and Lycaon falconeri, (Rook and Torre, 73 

1996; Rook and Martinez-Navarro, 2010), from Asia to Western Europe and the 74 

Mediterranean region occurring ca 2.0 Ma (Azzaroli et al., 1988; Masini and Torre, 1990; 75 

Napoleone et al., 2001; Augustì and Antòn, 2002). Re-evaluation of the canid fossil record 76 

supported members of the genus Canis to sporadically appear much earlier than 2.0 Ma in the 77 

Chinese and European fossil record (Sotnikova and Rook, 2010; Jangzuo, 2021) and the 78 

“wolf event” has now been substituted by the “Pachycrocuta brevirostris event” of 1.8 Ma, 79 

due to the over-abundance of the giant hyena species in fossil sites (Martínez-Navarro, 2010; 80 

Rook and Martínez-Navarro, 2010). The Miocene rise of canid diversity has been equally 81 

linked to environmental changes in North America (Figueirido et al., 2015) due to the 82 

evolution of highly cursorial forms concomitant with the spread of the grassland ecosystem. 83 

Emergence of this pattern left open the question about association between canid 84 

morphological diversity and climate. Several authors provided insights into the 85 

ecomorphological characterisation of the Plio-Pleistocene dogs (Brugal and Boudadi-86 

Maligne, 2010; Meloro, 2011c; Cherin et al., 2013, 2014; Flower and Schreve, 2014; 87 

Bartolini Lucenti and Rook, 2016; Jiangzuo et al., 2018; Koufos, 2018; Bartolini Lucenti et 88 

al., 2021, 2020, 2017; Bartolini Lucenti and Spassov, 2022), but still a re-evaluation of their 89 

palaeoecological significance for palaeoclimatic reconstruction is needed. 90 

Here, we employ 2D geometric morphometrics (gmm) in conjunction with comparative 91 

methods to test for association between canid morphological diversity and climate in modern 92 

ecosystems. Recent work already highlighted for South American canids a significant 93 

association between cranial morphology and climatic adaptation at species (Zurano et al. 94 

2017) and community level (Bubadué et al., 2016). Such a test based on worldwide canid 95 

guilds will allow us predicting climatic adaptations of Plio-Pleistocene canid community that 96 
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characterised the “wolf event”. Meloro et al. (2015) already demonstrated that gmm of the 97 

ventral cranium successfully characterise feeding ecology of extant and fossil canids and this 98 

will be equally employed here to investigate trophic diversity at guild level. 99 

 100 

2. Material and methods 101 

2.1 Sample 102 

We collected data for 105 skulls of extant canid species (see Meloro et al. 2017 for 103 

specimen details) and four complete fossil skulls belonging to three species of the Early 104 

Pleistocene (= Upper Villafranchian) Valdarno faunal community mainly housed in Natural 105 

History Museum, Geology and Paleontology section, University of Florence (Italy): Canis 106 

etruscus (IGF 12867), Canis arnensis (two specimens, IGF 601 and IGF 867) and Lycaon 107 

falconeri (AMNH 97052 in Rook 1994 [Plate 1, page 73]). Although this specimen is 108 

referred to Canis (Xenocyon) antonii it represents the only complete skull representative of 109 

Lycaon falconeri (sensu Martínez-Navarro and Rook, 2003; but see Palmqvist et al. 1999 for 110 

a deformed specimen from Venta Micena) and it compares well with fragmentary Valdarno 111 

specimens so that Tedford et al. (2009) placed this specimen directly basal to the Valdarno 112 

taxon. The extant canid dataset was categorised into 33 OTUs (= Operational Taxonomic 113 

Unit) representative of 24 extant canid species. Multiple OTUs were selected when specimen 114 

geographic location was available for the species with particularly large range size (e.g., the 115 

red fox, Vulpes vulpes or the grey wolf, Canis lupus). In these cases, specimens were 116 

averaged per geographic area (e.g., all the red foxes from North America vs the ones from 117 

Eurasia) and treated as separate OTUs. This procedure allowed to account for (when 118 

possible) intraspecific phenotypic variation related to geography.    119 
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To characterise worldwide morphological variation of canid communities, we selected 120 

from the MAB database (http://www.ice.ucdavis.edu/bioinventory/bioinventory.html) 13 121 

national parks representative of distinct climatic regions (a minimum of 3 canid species / site 122 

was allowed, see Meloro, 2011a). These included: Lake Torne Area (Sweden, N = 3), 123 

Daweishan Nature Reserve (China, N = 3), Kanha Tiger Reserve (India, N = 4), Azraq 124 

Wetland Reserve (Israel, N = 3), Radom National Park (Sudan, N = 3), Dana Biosphere 125 

Reserve (Jordan, N = 4), Amboseli (Kenya, N = 5), Yellowstone (Montana, N = 3), El Morro 126 

