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Abstract 26 

This study directly addresses the problem of optimal control of a structure under the action of moving 27 

masses. The main objective is to experimentally implement and validate an active control solution for a 28 

small-scale test stand. The supporting structure is modeled as an Euler-Bernoulli simply supported beam, 29 

acted upon by moving masses of different weights and velocities. The experimental implementation of the 30 

active controller posces a particular set of challenges as compared to the numerical solutions.  31 

ASME © This article is licensed under a Creative Commons Attribution 4.0 International License
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It is shown both numerically and experimentally that using electromagnetic actuation, a reduced order 32 

controller designed using a time-varying algorithm provides a reduction of the maximum deflection of up 33 

to 18% as compared to the uncontrolled structure. The controller performance and robustness were tested 34 

against a representative set of possible moving load parameters.  35 

In consequence of the variations in moving mass weight and speed the controller gain requires a 36 

supplementary adaptation. A simple algorithm that schedules the gain as a function of the weight and speed 37 

of the moving mass can achieve both a good performance and an adjustment of the control effort to the 38 

specific design requirements.  39 

 40 

Keywords: 41 

Time-varying optimal control, Active vibration control, Moving mass, State estimation 42 

 43 

1. Introduction 44 

The dynamics of a structure under the action of a moving load is relevant to many engineering applications 45 

such as linear guideways, robotics and overhead cranes. However, this subject is particularly studied and 46 

applied to vehicle/pedestrian-bridge interaction and train-track interaction [1–5]. If the inertia effect of the 47 

moving structure needs to be taken into account [6], in modal space it leads to a time-varying system of 48 

equations. The problem of moving loads in relation to bridge-structure interaction has been studied 49 

extensively both analytically and experimentally [7,8]. Of special concern for structural engineers is not 50 

only the modelling but also for the improvement of the dynamic response of the supporting structure to 51 

specific moving-load actions. One example could be the effect of different traffic loads in the case of a 52 

bridge structure. The research literature shows a series of studies that put forward passive methods designed 53 

to address this specific problem. The passive approach is attractive as it provides a low cost solution [9–54 

12], but it is less efficient when the structure is subjected to loads with a random variation in parameters 55 

like moving speed and weight.  56 

Active vibration control methods offer higher efficiency by reducing broadband frequencies and by 57 

providing a higher and flexible actuation [13] which in the context of a moving mass structure means that 58 

the control could adapt actively to different weights and speeds. The active control of a structure subjected 59 
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to a moving mass, compared to the general structural modal control [14–16], is of special interest and 60 

difficulty. The dynamic matrices of the structure, mass, damping and stiffness change over time, depending 61 

on the speed and weight of the moving mass, therefore an active control solution must take into account the 62 

time-varying nature of the system [17–19]. 63 

Several studies have investigated the active control of a moving mass system numerically. Sung [20] 64 

presented the dynamic modelling and the time-invariant optimal control of a simply supported beam under 65 

a moving mass. He used two piezoelectric actuators and their locations were determined by an optimal 66 

quadratic cost functional. Deng et al. [21] used a linear-quadratic Gaussian modal controller for a time-67 

varying structure including identification and control update in real-time. The numerical model, which 68 

alters due to structural changes, is updated by an observer. The method was validated numerically.  69 

The time-varying nature of the system was taken into account in [18] where Nikkhoo proposes a method 70 

based on solving the Riccati equation at every time-step. In [17,18] it is shown that for a high traveling 71 

speed, and for certain locations and number of actuators, the time-varying control shows a significant 72 

improvement compared to the time-invariant control. In [19] the classical optimal control approach is 73 

applied to single and multi-span beams under the influence of a moving load and a moving mass. The 74 

proposed solutions were based on displacement-velocity and velocity-acceleration feedback using 75 

piezoelectric actuators. Stancioiu et al. [17] cast the problem into a terminal-time optimal control 76 

framework [22] and further presented a numerical study for synthesis of time-varying control solution. The 77 

study also introduced an augmented system, which took into account the effect of the moving mass in the 78 

control synthesis problem. A drawback of the study was that it assumed full knowledge of the state-79 

variables. A combination of sliding mode control and positive position feedback for a beam subjected to a 80 

moving mass was presented in [23]. The sliding mode control, used when the mass moves along the beam 81 

is robust to parameter uncertainties and the positive position feedback control is efficient to suppress the 82 

free vibration after the mass leaves the beam. Liu et. al. [24] devised a finite-time optimal regulator for an 83 

uncertain beam-mass system. The distributed material parameters were discretized for representative points 84 

and the regulator calculated with the probability density equation method.  85 

Despite a large number of studies dedicated to numerical solutions, only few studies approached the 86 

