
i

Trust Modelling and Management for

Collaborative and Composite

Applications in the Internet of Things

Anuoluwapo Amarachukwu Adewuyi

A Thesis Submitted in Partial Fulfilment of the

Requirements of Liverpool John Moores University

for the Degree of Doctor of Philosophy

October 2021

ii

SUPERVISORS’ CERTIFICATION

We certify that the thesis entitled “Trust Modelling and Management

for Collaborative and Composite Applications in the Internet of

Things” was prepared under our supervision at the Department of

Computer Science and Mathematics, Liverpool John Moores University,

in partial fulfilment of the requirements of Liverpool John Moores

University for the degree of Doctor of Philosophy.

Name Prof. Qi Shi

Title Director of Study

Address James Parsons Building, Byrom St, Liverpool, L3 3AF, UK

Name Dr. Hui Cheng

Title Second Supervisor

Address Department of Computer Science, University of

Hertfordshire, Hatfield, Hertfordshire, UK

Signed (Director of Studies):

Date: 11/10/2021

iii

ABSTRACT

A future Internet of Things (IoT) will feature a service-oriented

architecture consisting of lightweight computing platforms offering

individual, loosely coupled microservices. Often, an end-user will request

a bespoke service that will require a composition of two or more

microservices offered by different service providers. This architecture

offers several advantages that are key to the realisation of the IoT vision,

such as modularity, increased reliability and technology heterogeneity

and interoperability. As a result, the adoption of this architecture in the

IoT is being extensively researched. However, the underlying

complexities of service compositions and the increased security risks

inherent in such a massively decentralised and distributed architecture

remain key problems. The use of trust management to secure the IoT

remains a current and interesting topic; its potential as a basis for service

compositions has not been thoroughly researched, however.

Security through trust presents a viable solution for threat management in

the IoT. Currently, a well-defined trust management framework for

collaborative and composite applications on an IoT platform does not

exist. In this thesis, a collaborative application refers to the one that

enables collaboration among its users to jointly complete certain tasks,

whereas a composite application is the one composed of multiple existing

services to deliver integrated functionalities. To estimate reliably the trust

values of nodes within a system, the trust should be measured by suitable

parameters that are based on the nodes’ functional properties in the

application context. Existing models do not clearly outline the

parametrisation of trust. Also, trust decay is inadequately modelled in

many current models. In addition, trust recommendations are usually

iv

inaccurately weighted with respect to previous trust, thereby increasing

the effect of bad recommendations.

This thesis focuses on providing solutions to the twin issues of trust-based

security and trust-based compositions for the IoT. First, a new model,

CTRUST, is proposed to resolve the above stated shortcomings of

previous trust models. In CTRUST, trust is accurately parametrised while

recommendations are evaluated through belief functions. The effects of

trust decay and maturity on the trust evaluation process were studied.

Each trust component is neatly modelled by appropriate mathematical

functions. CTRUST was implemented in a collaborative download

application and its performance was evaluated based on the utility derived

and its trust accuracy, convergence, and resiliency. The results indicate

that IoT collaborative applications based on CTRUST gain a significant

improvement in performance, in terms of efficiency and security.

In a second study, the trust properties of service compositions in the IoT,

along with the effect of the service architecture on the security and

performance of the composed service, are investigated. Novel approaches

are considered in relation to trust decomposition and composition,

respectively. Relevant trust evaluation functions are derived to guide the

compositions, which are used to extend CTRUST into a new trust model,

SC-TRUST. SC-TRUST is implemented in a suitable simulation and the

results are evaluated. The model reliably guides service compositions

while ensuring utility to the end-user. Overall, the analyses and

evaluations support the conclusion that the trust models are effective in

terms of performance gain and security. The models are scalable and

lightweight such that they could be deployed to secure applications and

drive meaningful services and collaborations in the envisaged IoT and

Web 3.0 sphere.

v

ACKNOWLEDGMENTS

This thesis is dedicated to my God and Saviour Jesus Christ, Who gives

me life and strength - and without Whom no endeavour is meaningful or

possible – for helping me to begin and finish this project.

My Director of Study, Prof. Qi Shi, has my immense gratitude and

appreciation, now and always, for his support, patience, insights, and the

overall kindness and understanding he showed, all which helped bring this

work to fruition. My second supervisor, Dr. Hui Cheng, was exceptionally

invaluable to my progress and development throughout the programme.

I am grateful for the support I received from the Department of Computer

Science, both financially and administratively. I must specially appreciate

Tricia and her team for supporting my research and responding to my

queries (which would be well over a thousand) over the years.

My indescribably wonderful parents, Pastor Dr. and Pastor Mrs.

Adewumi and Maryjones Adewuyi, who encouraged me to undertake this

programme, sponsored and coached me, and gave and did everything I

required and beyond, deserve my eternal gratitude. My darling wife, loyal

partner, faithful best friend, and inspirational muse, Osekafore, you are

the best! I love you! My lovely siblings, Onaopemipo and Boluwarin,

have my eternal love and gratitude for their unconditional and unwavering

support, without which I would have given up long ago. Their constant

affirmation pushed me through to the finish line.

Finally, I appreciate Christ the Cornerstone Bible Church for providing

me with spiritual and emotional guidance, and loving friends.

vi

PUBLICATIONS

Journal Papers:

1. A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, A. MacDermott, and X.

Wang, “CTRUST: A dynamic trust model for collaborative

applications in the internet of things,” IEEE Internet of Things Journal,

vol. 6, no. 3, pp. 5432–5445, Feb. 2019, doi:

10.1109/JIOT.2019.2902022.

2. A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, X. Wang, and B. Zhou, “SC-

TRUST: A Dynamic Model for Trustworthy Service Composition in

the Internet of Things,” IEEE Internet of Things Journal, 2021, doi:

10.1109/JIOT.2021.3097980.

vii

TABLE OF CONTENTS

Abstract .. iii

Acknowledgments .. v

Publications ... vi

Table of Contents ... vii

List of Abbreviations .. ix

List of Figures .. x

List of Tables ... xi

CHAPTER 1 Introduction .. 1

1.1 Research Motivation ... 1

1.2 Research Problems and Justification .. 5

1.3 Research Aims and Objectives... 7

1.3.1 Aims .. 7

1.3.2 Objectives ... 8

1.4 Research Methodology and Scope ... 8

1.4.1 Methodology ... 8

1.4.2 Scope ... 10

1.5 Novel Contributions .. 11

1.6 Organisation of The Thesis .. 13

CHAPTER 2 Background Study .. 14

2.1 Trust Modelling and Management .. 14

2.1.1 Existing IoT-Centric Trust Models.. 14

2.1.2 Traditional Reputation Models in IoT Contexts 18

2.2 Trust-Based Service Composition and Provisioning 22

2.2.1 Service Compositions in the IoT .. 23

2.2.2 Service Classes ... 26

2.2.3 Service Workflow .. 28

2.2.4 Consensus Mechanisms ... 31

2.2.5 Existing Trust-Based IoT Service Composition Models 32

2.3 Ideal IoT-Centric Trust Model .. 37

2.4 Chapter Summary... 40

CHAPTER 3 CTRUST: A Dynamic Trust Model for Collaborative IoT

Applications .. 42

viii

3.1 Model Design and Analysis .. 42

3.1.1 Trust Parameters ... 45

3.1.2 Parameter Weights .. 46

3.1.3 Partial Trust Scores and Aggregation ... 46

3.1.4 Trust Decay .. 48

3.1.5 Trust Recommendations and the Belief Function 50

3.1.6 Trust Update and Maturity .. 53

3.2 Model Performance and Evaluation ... 56

3.2.1 Context Overview: Collaborative Downloading 57

3.2.2 Collaboration Context Setup .. 59

3.2.3 Utility of the Model in Collaboration Context 61

3.2.4 Evaluating Trust Model Accuracy and Convergence 64

3.2.5 Evaluating Trust Model Resilience .. 66

3.2.6 Comparison to Related Work .. 70

3.3 Chapter Summary... 72

CHAPTER 4 SC-TRUST: A Dynamic Model for Trustworthy Service

Composition in the Internet of Things ... 73

4.1 Model Design and Analysis .. 73

4.1.1 Transparent Trust Composition .. 77

4.1.1.1 Selection Workflow .. 78

4.1.1.2 Parallel Workflow .. 79

4.1.1.3 Sequential Workflow ... 80

4.1.2 Transparent Trust Decomposition... 83

4.2 Model Performance and Evaluation ... 89

4.2.1 Evaluating Utility Gain in SC-TRUST .. 92

4.2.2 Evaluating Trust Model Accuracy, Resilience and Convergence 95

4.3 Chapter Summary... 101

CHAPTER 5 Conclusion And Future Work... 102

5.1 Conclusion.. 102

5.2 Further Work .. 103

References ... 105

Appendix A: Definition of Terms ... 125

Appendix B: Main Codebase .. 127

ix

LIST OF ABBREVIATIONS

AHP Analytical Hierarchical Process

BPMN Business Process Model and Notation

CBA Cumulative Bandwidth Average

CD Collaborative Downloading

CPS Cyber-Physical Systems

ER Evidential Reasoning

IoT Internet of Things

IRI Inverse Risk Index

JSON JavaScript Object Notation

MCDA Multiple Criteria Decision Analysis

P2P Peer-to-Peer

QoS Quality of Service

SCR Successful Completion Rate

SDN Software-Defined Networking

SIoT Social Internet of Things

SOA Service Oriented Architecture

SP Service Provider

SR Service Requester

TaaD Trust-as-a-Decision

TMS Trust Management System

WSNs Wireless Sensor Network

x

LIST OF FIGURES

Fig. 2.1 A JavaScript Object Notation (JSON) specification of a smart

device’s services ... 24

Fig. 2.2 A Business Process Model and Notation (BPMN) model of a

hypothetical service composition ... 25

Fig. 2.3 Core components of a TMS and their interactions 40

Fig. 3.1 Flow diagram illustrating the basic steps involved in trust

computation in the CTRUST model ... 43

Fig. 3.2. Illustration of a collaborative download session 58

Fig. 3.3 Plot of Speed-up against different group sizes, N[G] 62

Fig. 3.4 Convergence of SCR to ground truth. 64

Fig. 3.5 Convergence of CBA to ground truth. 65

Fig. 3.6 Convergence of IRI to ground truth .. 66

Fig. 3.7 Resilience of CTRUST to change in CBA 67

Fig. 3.8 Resilience of CTRUST to change in SCR 68

Fig. 3.9 Resilience of CTRUST to change in IRI 68

Fig. 4.1 Basic processes involved for trust computation in SC-TRUST 75

Fig. 4.2 Service composition for a collaborative download 91

Fig. 4.3 Plot of Speed-up against varied sizes of the set Q of download

SPs working in parallel ... 93

Fig. 4.4 Convergence of a Trust Parameter to the ground truth based on

the decomposition of feedback from the SR .. 96

Fig. 4.5 Comparison of the trust accuracy and convergence properties in

SC-TRUST and CTRUST .. 97

Fig. 4.6 Comparison of the trust resilience on a unique parameter in SC-

TRUST and CTRUST ... 98

Fig. 4.7 Comparison of the trust resilience on a shared parameter in SC-

TRUST and CTRUST ... 99

xi

LIST OF TABLES

Table 3.1 List of CTRUST Model Properties .. 55

Table 3.2 Two-Sample T-Test Comparing Session Speeds Obtained

Using CTRUST and Random Modes for Node Selection 62

Table 4.1 Two-Tailed Paired Sample T-Test Comparing the Speedup

Obtained Using SC-TRUST, CTRUST and Random modes for Selection

of SPs .. 94

1

CHAPTER 1 INTRODUCTION

1.1 Research Motivation

The increasing development and pervasiveness of the IoT have facilitated

the proliferation of a new generation of smart objects [1], [2]. A smart

object is a physical thing or device with a unique identifier and equipped

with some computing and networking capabilities that enable it to connect

and communicate with similar objects and human users [3]–[5]. A major

consequence of this rapid adoption is that human users can connect to

their environment, data, and services at an unprecedented scale for various

novel, multi-contextual, dynamic, and on-demand applications. The

potential benefits and use cases of the IoT apply to virtually every domain

of social life, including healthcare, transportation and agriculture [6]–[8].

The IoT paradigm is built upon other research areas such as cyber-physical

systems (CPS), wireless sensor networks (WSNs), big data, machine

learning, adhoc networks, mobile computing, and ubiquitous computing,

and requires collaborations and interoperability between various devices

and networks on a massive scale.

Generally, the future IoT will be used to provision collaborative

applications and service compositions. In collaborative IoT applications,

several users or devices come together and pool their resources to execute

a task or provide a service. The resources could be bandwidth, network

routes and access, processing power or storage space. The motive behind

the collaboration could be an increase in the speed of the task execution,

as is the case in the collaborative download of a file. It could also serve to

achieve redundancy and therefore increase reliability, as is the case in

collaborative storage, routing, and streaming applications. These are a

few examples of use cases where a collaboration is beneficial. Most of

2

these collaborations will be formed “on the go”; that is, the collaborating

peers will be unknown to each other.

Another principal and necessary component of the future IoT will be the

provision of bespoke services on the fly to satisfy dynamic user

requirements. This will require the cooperation and collaboration of

individual smart devices offering unique microservices which can be

transparently composed, as required, to provide a service offering that is

guaranteed to fulfil the user’s service requests [9]–[11]. The process by

which this is done is called a service composition. In this context,

transparency means that the inner working of the composition is

abstracted from the users or entities interacting with the composed

service. Specifically, performance, access and location transparencies

[12] are implied. The composed service appears as a single service to the

user requesting the service, as the composition should be performed in an

agnostic manner; the existence and details of the underlying

microservices and any middleware should be abstracted from the user

[13], [14].

In a service composition, the IoT middleware consists of a service-

oriented architecture (SOA) where each connected device is a service

provider (SP) or a service requester (SR) [7], [15]. The underlying

microservices are hosted and provided by SPs, while the middleware layer

accepts service requests from end-users, performs service discovery and

aggregation, SP selection, network routing functions, and security and

trust management, and delivers the results of the composed service to the

requesting user [16]–[19]. The middleware itself may be hosted in the

cloud or by another device which provides the composition platform. In

this scenario, the devices providing the underlying services can be

referred to as wholesalers of such services, while the middleware

3

conglomerates such services and retails them to the end-user. A device

may provide multiple services, e.g. temperature and humidity sensing.

However, each service usually belongs to a single service class, which is

an abstraction for all services of the same type [10]. Depending on the

type of composition, the output of one service may be passed as input to

another. For example, the geographical coordinates from a GPS sensor

(geolocation service class) may be passed to a weather forecast service

and the forecast readings are returned to the user. This network of

interactions between users, smart objects, and the services they offer

forms the foundation of the concept referred as the Social Internet of

Things (SIoT) [17], [20]–[23].

The IoT requires the extensive interoperability of heterogeneous devices,

networks, and technologies, for which the traditional internet is ill-suited.

Therefore, security is of critical importance but is more complex to

manage because this heterogeneity expands the threat landscape [24].

Also, due to the different IoT technologies being used, and the fact that

most IoT devices have limited computing power, employ a distributed

architecture and use less conventional networking methods, traditional

security management used in the current Internet cannot be directly

applied here [24], [25]. New security countermeasures are required that

are lightweight, intelligent and operable in real-time [24]–[26]. While this

remains an ongoing research challenge, an interesting candidate solution

is security through trust. Trust is an important component of computer

security [27]. Given that the IoT consists of services and devices provided

by different actors who may be unknown to end users, the necessity of

trust evaluation is higher than it is for the traditional Internet [24], [28].

The need for secure and trustworthy collaborations and service

compositions is evident. Given that collaborating parties are largely

4

anonymous to one another (at least, initially and in most use cases), the

security risks involved are high and include privacy and data loss, which

may be used as vectors for more sophisticated attacks. The introduction

of the notion of trust among peers is one way to minimise these threats

[24], [26], [29]. For service compositions, there may be multiple SPs

offering the same functionality within a service class. In composing a

user-requested service, it would be necessary to select the most reliable

and least malicious SPs in each required service class. This is particularly

important given the transparent nature of the composition, as the end user

may have no knowledge or relationship of the providers of the underlying

services. Therefore, some method must exist to identify malicious nodes

and preclude their service offering from the composition [30]. Also, the

composed service itself must be guaranteed to fulfil the request of the

user, while maintaining security and privacy. In other words, the

middleware must consider the compatibility of the service components to

be mixed and matched, while ensuring that the results are reliable and

reasonably satisfy the requester’s utility [16], [31], [32].

The difficulty in finding universal solutions suitable for the IoT context

establishes trust as, perhaps, the most important security metric in SOA-

based IoT systems. In fact, it has been posited that trust management is

wider in scope than traditional security management [26], because while

the latter is largely corrective, the former is more predictive and

preventive, and also addresses the quality of service (QoS) provided and

reliability of SPs [17], [26], [32]. Thus, it can be used to determine which

nodes should be selected for interactions and service provision, while

excluding malicious nodes from the service context. However, though

trust is an essential and common social concept, it is difficult to define

due to its abstract and multi-faceted nature. It is also either purely or

5

mostly subjective, and its meaning depends on the context in which it is

used [33], [34]. Even though there is no agreed definition in literature, a

large volume of research on trust shows it is a very important concept

[24]. For example, a ‘trusting intention’ is given in [33] as “the extent to

which one party is willing to depend on the other party in a given situation

with a feeling of relative security, even though negative consequences are

possible”. This definition correctly identifies trust as a decision taken by

the trustor. Another issue is that several definitions of trust do not provide

measurable indices that may be used to evaluate trust.

The concept of computational trust is, thus, introduced. Computational

trust is the adaptation of the social notion of trust to the digital world, so

that it can be represented and evaluated by mathematical models [28],

known as trust models. These determine how trust is computed in a specific

context. A trust management system (TMS) provides methods and

mechanisms to evaluate the trustworthiness of interacting peers, based on

a trust model. This work focuses on the design of trust models for two

major IoT contexts: collaborative applications and social compositions.

1.2 Research Problems and Justification

Several TMSs have been proposed and widely studied in literature.

However, there are comparatively fewer studies on the management of

trust in IoT contexts [15], [26], [30], [32]. Many of these models focus

mainly (or only) on recommendations based on an assumed social

relationship among interacting nodes. Little or no account is taken of other

aspects of trust management, such as trust decay, trust parameter selection

and the weighting of trust parameters. However, given that collaborative

applications are task-based systems, the trust score of a trustee node

6

should indicate the degree to which a trustor believes that the trustee is

both competent and willing to execute required task(s) reliably.

Even less work has been done on the management of trust in SOA-IoT

contexts [15], [32]. Furthermore, these models do not consider transparent

service compositions, where an SR can neither provide direct trust ratings

on nor receive recommendations on SPs of the underlying services. In

addition, they do not consider the trustworthiness of the composed service

separately from the trust ratings of the SPs. Also, there is an implicit

assumption that, due to the social nature of SOA-based IoT, a social

relationship exists between the owners of the participating IoT devices.

Based on this assumption, such social relationships must factor into the

trust estimation. However, in a true service-based IoT where the primary

or only incentive for interactions is to provide or request a service, no

other relationship may exist among SPs and SRs outside the given service

context. The implication of this is that these models may exclude

trustworthy nodes capable of delivering reliable services and include

nodes which are owned by SPs who have an external social relationship

with the SR. Finally, these models do not respect privacy, as the

middleware composing the service must be made aware of these

relationships among the SPs and SR.

In summary, there is a need for reliable and well-defined trust models to

for both collaborative applications and compositions of IoT services.

Such models must express trust as a performance metric that is based on

the functional properties of the utilised IoT context. This work addresses

these research gaps by providing a comprehensive approach to trust

evaluation management in IoT applications. The aims and objectives of

this research are enumerated in the next section.

7

1.3 Research Aims and Objectives

1.3.1 Aims

This research work aims to study existing TMSs, investigate their

limitations with respect to IoT contexts, and to design and implement

ideal trust models suitable for collaborative applications and service

compositions in the IoT. By modelling trust as a performance metric

measured through assessable criteria that are derived from functional

properties of nodes in the context, the trust models developed will ensure

security and a reliable quality of service in IoT applications. The

realisation of this aim will increase the adoption of IoT offerings by

enabling the provisioning of dynamic applications built from resilient

microservices with low-risk thresholds.

This aim proposes to answer some research questions namely, how to:

• Define the notion of Trust among nodes in a collaborative or

composite IoT application.

• Detect and measure this trust computationally while modelling it

like social trust among humans.

• Deduce the effects of recommendations and decay (temporal

degradation) on trust values.

• Decide how to aggregate and apply computed trust values to select

“partner/friendly” devices in various contexts in the IoT.

8

1.3.2 Objectives

To accomplish the aim of this project, the following objectives must be

achieved:

1. A comprehensive review of the existing literature on TMSs,

considering trust derivation, evaluation and aggregation employed in

these trust models, and their suitability and limitations for IoT

contexts.

2. Derivation of the necessary properties for an ideal functional trust

model for IoT contexts, specifically for collaborative applications and

service composition.

3. A formal definition of the concept of functional trust, and proposal of

methods for accurate trust estimation, aggregation, evaluation, decay,

and its application in the IoT.

4. Design and evaluation of a dynamic trust model for collaborative

applications in the IoT.

5. Design and evaluation a dynamic model for trustworthy service

composition in the IoT, based on the model in (4) above.

The methodology deployed to achieve these goals is discussed in the next

section.

1.4 Research Methodology and Scope

1.4.1 Methodology

This research was divided into four major phases, namely:

9

1. Literature review: a thorough review of the existing body of work

regarding trust modelling and management, collaborative tasks, and

service composition in the IoT was conducted to identify research gaps

and generate insights into practical solutions. Thus, in this phase,

Objective 1 is fulfilled.

2. Requirements Analysis and specification: following on from (1), the

current state of the art was critically analysed to elicit the necessary

properties of ideal trust models for collaborative applications and

service compositions in the IoT. To ensure that these models are

viable, the architecture and limitations of IoT networks and devices

were considered. In this phase, Objective 2 was completed, and

Objective 3 was partly achieved.

3. Model Design: Based on the results of the analysis in (2), initial

parameters for the proposed models were determined. The design

phase was divided into two sub-phases: (i) design of a trust model for

collaborative applications and (ii) extension of the previous design to

a new model for trustworthy service composition in the IoT. This

phase completely fulfils Objective 3 and satisfies the design goal of

Objectives 4-5.

4. Implementation and evaluation: In this phase, the designed models

were implemented by simulation of appropriate contexts, based on the

methods developed in the design phase. Rigorous testing was carried

out to ensure that the models meet the specified criteria derived during

the requirements analysis phase. Furthermore, the performance of the

implemented models was evaluated with respect to relevant existing

work, to show its distinction and significance in the field of study.

This, together with Phase (3), completely satisfies Objectives 4-5.

10

1.4.2 Scope

There are several issues involved in the design of any IoT solution due to

the heterogenous nature of the IoT, in terms of devices, technologies and

networks. The range of IoT devices includes sensors, mobile devices,

RFID tags, smart bands, and vehicles, and these may utilise a vast array

of networks such as Wi-Fi, 5G, or IEEE 802.15.4 networks (such as

ZigBee). This research focuses on broadly on trust derivation and

evaluation for the IoT in general, especially the trust-related aspects of

collaboration of service composition, and largely abstracts technical

details regarding the type or topology of devices and networks. However,

the following assumptions are made concerning IoT device capabilities in

this project:

1. The devices have some memory and processing abilities to perform

lightweight processes.

2. The devices have some form of persistent storage, even if small.

3. The devices have some form of unique identifiers.

4. Given that the IoT contexts studied in this research are largely peer-

to-peer (P2P) networks, it is assumed that the designed trust models

will be implemented in a decentralised network architecture.

