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Abstract 

This work compares two methodologies to assess different selection approaches, the Analytic 

Hierarchy Process (AHP) and Multiple Attribute Decision Analysis (MADA) using a combined 

Evidential Reasoning (ER) and AHP approach. This evaluation is done depending on: the number of 

alternative criteria, agility through the process of decision-making, computational complexity, 

adequacy in supporting a group decision, and consistency of results. Case studies are presented to 

analyze the robustness of the methodology evaluation. The criteria used to evaluate and identify the 

best locations are adapted for each methodology to proceed with the comparison. The results show that 

each approach is suitable for the problems of wind farm location selection, particularly toward the 

support of group decision-making and uncertainty modelling. The sites are ranked based on their 

respective weights for AHP and MADA. In terms of computational complexity, the complete AHP 

method performs better than the combined MADA and AHP approaches. Nevertheless, the MADA 

method is less time-consuming and convenient for selecting floating farm locations due to the smaller 

involvement of experts and corresponding higher agility during decision-making. Both methodologies 

demonstrate several alternative processes and criteria, adequacy in supporting a group decision, and 

adaptation in terms of criteria insertion or removal. 

 

Keywords: Analytic Hierarchy Process (AHP); Evidential Reasoning (ER); Floating offshore wind 

farms; Multi-Criteria Decision Methods (MCDM); Multiple Attribute Decision Analysis (MADA); 

Site selection. 
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Abbreviations 

AHP  Analytical Hierarchy Process 

CI   Consistency Index 

CR   Consistency Ratio 

EEZ  Economic Exclusive Zone 

ER   Evidential Reasoning 

FOW  Floating Offshore Wind 

GIS   Geographical Information System 

MADA  Multiple Attribute Decision Analysis 

MCDA  Multi-criteria Decision Analysis 

MCDM  Multi-criteria Decision-Making Methods 

MCE  Multicriteria Evaluation techniques       
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1 Introduction 

European legislation calls for a well-planned sustainable maritime space development. As such, it 

must include a social, economic as well as environmental dimension. According to the 2030 Agenda 

for Sustainable Development (United Nations, 2015), countries should undertake efforts to build up a 

comprehensive national inventory of their marine resources to establish a maritime spatial planning 

system. The overall objective is to provide information for the improvement or the restructuring of 

maritime-use decision processes, including the consideration of socio-economic and environmental 

issues (Ehler and Douvere, 2009). 

In the last decades, conflicts caused by competing marine uses have increased, particularly in 

coastal waters. Consequently, a lot of research has been done to develop methods and tools that assist 

complex spatial decision problems (Alexander, 2019; Queffelec et al., 2021). The development of 

Spatial Decision Support Systems (SDSS) has turned out to be very beneficial in helping to solve 

complex space-use problems (Keenan and Jankowski, 2019; Pınarbaşı et al., 2017). In addition, any 

planning process must focus on a mix of objective and subjective information. The former is derived 

from reported facts, quantitative estimates, and systematic opinion surveys. The subjective information 

denotes the opinions (preferences, priorities, judgments) of the interest groups and decision-makers 

(Li et al., 2021). The idea of combining the objective and subjective elements of the planning process 

in a computer-based system lies at the core of the concept of SDSS (Buchanan et al., 1998). 

These methods can be defined as an interactive, computer-based system designed to support a user 

or a group of users in achieving a greater degree of effectiveness in decision making when solving a 

semi-structured spatial decision problem (Malczewski, 2004). SDSS also refers to the combination of 

GIS and sophisticated decision support methodologies, e.g., multicriteria analysis techniques (Díaz 

and Guedes Soares, 2020a; Greco et al., 2017), and are therefore suitable to manage sustainable 

development of maritime areas. Although multicriteria analysis began mainly in the '70s (the first 

scientific meeting devoted entirely to decision-making was held in 1972 in South Carolina), and its 

origins can be dated back to the eighteenth century (Eastman, 1999), reflections on French policies in 

the action of judges and their translation into the policy (social choice) led people like Condorcet to 

deepen in the decision taken supported in several criteria (Eastman, 1999). 

In the 1980s and 1990s, there was an increasing trend of integrating Multicriteria Evaluation 

techniques (MCE) and Geographic Information Systems (GIS), trying to solve some of the analytical 

shortcomings of GIS (Eastman, 1999; Stewart Fotheringham and Rogerson, 1993). Since maritime-
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use decision making, in general, is considered as an intrinsic multicriteria decision problem, these are 

valid methodologies to support the maritime-use decision process employing a maritime-use suitability 

analysis. Maritime-use suitability analysis aims to identify the most appropriate spatial pattern for 

future marine uses according to specified requirements or preferences (Dapueto et al., 2015; Díaz and 

Guedes Soares, 2021, 2022a; Queffelec et al., 2021). GIS-based maritime-use suitability analyses have 

been applied in a wide variety of situations, including ecological and geological approaches, suitability 

for maritime activities, environmental impact assessment, site selection for facilities, and coastal 

planning (Díaz and Guedes Soares, 2020a; Lester et al., 2018; Sainz et al., 2019). 

Different attempts to classify Multicriteria Decision Making (MCDM) methods by diverse authors 

exist in the literature (Mardani et al., 2015; Velasquez and Hester, 2013). Many of them agree that 

additive decision rules are the best known and most widely used Multiattribute Decision Making 

(MADM) methods in GIS-based decision-making. Some of the techniques more commonly described 

in the literature are the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), ideal 

point methods (e.g. TOPSIS), concordance methods or outranking techniques (e.g. PROMETHEE 

(Preference Ranking Organization Method for Enrichment Evaluation), ELECTRE (Elimination and 

Choice Expressing Reality)). Nevertheless, the integration of these techniques continues to pose 

problems or difficulties when developing specific applications. The most notable drawbacks are 

(Belton and Stewart, 2002; Kou et al., 2011; Oteroay, 1987): 

• The impracticality of applying pairwise comparison techniques as PROMETHEE with long 

data because of limitations posed by existing informatics systems. 

• The difficulty of implementing some MCE methods, thereby leading to a complex analysis 

of the results and ignorance of the internal procedure of the methods by non-specialist users. 

The need to generate data processing software attached to the GIS, based on algorithms that describe 

MCE methods, naturally implies that many users cannot access these methods. 

This study compares the results obtained by applying two distinctive maritime space use suitability 

analyses to the location of floating offshore wind farm sites, applying two different multicriteria 

analysis techniques. The multicriteria analysis employed has been performed in a geographic 

environment and has been used in two objectives. During the site search analysis, each technique 

considered several location alternatives. The analyses used an AHP method (Díaz and Guedes Soares, 

2022a, 2022b) and the MADA (ER and AHP combined) methodology (Loughney et al., 2021, 2020; 

Loughney and Wang, 2020), within the Arcwind project and a set of predefined options that can easily 
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be performed in GIS. All the techniques were coded and adapted through visualisation techniques 

(Díaz and Guedes Soares, 2020a). 

 

Fig. 1. Large area, north of Scotland for FOW site selection analysis utilised in [24] with a smaller region outlined for 

comparison utilising the AHP methodology.  

 

Fig. 2. Proposed locations identified by each original methodology in Madeira region (left) and Scotland (right – see the 

red section in Fig. 1). Locations 1 to 3 are identified with the areas of Sao Vicente, Porto da Cruz and Porto Santo. 

A problem in applying multicriteria analysis is the definition of weights for a given set of criteria. 

A variety of approaches exist, see for example (Chaouachi et al., 2017), and probably the best-known 

weight evaluation method is the AHP (Vagiona and Kamilakis, 2018; Vagiona and Karanikolas, 2012), 

which has been used in the present cases. Another problem is the specification of the criteria 

performance scores, which are often subjective in their determination. Data that has been measured 

directly will undoubtedly be regarded as more reliable than data that has been estimated, interpolated, 

N 
N 
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taken from a map or interpreted. Thus, the method of criteria data collection plays a central role. A 

stochastic approach that considers the experts’ knowledge of input values could be a way out of this 

dilemma. Figs. 1 and 2 demonstrate the locations utilised in the comparison of methodologies. Both 

sets of locations were utilised to demonstrate the original methodologies in (Díaz and Guedes Soares, 

2021, 2022a; Loughney et al., 2021; Loughney and Wang, 2020). 