problem of experimental implementation and validation of the moving mass vibration control. One of the 87 

main difficulties for the experimental implementation of the controller is that if the dynamic equations are 88 
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cast in modal space, the states are not directly accessible. Therefore an observer or state-estimator needs to 89 

be considered. This in turn leads to high computational time which counteracts the real-time ability of the 90 

controller. Frischgesell et. al. [25] studied a time-varying discrete observer for a moving mass system 91 

equipped with a force actuator. The aim was to minimize the maximum traverse deflection. The time-92 

varying system and input matrices were calculated offline at specific times due to the high computation 93 

time required. Reckkmann and Popp [26] extend this work with an adaptation method and a discrete time 94 

optimal controller designed to achieve a lower deflection of the flexible structure.  95 

Pisarski [27] studied numerically and experimentally the semi-active control of a structure subjected to a 96 

moving load. In this study, an open-loop optimal bang-bang controller was used. The study considered the 97 

moving speed and weight of the mass and it was shown that the controlled system outperforms the passive 98 

case by 40% in terms of the proposed evaluation metric. This work was extended by [28] where a closed-99 

loop adaptive control was proposed. The control gains were calculated offline for a constant speed and mass 100 

of the load with the ability to adapt online to the actual mass parameters. 101 

This paper presents an experimental approach to the problem of active control of a structure under moving 102 

loads. The proposed solution is based on an optimal time-varying control algorithm and relies on a state-103 

feedback controller. A new method to estimate the states of the system (modal coordinates and modal 104 

velocities) based on the inverse of the matrix of modal shape vectors and measured displacements is 105 

proposed. This simpler algorithm allows fast sampling times and proves to be robust against structural 106 

changes. This method of state estimation was first presented by the authors in [29], where a suboptimal 107 

controller was implemented to reduce the deflection of the beam at given locations.   108 

In spite of the fact that the time-varying nature of the system is taken into account in the control approach, 109 

an objective function based on deflection responses requires an adaptation of the control effort to the mass 110 

and velocities of the load acting on the supporting structure. The feasibility of a simple gain scheduling 111 

procedure is investigated and shows a good performance for a control effort adjusted to the dynamic 112 

parameters of the problem.  113 

 114 

 115 
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2. The moving-mass structure interaction model 116 

The investigated structure is modelled as an Euler-Bernoulli simply supported beam structure of mass per 117 

unit length 𝜌𝐴  and flexural rigidity 𝐸𝐼. The structure of length  𝐿 is subjected to the action of a mass 𝑚 118 

moving with constant speed 𝑣, as illustrated in Fig. 1. The structure is also supported by an inertial shaker 119 

which in passive state will be modelled as a spring-damper support. In the active state the actuator dynamics 120 

is represented by a transfer function H(s), specified in state space form in Eq. (5).  121 

 122 

 123 

Fig. 1 Model of the beam structure subjected to a moving mass, with an inactive actuator (a) and an active 124 

actuator (b). 125 

 126 

Under the assumption of permanent contact between the mass and the beam, the general system of equations 127 

in modal coordinates governing the dynamics of a beam subjected to a mass m travelling at constant speed 128 

v at any time t within the interval [0,tf] with tf =L/v is [2,29,30]: 129 

 130 

(M+∆M(t))q̈+(D+∆D(t)+𝐃𝐚)q̇+(K+∆K(t)+𝐊𝐚)q=-mgψ(vt) + ψ(xa)𝑓 (1) 

 131 

In this case the vectors 𝐪 and �̇� represent modal displacements and modal velocities of the structure which 132 

are not directly accessible from the measurements and are estimated using mode shape functions. The 133 

structure’s response is approximated at sensor locations 𝑥𝑠𝑖 using the mode shape functions ψ(𝑥), as: 134 

𝑤(𝑥𝑠𝑖 , 𝑡) = ψT(𝑥𝑠𝑖)𝐪(𝑡). The constant matrices M, D and K can be expressed as functions of the modal 135 

shape vectors ψ(x), mass per unit length 𝜌𝐴, damping 𝑐𝜌𝐴 and stiffness EI:  136 

 137 
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M = ρA ∫ ψ(x) ψT(x)dx
L

0

 , 

  D = ρAc ∫ ψ(x) ψ'T(x)dx
L

0

 , 

K = EI ∫ ψ(x) ψ'''' T(x)dx
L

0

 

(2) 

 138 

The time-dependent matrices ∆M(t), ∆D(t) and ∆K(t) are defined as [17,30]: 139 

 140 

∆M(t) = m ψ(vt) ψ T (vt) , 

∆D(t) = 2mv ψ(vt) ψ' T (vt) , 

∆K(t) = mv2 ψ(vt) ψ'' T (vt) 