National Monument (New Mexico, N = 4), Reserva de biosphere de Cerrado (Brazil, N = 3), 127 

Iguazu National Park (Brazil/Argentina, N = 3), Estacion Biologica Beni (Ecuador, N = 4), 128 

and Reserva Provincial San Guilllermo (Argentina, N = 3). 129 

These geographic locations were representative of the extant worldwide canid guild variation, 130 

and they were used as a comparative sample to characterise the fossil community from the 131 

Valdarno basin (ca 1.9 – 1.83 Ma).  132 

 133 

2.2 Phylogeny 134 

A molecular phylogeny inclusive of 33 living OTUs was constructed using the 10k tree 135 

project database (Arnold et al., 2010). We selected both species and subspecies of canids for 136 

which genetic data were available. When subspecies genetic data were not present (e.g., for 137 

the red fox, while for the grey wolf we included the Himalayan and Indian subspecies) 138 

polytomies were constructed at the basis of the species node. Time of divergences for 139 

polytomies were estimated to a minimum of 1.0 Ma, based on dates obtained for other 140 

subspecies with molecular record. After generating the topology with branch lengths as time 141 

of divergence for extant species, we added the position of the fossil taxa (OTU = 3) from 2.0 142 

Ma following Tedford et al. (2009). Branch lengths for these taxa were based on their first 143 

and last occurrence (as in Raia et al., 2013). The final tree resulted in a non-ultrametric 144 

http://www.ice.ucdavis.edu/bioinventory/bioinventory.html
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phylogeny inclusive of 36 OTUs of which three were fossils (see Supplementary Material, 145 

https://data.mendeley.com/datasets/42zgw9pkz2/draft?a=788baf9c-8415-40f5-b279-146 

1d2f551289ef). 147 

 148 

Fig. 1. Map showing the geographic locations of the 13 national parks selected to represent 149 

variation in canid guild composition worldwide (A). Locations are colour coded according to 150 

their climatic similarity. A plot of BIO1 (Annual Mean Precipitation) vs BIO2 (Annual 151 

Precipitation) indicates the general climatic cluster for the selected locations. In B the 152 

distribution of fossil sites that recorded presence of the three Pleistocene canids (Canis 153 

etruscus, Canis arnensis and Lycaon falconeri) based on the paleobiology database 154 

(https://paleobiodb.org/#/). Note that overlap among the three species occurs only in the Val 155 

d’Arno province (Tuscany, central Italy) and to lesser extent in the Apulia region.  156 

https://data.mendeley.com/datasets/42zgw9pkz2/draft?a=788baf9c-8415-40f5-b279-1d2f551289ef
https://data.mendeley.com/datasets/42zgw9pkz2/draft?a=788baf9c-8415-40f5-b279-1d2f551289ef
https://paleobiodb.org/#/
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2.3 Geometric morphometrics 157 

The skulls were photographed in ventral view at 1 meter distance using a Nikon D40 158 

attached to a Manfrotto tripod. They were placed on the floor and a spirit level was 159 

positioned on the palate to ensure parallelism between the palatal plane, the floor, and the 160 

camera plane (Meloro et al., 2015). The software tpsDig2 (Rohlf, 2015) was employed to 161 

digitize 23 anatomical landmarks (Fig. 2) to cover palatal, dental, zygomatic and occipital 162 

region. A similar configuration was employed by Bubadué et al. (2016) to investigate South 163 

American canid guilds. Landmarks were digitized only by one user (CM) and a subsample of 164 

three skulls was digitized three times over three different days to test for digitalisation error 165 

(in all cases no differences occurred in the size and shape variables between replicas, 166 

Procrustes ANOVA p = 0.99).  167 

 168 

Fig. 2. Skull of Vulpes vulpes showing the landmark configurations employed to describe 169 

skull size and shape in Canidae. (1) tip of the snout defined by middle point between the first 170 

two frontal incisors, (2) posterior tip of the third incisor, (3) anterior tip of canine, (4) 171 

posterior tip of canine, (5, 6, 7, 8, 9) outline of carnassial tooth (P4), (10-11) central and 172 

posterior labial edges of molar one, (12, 13) cusps of molar one, (14) anterior tip of molar 173 
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one, (15)  (17, 18, 19) outline of the occipital condyle; (20) junction of the stiff and hard 174 

palate, (21) palatine-maxilla suture, (22) posterior and (21) anterior tip of the incisive 175 

foramen. Scale bar equals 1 cm. 176 

 177 

A Generalized Procrustes analysis (GPA) (Rohlf and Slice, 1990) was used to rotate, 178 

translate, and scale landmark configurations to unit centroid size (CS = the square root of the 179 

sum of squared distances of the landmarks from their centroid; Bookstein, 1989). To 180 

visualize the multivariate ordination of the aligned specimens in relation to their relative 181 

reconstructed ancestral nodes, we generated a phylomorphospace (Sydlauskas, 2008; 182 