 

2 Study area and project background 

The European Atlantic region and its surroundings are located in Western Europe, a highly dynamic 

economic area (see Fig. 3). The climate in this area is oceanic, with mean annual precipitation of about 

1.000 mm and a mean annual temperature of about 10 °C. This area is crossed by several navigation 

lines and the main migratory paths in Europe. Geologically, the Atlantic Arc coast is formed mainly 

by rocky shores and deep waters. In addition, it hosts important mineral reservoirs used for industrial 

purposes.  

 

Fig. 3. The Atlantic Area region includes the coastlines of northern and western UK, Ireland, Northwest, and west France, 

the northern and some of the southern coastlines of Spain, and all of Portugal, as well as the Azores, Madeira, and the 

Canary Islands. 
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The availability of offshore wind resources has been one reason for the fast development of floating 

wind technology in the last decade (Díaz and Guedes Soares, 2020b). However, this rapid development 

can also add negative interactions with the environment and other maritime activities (Rudolph, 2014). 

The floating offshore wind farms deployment could cause costly damage and destruction of 

environmental protected areas such as bird sanctuaries and marine habitats (Fox and Petersen, 2019). 

Many infrastructures that have been built occupy areas where the wind resource is high, making these 

areas inaccessible for wind farm installation. Also, many important areas have been occupied with 

military activities, underwater facilities (cables and pipelines) or navigational (shipping) routes (Smith 

et al., 2015). 

Based on the above, the EEZ area surrounding Portugal, Spain, France, the UK, and Ireland, 

represents a rapidly growing floating wind area and merits closer investigation in terms of geoscientific 

factors. Thus, the research project Arcwind was initiated to develop a methodological workflow that 

will facilitate sustainable development in the surroundings of floating wind farms. The present main 

objective is to perform a maritime use suitability analysis to identify the most appropriate future wind 

farm locations. Therefore, a variety of tasks needed to be performed, such as: 

• Characterisation of the study area and collection, analysis, and processing of the available 

information for its introduction into a GIS environment. 

• Geo-resources and geo-hazards detection, description, and modelling with the help of GIS 

and other techniques. 

• Land-use suitability analysis using MCDM. 

Here, the marine-use suitability analysis to find the most suitable locations for floating wind 

facilities is presented. As mentioned above, results are compared by applying two distinctive 

multicriteria analysis techniques for decision making on floating wind farms location. For more details 

on the general project workflow and geo-resources and geo-hazards modelling, see (Chaouachi et al., 

2017; Fetanat and Khorasaninejad, 2015; Mahdy and Bahaj, 2018; Vagiona and Kamilakis, 2018; Wu 

et al., 2018; Ziemba et al., 2017). The case study to compare both methodologies in the scope of the 

Arcwind project considered the proposed locations of Madeira and Scotland (see Table 1).  
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Table 1. Proposed locations in Madeira and Scotland. Geographic coordinates (WGS84). Scotland coordinates indicate the 

centre of a 5.5km × 5.5km area.  

Madeira region 

Location Latitude Longitude 

Sao Vicente 38.6 -26.8 

Porto da Cruz 37.9 -25.7 

Porto Santo 37 -25.2 

Scotland region 

Location Latitude Longitude 

A15 58.75 -6 

B15 58.75 -5.9 

C15 58.75 -5.8 

D15 58.75 -5.7 

E15 58.75 -5.6 

F15 58.75 -5.5 

A14 58.8 -6 

B14 58.8 -5.9 

C14 58.8 -5.8 

D14 58.8 -5.7 

E14 58.8 -5.6 

F14 58.8 -5.5 

A13 58.85 -6 

B13 58.85 -5.9 

C13 58.85 -5.8 

D13 58.85 -5.7 

E13 58.85 -5.6 

F13 58.85 -5.5 

D12 58.9 -5.7 

E12 58.9 -5.6 

F12 58.9 -5.5 

F11 58.95 -5.5 

 

3 Outline of the Developed Methodologies  

It is essential to differentiate between the site selection problem and the site search problem. Site 

selection analysis aims to identify the best location for a particular activity from a given set of potential 

(feasible) sites. Where there is no predetermined set of candidate sites, the problem is referred to as 

site search analysis (Díaz and Guedes Soares, 2020a; Loughney et al., 2021). In terms of the MCDM 

applied, the main advantage of the AHP approach can be considered its low degree of complexity 

which made it attractive to be used for the site search analysis in this project. It is precisely this 
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simplicity and the possibility to integrate experts’ knowledge that makes weighted summation quite 

widely applied in real-world settings (Benítez et al., 2011). 

The site selection analysis has also been performed by implementing MADA, which belongs to the 

‘family’ of ranking techniques. Since the mentioned techniques require pairwise or global comparisons 

among alternatives, these methods become impractical for applications where the number of 

alternatives ranges in the tens or hundreds of thousands. For a more detailed description of both 

methodologies, see (Benítez et al., 2011; Guo et al., 2009; Russo and Camanho, 2015; Yang and Xu, 

2002). 

To perform both site search and site selection, several steps needed to be covered: 

• Definition of alternatives (decision options): feasible location areas. 

• Definition of constraints: areas with land-use restrictions. 

• Definition of important factors in the decision process: identification of criteria (see Table 

2). 

• Determination of criteria weights. 

The criteria weights are determined with the AHP in both techniques (Saaty, 1977). This 

multicriteria decision method involves a pairwise comparison of criteria where preferences between 

criteria are expressed on a numerical (Likert) scale, usually ranging from 1/9 (strongly unimportant) 

to 1 (equal importance) to 9 (strongly more important) (Franek and Kresta, 2014). This preference 

information is used to compute the weights through an eigenvalue computation where the normalized 

eigenvector of the maximum eigenvalue characterizes the vector of weights. Empirical applications 

suggest that this pairwise comparison method is one of the most effective techniques for spatial 

decision-making approaches based on GIS (Díaz and Guedes Soares, 2021; Vagiona and Kamilakis, 

2018; Vagiona and Karanikolas, 2012). There exist many well-documented examples of the 

application of this method with success (Díaz and Guedes Soares, 2020a; Mahdy and Bahaj, 2018). 

It is well known that the input data to the multicriteria evaluation procedures usually present the 

property of inaccuracy, imprecision, and ambiguity. Despite this knowledge, the methods typically 

assume that the input data are precise and accurate. Some efforts have been made to deal with this 

problem by combining the GIS multicriteria procedures with a sensitivity analysis (Seyr and Muskulus, 

2019). Another approach is to use other methods based upon other families of MCDM (Mahdy and 

Bahaj, 2018). 
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It is hard to choose the input values for multicriteria analysis procedures in many situations since 

the criteria values for the different alternatives usually do not have a single realization but can obtain 

a range of possible values. Performing a multicriteria analysis with the mean values produces a mean 

result, but the uncertainty in either the input values or the result cannot be quantified. A solution to 

this dead-end is a stochastic approach, which utilizes probability distributions for the input parameters 

instead of single values. A stochastic multicriteria analysis implies that the analysis is performed 

multiple times with varying input values for the criteria involved. According to their low outcome 

probabilities, such an approach uses the whole range of possible criteria value outcomes, and extreme 

events are, according to their low outcome probabilities, realistically represented as rare events (Seyr 

and Muskulus, 2019).  

Constraints depict the areas where the turbines will not be allowed. These restrictions are generally 

characterized by other maritime uses (e.g., hydrocarbons and minerals), the protection of natural areas 

and technical aspects. The main restrictions are as follows:  

• Military areas: Areas for military operations (exercises and manoeuvres). These marine sites 

are considered unsuitable for the offshore wind farms deployment since space is conditioned 

to periodical and special military operations. 

• Exploration and exploitation of hydrocarbons and minerals: The areas for the public tender 

of marine regions cannot be considered eligible for the deployment of floating farms.  

• Extraction of marine sand and gravel: Marine aggregates licenses similarly to previous 

criteria excluded other activities from the area of interest. 

• Aquaculture and fishing banks: The possibility to share the oceanic space between offshore 

wind and these activities is currently under study (Díaz et al., 2019). Also, fishing trawls 

could break the power lines. 

• Marine renewable energies pilot zones: These maritime zones are considered inadequate for 

implementing commercial concepts projects (e.g., wave farms, tidal farms, offshore wind 

farms, etc.) since they only have the permit to deploy pilot or pre-commercial installations. 