(3) 

 141 

The added damping and stiffness matrices due to the electrodynamic actuator located at 𝑥𝑎 are [29]:  142 

 143 

𝐃𝐚= 𝑐𝑎ψ (𝒙𝒂)ψT (𝑥𝑎) , 

𝐊𝐚 = 𝑘𝑎ψ(𝒙𝒂)ψ T (𝑥𝑎)  

(4) 

 144 

An accurate model of the modal shaker could be very complex [27]. For this investigation a simpler first 145 

order model valid at low frequencies is used. The dynamics of the actuator acting on the beam structure is 146 

modelled as a state-space system from input voltage 𝑢 to output force 𝑓:  147 

 148 

�̇� = −𝛼𝑧 + 𝛽𝑢; 

𝑓 = 𝛾𝑧 

(5) 

 149 

In the state-space representation, considering n vibrational modes, with inclusion of the electrodynamic 150 

shaker’s dynamics, the system matrices are:  151 

 152 
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𝐀(𝑡) = 

[

0n×n In×n 𝟎𝑛𝑥1

−(𝐌 + ∆𝐌(𝑡))−1(K+∆K(𝑡)+𝐊𝐚)    − (𝐌 + ∆𝐌(𝑡))−1(D+∆D(𝑡) + 𝐃𝐚)       γ(𝐌 + ∆𝐌(𝑡))−1ψ(xa)] 
01×n 01×n −𝛼

]; 

𝐁 = [

𝟎𝑛×1

𝟎𝑛×1

𝛽
];   𝐁𝐟(𝑡) = [

𝟎𝑛×1

−(𝐌 + ∆𝐌(𝑡))−1ψ(vt)

0

]; 

(6)  

 153 

The state vector becomes xT(t)=[q(t) q̇(t) z(t)]. The time 𝑡𝑓 represents the time the mass leaves the beam. 154 

From this instant of time, the beam vibrates freely and the system governing the motion is a linear-time 155 

invariant system. The system equations for t > 𝑡𝑓 changes from (1) to: 156 

 157 

Mq̈+Dq̇+Kq= ψ(xa)𝑓 (7)   

 158 

with initial conditions the values of the states at the instant of time 𝑡𝑓.  159 

 160 

3. The finite time control algorithm 161 

When only one actuator is used, the time-varying plant with the states and control matrices presented in 162 

(6), can be written in state-space form as: 163 

 164 

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝑢(𝑡) (8) 

 165 

The aim of the controller is to minimize the deflection response at different locations along the beam. In 166 

order to achieve this the performance objective can be formulated like a quadratic objective in deflection 167 

at sensors locations  168 

 169 

𝐽 =
1

2
∫ 𝐰T(𝑥𝑠𝑖, 𝑡)𝐐 𝐰(𝑥𝑠𝑖, 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

=
1

2
∫ 𝐱T(𝑡)𝐂T𝐐 𝐂 𝐱(𝑡)𝑑𝑡

𝑡𝑓

𝑡0

 (9) 

 170 
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subject to equation (8) and the control’s saturation limits |𝑢(𝑡)| ≤ 𝑢0. In equation (9) matrix C is the output 171 

matrix of the system described by (8) and consists of modal shape vectors ψ(𝑥𝑠𝑖). 172 

This type of objective function was studied in [17] and it was shown that it leads to a two-boundary value 173 

problem which makes the control design problem mathematically challenging. Also, the synthesized control 174 

function is discontinuous. Such a control solution, even if it correctly describes the required control action, 175 

may be difficult to implement as the electromagnetic type of actuation chosen here cannot accurately 176 

describe a control function with discontinuities. For this reason, a quadratic objective function that also 177 

includes the control has been chosen. The quadratic performance index is defined as: 178 

 179 

𝐽 =
1

2
𝐱T(𝑡𝑓)𝐅 𝐱(𝑡𝑓) +

1

2
∫ [𝐱T(𝑡)𝐐 𝐱(𝑡) + 𝑢T(𝑡) R 𝑢(𝑡)]𝑑𝑡

𝑡𝑓

𝑡0

 (10) 

 180 

The emphasis on the deflection will be addressed by choosing a state weighting matrix Q with higher values 181 

corresponding to the first states corresponding to the displacements and a significantly lower value for the 182 

terms corresponding to the velocities. The control limitation is assured by the selection of the control 183 

weighting parameter R. In equation (10) tf is specified and the final state x(tf) is constrained by the weighting 184 

matrix F in order to reduce the free vibration of the structure when one mass leaves the beam [17]. For a 185 

system with p states and r actuators, the matrices F and Q are p×p symmetric, positive semidefinite matrices 186 

and matrix R is r×r positive definite. For the case when only one actuator is used, R becomes a scalar.  187 

