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Abstract 

This thesis proposes a package of machine learning tools to assist in the 

classification process of cancers through medical imaging. Enhancing the 

interpretability of a given machine learning method is a key focus of the work. 

Firstly, a “patient like me” methodology using the Fisher Information Network is 

created to show a robust structure of clinical data from a neural network leading to 

new patient cases being classified in a visual way. Next this thesis studies the partial 

responses of a neural network to understand how changes in values of important 

variables affect the contribution towards the final prediction of the classifier. This 

attempts to reflect clinical thinking, where changes in variables would change the 

clinical outcome of a decision-making process. Finally, the thesis looks at 

multimodality data fusion to utilise as much of the abundance of available clinical 

data as possible. This work looks at the effectiveness of information with an 

approach that includes a feature selector.  

The three aspects of work have been assessed with publicly available clinical 

datasets to allow for clinical meaning to be ascertained. The thesis looks at 

potential clinical impact throughout and how the application of machine learning 

can be useful in a clinical setting, rather than only providing a classification output.  
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1 Introduction 

Breast cancer is the most frequent cancer among women, affecting 2.1 million 

women every year, and causing the greatest number of cancer-related deaths 

amongst them [1]. This type of cancer usually takes time to develop, with 

symptoms becoming evident later. Currently, there is not an effective way to cure 

late-stage breast cancer, and therefore early and accurate detection of the breast 

cancer tumour is critical for improving both prognosis and therefore treatment 

planning. This thesis focusses on breast cancer and effective diagnostic tools which 

use machine learning techniques to enhance the detection and classification 

process, while still holding explainability as a key focus throughout. 

This research acknowledges that there are many machine learning applications in 

the area of breast cancer classification. This work looks towards enhancing the 

explainability of these in which limitations exist within much of the literature. 

Rather than conducting the classification alone, this work looks at how different 

concepts can be utilised in healthcare settings, where the understanding of the 

decision-making process is important.  

Broadly this thesis can be split into three sections, for which all share the common 

aim for the machine to work “hand in hand” with multidisciplinary healthcare 

teams. These are machine learning-based tools to assist within the clinical 

application of breast cancer detection and classification: 

• The first section looks at defining a mathematically robust structure of 

clinical data (e.g. patients) that can be visualised as a whole. The aim was to 

provide a data space where all the cases could be seen and grouped 

according to certain characteristics. This investigates the use of a distance-

based metric focussing on the distances between observations or cases, 

leading  to the creation of a data space that can be visualised, including the 

addition of new (unseen) data.  

• The second section studies the effect of different variables in a dataset and 

how they impact the outcome of a predictive model. The aim was to expose 
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which variables were impacting the outcome of the model to a more 

significant extent. 

• The third section looks at multimodality data fusion to improve the 

predictive capability of a classifier by appending one dataset with further 

information. The aim here was to have a more comprehensive view of each 

observation or case, using any additional information available, partly 

simulating how clinicians work using a varied base of evidence to support 

their decision. 

o A self-contained supporting chapter that also performs data fusion is 

presented on prostate cancer data.  

1.1 Scope of the thesis 

The key goal of this thesis is to provide a set of tools that assist in the classification 

of breast cancer lesions using mammography images. An important aspect of the 

presented research is the extensions of the methodologies presented and how the 

explainability of the models is enhanced.  

Early detection is the key primary mechanism to prevent the development of breast 

cancer. Regular screening tests are an important aspect of the process of finding 

suspicious lesions pre-symptom development, and are effective in saving lives [2] as 

well as reducing psychological impact for patients. Mammography is a type of 

medical imaging that uses X-rays to capture images of the internal structures of the 

breast. Mammography is an effective method for breast cancer screening and to 

take breast imaging for breast cancer assessment with Bird et al. estimating the 

sensitivity of screening mammography to be between 85% and 90% [3]. 

A “second reader” within the decision-making process using medical imaging is a 

well-found concept, with “decision-aids” being something that has been considered 

for a long time now [4]. Double reading of mammograms has been found to be 

effective in improving the sensitivity of screening mammograms [5], although 

finding further radiologists to review these mammograms is difficult and also they 

may disagree [6]. Before an invasive biopsy is taken to ascertain a pathology 

reading – which can cause apprehension by patients – this check can be a triage 
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point to decide whether a biopsy would be necessary. An automated method that 

serves the purpose of the second reader could reduce the practical and human 

burden. 

Furthermore, mammography is cheaper than alternatives such as MRI, with 

equipment and expertise already available. MRI can improve on some aspects of 

the process such as earlier detection but at the cost of a higher rate of false 

positives at higher breast densities [7]. The National Institute for Health and Care 

Excellence do have a stratified surveillance programme for patients in different risk 

groups (including breast density) on who should receive mammograms, MRI or 

both [8]. Breast density as a first step to infer information from mammograms can 

be limited in its success as the assessment of breast density is subjective and can 

vary across radiologists [9]. 

An abundance of patient data is available from healthcare records with various 

applications in the literature making use of this sort of data.The Gail model is 

prominent in the literature for assessing demographic risk factors of first-degree 

relatives with breast cancer [10], which has since been shown to have poor 

performance [11]. 

Machine learning in healthcare, and particularly breast cancer classification, has 

been proven to be successful. Various approaches towards the problem area [12]–

[16] are able to discriminate between tumours and classify effectively in a manner 

of approaches. More recently, deep learning approaches [17]–[19] attain strong 

predictive outcome measures. The interpretability of machine learning algorithms 

varies and as machine learning algorithms continue to enter clinical practice is a 

known concern in the area of radiology [20]. The work in this thesis attempts to 

make these methods more explainable and to reflect clinical thinking in practice, for 

which this thesis contributes to the knowledge alongside other available 

applications in the area. Including the use of images alongside other auxiliary data, 

such as augmenting mammograms and clinical data in order to predict malignancy 

of cancers [17] has been proven to be successful.  
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The first workflow presented in the thesis uses Fisher Information Network to 

curate “patient like me” approaches for breast cancer diagnosis. This creates a 

robust representation of clinical data from a neural network classifier. In effect, the 

probability density estimates are used to create a visualisation of the latent space 

of patients from which underlying patterns and structures can be seen and 

understood. This approach shows a spatial representation of each patient case. It is 

shown that utilising extra metadata can further develop additional insights into 

patient groupings. The Fisher Information metric is a natural statistical measure of 

dissimilarity for small changes between each of the data points, according to their 

degree of relevance with respect to their class membership. The developed 

“patient like me” approach allows for mammogram data of a new patient to be 

projected into the learnt embedding, leading to a proposed machine learning-based 

triage methodology. 

After considering this process of triage and similar patient groupings it was 

considered appropriate to understand how different variables inputted into a 

classifier from a dataset affect the classification and to what extent. The next 

workflow presented in this thesis studies the partial responses of a neural network 

classifier. This studies the effect of a change in each variable against its contribution 

to the logit to “open the black box” of a neural network. This allows for the 

explanation of changes in variables affecting outcomes which is important in clinical 

practice. These partial responses give rise to how each variable can affect the 

outcome of model predictions, adding insight to a machine learning-based 

approach to cancer classification.  

Throughout the study it is noted that much data is used to gain extra clinical insight 

into the results, to inform and add impact to the discussion. As mentioned, the use 

of different modalities of data has developed in the literature over time, from risk 

profiling to classification. The final piece of work presented considers augmenting 

classifiers with various modalities of data to assess improvements in results by 

following a data fusion framework [21]. This work assesses both standalone and 

combinations of features extracted from a deep learning network trained on 

mammograms, hand crafted statistical texture features and lesion metadata. Of 
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particular importance here is how the metadata can impact the predictive 

capabilities of the classifier. This work attempts to reflect clinical thinking in a 

machine learning application, whereby the addition of further knowledge including 

some clinical can influence the accuracy of a decision.  

It could be proposed that methods within this work could enhance and further 

inform screening programmes for breast cancer. In the UK, women are able to 

access breast cancer screening every 3 years [22] between the ages of 50 and 70 

with mammograms taken initially. Furthermore, due to the COVID-19 pandemic, it 

is widely reported that there is a backlog of patients awaiting cancer care [23] as 

well as research suggesting lowering the age of beginning cancer screenings is likely 

to be effective [24]. This thesis provides methods that harness the power of strong 

machine learning methodologies alongside interpretable results that could act as a 

second reviewer in the process.  

1.2 Aims and objectives of the presented work 

The key aim of this thesis is to propose a novel representation of clinical data to 

assist the classification and understanding of breast cancer cases. The second aim is 

to investigate a selection of tools, based on machine learning methods, to assist in 

the classification and triage of breast cancer patient cases through mammograms. 

To achieve these research aims, several objectives are considered. 

- Curate a robust and novel representation of clinical data which visualises 

the thinking of a machine learning classifier, discriminating between benign 

and malignant tumours. Use associated metadata to attain extra insights.  

- Develop a “patient like me” approach to assess new cases within the 

visualisation which can lead to a triage-based system for new patient data 

cases. 

- Propose a method that assesses the internal workings of an artificial neural 

network. This assesses the responses of each feature provided to the 

algorithm and how different values of the feature influence the prediction.  

- Investigate how an abundance of available clinical data can be best utilised 

in a machine learning process using multimodal data fusion. As this includes 
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the use of medical imaging with mammograms, the branch of deep learning 

multimodal fusion is studied.  

These aims and objectives share a common purpose; to uphold some level of 

explainability in the process alongside assisting multidisciplinary healthcare teams 

in the task of developing treatment care plans for patients, while harnessing the 

power of machine learning methodologies.  

1.3 Contributions within the thesis 

• The use of the Fisher Information Network methodology, which enhances 

differences and similarities between datapoints, to produce a robust 

representation of patients in a visualisation where similar cases are close 

together and dissimilar cases are represented further apart.  

• The use of the FIN embedding or visualisation as a “patient like me” 

approach, which can be used as a triaging tool for cancer classification. 

• The estimation of the projection of test cases into the trained embedding is 

a novel contribution, which allows the study of new cases for diagnosis and 

management as they arise.  

• The representation of imaging data instead of tabular data in the Fisher 

Information Network methodology. 

• The use of the partial responses of an artificial neural network to assess 

each feature and its impact on the final classification. The contribution 

studies one variable change at a time and to reflect how a variable affects 

the outcome of the model predictions.  

• The option of using the change in value of a given feature as a tool to 

provide clinical context in the triaging of cancer cases using partial 

responses.  

• The opportunity to replicate the thinking of a clinician (who will use multiple 

data sources to support a decision) with the application of data fusion 

approaches that combine imaging, statistical texture features and metadata 

to inform decision making. The use of statistical texture features is 

appreciated on a cross-disciplinary basis and form a contribution. 
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1.4 Thesis structure 

The next chapter contains the literature review of the three topics presented, 

looking at methods to robustly represent clinical data, the effect of variables in a 

dataset on influencing its outcome and multimodality data fusion.  

Chapter 3 of the thesis defines the dataset used in most of the work presented, the 

publicly available CBIS-DDSM dataset [25].   

Chapters 4 and 5 define the methods and presented applications, respectively, of 

the Fisher Information Network methodology in the presented research. Through 

the development of a Multi-Layer Perceptron (MLP) and defining a robust metric, 

these chapters define an approach to represent the thinking of an artificial neural 

network leading to the “patient like me” concept described earlier. This is proposed 

as a triaging tool to a clinician, where a new patient case can be initially classified 

for further investigation. This work studies an application using statistical texture 

features of mammogram patches and another application using features derived 

from a deep learning model as to appreciate its power in the machine learning 

literature. This is further informed with the use of patient-level metadata.  

Chapter 6 considers the use of partial responses to study how different features 

used within a classifier influence the prediction. Both on a practical and machine 

learning level, it is known that different factors will influence an outcome to 

different extents. This work considers how an artificial neural network responds to 

different statistical texture features and patient-level metadata in classifying the 

pathology of lesions. The contribution to the logit for differing values of important 

variables within the classifier are studied. 

Chapters 7 and 8 look towards the use of multimodality data fusion. Combining 

different modalities of data allow for the impact of each data subset to be 

reviewed. In part, this work attempts to replicate the thinking of clinical staff, 

whereby various data sources contribute to the decision-making process for a given 

patient to varying degrees. Chapter 7 focusses on “deep multimodality data fusion” 

at combinations of convolutional neural network features, statistical texture 

features and metadata under different data fusion structures to consider the level 
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of impact of each and their underlying interpretability. Chapter 8 acts as a 

standalone chapter studying a prostate cancer data problem. Both imaging and 

metadata are leveraged here using support vector machines to discriminate 

between different lesion severities alongside a visualisation-informed analysis.  

1.5 Publication list 

The core of the work produced during this project has been published (or planned 

to be) as indicated below:  

• P. Riley, I. Olier, R.G. Raidou, R. Casana-Eslava, M. Srivastava, P. Lisboa, C. 

Palmieri, S. Ortega-Martorell. “A novel representation of texture feature 

data from mammography images using Machine Learning and Visualisation 

to assist breast cancer diagnosis”. In preparation. To be submitted to PLOS 

ONE [Within chapter 4 of thesis] 

• P. Riley, I. Olier, R.G. Raidou, R. Casana-Eslava, M. Rea, P. Lisboa, L. Shen, C. 

Palmieri, S. Ortega-Martorell. “A novel visualisation to help characterise 

breast cancer patients using deep learning and Fisher Information Networks 

on mammograms”. Submitted to Scientific Reports 2021. [Within chapter 4 

of thesis] 

• P. Riley, I. Olier, M. Rea, P. Lisboa, S. Ortega-Martorell. “A voting ensemble 

method to assist the diagnosis of prostate cancer using multiparametric 

MRI”. 13th International Workshop on Self-Organizing Maps and Learning 

Vector Quantization, Clustering and Data Visualization (WSOM+) 2019. 

Barcelona, Spain. June 2019. [Chapter 8 of thesis] 

• M. Srivastava, I. Olier, P. Riley, P.J.G Lisboa, S. Ortega-Martorell. “Classifying 

and grouping mammography images into communities using Fisher 

information networks to assist the diagnosis of breast cancer”. 13th 

International Workshop on Self-Organizing Maps and Learning Vector 

Quantization, Clustering and Data Visualization (WSOM+) 2019. Barcelona, 

Spain. June 2019. 

• P. Riley, I. Olier, P. Lisboa, S. Ortega-Martorell. “Using partial responses to 

enhance the interpretability of a breast cancer classifier”. In preparation. To 



23 
 

be submitted to  International Work-Conference on Bioinformatics and 

Biomedical Engineering (IWBBIO) 2022. [Chapter 6 of thesis] 

Additional publication during this thesis: 

• S. Ortega-Martorell, A.P. Candiota, R. Thomson, P. Riley, M. Julia-Sape, I. 

Olier. “Embedding MRI information into MRSI data source extraction 

improves brain tumour delineation in animal models”. PLOS ONE 2019, 

14(8):e0220809. DOI: 10.1371/journal.pone.0220809 
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2 Literature review 

This chapter reviews the most relevant literature around the three aspects studied 

in the thesis. The first section reviews both supervised and unsupervised metric 

learning methodologies to define a robust representation of clinical data. 

Furthermore, an associated method using community structure is presented. The 

following section reviews methods that assess the effect of variables within a “black 

box” machine learning model. The final section reviews multimodality data fusion, 

more specifically those that utilise deep learning or features derived from deep 

learning applications in healthcare settings.  

2.1 Metric learning to define a robust representation of clinical data 

This section relates to the creation of a mathematical representation of a machine 

learning classifier through the Fisher Information Network – using distances as a 

measure of similarity. This seems instinctive, where some given representation 

keeps similar instances closer together. However, any measure like this must be 

well-defined.  

A metric [26] over a vector space 𝑋 is a function with mapping 𝑑: 𝑋 x 𝑋 → ℝ , such 

that the following properties hold for all of 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘  ∈ 𝑋: 

1. Non-negativity: 𝑑(𝑥𝑖, 𝑥𝑗) ≥ 0 

2. Symmetry: 𝑑(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑗 , 𝑥𝑖) 

3. Triangle inequality: 𝑑(𝑥𝑖, 𝑥𝑘) ≤ 𝑑(𝑥𝑖 , 𝑥𝑗) + 𝑑(𝑥𝑗 , 𝑥𝑘) 

4. Discernability: 𝑑(𝑥𝑖, 𝑥𝑗) = 0 ↔ 𝑥𝑖 = 𝑥𝑗 

Where the discernability condition is not met, the metric is known as a 

pseudometric. This can often be the case and so throughout the thesis, metric is the 

term used for both cases.  

2.1.1 Unsupervised metric learning 

Firstly, unsupervised methods for metric learning are considered. These do not 

utilise anything more than the dataset itself and so the labelling of each case is 

disregarded. Therefore, the data features and its (co)variance are all that is 

considered to assess similarity for instance. These methods are linked with 
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dimensionality reduction methods, another key area in machine learning [27]. 

These methods learn a minimal, lower-dimensional representation of the original 

input dataset through the retention of the geometric relationships between the 

data instances in the original input space under some metric. This lower-

dimensional representation, which still holds a given level of variance between the 

points inherently means the distances become more useful than previously. 

Principal component analysis (PCA) [28], [29] is a commonly-used linear data 

projection method. It aims to reduce the dimensionality of the dataset with many 

interrelated variables while retaining as much as possible of the variation present in 

the dataset. The transformed output is a linear combination of independent, 

uncorrelated variables - principal components -  as coordinates within the new 

feature space. The first principal components hold the most variance – the key 

aspect of the data is kept discerning the differences throughout the dataset. 

The technique of PCA is described in [30]. For a dataset, 𝑿 of size N x L (where N is 

features and L is number of cases), PCA first calculates the covariance matrix, S, 

where �̅� is the standardised dataset. 

𝑺 =
�̅��̅�𝑻

𝐿 − 1
 

Equation 2-1 

The principal components of the data are provided through the eigen-

decomposition of the covariance matrix, where 𝑼 = (𝒖𝟏, 𝒖𝟐, … , 𝒖𝑵) is the N x N 

matrix of eigenvectors 𝑢𝑖  as columns and Λ is a diagonal matrix with elements Λii =

𝜆𝑖 corresponding to the eigenvalues of 𝒖𝑖. The first principal component is the 

eigenvector with the largest eigenvalue, further, it holds the most variance, 

descending as per the second eigenvector. 

𝑺 = 𝑼𝚲𝐔−1 

Equation 2-2 

After calculating the eigen-decomposition, the transformation of the data is 

obtained where 𝑈𝑀 is a matrix that contains the M eigenvectors included in the 
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transformation columns. The variance of the data – what is of interest – is 

preserved through holding the first set of eigenvectors with the largest eigenvalues. 

𝒀 = 𝑼𝑀
𝑇 𝑿 

Equation 2-3 

Multidimensional scaling (MDS) [31] hosts a group of algorithms not based on 

linear projections. These algorithms begin with a matrix of pairwise dissimilarities 

between every point for which MDS produces a representation of this matrix in a 

space in which the distances between each point approximate as closely as possible 

the dissimilarities between the corresponding points in the original data matrix.  

MDS takes a pairwise disparities matrix, �̂�, calculated as a mapping of the 

dissimilarities, 𝑑. A configuration of points in the Euclidean space is calculated that 

minimise a cost function, such as squared stress:  

𝑆𝑆 =  ∑ ∑ ∑(𝑑𝑟𝑠,𝑖
2

𝑖

− 𝑑2̂
𝑟𝑠,𝑖)

𝑠𝑟

 

Equation 2-4 

t-distributed stochastic neighbour embedding (t-SNE) [32] aims to represent each 

object from the high-dimensional space by a point in a two- or three-dimensional 

scatter plot, and to arrange the points in a way that similar objects are modelled by 

nearby points, whilst dissimilar objects are modelled by distant points with high 

probability. The t-SNE algorithm includes two main stages:  

Firstly, the algorithm constructs a probability distribution over pairs of high-

dimensional objects, which are proportional to the similarity of objects (similar 

objects have a high probability of being selected whilst dissimilar points have a 

small probability of being selected).  

Secondly, the algorithm defines a similar probability distribution over the points in 

the low-dimensional map, and it minimizes the non-symmetric Kullback-Leibler (KL) 

divergence between the two distributions with respect to the locations of the 

points in the map. It gives a numerical representation for the deviation between 
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two model distributions. Say 𝑄 is a model distribution and 𝑃 is a true distribution, 

𝐾𝐿(𝑃||𝑄) is defined as: 

𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃𝑖log (
𝑃𝑖

𝑄𝑖
)

𝑖

 

Equation 2-5 

It can be understood as an approximate measure of how much information is lost 

between the model and true distribution. By viewing this as a measure of similarity,  

optimising the target distribution, minimising the KL divergence to the true 

distribution is the link to t-SNE. 

A heavy-tailed Student-t distribution is used to measure similarities between low-

dimensional points to allow dissimilar objects to be modelled far apart in the map. 

The minimization of the KL divergence with respect to the points in the lower 

dimensional space is performed using gradient descent. This results in a lower-

dimensionality map that reflects the similarities between the high-dimensional 

inputs. 

Locally linear embedding (LLE) [33] characterises global structure through an 

analysis of the local neighbourhoods keeping all mapping local. Coefficients that 

best reconstruct each data point from its neighbours are calculated. These are 

arranged to be invariant to adjustments (translations, rotations etc) of that data 

point and its neighbours to ensure they characterise the local geometrical 

properties of the neighbourhood.  