• Environmental protected areas: The protected areas correspond to added value natural zones, 

where the biodiversity defence and survivability are ensured through local, national, or 

European legislation. Natura 2000 Special Protection Areas (SPAs), migration corridors and 

refuges for wildlife have been selected as protected areas in the European Atlantic Area 

marine environment.  
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• Underwater lines and pipelines: The underwater grids are selected as an exclusion criterion 

due to the regulatory framework that protects these installations.  

• Maritime traffic: The revised maps show the shipping lanes, shipping density, anchoring 

areas, precautionary areas, and clearways. 

• Heritage areas: The archaeological monuments, shipwrecks and historical places located in 

the National and European Geographic Information Systems. 

• Wind Velocity: The maritime zones with mean wind velocity smaller than 4 m/s (average 

cut-in wind speed) at 10 m height. 

• Water Depth: The bathymetry supposes a spatial constraint on the site selection. This 

constraint is strongly dependent on the installation characteristics of the supporting platform 

structure.  

• Distance from the Shore: The deployment of wind turbines in the proximity of the shoreline 

leads to negative impacts (visual impact, noise). Moreover, the distance may affect several 

human activities (fishing, recreational activities) existing nearshore. 

Both methodologies are designed by the reality of the region of application. Based on that, the 

number of criteria and the treatment of them has some differences.  

Weights for criteria are assigned with the help of the AHP (Saaty, 1977). An AHP extension was 

specifically developed for the Python environment at the Centre for Marine Technology and Ocean 

Engineering (Díaz et al., 2019; Díaz and Guedes Soares, 2021, 2020), while the Liverpool John Moores 

University implemented the AHP+ER MADA technique (Loughney et al., 2021, 2020; Loughney and 

Wang, 2020). During the development of both methodologies, different approaches were used by the 

researchers to determine sites under restrictions and unsuitable for further quantitative analysis.  

Table 2. Criteria used by both methodologies. 

AHP Methodology 

Type No. Criteria Units 

Metocean 

C1 Wind velocity m/s 

C2 Wind potential h/year 

C3 Water depth m 

C4 Wave conditions m 

C5 Marine currents m/s 

C6 Temperature oC 

Viability 
C7 Technical feasibility density 

C8 Sufficient study times density 

Logistics 
C9 Distance to local electrical grid km 

C10 Distance from coastal facilities Km 
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Facilities 

C11 Distance from shore Km 

C12 Distance from residential areas km 

C13 Distance from maritime routes km 

C14 Distance from underwater lines km 

C15 Distance to marine recreational activities km 

C16 Distance from airport km 

Marine  
environment 

C17 Distance from protected areas km 

C18 Proximity to migratory birds’ paths density 

C19 Proximity to migratory marine life paths density 

Techno-economic 

C20 Area of the territory Km2 

C21 Proximity to the area of electricity demand km 

C22 Population served number 

C23 Multiple resources density 

MADA Methodology 

Metocean 

C1 Wind Velocity m/s 

C2 Potential Power Output (Max. capped at rated power of 
10MW where possible) 

MW 

C3 Wave Height (Significant Wave height) m 

C4 Current Speed m/s 

C5 Tidal Height m 

Logistics 

C6 Vicinity to Substation (Grid Connection - only one grid 
connection available) 

km 

C7 Distance from Ports for Installation  km 

C8 Distance from Ports for Maintenance Only km 

C9 Water Depth km 

Facilities &  
Environment 

C10 Proximity to Subsea Facilities km 

C11 Proximity to Coast km 

C12 Proximity to Fisheries km 

C13 Proximity to Military Areas (only one Military area) km 

C14 Proximity to Shipwrecks km 

C15 Proximity to MPAs km 

C16 Proximity to SACs (only one SAC) km 

 

3.1 Original AHP methodology developed for site selection in Portugal, Spain, and France  

The main objective of a site selection analysis is the ranking of feasible alternatives. Generally, 

outranking methods, such as AHP, require pairwise or global comparisons, among other options. Here 

location alternatives are represented by wind farm areas, as defined by Díaz and Guedes Soares 

(2020a), which signify spaces for establishing floating farms. Geometrically, these alternatives 

represent a polygon each. A total of forty-two locations were evaluated for the site selection analysis. 

As alternatives are directly compared with their criteria values, the application of outranking methods 

does not require a transformation or standardization of criteria values. In some cases, the restrictions 

(constraints) and criteria are the same for the site search analysis. 
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Alternatives entirely located in restricted areas were eliminated from the analysis. However, some 

areas represent one alternative, partially affected by restricted areas, as these polygons are partially 

affected or boarded by an underwater connection or a navigation line. It has implied the inclusion of 

the constraints as an additional criterion in the decision process. The criterion representative of the 

used restrictions was then reclassified into two areas; areas where floating wind installation is 

forbidden or impossible due to other uses and locations where this use is permitted or feasible. It is 

important to define whether a higher value of a particular criterion leads to an improvement or a 

decrease in a location use suitability. In offshore wind farms development, an increase in the value of 

all criteria implies a suitability increase. For example, a higher wind potential value implies an increase 

in suitability to offshore wind use location. In contrast, a decrease in distance to environmental areas 

implies a reduction in wind farm use location suitability. 

Geometrically, every alternative is a polygon so that within each polygon, a variety of criteria values 

are to be found. The question then arises as to which of the multiple criteria methods are used for the 

multicriteria analysis evaluation. Therefore, two sets of criteria are developed with site-specific values 

(mean) for the polygonal outline of a location alternative. In this methodology, twenty-three criteria 

are considered suitable for the application integration in the model and the application of MCDM. 

These criteria are selected based on the experts’ opinions and sensitivity analysis. The sensitivity 

analysis guarantees the robustness of the model and consistency in the results (Díaz and Guedes Soares, 

2021). 

For the present analysis, the mean value was used for all criteria since this value better symbolizes 

all alternative values. Minimum and maximum values are usually rare events with a low probability of 

occurrence. The AHP methodology uses a comparison function, a function of the difference between 

two alternatives for any criterion. For more details on preference and functions, see (Ahn, 2017; Lai, 

1995). The technique uses the “usual criterion” preference function based on the simple difference 

between alternatives. This function helps to discriminate best between available options to be achieved. 

The individual evaluation criteria are compared and ranked as weight function based on the expert’s 

considerations. In the same way, the method is also applied to analyse the locations in each single 

criteria function. 

3.1.1 AHP method and algorithm 

The AHP is a pairwise comparison method developed by Saaty (1977). Each element is scored 

against the rest to evaluate its relative importance. This method divides a complex problem into parts 
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as a hierarchy. The objective is at the top of the hierarchy. The rest of the criteria are on the other levels 

of the base. 

𝑋 = (

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑛1 … 𝑥𝑛𝑛

) = (

𝑤1

𝑤1
⋯

𝑤1

𝑤𝑛

⋮ ⋱ ⋮
𝑤𝑛

𝑤1
⋯

𝑤𝑛

𝑤𝑛

) = (

1 ⋯
𝑤1

𝑤𝑛

⋮ ⋱ ⋮
𝑤𝑛

𝑤1
⋯ 1

)                                        (1) 

Thereby, a matrix with several columns and rows proportional to the criteria number is created.  

A series of successive steps are followed to calculate the values. First, the matrix with the pairwise 

comparisons is completed. Then, the sum of elements in each column is determined. Each matrix 

component is divided by the sum of its column. Each row’s mean value is calculated and noted in a 

new column. This column collects the priority vector of the criteria. Moreover, the methodology AHP 

provides mathematical tools to measure the consistency of the comparison (Saaty, 2008). This allows 

checking the objectivity of the process - the consistency index calculation following the next steps: 

• The sum of the matrix elements is multiplied by the relative weight of the respective criterion. 

• The products for all columns are added and defining the result as λmax. Then, the 

Consistency Index (CI) is defined through Eq. (1) given by (Takeda and Yu, 1995): 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                                                (2) 

where n is the number of criteria (matrix order). 

The comparison matrix inputs are randomly selected. The results are obtained through a simulation 

with Eq. (1). Complementary, the results level of consistency is obtained from the Consistency Ratio 

(CR) (see Eq. (2)). The CR should have a value no larger than 0.1 (Takeda and Yu, 1995): 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                 (3) 

The Random Index (RI) is correlated with the number of matrix elements. The RI used was 

proposed by (Alonso and Lamata, 2006). The RI is related to the order of the matrix in Eq. (1) as 

shown in Table 3. 