Sakamoto and Ruta, 2012) as a principal component analysis (PCA) of the procrustes shape 183 

coordinates. Additionally, phylogenetic signal for size and shape data was tested using the R 184 

function ‘physignal’ (Adams, 2014). Allometry defined as the influence of size on shape 185 

variation (Klingenberg, 2016) was tested in our 36 OTUs sample using the function 186 

‘procD.lm’ and ‘procD.pgls’ included in the R package “geomorph” (Adams and Otarola-187 

Castillo, 2013) to account for the phylogenetic covariance matrix (Adams and Collyer, 2018).   188 

Due to some species phenotype being present in multiple guilds (e.g., Chrysocyon 189 

brachyurus is found in Reserva de biosphere de Cerrado, Iguazu and Estacion Biologica 190 

Beni) a ‘guild’ morphospace (n-taxa = 48) was generated using replicas of PC scores from 191 

the 36 OTU morphospace. This allowed testing size and shape differences due to guild 192 

membership using non-parametric Kruskal-Wallis (for size) and non-parametric MANOVA 193 

with 9,999 permutations. To test multivariate dispersion of shape data around their centroid, 194 

we computed per-group (guilds) morphological disparity (=MD) as the average Euclidean 195 

distance from group centroid, and then we performed a permutation test using ‘betadisper’ 196 

and ‘permutest’ functions available in the R package ‘vegan’ (Oksanen et al., 2013) to assess 197 

the significance in disparity differences between guilds. The same procedure was applied to 198 

test the dispersion of size data around their centroid. 199 
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2.4 Phylogenetic structure and environmental variables  200 

We characterized each canid guild using metrics of phylogenetic distances between 201 

the taxa (PD), net relatedness index (NRI) and nearest taxon index (NTI) (Webb et al., 2002). 202 

These metrics are descriptors of community composition based on phylogenetic relationships 203 

observed for each canid assemblage. They have been used extensively in community ecology 204 

of extant and fossil mammals and they are better descriptors of community structure than 205 

species richness (Raia, 2010; Kamilar et al., 2015). We employed the package picante that 206 

computes PD, mnpd (= mean nearest taxon phylogenetic distance, NRI = mnpd*-1) and 207 

mnptd (= mean nearest taxon phylogenetic distance, NTI = mnptd*-1) and compares their 208 

distribution with random models generated after 9,999 permutations.      209 

Additionally, the climate theoretically experienced by each of the 13 extant canid 210 

guilds was described using nineteen bioclimatic variables as defined in Hijmans et al. (2005). 211 

Geographic location for the centroid of each national park selected was assumed to be a good 212 

spatial proxy for their climatic condition (see Meloro, 2011b). The nineteen bioclimatic 213 

variables were extracted from the centroid of each national park using the WorldClim 214 

Database (Hjmans et al., 2005) with a 2.5 arc spatial resolution.  215 

 216 

2.5 Ecometric association and climate prediction 217 

Each of the 14 canid guilds (13 extant plus one fossil) analysed can be phenotypically 218 

described using ecometrics (Polly et al., 2011). Morphological disparity (=MD, the 219 

morphospace volume occupied by each community) of shape and size represents a potential 220 

ecometrics that we tested for association with phylogenetic community structure and climate 221 

using non-parametric correlations (see also Meloro, 2011a). Work by Polly (2010, 2020) and 222 

Polly et al. (2017) also highlighted the potential of using averaged traits as ecometrics, so we 223 

opted to characterize each canid guild using skull shape consensus configuration. In our case, 224 
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the ecometric trait was multivariate (n = 46 procrustes coordinates) and we employed 225 

different strategies to test for association with phylogenetic structure and climate.  226 

Firstly, we applied the clustering UPGMA (=unweighted pair group method with 227 

arithmetic mean) method based on the procrustes distances between averaged skull shape of 228 

canid guilds. This allowed to graphically identify similarities between canid guilds based on 229 

their averaged skull shape. Same procedure was applied to generate cophenetic trees based on 230 

the Euclidean distance matrices of phylogenetic community descriptors (PD, NRI and NTI) 231 

and selected bioclimatic variables that were associated with averaged skull shape. Each 232 

bioclimatic variable was tested for association with averaged skull shape using multivariate 233 

regression with permutation and retained for further analyses, all the others were discarded. 234 

Mantel test was employed to verify association between procrustes and phylogenetic and/or 235 

bioclimatic distance matrices. When climatic variables were concerned, the fossil community 236 

was not included in the analyses.  237 

Secondly, two-blocks Partial Least Squares (Rohlf and Corti, 2000) was applied to 238 

test association between averaged skull shape and the previously selected bioclimatic 239 

variables. This analysis is based on a singular value decomposition of the matrix of 240 

covariances between two sets of variables that in our case are the block “climate” (the 241 

selected bioclimatic variables per guild, appropriately standardised) and the block “averaged 242 

guild shape” (the consensus configuration obtained for each guild).  243 

We employed robust regression models to reconstruct bioclimatic variables for 244 