Furthermore, it may not always be possible to directly compare the results

obtained directly with other models in literature, due to different IoT

implementation environments. It will not be feasible to adapt each one of

these other algorithms to be implemented in our chosen contexts. In these

situations, an indirect evaluation approach is adopted instead. This

involves comparing the performance of the models to two baseline cases:

11

(i) to ground truth (that is, given perfect knowledge of the behaviour of

the collaborating devices) and (ii) to results obtained from a random

selection of peers in the same context. The results can then be indirectly

compared to other trust models in literature that have been evaluated

against either or both baseline cases. Statistical tests will be performed to

determine whether any differences found are significant.

1.5 Novel Contributions

This research proposes the following additions to the existing body of

work:

1. The use of weighted trust parameters (criteria) that can be specified at

runtime to adapt the model to different contexts. This means that trust

parameters, in contrast to recommendations, form the basic building

block for trust computation. In most trust models in literature, the trust

computation is built almost entirely on recommendations. This

approach does not consider trust as a performance metric, and thus

weakens the trustor’s decision to trust. To the proposer’s knowledge,

this is the first work to formally define trust as a decision-making

process and utilise decision analysis techniques for trust elicitation,

aggregation, and evaluation, thereby establishing its novelty.

2. The study of the effects of trust degradation over time as a distinct

component of the trust computation. Previous trust models use

parameters to weight past trust to current experience. This is done

recursively with every new interaction and therefore does not consider

the time that has elapsed since a previous trust assessment was made. To

resolve this, the proposed models include a novel trust decay function

12

with a dynamic component to accommodate different degrees of nodes’

willingness to trust. This ensures trust degrades in a consistent manner.

3. The implementation of an improved recommendation function with the

addition of a novel belief degree function, utilising established evidential

reasoning (ER) techniques. Other trust models only consider the

recommender’s trust scores in accepting recommendation. The designs

developed in this work identified other criteria that determine the degree

to which a recommendation is accepted in social contexts and applied

them to model the belief degree, which is then used to weight

recommendations received from other nodes.

4. The design of a parameter to model trust maturity or equilibrium between

two nodes, the point at which trust can be computed using direct

interactions alone. This implies that it is possible to determine trusted

nodes solely by empirical methods, which is a novel contribution.

5. Formulation of methods for the derivation and aggregation of trust

values based on the relevant trust parameters of SPs from different

required service classes, based on a study of requirements identified

for a suitable trust model for service compositions in the IoT context.

As this is the first formal study to comprehensively investigate trust-

based service composition in the IoT, it is a novel contribution.

6. The design of a method to reliably estimate the trust score of the

composed service based on the indirect trust scores computed for the

service providers in a service composition in accordance with the

service requester’s requirements, thus providing a novel privacy-

preserving solution for transparent trust composition in the IoT.

13

7. Finally, the service composition model receives trust ratings from the

SR based on the satisfaction received from the composed service and

provides a method to indirectly update the trust scores of the

underlying services. This solves the problem of transparent trust

decomposition and is therefore a novel contribution.

These contributions are set out in detail in subsequent chapters of the

thesis, which are set out below.

1.6 Organisation of The Thesis

Chapter 2 introduces related concepts and provides a comprehensive

overview of trust modelling and service composition techniques,

highlights research gaps, and specifies requirements for the proposed IoT

trust models.

Chapters 3 and 4 specify, analyse, implement, and evaluate the designs

of the two proposed trust models, for collaborative applications and

service compositions in the IoT, respectively.

Chapter 5 summarises and concludes the thesis. In addition, it points out

some directions for further research extending from this work.

14

CHAPTER 2 BACKGROUND STUDY

This chapter reviews previous trust-related work in the IoT, with focus on

two broad categories: (i) trust modelling and management, discussed in

Section 2.1 and (ii) trust-based service composition and provisioning,

discussed in Section 2.2. In section 2.3, the desirable properties of an ideal

IoT-centric trust model are enumerated.

2.1 Trust Modelling and Management

The concept of trust modelling and management in the IoT is a rapidly

evolving research area. A system model and a holistic trust management

framework are given in [26]. The overall objective is to ensure that trust

models offer a balanced approach to the realisation of functional and non-

functional requirements of the IoT contexts wherein they are utilised. The

appropriate design of a trust management system is critical, therefore, and

must be evaluated based on verifiable trust properties which may be

elicited based on an empirical study of the existing body of work. Thus,

the following subsections give a review of existing trust models for IoT

and generic reputation models, with emphasis on their perceived strengths

and shortcomings.

2.1.1 Existing IoT-Centric Trust Models

The peer-to-peer (P2P) nature of collaborative IoT applications means

that there is no central authority. Modelling and evaluating trust in such

contexts is usually difficult [29]. Collaborating peers will often be

strangers to one another, having no shared history between them.

Centralised TMSs should therefore not be considered in a collaborative

IoT context. While a centralised approach to trust management is chosen

15

in [30], the use of multiple trust management servers in different

geographical locations is assumed. This means that all nodes must be

registered under one of these servers and that the servers themselves are

owned by a single entity. It does not take into consideration of collaborative

applications that may be performed without access to the Internet. Indeed,

the work focuses on service provisioning rather than collaborative

situations, and only proposes a framework for different services without

specifying solutions for individual contexts.

The concept of social IoT trust is utilised in [15], [32], [35], [36], where

it is argued that existing social relationships between owners must be

taken into account in trust management. This usually involves sharing

some confidential information, such as user identities, locations, and other

relationships. This opens the door to personal, malicious attacks from bad

peers [37]–[39]. While trust is a human concept, it also depends on the

context in which it is used. In the IoT context, the trust is between the

interacting nodes, which may sometimes be required to exchange some

information for identification and trust computation. However, this

should be done in a transparent and non-intrusive manner that maintains

the privacy of non-relevant information [26].

In [40], a trust management model for IoT based on fuzzy reputation is

proposed. However, the model is specific to WSNs and only evaluates

objective properties of packet forwarding/delivery ratios and energy

consumptions [30], [35]. Thus, the model cannot be applied to

collaborative IoT scenarios without some extensions. Furthermore, it

neither properly models trust as a decision of the trustor nor considers the

subjective properties of the trustee. The trust model in [7] is designed

specifically for health IoT systems and cannot be applied to collaborative

IoT contexts.

16

A detailed trust model for social IoT systems is presented in [15].

However, the model lacks a distinct trust decay function. Instead, two

parameters are introduced; one weights past experiences versus direct

assessments and the other weights recommendations versus past

experiences. This introduces several problems in the trust computation

problem. First, every direct assessment that is followed by a

recommendation reduces the importance of past trust because it is

weighted twice in both interactions. This does not allow for graceful

degradation of trust. Moreover, if the trustor receives several consecutive

recommendations on the same node, the impact of the past trust score and

the trustor’s direct assessment on that node rapidly declines with each

recommendation, as is the case in [41]. This is the case even if the trustor’s

direct assessment were made about the same time as the recommendation.

Thus, malicious nodes can come together to influence the trust rating of

one node with another node. Also, the model does not consider the time

value of trust in that the recommendation made, even if genuine, could be

based on an interaction further in time than the trustor’s last direct

assessment of the node on which a recommendation is being received.

Boa and Chen proposed a dynamic TMS and extended it to trust-based

service composition in the IoT [35], [42]. The work considers three

parameters to derive a trust value: honesty, cooperativeness as a service

provider, and the community-interest of the nodes. The model includes a

weighting factor to determine the relative importance of

recommendations based on the trust level of node providing the

recommendation. This factor can be dynamically increased to improve the

resilience of the system with respect to the proportion of good peers and

malicious peers. This however subjects the system to opportunistic service

and on-off attacks [43], where a malicious node can provide good service

17

but bad recommendations about other nodes. This is a consequence of

evaluating a node’s trust score entirely on the subjective opinions of some

other nodes, as will be shown in the next subsection.

There is also the need to consider the temporal nature of trust. It is usually

useful to store trust scores from past interactions and utilize them in

making trust decisions in the future, thereby building a trust history. This

idea is widely employed in trust models to aggregate trust values over

time. However, as is the case with recommendations, this notion may be

abused by malicious nodes. If trust is to be a reliable assessment of the

performance of nodes on functional properties, then it is necessary to track

the behaviour of the nodes with respect to such properties and to detect

and respond to changes over time. There is, therefore, the need for a trust

decay function such that previous trust values degrade gracefully over

time. This is also required to prevent on-off and opportunistic service

attacks. In most existing trust models, however, trust decay is not

considered.

Boa and Chen extended their previous work to service oriented

architecture (SOA) based IoT systems and service management in social

IoT in [32] and [15] respectively. The new model focuses on social trust

based on the parameters of friendship, social contact, and community of

interests. This model is not feasible for use in collaborative IoT contexts,

as previously argued. Moreover, as it is based on [35] and [42], it inherits

the limitations of subjective opinions discussed above. The nomadic,

adhoc nature of IoT collaborations implies that collaborators may have no

previous transactions with one another. In these cases, the use of a TMS

solely based on reputation, such as EigenTrust [44] or PeerTrust [45], is

not a good solution for several reasons, as will be discussed in the next

subsection.

18

2.1.2 Traditional Reputation Models in IoT Contexts

While reputation is an integral part of trust, the two are not equivalent.

The reputation of a person or device usually depends on the subjective

views of others. In a largely decentralised architecture such as

collaborative IoT, there is no standard way to determine whether the

present reputation score of the device was not bought or given by a group

of malicious peers. Since there may be no central database to keep track

of reputation ratings, it is not always feasible to find out which peer

contributed a ranking to the present overall score. A reputation-based

system works in large P2P networks, social networks such as Facebook,

and e-commerce applications such as eBay because there is a centralised

trust authority and database [29]. This makes it possible to track the

consistency of the rankings of every peer in the system. In the case of

social networks, the nodes or peers are linked based on social trust.

It is necessary to distinguish between conventional social trust and the

notion of functional trust considered in this research. The social trust

between nodes usually refers to the degree or strength of the connection

between them [46], [47]. Consequently, factors such as similarity,

colocation, friendliness, and honesty are primary determinants or

parameters of the trust score of the relationship. Also, the trust

relationship tends to be symmetric and the trust score between the nodes

is approximately equal in both directions [48], [49]; that is, if node A

trusts node B, then it often implies that node B trusts node A, and the trust

score of A on B is approximately equal to that of B on A. This is

demonstrated in many social networks, where a “connection” or

“friendship” between two parties on the network must be mutual.

19

Furthermore, the social trust network is usually transitive; thus, if A trusts

B and B trust C, A is quite likely to trust C, even if there is no direct trust

link between A and C presently. This indirect trust link is a based on the

recommendation about C, from B to A. Recommendations are also known

as referral trusts and are used to propagate or extend an existing trust

network or to cold start a new one [50]–[52]. It is important to note that

recommendation is not a trust parameter in itself; however, it is used to

augment the trust computation process where the required information to

directly compute a reliable trust score is either unavailable or incomplete

[52]–[55]. In the hypothetical example above for instance, A cannot

directly compute a trust score on C as there is no direct trust relationship

between them. However, based on the recommendation from B, a trust

score can then be assigned by A to C, which will be updated once a direct

trust link between A and C is formed. A real-world example of this in

social networks is the “friend-of-friend” feature, which is used to

recommend new connections and content (e.g., posts or tweets) to a user.

Functional trust, on the other hand, refers to the degree to which a trustor

believes that the trustee is both competent and willing to execute required

task(s) reliably in a specific functional context, which defines the trust

scope [56], [57]. It is dependent on the trustee’s ability to perform certain

functions and its historical performance as measured directly by the

trustor [58]. It is immediately evident that, unlike conventional social

trust, functional trust is asymmetric [59]. For example, the fact that A

trusts B to perform a certain task reliably does not imply that B trusts A

to perform the same task to the same degree of reliability, or even at all.

Hence, functional trust is also non-mutual [60], and usually non-transitive

[61], [62]. However, recommendations can be made, just as in social

networks but it is not explicitly used to extend the trust network until a

20

there is a requirement to establish a new, direct trustor-trustee,

relationship. Therefore, recommendations are only necessary at the start

of a new trust link (i.e., where there is no trust history) and are usually

discarded in favour of direct assessments once the relationship is formed.

Functional trust is usually scored more on objective criteria of the

associated context, and less on subjective criteria [63]. An objective trust

criterion is one which is based on a functional parameter of the context

and can be assessed quantitatively according to some metric or rule that

has been defined within that context, thus ensuring its measurement is free

from bias. On the other hand, a subjective trust criterion is assessed based

on the bias of the trustor. For example, in a ride-hailing app, the distance

driven on a journey is an objective parameter because its assessment is

standardised; there exists a clear definition of distance and its

measurement. However, the cleanliness of the vehicle (as measured by

the rider) will be subjective and biased to the opinion of the rider if there

is no defined metric or standard for its measurement. Therefore, a

parameter may be subjective in one context but objective in another

depending on the existence of a standardised assessment and scoring

system in that context. Also, it is possible that a social trust factor can be

a criterion in a functional trust context if it is relevant to the function or

task to be performed in that context. For example, while colocation can

be a factor used to extend a social trust network, it could be a functional

parameter in a ride-hailing context if it is deemed important to the

fulfilment of contextual tasks (in this case, getting a driver quickly to the

user). In summary, functional trust relationships are formed based on the

ability to fulfil tasks in a specific context and are isolated to that context.

It can be seen that reputation-based trust systems, such as [64], are entirely

based on the trustors’ subjective opinions which tend to be reinforced

21

through an inherent feedback mechanism. This works well in large

networks due to the “wisdom of the crowd” [65]. It is highly likely that

the opinions of 1000 people about a seller on eBay will be a true reflection

of the seller’s activities. In a collaborative IoT scenario, however, the

number of peers involved is small. The opinions of such a small number

of rankers can be easily influenced and may not truly represent a trustee’s

trustworthiness. The feedback mechanism can cause multiple counting of

the same behaviour, leading to aggravated rewards or punishments.

Therefore, reputation should not be used alone for trust computation in

such contexts.

The use of entirely subjective opinions of others to determine trust scores

presents yet another problem in a collaborative IoT scenario. Take a

collaborative download application as an example. Each possible helper

peer may advertise the price charged per bandwidth used. A peer may

receive a low ranking solely based on a higher price. This does not

consider (and may not be a true reflection of) the helper peer’s objective

qualities in estimating its trustworthiness. The higher price may be a

consequence of faster and better service offered. When this level of

service is needed, the previous ranking will affect the trust score of the

helper peer and may prevent another peer from patronising its service.

Traditional reputation systems mitigate this issue by providing some

feedback on rankings. This is achieved by eliciting reviews or by

providing categorical scores alongside an overall trust score. This

provides additional insights to the trustor and leads to a better trust

decision. However, such a level of detail may not be feasible in IoT

environments due to the limited computing requirements.

In [66], a recommender system is enhanced by adding a trust layer.

However, the method assumes prior friendship between nodes and

22

therefore only considers social trust parameters. Lastly, because

reputation based TMSs use recommendations, they make the

collaborative sphere more vulnerable to bad-mouthing and good-

mouthing attacks [35]. This introduces an unnecessary bias into the trust

model. It also corroborates the authors’ argument against the assessment

of trust solely on subjective opinions in a collaborative IoT context.

In summary, most existing trust models in the IoT are primarily based on

recommendations, with the inherent risks as highlighted above. In

contrast, our proposed trust model emphasises the parametrisation of

trust. The trust parameters are based on the functional properties of nodes

which are relevant to the application context. Recommendations are only

used initially to augment the trustor’s assessment. In addition, the process

of trust decay is clearly and adequately modelled, which is an

improvement upon existing models.

2.2 Trust-Based Service Composition and Provisioning

This section presents an overview on service composition in the IoT and

its implications for trust modelling. In general, trust estimation in most

IoT models focuses on recommendations impacted by social

relationships. Little work has been done in other aspects of trust

management, such as trust decay, trust parameter selection and the

weighting of trust parameters. Trust parameters should be based on the

relevant functional properties of the service context that determine the

reliability and quality of an SP’s services. Given that service compositions

are based on the task(s) demanded by the user, the trust score of the

composed service must be based on the efficient, reliable, risk-minimized

completion of the task(s). While most of the work done on trust

management has focused on trust evaluation of individual nodes, little

23

consideration has been given to determining how to use the trust values

of SPs to estimate the trust value of the composed service (that is, a

bottom-up approach). A review of the existing literature suggests that no

work has focused on the decomposition of trust scores assigned to

composed services (that is, a top-down approach).

A suitable trust model for service compositions must include methods for

reliable trust composition; it must adequately estimate the trust value of

the composed service, based on the user’s utility preferences and the

current trust scores of candidate SPs. Also, it must adequately model trust

decomposition; it should accept the trust value given by the user upon

consumption of the composed service and decompose that value to update

the trust scores of the underlying services in an impartial, appropriate, and

transparent manner. These are discussed in detail in the subsections

below. Section 2.2.1 gives an overview of service composition concepts.

In Sections 2.2.2 and 2.2.3, we analyse the characteristics of various

categories of service compositions and their effects on trust evaluations.

In Section 2.2.4, we briefly discuss consensus mechanisms; finally, in

Section 2.2.5, we review existing trust-based service composition models,

evaluating their suitability for IoT contexts.

2.2.1 Service Compositions in the IoT

The IoT provides novel ways by which users can interact with things

around them. The data received from various sensors in the environment

can be utilized by multiple actuators to achieve a desired result. Sensors

and actuators have a broader meaning in this context and are not limited

to traditional electrical devices. For example, a refrigerator may “sense”

it is empty of some food stuff and “actuate” an app on the owner’s phone

to create a shopping list of such items. This list may be passed to an online

24

grocery delivery service at regular intervals that are determined by a bot.

At such intervals, the bot “actuates” the online service to create an order

and deliver the grocery. This concept of “social sensing” is one of the

possibilities of an SOA-based IoT. Usually, the service requested by a

user will entail the collaboration of several microservices, as in the

previous example. Therefore, a bespoke service will be composed for the

user, using two or more microservices which may be offered by different

SPs. This architecture offers several advantages that are key to the

realisation of the IoT vision, such as modularity, increased reliability and

technology heterogeneity and interoperability. The requirements for the

adoption of this architecture are being extensively investigated.

Fig. 2.1 A JavaScript Object Notation (JSON) specification of a smart

device’s services

25

Fig. 2.1 illustrates a JavaScript Object Notation (JSON) representation of

a smart device detailing its identity, location, and a description of the

services it provides; this representation is an effective, lightweight

method by which the smart device advertises its presence and capabilities

to a composing platform in a universally parsable format. Fig. 2.2

illustrates a hypothetical service composition using Business Process

Model and Notation (BPMN), which will be explained later. The manner

and order by which services are composed plays a role in the trust

evaluation strategy. Basically, service compositions may be categorised

in two ways. First, the mix of different classes of services involved may

be considered. A service class is a logical unit into which SPs offering a

Fig. 2.2 A Business Process Model and Notation (BPMN) model of a

hypothetical service composition

Geolocation

Service

Tour

Information

Service

Weather

Service

Route

Planning

Service

Taxi

Bus

Sequential

Workflow

Parallel Workflow

Selection

Workflow

26

similar service may be grouped together. It is an abstraction of a service

type. Every service is a member of at least one service class. Secondly,

service compositions may also be classified according to the sequence or

workflow in which the services are ordered. We discuss both in detail in

the following sections.

2.2.2 Service Classes

In connection with the service class, there are two kinds of service

compositions: homogenous and heterogeneous. In a homogenous

composition, all the underlying services are from the same class. An

example of this would be an SR requesting a list of the top five taxi car

services within the vicinity. The middleware presents the user with the

services estimated to be the most trustworthy. From this list, the user

determines which taxi service to order, according to their subjective

preference. Another example would be an application that allows the SR

to request the assistance of some SPs in the collaborative download of a

large file by pooling their bandwidths. In these cases, it is a simple

collaborative application similar to those discussed in [67]; and a simple

trust model may be applied by the user to select the most trustworthy taxi

service. The only function of the middleware, in this case, was to reduce

the number of potential service providers that the SR had to directly

evaluate from, say, twenty taxi services to just five. It is important to note

that each service class is a self-contained collaboration context, to which

a suitable IoT trust model may be applied in selecting the most

trustworthy SPs.

In a single-service trust model – such as used in a monolithic service - the

trust evaluation is performed by nodes on one another. A trustor node

evaluates trustee nodes based on their service performance and quality in

27

line with the agreed trust parameters of the collaborating context and

weighted by the trustor’s subjective preferences. The trust score of the

service is equivalent to the trust score of the node; there is no functional

difference between a node and its service, as the nodes are assumed to be

offering only one service of the same type. A distinction is made between

the node (smart thing or device hosting a service) and the underlying

service that it provides in a composition because we assume a node may

host several services that it may provide to different compositions at

various times. It may even provide multiple services of different classes

to the same composition. Therefore, the trust scores are assigned to each

underlying service rather than the node, and this is what is implied

whenever the trust score of an SP is mentioned. The reason for this is that

the provision of a good service in one class by a node or device does not

necessarily mean the node will provide a similar level of performance in

another class, although the node may not be malicious. Therefore, the trust

model must distinguish between truly malicious nodes and other nodes

which are benevolent but perform ineptly in one service class [30].

In a heterogeneous composition, the underlying services are mixed and

matched from different classes, such as the composition of a geolocation

service and a weather forecast service. In this scenario, the trust model

must identify the most suitable SPs within each service class required for

the service composition. The SPs are chosen based on their scores on

relevant parameters and in line with the SR’s subjective preferences. It is

evident that heterogeneous compositions have far much more applications

in the IoT than homogenous ones. Consequently, they are the major focus

of service composition algorithms. As noted earlier, a node may

simultaneously offer multiple services from more than one class. In such

cases, there may be conflicts between the services which could lead to the

28

degradation of the performance of some or all the services. For example,

there might be a delay between the halt of one service and the instantiation

of the next service. Also, there are energy and network implications.

These are discussed in [10], where the authors introduce an algorithm to

solve this problem in an energy-efficient manner. It is assumed that

devices are involved in only one composition at a time, although they may

provide multiple services to that composition. If there is a decrease in the

QoS of one of the simultaneously provided services, the trust model should

detect and adapt to this change by reassessing the most suitable SPs within

that service class. Presumably, there is some incentive for the IoT devices

participating in the composition. Therefore, the devices would be

configured to provide services in such a way that the reward is maximized.

A suitable trust model would ensure that this maximization is subject to

the provision of an optimal service level required for the satisfactory

fulfilment of the SR’s requests.

2.2.3 Service Workflow

The workflow refers to the order in which services are performed and

composed. Generally, there are three basic types of workflows, which

may be used in any combination. First, it may be a simple case of

selection, where the SR receives a list of SPs along with their trust ratings.

The SPs may not be from the same service class. Take an example of a

user visiting a smart city for the first time. On receiving beacons about a

special attraction taking place later that day, the user (the SR) queries a

trust model for the top three ways to get to the concert at a certain time

and from a certain location. The SR may receive a response listing a taxi

service, a shared-ride service, and a rent-a-cycle service, depending on

the parameters specified by the SR, and then chooses from the offered

29

options. On receiving the choice of the SR, the trust model then proceeds

to select the most suitable SP in the service class specified by the SR’s

choice. As can be seen, this is an interactive session between the user and

the middleware. Rather than automatically selecting the best SP from

across these service classes, the SR makes the decision on which mode of

transportation to use. The initial response of the middleware may contain

other relevant contextual information – such as the price range, average

wait times, and the safety index – on each of these service classes, thereby

assisting the SR in making more robust decisions.

Services may also be composed in a parallel workflow, where two or more

SPs simultaneously provide the same or different services. As an

example, suppose a user-bot (SR) requests all the available weather

information for a specific location. On receipt of the request, the

middleware selects and retrieves the relevant information (such as

temperature, pressure, relative humidity, and wind direction) from the

most trustworthy SPs in each service class associated with the weather

data. This information is then aggregated and returned to the SR. The

collaborative download application previously mentioned would also

require a parallel workflow, since all the SPs would be downloading

different byte ranges of the same file concurrently. A parallel workflow

could also be used where the SR concurrently requests information about

a topic which is subjective by nature. For example, suppose an SR queries

the middleware to return a list of the best attractions in the city. Then,

three different SPs could be queried to provide tour information service,

and an aggregate of the responses could be returned to the SR. This

information could be used to initiate another service request, depending

on the SR’s interest.