   When the value of the control function u(t) is unconstrained, the optimal control 𝑢∗(𝑡) is 188 

defined as [22] :  189 

 190 

𝑢∗(𝑡) = −R−1𝐁′(𝑡)𝐏(𝑡)𝐱∗(𝑡)  = −𝐤(𝑡)𝐱∗(𝑡) (11) 

 

 191 

k(t)=-R-1BT(t)P(t) is called the Kalman gain and P(t), is a p×p symmetric, positive definite matrix (for all t 192 

∈[t0, tf]), and is the solution of the matrix differential Ricatti equation  193 

 194 
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�̇�(𝑡) = 𝐏(𝑡)𝐀(𝑡) − 𝐀T(𝑡)𝐏(𝑡) − 𝐐 + 𝐏(𝑡)𝐁(𝑡)R−1𝐁𝐓(𝑡)𝐏(𝑡) (12) 

 195 

The optimal state is the solution of  196 

 197 

 �̇�∗(𝑡) = [𝐀(𝑡)  − 𝐁(𝑡)R−1𝐁𝐓(𝑡)𝐏(𝑡)]𝐱∗(𝑡) (13) 

 198 

The matrix differential Eq. (12) can be solved backwards with tstart=tf and the initial condition P(t=tf)=F. 199 

Then the optimal time-varying gain k(t) is calculated forward using the values of P(t). Although p optimal 200 

states 𝑥∗(𝑡) are calculated, in theory the structure consists of an infinite number states which can cause 201 

instability. The performance of the control system still needs to be tested for a representative set of values 202 

of the masses and traveling speeds. 203 

 204 

 205 

4. The state estimation 206 

The particular type of problem studied here where the effect of the loads on the structure cannot be used as 207 

an input, makes the use of an estimator difficult. The solution presented here assumes that the number of 208 

sensors equals the number of modes used for the numerical model. 209 

The state vector is estimated from the experimentally measured deflection vector w(t)
n x 1

=  [w1(xs1,t)… 210 

wn(xsn,t)]T and the velocity vector ẇ(t)n x 1=  [ w1̇(xs1,t)… wṅ(xsn,t )]T at locations 𝑥𝑠𝑛 ∶ 211 

 212 

𝐪(𝑡) = 𝚿(𝑥s𝑛) −𝟏𝐰(𝑡) 

�̇�(𝑡) = 𝚿(𝑥s𝑛) −𝟏�̇�(𝑡) 

(14) 

 213 

In this equation 𝚿(𝑥𝑠𝑛) is the 𝑛 × 𝑛 matrix that contains the mode shapes calculated at sensor locations 214 

𝑥𝑠𝑛: 215 

 216 
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𝚿(𝑥s𝑛)𝑛 × 𝑛 =  [

𝜓1(𝑥s1) 𝜓2(𝑥s1) … 𝜓𝑛(𝑥s1)
𝜓1(𝑥s2) 𝜓2(𝑥s2) … 𝜓𝑛(𝑥s2)

⋮ ⋮ ⋱ ⋮
𝜓1(𝑥s𝑛) 𝜓2(𝑥s𝑛) … 𝜓𝑛(𝑥s𝑛)

] (15) 

 217 

When n sensors are used and n modes are estimated, the state-space vector can be determined as a unique 218 

solution of equations. From Eq. (14) and Eq. (15) it can be seen that only the mode shapes of the structure 219 

and the measured deflections are needed to calculate the modal coordinates and modal velocities. The 220 

advantage of this method is that it avoids the implementation of an observer and can be applied to time-221 

varying systems with fast sampling times.  222 

 223 

5. Experimental validation 224 

In order to validate the beam-mass system modelled by Eq. (6), the method of state estimation of Eq. (14) 225 

and the finite time controller, numerical simulations are compared with experimental measurements.  226 

 227 

5.1 The experimental test stand 228 

Fig. 2. shows the experimental set-up. Different steel balls with known mass 𝑚 are accelerated by a ramp 229 

and move over the simply supported beam structure at nearly constant speed. The geometrical 230 

characteristics of the aluminium beam are: span length L = 0.6 m and cross section A = 0.06 m × 0.002 m. 231 

By adding polymer guiding rails, the flexural rigidity and the damping coefficient are increased. Three 232 

displacement sensors measure the deflection at xs1= 0.15 m, xs2 = 0.25 m and xs3 = 0.35 m. 233 

The optimal gains of the finite time-varying and time-invariant control are calculated numerically in 234 