The LLE algorithm then maps the high-dimensional data down to a lower-

dimensional space while preserving these learned neighbourhood coefficients. The 

transformation of a linear local neighbourhood can be achieved through 

adjustments to preserve the angles formed between the data points and their 

neighbours. As the weights are invariant to these transformations the same weight 

values will reconstruct the data points in the lower-dimensional space as in the 

higher-dimensional space.  

Generative topographic mapping (GTM) [34] is a nonlinear latent variable model of 

the manifold learning family, with sound foundations in probability theory. It 
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performs simultaneous clustering and visualization of the observed data through a 

nonlinear and topology-preserving mapping from a visualization latent space (with 

being usually 1 or 2 for visualization purposes) onto a manifold embedded in a 

multi-dimensional space, where the observed data reside. The mapping that 

generates the manifold is carried out through a generalized additive regression 

function: 

𝑦 = 𝑊𝜑(𝑢) 

Equation 2-6 

where 𝑦 ∈  𝐷, 𝑢 ∈, 𝑊 is the matrix that generates the mapping, and 𝜑 is a vector 

with the images of S basis functions 𝜑s. To achieve computational tractability, the 

prior distribution of 𝑢 in latent space is constrained to form a uniform discrete grid 

of M centres, analogous to the layout of the Self-Organizing Map (SOM) units, in 

the form of a sum of delta functions: 

𝑝(𝒖) =
1

𝐾
𝛿(𝒖 − 𝒖𝒌) 

Equation 2-7 

GTM typically uses a set of radial basis functions to map the results of the 

unsupervised analysis.  

2.1.2 Supervised metric learning 

Supervised metric learning does consider the labelling of cases. Similarity can be 

calculated therefore with respect to the target variable. These methods can lead to 

classification processes as demonstrated within this thesis. 

Nearest neighbour applications are very common and well-known throughout the 

metric learning literature and are of importance to note [35]. This is a memory-

based method where no model is fit, in which the distance metric heavily influences 

the definition of the neighbourhood for determining the classification of cases. 

Unclassified points are assigned a label based on the nearest set of classified points 

[36] through a nonparametric prediction of a target function, 𝑓(𝑥), at a given point 

𝑥0 in the input space based on known values of the function in the surrounding 

area, where 𝐶(𝑥0) is the set of neighbours of 𝑥0 used for the prediction (see 
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Equation 2-8). It is assumed that 𝑓(𝑥) is a smooth function that is approximately 

constant within the neighbourhood.  

𝑓(𝑥0) =
1

|𝐶(𝑥0)|
∑ 𝑓(𝑥𝑖)

𝑥𝑖∈𝐶(𝑥0)

 

Equation 2-8 

Considering a classification setting with data points, 𝑋 = {𝑥1, … , 𝑥𝐿}, 𝑥𝑖 ∈ RN, with 

known class labels 𝑌 = {𝑦1, … , 𝑦𝐿}, 𝑦𝑖 ∈ {1, … , 𝐽}. Although conditional probabilities 

would be useful for the target function, they are unlikely to be known and so an 

estimation can come from the cases {𝑥𝑖, 𝑦𝑖}. Following the principle in Equation 2-8, 

the probability 𝑝(𝑐𝑗(𝑥) = 1|𝑥0) can be estimated as shown in Equation 2-9. 

�̂�(𝑐𝑗|𝑥0) =
1

𝐾
∑ 𝑐𝑗(𝑥𝑖)

𝑥𝑖∈𝐶(𝑥0)

 

Equation 2-9 

To classify a new point, the K nearest points from the training data set are identified 

and assign the new point to the class having the largest number of representatives 

amongst this set. A “true” nearest neighbour representation is where K = 1, or the 

single nearest neighbour to a given point is identified.  

Large margin nearest neighbour classification [37] learns a Mahalanobis distance 

metric from data that attempt to rearrange the data space so that the K-nearest 

neighbours of each point always belong to the same class, pushing data points from 

other classes further away. This is through minimising a cost function to find a 

transformation matrix that achieves this separation and is framed as an 

optimisation problem that finds a global minimum.  

Kernels map data points, 𝒙, from the original input space to a new, higher 

dimensional space,  ∅(𝒙), where a new linear procedure is then applied. The new 

higher dimensional space can perform linear methods that have a non-linear effect 

in the original input space. Kernel methods are not mapped explicitly using inner 

products between mapped points, obtained from the kernel function that defines 

them (or the kernel trick), as in Equation 2-10. These kernel functions – linear, 
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polynomial, radial and others – can represent measures of similarity between pairs 

of points within a feature space. 

𝐾(𝒙𝑖, 𝒙𝑗) = ∅(𝒙𝑖). ∅(𝒙𝑗) 

Equation 2-10 

In relation to similarity measures, kernels are related to distance measures. By 

performing the kernel trick where 𝒙 ∈ ℝ𝑁 → ∅(𝒙) ∈ ℝ𝐹 , 𝐹 ≫ 𝑁 is that the original 

input space is mapped into a new region, ℳ in a high-dimensional feature space. 

The mapping function is what determines the geometric structure of ℳ. Satisfying 

some assumptions, ℳ will be an N-dimensional differentiable manifold in the 

feature space, containing the image of ℝ𝑁. 

This mapping, ∅(𝒙), also includes a metric in the input space. This metric relates to 

measuring distances between pairs of images ∅(𝒙𝒊) and ∅(𝒙𝒋) in the feature space 

along the surface ℳ: 

𝑑∅(𝑥𝑖, 𝑥𝑗) = 𝑑ℳ(∅(𝒙𝒊), ∅(𝒙𝒋)) 

Equation 2-11 

ℳ will usually be a curved surface known as a Riemannian manifold, with distances 

calculated within them worked out locally using a Riemannian tensor,  𝑮(𝒙): 

𝑑∅(𝒙, 𝒙 + 𝑑𝒙)2 = 𝑑𝒙𝑇𝑮(𝒙)𝑑𝒙 

Equation 2-12 

𝑮(𝒙) is a symmetric positive definite matrix that determines the metric. To express 

it in terms of the kernel function, consider the length of an infinitely short segment, 

𝑑𝒛 in ℳ. Taking 𝒛 = ∅(𝒙)  and 𝒛 + 𝑑𝒛 = ∅(𝒙 + 𝑑𝒙), the mapped segment and its 

length are as follows, using the first-order Taylor approximation of ∅(𝒙 + 𝑑𝒙). 

𝑑𝑧 =  ∅(𝒙 + 𝑑𝒙) − ∅(𝒙) ≈ ∇𝐱∅(𝑥)𝑑𝒙 

Equation 2-13 

𝑑∅(𝒙, 𝒙 + 𝑑𝒙)2 = ‖𝑑𝒛‖2
2 = 𝑑𝒙𝑇∇x∅(𝒙)𝑇∇x∅(𝒙)𝑑𝒙 

Equation 2-14 
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Utilising the definition of the kernel function, 𝐾(𝒙𝑖, 𝒙𝑗) = ∅(𝒙𝑖). ∅(𝒙𝑗), the 

expression of the Riemannian metric in terms of the kernel function used, is 

attained: 

𝑑∅(𝒙, 𝒙 + 𝑑𝒙)2 = 𝑑𝒙𝑇∇x∇y𝐾(𝒙, 𝒚)|𝒚=𝒙𝑑𝒙 

Equation 2-15 

 

To calculate the distances between points that are not adjacent in ℳ, Equation 

2-12 is transformed into a path integral: 

𝑑∅(𝒙𝒊, 𝒙𝒋) =  |∫ √𝒙(𝑡)𝑇𝑮(𝒙(𝒕))𝒙(𝑡) 
𝑡𝑗

𝑡𝑖

𝑑𝑡| 

Equation 2-16 

The Fisher kernel [38] was developed to combine generative and discriminative 

models in classification – it measures the similarity of two points with reference to 

a generative statistical model, 𝑝(𝑥|𝜃). The generative model produces a manifold 

where the Riemannian metric tensor is the Fisher information matrix (𝑮(𝜽)), where 

𝐸𝑥 is the expectation with respect to 𝑝(𝑥|𝜃) 

𝑑(𝜽, 𝜽 + 𝑑𝜽)2 = 𝑑𝜽𝑇𝑮(𝜽)𝑑𝜽 

Equation 2-17 

𝑮(𝜽) = 𝐸𝑥(∇θlog (𝑝(𝒙|𝜽)∇θ log 𝑝(𝒙|𝜽)𝑇) 

Equation 2-18 

The distance between two points, 𝜽 and 𝜽 + 𝑑𝜽 within this metric corresponds to 

the distance between the two corresponding densities, 𝑝(𝒙|𝜽) and 𝑝(𝒙|𝜽 + 𝑑𝜽) 

along the manifold. This measures how different they are in terms of the expected 

variation in the log-likelihood of 𝒙. The metric is Riemannian and not Euclidean and 

so the expected variation of log 𝑝(𝒙) caused by a distortion in 𝜃 can be different, 

depending on the location of the space in which it is measured. 

The Fisher kernel is therefore defined, of two points in the input space given a 

generative model 𝑝(𝒙|𝜽): 
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𝐾(𝒙𝑖, 𝒙𝑗) = 𝒏(𝜃, 𝒙𝑖)
𝑇 . 𝑮(𝜃). 𝒏(𝜃, 𝒙𝑗) 

Equation 2-19 

𝐾(𝒙𝑖, 𝒙𝑗) = ∇θ log 𝑝(𝒙|𝜃)𝑇 . 𝑮(𝜃)−1. ∇θ log 𝑝(𝒙|𝜃) 

Equation 2-20 

𝒏(𝜃, 𝒙) is the natural gradient, used to find the 𝜃 direction of the steepest ascent of 

the log-likelihood at point 𝑝(𝒙|𝜽) of the manifold: 

𝒏(𝜃, 𝒙) = 𝑮(𝜃)−1∇theta log 𝑝(𝒙|𝜃) 

Equation 2-21 

2.1.2.1 Fisher Information metric in the input space 

The Fisher Information (FI) metric is informed about the generative probabilities of 

the data and can only assess the importance of directions in the space of the 

parameters. A connection between the FI metric and Kullback-Leibler divergence 

exists to reinforce the role of the FI metric as a measure of the difference between 

adjacent probability distributions on the manifold: 

𝐼𝐾𝐿(𝑝(𝒙|𝜽), 𝑝(𝒙|𝜽 + 𝑑𝜽)) = 𝑑𝜽𝑇𝑮(𝜽)𝑑𝜽 

𝑤ℎ𝑒𝑟𝑒 𝐼𝐾𝐿(𝑝(𝒙|𝜽), 𝑝(𝒙|𝜽 + 𝑑𝜽)) =  − ∫ log (
𝑝(𝒙|𝜽 + 𝑑𝜽)

𝑝(𝒙|𝜽)
) 𝑝(𝒙|𝜽)𝑑𝒙 

Traditionally [38], [39], the FI metric has been defined within the space parameters 

based on generative models, 𝑝(𝒙|𝜽). Based on [40], [41], it is possible to amend the 

approach to apply the Fisher metric on discriminative classification models, 𝑝(𝑦|𝒙). 

Here, the metric measures parameter distortions with reference to the input space, 

𝒙, instead of 𝜃. 

2.1.3 Community structure example – HeC CaseReasoner 

Other concepts that exist throughout the literature include those that use 

community structures. Although these are not studied in the thesis, they are an 

important application within the literature. An interesting application using 

community structures for children’s healthcare is described.  
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A more pragmatic approach is shown through the Health-e-Child CaseReasoner 

project [42], [43] curated with relative neighbourhood graphs. These are adaptive 

to various distance metrics and can represent patient groupings well leading to 

much room for adjustment depending on the level of complexity required. This 

looked at techniques for learning discriminative distance functions being made 

available to clinicians. Cases are treated as vertices with two similar (close together) 

cases connected with an edge and are considered to be closest together with 

respect to a given distance function [44]. On a practical level, this application is 

adaptive allowing for greater clinical impact, where each case can be coloured 

based on a nominated attribute which can lead to nearest neighbour classification. 

Firstly, the graphs are clustered appropriately, using both the Girvan and Newman’s 

community structure algorithm [45] and a top-down induction of a semantic 

clustering tree to provide every cluster with a semantic description for clinical 

inspection (this was designed for CaseReasoner). The community structure 

algorithm separates networks into communities by iteratively removing edges with 

the largest number of shortest paths between them. These edges within a network 

are removed until an acceptable community split is found. 

Two methods are reviewed in this study for the learning process to be optimal using 

distances, arguing that it is easier than sharing a black-box model. The first is to 

learn equivalence constraints, where pairs of cases and their labels are considered 

to assess whether they belong to the same class. The original feature space is 

transformed into a product or difference space allowing for any machine learning 

technique to be used to learn in the new space. This is an intuitive method as a 

natural input for optimal distance function learning and can map well to clinical 

understanding. 

The random forest distance function considers the proportion of trees where two 

cases appear in the same leaves can be used as a measure of similarity between 

them [46]. For a given forest, 𝑓, the similarity between two cases, 𝑥1 and 𝑥2 can be 

calculated; each case is propagated through all K trees within the forest 𝑓 with their 

associated terminal positions 𝑧 in each of the trees (𝑧1=(𝑧11,…,𝑧1𝐾) for 𝑥1, similarly 

𝑧2 for 𝑥2) are noted. The similarity between the two instances is shown in Equation 
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2-22 (𝐼 is the indicator function). This measure can be used for a variety of tasks 

related to the classification problem including nearest neighbour classification. 

𝑆(𝑥1, 𝑥2) =
1

𝐾
∑ 𝐼(𝑧1𝑖 = 𝑧2𝑖) 

Equation 2-22 

This approach holds inherent explainability. The points are well defined as cases 

with links drawn as connections to different cases. Groupings can be detected 

throughout. The application can easily visualise and filter in/out different selections 

and is easy to read. As a decision-support mechanism, a considered hypothesis can 

be assessed visually by a subject-matter expert to accept or reject the original 

thinking. This allows for a reflection on model explainability.  

The presented work on the Fisher Information Network builds on the described 

approach but using the Fisher metric. Patient cases are mapped into an embedding 

for which patients with similar characteristics are intended to land closer together 

than others. This will use what has been inherently learned from an MLP classifier. 

Test cases will be projected into the embedding using MDS and similarity measures. 

2.2 Rule-based models vs the “black box” – the trade-off of interpretability 

Within the machine learning literature there are models that are inherently 

interpretable and other “black box” methods. Models that are harder to 

understand tend to perform better than those that are more interpretable for 

various reasons, including more adjustable parameters allowing for more 

complexity to be assessed. This section of the literature review considers this trade-

off with inherently interpretable models and the move towards “black box” 

methods and methods to try and understand their inner workings. 

Generalised Additive Models (GAMs) [47] were designed to be interpretable. Useful 

in lower-dimensional settings, they can utilise non-linear aspects in one or more 

variables. The model can be estimated using the backfitting procedure, as they are 

a linear combination of several univariate functions. Sparse Additive Models (SAMs) 

[48] extend the functional analysis of variance (ANOVA) model by adding 𝑙1 

regularisation alongside other constrains on the model parameters allowing for a 
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solution with convex optimisation. This method also identifies the best subset of 

variables to the problem at hand. 

Traditional machine learning methods including logistic regression (LR) attain good 

results and are interpretable [49], [50]. In [49] for example, an analysis using LR to 

classify the presence of cancer attained strong predictive performance as well as 

highlighting features that were significant in predicting breast cancer. This included 

patient and lesion metadata but not age. This enables an informed discussion both 

at the machine learning and clinical level. 

Logistic regression as a classifier uses independent variables, 𝑋𝑖 that are related to 

the dependent variable, 𝑌, leading to the calculation of the logit, where 𝑝 =

Pr (𝑌 = 1) and 𝐿𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
). 

𝐿𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 

Equation 2-23 

𝑝 can be calculated by taking the inverse of the 𝐿𝑜𝑔𝑖𝑡(𝑝) 

𝑝 =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛)
 

Equation 2-24 

The 𝛽 coefficients can identify the average effect on the outcome of a single unit 

change in the variable, 𝑋, where holding all other predictors fixed. This can lead to 

the odds ratio to be calculated for a given variable, to interpret the effect of a given 

variable on the dependent variable and is estimated by exp (𝛽). 

Support Vector Machines (SVMs) [51] attempts to find a plane that separates 

classes within a feature space. Where data is not linearly separable, SVM methods 

utilise kernel methods to transform the data into a feature space where they would 

become linearly separable. Particularly in healthcare settings as per the work 

presented in this thesis, interpretability can begin to suffer compared to a method 

like logistic regression as data is transformed into a new feature space.  

SVM classifiers are defined as shown in Equation 2-25, where 𝐾(𝑥𝑖 , 𝑥𝑖
′) is the kernel 

function which allows for non-linear separation boundaries.  
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𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑖′)

𝑖 ∈𝑆

 

Equation 2-25 

A common kernel function for the feature space transform is the radial kernel: 

exp (−𝛾 ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)
2

)

𝑝

𝑗=1

 

Equation 2-26 

Belle et al [52] explored a method to explain SVMs in a way that interpretations for 

model-based decisions are able to be provided. Nomograms are derived in a similar 

way as it is possible for logistic regression. A Taylor expansion is applied to the 

Gaussian kernels and are reshaped by separately summing univariate and bivariate 

terms. To select the best subset of features, an iterative application of the kernel 

trick to a re-weighted objective function with 𝑙1 regularisation is performed. 

Rule-based methods are built with inherent interpretability. Decision trees [53] split 

data according to different cut-offs within features as much as required. The splits 

throughout the process are decided based on reducing a value, usually a 

misclassification rate in classification as much as possible. This method is very clear 

and mirrors human-decision making processes, as the splits are usually based on 

the value of a variable being larger or smaller than the split point or meeting the 

criterion for a categorical variable. Further, it is possible to calculate the importance 

of a given feature by summing how much the misclassification rate or error has 

reduced by the splits of a given variable. The more it is reduced, the more 

significant that given variable is in the process. However, decision trees tend to fall 

behind in predictive capability compared to more powerful machine learning 

methods. 

Neural networks and in particular deep learning methods are more complex 

machine learning methods. They learn through adapting the weights of their 

synaptic connections.  They can be as shallow or deep as required. Interpreting 

these is of interest throughout the literature. Feature visualisation [54] attempts to 
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show what features have been learned by the neural network inherently1. For this 

concept, the input that maximises the activation of a unit within the neural network 

leads to unmasking a learned feature. By “unit” this work means neuron, channel, 

layer, or class probability neuron. It is framed as an optimisation problem, where 

the network is trained a new image that maximises the activation of the unit (say a 

single neuron): 

𝑖𝑚𝑔 ∗ = arg max
𝑖𝑚𝑔

ℎ𝑛,𝑥,𝑦,𝑧(𝑖𝑚𝑔) 

Equation 2-27 

The function, ℎ, is the activation of a neuron, 𝑖𝑚𝑔 the input of the network and 𝑥 

and 𝑦 the spatial position of the neuron, 𝑛 the layer and 𝑧 the channel index. For a 

channel 𝑧 within layer 𝑛 (where all neurons in the channel are equally weighted) 

𝑖𝑚𝑔 ∗ = arg max
𝑖𝑚𝑔

∑ ℎ𝑛,𝑥,𝑦,𝑧

𝑥,𝑦

(𝑖𝑚𝑔) 

Equation 2-28 

Saliency maps [55] are for understanding the workings of image classification with 

deep (convolutional) neural networks. They highlight pixels within an image that 

were relevant for an image to be classified in a certain way by a convolutional 

neural network. The gradient of the loss function for the class of interest with 

respect to the input pixels is calculated, providing a map which is of the size of the 

input features providing positive or negative values.  

This is achieved by forming an optimisation problem. For a linear score model for 

the class, 𝑐 where the image 𝐼 is represented in the one-dimensional form and 𝑤𝑐 

and 𝑏𝑐 are the weights and biases of the model respectively: 

𝑆𝑐(𝐼) = 𝑤𝑐
𝑇𝐼 + 𝑏𝑐 

Equation 2-29 

The value of 𝑤 defines the importance of the pixels within the image, for the class 

𝑐.  

 
1 For the purposes of the description, images will be used but this could also be used with text or 
more regular tabular data. 
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Considering a convolutional neural network (CNN), the class score 𝑆𝑐(𝐼) will be a 

non-linear function of 𝐼 – given an image 𝐼0 it is possible to approximate 𝑆𝑐(𝐼) with 

a linear function in the neighbourhood of 𝐼0 by computing the first-order Taylor 

expansion, where 𝑤 is the derivative of 𝑆𝑐 w.r.t the image 𝐼 at the point 𝐼0 

𝑆𝑐(𝐼) = 𝑤𝑇𝐼 + 𝑏 

Equation 2-30 

𝑤 =
𝜕𝑆𝑐

𝜕𝐼
|

𝐼0

 

Equation 2-31 

There have been extensions to saliency maps including Grad-CAM [56], DeconvNet 

[57] and SmoothGrad [58], all as some adjustments to the described saliency maps. 

Interestingly there is debate around the need to study methods for interpreting 

black-box models in the first place, with authors such as Rudin [59] arguing that 

models should be designed to be interpretable in the first place rather than 

attempting to interpret models that may not be built for the purpose.  

There are methods that are not particularly associated with a named model. Partial 

dependencies [60] show how one or two features affect the predicted outcome of a 

machine learning model. A partial dependence plot can show the relationship 

between the variable in question and the target variable to see whether it is linear 

or monotonic, for example. These are intuitive and easy to interpret although can 

only calculate these interactions for up to two features.  

