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Abstract. We introduce a probabilistic algorithm for binary classification based on 

the SVM through the application of the ANOVA decomposition for multivariate 

functions to express the logit of the Platt estimate of the posterior probability as a 

non-redundant sum of functions of fewer variables (partial responses) followed by 

feature selection with the Lasso. The partial response SVM (prSVM) is compared 

with previous interpretable models of the SVM. Its accuracy and stability are 

demonstrated with real-world data sets. 

1 Introduction 

1.1 Motivation 

Black-box models are not interpretable by design, lacking transparency and 

accountability [1]. In particular for binary classification the SVM is a powerful 

discriminant model, but its deployment in high-stakes applications is limited by two 

factors: first, its roots in computational learning theory do not conform to the models 

of chance variation that are required to infer a posterior probability; second, the use of 

Gaussian makes it difficult to quantify the exact weight of each input towards the 

model output. As a consequence, the end user does not know for instance why 

specifically an SVM has misclassified for a particular example [2]. The first aspect 

has been the subject of extended research. Arguably the simplest approach to take is 

to use Platt’s approximation [3] by re-calibrating the decision function of the SVM 

i.e. the risk score function, by using a logistic regression model with parameters

estimated by minimising the standard negative log-likelihood. We use this

approximation but make the logistic regression model multivariate by applying it to

multiple components derived from the decision function.

Explanations for model decisions, however, can be pivotal in users making 

decisions e.g. in medical decision support [4]. There are several definitions of 

transparency and interpretability throughout the literature, but five main desiderata 

have been proposed for robust interpretability and explainability [5,6], that will guide 

the proposed approach: Intelligibility: “Are the explanations immediate and 

understandable?”; Faithfulness: “Are relevance scores indicative of ‘true’ 

importance?”; Stability: “How consistent are the explanations for neighbouring 

examples?”; Parsimony: “Do the explanatory variables comprise a minimal set?”; and 

Consistency: “How robust are the explanations to perturbations in the data?”. In our 

view, an interpretable method that can fit these five criteria is the key to opening the 

black box corresponding to a standard l1-regularised SVM.  
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 A key aim of the proposed approach is to create a method that focuses on 

contribution rather than attribution. In this context we refer to attribution as a signal 

fed back from the model output to the input for the purposes of quantifying the 

sensitivity of the former to the latter. This may be derived from a local tangent model, 

such as LIME [4] providing an explanation at a specific data point about which 

variables are most important. In contrast, we refer to interpretability as the calculation 

feedforward of the exact contribution of each input to the model output, similar to 

what is the case in Generalised Additive Models (GAM). In particular, we aim to 

provide global interpretability over the whole data space by quantifying how much 

each variable contributes to a prediction. 

1.2 Related work  

Early approaches to interpreting SVMs sought to express them with Boolean rules 

and by identifying prototypes through clustering [7]. Later, it was suggested to use 

GAMs to interpret different machine learning models [8]. This built on a very early 

proposal to structure the neural networks as self-explaining models [9] that cross-over 

between machine learning and conventional statistics. However, the central issue of 

the selection of relevance features in a statistically principled way. This is critical to 

the efficient estimation of an interpretable model, especially when two-way effects 

are considered. 

 The proposed approach is closely related to the SVM nomogram [10,11] which 

followed a similar argument also with Platt’s approximation, by considering a Taylor 

expansion of the Gaussian kernels, followed by an iterative re-weighted SVM applied 

to the component functions generated by the Taylor expansion, in order to reduce the 

number of required functions and provide stability to the model.   

 In fact, the expansion used in Van Belle’s papers [10,11] and in this manuscript 

to express the multivariate Gaussian kernel as a sum of functions of fewer variables 

has the form of an ANOVA decomposition, which is finite and exact if all terms are 

taken into account. That is to say, for a p-dimensional input, it is composed of 2p 

terms comprising a constant and effects of order 1, 2, …, p. The assumption made in 

both papers is that in many real-world applications the signal-to-noise level will 

render higher-order terms less relevant because they are very difficult to infer 

accurately.  

 Therefore, there is potential for, and possibly even a performance advantage to 

be gained in making the decomposition of the complex multivariate kernel into 

simpler functions of fewer variables, which we call partial responses. This way, the 

coefficients of the partial functions, which we model for univariate and bivariate 

effects, can be explicitly estimated and further, by truncating the ANOVA expansion, 

the signal-to-noise ratio of the risk score functions can be improved by removing the 

higher-order, noisier terms, that are implicit in the original multivariate function. 

 The SVM nomogram followed earlier work [12] in the framework of Functional 

Data Analysis (FDA). This involves setting specialised regularisation terms to 

implement sparsity and smoothness in the risk score function, by driving down its 

derivative in specific ways. This makes the method of particular interest to certain 

types of data with correlated inputs e.g. smooth spectra and time series. 
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1.3 Novel contribution and limitations of this work 

The main contribution of this paper is an alternative methodology to calculate a 

nomogram for the SVM, by replacing the second SVM iteration in the model of [11] 

with the application of the logistic regression Lasso [13]. This has the advantage over 

the iterative re-weighted step of involving probabilistic modelling at the level of the 

partial responses including feature selection. This potentially improves calibration and 

stability in the selection of the final sparse model. It also simplifies the 

implementation of the SVM nomogram, so making it more easily accessible to other 

researchers. 

 The main limitation of this work is that it applies only to tabular data, 

comprising independent covariates, as distinct from structured data such as images, 

speech and text. 