Valdarno fossil community when univariate ecometric traits (MD of size and shape) and 245 

phylogenetic community descriptors were used as independent variables. A projection of the 246 

Valdarno community into the PLS climate-shape morphospace was also employed and based 247 

on predicted PLS1 climatic scores, bioclimatic variables were extrapolated. To obtain 248 

Valdarno climatic score in PLS space we opted to use linear model and robust regression. 249 
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Both methods were considered to explore their suitability for climatic predictions. Robust 250 

regression is generally less dependent on assumptions concerning data distribution and it is 251 

much less sensitive to outlier, which can be common in palaeocological studies (Gebregiorgis 252 

et al. 2020). The most likely climatic variables were identified subsequently based on the 253 

accuracy of each univariate or multivariate predictor. 254 

 255 

3. Results 256 

3.1 Shape and size analysis 257 

Phylomorphospace identified a clear distinction between the members of Old World 258 

Canini tribes and Vulpini and New World Canini. Significant overlap occurred between Old 259 

and New World foxes (Fig. 3). PC1 describes shape changes in the skull related to the 260 

relative proportion of the palate. On the negative scores, Otocyon, Nyctereutes and South 261 

American genera are characterised by very short muzzle and upper dentition, while on 262 

positive PC1 wolves and fossil Lycaon falconeri show a broader and wider palate and upper 263 

dentition. On PC2 taxa are partitioned based on the relative position of the zygomatic arch 264 

with hypercarnivorous species (e.g., the arctic wolf Canis lupus arctos, Lycaon and Cuon) 265 

exhibiting negative scores, while hypocarnivores have positive scores (Fig. 3). 266 

 Although low, phylogenetic signal was significant in this canid shape sample (Kmultiv 267 

0.2042, P-value: 0.001). When size was analysed, a stronger and still significant signal was 268 

identified (K: 0.5023, P-value: 0.001). There was a significant impact of size on skull shape 269 

in the sample of 36 OTUs (33 living + 3 fossils), however this pattern was not valid when 270 

accounting for phylogeny (Table 1). 271 

 272 
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Table 1. Procrustes ANOVA without (OLS) and with (PGLS) phylogenetic correction to test 273 

for the impact of size on shape variation in 36 canid OTUs. Significant p values are 274 

highlighted in bold.  The test was implemented with 9,999 permutations. 275 

     Df SS MS Rsq F Z Pr(>F) 

Allometry 

OLS 

Centroid Size 1 0.020 0.020 0.159 6.435 4.702 0.001 

Residuals 34 0.106 0.003     

Total 35 0.126      

PGLS 

Centroid Size 1 0.001 0.001 0.046 1.640 0.886 0.339 

Residuals 34 0.026 0.001     

Total 35 0.028      
 276 

 277 

Fig. 3. A, Phylomorphospace for skulls of 33 canid taxa (OTUs). B, Thin plate spline 278 

showing skull shape deformation from the most extreme negative to the positive scores along 279 

PC1 (horizontal) and PC2 (vertical).   280 
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The 14 guilds (13 extant plus 1 fossil) did not show any difference in average skull 281 

size (K-W = 10.57, p=0.647) as well as shape (Tot SS = 0.164, Within-group SS = 0.107, F = 282 

1.39, p = 0.068). Similarly, the betadisper analysis returned a non-significant result when 283 

performed on both size and shape variables (p-value = 0.901 and p-value = 0.246 284 

respectively) showing that variances were homogeneously distributed between canid guilds 285 

(Table 2).  286 

 287 

Table 2. Species richness, morphological disparity for shape and size, phylogenetic distance 288 

(PD), net relatedness index (NRI) and nearest taxon index (NTI) computed for each extant 289 

canid guild and the fossil one from Valdarno. In bold the guild NRI and NTI values 290 