Individual conditional expectation (ICE) plots [61] extend on partial dependencies 

by visualising any supervised machine learning algorithm’s estimations. They show 

the functional relationship between the predicted response and the feature, for 

individual observations. In effect, they show how a given case prediction can 

change when a feature changes. More formally, for each instance in {(𝑥𝑠
𝑖 , 𝑥𝑐

𝑖 )}
𝑖=1

𝑁
 

the curve 𝑓𝑠
�̂� is plotted against 𝑥𝑠

𝑖  while 𝑥𝑐
𝑖  remains fixed. In the work presented in 

this thesis, partial responses show how a change in value of a given feature affects 
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the contribution of that variable to the outcome of an MLP, rather than changes in 

each case as per ICE plots.  

Local interpretable model-agnostic explanations (LIME) [62] is a method that 

explains the predictions of any classifier through learning local surrogate models. 

These are trained to approximate what the underlying model predicted.  In effect 

for a case that an explanation of the black box prediction is required, the dataset is 

perturbed. The black box predictions for these new points are taken, and the new 

samples weighted based on their proximity to the case being studied. A new, 

interpretable model (such as a decision tree) is trained on these new data. The local 

model is now interpreted.  

The presented workflow on partial responses of a neural network is an attempt to 

open the black box of an MLP. The responses of each individual feature throughout 

the MLP are assessed to ascertain the strongest changes in the predictive outcome 

and assess a decision-making process in a clinical setting. This work looks to provide 

more context to the decision-making process which can sometimes be limited in 

the literature. The presented methodology considers how a minimal set of variables 

can be formed to deliver the information and considers how robust the explnations 

are in the given setting.  

2.3 Deep learning and multimodal data fusion 

Multimodal data fusion “aims to integrate the data of different distributions, 

sources, and types into a global space in which both inter-modality and cross-

modality can be represented in a uniform manner.” [63] Through considering 

different data modalities within different classifiers this research area considers 

more succinct ways of combining other types of data to classify in the same way.  

Importantly the work presented in this thesis attempts to reflect a decision-making 

process in modern medicine, which relies on using data from different sources to 

influence the outcome. It is known that the fusion of different classifiers can be 

useful where they are different [64] or where different sets of features are used 

[65].  
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The inclusion of deep learning combines the strength of deep learning models 

alongside the utilisation of other data modalities to make an effective prediction. 

The process is the same however in some way, deep learning is included. This is 

usually where features or predictions are extracted using a deep neural network, 

such as a convolutional neural network. The application of deep multimodal data 

fusion using medical imaging alongside other data modalities is considered within 

the thesis. A recent systematic review [21] categorises three types of deep 

multimodal data fusion and these are followed for the purposes of the thesis. 

Early Fusion [63] joins different modalities into a single feature vector before 

applying it to a machine learning classifier. Either original data features or extracted 

features (say from extracting texture features) are applicable here.  

An example from Thung et al [66] concatenated two imaging modalities, PET and 

MRI, patient data (age, gender, education) and genetic data for the diagnosis of 

Alzheimer’s disease. This was conducted using a deep neural network, with both 

modality-specific layers and task-specific layers as a form of multi-task learning. The 

inclusion of all available clinical data attained the highest accuracy in this process at 

63.6% accuracy, while MRI alone attained only 58%. 

An et al. [67] used optical coherence tomography features, ocular parameters from 

laser speckle flowgraphy features and patient data for the classification of 

glaucoma cases. A feature selection process was implemented to improve 

interpretability for which the importance of variables was quantified at the end of 

the process, which included data from all data modalities. Although no comparison 

to standalone classification is provided, the fusion accuracy was 87.8%.  

Tong et al. [68] performed early fusion on histology images from the ICIAR 2018 

Grand Challenge2. They concatenate CNN features from three different networks 

before making a final prediction, as a 5-class classifier. All fusion models tested 

outperformed single modality models, the best performing attaining an accuracy of 

 
2 Both “early” and “late” fusion are referred to in a different manner to the adopted definitions 
within this thesis. Features are concatenated, not predictions and so falls under the “Early Fusion” 
definition. 
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81.5% where features were combined before the final fully-connected layers in the 

network, using AlexNet to extract the features. 

Tan et al. [69] used feature-level fusion with various modalities of CT scan and 

statistical texture features to discriminate between levels of severity of lung cancer. 

Comparisons were made between a standalone CNN model using CT scans, the CNN 

model alongside knowledge from the scans which involve information from the 

specific patch within the image and finally a model that includes both 

aforementioned information alongside extracted statistical texture features. These 

are included in the model before any classification is made – so extracted features 

and statistical texture features – and so is denoted as early fusion by this thesis’ 

adopted definitions. The inclusion of further information improves the predictive 

capability throughout, where the standalone model attains an area under the curve 

(AUC) of 0.89 the model with all information available attains an AUC of 0.943. 

Early fusion using multi-sequence MRI is used in work by Feng et al. [70]. In this 

work, both diffusion-weighted MRI imaging (DWI) and various parameters of 

dynamic contract enhanced MRI imaging (DCE) are run through a feature extractor 

CNN separately, with these outputted features combined for a classification process 

to classify between benign and malignant breast cancer. This work used domain 

knowledge to assist in the feature learning process, utilising and extracting relevant 

morphological features to ensure the best usability of the model. An LSTM model 

[71] is used to combine the extracted features as this model is proven to work well 

with sequential data (in this work the MRI images display the same data in a 

different manner). Results are compared across standalone DCE classification, 

standalone DWI classification and using the proposed feature fusion model. The 

best results are found with the combination of all data with an accuracy of 85% at 

the patient level, compared to 80% for both standalone models.  

Joint fusion considers joining learned feature representations from intermediate 

layers of neural networks. Features from other data modalities are inputted at the 

end. In this type of fusion, the loss is backpropagated to the feature extracting 

neural networks to represent data better. 
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Yala et al. [72] performed a larger-scale retrospective study using deep learning to 

develop a breast cancer risk model. Mammograms were the imaging input 

alongside much patient data including age, weight, menopausal status, detailed 

family history and breast density. Standalone, mammograms attained an AUC of 

0.68 as an imaging-only deep learning model. Using only risk scores based on the 

non-imaging data attained an AUC of 0.67 through a logistic regression model. A 

modest improvement was found with fusion, with an AUC of 0.70. This fusion 

model used extracted features from the imaging deep learning model, fusing the 

risk factor data through concatenation. This process used both linear and rectified 

linear unit nonlinearities “to fuse the information” together. 

Spasov et al. [73] used both MRI and various non-imaging data including patient 

and generic data to predict Alzheimer’s disease. A CNN model was implemented in 

this work where learned features were concatenated within the network and 

further trained throughout the architecture. Various networks were used here both 

to extract features from imaging and non-imaging data and to merge different 

features throughout. This network achieved near-perfect accuracy.  

Late fusion takes the probabilistic predictions from multiple, individual models to 

curate the final decision. This is also known as decision-level fusion. Separate 

models are trained with the different modalities and a final decision is an 

aggregation of the predictions including averaging or majority voting.  

Reda et al. [74] performed a small scale (18 patients) late fusion study on prostate 

cancer data, using features extracted from diffusion-weighted MRI imagine across 

various b-values (from Non-Negative Matrix Factorisation) as the medical imaging 

input and results from PSA blood tests which are a routine indicator conducted by 

clinicians. Single modality results were used as inputs for a larger classifier. 

Standalone outcome measures in this work were 77.78% accuracy for PSA 

screening results (k-Nearest Neighbour) and 88.89% accuracy for MRI (using 

Random Forest). Using data fusion with both imaging features and PSA blood test 

results, the accuracy increased to over 94% using a stacked auto-encoder.  
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Rogova and Stomper [75] use an “intelligent voter” system across two separate 

neural network classifiers – one with human-provided information, the other 

intensity-based features from mammograms, to assess calcifications. This work 

curated software which considered the subjectivity of human decision making and 

made allowances for this where different people may make a different judgement. 

Single modality classifiers held high sensitivity but low specificity, while the hybrid 

system retained the high sensitivity and improved the specificity of both 

radiologists and the single modality system.  

Lederman et al. [76] assessed various classifiers to discriminate between high or 

low-risk breast cancer patients using spectroscopy. Patients were grouped based on 

their BIRADS score, with higher scores leading to higher risk grouping. In this work, 

three classifiers were tested independently – a neural network, a support vector 

machine and a gaussian mixture model. Although the best classifier was the neural 

network with an AUC of 0.81, each classifier selected three different feature 

subsets leading the authors to consider fusion methods. The best performing fusion 

methods attained AUCs of 0.84 through the combination of probabilistic output 

scores from all three standalone methods. The discussion noted the weighted sum 

rule – a linear combination of the scores of the three classifiers – was the most 

consistent and robust performer.   

Sehgal et al. [77] used decision-level fusion across a neural network and support 

vector machine classifier using DNA microarray data for ovarian or breast cancer 

classification. This work proposed Decision Based Fusion using Stacking (DBFS) to 

perform the fusion methodology, using cross-validation to calculate posterior 

probabilities after the original classification process. This work improved the 

classification accuracy dramatically compared to the standalone classification 

process. 

Majner et al. [78] used a late fusion process to classify skin lesions. Two support 

vector machine classifiers were used – one for deep learning features and another 

for hand-crafted features. Both classifiers operated separately, with the 

probabilistic output of both compared and the maximum score leading to the final 
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combination. The standalone classifiers attained accuracies of 0.794 and 0.805, 

while the combined classifier attained an improved score of 0.826.  

Yoo et al. [79] used both joint and late fusion to predict the status conversion to 

multiple sclerosis within two years. MRI imaging and patient data were fused using 

CNN extracted features. The patient data included information of the patient’s 

disability status and onset, and location of clinically isolated syndrome event for 

context. The late fusion model averaged the probabilities from the standalone 

models, attaining an AUC of 0.724. The joint fusion model utilised a distance 

transform on the MRI images, pre-training of the CNN and all patient-level data and 

attained the highest predictive capability of all tested models with an AUC of 0.746.  

Huang et al. [80] compared all three types of multimodality data fusion listed here. 

To detect the presence of pulmonary embolism, this study made use of CT scans 

and patient electronic health records, assessing various methodologies and data 

combinations within early, joint, and late fusion. This includes concatenating 

electronic health record data or classifying them separately before combining them 

with deep learning features for the classification process. Convolutional features 

from the PENet deep learning classifier were attained, to satisfy the use of deep 

learning in this work.  

The best model in this work, attaining an AUC of 0.947 was the “Late Elastic 

Average” fusion model, which averaged probabilistic predictions from both the 

electronic health records using a deep neural network, ElasticNet, and extracted 

features from the PENet for the CT scans. An early fusion model, combining 

extracted features and then classifying attained an AUC of 0.899 while a joint fusion 

model performed slightly worse at 0.893. This study highlighted the need for 

utilising both imaging and important clinical data which is studied later in this 

thesis.  

The presented work on deep multimodality fusion in this thesis looks to combine 

deep learning features, hand-crafted statistical texture features and lesion-level 

metadata with the aim of improving the predictive capability of a classifier. This 
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forms part of the package of proposed work of machine learning-based tools for 

cancer triage and classification.  

2.4 Summary 

The literature review has identified areas which this thesis attempts to contribute 

to. 

The Fisher Information Network methodology at present reviews dataset 

structures. It is intended that this will be developed in this thesis to build on work 

conducted in a cancer diagnosis application. This does not take new/unseen test 

cases into account, only training cases to represent a dataset structure. Further, 

only tabular data is used. This thesis will attempt to represent images rather than 

tabular data as well as projecting test cases within a trained embedding.   

Work on interpretability of black-box machine learning algorithms is wide-reaching 

with applications that are model-agnostic and specific to certain architectures. This 

thesis will attempt to contextualise the decision-making process of a classifier, 

which as identified in the literature review can sometimes be limited with other 

approaches. Under a clinical setting this could go hand-in-hand with clinical impact. 

Multimodality data fusion is an area of growing popularity in the literature, 

particularly using deep learning within the framework. The literature review has 

identified that much of the work available produces impact within the machine 

learning methodology over clinical contributions. This thesis will look to use a 

machine learning workflow to replicate the thinking of a clinician who will use 

multiple data sources to support a decision.   
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3 Dataset 

This chapter describes the publicly available CBIS-DDSM dataset which has been 

used throughout this thesis. The Curated Breast Imaging Subset of DDSM (CBIS-

DDSM) [25] is a standardised version of the Digital Database for Screening 

Mammography (DDSM) [81], [82]. The DDSM is a rich mammography database, 

containing 2,620 scanned film mammography studies with verified pathology 

information. The CBIS-DDSM includes a subset of the DDSM data selected and 

curated by a trained mammographer, for which a description of the process is 

described in this chapter.  

Within the dataset, updated regions of interest (ROI) from the images have been 

provided and the pathologic diagnosis is also included. This dataset contains both 

breast masses and calcifications and holds a pathology label for each case, which is 

either “benign” or “malignant” with verified pathology information.  

3.1 From DDSM to CBIS-DDSM 

Within mammography there are few standard and well-known evaluation datasets. 

Until more recently, many CAD applications in the literature evaluate their methods 

on a private dataset. Available public datasets include the DDSM and the 

Mammographic Imaging Analysis Society database (MIAS) [83] however these hold 

limitations such as their size and accessibility. The DDSM dataset holds 2620 

scanned film mammography studies across “normal”, “benign” and “malignant” 

labels verified pathologically [81], [82].  

As the DDSM dataset holds many scans that were attained at hospitals with ethical 

approval alongside ground truth labels, the curators of the CBIS-DDSM dataset 

realised the value in updating and modernising the dataset. For example, the DDSM 

files were in older-style files that are out of date. Furthermore, annotations for the 

region of interest were for general position of lesions rather than exact locations. 

The CBIS-DDSM dataset holds the files in the more traditional DICOM file format 

[84] as well as improved segmentation for more accurate ROI details, using a lesion 

segmentation algorithm [85], verified by a trained mammographer. 
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One noteworthy loss of the move from DDSM to CBIS-DDSM, is that age was not 

transferred. In these application areas, age can be a useful data aspect to hold due 

to the relation between survival and age for breast cancer diagnosis [86]. 

3.2 Types of lesions – masses and calcifications 

A breast mass is a localised lump or swelling in the breast and tends to be denoted 

by its size, location, shape, and margins. Depending on its criteria across the shape 

and margins the likelihood of malignancy can be defined and descriptions of these 

and their link to malignancy likelihood follow. Figure 3-1 shows an example of a 

breast mass. 

Breast calcifications are calcium deposits, presented as “milk spots” that appear in 

mammograms as small white spots. They tend to appear clustered and are analysed 

according to the distribution, size, and shape of their appearance. These are mainly 

benign and usually signpost to a manifesting breast mass. A description of the 

calcification types and distribution follows, including the categories of these that 

are more likely to be benign or malignant. Figure 3-1 shows an example of breast 

calcification.  

 

Figure 3-1: Example of a mass and a calcification, both in region of interest images. The calcification image is 
annotated to show the calcification (milk spots). Images from CBIS-DDSM dataset [25]. 
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3.3 Data available within CBIS-DDSM 

3.3.1 Full mammogram images 

Each patient in the dataset holds mammograms across two views. These are 

through both the craniocaudal (CC) and mediolateral oblique (MLO) views of the 

breast. These views are standard projections in mammography screening. It is 

worth noting that there may be more than one lesion for a given patient and 

further within the same breast. It is known that calcifications can be an initial sign 

of the development of a mass [87]. Figure 3-2 shows a representative case from the 

CBIS-DDSM dataset of full mammogram images from the same patient, both the CC 

and MLO views.  

 

Figure 3-2: The two standard mammography views available in the CBIS-DDSM dataset are the CC and MLO 
views. The “CC view” and “MLO view” images here are for the same patient in the CBIS-DDSM dataset. Data 
images from CBIS-DDSM dataset [25]. 

 

3.3.2 Region of interest patch images 

For each given lesion, an ROI patch is provided with the associated mammogram. 

This is a crop of the image to show the mass or calcification more directly. An 

example of what is provided with a given lesion case is provided in Figure 3-4. 
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3.3.3 Associated metadata 

3.3.3.1 Metadata for all lesions 

Much information about abnormalities present in a mammogram can be summed 

up by a radiologist, usually a pre-pathology sample, through the Breast Imaging 

Reporting and Data System (BI-RADS) score [88]. This score was originally 

developed for mammograms although its use has since been extended to MRI and 

breast ultrasound. It allows for images to be grouped into well-defined categories. 

As it is pre-pathology, one may see it as a “pre-pathology triage” system. It is of 

more benefit to radiologists than patients.  

The scores that can be assigned are between 0-6, where BI-RADS 0 is an incomplete 

assessment and more mammograms are required, and BI-RADS 1 and 2 are 

negative and benign respectively with a near-0% likelihood of malignancy. BI-RADS 

3 is “probably benign”, where the likelihood of malignancy begins to appear but 

remains low (≤ 2%) and would require short-interval follow-up. BI-RADS 4 denotes 

a suspicious lesion in the imaging and these cases would be pushed forward for a 

tissue diagnosis alongside BI-RADS 5 lesions where the likelihood of malignancy is 

over 95% – further categorisation can occur here, it does not in the CBIS-DDSM 

dataset. The BI-RADS 6 score denotes a known, biopsy-proven malignancy requiring 

surgical excision when appropriate (this score does not appear in the dataset but is 

included for completeness). 

A score for breast density is provided in this dataset, as a score between 1-4, with 1 

denoting lower density. Previously, breast density has been the subject of machine 

learning-based classification in the literature [18]. It can provide a useful indicator 

of how difficult it is to locate a breast lesion [89], [90], although it is generally ill-

advised against for making decisions [88]. 

A subtlety score between 1 and 5 has been assigned to each lesion in the CBIS-

DDSM dataset. Little description about this score is provided and so has not been 

used within models, however it is possible to use it after the analysis to reveal 

further insights. 
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In the application areas studied throughout the thesis, where metadata has been 

used it has been applied differently. This is to show a range of applications for this 

data subset and to exploit the information provided by the attained results. On a 

clinical view, this could provide further insights into the findings, strengthening the 

proposed methodologies. For each concept it will be clearly defined what data has 

been used and whether it was for the classification, or post-processing analysis.  

3.3.3.2 Calcifications 

Calcification type. Large rodlike, coarse, skin, round and regular, eggshell and milk 

of calcium calcification types are typically benign. Amorphous calcifications are of 

concern. Pleomorphic, and fine linear branching calcifications are of higher 

probability of malignancy. 

Calcification distribution. The names of the categories of calcification distribution 

lend well to their visual descriptor, with examples shown in Figure 3-3. Clustered 

calcifications refer to groups of five or more within a small tissue volume and can 

be either benign or malignant. Segmental calcifications suggest malignancy and are 

distributed in a duct and its branches. Regional distributions occupy a larger volume 

of breast tissue and are either malignant or benign. Diffusely scattered calcifications 

are distributed randomly throughout the breast and are almost always benign. 

Linear calcifications are suggestive of malignancy. 

Table 3-1 lists the calcification types and distribution categories available in the 

CBIS-DDSM dataset. 

3.3.3.3 Masses 

Mass shape. There are eight categories of mass shape present in this subset of the 

CBIS-DDSM dataset. In general, they tend to describe the shape of the lesion with 

drawn examples of these shown in Figure 3-3. Architectural distortions are defined 

by the Breast Imaging Reporting and Data System (BI-RADS) system as an 

appearance in which “the normal architecture of the breast is distorted with no 

definite mass visible.” Asymmetries detect differences between the breasts, as the 

internal structure of the two breasts for a given person are very similar.  
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Mass margins. There are five categories of mass margins, which defined the border 

of the mass and is an important aspect of determining the classification of a lesion 

[91]–[93]. Circumscribed margins are well-defined and are sharply demarcated with 

a notable change from normal tissue to the lesion. The likelihood of malignancy 

tends to be lower. Ill-defined margins are not well defined and can be scattered. 

Obscured margins are hidden from view by normal tissue. Spiculated margins are 

marked by radiating thin lines. These tend to have a higher likelihood of 

malignancy. Micro-lobulated margins have small, undulating circles along the edges 

of the mass. 

Table 3-2 lists the mass shapes and margin categories available in the CBIS-DDSM 

dataset. 

Calcification type Calcification distribution 

Amorphous Clustered 

Coarse Linear 

Eggshell Segmental 

Dystrophic Diffusely scattered 

Pleomorphic Regional 

Punctate 

Milk of calcium 

Fine linear branching 

Large rodlike 

Lucent centre 

Round and regular 

Skin 

Table 3-1: Categories of the calcification metadata within the CBIS-DDSM dataset 

Masses: 

Mass shape Mass margins 

Architectural distortion Circumscribed 

Asymmetric breast tissue Ill defined 

Focal asymmetric density Obscured 
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Irregular Spiculated 

Lobulated Microlobulated 

Lymph node 

Oval 

Round 

Table 3-2: Categories of the mass metadata within the CBIS-DDSM dataset 

 

Figure 3-3: Terminology and visual representation of masses (left) and calcifications (right). Taken from The 
Abnormal Mammogram [92] 

A representative example of the available data - full mammogram images, cropped 

ROIs, patient information and associated metadata – is shown in Figure 3-4. 
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Figure 3-4: Example of a given lesion - the mammogram patches taken and the ROI alongside the associated 
metadata. 