30

Thirdly, services may be composed in a sequential workflow where the

results from one service are provided to the next and so on. For example,

a user requests the relative humidity at a street address. The address is

inputted to a geocoding service which returns the geographical

coordinates, which are in turn inputted to a weather type service providing

relative humidity information. The results of the second service are then

returned to the SR. Unlike the other workflows, SPs cannot respond to or

fulfil service requests concurrently in a sequential workflow. However, in

most applications of IoT service compositions, this would be the most

occurring workflow; microservices would often process the results of

other services and then deliver the results to yet another service in the

fulfilment of the user’s request. A sequential workflow also makes it

possible to transparently mix services (and other workflows) in innovative

and resourceful ways. For example, a service composition workflow may

contain a selection workflow, then execute services in parallel based on

the user’s response, and provide the output of those services to another

service for processing before delivering the results to the SR. An example

of such a complex workflow is illustrated in Fig. 2.2. In this example, a

geolocation service returns the coordinates of the SR’s location to the

weather and tour information services, which are composed in parallel.

The aggregate information from both of those services is used to derive

the best place in the city to visit under the prevailing weather condition.

This information is inputted to a route planning service, which requires

the SR to select either bus or taxi as the preferred mode of transportation.

Therefore, this example contains all three kinds of workflow. It is also

possible to have cascading service compositions, where a service

composition functions as an underlying service itself in a higher-order

composition.

31

2.2.4 Consensus Mechanisms

Given the distributed architecture and heterogenous nature of IoT, the

middleware layer may implement a consensus mechanism to ensure

integrity and reliability in the system [68], [69]. This is particularly

necessary where multiple trusted SPs provide different values for the same

data point such as temperature, or varying workflows for the same service

composition. It will be required to decide which data point is the most

accurate, and to agree on the best workflow among suitable alternatives. It

is important that the mechanism chosen must be resilient. Specifically, it

should be byzantine fault tolerant, ensuring integrity and agreement

always [70], [71]. Also, the characteristics of an IoT platform (such as

requiring low energy and computation overhead) must inform the choice

of a consensus mechanism. Given that participation is dynamic (SPs and

SRs can join or leave the network at will) and the platform is decentralised,

an ideal consensus protocol will be permissionless, encourage direct

participation in consensus formation from the majority of nodes, and be

resistant to sybil attacks.

Recently, blockchains have been increasingly utilized as middleware

layers for service compositions in IoT applications [72]–[75] and in trust

management systems [76]–[78]. Several consensus mechanisms have

been proposed for blockchains since it was first described in 2008 [79],

the most popular of which is the Proof of Work consensus mechanism,

followed by Proof of Stake protocols [80]–[83]. Neither of this is suitable

for IoT applications due to high energy usage in the former [68] and the

tendency for super nodes (which in turn decreases decentralization of the

network) in the latter [69]. However, other consensus mechanisms exist

that may be more suitable, some of which have been implemented for IoT;

32

these include Tangle [84]; Proof of Comprehensive Performance [85];

Proof of Authority [86], [87]; Proof of Personhood [88]; Proof of Identity

[89]; Proof of Reputation [90]–[93]; Proof of Benefit [94], [95]; Proof of

History [96]; Proof of Elapsed Work [97]; Proof of Space (or Capacity)

[69], [98]; and some variants of Byzantine Fault Tolerance consensus

mechanisms [70], [71], [82]. Conversely, some authors have proposed

using trust-based consensus mechanisms in blockchains [99]–[102]. In

this thesis, details of the middleware are generally abstracted and only

briefly highlighted, in line with the research scope.

2.2.5 Existing Trust-Based IoT Service Composition Models

Only a few trust models for service composition exist in the literature.

This is due, in part, to the complexity of modelling trust in a decentralized

manner [29]. Moreover, no previous works have provided methods for

transparent trust composition and decomposition in the IoT. Existing

models measure trust mainly on social trust parameters, such as

friendship, honesty, cooperativeness and kindness, based on direct

observations and recommendations [17], [32], [35], [103]. The reasoning

behind this modelling paradigm is the notion of the “social” nature of

service oriented IoT applications. Hence some social characteristics of

human relationships are inaccurately applied and modelled in the IoT. It

is important to observe that the social nature of the IoT is much different

from human social interactions. In the IoT, the focus is much more on the

ecosphere of humans, the environment, and smart things. Users

interacting with services need not have a relationship with the devices

providing such services, or their owners. Depending on the kind of service

being provided, the SRs may not need to be co-located or share the same

community of interest with SPs or their owners. The primary goal of the

33

SR in trusting a service or SP is the provision of a reliable, quality service

that meets the specification of the SR without posing any risks. Thus,

while a social interaction exists in the IoT, the relationships formed, and

the parameters for measuring those relationships, are based on the

required functional properties of the context of interaction; that is the

request and provision of a service. As such, the dominant type of trust in

this context is functional trust, which has been previously described and

contrasted with social trust.

Moreover, although trust is primarily a social concept, it is not reasonable

to directly apply the aspects of trust, as it applies in human relationships,

to evaluating computational trust without some conceptual adaptation

represented by mathematical models [28]. Even in human circles, the

meaning of trust must be implied from the context and depends on the

subjective assessment of the trustor [33], [34]. For example, the

contextual meaning of trust in the statement “I trust my doctor” is much

different from what is implied in the statement “I trust my spouse”. In

both cases, however, the trustor makes a quantifiable evaluation of trust

based on parameters that are relevant to the context and accounting for

any risks that may be encountered in interactions with the trustee. A

person trusts another person to be his or her doctor based on qualities the

trustor believes a doctor should have, and not on generic personality traits.

The trustor has a social relationship with the trusted doctor, but only with

reference to the trustee’s profession and the service context. The trustor

may trust this trustee in other spheres such as personal friendship, or as a

husband or wife. This introduces the notion of multivariate trust, where a

trustor has a trust relationship with a trustee in multiple trust contexts.

Hence, we conclude that even in human relationships, trust in many

contexts is predominantly functional, except for some cases of absolute

34

trust or distrust. Therefore, in adapting trust to the SIoT, the notions of

context and function must be preserved because they form the basis of

functional trust [104]. This does not preclude the overall subjective nature

of trust however, as trust scores on functional parameters may be

weighted according to the trustor’s subjective preferences.

In [22], a self-enforcing, privacy-preserving and decentralised TMS for

SIoT is proposed. The protocol makes use of non-interactive zero-

knowledge proofs in securing the network and for the reliable update of

trust scores. However, the cryptographic protocol used is computationally

intensive. While the computational overhead is manageable on systems

with adequate computing resources, it is impractical for use on IoT

devices which typically have limited computing resources. Also, the

model does not satisfy the trust resilience property as it does not adapt to

changes in the behaviour of a node during a trust session. Moreover, the

model neither assigns weights to different trust parameters to indicate the

trustor’s subjective preferences, nor includes trust parametrization.

Therefore, it cannot be applied to different contexts. In [105], a

trustworthiness inference framework for SIoT is proposed based on

familiarity and similarity trust, with contextual information based on time

and location. The model does not consider the notion of functional trust

or service contexts, which are important to guide service compositions. A

trust-based service architecture for IoT is proposed in [106], with

emphasis on improved efficiency of IoT services. However, the model

operates in a centralized cloud architecture, thus limiting its applicability

to service compositions in the IoT. Also, the model contains no notion of

trust parametrization or service contexts, neither does the model in [107].

In [108], a trust architecture for software-defined networks in the IoT is

proposed. The model uses reputation evaluation for trust establishment,

35

with no notion of objective, functional parameters on which trust could

be measured in a service-based application. In [64], a reputation-based

trust system is proposed for IoT applications. However, a rigorous

analysis conducted in [67] shows that reputation-based models used in the

IoT are vulnerable to trust-related attacks such as bad-mouthing, ballot

stuffing, and opportunistic service attacks, especially in a decentralized

architecture. A similar argument may be applied to the trust-enhanced

recommender system proposed in [66]. TMSs for dynamic trust

management for SOA-IoT applications and service management in SIoT

are proposed in [15], [31], [32]. The models produced are similar and

measure the trust between nodes based on similarities in friendship, social

contact, and community of interests. Functional constraints of the service

contexts are not considered. Likewise, the models do not account for an

SR’s preferences and requirements, which should guide the service

composition in an ideal trust model. Indeed, the models focus on

achieving “subjective trust” by utilising a recommendation score that is

primarily based on similarities and relationships between the owners of

the IoT devices. This is contrary to the actual social nature of service

applications in the IoT, which should be based on the service context.

However, the models do consider transparent trust composition for the

IoT based on the workflow, using a method derived from reliability/fault

analysis. Thus, the trust score of a service composed of two microservices

in sequence (series) is given to be the product of trust scores of the

microservices. This assumption does not hold in many service

applications, as discussed below.

It is possible to compose a service of high trust from microservices which

have low or average trust scores. Take the case of a pizzeria which

provides a pizza ordering service, makes excellent pizza but has slow

36

delivery times. As a result, it is given an average trust score by an SR that

gives significant weighting to delivery times. Suppose this SR also has a

trust relationship with a ride-hire service which has exceptionally low

wait times but rude drivers. The SR is uneasy for the duration of the ride

because of the driver’s continuous boorish remarks; therefore, the SR

gives a low rating to this service. Suppose that the two services are

composed sequentially with the pizzeria producing the pizza and the fast

ride-hire service delivering it to the SR. If the composition is done

transparently to the SR, then the composed service would have a high trust

rating, because the pizza is delivered faster, and the SR does not hear the

driver’s remarks. This is contrary to the results that the reliability formula

mentioned earlier would have produced: low trust X average trust = lower

trust. Also, reliability analysis states that the reliability of a group of

components is increased when the components operate in parallel, for

redundancy. However, this does not necessarily apply to trust

computation in IoT service composition. As an example, suppose that an

SR requests a list of the top attractions in a city, and results from the two

highly trusted information services are composed such that only items

which appear on both lists are contained in the response to the SR.

However, this may increase the response time and energy usage;

consequently, the SR may assign a lower trust score to the resulting

composed service.

From these examples, it is evident that to transparently compose trust in

a service composition, there must be a mechanism to elicit the weighting

that the SR assigns to each parameter, such that parameters irrelevant to

the service composition (such as the driver’s behaviour in the previous

example) would have little or no effect on the overall trust score. Thus,

there may be a slight change in context for a service composition,

37

dependent upon the workflow of the composition. Moreover, most of

these models do not consider the temporal nature of trust and its effect on

the decay of previously accumulated trust. It is necessary to track the

behaviour of SPs in relation to the functional trust parameters and to detect

and respond to changes over time. In summary, there exists a need for a

suitable trust model for service compositions in the IoT, which correctly

parametrizes trust, considers trust decay and provides mechanisms for

both transparent trust composition and decomposition in addition to other

relevant trust properties, which are enumerated in the next section.

2.3 Ideal IoT-Centric Trust Model

IoT applications generally consist of collaboration and service

provisioning [17]. Therefore, an ideal IoT trust model should provide a

balance between security, functionality and usability while considering

the constraints imposed by the limited resources available to most IoT

devices. Based on the previous work done in [26], [32], [67], [109], [110],

a list of suitable attributes for an ideal TMS for IoT are enumerated below:

1. Platform Consideration: IoT devices have low computing capabilities,

are pervasive and usually employ a decentralized architecture.

Therefore, a TMS for the IoT should be lightweight, resilient, scalable,

decentralized, and adaptable to different service contexts.

2. Trust as a Decision (TaaD): The concept of trust in the IoT is

essentially functional trust, and this should be modelled as a decision-

making process with the objective and subjective trust properties of

the trustor taken into consideration. Each trustor (i.e., SR) should be

able to decide the importance of a trust criterion or recommendation.

Thus, different trust values may be computed by different SRs on the

38

same node or service, depending on each SR’s subjective trust

dispositions.

3. Contextual Trust Parametrization: The TMS should incorporate the

necessary objective (quality of service, QoS) and subjective (social)

properties of each service class in the composition as trust parameters

so that the SR can make a well-informed trust decision as it applies to

the current contexts. This also ensures that the model is robust and

adaptable to different contexts.

4. Trust Persistence: Natural trust considers historical interactions in the

trust relationship, which are accumulated and utilized to make a trust

decision in the present. Hence, the TMS must provide an effective

means for persisting trust values, considering both the low storage and

decentralized architecture of IoT devices.

5. Trust Decay: Trust is temporal by nature. Stored or previous trust

values degrade gracefully over time. A suitable function to evaluate

trust decay should be included in the TMS.

6. Risk Mitigation: It should provide effective mitigation of self-

promotion, bad-mouthing, ballot-stuffing, opportunistic service, and

on-off attacks, as described in [17], [43], [104], [109]. The inclusion

of a robust recommendation and belief function in the TMS would

make it difficult for nodes to profit from malicious activities.

7. Trust Accuracy: This is a measure of how close the trust value

computed for a node is to the ground trust. The ground trust for a node

is the trust value that we would compute if we had perfect knowledge

of its behaviour. The TMS must have a high degree of trust accuracy.

39

8. Trust Convergence: This is a measure of how long it takes for the trust

value computed for a node to reach its ground trust and maintain it as

long as the node’s behaviour is consistent. The TMS should ensure

trust converges quickly.

9. Trust Resilience: This is a measure of the ability of the TMS to adapt

to changes in the trust community, such as an increase in the ratio of

malicious SPs to good SPs. An ideal TMS should be sensitive to these

changes and compute trust values in such a manner that it remains

accurate by quickly converging to the new ground truth values of the

affected nodes.

In addition to these, trust models for service composition in the IoT must

also possess the following requirements:

10. Transparent Trust Composition: The trust model must include

methods for estimating the trust score or trustworthiness of a

composed service appropriately, considering the trust scores of the

SPs, the service context, and the workflows involved in the

composition. This should be done transparently to the SR; that is, the

SR should not be aware of the internal details of the composition, or

of the underlying services.

11. Transparent Trust Decomposition: Ideally, the SR would give a trust

score after consuming the composed service. However, it has been

established that the SRs will not interact directly with, or even know,

the SPs in a service composition. Therefore, the TMS must incorporate

methods to decompose the trust score from the SR and utilize it to

update the trust scores of the underlying services in an impartial and

transparent manner.

40

The basic components of a TMS are illustrated in Fig. 2.3 and shall be

discussed in detail in the next chapter. The interactions of these

components form the basis of the models proposed in Chapters 3 and 4,

and these interactions shall be thoroughly explained in those chapters.

2.4 Chapter Summary

In this chapter, an extensive review of the existing literature on trust

aggregation, evaluation, and management for collaborative applications

and service composition in the IoT was documented. The concept of

computational trust was formalised, and key concepts were discussed.

Fig. 2.3 Core components of a TMS and their interactions

41

The achievements and shortcomings of previous trust models for IoT

contexts were detailed. The categories of service compositions were

analysed with respect to the classes and workflows.

Based on the studies conducted, the necessary attributes and requirements

for an ideal IoT-centric trust model were elicited and detailed. The rest of

this work follows on from this by proposing trust models for different IoT

contexts in accordance with requirements specified in this section. In the

next chapter, a trust model for collaborative IoT applications is proposed,

discussed, and evaluated.

42

CHAPTER 3 CTRUST: A DYNAMIC TRUST MODEL FOR

COLLABORATIVE IOT APPLICATIONS

3.1 Model Design and Analysis

CTRUST is proposed as a suitable trust model to evaluate and manage

trust between nodes in collaborative applications in the IoT. The trust a

node has in another is based on its assessment of their current and past

direct interactions and the recommendations it accepts from other nodes.

Trust criteria form the basis on which assessments are made, and a trustor

determines the weights of each criterion. A node can then compute trust

scores which it uses to choose which other nodes to collaborate with.

Trust scores are stored and are used to guide future interactions, although

their importance declines over time. The model consists of trust

assessment, decay recommendation and aggregation functions, all of

which are discussed in detail in subsequent subsections. A high-level

workflow of the model is illustrated in Fig. 3.1. The following gives an

overview of CTRUST:

1. Trust would be composed of one or more trust criteria (parameters)

relevant to a collaborating context. Each trust parameter could be

objective (QoS) or subjective (social) in terms of assessment. An

assessment of a node on a parameter is called a partial trust score.

2. A trustor would be able to assign weights to each trust parameter. The

weights indicate the relative importance of each parameter to the

trustor. Therefore, partial trust scores are weighted before trust

aggregation.

43

3. Trust would be propagated in a distributed manner, with no

intervening central authority. Each node stores its previously

computed trust values and may accept trust recommendations on

partial trust scored from other nodes.

4. A recommendation function is implemented to guide the degree of

acceptance of trust recommendations on partial trust scores. We call

this degree of acceptance belief change, and it is modelled based on

social characteristics.

Fig. 3.1 Flow diagram illustrating the basic steps involved in trust

computation in the CTRUST model

44

5. Trust scores decay over time based on a mathematically modelled trust

decay function. We also define the points at which previous trust has

decayed completely and when current trust has reached maturity.

6. A trust aggregation function determines how partial trusts are

aggregated to compute an overall trust score for a node. The

aggregation function chosen depends on the collaboration context. In

this study, we used a dynamic weighted sum method. Trust updates (on

partial trust scores) are event-driven and occur whenever nodes

interact with one another.

The model may now be defined in detail. Let C be the set of all possible

collaborating nodes under the current application or collaboration context.

T[C], the trust space over C, is then a sextuple expressed by the following

notation:

𝑇[𝐶] ≡ [𝑇𝑖𝑗 , 𝑃,𝑊𝑖 , 𝑉𝑖𝑗 , 𝐹, 𝑡1
2

(𝑖)] ∀𝑖, 𝑗 ∈ 𝐶 (3. 1)

Where

𝑇𝑖𝑗 is the trust score of node j as computed by node i;

𝑃 = {𝑝𝑖 , 𝑝2, 𝑝3, . . . , 𝑝𝑛} is the set of trust parameters or properties on

which each node in C is assessed by other nodes;

𝑊𝑖 = {𝑤𝑖(𝑝1), 𝑤𝑖(𝑝2),𝑤𝑖(𝑝3), . . . , 𝑤𝑖(𝑝𝑛)} is the set of weights on each

parameter in P, as assigned by i;

𝑉𝑖𝑗 = {𝑉𝑖𝑗(𝑝1), 𝑉𝑖𝑗(𝑝2), 𝑉𝑖𝑗(𝑝3), . . . , 𝑉𝑖𝑗(𝑝𝑛)} is the set of values denoting

node i’s assessment (partial trust score) of j on each parameter 𝑝 ∈ 𝑃;

𝐹 = 𝑓(𝑊, 𝑉) ≡ 𝑇𝑖𝑗 is the trust aggregation function; and

45

𝑡1
2

(𝑖) is the half-life of any partial trust score computed by i.

3.1.1 Trust Parameters

Our design follows a multi-criteria approach towards trust computation.

A trustor makes a trust decision based on multiple criteria. Each criterion

is a trust parameter. Parameters could either be objective or subjective.

Parameters are considered objective if they are verifiably measured. Such

properties include the speed of a transaction, reliability, rate of work,

proximity, cost of a service, stake in the collaboration, etc. If p is an

objective parameter, then for a node 𝑗 ∈ 𝐶, (𝑉𝑖𝑗(𝑝))
𝑡
 is approximately the

same if measured by any 𝑖 ∈ 𝐶 at instant t. Subjective parameters such as

honesty, cooperativeness or friendliness are assessed as perceived by the

trustor. Therefore (𝑉𝑖𝑗(𝑝))𝑡 does not have the same value from all 𝑖 ∈ 𝐶,

even if they all assessed j at the same instant, t. Therefore, the trust model

supports both QoS and social trust parameters, which means a greater

robustness and latitude of applications.

We do not explicitly specify the trust parameters in our model. This is

because the choice of which parameters to use depends on the

collaboration context and should be decided when C is set up. Suppose a

service composition with n collaboration contexts,𝐶1…𝐶𝑛 is set up. One

approach will be to populate the set P with all possible parameters for all

the contexts wherein the trust model will be implemented. Then the

weights of parameters which are not relevant to the current context can be

set to 0.

46

3.1.2 Parameter Weights

The weights determine how important a parameter is relative to the

overall trust score. Each node determines the weight of each parameter,

based on their current subjective opinions. As a result, two nodes may

have an equivalent value set, V, at a given instant, yet compute different

trust scores, T, for a third node. The weights are assigned such that:

𝑤𝑖(𝑝) ∈ [0,1]∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃 and ∑𝑊𝑖 = 1 (3. 2)

Even though set P is the same for every node in C, a node can eliminate

parameters that it does not want to consider by assigning them a weight

of 0. The weights can be dynamically adjusted by the trustor at any time

during a session of interactions. Nodes can update their record of set W at

any time, according to changes in their perceptions of relative importance

of each parameter. The dynamic weighting allows for more accurate

modelling of human trust. The relative importance of the factors that

determine the extent to which a person trusts another can vary greatly over

time. Similarly, the relative importance of collaboration criteria can vary

for each node from one session to another.

3.1.3 Partial Trust Scores and Aggregation

The set 𝑉𝑖𝑗 represents the normalised assessment of node j, by node i, on

each of the trust parameters in P. The collaboration context defines the

parameters, i.e. how they are measured and on what scale. Objective

parameters such as rate of work or network speed are well defined and

will be measured uniformly across C, while the measurement scale for

subjective ones such as friendliness may differ from node to node. Each

member of 𝑉𝑖𝑗 is a partial trust score as they determine the overall trust

47

score, 𝑇𝑖𝑗. The values are normalised to [0, 1] so that 𝑇𝑖𝑗 is also within the

same range, and the normalisation method must be defined in C.

Three factors account for any 𝑉𝑖𝑗(𝑝) at the current time: its previous value

based on past interactions; the current, direct assessment of j by i; and

indirect assessment of j by some other node k. These will be discussed in

detail later.

The trust aggregation function, F, specifies how the partial trust scores

are aggregated to compute 𝑇𝑖𝑗 and enables us to model trust evaluation as

a decision-making problem and apply multiple-criteria decision analysis

(MCDA) methods to solve it. In this scenario, a weighted sum function,

𝐹 = 𝑊 × 𝑉, is used. Therefore,

𝑇𝑖𝑗 =∑𝑤𝑖(𝑝𝑥)

𝑛

𝑥=1

× 𝑉𝑖𝑗(𝑝𝑥)∀𝑖, 𝑗 ∈ 𝐶, 𝑝𝑥 ∈ 𝑃 (3. 3)

It can be observed that the derivation of this function incorporates

objective and subjective properties of both the trustor and trustee.

Furthermore, our trust model allows for the aggregation function to be left

unspecified until the collaboration context is set up, which is expressed as

𝐹 = 𝑓(𝑊, 𝑉). This is important because the context should determine the

method by which partial trust scores are aggregated. Some contexts may

require a product of weighted scores, or a more complex function such as

Bayesian inference or regression analysis, to compute a trust value [109],

[111]. Therefore, it is best to leave the aggregation function unspecified

until the context is set up, as this makes the model robust and applicable

to more contexts.

48

3.1.4 Trust Decay

It is necessary to model the impact, over time, of previous trust scores on

the current trust values; this is achieved by introducing the concept of trust

decay. The trust score, 𝑇𝑖𝑗, gradually degrades over time when there is no

interaction between i and j. In the social world, the longer we are further

away from a person, the easier it is to distrust that person. This is so

because we are not sure whether they still retain the values for which we

admired them. Interactions help to re-evaluate our opinions of them on

these values, and serve to reinforce the trust relationship, or score.

Accurately modelling trust decay is exceedingly difficult, and there is

limited existing literature on the subject. The following assumptions seem

to hold true in the usual social context, and form the basis for the trust

decay function of our model:

1. As the trust formation depends on partial trust values on each trust

component, trust decay applies to these values and not the overall trust

score, which may not correlate with the trust decay rate. The reason

for this is that in the interval between interactions, the trustor’s

perception of the relative importance of some of the trust parameters

may have changed.