MATLAB and stored on a CompactRIO embedded controller. With input from the laser displacement 235 

sensors (optoNCDT 1700 and optoNCDT 1610), the states are estimated in real time every 15 ms and the 236 

output voltage is calculated and sent to the power amplifier (Data Physics PA30E) for the actuation of the 237 

electrodynamic shaker (Data Physics V4).  238 

 239 
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 240 

Fig. 2 Experimental set-up, aluminium polymer beam subjected to a moving mass. 241 

 242 

Fig. 3 shows the deflection response 𝑤(𝑥s𝑖, 𝑡), numerically estimated (blue line) at three sensor locations 243 

(i = 1, 2, 3) when 7 balls are launched along the beam, against the experimentally measured deflections (red 244 

line). For the last run two balls are moving on the structure. The parameters of the numerical beam model 245 

are defined as mass per length unit 𝜌𝐴 = 0.535 kgm−1 and flexural rigidity 𝐸𝐼 = 11.68 Nm−2. Due to the 246 

polymer guiding rail the height is changed to 3.3 mm and a constant modal damping ratio 𝜁 = 0.03 is 247 

assumed througout. No control action is involved. The influence of the electrodynamic actuator is modelled 248 

as a spring-damper system with a damping coefficient of ca = 80 Nsm-1 and a stiffness of ka = 12000 Nm-1. 249 

With these adjustments, the deflections of the experimental data are in good agreement with the numerical 250 

model.  251 

The beam-shaker system was validated using an active shaker with and without the action of the moving 252 

mass. Therefore, the shaker’s stiffness changes to 𝑘a = 3500 Nm−1 and 𝛾 = 4.6 in (5). Numerical 253 

investigations have shown that the dynamics of the beam can be accurately approximated using only the 254 

first three modes.  255 

 256 
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 257 

Fig. 3 Experimental validation between the displacements of masses traveling at different speeds obtained 258 

by the numerical model (blue continuous) and the experimental measurements (red dashed). 259 

 260 

Fig. 4 shows a comparison between the experimental data and the numerical model for time deflection 261 

response at sensors locations when four masses are launched at different speeds along the beam and the 262 

shaker’s input is fed with a prescribed voltage. In this case the voltage supplied was a combination of 263 

sinusoidal functions. From Eq. (14) and Eq. (15) it follows that, since three sensors are installed, three 264 

modal coordinates, 𝑞𝑖, ( 𝑖 = 1,2,3) can be calculated directly and by using the derivative three modal 265 

velocities, �̇�𝑖, ( 𝑖 = 1,2,3). For one mass moving along the beam these are represented in Fig. 5. 266 

 267 
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 268 

Fig. 4 Validation of the beam mass system with an active electromagnetic shaker, numerical model (blue 269 

continuous), and the experimental measurements (red dashed). 270 

 271 

 272 

Fig. 5 Comparison modal coordinates and modal velocieties, numerical model (black dashed) and the 273 

measured signal (blue continuous).   274 

 275 

The first mode is dominant and shows the best accordance with the modal displacement estimated using 276 

experimental data. For the modal velocity, the first mode also shows the best match. A 10th order digital 277 

low-pass filter with a cut-off frequency 𝑓3𝑑𝐵 = 10 Hz, reduces the noise but it causes a slight delay. 278 

 279 
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5.2 Experimental results for optimal control implementation 280 

For the time-invariant control, the constant gain is calculated, without taking into account the time-varying 281 

parts in system equation (6): 282 

 283 

𝐀 = [

0n×n In×n 𝟎𝑛𝑥𝑖

−𝐌−1K    − 𝐌−1D       γ𝐌−1ψ(xa ) 
𝟎1×𝑛 𝟎1 ×𝑛 −𝛼 

];           𝐁 = [

𝟎𝑛×1

𝟎𝑛×1

𝛽
]; 

(16) 

 284 

The actuator is located at xa= 0.5 m. The error and performance index are defined as 285 

Q=diag(1000, 100, 10, 0.1, 0.01, 0.01, 0) and R = 0.00009 for the time-invariant control as well as for the 286 

time-varying control. The terminal cost matrix is defined as F = Q. 287 

The displacement response of the supporting structure is mainly induced by the first mode. This knowledge 288 

was utilized by defining the error performance matrix Q, setting higher weight toward the first modes.   289 

The weight of the moving masses used in the experiments ranges from 0.261 kg to 0.509 kg. The masses 290 

are accelerated by a ramp and move over the simply-supported beam structure with approximately constant 291 

speed. The values of the speeds used is between 0.3 ms−1 and 0.55 ms−1.The actuator is located at x𝑎 = 292 

0.5 m, which is not the optimal position in terms of maximum deflection reduction making it even more 293 

necessary to employ the time-varying control solution [17]. The performance of the control methods is 294 

assessed by using the maximum absolute value of the displacement at the sensor locations xsi. 295 