3.4 Data derived from images in the dataset 

Parts of the content in the thesis look at forms of “multimodality” analysis. 

3.4.1 Statistical texture features 

A total of 130 statistical texture features – or “hand-crafted features” - from each 

CBIS-DDSM ROI patch were extracted and have been used in mammogram 

classification in the literature [94]. These ROIs were enhanced using Contrast 

Limited Adaptive Histogram Equalization [95] to reduce noise within the images. 

This method divides the ROI into equally sized contextual regions, applies histogram 

equalisation on each region, limits the histogram by a clip level and redistributes 

the clipped amount throughout the histogram. The pixel value is then obtained by 

histogram integration. Radiomics [96] looks at the extraction of numerous 

quantitative imaging features. Features described here are extracted from defined 

regions of medical images to “provide accurate risk stratification by incorporating 
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the imaging traits into predictive models for treatment outcome and to evaluate 

their added value to commonly used predictors.” [96] Their use in this thesis is to 

support the evidence in the literature of how they apply within decision support 

systems. 

Textural features quantify information about spatial distribution of tonal variations 

within a band [97]. Statistical methods analyse the spatial distribution of greyscale 

values, by computing local features at each point in the image and deriving a set of 

statistics from the distributions of local features [98]. Depending on how many 

pixels define the local feature, statistical features can be first order (one pixel), 

second-order (two pixels) or higher-order (three or more pixels). As first-order 

statistics ignore spatial interaction between image pixels, it is proposed to use both 

first and second-order statistics to represent the images. The second-order features 

extracted are Grey Level Co-occurrence Matrix (GLCM) and Grey Level Run Length 

Matrix (GLRLM), at angles 0, 45, 90 and 135. [97], [99] 

3.4.2 CNN features 

Some application areas within the thesis refer to the use of CNN features as a 

dataset. This refers to a convolutional neural network model curated by Shen et al. 

[100], a Resnet50-based model. This has been used to study and exploit the 

strengths of a well-performing deep learning architecture. This model is a strong 

performing model in the literature with the CBIS-DDSM dataset as well as publicly 

available. This thesis studies the patch classifier, using mammogram patches 

provided by the author using a sliding window across the mammograms with 

information available about the location of the given lesion. The output of the 

penultimate layer of the model has been used as a feature extractor of the network 

and these outputs are used as the “CNN features” throughout the thesis. 
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4 Fisher Information Network methodology 

This chapter describes the Fisher Information Network methodology. This is done to 

support the following chapter in the thesis which studies two different applications 

of the FIN approach including a “patient-like-me” method to study new patients. 

The methods in this chapter build on work proposed by [30], [101]. 

Figure 4-1 shows a diagram of the process from data pre-processing to the 

application stage, for which the main Fisher Information Network methodology will 

be described here. After data pre-processing and development of a multilayer 

perceptron (MLP) classifier, the probabilities derived from the classifier are used to 

derive the Fisher Information metric, which leads to the estimation of the pairwise 

distances within the Fisher manifold. Then, using multidimensional scaling, each 

given case can be visualised together through a form of dimensionality reduction. 

This leads to projecting the new test cases, unseen to the original classifier, leading 

to an application-based analysis in the following chapter.  

 

Figure 4-1: Diagram of the Fisher Information Network methodology. The four centred boxes detail the main 
stages of the FIN approach.  
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4.1 Multilayer Perceptron for predictive probabilities 

For this work, the MLP has been used as the discriminative model. A type of neural 

network built from neurons [102], the power of the classification is built from the 

links between the several in a given MLP network. The ‘learning’ occurs through the 

units adapting their weights of the connections between themselves as the network 

is trained with new training data. Figure 4-2 shows a representation of an MLP, for 

a binary classifier. Input data is entered at the input layer, pushed to the hidden 

layer.  

 

Figure 4-2: Representation of an MLP, with weights and biases defined. Input data entered at the start, pushed 
to the hidden layer. Iteratively, as more training data enters the network, the weights and biases adapt to 
generalise to the data. With the correct setup (number of units, activation) 

Iteratively as more training data is inputted, the weights and biases adapt to learn 

how to discriminate between two classes. The hidden layer can extract higher-order 

statistics from the input, generating non-linear intermediate signals. Outputs from 
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the hidden layer are combined in the output layer, leading to the outputs of the 

MLP: 

𝑎(𝒙) = 𝑾𝑂𝜽(𝑾𝐻𝒙 + 𝑩𝐻) + 𝑩𝑂 

Equation 4-1 

Where 𝑥 is the input data,  𝑾and 𝑩 are the weights and biases of the hidden (H) 

layer and the output (O) layer, respectively. 𝜃 is the sigmoid function, used as the 

probability estimator for a binary classifier: 

𝜃(𝑧) =
1

(1 + 𝑒−𝑧)
 

Equation 4-2 

For multi-class classification where J reflects the number of possible classes, 𝜃 in 

Equation 4-1 can be replaced with the SoftMax activation function: 

𝑝(𝑐𝑗|𝑥) =
𝑒𝑎𝑗(𝒙)

∑ 𝑒𝑎𝑗(𝑥)𝐽
𝑘=1

 

Equation 4-3 

4.2 Derivation of the FI metric 

The probability densities of the classes estimated with an MLP can then be used to 

calculate pairwise distances, producing the Fisher distance matrix. In this step, the 

FI metric is derived from the Fisher distance matrix. It is obtained by differentiating 

the logarithm of the conditional probability 𝑝(𝑥|𝜃) with respect to 𝑥 and summing 

over all possible classifications. The metric defines a Riemannian space where the 

distances are a measure of similarity between the respective probability 

distributions, as shown in Equation 4-4. 

𝐹𝐼(𝑥) =  𝐸𝑝(𝑥){(𝛻𝑥𝑙𝑜𝑔 𝑝(𝑥) )𝑇(𝛻𝑥𝑙𝑜𝑔 𝑝(𝑥) )} = −𝐸𝑝(𝑥){𝛻𝑥
2𝑙𝑜𝑔 𝑝(𝑥) } 

Equation 4-4 

Where 𝐸𝑝(𝑥) denotes the expectation over the density function 𝑝(𝑥) and 𝛻𝑥 is the 

gradient with respect to 𝑥. 

The distance between two neighbouring points is then calculated by the quadratic 

differential form, as shown in Equation 4-5, known as the “straight path” approach: 
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𝑑(𝑥, 𝑥 + 𝛥𝑥)2 = 𝛥𝑥𝑇𝐹𝐼(𝑥𝐴)𝛥𝑥 

Equation 4-5 

Here, the “straight patch” approach considers the shortest path (distance) to be a 

straight line between the two points, which provides an approximation of the 

integral along that path. This assumes that the FI matrix, 𝐹𝐼(𝑥), is constant 

throughout – where 𝐹𝐼(𝑥(𝑡)) = 𝐹𝐼(𝑥𝐴).  

The integral can be approximated using interpolation methods. For this, the FI 

matrix is evaluated at T points along the defined straight path. This can 

approximate the true length of the straight line in this approach, through the choice 

of T. As recommended by [30], T = 10 is suggested as per empirical experiments. 

𝑑𝑇(𝑥𝐴, 𝑥𝐵) =  ∑ 𝑑1(𝑥𝐴 +
𝑡 − 1

𝑇
(𝑥𝐵 − 𝑥𝐴), 𝑥𝐴 +

𝑡

𝑇
(𝑥𝐵 − 𝑥𝐴)

𝑇

𝑡=1

  

Equation 4-6 

The shortest path is estimated using Floyd-Warshall algorithm [103], [104]. 

4.3 Computation of the similarity matrix 

The similarity matrix is then computed from the distance matrix generated 

previously, using a Gaussian radial kernel, resulting in an adjacency matrix that 

defines the network structure (see Equation 4-7). Here, distances are transformed 

into similarities  

𝐴𝑖𝑗 = 𝑒
−

∆𝑥2

𝜎𝐺
2

 

Equation 4-7 

Where ∆𝑥2reflects the distance between two points, 𝑥𝑖  and 𝑥𝑗 within the Fisher 

metric, 𝜎𝐺  controls the influence of locality in the generation of the weights of 

network connections and is determined using a heuristic method. It is taken as the 

average pairwise distance between points belonging to same predicted label. A 

small value of 𝜎𝐺  results in closer points having significant connection weights, 

while larger values reduce this effect and produce meaningful values for points that 

are further away.  
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The distances 𝑑(𝑥𝑖, 𝑥𝑗) lead to the similarities, 𝐴𝑖𝑗 w.r.t the estimate of the 

predictive probabilities. The adjacency matrix, 𝐴𝑖𝑗, contains the structure of the 

Fisher network. Each point holds a similarity to every other point in the network, 

which leads to the aforementioned “distances” between points. Through the use of 

MDS, it will be possible to project these similarities into a visualisation by 

condensing this high dimensionality matrix into fewer (usually 2 or 3) dimensions.  

4.4 Application of multidimensional scaling 

The use of multidimensional scaling is to embed the Fisher manifold into a lower-

dimensional space, allowing for visualisation of the Fisher manifold’s structure. This 

transforms the pairwise distances held in the Riemannian manifold into coordinates 

which are embedded in a Euclidean space.  

Multidimensional scaling [31] searches for a lower-dimensional space which is 

usually Euclidean, in which each of the points within the space represents a given 

data point. Each point represents a given case in the input data. The overall aim is 

that the distances between each point in the feature space, reflect the 

(dis)similarities.  

After the computation of the similarity matrix, MDS produces a representation of 

the patients in a low-dimensional Euclidean space, such that the distance between 

two cases in the lower dimension Euclidean space approximates as closely as 

possible the distance between the respective cases in higher dimension Riemannian 

space.  

MDS [31] uses a matrix of pairwise dissimilarities between cases to produce a 

reflection of the instances to show the distances approximate as closely as possible 

the dissimilarities between the corresponding cases in the original matrix. For 

visualisation purposes, it aims to find a configuration of n points in a (usually 

Euclidian) space so that each object is represented by a point in the space.  

4.4.1 Minimising the stress loss function 

To find a mapping, 𝜙, of the dissimilarities, 𝛿𝑟𝑠,𝑖, giving rise to the set of disparities, 

𝑑𝑟𝑠,𝑖
̂ , the task is defined as: 
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𝜙[𝛿𝑟𝑠,𝑖] = 𝑑𝑟𝑠,𝑖
2  

Equation 4-8 

Where �̂�𝑟𝑠,𝑖
2  are least squares estimates of 𝑑𝑟𝑠,𝑖

2  which are obtained through 

minimising the loss function: 

𝑆𝑆 =  ∑ ∑ ∑(𝑑𝑟𝑠,𝑖
2 − �̂�𝑟𝑠,𝑖

2 )
2

 

𝑖𝑠𝑟

 

Equation 4-9 

In this work, the squared stress metric (SS) is used as a measure of the goodness of 

fit of the approximation of the original dissimilarities. It is minimised using an 

alternating least squares algorithm. Known as ALSCAL (Alternating Least squares 

SCALing) [105], where we consider the SS metric as a function of the similarity 

coordinates matrix, 𝑿, a matrix of weights, 𝑾 and the disparities, �̂�: 𝑆𝑆(𝑿, 𝑾, �̂�), 

the algorithm is as follows: 

1. Find an initial configuration of both 𝑿 and 𝑾. 

2. Perform optimal scaling to calculate 𝐷, 𝐷 ∗ and normalise. 

3. If the SS metric has converged, terminate. 

4. Perform model estimation: minimise 𝑆𝑆(𝑾|𝑿, 𝐷∗) over 𝑊; then, minimise 

𝑆𝑆(𝑿|𝑾, 𝐷∗) over X. 

5. Go to step 2. 

The optimal scaling phase takes the calculated distances, 𝑑𝑟𝑠,𝑖 from the current 

coordinate and weight matrices, 𝑿 and 𝑾. Disparities, �̂�𝑟𝑠,𝑖
2 , are then calculated. 

Placing all disparities in a vector, �̂�  and the distances into 𝑑, then 

�̂� = 𝑬𝒅, 

Equation 4-10 

Where 𝑬 = 𝒁(𝒁𝑇𝒁)−1𝒁𝑇, with Z depending on the type of transformation. Z is a 

matrix of variables indicating which distances must be tied to satisfy the 

measurement conditions.  

SS can now be denoted as  
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𝑆𝑆 = 𝒅𝑇(𝑰 − 𝑬)𝒅 

Equation 4-11 

The model estimation phase looks for the least squares estimated of the weight 

matrix, W, for the current disparity values, �̂�𝑟𝑠,𝑖an coordinates X of the points in the 

group space. The least squares estimates are then found of X for the current 

disparity values and weights W.  

For the first minimisation, let the 
1

2
𝑛(𝑛 − 1) quantiles (𝑥𝑟𝑡 − 𝑥𝑠𝑡)2 make up the 𝑡𝑡ℎ 

column of a matrix, Y. A similar 
1

2
𝑛(𝑛 − 1) 𝑝 matrix, 𝑫∗ is composed of the 

disparities 𝛿𝑟𝑠,𝑖
2 . Then, SS can be written as: 

𝑆𝑆 = (𝑫∗ − 𝑾𝒀𝑇)𝑇(𝑫 − 𝑾𝒀𝑇) 

Equation 4-12 

and hence, 

𝑾 = 𝑫∗𝒀(𝒀𝑇𝒀)−1 

Equation 4-13 

In the following chapter, visualisations from the MDS process facilitates the analysis 

of individual cases using a ‘patient-like-me’ approach, leading to clinical impact. 

Where a case exhibits similar characteristics to another case, they will appear close 

together on the visualisation. Throughout this work, MDS looks to reduce high-

dimensional data into a 2- or 3-dimensional representation, while still showing the 

approximation of dissimilarity through distances between points.   The intention of 

this is for unseen test cases to be embedded into the manifold, leading to new 

cases that share similar characteristics appearing in the same area as a trained case 

from the trained classifier. A description of this method follows. 

4.4.2 Projection of test cases into trained embedding 

The distances of each test point from each training point are also computed. 

However, for these distances to be appropriate to project the test cases into the 

trained embedding, a procedure to compute the weighted average of the training 

coordinates is required, to ensure the weights are proportionally inverse to the 

distance.  
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For this to be calculated, a length scale parameter is calculated, 𝜎𝐺 . This step 

transforms the manifold distances into a similarity network using a Gaussian kernel 

based on Equation 4-7. The similarity network is defined through 𝐴𝑖𝑗 which is 

symmetrical. The method used to calculate 𝜎𝐺  is a heuristic approach using the 

average intra-label distances in the Fisher manifold [101]. 

The intra-label distances represent the average pairwise distances of the manifold 

which belong to the same label. 

𝑑𝑖𝑠𝑡𝑖𝑛𝑡𝑟𝑎𝐿𝑎𝑏(𝑥𝑖, 𝑥𝑗) =
∑ ∑ 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)𝑗∋(𝑗>𝑖)∧(Li=𝐿𝑗)

𝑁
𝑖=1

∑ ∑ 1𝑗∋(𝑗>𝑖)∧(Li=𝐿𝑗)
𝑁
𝑖=1

 

Equation 4-14 

By using the Gaussian kernel as the similarity measure, where values of 𝐴𝑖,𝑗 are 

between 0 and 1, a constraint may be imposed that the intra-label distance must be 

equal to a relatively high value of similarity, setting 𝐴𝑡ℎ > 0.5.  

𝐴(𝑖,𝑗)∈ intraLab = 𝑒
(−

𝑟.𝑑𝑖𝑠𝑡𝑖𝑛𝑡𝑟𝑎𝐿𝑎𝑏(𝑥𝑖,𝑥𝑗)

𝜎𝐺
)

2

← 𝐴𝑡ℎ  

Equation 4-15 

Through imposing this condition, 𝜎𝐺  is determined within a small range of values 

(the 𝑟 value is a multiplying factor for network granularity).  

𝜎𝐺 ←
𝑟. 𝑑𝑖𝑠𝑡𝑖𝑛𝑡𝑟𝑎𝐿𝑎𝑏(𝑥𝑖, 𝑥𝑗)

√ln (𝐴𝑡ℎ)
 

Equation 4-16 

This sets 𝜎𝐺 , allowing for the adjacency matrix 𝐴𝑖𝑗 to be calculated for the test 

cases. 

𝐴𝑖𝑗(𝑡𝑒𝑠𝑡) = exp 

− (
𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)

𝜎 )

2

∑ (
𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)

𝜎 )

2 

Equation 4-17 
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The transpose of these values is then multiplied by the scaled coordinates of the 

training data. This brings the test data coordinates into the same scale as the 

training coordinates. At this stage, it is possible to project the test cases, using their 

coordinates, into the trained embedding as they are now within the same scales as 

each other. This leads to more practical applications, for which two examples of 

clinical data on breast cancer are detailed in the following chapter.  

4.5 Chapter summary 

This chapter has provided a description of the Fisher Information Network 

methodology, which will be applied to real-world data in the following chapter. This 

involves thedevelopment of an MLP, derivation of the FI metric, computing the 

similarity matrix, leading to multidimensional scaling and projection of test cases 

into the manifold. Using posterior class probabilities from an MLP and its weights 

and biases, this method looks to take what has been inherently learned by the 

classifier and visualise the data allowing for a new understanding of the algorithm’s 

output.  

The manifold reflects the information learned by the classification model on which 

it is based. Once the Fisher manifold is in the Euclidean space, MDS can be used to 

visualise the structure of the embedding, leading to more practical applications. 

Visualisations can assist both experts and the vernacular in understanding the 

workings of a machine learning classifier. Further, the projection of new test cases 

is a novel research point in this thesis. This can exploit the predictive capability of a 

“black box” machine learning method such as an MLP. In the following chapter, 

these points are demonstrated. 
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5 Fisher Information Network – Application of a clinical 

problem 

This chapter studies two different applications of the Fisher Information 

methodology on the CBIS-DDSM breast cancer dataset. Both look at a “patient like 

me” approach for new test cases. The first focusses on creating a classifier which 

discriminates between benign and malignant breast lesions using statistical texture 

features of images. The second looks at a well-performing deep learning classifier 

on the dataset, which is a multinomial classifier, to study the application of CNN 

features on the same process. This can be seen as a machine learning approach for 

a triage-like tool for new cases and how a trained classifier can inform clinical 

thinking. 

5.1 Applying the FIN methodology to texture features, leading to a patient-

like-me approach 

5.1.1 Introduction 

This section looks at curating a robust visual representation of clinical data from a 

neural network classifier. For this, a study of the breast cancer dataset, CBIS-DDSM, 

was conducted using the FIN methodology, initially using communities [106], later 

on improving the approach to create more reproducible data groupings. This 

allowed us to create more reproducible representations and applied this 

methodological approach to breast cancer data, specifically calcifications because it 

is a larger and richer dataset that holds similarities to the characteristics of the 

prostate cancer problems (calcifications are milk spots). The initial MLP model 

informs the FI metric, which takes advantage of the probabilities of class 

membership. The data used in this application are statistical texture features 

calculated from ROI image patches from mammograms. 

Much of the existing work conducted in breast cancer classification looks at the 

discrimination between tumour and normal tissue [107]–[112] with a relatively high 

success rate. However, that differentiation is not the most useful since tumours can 

be either benign or even be at different stages of malignancy and being able to 

develop a better understanding of this for each individual patient is hugely 
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important, especially since malignant tumours would require immediate treatment. 

This is the reason why in this study the focus is on the development of a 

visualisation of the breast cancer patients’ latent space using mammography 

images, showing a spatial representation of these patients of whom we have 

additional insights that can be used to better understand and diagnose new 

patients. In order to achieve this, in this thesis the proposed methodology uses 

neural networks augmented by the use of the Fisher Information (FI) metric, as a 

learning metric of a latent variable space [113], [114]. The FI metric is a natural 

statistical measure of dissimilarity for small changes between the data points (in 

this study, patients) according to their degree of relevance with respect to class 

membership. The proposed method produces a novel, low-dimensional 

visualisation (2D or 3D) that includes the projection of every mammographic image 

included in the analysis.  

For the proposed methodology, a FI network is constructed using probability 

density estimates, which are calculated for two classes – benign and malignant 

tumours, namely for calcifications. As mentioned, the aim of this work is to produce 

a visualisation of the latent space of breast cancer patients using mammography 

images from where underlying patterns and structures from these patients could be 

grouped and understood.  

It is expected that a visualisation of this latent space obtained with the FI network 

will help elucidate the underlying data structure, with the goal of assisting the 

diagnosis of new patients. The latter can be achieved by projecting new unseen 

instances/observations into this latent space, given that a huge amount of 

information can be learnt from the closest neighbours, which would be potentially 

relevant to those new patients – we call this a ‘patient-like-me’ approach. The latter 

has the potential to help identify not only what would be the most likely diagnosis, 

but also what kind of treatments or therapies were more successful for those 

nearby cases, which could inform and influence the decision of a clinician. 

The main objective of this part of the thesis is to create a visualisation of the latent 

space of the cancer patients that represents the variability that can be found in the 

datasets, from which we gain insights on how different patients can be related, 
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leading to the development of a ‘patient-like-me’ approach. To achieve this, we 

propose a methodology that follows the steps below, also illustrated in Figure 5-1: 

I) Image enhancement: This step involves enhancing the extracted image, 

using Contrast Limited Adaptive Histogram Equalisation [115], to reduce 

noise within the images, improving the classification process. 