2. The rate of trust decay is almost entirely subjective. It depends on the

trustor’s willingness to trust and the length of time or number of

interactions the trustor requires to establish a node’s behaviour in the

present.

3. It is reasonable to assume that trust decays at an exponential rate in the

absence of interactions [112]. The longer the period of inactivity

between the peers, the greater the rate of decay.

49

4. When a new session of interactions is made in the present time,

previous trust decays with every new interaction. This is so because

the new interactions tend to form the trustor’s new opinions and

therefore, the trust score of the trustee. After a certain number of new

interactions, past trust values may no longer be relevant to trust

computation in the present.

The above assumptions provide the basis by which trust decay is

incorporated into our model. Let 𝑡1
2

(𝑖) be the duration required for a

partial trust score assigned by i to decay to half of its initial value, i.e. its

half-life. The decay function follows an exponential trend and is

represented by the following mathematical equations:

(𝑉𝑖𝑗(𝑝))
0→𝑡

= (𝑉𝑖𝑗(𝑝))
0
×
1

2

𝑡
𝑡1
2

(𝑖)

≡ (𝑉𝑖𝑗(𝑝))
0
× 𝑒−𝜆𝑖𝑡

≡ (𝜙𝑖)𝑡 × (𝑉𝑖𝑗(𝑝))
0
∀𝑖, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃

(3. 4)

𝜆𝑖 =
ln2

𝑡1
2

(𝑖)
≈
0.693

𝑡1
2

(𝑖)
(3. 5)

(𝜙𝑖)𝑡 = 𝑒
−𝜆𝑖𝑡 (3. 6)

Where

(𝑉𝑖𝑗(𝑝))0 is a partial trust score at the end of the last session of

interactions between i and j;

(𝑉𝑖𝑗(𝑝))0→𝑡 is the current value of (𝑉𝑖𝑗(𝑝))0 after time t of no interactions

between i and j;

 𝜆𝑖 is the decay constant for partial trust scores from i; and

50

(𝜙𝑖)𝑡 is the trust decay multiplier for node i.

The multiplier is the proportion of the partial trust score that has not

decayed after time, t, of no interaction. Equation (3.4) can then be

simplified and rewritten as:

(𝑉𝑖𝑗(𝑝))
0→𝑡

= (𝜙𝑖)𝑡 × (𝑉𝑖𝑗(𝑝))
0
∀𝑖, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (3. 7)

After an adequate number of interactions in a new session, the effective

proportion of (𝑉𝑖𝑗(𝑝))0 that determines 𝑉𝑖𝑗(𝑝) in the current session

becomes 0, according to Assumption (4) above. At this point, the trust has

attained maturity in that session. Trust maturity is discussed further in

Section 3.1.6.

3.1.5 Trust Recommendations and the Belief Function

There may be times when node i is about to start a new session of

interactions with node j, and it is currently in a session with another node

k, which has some assessment on j. Node i may make use of this

assessment to make an initial update of j’s partial trust scores prior to

initiating interactions. This is called an indirect assessment, or a

recommendation, on j by i, through k. The drawbacks of trust systems

solely based on reputation or recommendations (see Section 2.1.2), must

be avoided. A recommendation belief function is therefore required to

determine the degree to which any node i accepts k’s recommendations

on j. The following premises should be taken into consideration to model

the belief function accurately:

1. The purpose of recommendations is usually to guide i as it attempts to

initiate or re-initiate interactions with j. They either make the trustor

initially more sceptical or more open to trusting j. After interactions

51

are made, k’s indirect recommendations are quickly discarded, as i’s

direct assessment forms the basis of the trust score.

2. Recommendations do not necessarily affect i’s trust relations with k,

even if they are proven to be incorrect. k might have been misinformed.

It follows then, that the best way to prevent good and bad-mouthing

attacks is to minimise the effect of indirect recommendations on a

partial trust score, and hence, 𝑇𝑖𝑗.

3. Let the change between k’s current recommendation and i’s previous

partial trust score of j on some parameter be Δ𝑉. The smaller the

absolute proportion of change, |
Δ𝑉

(𝑉𝑖𝑗(𝑝))0
|, the easier it is for i to accept.

This stems from the observation that in a social context, we are less

likely to receive a recommendation about a person if the

recommendation represents a significant difference from previously

observed behaviour.

4. The longer the time t that has passed since the last session of

interactions between i and j, the more open i will be in accepting k’s

recommendation. This is because of trust decay; the longer the time t,

the smaller the proportion, 𝜙𝑖, of previous trust left. The value of trust

is a function of time; the extent to which we would believe a value that

implies a significant change in a person’s behaviour depends on the

time that has elapsed since our last interaction with them.

5. The greater the value of 𝑇𝑖𝑘, or more specifically 𝑉𝑖𝑘(𝑝), the more

likely we are to receive the recommendation of k on j on some trust

parameter, p. In a social context, we more readily believe

recommendations on a subject from someone who we rate high on the

same subject.

52

The belief function can be then derived mathematically from premises (3)

– (5) above:

Belief, 𝛽𝑖𝑗←𝑘 ∝ (1 − |
𝑉𝑘𝑗(𝑝) − (𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|)

𝛽𝑖𝑗←𝑘 ∝ (1 − 𝜙𝑖)

𝛽𝑖𝑗←𝑘 ∝ 𝑉𝑖𝑘(𝑝)

(3. 8)

⇒ 𝛽𝑖𝑗←𝑘 =

𝐾(1 − |
𝑉𝑘𝑗(𝑝) − (𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|) × (1 − 𝜙𝑖) × 𝑉𝑖𝑘(𝑝) (3. 9)

Where K is a constant. The value of K does not need to be verified. Since

the change belief is a relative indicator of how much a recommendation

is to be accepted, the exact value of K need not be known. Therefore, we

set K = 1 so that at the beginning of a new session of interactions between

i and j:

𝛽𝑖𝑗←𝑘 = (1 − |
𝑉𝑘𝑗(𝑝)−(𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|) × (1 − 𝜙𝑖) × 𝑉𝑖𝑘(𝑝) (3. 10)

This belief function indicates how much node i is willing to accept a

recommendation on j from k, i.e., the weight i assigns to that

recommendation. It therefore determines i’s indirect assessment of j

through k, on parameter p, which is expressed as Ψ𝑖𝑗←𝑘(𝑝), and defined

by:

Ψ𝑖𝑗←𝑘(𝑝) = 𝛽𝑖𝑗←𝑘 × 𝑉𝑘𝑗(𝑝), 𝑗 ≠ 𝑘 (3. 11)

A node cannot provide recommendations on itself. This comprehensively

defends against self-promotion attacks. Once new interactions begin

53

between i and j, then according to premise (1) above, 𝛽𝑖𝑗←𝑘 = 0. This

renders any good-mouthing or ballot-stuffing attacks by k useless.

Together with the trust decay function, it also provides an effective

defence against opportunistic or on-off attacks by k. This is so because i

does not accept recommendations on nodes it is currently interacting with.

Also, a node performing random attacks simply degrades the partial trust

score it receives from i. Thus, a malicious node stands little chance to gain

by providing a bad recommendation or service to i, and its ability to

impact 𝑉𝑖𝑗(𝑝) is severely limited.

3.1.6 Trust Update and Maturity

Let 𝐷𝑖𝑗(𝑝) be i’s direct assessment of j on trust parameter p in the current

session of interactions. The method of assessing 𝐷𝑖𝑗(𝑝) depends on the

parameter. It could be a rate of work done, which can be computed simply

based on observation. It could also be a co-location score, for which a

formula needs to be applied. Generally, the method for evaluating direct

assessments must be specified for each parameter when designing the

collaboration context.

To update trust reliably, the concept of trust maturity must now be

introduced. In addition to direct assessments, previous trust scores and

recommendations impact the current value of any partial trust score, and

we have described trust decay and recommendation belief functions for

these. There should be a point in time at which direct assessments are

sufficient to compute trust scores. Let Γ be the number of interactions

required to reliably measure 𝑉𝑖𝑗(𝑝) based on 𝐷𝑖𝑗(𝑝) only. After Γ

interactions between two nodes in any session, the trust score computed

by one on the other attains maturity or equilibrium. In other words, trust

54

maturity is a state that is attained in a collaborative session when direct

assessments of the interactions between any two nodes are sufficient for

either node to accurately assess the other’s trust scores. At this point, past

trust between the nodes is assumed to have decayed completely and

recommendations are not considered in computing the trust scores of

either node.

The value of Γ depends on the collaboration context, C, and must be

determined by initial experiments. Once this value has been determined,

it can be used in future sessions to weight previous trust scores. For

example, after Ζ interactions between i and j in a new session, the effective

proportion of a previous trust score, (𝑉𝑖𝑗(𝑝))
0
, is given by:

𝜇𝑖 = max((1 −
𝑍

Γ
) × (𝜙𝑖)𝑡, 0) (3. 12)

In other words, once 𝑍 ≥ Γ, 𝜇𝑖 = 0 in accordance with Assumption (4) in

section 3.1.4. At the start of a new session of interactions between i and j,

the initial value of 𝐷𝑖𝑗(𝑝) = 0.5. This is the midpoint between complete

distrust (0) and perfect trust (1). It is taken as the neutral trust value in the

absence of any information. It is also the default assessment value that is

used for computing trust scores for a node with which i has had no

previous interactions.

We have now discussed all the three factors needed to compute 𝑉𝑖𝑗(𝑝) at

current time, (𝑉𝑖𝑗(𝑝))
𝑡
. Let 𝐺 ⊆ 𝐶 be the set of nodes currently in a

collaboration session with node i. Suppose there are s nodes in G,

𝐺(1)…𝐺(𝑠), that have a recommendation on j, then:

55

(𝑉𝑖𝑗(𝑝))𝑡 =

{

 𝐷𝑖𝑗(𝑝)+(𝜙𝑖×(𝑉𝑖𝑗(𝑝))0)+∑ Ψ𝑖𝑗←𝐺(𝑥)(𝑝)

𝑠

𝑥=1

1+𝜙𝑖+∑ 𝛽𝑖𝑗←𝐺(𝑥)(𝑝)
𝑠

𝑥=1

𝑍 = 0

𝐷𝑖𝑗(𝑝)+(𝜇𝑖×(𝑉𝑖𝑗(𝑝))
0
)

1+𝜇𝑖
𝑍 > 0

,

∀𝑝 ∈ 𝑃, 𝐺(𝑥) ∈ 𝐺, 𝑗 ∉ 𝐺 (3. 13)

Table 3.1 List of CTRUST Model Properties

Symbol Description Type

𝑇𝑖𝑗 Trust value of j as computed by i, at the current

instance and context

Derived

𝑝 A trust metric or parameter by which trust is

assessed in the current context

Design

𝑤𝑖(𝑝) The importance of p as determined by i Input

𝐷𝑖𝑗 (𝑝) The direct assessment score of j, as measured or

perceived by i, on parameter p

Derived

(𝑉𝑖𝑗 (𝑝))
𝑡
 The trust score of j, as determined by i, on

parameter p, at time t

Derived

(𝑉𝑖𝑗 (𝑝))
0
 The trust score of j, as determined by i, on

parameter p, at the end of the last session

Derived

(𝜙𝑖)𝑡 weight of (𝑉𝑖𝑗 (𝑝))
0
in next session of interactions

after time t of no interactions between i and j

Input

(𝑉𝑖𝑗 (𝑝))
0→𝑡

 The real value of (𝑉𝑖𝑗 (𝑝))
0
 that determines

(𝑉𝑖𝑗 (𝑝))
𝑡
 at time t, in the current session

Derived

𝜇𝑖 Best defined as (𝑉𝑖𝑗 (𝑝))
0→𝑡

 / (𝑉𝑖𝑗 (𝑝))
0
 Derived

𝛽𝑖𝑗←𝑘 The proportion of a recommendation on j, from k,

that i is willing to accept

Derived

Ψ𝑖𝑗 ←𝑘(𝑝) The indirect assessment score of j on parameter p,

as received by i from k, based on 𝛽𝑖𝑗 ←𝑘

Derived

Γ Number of interactions in a session required to

reliably measure trust by direct assessment only

Design

N[C] Number of all nodes in the collaboration context

and community, C

Input

N[G] Number of nodes in C that are actively in

collaboration with i at the current instance

Input

56

Every property required to setup the CTRUST model has now been

defined. A brief description of each property is given in Table 3.1 for easy

reference. Fig. 3.1, as noted earlier, is a basic illustration of the trust

computation process in CTRUST which has been discussed in the

preceding subsections.

It has been shown that CTRUST supports multiple QoS and social

parameters. While CTRUST allows the aggregation function to be

specified according to the context, a dynamic weighted sum is used in this

case. Also, trust recommendations in CTRUST are propagated in a

distributed and decentralised manner. It has also been shown that the trust

update mode is event-based; i.e. trust scores are updated after every

interaction. In [43] and [109], trust computation models are classified

according to their trust composition, propagation, aggregation, update and

formation. Using that classification scheme and notation, CTRUST is a

QoS + Social / Distributed / Dynamic weighted sum / Event / Multi-Trust

with dynamic weighted sum. The performance of the model is evaluated

in the next section.

3.2 Model Performance and Evaluation

For evaluation, the trust model was implemented in a collaborative

download application. The aim here is to measure the performance of the

model in a real-word collaborative context, in terms of the trust properties

of trust accuracy, convergence and resilience. In turn, this will prove the

effectiveness of the trust composition, persistence, decay, and risk

mitigation methods applied in the model, as discussed in the previous

section. The trust properties of platform consideration (IoT) and trust as a

decision (TaaD) are implicit in the model’s design. Thus, it shall be

57

proven that CTRUST satisfies all the trust properties of a suitable TMS

for the IoT as enumerated in Section 2.3.

In the following subsection, the experimental collaboration setup is

introduced and explained. In Section 3.2.2, the trust parameters are

defined, and initialization values are provided for other model parameters

as required. The actual evaluation is discussed in Sections 3.2.3-3.2.5.

3.2.1 Context Overview: Collaborative Downloading

The concept of collaborative downloading (CD) has been addressed in

previous works [113]–[115]. Collaborative downloading is a peer-to-peer

(P2P) paradigm where the bandwidth of multiple devices is pooled to

download a resource. Usually, a peer requiring a resource requests that

the other collaborating peers assist to download the resource using their

Internet connection and bandwidth, as illustrated in Fig. 3.2. This is

especially useful where the peers or nodes are nomadic, and individual

mobile bandwidth is small relative to the resource to be downloaded. One

scenario is where the content to be downloaded is commonly requested

by the collaborating peers. Rather than downloading the resource

individually, they can collaborate so that each peer downloads partitioned

data ranges of the resource. These partitions can then be aggregated and

delivered to each peer.

Another scenario is in places where there is limited or no Wi-Fi, ADSL

or other broadband, and the only available Internet connectivity is the

more expensive and/or slower mobile 2/3/4 G network. Peers may

collaborate to save money and time in such cases. Access to a resource

server or WSN sink is also optimised using this technique. Rather than

making multiple connections to the same server (or sink in WSN) for the

58

same data ranges, each peer downloads a different data range at a time,

thus optimising the server or sink uplink.

In a CD system, nodes available to help with a download send out

broadcasts of their availability. These broadcasts are seen by all other

nodes in the same geographic vicinity. These nodes form the set C. A node

wishing to initiate a download (we call this node the initiator) will pick

collaborators from this set of nodes using some selection algorithm. The

selected nodes form the set G. The initiator sends out the URL of the

resource (workload) to be downloaded to these nodes. The workload is

divided into blocks. Each block is a range of bytes of the workload. The

blocks are distributed among each node in G using some work schedule

algorithm. The nodes transfer the completed blocks by uploading the byte

range downloaded as a file object to initiating device over the wireless

Fig. 3.2. Illustration of a collaborative download session

Collaborators download byte ranges of the requested resource and

transfer back to the initiator using a WLAN connection.

59

communication channel. Therefore, the CD application could be thought

of as a distributed download manager. When all the blocks have been

downloaded, the file objects are combined to retrieve the original

resource.

3.2.2 Collaboration Context Setup

We identified three criteria to judge the suitability of a node as a

collaborator in the CD context described above: its download speed,

reliability in successfully completing workloads and the level of security

risk it poses to the collaboration. Based on these criteria, we now define

the following three trust parameters to evaluate the CTRUST model in

this collaboration context:

1. Successful Completion Rate (SCR): This is a measure of the reliability

of a collaborating node. It is based on the number of times, in the

current session, that a node has successfully both downloaded and

transferred a work queue block back to the initiating node. In a new

session of collaboration, the direct assessment 𝐷𝑖𝑗(𝑆𝐶𝑅) begins at 0.5.

The initiating node keeps a cumulative count of the total number of

both assigned and successful blocks in the current session.

2. Cumulative Bandwidth Average (CBA): This is a measure of the work

speed of the collaborating node. It is determined by the average

bandwidth of a node, as measured by the initiator. It is cumulative over

the current session of interactions. The initiating node keeps a running

total of the total number of bytes and time taken, for each collaborating

node in the current session. The CBA is then normalised. At the

beginning of a new session of interactions the default value of

𝐷𝑖𝑗(𝐶𝐵𝐴𝑛𝑜𝑟𝑚) = 0.5 is used.

60

3. Inverse Risk Index (IRI): A malicious collaborating node may modify

blocks before sending them to the initiator. It may even just send a

block of the expected size, with all bytes set to 0 or 1. It may also try

to disrupt the CD session, by ignoring the work queue order, for

example. The introduction of a parameter to assess the nodes’

malicious intent is required to keep would-be malicious nodes in

check. Whenever some tampering or fraud is discovered, either in a

block marked as complete or in the work queue, the initiator marks

that block (or whatever block the malicious node is currently

downloading) as a bad block and updates 𝐷𝑖𝑗(𝑆𝐶𝑅) to reflect the risk

that the node poses. IRI is cumulative over a session. As usual, the

initial value of 𝐷𝑖𝑗(𝐼𝑅𝐼) at the beginning of a new collaboration

session is 0.5.

These parameters were considered by the proposer to be the most

important functional parameters in a collaborative download context. For

any context, a decision must be made to determine which functional

requirements may serve as trust parameters. This is an initial step in

setting up the collaboration context without which the trust model cannot

be implemented.

We now proceed to compute (𝑉𝑖𝑗(𝑝))
𝑡
 as follows. If there has been no

previous interaction between i and j, and there are no recommendations

on j from any of the other collaborating nodes, then (𝑉𝑖𝑗(𝑝))
𝑡
=

 (𝐷𝑖𝑗(𝑝))
𝑡
. At the end of a session of interactions (which is one download

session), the final computed value for (𝑉𝑖𝑗(𝑝))
𝑡
 becomes (𝑉𝑖𝑗(𝑝))

0
for

the next collaboration session. Indirect assessments are handled as

described in section 3.1.5. Once the initiator has set the weights for each

61

parameter, 𝑇𝑖𝑗 can be computed as described in section 3.1.3. The results

of the simulation are discussed below.

We set up the collaboration community with size, 𝑁[𝐶] = 10 per session.

Also, the maximum number of nodes the initiator i collaborates with at

any time, 𝑁[𝐺] = 5, except where it is necessary to increase the group

size to illustrate a point. An example of such case is the speedup

illustration in Fig. 3.3 that will be explained later. In this experiment, we

assumed that the subjective utility function of the initiator is linear and

that all parameters are of equal importance. Therefore, we used an equal

weight for all the parameters, i.e. 𝑤1 = 𝑤2 = 𝑤3 =
1

3
. In each simulation,

there were 60 download sessions of interactions. The default trust value is

0.5. In simulating the behaviour of nodes with respect to the parameters,

nodes are randomly set up such that they tend to complete anywhere

between 50-100% of the blocks assigned to them. The same goes for block

tampering or risk. A random average bandwidth between 0.5B to 1B is

assigned to each node. The performance of the model is discussed in the

following subsections.

3.2.3 Utility of the Model in Collaboration Context

The aim of the collaboration is to increase the download speed of a

resource. Fig. 3.3 illustrates the speedup achieved. To understand the

effect of the computing and time overhead expended on node selection,

we run two different modes of CTRUST. In the first, the initiator utilises

the nodes selected at the beginning of a session until the end. In the

second, after a trust update of a node, the initiator decides whether to

continue with that node, or to check [C] for another known node with a

higher trust score. Trust update is triggered by the event of change to the

62

status of a block; that is, whenever a block is returned to the initiator. This

second mode is an adaptive mode, which we call CTRUST-A. For

comparison, we run another simulation with the same group of nodes but

selected randomly. In this experiment N[C] = 10, that is the maximum

number of nodes available for collaboration.

Fig. 3.3 Plot of Speed-up against different group sizes, N[G]

This shows the download speed-up achieved using either modes of

CTRUST for node selection compared to a random selection of nodes.

Table 3.2 Two-Sample T-Test Comparing Session Speeds Obtained

Using CTRUST and Random Modes for Node Selection

Random

vs.

CTRUST

Random vs.

CTRUST-A

CTRUST vs.

CTRUST-A

Observations 60 60 60

P value at
(α=0.05)

1.27E-17 3.77E-23 0.0516 (lowest
value obtained)

63

We observe that even when the utilization level is up to 70% of the nodes

in such a small community (i.e. N[G] = 7), there is still a significant

improvement in the speedup achieved when nodes are selected based on

the trust model as opposed to randomly. Beyond this point, i.e. if

N[C]/N[G] > 0.7, then the initiator has limited ability to discriminate

based on its preferences, since it can reject only 30% or less of the

available nodes regardless of their trust scores. As a result, the impact of

the trust model on speedup rapidly decreases. When N[G] =N[C], no

selection takes place since all the nodes in the collaboration community

are being utilised for downloading. Thus, there is no difference in speedup

when N[G] = 10, as can be seen in Fig. 3.3.

The speedup achieved is comparable to the results that were obtained in

[113], with the added advantage of trust. We observe that even with the

extra computation involved, CTRUST and CTRUST-A outperform the

random selection in speedup. A two-tailed test also shows a significant

difference in the overall average speed obtained per session between

random selection and CTRUST, as shown in Table 3.2. Hence, we

conclude that incorporating the trust model into the CD protocol does not

negatively impact on the performance of the protocol. The difference in

speedup over the course of a session between the two modes of C-Trust

is statistically insignificant. However, CTRUST-A computes fresh trust

scores after each interaction. Therefore, this mode is more sensitive and

adaptive to changes in node behaviour within a session. This adaptability,

known as trust resilience, is a desired property and is evaluated below.

For this reason, CTRUST-A is the default mode used in our experiments.

64

3.2.4 Evaluating Trust Model Accuracy and Convergence

We now compare the trust scores obtained by the model to the ground

truth status, and how long it takes to converge to ground truth status. The

ground truth status is obtained by computing what the trust score should

be based on the randomly assigned nodal characteristics. It is the truth

value that would be assigned to the node if the trustor had perfect

knowledge of its behaviour. This comparison is important because it

shows the effectiveness of the model in accurately estimating

trustworthiness of nodes in a reasonable time. The results obtained are

presented in Fig. 3.4-3.6.

The results show that the trust value of the node being assessed converges

to the ground truth status after about 250-300 interactions. This number,

Fig. 3.4 Convergence of SCR to ground truth.

65

though seemingly high, is to be expected. This collaboration context

requires a short timeframe for each interaction. Therefore, a relatively

high number of interactions would be required to accurately compute trust

values. Also, the fluctuations that can be observed are to be expected

because the behaviour of a node may be perceived differently due to

environmental or external factors. However, it should be noted that if the

node characteristic remains the same, the trust value will converge back

to the ground truth.

The large dip in Fig. 3.6 after initial convergence is due to the sensitivity

of the parameter (IRI) to slight changes in assessment. This is a property

of this collaboration context. Unlike in [35], where the trust value is

tracked over 100 hours, the results here show the trust value over the

interactions in one session. This is more logical in our opinion, as trust

Fig. 3.5 Convergence of CBA to ground truth.

66

scores are a function of interactions over time. For comparison, however,

the usual duration of one session is about 2 hours.