significantly different from random expectation. 291 

Guild # Species MDshape MDsize PD NRI NTI 

St Biol Beni 4 0.0030 0.0526 70.2970 1.7201 1.4311 

Lake Torne 3 0.0040 0.0847 87.9814 -0.4364 -0.0186 

Iguazu 3 0.0029 0.0681 64.0416 1.2882 1.0657 

Cerrado 3 0.0041 0.0658 62.0618 1.3452 1.2552 

Daweishan 3 0.0026 0.0793 110.1744 -1.2361 -2.0509 

Kanha Tiger  4 0.0022 0.0800 93.2464 0.2288 0.0271 

Azraq 3 0.0028 0.0811 85.1021 -0.3341 0.2489 

Dana 4 0.0045 0.0822 94.6436 0.1510 0.0158 

Amboseli 5 0.0056 0.0808 110.1736 0.4570 -0.7491 

Yellowstone 3 0.0030 0.0820 84.5699 -0.3280 0.2968 

El Morro 4 0.0018 0.0749 100.0086 -0.7041 0.9462 

San Guillermo 3 0.0020 0.0677 42.8479 2.5570 2.3372 

Radom 3 0.0019 0.0779 91.6090 -0.5789 -0.3578 

Valdarno 3 0.0047 0.0763 61.6456 1.4894 0.9919 

 292 

 293 

3.2 Phylogenetic community composition and climate 294 

Table 2 reports PDI, NRI and NTI for each canid guild. Only the Patagonian canid 295 

community of San Guillermo showed a significant phylogenetic clustering due to the 296 

presence of three foxes all belonging to the same genus Lycalopex. The canid guild from 297 
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Sweden (arctic ecosystem) showed the lowest NRI and NTI values but was not significantly 298 

over-dispersed. 299 

Spearman non-parametric rank correlation was employed to explore association 300 

between univariate ecometrics, phylogenetic descriptors and climate. Averaged skull size of 301 

canid communities was significantly associated with several bioclimatic variables (BIO1, 302 

BIO3, BIO4, BIO7, BIO15, BIO19) while morphological shape disparity correlated with PD 303 

and NTI (Table 3). Among the other parameters, also NRI exhibited a significant relationship 304 

with bioclimatic variables 3, 4 and 7 (Table 3).  305 

Multivariate regressions allowed the selection of 10 bioclimatic variables that were 306 

significantly (P < 0.001) associated with averaged skull shape. These included BIO1 (Annual 307 

Mean Temperature) that explained 26.34% of shape variance, BIO3 (Isothermality, 31.95% 308 

var.), BIO4 (Temperature Seasonality, 40.44% var.), BIO6 (Min Temperature of Coldest 309 

Month, 36.32% var.), BIO7 (Temperature Annual Range , 45.86%), BIO8 (Mean 310 

Temperature of Wettest Quarter, 38.67%), BIO11 (Mean Temperature of Coldest Quarter, 311 

33.65% var.), BIO12 (Annual Precipitation, 32.79% var.), BIO16 (Precipitation of Wettest 312 

Quarter, Precipitation of Warmest Quarter, 22.64% var.) and BIO18 (39.53% var.). All the 313 

other bioclimate variables were discarded from further analyses. 314 

 315 
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Table 3. Spearman correlation coefficient (below diagonal) and their respective P values (above) to test degree of univariate association between 316 

bioclimatic parameters and ecometrics of canid guilds. Only three bioclimatic indices were significantly associated with NRI. All the other 317 

associations were non-significant. BIO1 Annual Mean Temperature, BIO3 Isothermality, BIO4 Temperature Seasonality, BIO7 Temperature 318 

Annual Range, BIO15 Precipitation Seasonality, BIO19 Precipitation of Coldest Quarter. Significance is highlighted in bold. 319 

 320 

 
Ln CS MD Shape MD Size PD NRI NTI BIO1 BIO3 BIO4 BIO7 BIO15 BIO19 

Ln CS — 0.721 0.901 0.775 0.112 0.721 0.027 0.025 0.024 0.035 0.049 0.010 

MD Shape -0.110 — 0.803 0.021 0.144 0.009 0.482 0.831 0.817 0.802 0.748 0.364 

MD Size 0.038 0.077 — 0.448 0.094 0.603 0.668 0.471 0.181 0.296 0.529 0.394 

PD 0.088 0.632 0.231 — 0.008 0.001 0.803 0.374 0.316 0.157 0.517 0.642 

NRI -0.462 -0.429 -0.484 -0.698 — 0.010 0.344 0.033 0.010 0.004 0.831 0.694 

NTI -0.110 -0.692 -0.159 -0.824 0.687 — 0.775 0.255 0.364 0.425 0.494 0.517 

BIO1  -0.610 0.214 -0.132 0.077 0.286 -0.088 — 0.046 0.007 0.077 0.008 0.128 

BIO3 -0.615 0.066 -0.220 -0.269 0.593 0.341 0.560 — 0.000 0.001 0.297 0.133 

BIO4 0.621 -0.071 0.396 0.302 -0.687 -0.275 -0.703 -0.923 — 0.000 0.162 0.128 

BIO7 0.587 -0.077 0.314 0.416 -0.741 -0.242 -0.507 -0.799 0.893 — 0.522 0.343 

BIO15 -0.555 0.099 -0.192 0.198 0.066 -0.209 0.698 0.313 -0.412 -0.196 — 0.001 

BIO19 0.681 -0.275 0.258 -0.143 -0.121 0.198 -0.445 -0.440 0.445 0.287 -0.808 — 
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UPGMA trees showed distinct community associations depending on the use of 321 

average skull shape, phylogenetic descriptors or climate (Fig. 4).  322 

 323 

Fig. 4. UPGMA trees based on procrustes distance metrics (A), phylocom distance matrix (B) 324 

and Euclidean distances obtained from 19 bioclimatic variables (C). In C the fossil Valdarno 325 

community was not included due to the lack of climatic data.  326 

 327 

Based on shape, the fossil community Valdarno is basal to a cluster that separates all canid 328 

communities of Old World from those of New World (Fig. 4A). If phylocom is considered, 329 