Table 3. Saaty's Random Index values. 

Matrix RI 
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Order (n) 

1 0 

2 0 

3 0.5245 

4 0.8815 

5 1.1086 

6 1.2479 

7 1.3417 

8 1.4056 

9 1.4499 

10 1.4854 

11 1.5141 

12 1.5365 

13 1.5551 

14 1.5713 

15 1.5838 

16 1.5978 

17 1.6086 

18 1.6181 

19 1.6265 

20 1.6341 

21 1.6409 

22 1.6470 

23 1.6526 

24 1.6577 

25 1.6624 

… … 

 

The paired comparison of alternatives produces a preference matrix for each criterion. Having 

calculated the preference matrices and each criterion, a first aggregation is performed by multiplying 

each preference value by a weighting factor (expressing the weight or importance of a criterion) and 

building the sum of these products. This allows determining relative weights between each of the 

alternatives to be evaluated and established to calculate the numerical probability of each alternative. 

This probability determines the likelihood that the alternative must fulfil the expected goal. The higher 

the probability, the better the chances the alternative must satisfy the project's final goal. These 

calculations result in a preference index. 

3.2 Original MADA methodology developed for site selection in UK and Ireland 

There are several steps involved in the procedure for applying a MADA algorithm to a problem. 

Having several steps is key for maintaining consistency throughout the process and offers an element 

of confidence to the final analysis. There are key elements that the procedure must follow, and these 
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elements shall be outlined in the following sections. Fig. 4 also outlines the methodological framework 

utilised in this research. In Fig. 4 each step of the methodology is outlined with further sub-steps also 

highlighted. For example, in Step 1 the main objective is to determine the scope and domain of the 

research application. The sub-steps further detail how this is to be done, i.e., defining a specific area 

for analysis, and identifying a set of exclusion criteria to exclude unsuitable sites to avoid an 

unnecessarily complex quantitative assessment. This methodology has been applied to Scotland and 

Ireland in (Loughney et al., 2021, 2020; Loughney and Wang, 2020).  

3.2.1 Determine the Domain and the exclusion criteria.  

The initial domain, used in the site selection analysis by Loughney et al. (2021) (Loughney et al., 

2021) has been highlighted in Fig. 1 as the large area off the northern coast of Scotland, which is 

approximately 170 km East to West (3O–6O West) by 83 km North to South (58.75O–59.5O North). This 

area was divided into 450 individual grid squares of 5.5km × 5.5km. Similarly, the exclusion criteria 

have also been outlined in Section 3. These exclusion criteria were applied to the large region in Fig. 

1. This resulted in 45 sites being outlined as suitable for further quantitative analysis as they were not 

impacted by any exclusions or restrictions to Floating Offshore Wind (FOW) implementation. The 

methodology outlined in the following sections was applied to these 45 sites to rank the most suitable 

areas for FOW implementation. Subsequently, a number of these 5.5km × 5.5km were utilised in the 

previously outlined AHP analysis as part of the comparative case study (see Fig. 2).  

3.2.2 Identify individual criteria for quantitative analysis. 

This section of the methodology involves filtering possible criteria that are relative to the 

description and the objective. For this problem, the criteria were devised from literature studies based 

upon the key requirements of FOW implementation. These have been previously outlined, in part, in 

Table 2.  

3.2.3 Develop the evaluation hierarchy.  

Once the criteria have been established, a hierarchy must be determined to coherently develop a 

solution to the problem. This hierarchy groups certain criteria under one general criterion. This allows 

for a smaller number of criteria to be aggregated gradually to reduce the calculation complexity of the 

decision-making (Guo et al., 2009; Liu et al., 2005; Sadeghi et al., 2018; Yang, 2001).  
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3.2.4 Outline suitable evaluation grades. 

Subjective judgements may be used to distinguish one alternative from another in terms of 

qualitative criteria. However, in this research, it is possible to use objective data to determine the belief 

degrees. For example, evaluating data may suggest that the logistics of a site is poor, indifferent, 

average, good or Excellent (Ren et al., 2005; Yang and Xu, 2002). These five evaluation terms have 

been outlined, with Hn denoting the nth evaluation grade. This is demonstrated by Eq. (4): 

𝐻𝑛 = {𝑃𝑜𝑜𝑟 (𝐻1), 𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 (𝐻2), 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐻3), 𝐺𝑜𝑜𝑑 (𝐻4), 𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 (𝐻5)}                     (4) 

    

3.2.5 Develop the belief degrees and criteria weights for MADA analysis. 

The weights of the criteria are calculated through PC and AHP and are determined by qualitative 

assessment from expert judgement, using questionnaires. PC and AHP are selected, as they are 

efficient methods of applying a qualitative data gathering mechanism to a quantitative methodology. 

The method of utilising PC and AHP to determine subjective quantitative data for application in a 

relative weighting system is exceptionally useful in filling gaps in data for additional analysis 

techniques, such as the ER approach (see Fig. 4).  

It is supposed that there is a simple two-level hierarchy. Suppose there are L basic criteria ej (j=1… 

L) associated with general criterion E. Similarly, suppose the normalised weights of each general 

criterion are given as ω1, ω2 … ωi … ωL (i =1… L) where, ωi is the relative weight of the ith general 

criterion (Ei) with 0 ≤ ωi ≤ 1 and ωij is the weight of the basic criterion (ei) 0 ≤ ωij ≤ 1, where j represents 

the jth basic criterion under the ith general criterion. For example, the weighing of general criterion, 

Logistics, is represented by ω1 and the weight of the 3rd basic criterion under logistics, (Depth, e3) is 

represented by ω13. See Table 4 which outlines the evaluation hierarchy and contains the allocated 

notation related to the weighting of criteria. Furthermore, let βn, i denote the belief degree of the basic 

criterion ei to the evaluation grade Hn, where βn, i ≥ 0 and ∑ 𝛽𝑛,𝑖
𝑁
𝑛=1 = 1  Finally, S(ei) is the assessment 

of an alternative under criterion ei,. This assessment can be represented by Eq. (5) (Li and Liao, 2007; 

Loughney et al., 2021; Ren et al., 2005; Yang and Xu, 2002). 

𝑆(𝑒𝑖) = {(𝐻𝑛, 𝛽𝑛,𝑖), 𝑛 = 1, … , 𝑁}  𝑖 = 1, … , 𝐿                                                                                (5) 
    

The assessment of a criterion, S(ei) is complete if the sum of the belief degrees is equal to 1, i.e.  

∑ 𝛽𝑛,𝑖
𝑁
𝑛=1 = 1. 
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Fig. 4. Methodological framework for FOW site selection using Evidential Reasoning. 

 

3.2.6 Evidential Reasoning Algorithm and Data Aggregation 

Suppose mn,i is the probability mass representing the degree to which ei supports the hypothesis that 

the general criterion E is assessed to Hn, and is calculated by Eq. (6) (Li and Liao, 2007; Loughney et 

al., 2021; Yang and Xu, 2002).  

𝑚𝑛,𝑖 = 𝜔𝑖𝛽𝑛,𝑖     𝑛 = 1, … , 𝑁                                                                                                           (6) 
     

Similarly, for basic criteria, Eq. (6) is rewritten as Eq. (7): 

𝑚𝑛,𝑗 = 𝜔𝑖𝑗𝛽𝑛,𝑖     𝑛 = 1, … , 𝑁                                                                                                         (7) 

    

1. DETERMINE SCOPE AND 

DOMAIN 

1a) Outline an area for evaluation and 

divide into individual grid squares. 

1b) Identify and apply Exclusion 

Criteria to exclude sites that are 

unavailable for FOW. 

2. DETERMINE EVALUATION 

CRITERIA FOR MADA 

2a) Outline the individual criteria for 

application in the quantitative analysis. 

2b) Outline the evaluation hierarchy 

by outlining the general and basic criteria 

from step 2a. 

3. DATA GATHERING 

3a) Outline a suitable set of evaluation 

grades (Eq. 1). 

3b) Develop belief degrees (Objective 

Data) and weights (PC & AHP) for the 

general and basic criteria based on the 

evaluation grades (see Sections 3.6). 

4. APPLICATION OF MADA 

ALGORITHM 

4a) Aggregation assessment of 

alternative FOW sites through the Evidential 

Reasoning algorithm. 

4b) Analysis of ER aggregation and 

ranking of potential FOW sites. 