3.2.5 Evaluating Trust Model Resilience

Resilience is the ability of the model to adapt to changes in the

collaboration community and maintain a high efficiency under such

circumstances. The three major factors affecting this are bad

recommendations from other nodes, change in node behaviour, and

increase in the proportion of malicious nodes in the collaboration

community. By design, bad recommendations have negligible effect on

CTRUST, as explained in Section 3.1.5. Recommendations are only used

at the beginning of a new session of interactions with a node. A bad

recommendation will show only as a minor initial fluctuation on the

graph. The adaptive mode of CTRUST ensures this. Therefore, this is not

discussed further.

Fig. 3.6 Convergence of IRI to ground truth

67

CTRUST adapts to change in a node’s behaviour both within a session

and between sessions. The former has been illustrated in the previous

subsection. The results show that any nodes can reliably assess one

another without the necessity of recommendations after about 250 direct

interactions between them. Thus, trust maturity is reached after 250

interactions, i.e. Γ = 250. Fig. 3.7-3.9 illustrate the resilience of

CTRUST to changes in node behaviour across two sessions, using the

same node as in the previous simulations. The second session begins with

the 470th interaction, at which point 𝜙𝑖 = 0.8. For comparison, there are

two plots for each parameter; one with the trust decay function described

in section 3.1.4, and the other without it.

Fig. 3.7 Resilience of CTRUST to change in CBA

68

Fig. 3.8 Resilience of CTRUST to change in SCR

Fig. 3.9 Resilience of CTRUST to change in IRI

69

The results show that without the trust decay function, it takes much

longer to start to converge, and it may never reach the new ground truth

status. With the trust decay function however, the new ground truth is

reached after about 250 interactions, thus keeping the trust maturity index,

Γ, constant in the collaboration context. This proves the efficacy of the

trust decay function.

In Fig. 3.7, an early dip in the curve is noticeable. This is due to the nature

of the parameter being assessed and the behaviour of the node being

assessed. CBA is a cumulative measure of reliability. Therefore, if a node

achieves little in initially completing workloads, then it requires a steeper

curve to reach ground truth status afterwards. The ground truth value for

CBA, in this case, was 0.82. The assessed value dropped to 0.68 due to

some failed blocks in the simulation. The dynamic update method in

CTRUST-A implies that trust scores are updated after every interaction.

This accounts for the variations that can be seen in Fig. 3.7-3.9. In the

non-adaptive mode of CTRUST, the variations would balance out over

the course of a session of interactions. The dynamic mode is preferred,

however, because changes in the behaviour of collaborating nodes are

continuously tracked and this makes it easier to spot malicious behaviour

or a sudden drop in service level.

The initiator can define a minimum expected level of speedup to address

the problem of suspected increase in the proportion of malicious nodes in

the community, especially when the derived utility (speedup) suddenly

drops significantly. The initiator can also alter the relative weights of the

parameters to achieve its desired service level. For instance, if there are a

lot of failed blocks, the weight of SCR may be increased by 20%. The

same rule applies to every other parameter. If after two iterations the

service level is not met, then the initiator may never achieve its minimum

70

utility. The initiator should terminate the collaboration at this point

because its objective cannot be achieved.

Having shown that CTRUST meets the required criteria for an ideal trust

model for collaborative applications in the IoT, as outlined in Section 2.3,

the model is compared to related work in the next section.

3.2.6 Comparison to Related Work

A survey of trust models in the existing literature has already been

reported in Chapter 2. In this section, CTRUST is compared to the similar

models for trust management for IoT applications. This is done to show

the importance and distinction of the work, and the contributions it makes

to this field of study.

In Section 2.1, the limitations of existing trust and reputation models have

been discussed, particularly with respect to an overdependence on

recommendations – which are usually utilised unmodified - and the lack

of a trust decay function to account for the temporal degradation of trust

values. In CTRUST, however, there are separate recommendation and trust

decay functions, each of which takes the temporal nature of trust into

consideration. The recommendation function aggregates multiple

recommendations received around the same time on the same node into a

group recommendation score. Finally, we combine weighted values of

direct assessments, past trust scores and group recommendations to

compute present trust scores. This ensures that trust scores are weighted

once, and it mitigates the risks posed by a ring of bad recommenders.

Chapter 2 discussed the risks inherent in using trust models that are solely

based on reputation for IoT, such as [35], [44], [45]. CTRUST, on the

other hand, utilises both objective and subjective trust parameters in

71

computing trust values for nodes. The trustor also decides the relative

importance of each parameter. Hence, rather than having to use two

different trust models in an IoT application context where both QoS and

social trust must be considered, our trust model ensures we can compute

one aggregate trust value in such contexts. Our model also dynamically

adapts to changes in the trust community similar to [15], [32]. Both

models correctly state that bad recommendations make it difficult to reach

a new ground truth status quickly, as was also discussed in this chapter.

In those models, however, two different model parameters must be tuned

to achieve a high degree of trust resilience. The method with which we

manage recommendations in our model ensures that we achieve a similar

level of trust resilience without having to continuously tune system

parameters during interactions.

In most of the trust models cited in Section 2.1, the reputation of a node

providing a recommendation is the only factor that is taken into

consideration in deciding the weight of that recommendation. In

CTRUST, the recommendation function also considers how recently

direct interactions were made between the trustor and the node on which

a recommendation is being provided, and the difference between the past

trust value and the recommendation value for that node. This makes

recommendations more robust and effectively deters opportunistic service

attacks. We also determined the point at which the trust between two nodes

reaches maturity. When trust maturity is reached within a session, a node

can reliably compute trust values based on direct assessments alone. This

reduces both the processing and storage overhead involved in trust

computation, which is vital in the IoT platform where low computing

power is a major characteristic.

72

3.3 Chapter Summary

CTRUST models trust as a result-oriented metric evaluated on parameters

that are mapped to the functional requirements in the applied context. The

model was evaluated in a collaborative download context. The analysis

shows that the model is effective, and its trust estimation and performance

show a high degree of accuracy, reliability, and resilience. The model is

adaptable to several collaborative contexts. CTRUST effectively

addresses self-promotion, good-mouthing, ballot-stuffing, opportunistic

service, and on-off attacks. It requires little computing and energy

resources for trust computation.

CTRUST is flexible since several design parameters can be set up based

on the applied context. We implemented a robust trust decay function and

mathematically modelled the acceptance of recommendations based on

insights from social interactions. We were also able to determine the

number of direct interactions required to achieve trust maturity between

any two nodes. From the literature available to us, we conclude these are

novel and important contributions to the study of trust management in the

IoT. It should be noted that while the importance of trust-based security

in the IoT has been recognised, trust management for IoT is still evolving.

The proposed model, CTRUST, is a major contribution to this field, fills

important research gaps, and will provide a better well-rounded approach

to trust modelling in the IoT. This work has been published in the IEEE

Internet of things Journal [67]. In the next chapter, CTRUST is extended

to design a new model for trust evaluation and management in service

compositions.

73

CHAPTER 4 SC-TRUST: A DYNAMIC MODEL FOR

TRUSTWORTHY SERVICE COMPOSITION IN THE INTERNET

OF THINGS

In the previous chapter, CTRUST was proposed as an ideal trust model

for use in the IoT. However, the work focused only on collaborative

applications where the trustor (i.e. SR) directly requests and receives

services from SPs and can, therefore, provide a direct trust rating of the

nodes based on their performance, thus establishing a trustor-trustee

relationship. Even though service compositions are a special category of

collaborative applications, there is no direct trustor-trustee relationship,

meaning that the SR is unlikely to be aware of the identities or trust scores

of the SPs given that the detail of the composition is abstracted from the

SR. The general properties of an ideal trust model for the IoT, as enumerated

by Requirements (1-9) in Section 2.3, are satisfied by CTRUST. However,

no previous trust models meet Requirements (10-11) listed in the same

section. Thus, the model described hereafter encapsulates and

significantly extends the CTRUST model by fulfilling the latter

requirements, with a focus on dynamic trust management for service

compositions in the IoT.

4.1 Model Design and Analysis

Based on the study discussed in Sections 2.2-2.3, SC-TRUST is proposed

as a suitable model to guide compositions of IoT services. Underlying

services and SPs are assumed to have trust scores assigned to them prior

to the composition, based on their direct interactions with other nodes or

peers outside a service composition context. Just as in CTRUST, a trust

score is computed based on the objective measurement of a node’s

performance on functional parameters, which form the basis on which the

74

trust assessment is made. Trust criteria are modelled based on these

parameters; a trustor determines the weights of each criterion. Trust

scores are stored and are used to guide future interactions, although their

importance declines over time. SC-TRUST extends the trust assessment,

decay recommendation and aggregation functions of CTRUST to include

two novel functions for transparent trust composition and decomposition.

A high-level workflow of the model is illustrated in Fig. 4.1. A stepwise

overview of the service composition process can be thus described:

1. Underlying services are assessed on one or more trust criteria

(parameters) relevant to their service class. Each trust parameter could

be objective (QoS) or subjective (social) in terms of the assessment.

The assessment results are called partial trust scores.

2. An SR requests a request-granting service, which is the middleware for

composing the services and upon which SC-TRUST is built. Further

details of the middleware are abstracted; it is assumed that the

middleware is impartial, agnostic and can operate in a decentralized

architecture. A candidate platform would be a blockchain built for this

purpose, similar to those proposed in [72]–[76].

3. The middleware composes a service workflow pattern to match the SR’s

requests. The details of the mechanism for this are not relevant to this

discussion. It is sufficient to note that examples of candidate middleware

solutions exist in the literature [16], [19]. SC-TRUST can be integrated

into a suitable middleware platform.

4. After the service workflow is decided, a handover is made to SC-

TRUST to guide the actual composition process. For each service class

required in the composition, SC-TRUST identifies the parameters

relevant to the composition, to which the SR may assign weights.

75

5. The prior partial trust scores on the parameters identified in (4) for each

SP are aggregated according to the SR’s weight assignment, to calculate

a single trust score for each SP. The trust aggregation function in

CTRUST is utilized here. The most trustworthy SP(s) in each service

class is(are) selected according to this score.

6. The trust score of the composed service is estimated transparently

through a trust composition function of SC-TRUST based on the

workflow, relevant partial trust scores of the SPs, and weights assigned

by the SR.

7. Upon service consumption, the SR may provide a score on each

parameter; this is used to transparently update the posterior partial trust

scores of the SPs through a trust decomposition function of SC-TRUST.

Fig. 4.1 Basic processes involved for trust computation in SC-TRUST

76

8. The trust decay and recommendation functions of CTRUST are

inherited and utilized as required.

Let S be the set containing the SR and all the SPs available for

composition under the model. T[S], the trust space over S, is an octuple

expressed by the following notation:

𝑇[𝑆] ≡ [𝑇𝑖𝑗 , 𝑃,𝑊𝑖 , 𝑉𝑖𝑗 , 𝐹, 𝑡1
2

(𝑖), 𝐶, 𝐷] ∀𝑖, 𝑗 ∈ 𝑆 (4. 1)

Where

- 𝑇𝑖𝑗 is the trust score of SP j from the perspective of SR i;

- 𝑃 = {𝑝𝑖 , 𝑝2, 𝑝3, . . . , 𝑝𝑛} is the set of all trust parameters or properties

from every service class in the composition;

- 𝑊𝑖 = {𝑤𝑖(𝑝1), 𝑤𝑖(𝑝2),𝑤𝑖(𝑝3), . . . , 𝑤𝑖(𝑝𝑛)} is the set of weights on each

parameter in P, as assigned by SR i;

- 𝑉𝑖𝑗 = {𝑉𝑖𝑗(𝑝1), 𝑉𝑖𝑗(𝑝2), 𝑉𝑖𝑗(𝑝3), . . . , 𝑉𝑖𝑗(𝑝𝑛)} is the set of values

denoting SR i’s perceived assessment (partial trust score) of SP j on each

parameter in P;

- 𝐹 = 𝑓(𝑊, 𝑉) ≡ 𝑇𝑖𝑗 is the trust aggregation function;

- 𝑡1
2

(𝑖) is the half-life of any partial trust score computed for i, that is, the

time required for a partial trust score to decay to half of its original value;

- C is the trust composition function; and

- D is the trust decomposition function.

77

The CTRUST functions described in Section 3.1 apply to SC-TRUST;

therefore, the discussion in this chapter focuses on the extensions

provided by the model, specifically transparent trust composition and

decomposition, which are described in the subsequent subsections.

4.1.1 Transparent Trust Composition

It is necessary to provide an SR with a reliably estimated prior trust score

of the composed service requested, to assist the SR in making an informed

decision to accept or reject the service offer. The goal is to provide the SR

a guarantee of the minimum level of satisfaction derived from the

composed service. As such, this is not a trust judgement on the SPs

themselves; rather, it is an indication of the likelihood that the composed

service meets the SR’s requests. Upon consumption, the SR’s posterior

feedback may indicate a higher or lower level of satisfaction compared to

the prior estimated score. A reliable prior trust estimate should not be

higher than the posterior feedback from the SR. Therefore, a novel,

bottom-up approach is proposed to compose the trust value. The objective

here is to satisfice [116], that is to initially find a suitable composition

which meets the SR’s threshold of acceptability, even if it is not the best

possible composition. This is an optimal strategy because it reduces the

time, energy and computational costs involved in composing a service.

Then, based on the feedback from the SR, we can update the trust scores

of the SPs and compose a better service with every iteration. Thus, this

strategy leads to an optimal service composition eventually.

The set of prior partial trust scores of each selected SP j is denoted now

as 𝑉𝑗, and the set P contains all parameters for all service classes

represented in the composition. These sets may be stored in a

decentralised architecture, such as in a blockchain [74], [77], [78], where

78

similar composition platforms may access these values. The details of the

storage and retrieval mechanisms are not relevant to the model design at

hand. The SR assigns weights to each of these parameters to indicate their

order of relative importance. This could be implemented in several ways.

One way would be to assign a default weighting of 0.5 on a scale of 0 to

1.0 for each parameter. Then the SR can adjust the weighting of any

parameter as desired. Another method could be to request that the SR

provide pairwise comparisons or ratios on matched parameters (e.g. taxi

fare vs cleanliness, cleanliness vs vehicle emissions). Analytic Hierarchy

Process (AHP) methods can then be used to elicit consistent weights for

each parameter. Once the weights have been determined, we can proceed

to estimate the trust score of the composed service recursively, as

determined by the workflow. Each workflow is resolved to an equivalent

single service characterized by an appropriate set of partial trust scores.

The method by which this is done for each workflow type is discussed in

the following subsections.

4.1.1.1 Selection Workflow

In a selection workflow, the SR must select one SP from a group of two

or more SPs that are from the same or associated service classes and offer

similar services. Therefore, we know that this group can be represented

by the SP with that highest trust score, as this is the SP most likely to be

chosen by the SR. Once an SP is chosen, the services of the others are not

used (not at this level, at least) and therefore do not impact on the

composite trust score. Therefore, to resolve or simplify this workflow, we

determine the SP with the maximum prior trust score based on the partial

trust values on the same set of parameters, using weights assigned by the

79

SR. Let Q be the set of SPs from which a selection is to be made, and R

⊆ P be the set of parameters common to every member of Q. We compute:

𝑇𝑗 =∑ 𝑤(𝑝𝑥) × 𝑉𝑗(𝑝𝑥),
𝑝𝑥 ∈ 𝑅

 ∀𝑗 ∈ 𝑄 (4. 2)

Therefore, the set Q can be resolved to a single logical service that has the

equivalent trust characteristics (the same set of partial trust scores, V) as

the SP with the highest trust score as computed by the above equation.

Two or SPs may tie for the highest trust score. This does not affect the

resolution of the services, because the trust score represents the estimated

maximum utility that the SR may derive from the consumption of any of

such services. Unless there are other non-functional constraints, we can

choose the partial trust score set of any of these SPs for the equivalent

logical service. This set is represented mathematically by:

𝑉 ≝ 𝑉𝑗 , where 𝑇𝑗 = 𝑚𝑎𝑥({𝑇𝑙}𝑙∈𝑄) (4. 3)

4.1.1.2 Parallel Workflow

In a parallel workflow, multiple SPs provide services concurrently. The

SPs may be of the same or different service classes. Consider the case of

SPs of the same class (and therefore offering the same service). An

example of this would be a collaborative download session. If two SPs

have a score of 0.7 and 0.9 respectively on a trust parameter based on

bandwidth, then the average bandwidth would be 0.8. In this case, the

collective services provided by this group of SPs could be reliably

substituted by a single service with a partial trust score equal to the

average group score on each trust parameter.

Suppose that the SPs are from different service classes. For example, an

SR could request readings from a relative humidity SP and a temperature

80

SP simultaneously. In this case, the SPs could be logically replaced by a

single service that offers both services. This single service has a set of

partial trust scores that is given by the union of the sets of partial trust

scores of all the SPs. Where two or more SPs have a partial trust score on

the same trust parameter, the replacement service is assigned the average

(arithmetic mean) value of the scores on this parameter. This is true for

both cases above.

To formalise the above cases, let Q be the set of SPs in the parallel

workflow and R ⊆ P be the set of unique parameters for all the SPs in Q.

Then the set V for a single service to replace Q is given by:

𝑉 ≝ {
∑ 𝑉𝑗(𝑝𝑥)𝑗∈𝑄 ∧ 𝑜𝑗(𝑝𝑥)=1

∑ 𝑜𝑗(𝑝𝑥)𝑗∈𝑄
}
𝑝𝑥 ∈ 𝑅

𝑜𝑗(𝑝𝑥) = {
1, if 𝑉𝑗(𝑝𝑥) ∈ 𝑉𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑗 ∈ 𝑄, 𝑝𝑥 ∈ 𝑅

(4. 4)

Here, 𝑜𝑗(𝑝𝑥) is used to decide whether partial trust score 𝑉𝑗(𝑝𝑥) is in SP

j’s set 𝑉𝑗. Every value in 𝑉 is the average partial trust score computed

separately on each parameter 𝑝𝑥 in R from all the partial trust scores on

𝑝𝑥 collated from the SPs in Q.

4.1.1.3 Sequential Workflow

Every service composition can eventually resolve to a sequential

workflow. To understand how two microservices composed in sequence

may affect the prior trust estimation of the composed service, we study

two examples. First, suppose that we have a food delivery service

composed of a restaurant service class and a driver/delivery service class.

This is a sequential workflow. Assume that the restaurant service class

has two parameters, food quality and eat-in/indoor quality with a weight

81

of 0.65 and 0.35 respectively assigned by the SR in previous direct

interactions. The driver/delivery class has two parameters: politeness and

timeliness, with an equally assigned weight of 0.5 each. Suppose that the

SR requests a pizza; the pizzeria (SP) with the highest trust ratings is Alice

Pizzas with a food quality score of 0.9 and an eat-in score of 0.5.

Therefore, its individual trust score would be 0.65*0.9 + 0.35*0.5 = 0.76.

Similarly, the trust score for a selected driver with scores of 0.4 and 0.9

on politeness and timeliness respectively would be 0.5*0.4 + 0.5*0.9 =

0.65. Note that both the weights and trust scores are normalized in the

interval [0,1]. However, in delivering food, the politeness score of the

driver is not relevant as the SR does not interact with the driver. A similar

reasoning applies to the eat-in parameter. Therefore, the composed

service can be scored on two parameters: food quality and timeliness, to

which the SR now assigns weights of 0.6 and 0.4 respectively (the other

parameters are assigned weights of 0). Therefore, the estimated trust

rating of the composed service at this level would be:

0.6*0.9 + 0.4*0.9 = 0.9

The second example is somewhat more complex. Suppose that the SR is

visiting a new city and does not speak or understand the language of this

city. The SR is interested in a museum and wants a summary of Internet

articles about the museum translated to the SR’s native language. Two

microservices are required for the composed service: a summarization

service assumed to have accuracy and response time parameters; then a

translation service with an accuracy parameter. Suppose that the selected

summarization SP has prior partial trust scores of 0.7 and 0.9 on accuracy

and response time, respectively. The translation service has an accuracy

of 0.8. In this case, the overall accuracy of the composed service cannot

be reliably estimated to be greater than 0.7 prior to feedback from the SR.

82

The accuracy parameter is a shared parameter that simultaneously belongs

to two or more service classes in the composition. If the SR-assigned

weights are 0.7 and 0.3 for accuracy and response time respectively, then

the prior trust score of the composed service is computed as:

Min. (0.7, 0.8) * 0.7 + 0.9*0.3 = 0.76

Therefore, we can now define the trust characteristics for a single logical

service that is reasonably equivalent to two or more services in a

sequential workflow. Let Q be the set of all SPs in a sequential workflow

and R ⊆ P be the set of unique parameters for all the SPs in Q. Then the

set V of the single service is the union of all distinct elements which have

a non-zero weighting, taken from the sets of partial trust scores of all the

SPs in Q. Where two or more SPs each have a partial trust score on the

same (shared) parameter, the set V contains the minimum partial trust

score on this parameter. The minimum partial trust score is computed

separately for each parameter in R. This is represented mathematically by:

𝑉 ≝ {min ({𝑉𝑗(𝑝𝑥)}𝑗∈𝑄 ∧ 𝑜𝑗(𝑝𝑥)=1
)}
𝑝𝑥 ∈ 𝑅

(4. 5)

Having discussed the methods by which each type of workflow may be

resolved into and replaced by a single equivalent logical service, we can

apply them recursively as required until the whole composition is

replaced by an equivalent logical service that is defined by the appropriate

trust characteristics in its set V. Then the estimated trust score of the

composed service is equivalent to the trust score of this logical service

and computed according to the following equation, where 𝑤(𝑝𝑥) = 0 if

no weight is assigned to 𝑝𝑥 by the SR:

𝑇 =∑ 𝑤(𝑝𝑥) × 𝑉(𝑝𝑥)
𝑝𝑥 ∈ 𝑃

(4. 6)

83

We derive this estimation by resolving the chain of services, regardless of

its complexity, to a conceptual model consisting of a single logical service

that is an equivalent abstraction of the composed service. This model is

the view that the SR “sees” in interacting with the composed service. The

SR need not have any knowledge of the individual underlying

microservices. Thus, we have successfully composed the trust

transparently for the SR. Also, none of the SPs gains any knowledge of

either the SR or another SP from the composition process. Therefore, the

method is privacy-preserving and makes it sufficiently difficult for an

adversary to bad-mouth, ballot-stuff or perform on-off attacks. The SR

then gives a posterior trust evaluation after consuming the service. The

method by which this posterior score is transparently decomposed to

update the partial trust scores of the SPs involved is discussed in the next

section.

4.1.2 Transparent Trust Decomposition

The problem of transparent trust decomposition is inherent in the trust

composition model presented in the previous section; the SR consumes

and gives feedback on a single logical service based on the same

parameters from Equation 4.6. However, the composed service consists of

several microservices. Therefore, a method is required to reliably

decompose the partial trust scores given by the SR to the underlying

services in a manner that is both reasonable and impartial to all the SPs

involved. This should be done through a top-down approach while

persisting the logical view of the composed service to the SR and without

revealing any details of the underlying services. While this is a novel and

complex problem in the IoT, it is somewhat similar to the problem of

group assessment in education, which has been widely studied [117]–

84

[119]. Therefore, we analyse the composed service and adapt concepts

from methods proposed to assess individual contributions to group

assessments.

Some observations can be made from the studies cited above. First, group

assessments can be an effective method of assessment for both the

assessor (SR) and the assessee (SPs) and it is widely used in both formal

and informal education. It can increase coordination, cooperation, and

collaboration among the assesses while providing a straightforward way

for the assessor to evaluate the performance of all the group members at

once. However, it may give malicious SPs an inducement to “free-ride”

because the differential contributions of SPs are not acknowledged given

that everyone gets the same scores on the same parameters. Also, it may

de-incentivize high performing SPs because they may be punished for the

low performance of other SPs. This leads to a degradation in the quality

of experience for the SR because there is no motivation for SPs to provide

better services. Moreover, some SPs may refuse to offer their services to

the composition platform if they reckon that the cost of the services

provided is not commensurate with the returns they receive, in terms of

their trust scores. The focus of the studies in the literature has been to

develop techniques to maximize the stated advantages and eliminate or

minimize the problems raised.