II) Image representation and model optimisation: This step involves the 

extraction of first and second-order features from the ROIs of the 

images, and then selecting the most relevant of them for the specific 

problem when using the MLP [116]. 

III) Development of an MLP model: The MLP is a class of feedforward 

artificial neural network [117], which has been utilised to estimate the 

probability densities of the classes. For the development of the model, 

the MLP parameters are set according to the optimised model obtained 

in the previous step. 

IV) Creation of the latent space of patients: This step involves deriving the 

FI metric that amplifies distances along important directions, computing 

the similarity matrix, and applying a Multidimensional Scaling (MDS) 

[118] method to map the original data onto a Euclidean projective 

space. 

V) Detection of patients’ clusters: Using k-means clustering, groupings of 

patients’ clusters are detected on the Euclidean projective space.  
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Figure 5-1: Proposed methodology: approach followed for creating the visualisation of the latent space of cancer 
patients to develop a 'patient-like-me' analysis 

5.1.2 Methods 

A detailed description of the five steps is described: 

5.1.2.1 Step I: Image enhancement 

Contrast Limited Adaptive Histogram Equalisation (CLAHE) [115], [119] has been 

used in this paper to enhance the ROIs and images to improve the contrast 

distribution within the images. This method divides the inputted images into 

contextual regions of equal size, applies histogram equalisation on each region, 

limits the histogram by a clip level and redistributes the clipped amount throughout 

the histogram. The pixel value is then obtained by histogram integration. Both 

CLAHE and Histogram Equalisation were explored for the study; CLAHE achieved 

better results and are therefore presented. 

5.1.2.2 Step II: Image representation and model optimisation 

Feature extraction. After ROI selection and image enhancement, we propose to 

extract textural features from the images. Textural features contain information 

about spatial distribution of tonal variations within a band [120]. They can be 

extracted using statistical methods, among other approaches not considered in our 

study such as model-based methods and transformation-based methods.  
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Statistical methods analyse the spatial distribution of greyscale values, by 

computing local features at each point in the image and deriving a set of statistics 

from the distributions of local features [121]. Depending on the number of pixels 

defining the local feature, statistical features can be first-order (one pixel), second-

order (two pixels) or higher-order (three or more pixels). As first-order statistics 

ignore spatial interaction between image pixels, we propose to use both first- and 

second-order statistics to represent the image.  

Feature selection and model optimisation. This stage aims at ensuring that noisy 

and redundant features are discarded, and only an optimal set of discriminating 

features are retained to represent the image. In this study, we calculated the 

importance of the features using Random Forest (RF) [122], since the tree-based 

strategies used by RF naturally ranks by how well they improve the purity of the 

node. Hence, depending on where the cut-off point is specified (i.e. pruning the 

tree below a particular node) a subset of the most relevant features can be created.  

5.1.2.3 Step III: Development of MLP model 

In this step, an MLP was trained to estimate the probability densities of the classes, 

since MLP is a semi-parametric non-linear probabilistic model of class membership, 

for which a FI metric can be derived [114]. The MLP was trained to classify images 

into the two classes (malignant and benign) using the training data. The developed 

MLP model was then tested on the test set, which was unseen to the training 

process.  

5.1.2.4 Step IV: Creation of the latent space of patients 

The description of the methods required for the creation of the latent space of 

patients in this stage – deriving the FI metric, computation of the similarity matrix 

and the application of MDS leading to projecting new unseen test cases – has been 

described in the preceding chapter in the thesis.  

The obtained visualisation of the patients’ latent space would facilitate the analysis 

of individual cases using a ‘patient-like-me’ approach, leading to clinical impact. 

Where a case exhibits similar characteristics to another case, they will appear close 

together on the visualisation. An aim of this study is for new, unseen cases to be 
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embedded into the manifold, leading to new patient cases sharing similar 

characteristics appearing in the same area as a patient case as per the trained 

model/visualisation. 

5.1.2.5 Step V: Detection of patients’ clusters 

After creating the FI embedding with all the data points (patients) projected onto it, 

and mapping them onto the Euclidean space, K-means clustering was used to 

generate representative patients’ clusters. Given that the ideal number of clusters 

that should be calculated is unknown, the Separation-Concordance (SeCo) 

framework was used [123] to find the optimal values of cluster number that would 

produce a clustering solution with increased reproducibility and stability, i.e. 

obtaining partitions more resilient to random perturbations [124]. After clusters of 

patients are estimated, we study their individual features to see whether we can 

find additional insights within each subgroup that can help us characterise the 

cluster. From this analysis, we can potentially identify clusters that mainly would be 

representing the different classes (depending on the data problem). 

5.1.3 ‘Patient like me’ approach 

To satisfy the ‘patient-like-me’ objective of this work, test cases are projected onto 

the latent space of trained observations. These new test cases are expected to 

share similar characteristics to the cases in the training, therefore, without 

informing the model of their pathology, we hipothesise that these shared 

characteristics will be exposed. To achieve this, a similar methodology that was 

applied to the training data will now be applied to the test data, which is illustrated 

in Figure 5-2. 



70 
 

 

Figure 5-2: Applying the proposed methodology to a test dataset, to project new, unseen cases on an existent 
latent space of cancer patients 

I) Image enhancement for test cases: The same image enhancement 

method applied to the training data is now applied to the test cases.  

II) Extraction of relevant features: The relevant features selected from the 

nested cross-validation feature selection process are extracted from the 

test data to apply the test cases to the trained model. 

III) Application of MLP model to the test data: The test data is classified 

against the trained MLP model.  

IV) Projecting new cases onto the latent space of patients: The new 

patients’ data is brought into the same projective space as the training 

data using each given patients’ pairwise distance with respect to the 

training set. The test cases are then projected on the same latent space 

as the training cases, which will be used for reference.  

V) Allocation of new cases to clusters: Using the previously trained 

clusters, the newly projected test cases are allocated a cluster. At this 

point, the characteristics for the test data as discovered at the training 

stage are assessed.  
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In this section, a short analysis of individual cases, to highlight how such a model 

can be applied to an individual patient in a care setting, will be presented and 

analysed. 

5.1.4 Experimental settings: Implementation of the proposed method 

In this study, the statistical texture features of the two views of the same breast 

lesion within the breast cancer dataset – CC and MLO – were concatenated. 

Texture features: A list of the initial first-order and second-order features 

calculated can be found here [125]. The total number of features extracted was 

129, as second-order features were taken at multiple angles for which the pixel to 

which the current pixel was compared.  

Feature selection and model optimisation: In order to select an optimal set of 

discriminating features, we propose to use nested cross-validation (10-fold inner 

and 10-fold outer cross-validation) to assess the performance of an MLP model on 

different sets of selected features, calculated using RF. The proposed nested cross-

validation would allow for a thorough and appropriate analysis of the initial MLP 

model, including the evaluation of different cut-off points to create a subset of 

features (which we limited to a maximum of 15% of the total number of variables), 

and a greedy search for identifying the best number of hidden nodes of the MLP (to 

a maximum of 10 nodes to avoid complex models and overfitting). From all these 

models, one of them will need to be chosen as the one that best represents the 

problem. In this study, in an attempt to avoid overfitting, the model to the training 

data, we chose as a criterion the lowest gap between the AUC of the training and 

the AUC of the test cases of the cross-validation. Notice that this process does not 

involve the independent test set, only the proportion of the training separated for 

test (a validation set) during the cross-validation.  

MLP model: We used one hidden layer plus the output layer. The hyper-parameters 

of the best model identified during the model optimisation were used to develop 

the MLP model that was used to calculate the probability densities (i.e. probability 

of class membership) to generate the FI metric. This would inform the optimal 

number of nodes in the hidden layer of the MLP, as well as the optimal set of 
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features. Early stopping was implemented with a maximum number of epochs set 

to assist in preventing overfitting. The performance of this MLP model was tested 

against an independent test set.  

5.1.5 Results 

Firstly, the results for the breast cancer data problem, which utilises the calcification 

cases of the CBIS-DDSM dataset are visualised using the FIN and analysed using k-

means clustering. This is followed by the evaluation of the presented results at the 

end of the section.  

5.1.5.1 Latent space model created using breast cancer data – CBIS-DDSM 

A total of 595 cases were used to train the MLP to create the latent space model, 

while 124 cases were used as test cases. Table 5-1 denotes the AUC of the train and 

test sets of the model. Furthermore, from the nested cross validation process the 

number of selected features and hidden nodes are listed.  

Training 

AUC 

0.828 Number of selected 

features 

10 (4%) 

Test AUC 0.744 Number of hidden nodes 5 

Table 5-1: Training and testing AUC's and hyperparameter tuning results for the presented model. 

Figure 5-3 shows the 2-dimensional and 3-dimensional visualisations of the 

calcification cases of the dataset after the FIN and the application of the 

multidimensional scaling process. 

The SeCo framework informed the next part of the process, which was to select the 

most suitable number of clusters to partition the dataset into, leading to further 

generalisability for test data. This process denoted that 5 clusters were the most 

suitable number of clusters to partition the data into in this process.  

Table 5-2 contains the distribution of the clusters against the class label, the 

pathology, for the training dataset. Figure 5-4 shows a graphical visualisation of the 

k-means clustering of the feature selected data in the latent space of the training 

dataset, with the cluster centroids marked. From this, it can be noted that Cluster 1 

consists mainly of malignant cases and one benign case. Clusters 3, 4 and 5 consist 

mainly of benign cases, compared to a relatively small amount of malignant cases. 
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Cluster 2 contains a mix of both malignant and benign cases and therefore a 

categorisation cannot be reached in this case.  

 

Figure 5-3: 3-dimensional and 2-dimensional visualisations of the calcification in the CBIS-DDSM training dataset, 
after the FIN and multidimensional scaling process. Note that Red is “Malignant”; Blue is “Benign” 

 

Training data Benign Malignant Consists 
mainly of… 

Cluster 1 1 70 Malignant 

Cluster 2 116 98 Unsure 

Cluster 3 111 18 Benign 

Cluster 4 13 5 Benign 

Cluster 5 131 32 Benign 
Table 5-2: Cluster distribution of the cases in the calcification subset of the CBIS-DDSM training dataset 
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Figure 5-4: The training k-means clustering visualisation (left) and the embedding with MDS (right) side-by-side, 
for comparison. For the MDS on the right: Red is “Malignant”; Blue is “Benign” 

Figure 5-7 (left) shows the distribution of both the BIRADS scores and pathology 

across each trained cluster. Cluster 2 (orange), the cluster for which a main 

categorisation cannot be reached, contains a large number of cases that hold a 

BIRADS score of 4. At the same point within the embedding with MDS visualisation 

in Figure 5-4 (right), a mix of malignant and benign cases can be seen. This is 

similarly the case with cluster 5 (green), which resides close to cluster 2 within the 

embedding. 

5.1.5.2 ‘Patient like me’ approach  

In this section, the application has been extended to the test cases. 

Figure 5-5 shows 2-dimensional and 3-dimensional visualisations of the test cases 

projected onto the trained embedding, without clustering. Table 5-3 denotes the 

distribution of the cluster assignments of the test cases, upon the trained model. It 

can similarly be noted for the test cases, that cluster 1 consists mainly of malignant 

cases. Clusters 3, 4 and 5 consist mainly of benign cases, and the mix of both benign 

and malignant cases means that a categorisation here cannot be reached. This leads 

to the ‘patient like me’ approach where cases that did not inform the training of the 

model are projected onto the same embedding.  

Figure 5-6 contains the test cases projected onto the k-means embedding. Figure 5-7 

(right) denotes the distribution of the BIRADS scores and the pathology labels of the 

cases across the assigned clusters of the test cases. Similar to the training cases, it 
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can be seen that a majority of cases that hold a BIRADS score of 4 are within cluster 

2.  

The test cases projected onto the trained cluster embedding is shown in Figure S3. 

 

Figure 5-5: 3-dimensional and 2-dimensional visualisations of the test cases projected into the trained embedding. 
Note that red points are the new test cases. 

Test data Benign Malignant 

Cluster 1 4 12 

Cluster 2 31 24 

Cluster 3 17 4 

Cluster 4 2 2 

Cluster 5 21 7 
Table 5-3: Cluster distribution of the cases in the calcification subset of the CBIS-DDSM test dataset 
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Figure 5-6: The projected test cases upon the k-means clustering visualisation (left) and the embedding with MDS 
side-by-side, for comparison. 

 

Figure 5-7: Distribution of BIRADS scores and pathology labels across clusters for the training (left) and test (right) 
sets of the data. The colours of each bar are similarly coloured for the cluster plots throughout the report. 

5.1.6 Discussion 

5.1.6.1 Latent space model created using breast cancer data – CBIS-DDSM 

By projecting cases into the latent space model using the proposed methodology, it 

is intended that those cases with similar characteristics will be grouped together 
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within one part of the embedding, separately from cases with different 

characteristics, which will also similarly group. To this end, by creating a model using 

statistical texture features, of given ROI’s of breast lesions, it is aimed that a minimal 

set of these features will effectively classify and group using the MLP.  

The results of the MLP classification detailed in Table 5-1 indicate that the defined 

classification is reasonable. The nested cross-validation process assessed various 

combinations of the hyperparameter tuning process, with the best result presented. 

Using the Random Forest algorithm with feature importance for feature selection, 

interpretability is upheld which is in demand from clinicians in machine learning 

applications. Overfitting has been tackled by using a feature selection process to give 

a minimal number of features to the model as well as early stopping. This study looks 

at the representation of the model and so it was seen as acceptable to implement 

mitigation measures to this extent. 

The results obtained using the training data (Table 5-2, Figure 5-4 and Figure 5-7) 

show that the proposed methodology can separate lesions holding similar 

characteristics. For example, training cluster 2 contains a large mix of benign and 

malignant cases. However, cluster 2 also contains a substantial number of cases 

which hold a BIRADS score of 4. This score denotes a “suspicious abnormality” – these 

cases should have a biopsy performed where possible. It is known that, if a BIRADS 

score of 4 is given, these cases can turn out later to be either a benign or malignant 

case, which follows the BIRADS score scale. In a similar vein, for training cluster 1 

which contains a majority of malignant cases, the majority of these cases held BIRADS 

scores of 4 and 5. This is not perfect – the BIRADS score was not the outcome label 

for which the classifier was trained – however this extra information can provide 

valuable insight into the given cases.  

This also follows with the test data – in Figure 5-5, the test cases are projected into 

the same embedding space as the training cases. It is expected that cases with similar 

characteristics ‘land’ within the training clusters/groupings that share the same 

characteristics as these new cases. Following this as shown in Figure 5-7, many cases 

that hold a BIRADS score of 4, are assigned to cluster 2. A majority of the test cases 

assigned to cluster 1 are malignant, holding BIRADS scores of 4 and 5. 
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5.1.6.2 ‘Patient like me’ approach  

It is intended that this embedding can be utilised as part of a decision support system 

for clinicians and radiologists in the diagnostic process of a patient’s treatment care 

plan, which could be performed without the need for a pathological label. Where the 

relevant statistical texture features of the breast lesion can be taken from a 

mammogram, the embedding can project the case onto the relevant section of the 

embedding. Where a case is assigned to cluster 1 for example, the case likely exhibits 

similarities to the cases that are within the embedding and is likely to be a more 

severe case. This case should then be checked as a higher priority. If the case lands 

within clusters 3 or 5, it will share characteristics with other benign cases and the 

required action can be taken.  

To further display the ‘patient like me’ approach, an example is provided in Figure 

5-8. This shows that cases A and B that are correctly assigned to clusters that contain 

mainly malignant and benign cases, respectively, alongside their BIRADS score. Cases 

C and D were assigned incorrectly to clusters. Interestingly, both of these 

misclassifications hold BIRADS scores of 4; however, where this is the case, if as 

practice recommends, a needle biopsy is taken, and a pathology label may then be 

assigned. In the case of a patient’s diagnostic care plan this may be seen as useful, to 

consider who to treat first.  

It can be considered that to further improve the results and therefore the training of 

the FIN and MDS embedding, a better data representation must be taken. In the case 

of this work, the ROI’s of the breast were of various different sizes – because 

statistical texture features were taken, the sizes of the images did not have to be 

amended or standardised, which can be seen as a positive against other fashionable 

algorithms; for instance, any information about the size of the images are not lost. 

However, this may explain the less competitive results attained here, than what is 

available in the literature.  
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Figure 5-8: 'Patient like me' approach example - cases that are studied are circled in the test cases cluster 
embedding plot (note: there is overlap). These test cases reflect a new case that the model did not ‘learn’ and was 
not trained on.  
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5.2 Applying the FIN methodology to CNN features from a deep learning 

model 

5.2.1 Introduction 

This section builds on the previous presentation of applying the FIN through the 

creation of a robust representation of a breast cancer classifier, by extending the 

workflow into a strong deep neural network classifier. This study also uses the CBIS-

DDSM dataset, although involves the use of a trained CNN model from the 

literature [100], [126]. Through using the CNN as a feature extractor and the 

weights and biases from the penultimate layer of the model, the FIN process shown 

in the previous section is applied to show the class separation of a deep learning 

model in the latent space. 

The proposed methodology is like the previous section; however, this work studies 

features extracted from a CNN model and curates an MLP using this as the input 

data, rather than hand-crafted statistical texture features. This is done as to not 

ignore a powerful part of the classification literature, including strong results 

attained with the dataset [19], [100], [107], [127]–[129]. This work aims to add 

extra interpretability. Following the same process of constructing an FI network 

using probability density estimates but over five classes, the aim of this work is to 

“open the black box” of a deep learning model to exploit its predictive capabilities 

using this robust process.  

The objective of this section is to visualise the process of a deep learning model 

(and not to affect the predictive side in any way). These more modern models have 

become known as one of the most difficult to interpret and this work attempts to 

add a layer of interpretability to the process. One may view this as a “post-

processing” technique, which does not affect the classification process but shows 

the predictions in the latent space. This section will not study a patient-like-me 

approach although a similar process could be applied.  
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5.2.2 Methods 

The methodology is shown in Figure 5-9 and described in this section of the 

chapter.  

 

Figure 5-9: Methodology: Utilising the FIN methodology to create a visualisation of the latent space of cancer 
patients, exploiting the predictive capabilities of a CNN model. 

5.2.2.1 Extracting CNN features 

To study a CNN classifier as proposed, this work required a strongly performing 

deep learning model. The Resnet50-based model [130] is a 5-class patch classifier, 

trained on patches of mammograms around the lesion. Using the CBIS-DDSM 

dataset, the five classes are: calcification malignant, calcification benign, mass 

malignant, mass benign and (image) background. It is used later in Shen’s work to 

develop a new classifier through transfer learning to inform a 2-class full image 

model, discriminating between the presence of cancer or none. A description of any 

data pre-processing, how the patches were attained and the curation of the five 

classes is described in [100]. 

This method is computationally expensive and so to reduce the extracted 2048 

extracted CNN features, PCA has been used for dimensionality reduction. Out of the 

2048 CNN features, 1363 principal components are kept after applying PCA, or 

66.6% of the original number of features, capturing 90% of the variance. This CNN is 

used as a feature extractor in this work – the outputs of the penultimate layer are 
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extracted and used as the dataset for this work. Table 5-4 shows the size of the 

dataset for this study. 

Label Training Test 

Background 476 376 

Calcification Benign 206 152 

Calcification Malignant 110 91 

Mass Benign 128 97 

Mass Malignant 126 86 

Table 5-4: Distribution of labels in this study. 

A description of the aspects of the FIN methodology in this work – deriving the FI 

metric, computation of the similarity matrix and application of MDS leading to 

projecting new unseen test cases into the embedding – is described in the previous 

chapter. 

5.2.2.2 Development of MLP model 

Using the CNN features as the dataset for this work, an MLP was developed to 

discriminate between the five classes. The MLP was initialised with random 

weights, one hidden layer of 30 nodes and an output layer, a learning rate of 0.01 

and a momentum of 0.9. Weight decay was implemented at a rate of 0.2. As a five-

class classifier, the activation function was soft-max. 

5.2.2.3 Using the FIN visualisations to analyse the predictive capability of the model 

Firstly, the training features are used to derive the FI metric leading to the 

calculation of the similarity matrix. The application of MDS leads to the visualisation 

of each training case in the latent space. Separately the test set features are 

extracted and the FI distances of each testing point from each training point are 

calculated, which are then projected into the trained latent space. This replicates 

the process of training and then applying test cases to a machine learning model; 

the training of the model sets the foundations for applying the test cases. 

To assess the capabilities of the CNN model using the Fisher visualisations, 

groupings shown in the FIN mapping will be analysed including an analysis on 

correctly classified test cases and their appearance on the visualisations. The 
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intention is to build on the process – first, showing the PCA analysis before applying 

the FIN methodology, then to show training cases only and finally to apply the test 

cases to the trained embedding.  

5.2.3 Results 

5.2.3.1 Model results 

Although the classification results are not the focus of this work, they have been 

included to structure the discussion of utilising the visualisation to assess the 

capabilities of the model. Table 5-5 shows the confusion matrix for the training set, 

and Table 5-6 shows the confusion matrix for the test set. Overall, the model 

attains 72% testing accuracy and 98% training accuracy. 