2 Methodology 

The implementation of the partial response SVM (prSVM) is straightforward: 

i. Calculate the ANOVA decomposition to any desired order anchored at a 

suitable point – we choose to use the median of data; 

ii. Take the component functions, which are the partial responses at the anchor 

point, to be the covariates in logistic regression Lasso. 

 The first step is identical to the calculation of component functions in [10,11]. 

The difference in this paper is the application of a probabilistic method directly to the 

partial responses, rather than to the score function arising from a linear SVM as the 

second step. This step involves aggressive pruning of the model coefficients, which 

required an iterative re-weighted algorithm where the regularisation parameters of the 

linear SVM were inversely proportional to the size of the corresponding model 

coefficients. Hence, the smaller the coefficient, the faster it would be pushed towards 

zero. Effective as this approach proved to be, it can be less stable than the Lasso. In 

addition, the availability of many coefficients for calibration, compared with a scalar 

risk score, makes it easier to achieve good calibration. 

 It can be said that the prSVM utilises the benefits of the two models in a 

complementary way: the SVM contributes discriminant functions and the logistic 

Lasso carries out efficient feature selection. 

 More formally, the partial responses are obtained from the logit of the Platt 

approximation to the probability of class membership, in other words directly from 

the risk score of the SVM, by evaluating it at the median of the data, then allowing 

one variable to change at a time, then two. The key is to formulate an orthogonal 

decomposition so that, for p-dimensional input data, the terms added up to 

interactions of order p exactly match the original function. The intention is to truncate 

this decomposition at order 2 as it is empirically observed that for many real-world 

applications e.g. in medicine, higher-order interactions seldom play a part in risk 

models, not least as low signal-to-noise ratios will make it difficult to infer such 

interactions accurately with reasonable sample sizes. 

 The ANOVA decomposition anchored at the origin is defined by: 
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where: 

 

 
(2) 

 
(3) 

 
(4) 

 

Having standardised the covariates to unit variance and shifted the origin to the 

median, the values of the partial responses  above for each row of data, become the 

inputs to a standard logistic regression Lasso [13]. 

3 Empirical evaluation 

3.1 Data description 

The prSVM performance is compared with that of the original SVM with a Gaussian 

kernel and the SVM nomogram model [11] using the same two real-world data sets. 

 The Pima diabetes dataset (n=532) comprises measurements from women aged 

over 21 years old, of Pima Indian heritage, tested for diabetes. There are 7 covariates 

and the binary outcome classes have a prevalence of 33.27%. 

 The German Credit Card dataset (n=1000) using the same 6 covariates as [11] 

for comparability and outcomes of good or bad credit risk with a prevalence of 30%. 

3.2 Classification performance 

The two models for real-world data were optimised by 4-fold cross validation on the 

training data. For both models the hyperparameter  was tested in the range [2-7,22] 

with the values 2-2 and 2-4 selected for the Pima and German Credit Card datasets 

respectively.  

 The relative performance compared to the original SVM and the values quoted 

in [11] are listed in Table 1. Note the smaller number of variables selected, for a 

similar classification performance. This is important because smaller univariate and 

bivariate effects are more difficult to infer accurately and can be unstable. 

 The implementation of SVM in R by [14] involves a cost parameter that 

penalises misclassifications. The effect on calibration of both the hyperparameters 

was considered and the calibration for the Pima dataset is shown in fig. 1. This is 

consistent with the hypothesis that modelling the SVM with component functions 

renders the prSVM a more accurate probabilistic model than resorting to the Platt 

approximation. The form of the partial responses provides valuable insights about the 

validity of the model predictions, as it can be verified by expert end-users. 
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Dataset Model AUC [CI] # 

components 

H-L statistic 

(p-value) 

PIMA 

Diabetes 

SVM 0.801 [0.730,0.873] 7 26.5 (0.000867) 

prSVM 0.806 [0.737,0.876] 7 15.7 (0.0465) 

SVM 

Approx. [11] 

0.780 28  

German 

Credit 

Card 

SVM 0.757 [0.696,0.818] 6 21.0 (0.00719) 

prSVM 0.754 [0.696,0.813] 18 11.2 (0.190) 

SVM 

Approx. [11] 

0.760 21  

Table 1: Results comparison between the original SVM, the prSVM and the SVM 

Approximation in [11]. H-L stands for Hosmer-Lemeshow test statistic. The 

#components is the #covariates for the SVM and the #partial responses for the rest. 

  

Fig. 1: Calibration curves for the Pima diabetes data set, with hyperparameters =2-2 

and Cost=10-2, showing an improvement for the prSVM compared with the original 

SVM with a Gaussian kernel. 

  

Fig. 2: Example partial responses in the nomogram for the Pima diabetes data set. 

The contribution of each variable to the logit is shown on the y-axis. For a given 

observation, these contributions add to form the nomogram. The responses show the 

weights for Glucose and a 2-way interaction between Glucose and Skin thickness. 
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4 Conclusion 

An alternative proposal for the calculation of the SVM nomogram is presented. 

Compared with the original formulation in [11] the new approach is more stable to 

generate sparse models. It shows markedly better calibration than the original SVM 

while retaining a comparable classification performance. 

 A possible extension of this model is to calculate confidence intervals for the 

partial responses by re-sampling with the bootstrap. This is particularly important for 

quantifying uncertainty in underpopulated regions of the training data sample, shown 

in the histograms along the axes in fig. 2.  
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