Several methods have been proposed to improve the quality and fairness

of group assessments which may be classified into one of three broad

categories. First, the group members may be asked to provide a peer

assessment or feedback that details what was done by each member. This

can be used to assign marks or augment the assessor’s marks to create a

distribution of scores that is fairer to the group members than a general

score. This method cannot be adapted to our proposed context for several

85

reasons. One, it does not preserve the privacy and transparency of the

service composition. Secondly, because this is a type of recommendation,

it creates opportunities for malicious nodes to carry out bad-mouthing and

ballot stuffing attacks. Therefore, it is counterproductive as good and

reliable SPs could be unrewarded or even punished despite offering

quality services. Another method proposes that the group members

moderate the marks given by the assessor. This also is susceptible to trust

attacks previously mentioned and is not suitable for trust decomposition

in the IoT.

A third method assigns both a group score and an individual score to the

group members. The individual component is based on a separate piece

of work produced by each group member in addition to the group work.

Thus, the advantages of collaboration and group assessment may be

achieved while providing an incentive for the improvement of individual

performance. Similarly, the individual component punishes bad or low-

performing members, thus creating a fair distribution of the marks among

the group members. These characteristics make this method feasible for

use in our context. Moreover, the group members are not required to

provide feedback on their peers. Therefore, it is possible to maintain the

privacy aspects of the composition with this method. The same assessor

may evaluate and award both the group and individual components.

Although this method does not result in a perfect distribution of scores, it

creates a much fairer distribution that will be reasonably accepted by the

SPs. Therefore, it may be used to update their trust scores posteriorly. It

is also required that we do this transparently. Now, it must be determined

how this method can be adapted for trust decomposition in the IoT.

Oftentimes, only one SP per service class would be required in a service

composition. Also, each service class is usually differentiated by one

86

parameter, at least. Classes may share parameters. To express this

symbolically, out of n parameters on which trust is evaluated in a service

class, at most n-1 would be shared. This creates a method to give an

individual rating to an SP of the same class. Therefore, an SP j from any

service class would share at most n-1 trust ratings with another SP from a

different service class, and the rating for at least one parameter would

uniquely apply to j. Usually, this unique parameter of the class is also the

defining parameter that is likely to be regarded as the most important by

most SRs. In any case, this parameter would be relevant enough to be one

of the trust characteristics of the logical model of the service composition,

as derived in the previous section. It is reasonable to assume that the

subset of unique parameters of the logical model would carry a significant

fraction of the overall weight on trust estimation. Thus, it is reasonable

and appropriate to expect that these parameters would incentivize better

quality of service from good nodes and significantly lower the trust scores

of malicious nodes. Therefore, when the SR provides feedback on the

composed service, any score given on this parameter would only affect

the SP from that service class. If a distinction between the service classes

is ensured, then this method provides a reliable means to assign

differential trust scores to the SPs. The set of unique parameters, U⊆ P,

may be expressed mathematically by the following equation:

𝑈 ≝ {𝑝 ∶ 𝑝 ∈ 𝑃 ∧∑ 𝑜𝑗(𝑝)
𝑗 ∈ 𝑆

= 1} (4. 7)

Suppose that an SP adjusts its service provision such that it receives good

ratings on its unique parameters but bad ratings on the others. This is an

opportunistic service attack. However, the attack fails because the SP

destroys its own reputation as well with no overall gains. Our model can

also deter such attacks. First, the SP does not know the identities of other

87

SPs involved in the collaboration. Therefore, it cannot perform selective

attacks. Second, the middleware platform composing the service is a

“wholesale buyer” of services and interacts directly with the SP. Even

though the agnostic middleware platform does not provide trust ratings

on the SP, the SP cannot distinguish between a direct interaction from a

conventional SR (as in the cases covered by the CTRUST model) and the

interaction from the middleware (which appears as an SR to the SP).

Therefore, the SP cannot selectively attack service compositions because

it cannot tell whether its services are being utilized in a composition or

otherwise. If any malicious behaviour from the SP is detected, the SP is

removed from the service composition and receives a negative trust

feedback. This harms its reputation, making it unsuitable for any kind of

service provision in the future. Because SC-TRUST is built atop

CTRUST, it quickly converges to the ground truth of the nodes as we

show in the next section. Third, given that there are costs to service

provisioning and the SP cannot gain from malicious behaviour or disrupt

the composition eventually, a rational SP would be motivated to provide

good services.

On a shared parameter, the post-service trust score received from an SR

is decomposed according to the individual partial trust scores (given by

Equation 3.13 in the previous chapter) AND the composed partial trust

score on that parameter (as defined in Equation 4.5). Suppose 𝑉(𝑝) and

𝑉+(𝑝) are the composed and post-service feedback scores, respectively,

on parameter p. Then, the partial trust score of each SP sharing this

parameter is updated according to the following equation:

𝑉𝑗
+(𝑝) = 𝑉𝑗(𝑝) + (𝑉

+(𝑝) − 𝑉(𝑝)) ×
𝑉𝑗(𝑝)

∑ 𝑉𝑗(𝑝)𝑗∈𝑆 ∧ 𝑜𝑗(𝑝)=1

(4. 8)

88

Where 𝑉𝑗(𝑝) 𝑎𝑛𝑑 𝑉𝑗
+(𝑝) are the pre-service and updated partial trust

scores, respectively, for SP j on parameter p. Equation 4.8 utilizes a game

theory approach that de-incentivizes freeloading. This is achieved by

differentially penalizing each SP sharing the parameter if the post-service

score is lower than the prior estimated score. Given that the SPs have zero

knowledge of the partial trust scores of one another, a rational SP would

act to avoid the penalty by ensuring that the posterior score received on

the shared parameter is as high as possible. Also, given that an SP cannot

readily tell whether its services are being offered directly to a node or to

a composition platform, a rational SP would seek to avoid being penalized

so that its partial trust scores can remain high enough to be selected to

provide services in the future. This fosters cooperation and motivates each

SP to provide their best possible service.

The above discussion shows that the SC-TRUST model is privacy-

preserving and transparent to both the SP and the SR and can significantly

reduce the ability of either peer to perform maliciously. In addition to the

deterrence of the SP’s misbehaviour, SC-TRUST can also deter the

middleware platform from being biased or malicious. This is because

good SPs who have received good ratings from other nodes or platforms

would eventually decline to interact with a misbehaving middleware

platform. Therefore, the quality of its composed services would be low,

and SRs would no longer subscribe to its services, leading to a loss of

reputation and revenue. Given that there are other such composing

platforms from which SRs can request services, the provider of the

platform is sufficiently motivated to remain neutral and provide

trustworthy services.

Having described the SC-TRUST in detail, the next section evaluates the

performance of the model.

89

4.2 Model Performance and Evaluation

SC-TRUST was evaluated in a collaborative download (CD) application,

utilising a similar experimental setup to the one detailed in Section 3.2.2

but with a service composition approach, instead. The evaluation aims to

measure the performance of the model in a practical application and is

approached along two different strategies. In the first, we evaluate the

impact of the model on the level of utility gained by an SR. We compare

the performance of the trust-based composition to a random composition

and an SR-composed composition (that is, the SR directly shops for the

individual services). In the second, we evaluate three major trust

properties of the model, namely trust accuracy, convergence, and

resilience. We compare the results to those obtained in CTRUST.

Through this we show the efficiency of the model in service composition

applications, as well as the effectiveness of the model in mitigating trust-

related attacks. The model is privacy-preserving by design, as we have

shown in the preceding section.

Note that as pointed out in Section 2.2.4, there is a lack of existing work

on trust modelling for service compositions, so there is no other suitable

model for a direct comparison with SC-TRUST.

The purpose of experiments detailed below is to show that the trust scores

obtained by both transparent trust composition and decomposition are not

significantly different from the scores that would have been elicited if the

SR was in a direct collaboration with the SPs. Therefore, we show that by

utilising a robust trust model as SC-TRUST, the advantages of service

composition in the IoT can be achieved while mitigating the realisation

and effects of trust risks. Given that the model is based on CTRUST, it

inherits the verified methods of trust persistence, decay, and

90

parametrization. The trust properties of platform consideration and Trust

as a decision (TaaD) are implicit in the model’s design. We will show

that the trust composition and decomposition methods provide reliable

estimates of the trust values of an SP and approach the ground truth

values. Overall, we prove that SC-TRUST includes all the attributes

required in an ideal trust model for IoT service composition, as

enumerated in Section 2.3.

The simulation environment is largely the same as that used to evaluate

CTRUST in the preceding chapter except for a few changes required for

the service composition context. The hardware remains the same, but the

virtual environment used is Mininet, an emulator for prototyping

Software Defined Networks (SDN), running in VirtualBox. An emulator,

rather than a simulator, is used to better model the host and network

constraints expected in the IoT networks. Mininet was chosen because it

is already suited for SDN-type networks and is easily extensible for our

purpose. In addition, it is open source, written in python and well-

documented. This supports reproducibility of both the experimental setup

and results.

The composition process is as follows: first, an SR requests a CD session,

sending the URL of the file to be downloaded as input. Then the

middleware composes the services as follows: SPs which offer the

download services are selected through the trust management system. The

download services are composed in sequence with an aggregation service

offered by a different SP. The aggregation SP divides the resource into

workloads or blocks, verifies the downloaded contents, and checks for

errors or malicious modifications. Then, it aggregates the verified blocks

into the originally requested resource and sends the complete content to

the SR over the local network connection. The communication protocol

91

is managed by the middleware layer in a way that preserves the privacy

of the SPs. This setup is illustrated in Fig. 4.2.

In our simulation, there are 5 members of the aggregation service class,

from which one is selected per CD session. There are 10 members of the

download service class, from which a range of 3-5 SPs are selected for

each CD session. During a CD session, the aggregation SP may not be

changed, but download SPs may be removed and/or added to the

composition as required. The SPs are simulated using a uniform random

distribution such that their behaviour should yield a partial trust score

(that is, the ground truth value) in the range [0.5,1]. Thus, there is a

uniform distribution of malicious or underperforming SPs as well as good,

Fig. 4.2 Service composition for a collaborative download

This setup consists of one aggregation SP and three download SPs

working in parallel.

92

high-performance SPs. The simulation involves 100 such download

sessions.

In Section 4.2.1, the utility of the model is evaluated to determine the

accuracy of the transparent trust composition in SC-TRUST. Then the

trust properties (accuracy, convergence, and resilience) of the model are

evaluated in Section 4.2, and they show the effectiveness of the

transparent trust decomposition method utilized in the model.

4.2.1 Evaluating Utility Gain in SC-TRUST

The purpose of utilising multiple download SPs is to increase the

throughput, that is the speed at which the content is retrieved and

delivered to the SR. Therefore, a faster download increases the utility

gained by the SR. Fig. 4.3 illustrates the relative speedup (in comparison

to the SR’s average download speed) achieved for different cardinalities

of the set Q of download SPs. We compare the speedups achieved using:

(i) SC-TRUST in a service composition, (ii) CTRUST in a collaboration

context, as in [67] and (iii) a random selection of SPs in a service

composition. SC-TRUST achieves a similar speedup to CTRUST for each

group size. SC-TRUST performs marginally better than CTRUST

initially. This is due to the logistical overhead incurred by CTRUST,

because in a direct collaboration, the service requester must select the SPs

and compose the service directly.

As the session progresses, CTRUST slightly overtakes SC-TRUST in

terms of speedup. This is probably due to the recurring overhead involved

in communicating with the middleware layer. However, the difference

between both models is statistically insignificant at a significance level,

α=0.05, as shown in Table 2. Therefore, we can conclude that SC-TRUST

93

provides as much utility gain for the SR as CTRUST, while providing the

benefits of an automatic service composition. For example, using SC-

TRUST, the SR does not need to request and assess SPs directly. Also,

the SR does not incur energy and computation costs involved in running

a service composition, as these are shifted to and borne by the

middleware. Moreover, the SR does not need to keep a record of known

SPs but can rely on the middleware to select appropriate SPs according to

its service request.

Additionally, it is evident that the use of SC-TRUST increases the

speedup quite significantly as compared to a random selection. We

observe that SC-TRUST outperforms the random selection and that there

is a consistent increase in the speedup even when the utilisation level of

Fig. 4.3 Plot of Speed-up against varied sizes of the set Q of download

SPs working in parallel

The figure shows the speed-up achieved using SC-TRUST in a service

composition, compared to a random selection of SPs, or to CTRUST in

a similar collaborative context.

94

available download SPs is almost 80% (i.e. the number of selected SPs in

set Q is 8, which is denoted as n(Q) = 8). Thus, SC-TRUST selects the

most reliable SPs for service provision until there is no alternative.

However, once n(Q) >= 6, the speedup of the random selection begins to

sharply increase to match that of SC-TRUST and eventually a similar

speedup is achieved at n(Q) = 10. This is so because SC-TRUST

accurately selects the most trustworthy SPs first. Therefore, the marginal

increase in speedup reduces as n(Q) approaches n(S) (i.e. the total number

of SPs). This is because the random mode is more likely to select

trustworthy SPs, which were originally left out, as n(Q) increases. When

n(Q) = n(S), there is no difference in speedup between both modes, as the

trust model cannot perform any choice because (𝑛
𝑛
) = 1.

Therefore, given that the speedup achieved is comparable to the results

that were obtained in [67], [120] and [113], we conclude that the

transparent trust composition in SC-TRUST yields an accurate trust score

with a performance level equalling that of CTRUST. Also, utilising SC-

TRUST in a service composition increases the utility gained by the SR

with no significant overhead incurred, while providing the trust-based

security required for the realization of all the potential benefits of an SOA-

based IoT application.

Table 4.1 Two-Tailed Paired Sample T-Test Comparing the Speedup

Obtained Using SC-TRUST, CTRUST and Random modes for

Selection of SPs

SC-TRUST

vs. Random

SC-TRUST vs.

CTRUST

Observations 100 100

P value at

(α=0.05)

4.25E-14 0.053 (lowest

value obtained)

95

4.2.2 Evaluating Trust Model Accuracy, Resilience and Convergence

In evaluating the accuracy and convergence of SC-TRUST, it is necessary

to establish the ground truth. The ground truth value is obtained by

computing the trust score of an SP based on the perfect information of its

behaviour and trust characteristics. This information is obtained from the

record of the random trust behaviour assigned to each SP at the start of

the simulation. In real-world applications, neither the SR nor the

middleware would have perfect knowledge of the behaviour of any SP.

Hence, there is the need for a trust model in the first instance. A trust

model which performs accurately in simulations by closely matching

known ground truth values in a reasonable time will perform well in real-

world applications. Trust resilience is a measure of the ability of the

model to adapt to changes in the behaviour of SPs and maintain optimum

performance (in terms of the utility derived by the SR) under such

circumstances. This is important because the trust characteristics of SPs

may be changed during a session due to malicious or non-malicious

reasons. A resilient trust model must identify and adapt to these changes

and converge to the new trust score quickly and accurately. By doing this,

a high-level of utility is maintained (as current high-performing nodes are

selected) and trust risks are minimized. The results obtained for SC-

TRUST are presented in Fig. 4.4-4.7.

To generate sufficient interactions for these evaluations, the CD sessions

were adapted for collaborative streaming. The only difference is that

instead of waiting for the entire content to be downloaded before

consumption by the SR, each downloaded block is streamed instantly to

the SR. If the stream progresses successfully with no block missing, then

the SCR increases. The inverse is also true. Similarly, if there is no

96

buffering, then the CBA is increased. If the block arrives but not in time

or sequence, then the SR automatically gives a negative feedback score

on the CBA. SC-TRUST decomposes the SR’s feedback according to the

method detailed in Section 4.1.2. Each streaming session includes 400-

800 blocks and an equivalent number of interactions.

Fig. 4.4 shows the results obtained on the SCR parameter after both trust

composition and decomposition. Since the SCR parameter is unique to

the aggregation service class, the decomposed trust scores only affect the

selected aggregation SP. A smoothed plot of the decomposed SCR values

in Fig. 4.4 shows that it converges from default state (no previous

interaction) to the ground truth in less than 400 interactions. This is

slightly higher than the ≈300 interactions required by CTRUST to

converge to the ground truth. The reason for this is that the interactions in

this simulation are shorter than those in the CTRUST simulation. Overall,

Fig. 4.4 Convergence of a Trust Parameter to the ground truth based on

the decomposition of feedback from the SR

97

the duration of the session in both models are similar. Therefore, SC-

TRUST shows a high degree of convergence and accuracy. The

fluctuations seen in the raw data are expected, as the utility of the SR and

its perception of the composed service are sensitive to changes in the

behaviour of the SP. However, if the trust characteristics of the SP are

consistent, then the decomposed trust value will always converge to the

ground truth.

In Fig. 4.5, the SCR measured by SC-TRUST is compared to that of

CTRUST. We see that while the value of CTRUST is closer to the ground

truth, SC-TRUST follows the same pattern with a slight lag in the

measurement of the trust score. However, this difference is statistically

insignificant. It should be recalled that these values were decomposed

transparently from the SR’s feedbacks. Therefore, we can conclude that

Fig. 4.5 Comparison of the trust accuracy and convergence properties in

SC-TRUST and CTRUST

98

the trust decomposition method in the model not only converges to the

ground truth but offers a level of accuracy on par with CTRUST, but in a

service composition context. It can be observed that the trend in both plots

is similar. This is so because SC-TRUST is built on top of CTRUST and

utilizes some of the latter’s methods.

In Fig. 4.6, the trust characteristic (ground truth) of the aggregation SP is

modified to a higher value. It can be observed that SC-TRUST converges

quickly to the new ground truth within 400 interactions. Also, it should

be observed that SC-TRUST is conservative in trust evaluation; that is,

the composed or decomposed trust value is never higher than the ground

truth. This is in accordance with the specifications in Sections 3.2 and 3.3;

therefore, the SR always receives the estimated level of utility or higher,

Fig. 4.6 Comparison of the trust resilience on a unique parameter in

SC-TRUST and CTRUST

99

but never lower. This, in turn, increases the SR’s trust in both the

composing platform and composition services offered on the platform. As

previously noted, SC-TRUST slightly lags behind CTRUST in the

measured trust value, but this difference is insignificant and expected.

CTRUST measures the trust scores from direct interactions; therefore, it

is not suitable for transparent trust computations which are required in

these service compositions.

Finally, in Fig. 4.7, we investigate the trust properties of SC-TRUST in

the measurement of a shared parameter. The CBA is a parameter common

to all download SPs. Therefore, it is more difficult to accurately

decompose the SR’s feedback in a manner that is fair to each SP.

Fig. 4.7 Comparison of the trust resilience on a shared parameter in SC-

TRUST and CTRUST

100

However, due to the internal use of the IRI parameter to identify malicious

and underperforming SPs, SC-TRUST performs reasonably well in

converging to the ground truth on this parameter. It can be observed that

while CTRUST may produce trust scores higher than the ground truth

(and therefore misleading the SR in a service composition), both the

composed and decomposed trust scores in SC-TRUST are almost always

lower than or equal to the ground truth. After 450 interactions, the trust

characteristic of this SP is changed to a lower value. Again, SC-TRUST

adapts and converges to the ground truth in a reasonable time, no more

than required to establish and converge to the initial ground truth value.

After 850 interactions, the value of SC-TRUST is a little higher than the

ground truth. In this exceptional case, however, the increase over the

ground truth is less than 1%. Therefore, SC-TRUST produces reliable and

highly accurate trust scores, within the margin of low and acceptable

errors.

From the above analysis, it is evident that SC-TRUST meets

Requirements (10-11) for an ideal trust model for IoT service

compositions, as enumerated in Section 2.3, in addition to Requirements

(1-9) which are fulfilled by inheritance from CTRUST. In comparison to

the few existing trust models for service composition, SC-TRUST

produces a more accurate and reliable score. For example, the trust scores

produced by the models in both [15] and [31] diverge significantly from

the ground truth when the percentage of malicious SPs is greater than

30%. In contrast, SC-TRUST shows a high degree of resilience such that

even when half of the SPs are malicious, it retains its high accuracy and

convergence.

101

4.3 Chapter Summary

SC-TRUST was designed as a suitable model for service compositions in

the SOA-based IoT context, utilising concepts discussed in Section 2.2 and

in accordance with the requirements specification in Section 2.3. The

simulations and evaluations performed show that the use of SC-TRUST in

a service composition increased the utility gained. Also, SC-TRUST

showed a robust performance in trust accuracy, convergence, and

resilience. Therefore, the model minimizes the impact of trust-related

attacks, including ballot stuffing, bad-mouthing, and opportunistic service

attacks. SC-TRUST was modelled with the platform characteristics of the

IoT in consideration, so its trust evaluations and algorithms require

minimal computational resources. In addition, the flexibility of the design

ensures that the model can be easily applied to any service composition

context. Thus, SC-TRUST addresses critical gaps that exist in the trust

management research for the IoT by providing a dynamic, systematic, and

holistic approach to trust modelling in SOA-based IoT, especially for trust-

based service compositions. In addition, the elegant solutions for

transparent trust composition and decomposition are novel contributions.

The proposed model has been peer-reviewed and published in the IEEE

Internet of Things Journal [121].

102

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, the concept and meanings of computational trust has been

formalised and an extensive study has been done on trust modelling,

evaluation and management in the IoT. The limitations of existing

models, based on a thorough review of the existing literature, have been

clearly elucidated. Consequently, requirements for an ideal trust model

for collaborative applications and service compositions in the IoT were

specified. Also, the techniques for collaborations and service

compositions were analysed in detail, in relation to trust management for

the IoT. Based on findings, two models were proposed in this work,

CTRUST to guide peer selection in collaborative applications, and SC-

TRUST for trust-based service composition in the IoT.

In CTRUST, trust is accurately parametrised while recommendations are

evaluated through belief functions. The effects of trust decay and maturity

on the trust evaluation process were studied. Each trust component is

neatly modelled by appropriate mathematical functions. CTRUST was

implemented in a collaborative download application and its performance

was evaluated based on the utility derived and its trust accuracy,

convergence, and resiliency. The results indicate that IoT collaborative

applications based on CTRUST gain a significant improvement in

performance, in terms of efficiency and security.

SC-TRUST was designed with consideration of the trust properties of

service compositions and the effect of service workflows on transparent

trust composition and decomposition. It was implemented in a suitable

application and its performance, in terms of the utility derived and the

103

trust accuracy, convergence and resiliency, was evaluated. The results

show that SC-TRUST improves the quality-of-service compositions and

adequately mitigates trust-related attacks, thus increasing both efficiency

and security.

5.2 Further Work

The following are research directions stemming from the work done in

this thesis:

1. In normalising values on each trust parameter, a linear value function

was used. However, sometimes the utility function of the initiator is

marginally non-linear. To model trust more accurately in these

applications, it would be useful to consider defining a utility function

and threshold scales for each parameter in a future work.

2. It would also be useful to extend both models to automate and

dynamically update parameter weights, in response to changes in the

availability and behaviour of nodes, for example, changes in the ratio

of good to malicious service providers.

3. CTRUST could be extended to and evaluated in other collaboration

contexts in the IoT, such as collaborative sensing, storage, and

processing.

4. It is observed that, by increasing performance and reducing trust

attacks, SC-TRUST seems to reduce the overall energy usage required

in a composed service. However, this requires further investigation.

5. Finally, the effects non-functional constraints, such as price and

energy, exert on the service composition were not considered. The

prices which SPs charge for their services may affect their selection

104

depending on the limit of the SR’s budget. However, the price is not a

trust characteristic, as it is not a functional parameter of the

composition context, but rather an external constraint on the process.

It may be argued that more trustworthy compositions would generally

cost more because the price is an incentive for an SP to produce better

services. It would be beneficial to study the effects of external

constraints, such as price and an SR’s budget, on the service

composition process and the trust scores of SPs.

105

REFERENCES

[1] S. Li, L. Da Xu, and S. Zhao, “5G Internet of Things: A survey,”

Journal of Industrial Information Integration, vol. 10, pp. 1–9, Jun.