Training set 

confusion matrix 

(98% acc. overall) 

Predicted 

Background Calcification 

Benign 

Calcification 

Malignant 

Mass 

Benign 

Mass 

Malignant 

A
ct

u
al

 

Background 470 (98.7%) 2 0 2 2 

Calcification 

Benign 

2 202 (98.1%) 2 0 0 

Calcification 

Malignant 

2 3 105 (95.4%) 0 0 

Mass Benign 3 2 1 122 

(95.3%) 

0 

Mass 

Malignant 

2 0 0 0 124 

(98.4%) 

Table 5-5: Confusion matrix of the CNN classifier for the training set. Percentages of the diagonal of the 
confusion matrix (TP/TN) presented to show correctly classified proportion in each class. 
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Test set confusion 

matrix (72% acc. 

overall) 

Predicted 

Background Calcification 

Benign 

Calcification 

Malignant 

Mass 

Benign 

Mass 

Malignant 

A
ct

u
al

 

Background 337 (89.6%) 14 7 11 7 

Calcification 

Benign 

46 86 (56.6%) 14 2 4 

Calcification 

Malignant 

12 24 42 (45.2%) 3 10 

Mass Benign 24 2 1 55 

(56.7%) 

15 

Mass 

Malignant 

9 1 9 10 57 

(66.3%) 

Table 5-6: Confusion matrix of the CNN classifier for the test set. Percentages of the diagonal of the confusion 
matrix (TP/TN) presented to show correctly classified proportion in each class. 

5.2.3.2 Before the FIN – PCA analysis 

PCA analysis on the extracted features has been used to visualise the separation of 

the classes without applying the FIN process, as well as for dimensionality reduction 

before the process. Figure 5-10 (a) visualises the training data and Figure 5-10 (b) 

visualises both the training and test data when applying PCA on the 5-class 

classifier, before applying the FIN methodology and using the true (originally 

assigned) labels. Although some grouping can be seen across both training and test, 

the mixing of the classes is apparent. All classes overlap in the centre of the 

visualisation, and both malignant classes are deeply mixed. There is some 

improvement with the benign classes however mixing still occurs.  
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Figure 5-10: PCA visualisations of the data, using the originally assigned (true) labels - (a) only the training data; 
(b) training cases as spots, testing cases as crosses. 

5.2.3.3 FIN visualisations of the training cases 

Figure 5-11 (a) shows the visualisation using the FIN methodology of the classifier 

against the true labels, from which some limited mixing can be seen. This is 

information that we know from the data. Figure 5-11 (b) shows the visualisation but 

for how the model predicted for the training cases. This is an expected result and 

gives a view to how the classification process of the CNN model works.  In Figure 

5-11 (b) the classes are very well separated with most of the mixing occurring 

between the background and the calcification malignant classes. This figure can be 

used to assess how well the FIN representation reflects the MLP classifier. Through 

comparison of the visualisation with the true labels applied and the MLP 

predictions applied, the FIN representation looks to be suitable and reflects well. 

The MLP structure is well reflected in this study and can be seen as a reliable 

mapping of the training cases, for which test cases will be projected onto at a later 

stage. 
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Figure 5-11: Visualisation of the training cases in the latent space: (a) against the true labels; (b) against the 
MLP prediction labels 

5.2.3.4 Projecting the test cases onto the trained embedding 

Figure 5-12 shows the correctly classified test cases of each class highlighted as a 

black marker on top of the more transparent training cases. These are the cases 

that have been classified correctly. For the test subset of the data, the background 

class contains the most correctly classified cases, with an accuracy of 89.6%. It is 

possible to see some of these correctly classified cases slightly spread out although 

these appear to be concentrated around the benign classes.  The next best 

performing is the mass malignant class, with 66.3% of those test cases correctly 

classified.  

The visualisation in Figure 5-12 shows that the correctly classified cases ‘land’ 

within the well-defined class groups Not all cases are correctly classified. A ‘patient 

like me’ analysis has looked at some of these incorrectly classified cases and is 

discussed further. 
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Figure 5-12: Correctly classified test cases (black stars) projected into the trained embedding. 

5.2.3.5 ‘Patient like me’ approach 

Similar to the previous section, it is proposed that these trained embeddings can be 

utilised as part of a decision support system for clinicians and radiologists in the 

diagnostic process of a patient’s treatment care plan, which could be performed 

without the need for a pathological label. Through the extraction of the CNN 

features, using the same model, can lead to the new case being projected onto the 

embedding. This can provide new insight into the case. In this ‘patient like me’ 

analysis, metadata unseen by the classifier has been used to extract further insights 

into why cases have been (mis-)classified in the way they have.  
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Figure 5-13 shows a ‘patient like me’ analysis of four correctly classified cases with 

pathological labels. For a given test case in the trained embedding, its location has 

been highlighted along with the ROI patch classified, information and metadata 

about the given case. Both malignant cases – patients 534 and 146 – hold BIRADS 

scores of 5 and high subtlety scores. 

Figure 5-14 shows a similar ‘patient like me’ analysis, but for five cases that were 

misclassified. Importantly for these cases, the metadata can provide insight into 

why the cases were misclassified. For example, for both patient 1569 – a 

calcification benign case incorrectly classified as calcification malignant - and 

patient 420 – a mass malignant case incorrectly classified as mass benign -  the 

associated metadata shows that the BIRADS score assigned is 4 (BIRADS was not a 

feature in the classification, and is denoted from studying a mammogram alone, 

pre-pathology). This score is defined as “suspicious of malignancy”, with a score of 

3 or 5 leaning towards benign or malignant, respectively. This could support the fact 

that the cases were misclassified.  

 



89 
 

 

Figure 5-13: 'Patient like me' analysis of four cases correctly classified with pathological labels. Patient 1678 is a 
correctly classified Calcification Benign case, Patient 534 as calcification malignant, Patient 1332 as mass 
benign, Patient 146 as mass malignant. Black stars are correctly classified test cases, black circle is the given 
example. 
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Figure 5-14: 'Patient like me' analysis for five misclassified cases. Patient 1569 is a misclassified benign 
calcification (classed as malignant calcification), patient 1545 is a misclassified malignant calcification (classed 
as malignant mass), patient 630 is a misclassified benign mass (classed as benign calcification), patient 420 is a 
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misclassified malignant mass (classed as benign mass), a background patch is misclassified as a benign mass. 
Black stars are the correctly classified test cases in each of the four groups -added for reference- and the 
selected cases are represented with black circles. 

5.2.4 Discussion 

5.2.4.1 Visualisation-informed analysis of the CNN model 

The trained embeddings shown in Figure 5-11 provide an indication of separation 

using the FIN as a “post-processing” step. Alongside the MLP training accuracy of 

98% and each of the five classes in the training set attaining their own respective 

accuracies over 95% the FIN methodology has been able to represent these CNN 

features strongly. This provided a good embedding to progress with allowing for the 

projection of the test cases to continue.   

As denoted in Table 5-6 for all four lesion classes, most of the misclassified cases 

land in the background class, which is evident in the visualisation. Throughout each 

class, however, the misclassifications generally spread throughout the other 

classes. In this work, it is not the quality of the classification that is of concern, but 

what the visualisations can tell us about the CNN features and how the classifier has 

“thought”.  

Although developing the classifier itself was not the focus of this work, some short 

commentary is presented. This classifier is a 5-class patch classifier, as it was trained 

to be in Shen’s work. The aim of Shen’s work was to curate the patch classifier and 

apply transfer learning to develop it into a classifier which discriminates whole 

images into two classes – whether cancer is present or not. This model could be 

seen as an initial “triage” model, where any given mammogram patch can be 

inputted to give an initial idea.  

This work has reviewed a 5-class classifier, which includes calcifications, masses, 

and mammogram background. However, calcifications and masses are different by 

their very nature and are both assessed in this classifier. In the previous section of 

this chapter the FIN is applied to calcifications only to assess this viewpoint. 

Furthermore, other chapters in the thesis review the dataset but separate the 

masses and calcifications before conducting the study.  
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There is sign of overfitting in the trained CNN. Although this is known as a typical 

problem for deep learning models, this work does not attempt to solve the 

overfitting problem but instead aims to visualise a CNN’s classification process to 

show how this methodology could be used in a real-world scenario, as a proof of 

principle. Due to technical and computational restrictions, training the “best 

model” was outside the scope of this thesis. 

5.2.4.2 Why is this useful in a clinical setting? 

In this work, it has been possible to study a given case that has been classified using 

CNN features and involve the metadata, which has been unseen to the classifier, to 

gain extra insight into the finding. It is proposed that this can reflect clinical thinking 

and decision-making. With further knowledge from a good classifier and 

visualisation, this tool can be another aspect in the process. 

Where a new test case lands within the trained embedding, it is intended that this 

new case will be like those around it. For example, the correctly classified cases (as 

shown in Figure 5-13) can be used as examples of correctly labelled and classified 

cases. Studying the associated training cases within the embedding can strengthen 

this case and assist with confidence in the tool. Whereas incorrectly classified cases 

(as shown in Figure 5-14) require further work. For example, cases E and F were 

incorrectly classified, the type of lesion correctly but the classification of pathology 

not. The BIRADS score in this case was “suspicious of malignancy”, the borderline 

score in this classification, and has given some idea as to why this classification is 

wrong. 

It is intended that the FIN methodology proposed throughout this chapter can be 

seen as working “hand-in-hand” with clinicians and radiologists, using this extra 

information to assist in a ‘patient like me’ approach to attain further insights into 

the workings of the classifier and visualisations. To improve this further, future 

work could consider the use of active learning [131] to continuously improve the 

embedding. In theory, this could be a triaging tool, particularly for the work in the 

previous section on using statistical texture features. Before any pathology is taken, 

a case can be viewed to see where it lands, as a case may exhibit such 

characteristics. Then, where a pathology is taken, this information can be included 
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and the methodology updated to improve the model, leading to a better ‘patient 

like me’ approach for future patients.   
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5.3 Conclusions 

The clinical detection and diagnosis of cancers is an important and delicate 

challenge for multidisciplinary healthcare teams in patient care. Decisions must be 

based on evidence gathered from various techniques. In breast cancer, the use of 

mammography is standard, although difficulty in its use remains prevalent in clinical 

practice. 

The first part of this chapter looked to enhance the understanding of a curated MLP 

to strengthen the detection of breast cancer using mammograms, the FIN has been 

utilised, alongside MDS. This has provided an informed embedding, leading to a 

‘patient-like-me’ approach, aiding in the detection of breast cancer in medical 

imaging.  

The aim of the second part of this chapter was to exploit the predictive capabilities 

of a deep learning model. The Fisher Information methodology has been shown to 

“open the black box” of the CNN classification process in this chapter. The Fisher 

Information metric has allowed for visualising the usual classification process, 

proving a solution that is clearly defined and statistically strong to show the 

“thinking” of the CNN model.  

A standalone CNN model can provide probabilistic output albeit with little 

explanation as to why. This model can treat each case individually, while still 

utilising a powerful machine learning model in the literature. This process has also 

given a visual representation of the predictive capability of the deep learning model 

which exploits the predictive capabilities in a robust mathematical manner. 

The use of the FIN methodology defined in the previous chapter has been extended 

to show that a similar process can be applied to represent clinical data, classified 

through a CNN model which is traditionally difficult to interpret. Through this 

method, extensive analysis has taken place on assessing the predictive capabilities 

of the model, in particular the sensitivity and specificity. A Fisher-informed 

approach can add insight into the predictive capabilities and as described, can assist 

in the breast cancer diagnostic process. 
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6 Partial responses to enhance the interpretability of a breast 

cancer classifier 

6.1 Introduction 

A multilayer perceptron (MLP) and its partial responses have been studied in this 

chapter, to build an explanatory risk predictor of breast cancer malignancy. The aim 

is to enhance the understanding of a traditionally “black box” method, the MLP, by 

explaining the predictive capabilities and output of the model. It is intended that 

the predictions of the model will be explainable through the calculation of partial 

responses of individual variables, showing the effect of the outcome through 

individual variables.  

Analysis of partial responses of an MLP model [132], [133] provides an interpretation 

of model predictors, aiming to “open the black box” of the methodology. The 

partial response of each variable can be visualised against its contribution to the 

logit, which leads to a key level of detail on how specific variables influence the 

outcome. Tabular data, of statistical texture features and associated metadata for 

breast lesions, has been used to construct a more transparent and interpretable 

model.  

Although other machine learning techniqueshold inherent interpretability – such as 

decision trees and k-Nearest Neighbour algorithms – this study considers the 

stronger performance of MLPs and describes a view to “open the black box” of the 

classifier. 

The objective of the work presented in this chapter is to study the effect of each 

variable of a breast cancer classifier and attempt to interpret the results. From this, 

insights about how each variable interacts with the logit and how it affects the 

outcome overall. Throughout this chapter, the partial response methodology is 

applied to both continuous and categorial variables. The workflow for this chapter 

is illustrated in Figure 6-1. 
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Figure 6-1: Workflow described throughout the partial response chapter. 

6.2 Materials and methods 

6.2.1 Data utilised from CBIS-DDSM 

Due to their visual differences, the work is conducted separately on breast 

calcifications and breast masses with results presented for both lesion types. Two 

data subsets are used here – the statistical texture features and the associated 

metadata. These are described in Chapter 3.  

6.2.2 Multilayer perceptron  

This study will look at binary classifiers, one for breast masses and another for 

calcifications. To review the partial responses of a model, MLP classifiers will be 

used to discriminate between benign and malignant breast tumours. An MLP is a 

type of feed-forward neural network, fully connected by neurons. A strength of 

MLPs is the fact that nonlinear relationships in the data can be mapped. The 

sigmoid activation function will be the probability estimation evaluator.  

     

6.2.3 Partial responses 

Partial responses [134] attempt to explain the decision-making process behind the 

MLP. The response from an MLP when all but a specific variable being analysed are 

zero, is known as the partial response. Partial responses are calculated by providing 

one input at a time to an MLP, so that the contribution of each variable to the log of 

the response can be calculated. 
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After fitting the data with an MLP, the terms in the ANOVA decomposition are 

calculated, as low-order dependencies in the probability density function can be 

extracted with it. This decomposition comprises a finite number of terms up to 

interactions of dimension, 𝑑. Each term is orthogonal in a functional sense [135] 

and so may be regarded as independent inputs later. 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝐶|𝑥))

≡ 𝜙(0)

+  ∑ 𝜙𝑖(𝑥𝑖)
𝑖

+  ∑ 𝜙𝑖𝑗(𝑥𝑖 , 𝑥𝑗) + ⋯ + ∑ 𝜙𝑖1…𝑖𝑑(𝑥𝑖1
,…,𝑥𝑖𝑑

) 
𝑖1≠⋯≠𝑖_𝑑

 
𝑖≠𝑗

 

Equation 6-1 

Each term from Equation 6-1 is computed from the logit of the MLPs output, 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝐶|𝑥)) which is the log-odds probability of class membership for a given 

input vector as such: 

𝜙(0) = 𝑙𝑜𝑔𝑖𝑡(𝑃(𝐶|0)) 

Equation 6-2 

𝜙𝑖(𝑥𝑖) = 𝑙𝑜𝑔𝑖𝑡 (𝑃(𝐶|(0, … 𝑥𝑖 , … , 0))) − 𝜙(0) 

Equation 6-3 

𝜙𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = 𝑙𝑜𝑔𝑖𝑡 (𝑃 (𝐶|(0, … 𝑥𝑖 , … , 𝑥𝑗 , … , 0))) − 𝜙(𝑥𝑖) − 𝜙(𝑥𝑗) − 𝜙(0) 

Equation 6-4 

Then, the logistic Lasso is applied for hard feature selection with 𝑙1 regularisation. 

The inputs correspond to the partial responses as defined – where all other 

variables are set to zero and the response function of the MLP is recalculated for 

the modified input vector, deriving its logit. 

Finally, as the partial responses are obtained through an MLP output (from its 

weights), the feedforward structure of the Lasso with only the selected partial 

response functions is replicated using the original weights in the form of a general 

additive neural network.  
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To model the contribution to the logit using univariate terms, the model is defined 

as: 

log(𝑌) = 𝜙(0) +  ∑ 𝜙𝑖(𝑥𝑖)
+ 𝜖

𝑖
 

Equation 6-5 

Where 𝜙(0) is the error that is calculated when all inputs are equal to zero, and 

𝜙𝑖(𝑥𝑖)
 represents the partial responses of a given variable, i (individually) and 𝜖 

represents the higher-order terms. Figure 6-2 illustrates this within an MLP. In this 

work, a larger contribution to the logit denotes an increased risk of malignancy. 

 

Figure 6-2: Partial response within an MLP, where only 𝑋1 is activated and its partial response analysed. 

6.2.4 Feature selection 

The Lasso is a shrinkage method which reduces the number of variables selected in 

a dataset, known as the “Least Absolute Shrinkage and Selection Operator,” using 

an 𝐿1-penalisation term on the minimisation function: 

�̂�𝑙𝑎𝑠𝑠𝑜 =  argmin
𝛽

{∑(𝑦𝑖 − 𝛽0 −  ∑ 𝑥𝑖𝑗𝛽𝑗)

𝑝

𝑗=1

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

} 

Equation 6-6 

Because of this penalisation term, the absolute values of the coefficients can reduce 

to zero, leading to a method of variable selection in this process.  

Although all variables will have their own partial responses to the model, this 

chapter will look at the variables noted as important by the Lasso feature selection 

process. The results presented all use the Lasso parameter lambda which is within 

one standard error from the minimum. This is traditionally used to select the best 

model as it “acknowledges the fact that the risk curves are estimated with error, so 
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[this concept] errs on the side of parsimony”  [136].  It chooses the simplest model 

for which the accuracy is comparable with the best model [137]. 

6.2.5 Evaluation of features 

To evaluate the partial responses of the features, cases with a lower contribution to 

the logit are more likely to be benign, while cases with a larger contribution to the 

logit are more likely to be malignant. All plots and partial responses are calculated 

using the full dataset.  

6.3 Results and Discussion 

6.3.1 MLP setup 

The MLPs for both masses and calcifications are separate but are set up the same, 

as follows. An input layer with 13 nodes, a hidden layer with 5 nodes and an output 

layer, sigmoid activation function. Dropout is applied to the input and hidden layer 

at rates of 0.4 and 0.3 respectively. The optimiser used is the Adam optimiser and 

binary cross-entropy is the loss function.  

6.3.2 Masses 

6.3.2.1 MLP setup and results 

Table 6-1 shows the dataset split of the mass subset of the CBIS-DDSM dataset for 

this work. There were 130 statistical texture features and 16 categories of metadata 

available for the mass subset. The MLP setup was an Adam optimiser and binary 

cross-entropy loss. The MLP attained an AUC on the test set of 0.93, with a loss of 

0.362.  

Masses Training Testing TOTAL 

Benign 512 150 662 

Malignant 502 84 586 

TOTAL 1014 183 1197 

Table 6-1: Dataset split for the mass subset. 

6.3.2.2 Lasso feature selection 

Table 6-2 shows the 7 texture features (5.4% of the 130 available) and the 7 

metadata categories (43.75% of the 16 available) selected through the Lasso and 
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their lambda coefficients. These variables and their partial responses are analysed 

further. The test AUC of the Lasso model was 0.949.  

Texture Features Coefficient Metadata Coefficient 
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Circumscribed 0.9512               

Maximum 0.5106              Ill Defined 1.6947               

Minimum 0.3281 Obscured 0.7927                
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GLCM Auto Correlation 

(angle 135) 

0.7326            Spiculated 2.2151                

GLCM Inverse Variance 

(angle 135) 

9.4121                Microlobulated 1.8543 

GLRLM SRHGLE (angle 

45) 

1.1261                

Table 6-2: Mass subset, Lasso selected features and their lambda coefficients 

Figure 6-3 shows histograms of the frequency distributions and contribution to the 

logit of the continuous texture feature variables. Cases with higher values of 

kurtosis and minimum are more likely to be benign. Cases with higher values for 

energy, maximum, GLCM Auto Correlation, GLCM Inverse Variance and GLRLM 

SRHGLE are more likely to be malignant. In mammograms, normal fatty tissue is 

usually grey and tumours white. Energy is calculated as the square sum of each 

matrix element, with higher values suggesting more intensity variation. It could be 

suggested that a high value for energy - a large change in image intensity - is seen 

with a more severe mass within the ROI, allowing for some enhanced 

interpretability to clinicians. In practice, these cases may require further 

investigation. 

Another example is a second-order feature (two pixels defining the GLCM feature), 

Auto Correlation. It measures the coarseness of an image where the higher the 

value, the greater the concentration of low grey values within the image. As seen in 

Figure 6-3, a lower value of GLCM Auto Correlation means the case is more likely to 
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be benign and more likely malignant when the value is higher. Here, the values of 

GLCM Auto Correlation will increase due to the change in texture of the image.   

Figure 6-4 shows histograms for the Lasso selected categories with the red points 

representing the contribution to the logit of the given variable. In Figure 6-4 it is 

shown that when the mass shape is irregular, the contribution to the logit is higher 

(more likely to be malignant) than if it is not. Where the shape is recoded as a 

lymph node, the contribution to the logit is smaller (more likely to be benign). 

Bassett and Conner [92] state that an irregular shape suggests a greater likelihood 

of malignancy. This feature from the model follows clinical guidance.  

Figure 6-4 also shows that if the margins are either ill defined, spiculated or 

microlobulated then according to the model, the risk of malignancy is higher than if 

the given mass lesion is not. This also follows clinical knowledge [92], [138].  
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Figure 6-3: Mass subset: Partial responses (red line against y-axis on the right)  for the continuous Lasso selected features (texture features 
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Figure 6-4: Mass subset: Partial responses (red points against y-axis on the right) for the categorical metadata. Note, "True" denotes the given metadata aspect is true (=1). 
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6.3.3 Calcifications 

6.3.3.1 MLP setup and results 

Table 6-3 shows the dataset split for the calcification subset of the CBIS-DDSM 

dataset for this work. The MLP setup was the same as for the mass subset. The MLP 

attained an AUC on the test set of 0.853, with a loss of 0.480. 