Of the three available sensor locations xs2 = 0.25 m is chosen for further evaluation of the control methods. 296 

It displays the maximum deflection of the beam, as seen in Fig. 3, as well as the maximum deflection at the 297 

moving coordinate vt (Fig. 6). 298 

 299 
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 300 

 301 

 302 

Fig. 6 Numerical deflection of the moving coordinate vt of the mass m = 0.5 kg traveling with velocity v = 303 

0.3 ms−1, no control (NC), time-invariant control (Ti) and time-varying system control (Tv). 304 

 305 

Following Fig. 5 it is clear that a full state feedback controller cannot be used given the lack of accuracy of 306 

the state estimation. Also, the controllability matrix of the system (16) is not full rank which indicates that 307 

not all of the states might be controllable as well. The best matches of the modal coordinates towards the 308 

numerical model are achieved for the estimated states [𝑞1 𝑞2 �̇�1] as defined in section 5.1. 309 

The influence on the deflection reduction, using a reduced order controller, is considered for a mass m = 310 

0.261 kg moving at a speed v = 0.55 ms-1. Three runs were taken per method. The value for the maximum 311 

displacement was averaged over the three runs. Fig. 7 displays the experimental relative maximum 312 

deflection at sensor xs2 for the time-invariant control method (left) in comparison with the time-varying 313 

control method (right) using different combinations of controlled states. It can be observed that a time-314 

invariant controller only using one state 𝑞1 provides a reduction of the maximum deflection of about 15%. 315 

The deflection reduction decreases even more when using more states leading to even a slight increase 316 

when using all states, which might be due to inaccuracies of the mode estimation. In contrast, the time-317 

varying control method is applicable for the states [𝑞1 𝑞2 �̇�1] as well, with a reduction of about 15%. Using 318 

only the first state results in the best deflection reduction at xs2 of about 20%. Although using further states 319 

results in a complete solution of the problem, due to the lack of accuracy of the estimated states, the beam 320 

deflection is not improved. A different value of Q with an even higher weight towards the first modal 321 
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displacement and modal velocity might lead to a higher reduction of the deflection if more of the states are 322 

used. 323 

 324 

  325 

Fig. 7  Relative maximum deflection measured at sensor location 𝑥𝑠2 normalized to the uncontrolled 326 

structure (nc) of the time-invariant control (Ti) (a) and the time-varying control (Tv) (b) from using one 327 

state to using all states. 328 

 329 

Fig. 8 shows the time histories of the varying gains k1, k2 and k4 corresponding to the states [𝑞1 𝑞2 �̇�1]. The 330 

tests were run for the masses m = 0.261 kg, m = 0.371 kg and m = 0.509 kg traveling at the speed v = 0.3 331 

ms-1. Towards the time of t = 0.8 s the traveling mass reaches the moving coordinate 𝑣𝑡 = 0.24 m where 332 

the beam has the highest deflection (see Fig. 6). Consequently, the gains k1 and k2 increase up to this time. 333 

With that, a higher actuation is achieved when the action of the mass is high. Subsequently the gains 334 

decrease. When the mass passes by 𝑥𝑎 = 0.5 m the gains k1 and k2 reach their minimum. The least amount 335 

of force is required to counteract the influence of the moving mass. In this way, an effective and stable 336 

control is achieved. 337 

 338 
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  339 

 340 

Fig. 8  Development of the time-varying gains k1(t) (a), k2(t) (b) and k4(t) (c) for the four different masses 341 

m = 0.261 kg (blue dotted), m = 0.371 kg (red dashed) to m = 0.509 kg (black continuous) at velocity v = 342 

0.3 ms-1. 343 

 344 

In the following investigations the states [𝑞1 𝑞2 �̇�1] are used for control. This represents a fair compromise 345 

between completeness of the solution and reduction of the structural deflection.  346 

To assess the stability of the time-varying system (A(t)-B(t)k(t)), where the proposed reduced order 347 

controller is applied, its eigenvalues are calculated at certain time steps. Fig. 9 illustrates the course of the 348 

first four resulting complex conjugate pole pairs. During the time the mass m=0.509 kg travels with v =0.55 349 

ms−1 over the beam the eigenfrequencies of the modes change, the poles circle in the negative left half 350 

plane around the time-invariant poles (black crossed). The system stays stable for this parameter. 351 
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  352 