2018, doi: 10.1016/j.jii.2018.01.005.

[2] C. L. Hsu and J. C. C. Lin, “An empirical examination of consumer

adoption of Internet of Things services: Network externalities and

concern for information privacy perspectives,” Computers in

Human Behavior, vol. 62, pp. 516–527, Sep. 2016, doi:

10.1016/j.chb.2016.04.023.

[3] P. Rawat, K. D. Singh, and J. M. Bonnin, “Cognitive radio for M2M

and Internet of Things: A survey,” Computer Communications, vol.

94, pp. 1–29, Nov. 2016, doi: 10.1016/j.comcom.2016.07.012.

[4] E. Borgia, “The Internet of Things vision: Key features, applications

and open issues,” Computer Communications, vol. 54, no. 7, pp. 1–

31, Dec. 2014, doi: 10.1016/j.comcom.2014.09.008.

[5] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet

of things: Vision, applications and research challenges,” Ad Hoc

Networks, vol. 10, no. 7, pp. 1497–1516, Sep. 2012, doi:

10.1016/j.adhoc.2012.02.016.

[6] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, “IoT Connectivity

Technologies and Applications: A Survey,” IEEE Access, vol. 8, pp.

67646–67673, 2020, doi: 10.1109/ACCESS.2020.2985932.

[7] H. Al-Hamadi and I. R. Chen, “Trust-Based Decision Making for

Health IoT Systems,” IEEE Internet of Things Journal, vol. 4, no.

5, pp. 1408–1419, Oct. 2017, doi: 10.1109/JIOT.2017.2736446.

106

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of

Things (IoT): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29, no. 7,

pp. 1645–1660, Sep. 2013, doi: 10.1016/j.future.2013.01.010.

[9] M. Hamzei and N. Jafari Navimipour, “Toward Efficient Service

Composition Techniques in the Internet of Things,” IEEE Internet

of Things Journal, vol. 5, no. 5, pp. 3774–3787, Oct. 2018, doi:

10.1109/JIOT.2018.2861742.

[10] M. Sun, Z. Shi, S. Chen, Z. Zhou, and Y. Duan, “Energy-Efficient

Composition of Configurable Internet of Things Services,” IEEE

Access, vol. 5, pp. 25609–25622, 2017, doi:

10.1109/ACCESS.2017.2768544.

[11] Z.-Z. Liu, D.-H. Chu, Z.-P. Jia, J.-Q. Shen, and L. Wang, “Two-

stage approach for reliable dynamic Web service composition,”

Knowledge-Based Systems, vol. 97, pp. 123–143, Apr. 2016, doi:

10.1016/j.knosys.2016.01.010.

[12] J. Crowcroft, Open Distributed Systems. USA: Artech House, Inc.,

1996.

[13] E. Yahyapour et al., Towards a Service-Based Internet, vol. 6481.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[14] W. Z. Khan, Q.-A. Arshad, S. Hakak, M. K. Khan, and Saeed-Ur-

Rehman, “Trust Management in Social Internet of Things:

Architectures, Recent Advancements, and Future Challenges,”

IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7768–7788, May

2021, doi: 10.1109/JIOT.2020.3039296.

107

[15] I.-R. Chen, F. Bao, and J. Guo, “Trust-Based Service Management

for Social Internet of Things Systems,” IEEE Transactions on

Dependable and Secure Computing, vol. 13, no. 6, pp. 684–696,

Nov. 2016, doi: 10.1109/TDSC.2015.2420552.

[16] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng,

“IoT Middleware: A Survey on Issues and Enabling technologies,”

IEEE Internet of Things Journal, pp. 1–1, 2016, doi:

10.1109/JIOT.2016.2615180.

[17] M. S. Roopa, S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar,

and L. M. Patnaik, “Social Internet of Things (SIoT): Foundations,

thrust areas, systematic review and future directions,” Computer

Communications, vol. 139, pp. 32–57, May 2019, doi:

10.1016/j.comcom.2019.03.009.

[18] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness Management in

the Social Internet of Things,” IEEE Transactions on Knowledge

and Data Engineering, vol. 26, no. 5, pp. 1253–1266, May 2014,

doi: 10.1109/TKDE.2013.105.

[19] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla,

“Middleware for internet of things: A survey,” IEEE Internet of

Things Journal, vol. 3, no. 1, pp. 70–95, Feb. 2016, doi:

10.1109/JIOT.2015.2498900.

[20] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The Social Internet

of Things (SIoT) – When social networks meet the Internet of

Things: Concept, architecture and network characterization,”

Computer Networks, vol. 56, no. 16, pp. 3594–3608, Nov. 2012,

doi: 10.1016/j.comnet.2012.07.010.

108

[21] L. Atzori, A. Iera, and G. Morabito, “SIoT: Giving a Social

Structure to the Internet of Things,” IEEE Communications Letters,

vol. 15, no. 11, pp. 1193–1195, Nov. 2011, doi:

10.1109/LCOMM.2011.090911.111340.

[22] M. A. Azad, S. Bag, F. Hao, and A. Shalaginov, “Decentralized

Self-Enforcing Trust Management System for Social Internet of

Things,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2690–

2703, Apr. 2020, doi: 10.1109/JIOT.2019.2962282.

[23] L. Wei, J. Wu, C. Long, and B. Li, “On Designing Context-Aware

Trust Model and Service Delegation for Social Internet of Things,”

IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4775–4787, Mar.

2021, doi: 10.1109/JIOT.2020.3028380.

[24] S. Sicari, A. Rizzardi, L. A. A. Grieco, and A. Coen-Porisini,

“Security, privacy and trust in Internet of Things: The road ahead,”

Computer Networks, vol. 76, pp. 146–164, Jan. 2015, doi:

10.1016/j.comnet.2014.11.008.

[25] J. A. Stankovic, “Research Directions for the Internet of Things,”

IEEE Internet of Things Journal, vol. 1, no. 1, pp. 3–9, Feb. 2014,

doi: 10.1109/JIOT.2014.2312291.

[26] Z. Yan, P. Zhang, and A. V. Vasilakos, “A survey on trust

management for Internet of Things,” Journal of Network and

Computer Applications, vol. 42, pp. 120–134, Jun. 2014, doi:

10.1016/j.jnca.2014.01.014.

[27] C. D. Jensen, “The role of trust in computer security,” in 2012 Tenth

Annual International Conference on Privacy, Security and Trust,

Jul. 2012, pp. 236–236, doi: 10.1109/PST.2012.6297950.

109

[28] W. Leister and T. Schulz, “Ideas for a Trust Indicator in the Internet

of Things,” in SMART 2012—The First International Conference

on Smart Systems, Devices and Technologies, 2012, pp. 31–34,

[Online]. Available:

http://www.academia.edu/download/40609237/Ideas_for_a_Trust_

Indicator_in_the_Inter20151203-10909-1ucwd6v.pdf.

[29] U. E. Tahta, S. Sen, and A. B. Can, “GenTrust: A genetic trust

management model for peer-to-peer systems,” Applied Soft

Computing, vol. 34, pp. 693–704, Sep. 2015, doi:

10.1016/j.asoc.2015.04.053.

[30] Y. Ben Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust

management system design for the Internet of Things: A context-

aware and multi-service approach,” Computers & Security, vol. 39,

no. PART B, pp. 351–365, Nov. 2013, doi:

10.1016/j.cose.2013.09.001.

[31] I.-R. Chen, J. Guo, D.-C. Wang, J. J. P. Tsai, H. Al-Hamadi, and I.

You, “Trust-Based Service Management for Mobile Cloud IoT

Systems,” IEEE Transactions on Network and Service

Management, vol. 16, no. 1, pp. 246–263, Mar. 2019, doi:

10.1109/TNSM.2018.2886379.

[32] I.-R. Chen, J. Guo, and F. Bao, “Trust Management for SOA-Based

IoT and Its Application to Service Composition,” IEEE

Transactions on Services Computing, vol. 9, no. 3, pp. 482–495,

May 2016, doi: 10.1109/TSC.2014.2365797.

[33] D. H. Mcknight and N. L. Chervany, “The Meanings of Trust,”

1996. [Online]. Available:

110

http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf.

[34] Y. D. Wang and H. H. Emurian, “An overview of online trust:

Concepts, elements, and implications,” Computers in Human

Behavior, vol. 21, no. 1, pp. 105–125, Jan. 2005, doi:

10.1016/j.chb.2003.11.008.

[35] F. Bao and I.-R. Chen, “Dynamic trust management for internet of

things applications,” in Proceedings of the 2012 international

workshop on Self-aware internet of things - Self-IoT ’12, 2012, p. 1,

doi: 10.1145/2378023.2378025.

[36] C. Boudagdigue, A. Benslimane, A. Kobbane, and J. Liu, “Trust

Management in Industrial Internet of Things,” IEEE Transactions

on Information Forensics and Security, vol. 15, pp. 3667–3682,

2020, doi: 10.1109/TIFS.2020.2997179.

[37] C. Marche and M. Nitti, “Trust-Related Attacks and Their

Detection: A Trust Management Model for the Social IoT,” IEEE

Transactions on Network and Service Management, vol. 18, no. 3,

pp. 3297–3308, Sep. 2021, doi: 10.1109/TNSM.2020.3046906.

[38] A. Almogren, I. Mohiuddin, I. U. Din, H. Almajed, and N. Guizani,

“FTM-IoMT: Fuzzy-Based Trust Management for Preventing Sybil

Attacks in Internet of Medical Things,” IEEE Internet of Things

Journal, vol. 8, no. 6, pp. 4485–4497, Mar. 2021, doi:

10.1109/JIOT.2020.3027440.

[39] G. Rathee, A. Sharma, R. Kumar, F. Ahmad, and R. Iqbal, “A trust

management scheme to secure mobile information centric

networks,” Computer Communications, vol. 151, pp. 66–75, Feb.

2020, doi: 10.1016/j.comcom.2019.12.024.

111

[40] D. Chen, G. Chang, D. Sun, J. Li, J. Jia, and X. Wang, “TRM-IoT:

A trust management model based on fuzzy reputation for internet of

things,” Computer Science and Information Systems, vol. 8, no. 4,

pp. 1207–1228, 2011, doi: 10.2298/CSIS110303056C.

[41] S. Talbi and A. Bouabdallah, “Interest-based trust management

scheme for social internet of things,” Journal of Ambient

Intelligence and Humanized Computing, vol. 11, no. 3, pp. 1129–

1140, Mar. 2020, doi: 10.1007/s12652-019-01256-8.

[42] Fenye Bao and Ing-Ray Chen, “Trust management for the internet

of things and its application to service composition,” in 2012 IEEE

International Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM), Jun. 2012, pp. 1–6, doi:

10.1109/WoWMoM.2012.6263792.

[43] J. Guo and I.-R. Chen, “A Classification of Trust Computation

Models for Service-Oriented Internet of Things Systems,” in 2015

IEEE International Conference on Services Computing, Jun. 2015,

pp. 324–331, doi: 10.1109/SCC.2015.52.

[44] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The

Eigentrust algorithm for reputation management in P2P networks,”

in Proceedings of the twelfth international conference on World

Wide Web - WWW ’03, May 2003, p. 640, doi:

10.1145/775240.775242.

[45] Li Xiong and Ling Liu, “PeerTrust: Supporting Reputation-Based

Trust for Peer-to-Peer Electronic Communities,” IEEE

Transactions on Knowledge and Data Engineering, vol. 16, no. 07,

pp. 843–857, Jul. 2004, doi: 10.1109/TKDE.2004.1318566.

112

[46] W. Sherchan, S. Nepal, and C. Paris, “A survey of trust in social

networks,” ACM Computing Surveys, vol. 45, no. 4, pp. 1–33, Aug.

2013, doi: 10.1145/2501654.2501661.

[47] S. Valenzuela, N. Park, and K. F. Kee, “Is There social capital in a

social network site?: Facebook use and college student’s life

satisfaction, trust, and participation1,” Journal of Computer-

Mediated Communication, vol. 14, no. 4, pp. 875–901, Jul. 2009,

doi: 10.1111/j.1083-6101.2009.01474.x.

[48] J. Huang, F. Nie, H. Huang, Y. Lei, and C. Ding, “Social trust

prediction using rank-κ matrix recovery,” IJCAI International Joint

Conference on Artificial Intelligence, pp. 2647–2653, 2013.

[49] J. Huang, F. Nie, H. Huang, Y. C. Tu, and Y. Lei, “Social trust

prediction using heterogeneous networks,” ACM Transactions on

Knowledge Discovery from Data, vol. 7, no. 4, pp. 1–21, Nov. 2013,

doi: 10.1145/2541268.2541270.

[50] B. Yang, Y. Lei, J. Liu, and W. Li, “Social Collaborative Filtering

by Trust,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 8, pp. 1633–1647, Aug. 2017, doi:

10.1109/TPAMI.2016.2605085.

[51] J. Masthoff, “Group Recommender Systems: Combining Individual

Models,” in Recommender Systems Handbook, 2011, pp. 677–702.

[52] G. Guo, J. Zhang, and D. Thalmann, “Merging trust in collaborative

filtering to alleviate data sparsity and cold start,” Knowledge-Based

Systems, vol. 57, pp. 57–68, Feb. 2014, doi:

10.1016/j.knosys.2013.12.007.

113

[53] J. Guo, Y. Zhou, P. Zhang, B. Song, and C. Chen, “Trust-aware

recommendation based on heterogeneous multi-relational graphs

fusion,” Information Fusion, vol. 74, pp. 87–95, Oct. 2021, doi:

10.1016/j.inffus.2021.04.001.

[54] Y. Li, G. Kou, G. Li, and H. Wang, “Multi-attribute group decision

making with opinion dynamics based on social trust network,”

Information Fusion, vol. 75, pp. 102–115, Nov. 2021, doi:

10.1016/j.inffus.2021.04.010.

[55] H. Ma, I. King, and M. R. Lyu, “Learning to recommend with

explicit and implicit social relations,” ACM Transactions on

Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–19, Apr.

2011, doi: 10.1145/1961189.1961201.

[56] W. Li and H. Song, “ART: An Attack-Resistant Trust Management

Scheme for Securing Vehicular Ad Hoc Networks,” IEEE

Transactions on Intelligent Transportation Systems, vol. 17, no. 4,

pp. 960–969, Apr. 2016, doi: 10.1109/TITS.2015.2494017.

[57] K. Thirunarayan, D. K. Althuru, C. A. Henson., and A. P. Sheth, “A

local qualitative approach to referral and functional trust,”

Proceedings of the 4th Indian International Conference on Artificial

Intelligence, IICAI 2009, pp. 574–588, 2009, [Online]. Available:

https://corescholar.libraries.wright.edu/knoesis/675.

[58] P. Anantharam, C. A. Henson, K. Thirunarayan, and A. P. Sheth,

“Trust model for semantic sensor and social networks: A

preliminary report,” in Proceedings of the IEEE 2010 National

Aerospace and Electronics Conference, NAECON 2010, Jul. 2010,

pp. 1–5, doi: 10.1109/NAECON.2010.5712915.

114

[59] T. Wang et al., “A Comprehensive Trustworthy Data Collection

Approach in Sensor-Cloud Systems,” IEEE Transactions on Big

Data, vol. 8, no. 1, pp. 140–151, Feb. 2018, doi:

10.1109/tbdata.2018.2811501.

[60] P. Munoz, A. Perez-Vereda, N. Moreno, J. Troya, and A. Vallecillo,

“Incorporating Trust into Collaborative Social Computing

Applications,” in Proceedings - 2021 IEEE 25th International

Enterprise Distributed Object Computing Conference, EDOC 2021,

Oct. 2021, pp. 21–30, doi: 10.1109/EDOC52215.2021.00020.

[61] K. Thiranarayan, P. Anantharam, C. A. Henson, and A. P. Sheth,

“Some trust issues in social networks and sensor networks,” in 2010

International Symposium on Collaborative Technologies and

Systems, CTS 2010, 2010, pp. 573–580, doi:

10.1109/CTS.2010.5478462.

[62] C. Haydar, A. Roussanaly, and A. Boyer, “Local trust versus global

trust networks in subjective logic,” in Proceedings - 2013

IEEE/WIC/ACM International Conference on Web Intelligence, WI

2013, Nov. 2013, vol. 1, pp. 29–36, doi: 10.1109/WI-IAT.2013.5.

[63] W. Jiang, G. Wang, and J. Wu, “Generating trusted graphs for trust

evaluation in online social networks,” Future Generation Computer

Systems, vol. 31, no. 1, pp. 48–58, Feb. 2014, doi:

10.1016/j.future.2012.06.010.

[64] S. Asiri and A. Miri, “An IoT trust and reputation model based on

recommender systems,” in 2016 14th Annual Conference on

Privacy, Security and Trust (PST), Dec. 2016, pp. 561–568, doi:

10.1109/PST.2016.7907017.

115

[65] S. K. M. Yi, M. Steyvers, M. D. Lee, and M. J. Dry, “The Wisdom

of the Crowd in Combinatorial Problems,” Cognitive Science, vol.

36, no. 3, pp. 452–470, Apr. 2012, doi: 10.1111/j.1551-

6709.2011.01223.x.

[66] N. S. Nizamkari, “A graph-based trust-enhanced recommender

system for service selection in IOT,” in 2017 International

Conference on Inventive Systems and Control (ICISC), Jan. 2017,

pp. 1–5, doi: 10.1109/ICISC.2017.8068714.

[67] A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, A. MacDermott, and X.

Wang, “CTRUST: A dynamic trust model for collaborative

applications in the internet of things,” IEEE Internet of Things

Journal, vol. 6, no. 3, pp. 5432–5445, Feb. 2019, doi:

10.1109/JIOT.2019.2902022.

[68] M. Salimitari, M. Chatterjee, and Y. P. Fallah, “A survey on

consensus methods in blockchain for resource-constrained IoT

networks,” Internet of Things (Netherlands), vol. 11, p. 100212,

Sep. 2020, doi: 10.1016/j.iot.2020.100212.

[69] L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A survey of

IoT applications in blockchain systems: Architecture, consensus,

and traffic modeling,” ACM Computing Surveys, vol. 53, no. 1, pp.

1–32, Jan. 2020, doi: 10.1145/3372136.

[70] O. Alfandi, S. Otoum, and Y. Jararweh, “Blockchain Solution for

IoT-based Critical Infrastructures: Byzantine Fault Tolerance,” in

Proceedings of IEEE/IFIP Network Operations and Management

Symposium 2020: Management in the Age of Softwarization and

Artificial Intelligence, NOMS 2020, Apr. 2020, pp. 1–4, doi:

116

10.1109/NOMS47738.2020.9110312.

[71] R. Han, V. Gramoli, and X. Xu, “Evaluating Blockchains for IoT,”

in 2018 9th IFIP International Conference on New Technologies,

Mobility and Security, NTMS 2018 - Proceedings, Feb. 2018, vol.

2018-Janua, pp. 1–5, doi: 10.1109/NTMS.2018.8328736.

[72] W. Viriyasitavat, L. Da Xu, Z. Bi, and A. Sapsomboon,

“Blockchain-based business process management (BPM)

framework for service composition in industry 4.0,” Journal of

Intelligent Manufacturing, May 2018, doi: 10.1007/s10845-018-

1422-y.

[73] P. Wang et al., “Smart Contract-Based Negotiation for Adaptive

QoS-Aware Service Composition,” IEEE Transactions on Parallel

and Distributed Systems, vol. 30, no. 6, pp. 1403–1420, Jun. 2019,

doi: 10.1109/TPDS.2018.2885746.

[74] C. Yu, L. Zhang, W. Zhao, and S. Zhang, “A blockchain-based

service composition architecture in cloud manufacturing,”

International Journal of Computer Integrated Manufacturing, pp.

1–15, Feb. 2019, doi: 10.1080/0951192X.2019.1571234.

[75] “IEEE Standard for Framework of Blockchain-based Internet of

Things (IoT) Data Management,” IEEE Std 2144.1-2020. pp. 1–20,

2021, doi: 10.1109/IEEESTD.2021.9329260.

[76] D. E. Kouicem, Y. Imine, A. Bouabdallah, and H. Lakhlef, “A

Decentralized Blockchain-Based Trust Management Protocol for

the Internet of Things,” IEEE Transactions on Dependable and

Secure Computing, pp. 1–1, 2020, doi:

10.1109/TDSC.2020.3003232.

117

[77] M. Zhaofeng, W. Lingyun, W. Xiaochang, W. Zhen, and Z. Weizhe,

“Blockchain-Enabled Decentralized Trust Management and Secure

Usage Control of IoT Big Data,” IEEE Internet of Things Journal,

vol. 7, no. 5, pp. 4000–4015, May 2020, doi:

10.1109/JIOT.2019.2960526.

[78] X. Liu, H. Huang, F. Xiao, and Z. Ma, “A Blockchain-Based Trust

Management With Conditional Privacy-Preserving Announcement

Scheme for VANETs,” IEEE Internet of Things Journal, vol. 7, no.

5, pp. 4101–4112, May 2020, doi: 10.1109/JIOT.2019.2957421.

[79] S. Nakamoto, “A peer-to-peer electronic cash system,” 2008,

[Online]. Available: http://www.bitcoin.org/bitcoin.pdf.

[80] W. Gu, J. Li, and Z. Tang, “A Survey on Consensus Mechanisms

for Blockchain Technology,” in Proceedings - 2021 International

Conference on Artificial Intelligence, Big Data and Algorithms,

CAIBDA 2021, May 2021, pp. 46–49, doi:

10.1109/CAIBDA53561.2021.00017.

[81] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of

Blockchain Technology: Architecture, Consensus, and Future

Trends,” in Proceedings - 2017 IEEE 6th International Congress on

Big Data, BigData Congress 2017, Jun. 2017, pp. 557–564, doi:

10.1109/BigDataCongress.2017.85.

[82] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of

blockchain consensus algorithms,” in 2018 41st International

Convention on Information and Communication Technology,

Electronics and Microelectronics, MIPRO 2018 - Proceedings,

May 2018, pp. 1545–1550, doi: 10.23919/MIPRO.2018.8400278.

118

[83] S. M. H. Bamakan, A. Motavali, and A. Babaei Bondarti, “A survey

of blockchain consensus algorithms performance evaluation

criteria,” Expert Systems with Applications, vol. 154, p. 113385,

Sep. 2020, doi: 10.1016/j.eswa.2020.113385.

[84] X. Wang et al., “Survey on blockchain for Internet of Things,”

Computer Communications, vol. 136, pp. 10–29, Feb. 2019, doi:

10.1016/j.comcom.2019.01.006.

[85] C. Zhang, X. Cao, J. Liu, and K. Ren, “Proof of comprehensive

performance,” in SBC 2021 - Proceedings of the 9th International

Workshop on Security in Blockchain and Cloud Computing, co-

located with ASIA CCS 2021, May 2021, pp. 29–34, doi:

10.1145/3457977.3460296.

[86] N. Al Asad, M. T. Elahi, A. Al Hasan, and M. A. Yousuf,

“Permission-based blockchain with proof of authority for secured

healthcare data sharing,” in 2020 2nd International Conference on

Advanced Information and Communication Technology, ICAICT

2020, Nov. 2020, pp. 35–40, doi:

10.1109/ICAICT51780.2020.9333488.

[87] P. K. Singh, R. Singh, S. K. Nandi, and S. Nandi, “Managing Smart

Home Appliances with Proof of Authority and Blockchain,” in

Communications in Computer and Information Science, vol. 1041,

2019, pp. 221–232.

[88] M. Borge, E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,

and B. Ford, “Proof-of-Personhood: Redemocratizing

Permissionless Cryptocurrencies,” in 2017 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW), Apr.

119

2017, pp. 23–26, doi: 10.1109/EuroSPW.2017.46.

[89] B. Houtan, A. S. Hafid, and D. Makrakis, “A Survey on Blockchain-

Based Self-Sovereign Patient Identity in Healthcare,” IEEE Access,

vol. 8, pp. 90478–90494, 2020, doi:

10.1109/ACCESS.2020.2994090.