5. VALIDATION 

Validation of the Evidential Reasoning 

analysis through the application of axiom 

testing (see Section 3.9). 
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where, mn,j is the probability mass of the basic criteria ej assessed to Hn. Also, EI(j) must be defined as 

the subset of the j basic criteria under the Ith general criterion, as given by Eq. (8). 

𝐸𝐼(𝑗) = {𝑒1   𝑒2 … 𝑒𝑗}                                                                                                                       (8) 

mn,I(i) is the probability mass defined as the degree to which all criteria in EI(i) support the hypothesis 

that E is assessed to the grade Hn. Similarly, mH, I(i) is the remaining probability mass which is 

unassigned to individual grades after all the basic criteria in EI(i) have been assessed. The terms mn, I(i) 

and mH, I(i) can be determined by combining the basic probability masses mn, and mH,j for all values of 

n=1, …, N and j=1, …, i (Li and Liao, 2007; Loughney et al., 2021; Yang and Xu, 2002). Thus, the 

Evidential Reasoning algorithm is expressed through Eqs. (9-12). 

𝐾𝐼(𝑖+1) = [1 − ∑ ∑ 𝑚𝑡,𝐼(𝑖)𝑚𝑧,𝑖+1
𝑁
𝑧=1
𝑧≠𝑡

𝑁
𝑡=1 ]

−1

𝑖 = 1, … , 𝐿 − 1                                                           (9) 

     

𝑚𝑛,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1) (
𝑚𝑛,𝐼(𝑖)𝑚𝑛,𝑖+1 + 𝑚𝑛,𝐼(𝑖)𝑚𝐻,𝑖+1

+𝑚𝐻,𝐼(𝑖)𝑚𝑛,𝑖+1
)       𝑛 = 1, … , 𝑁                                          (10) 

  

𝑚𝐻,𝐼(𝑖+1) = 𝐾𝐼(𝑖+1)𝑚𝐻,𝐼(𝑖)𝑚𝐻,𝑖+1                                                                                                  (11) 

     

 

𝛽𝑛 =
𝑚𝑛,𝐼(𝐿)

1−𝑚𝐻,𝐼(𝐿)
,         𝑛 = 1, … , 𝑁, 𝑖 = 1, … , 𝐿                                                                              (12) 

   

 

where 𝐾𝐼(𝑖+1) is a normalising factor so that ∑ 𝑚𝑛,𝐼(𝑖+1)
𝑁
𝑛=1 + 𝑚𝐻,𝐼(𝑖+1) = 1 and βn is the combined 

belief degree of the aggregated assessment for the criteria (Li and Liao, 2007; Loughney et al., 2021; 

Yang and Xu, 2002).  

3.2.7 Utility Assessment and Ranking 

The criteria must be ranked based upon their aggregated belief degrees from the ER algorithm. 

Suppose the utility of an evaluation grade, Hn, is denoted by u(Hn). The utility of the evaluation grades 

is assumed to be equidistant as follows, with u(H1)=0, u(H2)=0.25, u(H3)=0.5, u(H4)=0.75 and 

u(H5)=1 (Yang, 2001). The estimated utility for the general and basic criteria, S(ei), is given by Eq. 

(13) (Loughney et al., 2021; Yang and Xu, 2002). 

𝑢(𝑆(𝑒𝑖)) = ∑ 𝑢(𝐻𝑛)𝛽𝑛
𝑁
𝑛=1 (𝑒𝑖)                                                                                                    (13) 
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3.2.8 Validation of the decision-making process. 

Validation is a key aspect of the methodology, as it provides a reasonable amount of confidence to 

the results. In current literature, there is an axiom-based validation procedure, which is useful for the 

validation of the process. The aggregation process may not be rational or meaningful if it does not 

follow certain axioms. The application of four axioms is consistent with the partial validation 

procedure applied to the ER approach and is heavily utilised in literature (Durbach, 2012; Loughney 

et al., 2021; Yang and Xu, 2002). The four axioms assessed are as follows: 

• Axiom 1. 

A general criterion must not be assessed to Hn if the basic criteria are not assessed to Hn. 

• Axiom 2. 

The general criterion should be precisely assessed to Hn, provided all basic criteria are 

assessed to Hn. 

• Axiom 3. 

If all basic criteria, under a general criterion, are completely assessed to a given subset 

of evaluation grades, then the general criterion should be assessed to the same subset of 

grades. 

• Axiom 4. 

If an assessment for basic criteria is incomplete, then the assessment for the general 

criterion should be incomplete to a certain degree. 

 

4 Adaptation of both methodologies 

The objective of the methods comparison is due to the differences in the use and application of 

geographical tools to map and visualise maritime uses data. The purpose of this paper is to adapt both 

MCDM methodologies and their application in a region previously studied by each one. The 

comparison of both methodologies is performed with the application of MCDM. The comparison of 

both methods is performed in three steps, (i) evaluation criteria and the data format, (ii) experts 

weighting of criteria, and (iii) MCDM methodologies results. The Scottish and Madeira regions are 

proposed as case studies for comparison. 
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4.1 Methodology adaptation from MADA to AHP for the case of Scotland 

The results obtained through the MADA method are consistent with the sixteen criteria used and 

their application in the Multicriteria model (Alonso and Lamata, 2006; Loughney and Wang, 2020). 

To adapt the AHP method (Díaz and Guedes Soares, 2022a) to the MADA method (Loughney et al., 

2021, 2020), the AHP methodology changed from the original twenty-three criteria (Díaz and Guedes 

Soares, 2020a) to the sixteen proposed. The experts weighting of criteria is also obtained from the 

same experts’ AHP initial evaluation (Díaz and Guedes Soares, 2021, 2022a, 2022b) with the same 

AHP methodology previously presented. 

The criteria preference values have been assigned by the industry experts involved in the Arcwind 

project after discussions and completing a questionnaire adequately developed for this specific case. 

The highest preference values (and therefore the highest weights) were given to the met ocean data 

and environmentally high-value areas (Table 4). Other environmental and logistics criteria were 

considered less important as some encountered hazards (proximity to military regions and proximity 

to shipwrecks) can be mitigated or avoided by applying more suitable wind farm design techniques. 

Table 4. Criteria used in MADA method and adapted to AHP method with different experts’ evaluation. 

No. Criteria 
Original 
MADA 

New 
AHP 

C1 Wind Velocity 0.115 0.097 

C2 
Potential Power Output (Max. capped at rated power of 
10MW where possible) 

0.104 0.126 

C3 Wave Height (Significant Wave height) 0.076 0.069 

C4 Current Speed 0.022 0.038 

C5 Tidal Height 0.016 0.038 

C6 
Vicinity to SubStation (Grid Connection - only one grid 
connection available) 

0.079 0.071 

C7 Distance from Ports for Installation 0.054 0.065 

C8 Distance from Ports for Maintenance Only 0.053 0.065 

C9 Water Depth 0.147 0.051 

C10 Proximity to Subsea Facilities 0.026 0.057 

C11 Proximity to Coast 0.022 0.045 

C12 Proximity to Fisheries 0.023 0.041 

C13 Proximity to Military Areas (only one Military area) 0.081 0.041 

C14 Proximity to ShipWrecks 0.014 0.057 

C15 Proximity to MPAs 0.078 0.085 

C16 Proximity to SACs (only one SAC) 0.089 0.056 
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The validation of a model consists of checking whether the model's structure is suitable for the 

purpose and if it achieves an acceptable level of accuracy in the results. In quantitative MCDM models, 

validation is usually carried out by checking the degree of agreement between the data produced by 

both models. In the present study, the validation of the models has been made by verifying that the 

result follows the preferences in the assignation of the weights to the criteria. The Pearson coefficient 

(r) of 0.535 as the correlation between the criteria weight in both methodologies shows an important 

variability associated mostly with the expert’s opinions where an r-value of greater than 0.5 indicates 

a large or strong correlation.  