Fig. 9 Time history of the poles of the time-varying controlled system, first and third mode (blue 353 

continuous), second and fourth mode (red dashed), poles of the time-invariant system (black crossed), m=0.5 354 

kg, v=0.55 m/s  355 

 356 

Fig. 10(a) shows the poles of the simulated system with the reduced order controller and a traveling mass 357 

m= 0.509 kg. For the increased traveling speed of 5.6 m/s one pole pair moves into the real half plane 358 

causing instability. At this margin the full state controller (Fig. 10(b)) stays stable with all the poles in the 359 

negative half plane. Higher velocities and weights cause also with the full-state control instability. Likewise 360 

increasing the mass over m=6.5 kg with a low speed of 0.55 m/s some poles will move into the real half 361 

plane. In this way the theoretical stability margins of the system can be simulated. The additional actuator 362 

pole located at -10000 on the real axes is not shown in the figures.  363 
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 364 

 365 

 366 

Fig. 10 Comparison of the first four poles of the time-varying system with the reduced order controller (left) 367 

and with the full state controller (rigth) instable poles (black asteriks) , m = 0.5 kg, v = 5.6 m/s  368 

 369 

In order to assess the reduction of the maximum deflection at sensor location xs2 depending on the used 370 

control method three masses were tested at two speeds v = 0.3 ms-1 and v = 0.55 ms-1. Five runs for each 371 

mass were averaged for the calculation of maximum deflections. The relative maximum deflections in 372 

Table 1 show a small reduction for the time-invariant control of around 3% for all the masses. The time-373 

varying control shows a better performance for all the tests with a deflection reduction from 12% for 374 

m=0.261 kg to 17% for m= 0.509 kg, with a higher reduction for higher masses.  375 

 376 

Table 1 Relative maximum deflection at 𝑥𝑠2 for different masses traveling at v =0.3 ms−1in percent. 377 

mass m 

in kg 

no 

control 

time-

invariant  

time-

varying 

0.261 100 96.9 88 

0.371 100 97.7 85.7 

0.509 100 96.6 83.2 

 378 
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Fig. 11 illustrates the results obtained for mass m = 0.509 kg with a traveling speed of v = 0.3 ms-1. It also 379 

shows a good agreement between the numerically calculated results and the experimentally measured 380 

deflection w(xs2). There is a small mismatch after the mass leaves the beam due to the not modelled back 381 

electro-magnetic force (Back EMF) of the electromagnetic shaker [31].  382 

 383 

Fig. 11. Mass m = 0.509 kg moving with v = 0.3 ms-1, comparison of the displacement w(xs2) for the 384 

numerically calculated data (blue-continous) and the experimentally measured data (red dashed), for the 385 

case without control (a), with the time-invariant control (b),with the time-varying control (c) and the values 386 

of the relative maximum deflection in percent (d). 387 

 388 

Fig. 12 illustrates the time history of the experimental control inputs 𝑢(𝑡) belonging to this example. It is 389 

noticed that the time-variant control has a high actuation especially in the first half of the traveling time 390 

whereas the time-invariant control is much less active in the first half.  391 

 392 

Fig. 12 Time-history of the experimentally measured control input, time-invariant (blue-continuous) and 393 

time variant (red- dashed)   394 

 395 
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Table 2 shows the relative maximum deflections for three masses moving with a higher speed v = 0.55 ms-396 

1. The invariant control reduces the maximum deflection only by 1% for mass m = 0.261 kg and by 8% for 397 

mass m = 0.509 kg. In contrast, the time-varying control achieves a reduction of approximately 18% for 398 

mass m = 0.509 kg. Again, it can be observed that the control is more effective for higher masses, as a 399 

higher deflection results in higher actuation. The results are similar for the two investigated velocities.  400 

 401 

Table 2 Relative maximum deflection measured at 𝑥𝑠2 for different masses traveling at v = 0.55 ms-1 in 402 

percent. 403 

mass in 

kg 

no 

control 

time-

invariant 

time-

varying 

0.261 100 99.2 87.2 

0.371 100 97.1 83 

0.509 100 92 82.1 

 404 

Fig. 13 shows one example of the beam deflection at sensor location xs2 when mass m = 0.261 kg moves 405 

with velocity v = 0.55 ms-1. The measured deflections show a good match with the numerical model for all 406 

the tests with the only discrepancy observed after the mass leaves the structure due to back EMF of the 407 

electro-dynamic shaker. The time-varying controller reaches a reduction of 13%. A stable control with 408 

reduction of the beam deflection is achieved for different masses traveling at different speeds.  409 

 410 

 411 

Fig. 13. Mass m = 0.261 kg moving with v = 0.55 ms-1, comparison of the displacement w(xs2) for the 412 

numerically calculated data (blue-continous) and the experimentally measured data (red dashed), for the 413 
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case without control (a), with the time-invariant control (b),with the time-varying control (c) and the values 414 

of the relative maximum deflection measured at 𝑥𝑠2 in percent (d). 415 

 416 

5.3 Experimental results for variable control gains 417 

Following the experimental tests, it becomes clear that the performance of the controller depends on the 418 

weight of the moving mass. This means that a control gain that was designed to achieve a good reduction 419 

for a heavy mass may provide a too high control effort for a smaller mass whereas a controller gain designed 420 

for a small mass may not be enough to provide a good reduction of the deflection for a heavier mass. 421 