Calcifications Training Testing TOTAL 

Benign 798 150 948 

Malignant 418 84 502 

TOTAL 1216 234 1450 

Table 6-3: Dataset split for the calcification subset. 

6.3.3.2 Lasso feature selection 

Table 6-4 shows the 14 texture features and the 15 metadata categories selected 

through the Lasso and their lambda coefficients. These variables and their partial 

responses are analysed further. The test AUC of the Lasso model was 0.877. It 

should be noted that the “N/A” in Type and Distribution mean that a label for the 

Type or Distribution are “not applicable” rather than missing. In mammograms, 

normal fatty tissue is usually grey, and calcifications are traditionally white spots (in 

a similar way as masses are white). 

Figure 6-5 shows the histograms for the Lasso selected texture features, and breast 

density with the red lines representing the contribution to the logit for the given 

feature. The breast density partial response increases (more likely malignant) as the 

breast density increases, dropping slightly as breast density reaches the highest 

category. This follows the literature on breast density being correlated with breast 

cancer [90], including the fact that younger women tend to have denser breasts 

and there is a correlation between age and breast cancer3.  

As shown in Figure 6-5 for the texture features energy, maximum, GLCM correlation 

(angle 0), GLCM entropy (angle 90), GLRLM GLN (angle 90) and GLRLM RLN (angle 

90) as the values of these features increase, so does the likelihood of malignancy. 

 
3 Age was not available with the CBIS-DDSM dataset. It was available with the DDSM dataset 
however it was not possible to transfer this over retrospectively. 
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These are monotonic partial responses, where the feature is directly correlated 

with malignancy. GLN (grey level non-uniformity is lower if intensity values are 

alike, so in this case where intensity values differ the risk of malignancy increases. 

GLRLM RLN (run length non-uniformity) measures the similarity of the length of the 

runs throughout the image and is lower if the run lengths are alike and so at angle 

90 as the run lengths (runs of similar pixel values) are less alike, the risk of 

malignancy increases.  

For the texture features GLCM dissimilarity (angle 0), GLCM contrast (angle 90), 

GLCM difference entropy (angle 90), GLRLM LGLRE (angle 135) and GLRLM RLN 

(angle 135), as the value of the feature increases, the likelihood of malignancy 

decreases. These are also monotonic partial responses, where it is inversely 

correlated with malignancy. Difference Entropy measures the disorder related to 

the grey level difference distribution of an image and so as this increases, the 

likelihood of malignancy decreases. 

V-shaped partial responses are shown for the texture features GLCM cShade (angle 

90), GLCM sum entropy (angle 90) and GLRLM HGLRE (angle 135). This suggests 

that the chances of malignancy change as the values move away from the median 

value. In practice, this could suggest that values near the median require urgent 

review such as in usual clinical practice for lesions suspicious of malignancy. 

Figure 6-6 shows the histograms for the Lasso selected categories with the red 

points representing the contribution to the logit of the given variable. In Figure 6-6 

it is shown that when the calcification type is listed as amorphous, pleomorphic, or 

fine linear branching it is more likely to be malignant as the contribution to the logit 

is larger, albeit marginally. This is supported by Bassett and Conner [92]. Where the 

calcification type is noted as coarse, dystrophic, punctate, milk of calcium, large 

rodlike, ‘round and regular’ or vascular, it is more likely to be benign. This is also 

supported by the clinical literature [92], [139], [140]. 

Figure 6-6 also shows that if the distribution is listed as linear it is more likely 

benign, which follows the literature [92]. However, although the partial responses 

show that clustered distributions are more likely to be malignant, this does not 
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follow the literature as stated by Bassett and Conner [92]. It is worth noting that for 

the clustered distribution as shown in Figure 6-6, the gap between the partial 

responses for a case being benign or malignant and its contribution to the logit is 

small, so in this case it may be circumstantial. 

There is a similar case for the diffusely scattered distribution for which the partial 

responses dictate that the presence of this category is more likely to be benign. This 

does not follow Bassett and Conner who state that this category means a case is 

more likely to be malignant.  
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Texture Features Coefficient Metadata Coefficient 
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Table 6-4: Lasso selected features and their lambda coefficients of the mass subset 
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Figure 6-5: Partial responses for the continuous features (texture features, and breast density) from the 
calcification subset. For clarity, the values of the texture features have been scaled to be between 0 and 1. 
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Figure 6-6: Partial responses (red points against y-axis on the right) for the categorical metadata for the calcification subset. Note, "True" denotes the given metadata aspect is true (=1). 
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6.3.4 Examples of cases with mammogram images 

Examples of a case from each studied subset – one calcification and one mass – 

with their images and associated data are shown here, to focus on that case given 

data and their data.  

6.3.4.1 Mass example 

Figure 6-7 shows a mammogram containing a malignant mass. Some associated 

data is listed: 

- Metadata: 

o Breast density: 3 

o Mass shape: Irregular 

o Mass margins: Ill-Defined and Spiculated 

-  Texture features (scaled 0-1): 

o Energy: 0.053 

o GLCM Inverse Variance (angle 135): 0.014 

o GLRLM SRHGLE (angle 45): 0.015 

The breast density was not selected through the Lasso process but is included for 

completeness. The irregular shape was selected and follows as expected, as the 

contribution to the logit here tends to the malignant class. This also follows for the 

ill-defined margins and the spiculated margins, the latter much more severely 

against benign classifications. For all texture features, the story does not follow as 

clearly, however, the contribution to logit scale across the values is smaller than 

what it is for the metadata. This may suggest that although there is some impact 

(due to the Lasso selection), the metadata is performing more of the work in this 

case. 
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Figure 6-7: Mass example – mammogram of patient 15, left breast, MLO view. Malignant lesion. 

6.3.4.2 Calcification example 

Figure 6-8 shows a mammogram containing a benign calcification. Some associated 

data is listed: 

- Metadata: 

o Breast density: 4 

o Calcification type: Pleomorphic 

o Calcification distribution: Linear 

-  Texture features (scaled 0-1): 

o Energy: 0.040 

o GLCM Correlation (angle 0): 0.002 

o GLRLM HGLRE (angle 135): 0.002 

All variables noted here were selected by the Lasso process. The breast density 

category of 4, the highest, follows with the fact the lesion is benign. The 
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contribution leans more towards benign where the breast density category 

increases from 3 to 4. For both the pleomorphic calcification type and the linear 

calcification distribution, the difference between the contributions against the 

benign and malignant classes are negligible and so may not have as much of an 

impact for this case. All texture features noted follow in this case. 

 

Figure 6-8: Calcification example – mammogram of patient 7, left breast, CC view. Benign lesion. 

6.4 Conclusions 

The aim of this work was to produce a more interpretable model showing the risk 

of malignancy of breast masses, with metadata and texture features. In this 

chapter, an MLP model with Lasso feature selection has provided more 

interpretable results and the ability to analyse important variables compared to the 

use of a standalone machine learning classifier. This result shows that a more 
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compact model can explain the relationship of each variable to the outcome to 

assist in clinical decision making, allowing for reasoning to take place alongside 

classification. 

On its own, an MLP can identify non-linear maps, however, its interpretability can 

become a challenge. Explaining the contribution of a given variable in a dataset 

would traditionally be difficult, is important to clinicians. In this chapter, by letting 

one variable change at a time and keeping the others constant, MLP partial 

responses give rise to how each variable affects the outcome of the model 

predictions.  

It is intended that this application can link machine learning capabilities with clinical 

reasoning, to enhance clinical decision-making. Partial responses can add insight to 

an AI-centred approach to cancer detection and classification.  
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7 Multimodal fusion including the use of CNN models to 

improve the classification of a breast cancer classifier 

7.1 Introduction 

This chapter studies methods to identify how best to combine available clinical data 

across different modalities to improve classification performance. Through building 

different types of multimodal fusion models, the aim is to identify suitable data 

fusion methods that can contextualise the output of a model, using machine 

learning techniques alongside important lesion metadata. These concepts have 

been applied throughout medical applications in the literature, including in 

pulmonary embolism [80], Alzheimer’s [141], dermatology [142] and breast cancer 

[143]. 

This work can also be defined as “deep multimodal learning” where CNN features 

have been used within the data combinations. This allows for these traditionally 

higher-performing methods to be included within the analysis. Shared 

representations can be learned from the data throughout the different modalities 

and are scalable for the varied use of different modalities. Furthermore, much work 

in deep multimodal learning can review manually selected features, whereas this 

work starts with all available features, reducing through a feature selection process. 

This work attempts to show how machine learning techniques can assist in a clinical 

setting. Through selecting the most useful features and performing the 

classification of lesions of malignancy – a typical clinical problem – it is intended 

that this can be seen as a further decision-making consideration for a 

multidisciplinary healthcare team. 

This work looks at combining three sets of data that hold different aspects of 

information for the same cases within the CBIS-DDSM dataset: features from a CNN 

model, statistical texture features and associated clinical metadata about a given 

lesion. 
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7.2 Materials and methods 

7.2.1 Data utilised from CBIS-DDSM 

Due to their visual differences, the work is conducted separately on breast 

calcifications and breast masses with results presented for both lesion types. Three 

data subsets are used. Standalone classifiers are created on the CNN features [100], 

statistical texture features and the associated metadata with their results assessed. 

These are described in Chapter 3. Combinations of these, both two and three 

subsets, are also analysed. Table 7-1 shows the number of features available in 

each data subset being analysed, for each breast lesion type. 

Data subset Masses Calcifications 

CNN features 2048 

Statistical texture features 130 

Metadata 16 21 

Table 7-1: Number of features available for each data subset, for each type of breast lesion. 

7.2.2 Feature selection and classification 

Feature Selection. As there are many features when including multiple data 

subsets, to meet the aim of enhancing the understanding of the classification 

process, a Lasso feature selection process is implemented in this data fusion 

approach. The intention here is to reduce prediction error compared to using all 

features, as well as indicate the more important variables in the process. A 

description of the Lasso is provided in Chapter 6. The results presented all use the 

Lasso parameter lambda which is within one standard error from the minimum. As 

described in the previous chapter, the lasso process looks to choose the simpler 

model with respect to error.  

Classification. In this work, the logistic regression classifier has been used to 

discriminate between benign and malignant lesion cases with a probabilistic output. 

It uses the form shown in Equation 7-1.  

𝑝(𝑋) =
𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝
 

Equation 7-1 
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7.2.3 Fusion methods 

In this work, multimodal fusion will take pixel data analysis alongside other data 

types. It is intended that the combination of both the feature selection and the 

classification processes will meet the aim of contextualising the classification 

output of the process. 

Combining data from different modalities into a single feature vector before 

training a machine learning classifier is known as “early fusion” or “data-level 

fusion” [144]. Huang et al. [21] refer to early fusion models as the process of joining 

multiple input modalities into a single input vector before feeding into one single 

machine learning model for training. In this work, the input modalities are 

concatenated into a single vector as appropriate for the data combination. 

Late fusion, or decision-level fusion, is where decisions or probabilities from 

different classifiers are aggregated. Here, different modalities are trained 

separately, and the final decision is made through some form of aggregation. In this 

work, the mean average of the probabilities of the given classifiers provides the 

final prediction.  

7.2.4 Experiments conducted 

Various experiments have been conducted as comparison points to build on the 

standalone models by introducing forms of data fusion. There are three modalities 

of data being used throughout the process: CNN features, statistical texture 

features and metadata. The outcome measures are reported using the AUC 

measure.  

Standalone experiments – feature selection and classification using only one set of 

data. These are shown in Figure 7-1. 

Early Fusion A – concatenate all features depending on the combination being 

studied and then perform the feature selection and classification process. An 

example of this (for all three modalities) is shown in Figure 7-2 (a). 
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Early Fusion B – take the selected features from the “Standalone experiments,” 

concatenate these and then perform the classification process (no further feature 

selection). An example of this (for all three modalities) is shown in Figure 7-2 (b). 

Late Fusion – Take the predicted probabilities from the “Standalone experiments,” 

and take the mean average. An example of this (for all three modalities) is shown in 

Figure 7-3.  

 

Figure 7-1: Standalone fusion examples. The design scheme follows in the other figures in this chapter. 

 

Figure 7-2: Early Fusion examples for all three modalities, where (a) is Early Fusion A and (b) is Early Fusion B. 
Similar for pairs of modalities. 
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Figure 7-3: Late fusion example for all three modalities. Similar for pairs of modalities. 

7.3 Results 

As noted earlier, the results presented here have used the lambda argument of the 

Lasso that produces the model with the minimum number of variables within 1 

standard error of lambda.  

7.3.1 Standalone results 

Table 7-2 shows the results for the standalone classifiers. The number and 

proportion of features selected through the Lasso process for each data subset are 

noted. 

For both the masses and the calcifications the metadata alone attained the 

strongest performance with test set AUCs of 0.94 and 0.842 for the masses and 

calcifications, respectively. Alone, the statistical texture features performed the 

poorest with test set AUCs of 0.681 and 0.753 for masses and calcifications, 

respectively. 

Data subset 

Masses Calcifications 

Number of 
selected 
features 

Train 
AUC Test AUC 

Number of 
selected 
features 

Train 
AUC Test AUC 

CNN features only 668 (32.6%) 1 0.861 666 (32.5%) 0.999 0.808 

Statistical texture 
features only 17 (13.1%) 0.711 0.681 21 (16.2%) 0.756 0.753 

Metadata only 6 (37.5%) 0.866 0.94 9 (42.9%) 0.826 0.842 
Table 7-2: Standalone classifier results. 

7.3.2 Early Fusion A 

Table 7-3 shows the results for the Early Fusion A process, where all features are 

concatenated, features are selected from this using the Lasso and these subsets of 
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features are used in the logistic regression classification process. The number and 

proportion of features selected through the Lasso process for each data subset are 

noted. 

For both the masses and the calcifications the fusion of statistical texture features 

and metadata attained the strongest performance with test set AUCs of 0.947 and 

0.888 for the masses and calcifications, respectively. The poorest performance is 

seen for the fusion of CNN features and statistical texture features with test set 

AUCs of 0.862 and 0.82 for masses and calcifications, respectively. 

Data Combination 

Masses Calcifications 

Number of 
selected 
features 

Train 
AUC Test AUC 

Number 
of 

selected 
features 

Train 
AUC 

Test 
AUC 

CNN features and 
metadata 551 (26.7%) 1 0.903 

660 
(32.2%) 1 0.844 

CNN features and 
Statistical texture features 648 (29.8%) 1 0.862 

626 
(28.7%) 1 0.82 

Statistical texture features 
and metadata 10 (6.8%) 0.884 0.947 

25 
(16.6%) 0.882 0.888 

All three 564 (25.7%) 1 0.908 
633 

(28.8%) 1 0.821 
Table 7-3: Early Fusion A results. 

7.3.3 Overlapping features between standalone and Early Fusion A experiments 

7.3.3.1 Masses 

Table 7-4 shows the overlapping features between the standalone classifiers and 

the Early Fusion A classifiers for the mass lesions, as the latter are classifiers of 

combinations of data from the standalone. Several CNN features overlap between 

the standalone and fusion classifiers. These are the most difficult to interpret. 

Statistical texture features can add some interpretability. In the best performing 

classifier for Early Fusion A for the masses, the statistical texture features and 

metadata classifier, maximum and GLCM Autocorrelation were selected by the 

Lasso. Autocorrelation measures the coarseness of an image, where higher values 

show greater concentration of low grey values within the ROI image.  

In the CNN features and statistical texture feature classifier, both minimum and 

GLRLM RLN – Run Length Nonuniformity – were selected. The RLN feature 
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measures the similarity of run lengths throughout the image (where a run length is 

the length in which a number of consecutive pixels have the same grey level value).  

For the classifier that uses all data subsets, minimum, maximum and GLCM Inverse 

Variance were selected. The GLCM Inverse Variance describes the inverse variance 

of the GLCM matrix, which examines the spatial relationship among pixels, defining 

how frequently a combination of pixels are present in an image. These variables, 

through the Lasso feature selection process, are seen as important in discriminating 

between a benign or a malignant lesion. An example of how this could be studied 

has been reviewed in the previous chapter on partial responses. 

The metadata can provide the most interpretability out of the three data subsets. 

The same metadata features are selected suggesting they are important in 

discriminating between benign and malignant masses. To put the selected 

metadata features into clinical context, details from The Abnormal Mammogram 

[92] suggest that irregular masses (shape) indicates greater likelihood of 

malignancy, whereas the likelihood of malignancy with a circumscribed mass 

(margins) is lower but further work-up may be needed to verify the margins are 

completely circumscribed. Furthermore, spiculated margins may be more likely to 

be malignant. 

7.3.3.2 Calcifications 

Table 7-5 shows the Lasso selected features between the standalone classifiers and 

the Early Fusion A classifiers for the mass lesions. 

More texture features were selected by the Lasso for the calcifications compared to 

the masses. In the best performing classifier, the metadata and statistical texture 

features classifier, entropy, minimum, GLRLM RLN and GLRLM SRLGLE – Short Run 

Low Grey Level Emphasis – were selected. Entropy measures the randomness 

within the image. GLRLM SRLGLE measures the joint distribution of shorter run 

lengths with lower grey-level values.  

The CNN features and statistical texture features classifier selected energy, 

minimum, GLRLM RLN and GLRLM SRHGLE. The energy denotes the total 

magnitude of pixel values in a given image.  
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Where all three data subsets were used, the minimum, GLRLM RLN and GLRLM 

SRHGLE texture features were selected by the Lasso.  

Regarding the results for the calcifications, like the masses in all cases where the 

metadata is analysed, the same metadata features are selected suggesting they are 

important in discriminating between benign and malignant calcifications. To put 

overlapping features from the calcification lesion data into clinical context,  it is 

known [92] that amorphous calcifications are of immediate concern. Higher 

probability of malignancy includes pleomorphic, linear, and fine linear branching. 

However, many calcifications are so typical of a benign lesion that additional work 

is unnecessary. 
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Masses                                     Early Fusion A 

 
 
 
Standalone 

Overlapping 
features 

Metadata and Statistical 
texture features 

CNN features and 
Metadata 

CNN features and Statistical 
texture features 

All three 

CNN features  (393 overlapped) (580 overlapped) (396 overlapped) 

Statistical 
texture 
features 

1st order: Maximum 
2nd order GLCM: Auto 
Correlation (angle 45) 

 1st order: Minimum 
2nd order GLRLM: RLN (angle 
45) 

1st order: Maximum 
1st order: Minimum 
2nd order GLCM: Inverse Variance 
(angle 90) 

Metadata Shape: Irregular 
Margins: Circumscribed 
Margins: Ill Defined 
Margins: Obscured 
Margins: Spiculated 
Margins: Microlobulated 

Shape: Irregular 
Margins: Circumscribed 
Margins: Ill Defined 
Margins: Obscured 
Margins: Spiculated 
Margins: Microlobulated 

 Shape: Irregular 
Margins: Circumscribed 
Margins: Ill Defined 
Margins: Obscured 
Margins: Spiculated 
Margins: Microlobulated 

Table 7-4: Overlapping features in the Mass lesion data, between the standalone classifiers and the Early Fusion A classifiers (all features concatenated, then feature selection). (GLCM: Grey 
Level Co-occurrence Matrix; GLRLM: Grey Level Run Length Matrix) 
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Calcifications                                     Early Fusion A 

 
 
 
Standalone 

Overlapping 
features 

Metadata and Statistical texture 
features 

CNN features and Metadata CNN features and Statistical 
texture features 

All three 

CNN 
features 

 (524 CNN features 
overlapped) 

(552 overlapped) (489 overlapped) 

Statistical 
texture 
features 

1st order: Entropy 
1st order: Minimum 
2nd order GLRLM: RLN (angle 90) 
2nd order GLRLM: SRLGLE (angle 
135) 

 1st order: Energy 
1st order: Minimum 
2nd order GLRLM: RLN (angle 
90) 
2nd order GLRLM: SRHGLE 
(angle 90) 

1st order: Minimum 
2nd order GLRLM: RLN (angle 90) 
2nd order GLRLM: SRHGLE (angle 
90) 

Metadata Type: N/A 
Type: Amorphous 
Type: Pleomorphic 
Type: Fine Linear Branching 
Type: Round and Regular 
Distribution: N/A 
Distribution: Linear 
Distribution: Diffusely Scattered 

Type: N/A 
Type: Amorphous 
Type: Pleomorphic 
Type: Fine Linear Branching 
Type: Round and Regular 
Distribution: N/A 
Distribution: Linear 
Distribution: Diffusely 
Scattered 

 Type: N/A 
Type: Amorphous 
Type: Pleomorphic 
Type: Fine Linear Branching 
Type: Round and Regular 
Distribution: N/A 
Distribution: Linear 
Distribution: Diffusely Scattered 

Table 7-5: Overlapping features in the Calcification lesion data, between the standalone classifiers and the Early Fusion A classifiers (all features concatenated, then feature selection) 

 



 
 

7.3.4 Early Fusion B 

Table 7-6 shows the results for the Early Fusion B process, where the selected 

features from the standalone process are concatenated and classified with logistic 

regression (no further feature selection takes place). 