4.2 Methodology adaptation from AHP to MADA for the case of Madeira 

As outlined in Section 3.2, Steps 1 and 2 of the AHP to MADA analysis has already been outlined 

due to the similar nature of the two decision-making methodologies. The following sections will apply 

the input data from the AHP methodology (outlined in Section 3.1) to the MADA methodology 

(outlined in Section 3.2)  

4.2.1 Criteria for Quantitative analysis and Evaluation Hierarchy  

Both the AHP and MADA methodologies utilised similar criteria to conduct site selection for 

floating offshore wind farms. However, they are different in terms of the geographical locations of the 

proposed sites and so the criteria for the methodologies are slightly different. For example, the AHP 

methodology considers proximity to airports whereas the MADA methodology has not due to the 

difference in locations and the lack of an airport within any range of the sites in Scotland. Given that 

some criteria were different, the most applicable criteria were utilised for the adaptation of the AHP 

methodology in Madeira to the developed MADA methodology. Similarly, given that both 

methodologies were applied to numerous sites, it was determined that a finite number of sites would 

be utilised to compare the methodologies.  

Table 5 outlines the criteria utilised for the adaptation from AHP to MADA as well as the initial 

data values for each criterion for each site. Twelve criteria were similar for Madeira, out of the original 

16 criteria applied in the MADA methodology for Scotland. Furthermore, the criteria outlined (e1 to 

e12) represent the basic criteria in the Evaluation Hierarchy. Thus, these basic criteria are grouped 

based upon similarity into the General Criteria (X, Y and Z). The General Criteria are the same as the 

General Criteria utilised in the MADA methodology applied to the Scotland FOW sites and are also 

shown in Table 5.  
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Table 5. Evaluation hierarchy showing the general and basic criteria for ER analysis as well as average values or input data 

for each criterion for each site. 

General 
Criteria (With 

Notation) 
Basic Criteria (with notation) Units 

Sao 
Vicente  

Porto 
da 

Cruz 

Porto 
Santo 

X 

M
et

o
ce

an
 

e1 Wind Speed m/s 8.32 8.3 8.33 

e2 Wind Power MW 3.77 3.74 3.78 

e3 significant wave height m 2.58 2.54 2.6 

e4 Current Speed m/s 0.3 0.3 0.3 

Y 

Lo
gi

st
ic

s e5 Water Depth m 500 200 80 

e6 Proximity to Ports for Installation and 
Maintenance 

km 38 17.4 13 

e7 Proximity to Sub Station km 3.5 6.1 3 

Z 

Fa
ci

lit
ie

s 
&

 
En

vi
ro

n
m

en
t e8 Proximity to nearest Land/Coast km 1.8 2.8 1 

e9 Proximity to Shipping Lanes km 28 4.7 10 

e10 Proximity to MPAs km 0 0 0 

e11 Proximity to Habitats (Birds & Marine Life) km 1 1 1 

km 4 4 4 

e12 Proximity to Subsea Facilities km 1.5 1.5 10 

 

4.2.2 Criteria Weights and Belief Degrees.  

As stated in Section 3.2.3, the evaluation grades for the analysis shall be Poor, Indifferent, Average, 

Good and Excellent (see Eq. (4)). Data for each criterion shall be gathered to ensure that each site is 

assessed under each criterion with a set of data covering all possible evaluation grades. The next step 

is to determine the relative weights of the general and basic criteria for aggregation in the ER algorithm. 

The weights of the criteria are calculated through PC and AHP and are determined by qualitative 

assessment from expert judgement, using questionnaires.  

Nine experts and their judgements were used to complete the qualitative questionnaire across the 

discipline of offshore wind structure and farm development within the industry. The nine experts are 

to remain anonymous, however, all experts are currently employed by companies, which develop and 

implement fixed and floating offshore wind structures. All experts have a MSc or PhD degree 

qualification and have 5 or more years of experience within the offshore renewable energy industry. 

Further explanation of this is demonstrated in (Loughney et al., 2021, 2020; Loughney and Wang, 

2020). Utilising the PC and AHP methods, the weights for all the basic and general criteria are 

calculated and are demonstrated in Table 6.  
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Table 6. Comparison of the criteria weights used for the initial AHP methodology and the comparative MADA 

methodology. 

General Criteria Basic Criteria 
AHP 

Weights 
MADA  

Weights 

Met-Ocean (X) 

e1 Wind 0.29 0.36 
e2 Power 0.38 0.33 
e3 Wave 0.21 0.24 
e4 Current 0.13 0.07 

 Total Met-Ocean 1 1 

Logistics (Y) 
e5 Depth 0.29 0.44 
e6 Ports 0.36 0.32 
e7 Sub Station 0.36 0.24 

 Total Logistics 1 1 

Facilities & Environment (Z) 

e8 Land/Coast 0.15 0.07 
e9 Shipping Lanes 0.15 0.28 

e10 MPAs 0.30 0.29 
e11 Habitats 0.20 0.28 
e12 Subsea Facilities 0.20 0.08 

 Total Facilities & Environment 1 1 

 

Table 7. Belief degrees for the MADA analysis for the sites under investigation. 

Evaluation Grades Poor Indifferent Average Good Excellent 

General Criteria Basic 
Criteria 

Site A Sao Vicente 
Site B Porto da Cruz 
Site C Porto Santo 

Metocean 

Wind A 0 1 0 0 0 
B 0 1 0 0 0 
C 0 1 0 0 0 

Power A 0 1 0 0 0 
B 0 1 0 0 0 
C 0 1 0 0 0 

Wave A 0 0 0 1 0 
B 0 0 0 1 0 
C 0 0 0 1 0 

Current A 0 0 0 1 0 
B 0 0 0 1 0 
C 0 0 0 1 0 

Logistics 

Depth A 0 0 0 0 1 
B 0 0 0 1 0 
C 0 1 0 0 0 

Ports A 0 0 0 0 1 
B 0 0 0 0 1 
C 0 0 0 0 1 

Sub Station A 0 0 0 0 1 
B 0 0 0 0 1 
C 0 0 0 0 1 

Facilities & Environment 

Land/Coast A 1 0 0 0 0 
B 1 0 0 0 0 
C 1 0 0 0 0 
A 0 1 0 0 0 
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Shipping 
Lanes 

B 1 0 0 0 0 
C 1 0 0 0 0 

MPAs A 1 0 0 0 0 
B 1 0 0 0 0 
C 1 0 0 0 0 

Habitats A 1 0 0 0 0 
B 1 0 0 0 0 
C 1 0 0 0 0 

Subsea 
Facilities 

A 1 0 0 0 0 
B 1 0 0 0 0 
C 1 0 0 0 0 

 

The AHP methodology utilised to calculate the weights in the MADA analysis has been outlined in 

Section 3.1. As the number of criteria is different between the AHP and MADA methodologies, 

normalisation has been used to demonstrate the relationship of the weights from both methodologies. 

The Pearson coefficient of correlation was used to determine the correlation between the two sets of 

weights. The r-value was found to be 0.795, which indicates a strong correlation with the weights. 

While this value is greater than 0.5 indicating a strong correlation, it is not exceptionally close to one. 

This indicates some variation in the values given that these are expert judgements. Table 7 

demonstrates the belief degrees for the ER analysis for each set of 16 basic criteria, for the three sites 

in the analysis. This data is developed by data provided by IST and Ifermer for the original AHP site 

selection methodology.  

 

4.3 Scotland case study 

Table 8 shows the results of the floating wind farms suitability analysis for new development. The 

left-hand side of Table 8 shows the suitability ranking under the criteria proposed (see Table 4). The 

right-hand side indicates the weight of the area extracted from experts’ opinions. 

Although the suitability analysis sometimes presents good values to all locations evaluated, the 

specific characteristics of each site imply that certain areas are more attractive than others. The most 

suitable locations for offshore wind development are areas A14, A15 and B15 (Table 8). The least 

suitable sites are E12, F12 and F1, where the characteristics of these locations are very similar and are 

less susceptible to floating turbines development. 
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Table 8. Scotland ranking of locations and locations weights. 

 MADA AHP 

Ranking Location Weight Location Weight 

1 A15 0.7565 A14 0.9984 
2 A14 0.7461 A15 0.9981 
3 A13 0.7337 B15 0.9975 
4 B15 0.733 A13 0.9974 
5 B14 0.733 B14 0.9972 
6 B13 0.7228 C15 0.9964 
7 C15 0.7002 B13 0.9962 
8 D14 0.6981 C14 0.9957 
9 D13 0.697 C13 0.9950 

10 D12 0.6953 D15 0.9947 
11 C14 0.6918 D14 0.9942 
12 C13 0.6894 D13 0.9934 
13 E13 0.6834 D12 0.9931 
14 E14 0.6834 E15 0.9924 
15 E12 0.6764 E14 0.9919 
16 F14 0.6571 E13 0.9909 
17 F15 0.6551 E12 0.9904 
18 D15 0.6513 F15 0.9896 
19 F13 0.6487 F14 0.9890 
20 F11 0.6466 F13 0.9881 
21 F12 0.6439 F12 0.9875 
22 E15 0.6325 F11 0.9866 

 

The variability between models and experts’ opinions allows testing the robustness of the results, 

more than a sensitivity analysis of a model. The combination and adaptation of both methodologies 

will enable one to recognize the vulnerabilities and strengths of results. The highest proximity of areas 

and the similarity of data might cause inaccuracies and variations in the final ranking of locations. 