Valdarno clusters with South American communities since it includes all members belonging 330 

to the same genus (Fig. 4B) while when bioclimatic variables are concerned, two clusters 331 

showed differences between more seasonal (mostly Old World canid communities except 332 

Chinese and Indian) and less seasonal areas (Fig. 4C).  333 

Mantel test was significant only when average cranial shape distance matrix was 334 

contrasted with climate distance matrix between the guilds (z =3692.987; p = 0.005). The 335 

morphological distances between guilds were not associated with phylocom distances (z = 336 

83.26294; p = 0.283) and the latter was equally not related to climatic distances (z=1781194; 337 

p = 0.231). 338 

 339 

3.3 Two blocks PLS and Valdarno reconstruction 340 
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Two blocks PLS returned a significant result when contrasting the averaged skull shape 341 

variables against the pre-selected ten bioclimatic variables with the first pair of vectors 342 

showing strong positive correlation (p-value = 0.002; r-PLS1 = 0.91; see Fig. 5). 343 

 344 

Figure 5. Scatterplot showing the first pair of Partial Least Squares vectors obtained from 345 

testing association between averaged skull shape vs selected bioclimatic variables for each 346 

extant guild. Deformation grids show shape changes in correspondence of the extremes of the 347 

first PLS vector, while variable profiles give the estimate of the standardized scores of each 348 

bioclimatic variable (including BIO1, 3, 4, 7, 8, 11, 12, 13, 14) as vertical lines extending 349 

from a horizontal axis corresponding to the mean. Valdarno-L = projected score of fossil 350 

guild based on linear regression; Valdarno-R=project score of fossil guild based on robust 351 

regression.  352 
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On the negative PLS1 scores, canid communities are characterised by relatively longer 353 

muzzle and wider teeth, traits associated with high temperature seasonality (BIO4) and 354 

temperature annual range (BIO7) but lower temperature parameters (BIO1, 3, 6, 8 11) and 355 

precipitation (BIO12, 13, 14). On the PLS1 positive scores, neotropical communities from 356 

South America clusters in relation to their higher temperature and precipitation parameters. 357 

The average shape of these communities shows a relatively shorter muzzle and wider 358 

zygomatic arch. A projection of Valdarno into PLS morphospace based on linear regression 359 

function (Valdarno-L, Fig. 5) clusters this community at the basis of the most seasonal extant 360 

guild (Lake Torne). If robust regression is applied to predict PLS climatic score, the Valdarno 361 

community show a much higher value in climate vector compatible with that of Daweishan 362 

Reserve (China, Fig. 5).   363 

The PLS1 climatic scores of Valdarno have a strong impact on the predictions of bioclimatic 364 

variables depending on if linear or robust model is assumed to be correct (Table 4).  365 

 366 

Table 4. Climatic parameters reconstructed for Valdarno canid guild based on multiple 367 

methods (PLS = projection of Partial Least Square scores on first PLS climate vector, NRI = 368 

net relatedness index).  369 

  PLS-L  PLS-R NRI  

BIO1 Annual Mean Temperature 0.722 12.539 - 

BIO3 Isothermality 36.575 51.823 64.369 

BIO4 Temperature Seasonality 899.962 542.734 221.9 

BIO6 Minimum Temp. Coldest Month -19.941 0.4508 - 

BIO7 Temperature annual range 39.662 28.965 25.301 

BIO8 Mean Temperature of wettest quarter 4.592 15.213 - 

BIO11 Minimum Temp. Coldest Quarter -12.201 5.7216 - 

BIO12 Annual Precipitation 473.500 1143.41 - 

BIO16 Precipitation of Wettest Quarter 56.780 396.036  

BIO18 Precipitation of Warmest Quarter 130.425 91.277 - 

 370 
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Reconstructions based on lower score of linear model support Valdarno canid community to 371 

be adapted to very cold and harsh conditions with average annual temperature of 0.72 degrees 372 

Celsius, high temperature seasonality (BIO4) and relatively low precipitations (BIO12, 16, 373 

18). The use of score obtained from robust regression model provides for Valdarno a 374 

relatively higher annual temperature (12.53 degrees Celsius) although lower than those 375 

experienced by extant canid communities in East Asia, and a seasonality and precipitation 376 

parameter compatible (but still lower) with the Indian ecosystem of Kanha Tiger reserve.  377 