Therefore in terms of absolute deflection, the control effort required to achieve a prescribed absolute 422 

maximum deflection needs to change for the case when a small mass travels along the beam as compared 423 

to the case a heavier mass acts upon the beam. 424 

In this respect a gain scheduling of the control gain either as k(m) a function of mass or as k(m,v) a function 425 

depending on both mass m and speed v is tested. The masses used are m1 =0.261 kg, m2=0.322 kg, m3=0.371 426 

kg and m4=0.509 kg. 427 

Fig. 14 shows the effect of using the specific scheduled time-varying gains k(m1), k(m2), k(m3) and k(m4), 428 

calculated taking into account every mass, compared with the time-varying gain k(m1) determined for mass 429 

m1 and subsequently used for all masses. In this way the control switches to the specific control gain, 430 

therefore a heavier mass will have a higher control gain that will confine the deflection of the beam within 431 

a prescribed limit (in this case about 1 mm). Fig. 14 shows a gradual reduction of the deflection as the gain 432 

increases with the weight of the mass. 433 

With this approach where the gains are scheduled taking into account the value of the mass, the relative 434 

maximum deflection is 10% lower compared to the unscheduled control using the gain of the first mass 435 

k(m1) all over, see Fig. 15. The performance of this method can be improved if the gains are determined 436 

taking into account the moving mass into the system equation as an augmented system, introduced in [4]. 437 

The gains can be scheduled based on deflection values in the first phase. On a real bridge-like structure, 438 

image processing or a scale can identify the actual load case of m and select the optimal gain for control.  439 

 440 
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 441 

Fig. 14. Effect of using time-varying gain k(m1) (left) and scheduled for each mass specifically (right) k(m1) 442 

– k(m4). 443 

 444 

Fig. 15. Relative maximum deflection for mass m2 (a) and mass m4 (b) using gain k(m1) (blue) in comparison 445 

to using the specific gains k(m2) or k(m1) (red). 446 

 447 

Another important factor of the proposed control strategy is the ability to adapt to different velocities of the 448 

mass. The time-varying gain vector k(t,m) is calculated beforehand for a predetermined velocity at equal 449 

time steps and stored on the controller. By measuring the actual velocity in real time using two induction 450 

sensors before the mass enters the structure, the leaving time tf can be determined exactly. With the given 451 

tf the control action is stretched or compressed towards the given traveling time of the mass. The gain is 452 

then interpolated between the precalculated gain values for the actual position of the mass.  453 

In Fig. 16 it can be seen how the control needs to adapt to different speeds ranging from v = 0.22 ms−1to v 454 

= 0.95 ms−1. The gain k1(m4) calculated in real time coincides well with the numerically calculated gain.  455 
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 456 

Fig. 16. Deflection w(xs2), no control action (NC) and with different speeds v (a); time-varying gain 𝑘1(𝑚4) 457 

(b) calculated in real-time (blue-dashed) and numerically (red- continuous) . 458 

 459 

6. Conclusion and future work 460 

The present study extends numerical investigations into the problem of control of beam structures subjected 461 

to a set of moving masses, and is concerned with the experimental implementation of the control solution 462 

on a small-scale rig. 463 

It presents and analyses the synthesis and implementation of an active controller on a small-scale test 464 

structure. The structure is modelled as a simply supported beam, using displacement laser sensors and one 465 

electromagnetic actuator located close to one of the supports. The importance of this study consists on 466 

going beyond the theoretical solution to finding and validating solutions based on experimental data. In this 467 

way the proposed solutions are one step closer to the relevant practical problem. 468 

Due to the fast sampling rate of the data acquisition and control, a reduced order controller using estimated 469 

modal displacements and velocities proves to be the best solution. The dynamics of the actuator was 470 

simplified, and a first order model was used. Although the model proved correct while contact is 471 

maintained, a small inaccuracy is observed when the mass leaves the beam. 472 

As expected, due to the time-varying nature of the control system, it is shown both experimentally and 473 

numerically that a control method based on a terminal-time optimal control solution provides better 474 

performance than a time invariant optimal controller.  475 
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The possibility of using different moving masses travelling at different speeds also pointed toward a control 476 

solution that adapts the control effort, taking into account the type of load. Therefore, a simple gain-477 

scheduling solution that makes a better use of the control effort is presented and proves to be the basis of 478 

further work and developments of the method. 479 

 480 
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