Table 4 shows the results of this study where the best areas for floating wind farms in Scotland were 

identified. The least favourable locations are the ones that predominantly lie further from the coast, 

where other criteria show higher values. To measure the correlation between both results, the Pearson 

coefficient of correlation (r) between both data has been calculated, giving a value of 0.971, significant 

at a 0.001 level, implying a high agreement between both results.  

4.4 Madeira case study 

Table 9 shows the ranking order and values of the comparative analysis for sites in Madeira. The 

left side of Table 8 demonstrates the original AHP ranking order of the sites in terms of suitability for 

floating wind farm implementation. Whereas the right-hand side shows the utility values and ranking 

order of the sites when the ER method is applied, with the input data from the AHP methodology.  
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The location of Porto Santo ranks as the most suitable in both methodologies. However, the other 

two sites are ranked inversely across the two analyses. There are a few possible reasons for this 

difference in the ranking. The number of criteria utilised across the two methodologies is slightly 

different given the original geographical applications of the methodology. Furthermore, average 

objective values have been utilised to develop the belief degrees resulting in a binary situation where 

the beliefs in the evaluation grades are 1 or 0. This means that one evaluation grade is at 1 while the 

rest are at 0. This is not necessarily a glaring problem in the analysis, as even with more data these 

beliefs may remain the same. This is because each evaluation grade has a scale related to the 

performance of the sites to allocate an evaluation grade using the available data.  Nevertheless, more 

input data may show some variation in the input data (for example, Poor(0), Indifferent(0.2), 

Average(0.5), Good (0.3), Excellent (0)).  

What can be stated is that with both methodologies and the input data used, the most suitable site 

remains the same for Madeira. This shows a level of consistency across both methodologies. 

Furthermore, the ER algorithm is assessed against four axioms for some partial validation. In this 

instance, the analysis conforms to all four axioms outlined in Section 3.2.7. Finally, the correlation 

between both sets of results is also determined.  The Pearson coefficient of correlation (r) is utilised, 

as with the comparison analysis in Section 4.3, and produced a value of 0.895, indicating a strong 

correlation between the two results.  

Table 9: Madeira ranking of locations and locations weights. 

 AHP MADA 

Ranking Location Weight Location Weight 

1 Porto Santo 0.392 Porto Santo 0.697 
2 São Vicente 0.308 Porto da Cruz 0.634 
3 Porto da Cruz 0.300 São Vicente 0.567 

 

5 Discussion and conclusions 

The floating wind farm locations suitability map developed with the AHP and MADA methods 

integrated into a GIS for the maritime surroundings of the European Atlantic coast is a substantial aid 

in the land-use management of these waters. Similarly, an additional benefit is achieved by integrating 

geoscientific aspects in the land-use decision process, as demanded by the 2030 Agenda for 

Sustainable Development.  
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A fundamental problem of decision theory is how to derive weights of criteria. One disadvantage 

of the AHP method is the inherent subjectivity of assigning preference values between criteria. The 

weights derived from these preference values usually have a profound effect on the results of the 

suitability analysis. However, in this particular case, there are no substantial differences between both 

methodologies in the location suitability analysis. The results of the site search analysis performed 

under the original AHP and MADA methodologies are robust enough. The adaptation between both 

methods has added some uncertainties and imbalances to the results. This imbalance is related mainly 

to the axioms and algorithms and the experts' involved opinion. The original methodologies and criteria 

were selected to achieve robust results. Nevertheless, the differences created in this adaptation of 

methods influence the results. These variations are more present in locations with similar 

characterisation values. 

After some discussions with different experts in the decision support systems and following the 

original and the new results, the present results suggest that the best locations for floating wind turbines 

deployment remain equal on Madeira and Scotland's marine areas.  The secondary locations or the 

least favourable locations change concerning the original methodologies due to previously mentioned 

aspects. The weights obtained for the location's ranking are very similar, so the ranking is susceptible 

to minor alterations. This variability makes it impossible to consider that the adaptation of both 

compared methods may be possible for future applications since the principles of robustness are not 

guaranteed in the results.   

An advantage of value/utility-based methods as AHP is that criteria do not need standardization or 

transformation processes, reducing subjectivity. However, using AHP, more decisions need to be made 

regarding the selection of the preference function and which set of criteria weights to use. On the other 

hand, MADA transforms the values in different degrees of suitability, adding some subjectivity by 

manipulating data. However, this approach only requires analyzing in detail the criteria by the 

methodology developer side to pre-assign a value reducing the times needed by experts 

involved. Some differences can be observed in alternatives located in areas of Scotland. This is the 

case of alternative location A14, which presented a high mean value in the MADA methodology but 

presented a rank 2 in the AHP approach. In this case, the weight assigned to the criteria in AHP adapted 

approach was not enough to rank this alternative in the first position. Thus, higher importance should 

be given to the requirements in the site selection approaches. 

Performing AHP with the mean values of MADA and experts’ evaluation and vice versa produce 

meaningful results. Still, the uncertainty in either the input values or the result cannot be quantified. 
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However, it can be seen that there are levels of consistency across both methodologies and optimisation 

of the methodologies can be achieved. Similarly, further analysis can be conducted with a larger data 

sample to determine if this has attributed to the differences in results or if it the aggregation of the data 

within the decision-making techniques themselves.  
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Appendix A. Case studies location data 
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m/s MW m m/s m km km km km km km km km km km km 

A15 

Min 8.5 4.0 1.7 0.2 3.0 154.5 100.0 474.5 100.0 16.9 56.3 11.8 61.1 28.5 49.2 31.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

609.3 516.0 200.0 17.4 169.1 66.4 
 

98.5 117.6 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

354.6 495.2 150.0 17.2 112.7 39.1 
 

63.5 83.4 
 

B15 

Min 8.5 4.0 1.7 0.2 3.0 148.9 107.8 482.3 100.0 22.5 50.7 11.8 55.5 22.9 49.2 26.4 

Max 16.3 10.0 3.7 0.2 3.9 
 

617.2 523.9 200.0 23.0 163.5 60.9 
 

93.1 112.5 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

362.5 503.1 150.0 22.8 107.1 36.4 
 

58.0 80.8 
 

C15 

Min 8.5 4.0 1.7 0.2 3.0 143.2 112.4 486.9 100.0 28.2 45.1 11.8 50.0 17.3 49.2 20.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

621.7 528.4 200.0 28.7 157.8 55.5 
 

87.7 107.3 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

367.1 507.7 150.0 28.4 101.4 33.6 
 

52.5 78.3 
 

D15 

Min 8.3 3.8 1.7 0.2 3.1 137.6 117.5 492.0 70.0 33.8 39.4 17.4 44.4 11.7 49.2 15.5 

Max 16.0 10.0 3.8 0.2 4.0 
 

626.9 533.6 200.0 34.3 152.2 50.0 
 

82.3 102.2 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

372.2 512.8 135.0 34.1 95.8 33.7 
 

47.0 75.7 
 

E15 

Min 8.3 3.8 1.7 0.2 3.1 132.0 122.9 497.4 70.0 39.4 37.7 17.4 38.9 6.1 43.6 10.2 

Max 16.0 10.0 3.8 0.2 4.0 
 

632.2 538.9 200.0 39.9 146.6 44.5 
 

77.0 97.2 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

377.5 518.2 135.0 39.7 92.1 31.0 
 

41.5 70.4 
 

F15 

Min 8.3 3.8 1.7 0.3 3.2 126.4 128.3 502.8 70.0 45.1 28.7 23.0 33.3 0.5 38.0 5.0 

Max 16.0 10.0 3.8 0.3 4.1 
 

637.6 544.4 200.0 45.6 140.9 39.0 
 

71.7 92.2 
 

Ave 12.2 6.9 2.7 0.3 3.7 
 

383.0 523.6 135.0 45.3 84.8 31.0 
 

36.1 65.1 
 

A14 

Min 8.5 4.0 1.7 0.2 3.0 154.8 133.8 508.3 100.0 16.9 56.3 6.1 61.1 29.2 43.6 31.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