NRI is also a univariate trait that allows predictions for BIO3, 4 and 7 with parameters 378 

generally similar to that of PLS climatic robust score. Although the centroid size averaged by 379 

community correlated with many bioclimatic parameters (Table 3), no linear model turned to 380 

be significant so no predictions could be made based on this metric.  381 

   382 

4. DISCUSSION  383 

Palaeoenvironmental reconstruction is a challenging task that requires a multidisciplinary 384 

approach. So far, mammalian community structures have been used to predict 385 

palaeoenvironments (Reed, 1998; Fernández and Paláes-Campomanes, 2003; Fernández and 386 

Vrba, 2006; Rodriguez et al., 2006; Louys et al., 2011, 2015; Kovarovic et al., 2018) 387 

however, there is a multitude of traits and categories that investigators can employ. We 388 

demonstrate that average skull shape is a reasonably good ecometric trait to characterise 389 

extant canid guilds, hence this approach could also be applied to other mammalian groups to 390 

improve palaeoenvironmental reconstruction. 391 

 392 

4.1 Palaeoecology of Valdarno canids based on skull morphology   393 
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Most of extant canids are secondary consumers with a catholic diet that allowed them 394 

to adapt to a multitude of environments (Sillero-Zubiri et al., 2004). Biogeographical events 395 

(e.g., the canid invasion of South America) generated unique signatures in canid community 396 

composition whose structural changes might reflect evolutionary history as well as 397 

adaptations to local conditions (Bubadué et al., 2016). In keeping with Meloro et al. (2017), 398 

the canid skull shape data exhibit a significant phylogenetic signal in both size and shape in 399 

spite being indicative of dietary adaptations and bite force capabilities (Damasceno et al., 400 

2013; Meloro et al., 2015). This result did not change even if we considered subspecies as 401 

separate OTUs suggesting that geographical variation, to a certain extent, could be taken into 402 

account also in the analyses of guild ecometrics. Polly et al. (2017) demonstrated that the 403 

American red fox varies considerably in calcaneal/gear ratio across latitudes as it might be 404 

expected for mammalian body size following Bergmann’s rule (Clauss et al., 2013). 405 

Although this variation might not impact strongly interspecific data analyses, we noted that, 406 

especially for shape, it might be relevant when genetic data support subspecies segregation 407 

for taxa with a particularly broad geographical range size. 408 

In our data set the grey wolf represents a good example since, based on phylomorphospace 409 

occupation, the arctic subspecies (C. lupus arctos) separates from the rest of large canids 410 

being characterised by the extreme development of hypercarnivorous traits (short muzzle, 411 

wide upper carnassial, broad zygomatic arch, Fig. 3). Such genetic/phenotypic resolution was 412 

not available in many other cases from our sample but the inclusion of few established 413 

subtaxa appears to make a difference when interpreting phylogenetic signal in the data. This 414 

trait does not hinder the identification of an adaptive signal. Indeed, our sample clearly 415 

showed consistent clustering of hypercarnivorous large dogs (including the fossil Lycaon 416 

falconeri, Rook, 1994) vs other more generalist taxa, further supporting the presence of a 417 
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pattern of convergence in the feeding apparatus driven by the adaptation to kill relatively 418 

large prey (Van Valkenburgh, 2007; Slater et al., 2009).  419 

Coherently with this pattern, the fossils Canis etruscus and Canis arnensis occupy positive 420 

PC1 scores as the rest of modern Canis spp. (Fig. 3), although C. etruscus clusters closely 421 

with the red fox based on PC2 score, while C. arnensis with C. lupus. Cherin et al. (2014) 422 

already noted that in several cranial traits the Etruscan wolf is lesser similar to the extant grey 423 

wolf than Canis arnensis, thus supporting patterns observed in the phylomorphospace. 424 

A unique combination of cranial traits made Canis etruscus a flexible species that possibly 425 

altered its ecological adaptations in relation to the presence of other canid competitors (see 426 

Garcia and Virgos, 2007). The ecological flexibility of C. etruscus is equally reflected in its 427 

relative abundance across Eurasia that is much higher when compared to C. arnensis whose 428 

distribution remains limited to the Mediterranean area (Fig. 1B; Bartolini Lucenti and Rook, 429 

2016; https://paleobiodb.org/#/).   430 

 431 

4.2 Variation between extant and fossil canid guilds    432 

No significant difference in averaged or variance skull morphometric traits was 433 

detectable in the canid sample. This reinforces previous generalisations on the resilience of 434 

carnivoran evolution to change in functional community structure through time. Such a lack 435 

of difference (as previously identified by Van Valkenburgh, 1985, 1988; Meloro, 2011b) 436 

does not prevent to detect subtle changes that can be linked with climatic adaptations (see 437 