For both the masses and the calcifications the fusion of statistical texture features 

& metadata attained the strongest performance with test set AUCs of 0.927 and 

0.862 for the masses and calcifications, respectively. The poorest performance is 

seen for the fusion of CNN features & statistical texture features with test set AUCs 

of 0.828 and 0.744 for masses and calcifications, respectively. 

Data Combination 

Masses Calcifications 

Number 
of 

selected 
features 

Train 
AUC Test AUC 

Number 
of 

selected 
features 

Train 
AUC Test AUC 

CNN features and 
metadata 

674 
1 0.856 

675 
1 0.746 

CNN features and 
Statistical texture features 

685 
1 0.828 

687 
1 0.744 

Statistical texture features 
and metadata 

23 
0.9 0.927 

30 
0.893 0.862 

All three 691 1 0.861 696 1 0.758 
Table 7-6: Early Fusion B results. 

7.3.5 Late Fusion 

Table 7-7 shows the results for the late fusion process where the predicted 

probabilities from the standalone processes are combined and their mean average 

taken, leading to the reported AUC measure (no further feature selection takes 

place). 

For both the masses and the calcifications the fusion of statistical texture features 

and metadata attained the strongest performance with test set AUCs of 0.906 and 

0.862 for the masses and calcifications, respectively. The poorest performance is 

seen for the fusion of all three data subsets with test set AUCs of 0.785 and 0.726 

for masses and calcifications, respectively. 
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Data Combination 

Masses Calcifications 

Number of 
selected 
features 

Train 
AUC Test AUC 

Number of 
selected 
features 

Train 
AUC Test AUC 

CNN features and 
metadata 

674 
0.999 0.804 

675 
0.996 0.75 

CNN features and 
Statistical texture features 

685 
0.999 0.817 

687 
0.996 0.754 

Statistical texture features 
and metadata 

23 
0.881 0.906 

30 
0.858 0.862 

All three 691 0.989 0.785 696 0.976 0.726 
Table 7-7: Late Fusion results. 

7.4 Discussion 

By studying the predictive capabilities of both the standalone classifiers and fused 

classifiers as shown, it is intended that the reasoning behind the classification, 

including the important features chosen from the Lasso process, can be revealed. 

To this extent, by including CNN features in the analysis it is possible to capture the 

inarguable strength of deep learning algorithms as noted throughout the literature. 

Using hand-crafted statistical texture features aligns with general aims in the field. 

The use of associated metadata furthers the interpretability aspect of the process 

including a view for the classifier to work “hand-in-hand” with clinicians. By 

considering knowledge from clinicians the predictive capabilities can be aided 

further. 

The results of the standalone classifiers, detailed in Table 7-2 indicate that the 

approach taken in this chapter - Lasso feature selection process and logistic 

regression classifier – are reasonable. Although other classifiers could be used in 

place of logistic regression, in healthcare the interpretability of a machine learning 

algorithm is important [145]. The absence of explanation of the prediction within 

the decision-making process with “black box” machine learning models is 

somewhat of an issue, with interpretable machine learning models being seen as 

more useful instead [59].  

On their own in the standalone classifiers, the statistical texture features are not 

enough to cause great impact. The CNN features attain more suitable results 
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however suffer with interpretability issues. Where focussing on the metadata 

alone, these attain the best results. However, these require work to attain the 

information whereas the CNN features and statistical texture features are attained 

from the images and do not. This is discussed further. 

All results show that either standalone or fusion models can discriminate between 

benign and malignant lesions. In this work, the overlapping features between the 

standalone classifiers and the Early Fusion A classifiers have been highlighted. The 

CNN features are the hardest (near impossible) to interpret although the number 

overlapping is stated. 

Through the feature selection process, models without CNN features – standalone 

and fusion models – are much smaller than if all features were used. For example, 

the best performing model, Early Fusion A – Statistical Texture Features and 

Metadata for the masses (Table 7-3) has a test AUC of 0.947 and is a model of 10 

features. The next best performing uses all three data modalities and has a test AUC 

of 0.908 but with 564 features. The better performing model is arguably more 

interpretable without CNN features and much more lightweight without the need 

for images to be processed through a deep learning architecture in this case.  

Early Fusion A models (Table 7-3) attain the best fusion results. This is likely 

because the Lasso feature selection process for each data combination has been 

able to assess and appropriately penalise features that do not contribute effectively 

or encounter inappropriate error. In particular, the statistical texture features and 

metadata combination 

Early Fusion B, where the selected features from the standalone classifiers are 

concatenated and classified, does not perform as well as Early Fusion A, where all 

variables from each data subset are combined and then both the Lasso feature 

selection and the classification processes are performed. This is likely because in 

the Early Fusion B process, each standalone model has already had the most 

informative variables selected for each model alone. Whereas, with the Early Fusion 

A process, each variable can be reviewed against the outcome variable – pathology 

– providing more information at once.  
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The late fusion models provide some improvements on top of the standalone 

models, in some cases. For example, there is an improvement on the best result for 

the calcifications in Late Fusion (Statistical Texture Features and Metadata, test 

AUC 0.862) compared to standalone (Metadata only, test AUC 0.842), but this is not 

reflected in the masses. They do not perform better than the other fusion methods. 

This could be due to discrepancies in the predictions. The aggregate function was 

the mean average function, and it may be the case that it has been sensitive to 

differences in classification in some cases. This is not a strong issue, as the outcome 

measures are relatively strong, however, it may show a weakness in this method. 

7.4.1 Why is this useful in a clinical setting? 

The aim of this chapter has been for the multimodality data fusion methods to 

contextualise the classification process. In a clinical setting, it will be difficult to 

argue this using CNN features as the amount of mathematical processing in the 

methodology to get from input data to these features, is extensive. Although, their 

power as shown in the machine learning literature is included in this analysis. It is 

possible to build on this with the other data modalities studied, firstly with 

statistical texture features and then, most importantly, with the metadata. 

The statistical texture features provide some interpretability. For example, through 

knowing which statistical texture features in the Early Fusion A classifiers are 

selected, it is possible to consider why. Consider a calcification, shown as white 

spots in a mammogram. Where the energy texture feature is selected, this could be 

higher where there are many calcification spots within an image. Further, GLRLM 

features may be affected due to an interruption in run lengths throughout an 

image, with run lengths being broken by the calcifications. 

Consider a mass breast lesion. Rather than milk spots in an image, this will appear 

as a manifested lump within a mammogram. More severe breast masses – such as 

those with spiculated margins – are more likely to be malignant. Due to their vastly 

different margins which are not round but can present as “spiked”, neighbouring 

pixel values and lengths of similar grey levels are likely to be interrupted. In this 

case, GLCM and GLRLM values are likely to be significantly different than say, 

circumscribed margins where the shape is more likely to be round and smoother. 
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This can provide some insight into why the features are highlighted by the Lasso 

variable selector and insight into the classification process. 

Interestingly, the selected metadata features are the same for each Early Fusion A 

classifier, for both the masses (Table 7-4) and the calcifications (Table 7-5) 

respectively. It is important to note at this stage that, while CNN features and 

statistical texture features are calculated directly from the images (in a sense, 

‘automatic’), the assigning of metadata is a manual process from a clinician. It could 

be suggested that these overlapping features are very important to the classifier. 

The Lasso feature selection process has effectively seen these as the features as the 

subset of features – or part of the subset of features – that can discriminate 

between benign and malignant classification, while minimising residual error.  

It is acknowledged that the metadata is not provided until the images have been 

reviewed. In a real-world setting, the CNN features and statistical texture features 

could be calculated automatically, and the classification would take place. However, 

to improve this the metadata could be added retrospectively and the classification 

process for, say, statistical texture features and metadata (Early Fusion A) could 

take place instead, where the testing AUCs are 0.947 and 0.888 for masses and 

calcifications, respectively. Adding this associated metadata can support clinical 

thinking and reasoning. It can be argued that the machine is working in cooperation 

with clinicians, through appending new knowledge.  

With the inclusion of the associated metadata in the analysis, strong improvement 

to the predictive capability can be seen. This can be seen as cooperation between 

the machine learning algorithm and clinicians. By including knowledge from a 

clinical setting, we can further aid the “thinking of the classifier” and exploit clinical 

impact. Consider the best models – both Early Fusion A for masses and 

calcifications, using statistical texture features and metadata. As described these 

classifiers provide the most interpretability as they do not include the CNN features. 

Where the statistical texture features can provide some interpretability, appending 

the metadata furthers this. Here, the machine can work “hand in hand” with the 

clinician. 
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It is reported that between radiologists, observations made on mammograms can 

differ substantially [6]. Methods used in this work can attempt to assist with this. 

Leveraging data fusion techniques has improved performance and where 

appropriate, the ability to put the prediction into context. 

The complexity of the lesion metadata was limited to what a clinician may assign 

and is not automatically detected. It does not include other measures, say blood 

tests for a patient; the furthest “patient-level” data available is the breast density. 

Within the literature, there is work within multimodality fusion that looks at patient 

electronic health records [80], [143] which can include age, family history and 

lifestyle factors that are seen to be factors in breast cancer causes [90]. Future work 

could benefit from using such large volumes of data in a similar fashion as 

presented here, including a feature selection process. 

  



130 
 

7.5 Conclusions 

In this chapter, a framework using multimodality data fusion for breast cancer 

classification has been presented. This work studied techniques that utilised 

features attained from a deep learning model, hand-crafted statistical texture 

features and lesion-level metadata.  

The aim of this work was to identify suitable data fusion models that holds 

reasonable predictive capabilities and the ability to contextualise the decision-

making process. The Lasso feature selection process followed by logistic regression 

classification upholds interpretability and avoids “black box” classification, and 

studying the overlapping features ensures important features are recognised for 

their usefulness.  

Part of this work, particularly classifiers that include the use of associated lesion 

metadata, look to reflect clinical thinking. Multimodal data fusion models in this 

work attempt to exploit the amount of available information for a given case and 

show how building on imaging data with clinical knowledge can further aid the 

classification process. This could be seen as an extra tool in the arsenal of a clinician 

in the setting and assist with decision making.  

Future work could consider the use of patients’ electronic health records such as 

patient information and test results which could introduce further benefits to 

diagnosis and triage.  
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9 Conclusions 

9.1 Review and conclusions of the work presented within the thesis 

This thesis has presented a set of tools using machine learning techniques that 

attempt to bridge the gap between the clinician and the machine, in the application 

of cancer classification. Much of this work can be seen to improve the diagnostic 

arsenal available to multidisciplinary healthcare teams, including possible moves 

towards a more automated triage system where a method could be deemed 

effective. Three categories of methods and applications have been presented: 

• The first section defined the Fisher Information metric methodology, leading 

to a mathematically robust representation of the nearest neighbour 

structure of clinical data. This investigated the use of a distance-based 

metric which relied upon the distances between observations. This led to 

the creation of a latent data space in which every patient case could be 

visualised, leading to a “patient like me” approach for the addition of new 

data unseen to the classifier. Using this allows for a more evidence-based 

approach to triaging new cases. 

• The second section studied the effect of different variables in a clinical 

dataset and how they impacted the outcome of the predictive model. This 

analysis of an MLP model is an attempt to provide understanding and “open 

the black box” by reviewing the extent to which different values of given 

variables affect the contribution the logit. 

• The third section reviewed multimodality data fusion to improve and 

contextualise the predictive capability of a classifier by adding further 

information to the classifier in different ways. This work attempted to 

exploit the abundance of available clinical data to aid the decision-making 

process. 

The first section (Chapters 4 and 5) presented a robust mathematical 

representation of clinical data under two applications – using statistical texture 

features and using features extracted through deep learning. This was to consider 

how decisions are made by multidisciplinary healthcare teams using various 
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techniques and evidence. For this, a defined metric was created to “visualise the 

thinking” of an MLP classifier by projecting trained cases into a latent space. In 

effect, this method takes what was inherently “learned” by the weights and biases 

of the classifier. This led to a new “patient like me” approach for new patient cases. 

Where a machine learning model can assess new cases, the FIN methodology has 

been extended in this thesis to visualise new cases within the embedding with 

multidimensional scaling and similarity distance calculations. 

Standalone MLP or CNN classifiers can provide probabilistic output albeit with 

limited explanations as to why. It is important to provide personalised care in 

cancer diagnosis and treatment and this work has presented a machine learning, 

evidence-based solution to this important and sensitive area. The Fisher 

Information Metric “makes distances a reliable measure of how similar samples 

really are with regard to the underlying posterior class probabilities.” [30]  

This work found that it is possible to conduct a “patient like me” approach, from 

training an MLP to discriminate between benign and malignant tumours, calculate a 

metric which defines a Riemannian space where the distances between each point 

are a measure of similarity, calculate the magnitude of similarity between each 

point and use multidimensional scaling to project this into a visualisation. Then, test 

cases were projected and a demonstration of how this could be used – including 

with patient metadata to ascertain further clinical insight – can be a machine 

learning application to a sensitive and important clinical problem.   

As a diagnostic tool, the Fisher Information Network visualisations can be seen to 

be both independent from clinicians yet able to assist. Where a clinical team will 

have their own knowledge of radiology and anatomy, the machine learning models 

have also ascertained their own knowledge through the model training processes as 

well as being able to quantify and assess their performance. 

The next section (Chapter 6) studied the partial responses of a neural network 

classifier. This was proposed to assess the changes in values of variables in a clinical 

dataset, to evaluate the changes within variables that affect the predictive 

outcome. This work used a methodology that involves an MLP classifier and Lasso 
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feature selector to study important variables and how changes in values can affect 

the contribution to the logit of an MLP, affecting the final classification.  

While an MLP on its own can identify non-linear mappings, its interpretability can 

become a challenge. This work has attempted to explain the contributions of given 

variables throughout the dataset, which is an important clinical aspect. Knowing 

exactly what changes can lead to a different outcome can be incredibly useful in a 

healthcare setting with wide-reaching benefits. In this study, by letting one variable 

change at a time and keeping the rest constant, the partial responses of the MLP 

give rise to how each variable affects the outcome of the models’ predictive 

capabilities. This work can link machine learning capabilities with clinical reasoning, 

to enhance the decision-making process.  

The final section (Chapters 7 and 8) reviewed the use of multimodality data fusion 

in clinical settings to contextualise the decision-making process and use the 

abundance of available data as a starting point to identify a suitable grouping of 

data to do this effectively. Here a combination of three data subsets on the same 

data was used with a logistic regression classifier, a traditionally interpretable and 

preferred clinical model to assess this hypothesis.  

This work has shown that fusing different sets of data that relate to the same case 

and using feature selection to utilise the most important variables, suitable data 

combinations can exploit the information provided to the models to enhance 

predictions from just standalone models. In a bid to reflect clinical thinking, the 

best model in this work can be seen to augment automatically calculated features – 

statistical texture features – and clinically informed input – associated lesion 

metadata. This could be further augmented in a different application with 

electronic health records and patient-level metadata. This work look towards 

clinicians and machines working hand-in-hand with the best knowledge from both 

developing further insight and appending new knowledge for the task.  

9.2 Future work statement 

This research leads to further avenues for future work, a possible example in active 

machine learning is discussed. 
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9.2.1 Active learning 

It is known that clinicians may not agree with other clinicians when diagnosing 

tumours [6], alongside other human-based issues including fatigue and workload 

[157]. In any case, strongly performing models require humans to train the model. 

Throughout all this work, the labels provided within the dataset have been treated 

as read and correct.  

Furthermore, at the time of presentation, the patient will not have a classification 

from a biopsy of benign or malignant as this is invasive – the methods proposed 

here use only mammogram screening images. Where necessary after the screening, 

a biopsy is taken. At this stage, a patient’s data would be completed in the context 

of the work presented in the thesis. For the FIN map, say, these new and updated 

results could be added to the trained embedding. 

A limitation of the FIN methodology work is that the calculation of the pairwise 

distances is hugely expensive in its computation. The distance of each point from 

each other point is calculated. The use of active learning here to further improve 

the embedding could append strong clinical impact to, say, national screening 

programmes [158]. Scalable implementations of the Fisher methodology require 

either powerful or Cloud Computing applications [101]. Developments to this could 

provide a more automated triage system where the predictive capabilities of the 

models were deemed to be strong enough.  

  



 
 

Appendix 1 – Texture features selected in Partial Responses chapter 

First order features 

These features describe the grey level distribution of the image. 

Name Equation Description 

Energy 
𝐸 = ∑ ∑ ∑ 𝐼(𝑥, 𝑦, 𝑧)2

𝑍

𝑧=1

𝑌

𝑦=1

𝑋

𝑥=1

 
 

Kurtosis 
𝑌2 =

1

𝑋𝑌𝑍
∑ ∑ ∑ {[

𝐼(𝑥, 𝑦, 𝑧) − 𝜇

𝜎
]}

4𝑍

𝑧=1

𝑌

𝑦=1

𝑋

𝑥=1

− 3  

Kurtosis denotes the sharpness of the histogram.  

Maximum 𝐼𝑚𝑎𝑥 = max {𝐼(𝑥, 𝑦, 𝑧)}  

Minimum 𝐼𝑚𝑖𝑛 = min {𝐼(𝑥, 𝑦, 𝑧)}  
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Second order GLCM features (Grey-Level Co-Occurrence matrix based features) 

Let: 

𝑃(𝑖, 𝑗) be the co-occurence matrix. 

𝑁𝑔 be the number of discrete intensity levels in the image.  

𝜇 be the mean of 𝑃(𝑖, 𝑗) 

𝜇𝑥(𝑖) be the mean of row 𝑖 

𝜇𝑦(𝑗) be the mean of column 𝑗 

𝜎𝑥(𝑖) be the standard deviation of row 𝑖 

𝜎𝑦(𝑗) be the standard deviation of column 𝑗 

𝑝𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1
 

𝑝𝑦(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑖=1
  

𝑝𝑥+𝑦(𝑘) =  ∑ ∑ 𝑃(𝑖, 𝑗), 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3, … ,2𝑁𝑔

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗), |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

Name Equation Description 
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Entropy 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ ∑ 𝑃(𝑖, 𝑗) log2[𝑃(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures randomness, lower values for smoother 

images. Homogenous images have high entropy and 

vice versa. 

Contrast 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑|𝑖 − 𝑗|2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures local intensity variation. High for images with 

high contrast. 

Inverse Variance 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ ∑
𝑃(𝑖, 𝑗)

|𝑖 − 𝑗|2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

   , 𝑖

≠ 𝑗 

Variance puts relatively high weights on the elements 

that differ from the average value of 𝑃(𝑖, 𝑗). 

Correlation 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

=
∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗) − 𝜇𝑖(𝑖)𝜇𝑗(𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝛼𝑥(𝑖)𝛼𝑦(𝑗)
 

Correlation denotes the grey level linear dependence 

between pixels, at the specified positions, relative to 

each other. (correlation between pixels in two different 

directions) 

Dissimilarity 

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ |𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

  

Measures the distance between pairs of pixels in an 

image. 
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Sum Entropy 𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

=  − ∑ 𝑃𝑥+𝑦(𝑖) log2[𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

Measures the disorder related to the grey level-sum 

distribution of an image. 

Difference Entropy 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

=  ∑ 𝑃𝑥−𝑦(𝑖) log2[𝑃𝑥−𝑦(𝑖)]

𝑁𝑔−1

𝑖=0

 

Measures the disorder related to the grey level 

difference distribution of an image. 

Cluster Shade 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒

= ∑ ∑[𝑖 + 𝑗 − 𝜇𝑥(𝑖)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

− 𝜇𝑦(𝑗)]
3

𝑃(𝑖, 𝑗)  

Measure of skewness of GLCM matrix. Higher value 

means the image is asymmetric. 

Auto correlation 

𝑎𝑢𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Auto correlation denotes the coarseness of an image, 

evaluating the linear spatial relationships between 

texture primitives. 
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Second order GLRLM features (Grey-Level Run-Length matrix based features) 

𝑝(𝑖, 𝑗|𝜃) is the (𝑖, 𝑗)𝑡ℎ entry in the given run-length matrix, 𝑝, for a direction 𝜃. 

𝑁𝑔: the number of discrete intensity values in the image. 

𝑁𝑟: the number of different run lengths. 

𝑁𝑝: the number of voxels in the image. 

Name Equation Description 

Grey level non-uniformity 

𝐺𝐿𝑁 =
∑ [∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1 ]
2𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

GLN denotes the similarity of grey level intensity values 

within the image. This value is low if the intensity 

values are alike. 

High grey level run emphasis 

𝐻𝐺𝐿𝑅𝐸 =  
∑ [∑ 𝑖2𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1 ]
2𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

HGLRE denotes the distribution of high grey level 

values. This value is high for the image with high grey 

level values. 

Low grey level run emphasis 

𝐿𝐺𝐿𝑅𝐸 =
∑ ∑ [

𝑝(𝑖, 𝑗|𝜃)
𝑖2 ]

𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

LGLRE measures the distribution of low grey level 

values. It is high for images with low grey level values.  
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Run length non uniformity 

𝑅𝐿𝑁 =
∑ [∑ 𝑝(𝑖, 𝑗|𝜃)𝑁𝑟

𝑗=1 ]
2𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

RLN measures the similarity of the length of the runs 

throughout the image. It is low if the run lengths are 

alike.  

Short run high grey level emphasis 

𝑆𝑅𝐻𝐺𝐿𝐸 =

∑ ∑ [
𝑝(𝑖, 𝑗|𝜃)𝑖2

𝑗2 ]
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

SRHGLE measures the joint distribution of short runs 

and high grey level values. It is high for images with 

many short runs and high grey level values. 
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