643.1 549.8 200.0 17.4 169.1 68.1 
 

97.1 115.7 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

388.4 529.0 150.0 17.2 112.7 37.1 
 

63.1 79.6 
 

B14 

Min 8.5 4.0 1.7 0.2 3.0 149.2 112.4 486.9 100.0 22.5 50.7 6.1 55.5 23.6 43.6 26.4 

Max 16.3 10.0 3.7 0.2 3.9 
 

621.7 528.4 200.0 23.0 163.5 62.5 
 

91.6 110.4 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

367.1 507.7 150.0 22.8 107.1 34.3 
 

57.6 77.0 
 

C14 

Min 8.5 4.0 1.7 0.2 3.0 143.6 115.7 490.2 70.0 28.2 45.1 6.1 50.0 18.1 43.6 20.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

625.0 531.7 200.0 28.7 157.8 56.8 
 

86.2 105.2 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

370.4 511.0 135.0 28.4 101.4 31.5 
 

52.1 74.4 
 

D14 

Min 8.3 3.8 1.7 0.2 3.1 138.0 120.0 494.5 70.0 33.8 39.4 11.8 44.4 12.6 43.6 15.5 

Max 16.0 10.0 3.8 0.2 4.0 
 

629.3 536.1 200.0 34.3 152.2 51.2 
 

80.7 100.0 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

374.7 515.3 135.0 34.1 95.8 31.5 
 

46.7 71.8 
 

E14 

Min 8.3 3.8 1.7 0.2 3.1 132.4 124.8 499.3 70.0 39.4 40.4 11.8 38.9 7.1 38.0 10.2 

Max 16.0 10.0 3.8 0.2 4.0 
 

634.2 540.9 200.0 39.9 146.6 45.6 
 

75.3 94.9 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

379.5 520.1 135.0 39.7 93.5 28.7 
 

41.2 66.4 
 

F14 

Min 8.3 3.8 1.7 0.3 3.2 126.8 129.9 504.4 70.0 45.1 30.3 17.4 33.3 1.6 32.4 5.0 

Max 16.0 10.0 3.8 0.3 4.1 
 

639.2 545.9 200.0 45.6 140.9 39.9 
 

69.9 89.8 
 

Ave 12.2 6.9 2.7 0.3 3.7 
 

384.6 525.2 135.0 45.3 85.6 28.7 
 

35.8 61.1 
 

A13 

Min 8.5 4.0 1.7 0.2 3.0 155.4 135.1 509.6 70.0 16.9 56.3 0.5 61.1 30.3 38.0 31.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

644.4 551.2 200.0 17.4 169.1 56.8 
 

96.0 114.0 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

389.8 530.4 135.0 17.2 112.7 28.7 
 

63.1 76.0 
 

B13 

Min 8.5 4.0 1.7 0.2 3.0 149.8 117.5 492.0 70.0 22.5 50.7 0.5 55.5 24.8 38.0 26.4 

Max 16.3 10.0 3.7 0.2 3.9 
 

626.9 533.6 200.0 23.0 163.5 51.2 
 

90.4 108.7 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

372.2 512.8 135.0 22.8 107.1 25.9 
 

57.6 73.3 
 

C13 

Min 8.5 4.0 1.7 0.2 3.0 144.2 120.0 494.5 70.0 28.2 45.1 0.5 50.0 19.4 38.0 20.9 

Max 16.3 10.0 3.7 0.2 3.9 
 

629.3 536.1 200.0 28.7 157.8 45.6 
 

84.9 103.4 
 

Ave 12.4 7.0 2.7 0.2 3.5 
 

374.7 515.3 135.0 28.4 101.4 23.0 
 

52.2 70.7 
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D13 

Min 8.3 3.8 1.7 0.2 3.1 138.6 123.5 498.0 70.0 33.8 39.4 6.1 44.4 14.0 38.0 15.5 

Max 16.0 10.0 3.8 0.2 4.0 
 

632.9 539.6 200.0 34.3 152.2 39.9 
 

79.4 98.1 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

378.2 518.8 135.0 34.1 95.8 23.0 
 

46.7 68.1 
 

E13 

Min 8.3 3.8 1.7 0.2 3.1 133.1 127.8 502.3 70.0 39.4 33.8 6.1 38.9 8.7 32.4 10.2 

Max 16.0 10.0 3.8 0.2 4.0 
 

637.1 543.8 200.0 39.9 146.6 34.3 
 

73.9 92.9 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

382.4 523.0 135.0 39.7 90.2 20.2 
 

41.3 62.6 
 

F13 

Min 8.3 3.8 1.7 0.3 3.2 127.5 132.4 506.9 70.0 45.1 32.7 11.8 33.3 3.5 26.8 5.0 

Max 16.0 10.0 3.8 0.3 4.1 
 

641.7 548.4 200.0 45.6 140.9 28.7 
 

68.4 87.7 
 

Ave 12.2 6.9 2.7 0.3 3.7 
 

387.0 527.6 135.0 45.3 86.8 20.2 
 

36.0 57.2 
 

D12 

Min 8.3 3.8 1.7 0.2 3.1 139.5 137.2 511.7 70.0 33.8 39.4 0.5 44.4 16.0 32.4 15.5 

Max 16.0 10.0 3.8 0.2 4.0 
 

646.6 553.3 200.0 34.3 152.2 39.9 
 

78.4 96.4 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

391.9 532.5 135.0 34.1 95.8 20.2 
 

47.2 64.4 
 

E12 

Min 8.3 3.8 1.7 0.2 3.1 134.0 131.4 505.9 70.0 39.4 33.8 0.5 38.9 10.9 26.8 10.2 

Max 16.0 10.0 3.8 0.2 4.0 
 

640.7 547.4 200.0 39.9 146.6 34.3 
 

72.8 91.1 
 

Ave 12.2 6.9 2.7 0.2 3.6 
 

386.1 526.7 135.0 39.7 90.2 17.4 
 

41.9 59.0 
 

F12 

Min 8.3 3.8 1.7 0.3 3.2 128.5 135.5 510.0 70.0 45.1 35.9 6.1 33.3 5.9 21.3 5.0 

Max 16.0 10.0 3.8 0.3 4.1 
 

644.9 551.6 200.0 45.6 140.9 28.7 
 

67.3 85.8 
 

Ave 12.2 6.9 2.7 0.3 3.7 
 

390.2 530.8 135.0 45.3 88.4 17.4 
 

36.6 53.5 
 

F11 

Min 8.3 3.8 1.7 0.3 3.2 129.8 140.0 514.5 70.0 45.1 39.6 0.5 33.3 8.2 15.8 5.0 

Max 16.0 10.0 3.8 0.3 4.1 
 

649.4 556.1 200.0 45.6 140.9 23.0 
 

66.4 84.3 
 

Ave 12.2 6.9 2.7 0.3 3.7 
 

394.7 535.3 135.0 45.3 90.2 11.8 
 

37.3 50.0 
 

 

2) Madeira region locations 

Criteria Units Sao Vicente - Santana Porto da Cruz - Caniçal Porto Santo 

Wind velocity m/s 8.32 8.3 8.33 

Wind potential h/year 4281 4299 4301 

Water depth m 500 200 80 

Wave conditions m 2.58 2.54 2.6 

Marine currents m/s 0.3 0.3 0.3 

Temperature º C 21.6 21.6 21.5 

Technical feasibility density 1 1 1 

Sufficient study times density 1 1 1 

Distance to local electrical grid km 3.5 6.1 3 

Distance from coastal facilities Km 38 17.4 13 

Distance from shore Km 1.8 2.8 1 

Distance from residential areas km 1.8 2.8 3 

Distance from maritime routes km 28 4.7 10 

Distance from underwater lines km 1.5 1.5 10 

Distance to marine recreational activities km 0 0 0 

Distance from airport km 21.9 9.6 3 

Distance from protected areas km 0 0 0 

Proximity to migratory birds’ paths density 1 1 1 

Proximity to migratory marine life paths density 4 4 4 

Area of the territory km^2 51 57.5 87 

Proximity to the area of electricity demand km 22.9 18.8 6 

Population served number 262302 262302 5483 

Multiple resources density 3 3 1 

 

 