Belmaker, 2018; Koufos, 2014). This was achieved by using averaged phenotypic traits (as in 438 

Polly et al., 2017), that are significantly associated with bioclimatic variables. The different 439 

approaches we employed converged towards this conclusion. PLS appeared to be the method 440 

suitable to maximise the degree of covariation between average skull shape and climatic 441 

differences. The use of distance matrices equally confirmed a genuine association between 442 



23 
 

guild morphological distances and climatic distances. Interestingly, no strong pattern was 443 

identified when phylogenetic distance metrics were used to test their association with climatic 444 

data. The work of Kamilar et al. (2015) suggested that phylogenetic community metrics can 445 

be indicative of environmental changes however, as for large scale clade sorting, such a result 446 

applies to larger communities (e.g., the whole Carnivora) at larger spatial scale. On the one 447 

hand, we opted to avoid pseudoreplications by analysing only selected/representative canid 448 

guilds, although large spatial scale analyses might provide a stronger pattern of ecometrics 449 

variation (Barr, 2017; Schap et al. 2021). On the other hand, we argue that large spatial 450 

patterns in ecometrics requires spatial bias to be accounted for, since our phylomorphospace 451 

clearly showed the impact of taxonomic distinctiveness. In summary, we believe that large 452 

spatial scale approaches require more caution when intraspecific variation is concerned. 453 

 454 

4.3 Reconstruction of Valdarno palaeoenvironments  455 

Because Valdarno canid (and not only) community appears to have little in common 456 

with modern analogues (see cluster analysis, Fig. 4A), it is particularly difficult to provide 457 

accurate predictions for many environmental parameters. By reducing the number of 458 

bioclimatic variables, we were able to reduce statistical noise in our data and provided 459 

realistic parameters although quite distinct depending on the use of linear or robust 460 

regression. If fossil data are projected within the PLS morphospace using linear approach, the 461 

Valdarno canid guild predicts a harsh, highly seasonal environment characterised by very low 462 

average annual temperature and low precipitation. In this respect, the Valdarno guild appears 463 

to resemble guilds sampled in the Northern Hemisphere such as Lake Torne characterised by 464 

extreme artic conditions. This similarity is partially due to the predominance of carnivorous 465 

adaptations in the morphologies of the extant Arctic wolf (C. lupus arctos) that resembles L. 466 
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falconeri from Valdarno, while the red and the Arctic fox (V. vulpes, and V. alopex) equally 467 

share positive PC2 scores of shape space as for C. etruscus (Fig. 3).  468 

Alternatively, the robust regression provides an average annual temperature strongly 469 

compatible with that already predicted by Bertini et al. (2010) based on the pollen record of 470 

Poggio Rosso (12.5-14 degrees Celsius). Poggio Rosso (1.87-1.83 MA) is slightly younger 471 

than the Tasso Faunal Unit (1.9 Ma, where all Valdarno canids co-occur) and register the co-472 

occurrence of C. etruscus and C. arnensis but no presence of Lycaon falconeri. Still, its fauna 473 

is highly compatible with Tasso FU (Mazza et al., 2004) and predicted precipitation 474 

parameters for interglacial phases (750-1200 mm) are within the range of that predicted by 475 

our Valdarno data (Table 3, 1159 mm).  476 

Other climatic projections for Tasso FU were obtained using cenograms by Montuire and 477 

Marcolini (2002) that for ‘il Tasso’ locality suggested an average annual temperature of 17.36 478 

degrees Celsius while for ‘Pietrafitta’ (another Early Pleistocene site with typical Valdarno 479 

faunal assemblage) 11.9 degrees.      480 

All these predictions converge in supporting previous inferences on the inset of a strong 481 

glacial event that around 2.0 Ma altered flora and fauna of continental Western Europe. The 482 

concomitant co-occurrence of the Val d’Arno canids in the Mediterranean region (Fig. 1B) 483 

supports stability of this climatic condition in the area during this time, while more advanced 484 

species (e.g., C. mosbachensis, L. lycaonoides) were spreading from China to Europe towards 485 

Dmanisi, a site coeval with Tasso FU (Qui et al., 2004; Jangzuo et al., 2018; Jangzuo, 2021; 486 

Bartolini-Lucenti et al. 2020, 2021). Interestingly, Azzaroli (1983) proposed another faunal 487 

event at 2.6 Ma characterised by the spreading of large grazing genera like Mammuthus and 488 

Equus. Since the temporal distribution of the canid Euroasiatic record has been updated 489 

multiple times with the occurrence of Canis etruscus earlier than expected by the ‘Wolf 490 

event’, it is likely that the spreading of steppe environments already favoured dispersal of 491 
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cursorial and potentially pack-hunter large dogs (Sotnikova and Rook, 2010; Cherin et al., 492 

2013).  493 
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