[90] J. Bou Abdo, R. El Sibai, and J. Demerjian, “Permissionless proof-

of-reputation-X: A hybrid reputation-based consensus algorithm for

permissionless blockchains,” Transactions on Emerging

Telecommunications Technologies, vol. 32, no. 1, Jan. 2021, doi:

10.1002/ett.4148.

[91] Q. Zhuang, Y. Liu, L. Chen, and Z. Ai, “Proof of reputation: A

reputation-based consensus protocol for blockchain based systems,”

in ACM International Conference Proceeding Series, Jul. 2019, pp.

131–138, doi: 10.1145/3343147.3343169.

[92] T. Do, T. Nguyen, and H. Pham, “Delegated proof of reputation: A

novel blockchain consensus,” in ACM International Conference

Proceeding Series, Jul. 2019, pp. 90–98, doi:

10.1145/3343147.3343160.

[93] H. Chai, S. Leng, K. Zhang, and S. Mao, “Proof-of-Reputation

Based-Consortium Blockchain for Trust Resource Sharing in

Internet of Vehicles,” IEEE Access, vol. 7, pp. 175744–175757,

2019, doi: 10.1109/ACCESS.2019.2956955.

[94] C. Liu, K. K. Chai, X. Zhang, and Y. Chen, “Peer-to-peer electricity

trading system: smart contracts based proof-of-benefit consensus

protocol,” Wireless Networks, vol. 27, no. 6, pp. 4217–4228, Aug.

2021, doi: 10.1007/s11276-019-01949-0.

120

[95] C. Liu, K. K. Chai, X. Zhang, and Y. Chen, “Proof-of-benefit: A

blockchain-enabled ev charging scheme,” in IEEE Vehicular

Technology Conference, Apr. 2019, vol. 2019-April, pp. 1–6, doi:

10.1109/VTCSpring.2019.8746399.

[96] A. Yakovenko, “Solana : A new architecture for a high performance

blockchain,” Whitepaper, pp. 1–32, 2019, [Online]. Available:

https://solana.com/solana-whitepaper.pdf.

[97] Raghav, N. Andola, S. Venkatesan, and S. Verma, “PoEWAL: A

lightweight consensus mechanism for blockchain in IoT,” Pervasive

and Mobile Computing, vol. 69, p. 101291, Nov. 2020, doi:

10.1016/j.pmcj.2020.101291.

[98] S. Tang, J. Zheng, Y. Deng, and Q. Cao, “Resisting newborn attacks

via shared Proof-of-Space,” Journal of Parallel and Distributed

Computing, vol. 150, pp. 85–95, Apr. 2021, doi:

10.1016/j.jpdc.2020.12.011.

[99] A. S. Yadav, N. Singh, and D. S. Kushwaha, “A scalable trust based

consensus mechanism for secure and tamper free property

transaction mechanism using DLT,” International Journal of

Systems Assurance Engineering and Management, Sep. 2021, doi:

10.1007/s13198-021-01335-0.

[100] A. S. Yadav and D. S. Kushwaha, “Blockchain-based digitization

of land record through trust value-based consensus algorithm,”

Peer-to-Peer Networking and Applications, vol. 14, no. 6, pp. 3540–

3558, Nov. 2021, doi: 10.1007/s12083-021-01207-1.

[101] J. Yun, Y. Goh, and J. M. Chung, “Trust-Based Shard Distribution

Scheme for Fault-Tolerant Shard Blockchain Networks,” IEEE

121

Access, vol. 7, pp. 135164–135175, 2019, doi:

10.1109/ACCESS.2019.2942003.

[102] A. Prabhakar and T. Anjali, “TCON - A lightweight Trust-

dependent Consensus framework for blockchain,” in 2019 11th

International Conference on Communication Systems and

Networks, COMSNETS 2019, Jan. 2019, pp. 1–6, doi:

10.1109/COMSNETS.2019.8711448.

[103] J.-H. Cho, K. Chan, and S. Adali, “A Survey on Trust Modeling,”

ACM Computing Surveys, vol. 48, no. 2, pp. 1–40, Nov. 2015, doi:

10.1145/2815595.

[104] Z. Lin and L. Dong, “Clarifying Trust in Social Internet of Things,”

IEEE Transactions on Knowledge and Data Engineering, vol. 30,

no. 2, pp. 234–248, Apr. 2017, doi: 10.1109/TKDE.2017.2762678.

[105] H. Xia, F. Xiao, S. Zhang, C. Hu, and X. Cheng, “Trustworthiness

Inference Framework in the Social Internet of Things: A Context-

Aware Approach,” in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, Apr. 2019, pp. 838–846, doi:

10.1109/INFOCOM.2019.8737491.

[106] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A Secure

IoT Service Architecture With an Efficient Balance Dynamics

Based on Cloud and Edge Computing,” IEEE Internet of Things

Journal, vol. 6, no. 3, pp. 4831–4843, Jun. 2019, doi:

10.1109/JIOT.2018.2870288.

[107] C. Esposito, O. Tamburis, X. Su, and C. Choi, “Robust

Decentralised Trust Management for the Internet of Things by

Using Game Theory,” Information Processing & Management, vol.

122

57, no. 6, p. 102308, Nov. 2020, doi: 10.1016/j.ipm.2020.102308.

[108] J. Chen, Z. Tian, X. Cui, L. Yin, and X. Wang, “Trust architecture

and reputation evaluation for internet of things,” Journal of Ambient

Intelligence and Humanized Computing, vol. 10, no. 8, pp. 3099–

3107, Aug. 2019, doi: 10.1007/s12652-018-0887-z.

[109] J. Guo, I.-R. Chen, and J. J. P. Tsai, “A survey of trust computation

models for service management in internet of things systems,”

Computer Communications, vol. 97, pp. 1–14, Jan. 2017, doi:

10.1016/j.comcom.2016.10.012.

[110] D. Gessner, A. Olivereau, A. S. Segura, and A. Serbanati,

“Trustworthy Infrastructure Services for a Secure and Privacy-

Respecting Internet of Things,” in 2012 IEEE 11th International

Conference on Trust, Security and Privacy in Computing and

Communications, Jun. 2012, pp. 998–1003, doi:

10.1109/TrustCom.2012.286.

[111] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation

systems for online service provision,” Decision Support Systems,

vol. 43, no. 2, pp. 618–644, Mar. 2007, doi:

10.1016/j.dss.2005.05.019.

[112] E. ElSalamouny, K. T. Krukow, and V. Sassone, “An analysis of

the exponential decay principle in probabilistic trust models,”

Theoretical Computer Science, vol. 410, no. 41, pp. 4067–4084,

Sep. 2009, doi: 10.1016/j.tcs.2009.06.011.

[113] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath, and

C. a. Thekkath, “COMBINE,” in Proceedings of the 5th

international conference on Mobile systems, applications and

123

services - MobiSys ’07, 2007, p. 286, doi:

10.1145/1247660.1247693.

[114] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M.

Belding, “Cool-Tether : Energy Efficient On-the-fly WiFi Hot-

spots,” ACM International Conference on emerging Networking

EXperiments and Technologies (CoNEXT), pp. 109–120, 2009, doi:

10.1145/1658939.1658952.

[115] P. Jassal, K. Yadav, A. Kumar, V. Naik, V. Narwal, and A. Singh,

“Unity: Collaborative downloading content using co-located

socially connected peers,” in 2013 IEEE International Conference

on Pervasive Computing and Communications Workshops

(PERCOM Workshops), Mar. 2013, pp. 66–71, doi:

10.1109/PerComW.2013.6529458.

[116] H. A. Simon, “Rational choice and the structure of the

environment.,” Psychological Review, vol. 63, no. 2, pp. 129–138,

Mar. 1956, doi: 10.1037/h0042769.

[117] M. M. Rahman, “Assessing small group assignments,” in 7th Brunei

International Conference on Engineering and Technology 2018

(BICET 2018), 2018, pp. 49 (4 pp.)-49 (4 pp.), doi:

10.1049/cp.2018.1546.

[118] L. Johnston and L. Miles, “Assessing contributions to group

assignments,” Assessment and Evaluation in Higher Education, vol.

29, no. 6, pp. 751–768, Dec. 2004, doi:

10.1080/0260293042000227272.

[119] J. Goldfinch and R. Raeside, “DEVELOPMENT OF A PEER

ASSESSMENT TECHNIQUE FOR OBTAINING INDIVIDUAL

124

MARKS ON A GROUP PROJECT,” Assessment & Evaluation in

Higher Education, vol. 15, no. 3, pp. 210–231, Sep. 1990, doi:

10.1080/0260293900150304.

[120] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Efficient and Fair

Collaborative Mobile Internet Access,” IEEE/ACM Transactions on

Networking, vol. 25, no. 3, pp. 1386–1400, Jun. 2017, doi:

10.1109/TNET.2016.2638939.

[121] A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, X. Wang, and B. Zhou,

“SC-TRUST: A Dynamic Model for Trustworthy Service

Composition in the Internet of Things,” IEEE Internet of Things

Journal, pp. 1–1, 2021, doi: 10.1109/JIOT.2021.3097980.

125

APPENDIX A: DEFINITION OF TERMS

• Functional Trust: Functional trust refers to the degree to which a

trustor believes that the trustee is both competent and willing to

execute required task(s) reliably in a specific functional context, which

defines the trust scope. It is dependent on the trustee’s ability to

perform certain functions and its historical performance as measured

directly by the trustor. It is usually asymmetric, and not necessarily or

transitive. Functional trust relationships are formed based on the

ability to fulfil tasks in a specific context and are isolated to that

context. See Section 2.1.2 for a further discussion of this term.

• Social Trust: The social trust between nodes usually refers to the

degree or strength of the connection between them. Consequently,

factors such as similarity, colocation, friendliness, and honesty are

primary determinants or parameters of the trust score of the

relationship. It is usually symmetric, transitive, and mutual. See See

Section 2.1.2 for a further discussion of this term.

• Objective Parameter: An objective trust parameter is one which is

based on a functional parameter of the context and can be assessed

quantitatively according to some metric or rule that has been defined

within that context, thus ensuring its measurement is free from bias.

Its assessment is standardised; there exists a clear definition of

distance and its measurement.

• Subjective Parameter: A subjective trust parameter is assessed based

on the bias of the trustor. A parameter will be subjective and biased to

the opinion of the rider if there is no defined metric or standard for its

measurement. Therefore, a parameter may be subjective in one context

126

but objective in another depending on the existence of a standardised

assessment and scoring system in that context.

• Recommendation: A recommendation, also known as a referral trust

score, is trust value received from a third party about another node,

usually for which the receiving party has little or no previous trust

history. For example, if node A accesses node C, and passes that trust

score to node B, then B is said to have received a recommendation on

C from A.

• Trustworthiness: The degree, assessed post priori, to which a node

reliably performs an assigned task in line with the a priori estimated

trust value. In this thesis, this is the same as the current value of the

functional trust score.

127

APPENDIX B: MAIN CODEBASE

// NewPeer.CS

using System;

using System.Collections.Generic;

using System.Linq;

using System.ComponentModel;

using System.Threading;

using System.Net;

using System.Diagnostics;

using System.IO;

using System.Security.Cryptography;

using System.Xml.Linq;

using NewFriends.Properties;

namespace NewFriends

{

 class PeerNode

 {

 public string ID { get; private set; }

 //number of assigned blocks and number of successful blocks downloaded.

 //members, e.g. of class, are automatically assigned. Locals (of methods) aren't. rememeber...

 long nAssigned, nSuccessful, TotalBytesDownloaded; //sim=simulated.

 double simReliability, simBWFactor, simRiskFactor, TotalTimeTaken;//in milliseconds

 public int SessionCount { get; set; }

 public BackgroundWorker BgWorker;

 public static XElement PL;

 public static Dictionary<string, PeerNode> PeerList;

 public PeerNode()

 {

 ID = Guid.NewGuid().ToString("n").Substring(0, 16);

 InitBgWorker();

 simReliability = SetReliability();

 simBWFactor = SetBandwidthFactor();

 simRiskFactor = SetRiskFactor();

 }

 public static void LoadPeerList()

 {//try to get stored PeerList else return leaving PL null.

 if (Settings.Default.PeerList == "") return;

 PL = XElement.Parse(Settings.Default.PeerList);

 if (PL.Elements("Peer").Count() != 0)

 {

 PeerList = new Dictionary<string, PeerNode>();

 foreach (var l in PL.Elements("Peer"))

 {

 string s = l.Element("ID").Value;

 PeerList.Add(s, new PeerNode());

 PeerList[s].ID = s;

 PeerList[s].nAssigned = (long)l.Element("nAssigned");

 PeerList[s].nSuccessful = (long)l.Element("nSuccessful");

 PeerList[s].TotalBytesDownloaded = (long)l.Element("TotalBytesDownloaded");

 PeerList[s].TotalTimeTaken = (double)l.Element("TotalTimeTaken");

 PeerList[s].SessionCount = (int)l.Element("SessionCount");

 PeerList[s].simBWFactor = (double)l.Element("simBWFactor");

 PeerList[s].simReliability = (double)l.Element("simReliability");

 PeerList[s].simRiskFactor = (double)l.Element("simRiskFactor");

128

 }

 foreach (PeerNode p in PeerList.Values)

 {

 File.AppendAllText(@"C:\NewFriends\PeerList.txt", string.Format("{0,-16} \t{1,-

5} \t{2,-5} \t{3,-

5}{4}", p.ID, p.simBWFactor, p.simReliability, p.simRiskFactor, Environment.NewLine));

 }

 }

 }

 public static void CreatePeerList()

 {

 PL = new XElement("PeerList", new XComment("List of Discovered Peers"));

 foreach (PeerNode p in PeerList.Values)

 {

 PL.Add(new XElement("Peer",

 new XElement("ID", p.ID),

 new XElement("nAssigned", p.nAssigned),

 new XElement("nSuccessful", p.nSuccessful),

 new XElement("TotalBytesDownloaded", p.TotalBytesDownloaded),

 new XElement("TotalTimeTaken", p.TotalTimeTaken),

 new XElement("SessionCount", p.SessionCount),

 new XElement("simBWFactor", p.simBWFactor),

 new XElement("simReliability", p.simReliability),

 new XElement("simRiskFactor", p.simRiskFactor)

));

 File.AppendAllText(@"C:\NewFriends\PeerList.txt", string.Format("{0,-16} \t{1,-5} \t{2,-

5} \t{3,-5}{4}", p.ID, p.simBWFactor, p.simReliability, p.simRiskFactor, Environment.NewLine));

 }

 Settings.Default.PeerList = PL.ToString();

 Settings.Default.Save();

 }

 public static void UpdatePLSettings(string id)

 {

 foreach (var peer in PL.Elements("Peer"))

 {

 if (peer.Element("ID").Value == id)

 {

 try

 {

 peer.ReplaceNodes(new XElement("ID", id),

 new XElement("nAssigned", PeerList[id].nAssigned),

 new XElement("nSuccessful", PeerList[id].nSuccessful),

 new XElement("TotalBytesDownloaded", PeerList[id].TotalBytesDownloaded),

 new XElement("TotalTimeTaken", PeerList[id].TotalTimeTaken),

 new XElement("SessionCount", PeerList[id].SessionCount),

 new XElement("simBWFactor", PeerList[id].simBWFactor),

 new XElement("simReliability", PeerList[id].simReliability),

 new XElement("simRiskFactor", PeerList[id].simRiskFactor)

);

 Settings.Default.PeerList = PL.ToString();

 Settings.Default.Save();

 }

 catch (Exception)

 {

 //Wait till next opportunity to try;

 }

129

 }

 }

 }

 private static double SetBandwidthFactor()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(50, 101) / 100;

 }

 }

 private static double SetReliability()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(50, 101) / 100; //using bigger values for more space => better rand

omness?

 }

 }

 private static double SetRiskFactor()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(0, 51) / 100; //return is btw 0.00 and and 0.50.

 }

 }

 public void InitBgWorker()

 {

 if (simBWFactor == 0) BgWorker = new BackgroundWorker();

 BgWorker.WorkerReportsProgress = true;

 BgWorker.WorkerSupportsCancellation = true;

 BgWorker.DoWork += new DoWorkEventHandler(BgWorker_DoWork);

 BgWorker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(BgWorker_R

unWorkerCompleted);

 BgWorker.ProgressChanged += new ProgressChangedEventHandler(BgWorker_ProgressCha

nged);

 }

 object[] SimulateDownloadBlock(Block block, BackgroundWorker worker, DoWorkEventArgs

e)

 {

 object[] obj = new object[2];

 obj[0] = block.Position;

 if (worker.CancellationPending)

 {

 e.Cancel = true;

 }

 else

 {

130

 try

 {

 /* assume reference bandwidth, B = 2 MB/s (2048KB/s or 16Mb/s).

 A block will take (block.size (in bytes) / peer.SimBWFactor (in B)) time to download

 This is equal to (block.size bytes)/(peer.SimBWFactor*2048*1024 bytes/second)

 We multiply that by 1000 to get the sleep time, in milliseconds, of the thread, since we ar

e simulating

 */

 int sleepTime = (int)Math.Round((block.Size * 1000) / (simBWFactor * 2048 * 1024));

 Thread.Sleep(sleepTime);

 obj[1] = MyMethods.Table((byte)1, block.Size).ToArray();

 }

 catch (Exception ex)

 {

 //notify peer of error

 Debug.WriteLine(ex.Message + " " + block.Position, "Error");

 //Thread.Sleep(2000);

 // e.Cancel = true;

 //MainForm.BlockList[block.Position].status = BlockStatus.NotDownloaded;

 }

 }

 return obj;

 }

 void BgWorker_DoWork(object sender, DoWorkEventArgs e)

 {

 // Get the BackgroundWorker that raised this event.

 BackgroundWorker worker = sender as BackgroundWorker;

 // Assign the result of the computation to the Result property of the DoWorkEventArgs object.

 This will be available to the RunWorkerCompleted eventhandler.

 e.Result = SimulateDownloadBlock((Block)e.Argument, worker, e);

 }

 void BgWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

 {

 nAssigned += 1;

 if (e.Cancelled)

 { /*echo to peer: "You cancelled the download"*/

 return;

 }

 object[] obj = e.Result as object[];

 long n = (long)obj[0];

 if (FrontEnd.BlockList[n].Assignee == ID)

 {

 if (e.Error != null || obj[1] == null || SimulateFailure(simReliability))

 {

 /*echo to peer: "Download failed"*/

 Debug.WriteLine("Position {0} failed", n);

 FrontEnd.BlockList[n].Status = BlockStatus.NotDownloaded;

 }

 else

 {

 if (SimulateTampering(simRiskFactor)) { TamperWithBlock(ref obj[1]); }

 FrontEnd.BlockList[n].content = obj[1] as byte[];

 nSuccessful += 1;

 TotalBytesDownloaded += (obj[1] as byte[]).Length;

 double TimeTaken = Math.Round((DateTime.UtcNow - FrontEnd.BlockList[n].StartTim

e).TotalMilliseconds);

131

 TotalTimeTaken += TimeTaken;

 Debug.WriteLine("Position {0} returned as completed; Time Taken: {1}ms", n, TimeTa

ken);

 FrontEnd.BlockList[n].Status = BlockStatus.Downloaded;

 }

 }

 else { Debug.WriteLine("Block in position {0} has been reassigned somewhere along the way

. Original assignee took longer than could be allowed", n);

 /*also echo to this to peer in a message: */ }

 }

 void BgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)

 {

 }

 private static bool SimulateFailure(double s)

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 //reliability happens 100*s % of the time, so failure happens the rest of the time.

 return !(rng.NextDouble() < s);

 }

 }

 private static bool SimulateTampering(double r)

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 //this happens 100*r % of the time, so do what happens 100*r % of the time.

 return (rng.NextDouble() < r);

 }

 }

 static void TamperWithBlock(ref object o)

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 key.GetNonZeroBytes((o as byte[]));

 }

 }

 public double CBA

 {

 get

 {

 return (TotalBytesDownloaded == 0) ? 0 : (TotalBytesDownloaded * 1000) / (TotalTimeTa

ken * 1024); //converting to kilobytes per second.

 }

 }

 public double SCR

 {

 get

132

 {

 return (nSuccessful + 0.5) / (nAssigned + 1);

 }

 }

 }

 public class Block

 {

 public string Assignee { get; set; }

 public string Link { get; private set; }

 public long Position { get; private set; }

 public long StartAddress { get; private set; }

 public long Size { get; private set; }

 public DateTime StartTime { get; private set; }

 private BlockStatus _status;

 public BlockStatus Status

 {

 get

 {

 return _status;

 }

 set

 {

 _status = value;

 if (value == BlockStatus.Downloading)

 { StartTime = DateTime.UtcNow; }

 else if (value == BlockStatus.NotDownloaded || value == BlockStatus.Downloaded)

 { OnStatusChanged(EventArgs.Empty); }

 }

 }

 public byte[] content;

 public event EventHandler BlockStatusChanged;

 void OnStatusChanged(EventArgs e)

 {

 // Make a temporary copy of the event to avoid possibility of

 // a race condition if the last subscriber unsubscribes

 // immediately after the null check and before the event is raised.

 // see https://stackoverflow.com/questions/1609430/copying-delegates

 EventHandler handler = BlockStatusChanged;

 if (handler != null) { handler(this, e); }

 }

 public void BlockInit(Uri url,long pos, long start, long blockSize)

 {

 Link = url.ToString();

 Position = pos;

 StartAddress = start;

 Size = blockSize;

 }

 }

 public enum BlockStatus {NotAssigned, Downloading, Downloaded, NotDownloaded}

 public class PeerData

 {

 //public string ID;

133

 public int NumberOfSessionsWith { get; set; }

 public long NumberOfBytes { get; set; }

 public long NumberOfFailedBlocks { get; set; }

 public long NumberOfTamperedBlocks { get; set; }

 public long NumberOfGoodBlocks { get; set; }

 public DateTime LastSuccessfulTime { get; set; }

 public double CurrentRI { get; set; }

 public double CurrentCNorm { get; set; }

 }

 public static class MyMethods

 {

 //Imitating Basic Table in Mathematica

 public static List<T> Table<T>(this T value, long count)

 {

 List<T> temp = new List<T>(1073741824);

 for (long i = 0; i < count; i++)

 {

 temp.Add(value);

 }

 return temp;

 }

 //http://stackoverflow.com/questions/1014005/how-to-populate-instantiate-a-c-sharp-array-with-

a-single-value

 public static void Populate<T>(this T[] arr, T value)

 {

 for (int i = 0; i < arr.Length; i++)

 {

 arr[i] = value;

 }

 }

 }

}

// Peer.CS

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.ComponentModel;

using System.Threading;

using System.Net;

using System.Diagnostics;

using System.IO;

using System.Security.Cryptography;

using System.Xml.Linq;

using FRIENDS.Properties;

namespace FRIENDS

{

 class Peer

 {

 public string ID { get; private set; }

 //number of assigned blocks and number of successful blocks downloaded.

 //members, e.g. of class, are automatically assigned. Locals (of methods) aren't. rememeber...

 long nAssigned, nSuccessful, TotalBytesDownloaded; //sim=simulated.

 double simReliability, simBWFactor, simRiskFactor, TotalTimeTaken;//in milliseconds

 public int SessionCount { get; set; }

134

 public BackgroundWorker BgWorker;

 public static XElement PL;

 public static Dictionary<string, Peer> PeerList;

 public Peer()

 {

 ID = Guid.NewGuid().ToString("n").Substring(0, 16);

 InitBgWorker();

 simReliability = SetReliability();

 simBWFactor= SetBandwidthFactor();

 simRiskFactor = SetRiskFactor();

 }

 public static void LoadPeerList()

 {//try to get stored PeerList else return leaving PL null.

 if (Settings.Default.PeerList == "") return;

 PL = XElement.Parse(Settings.Default.PeerList);

 if (PL.Elements("Peer").Count() != 0)

 {

 PeerList = new Dictionary<string, Peer>();

 foreach (var l in PL.Elements("Peer"))

 {

 string s = l.Element("ID").Value;

 PeerList.Add(s, new Peer());

 PeerList[s].ID = s;

 PeerList[s].nAssigned = (long)l.Element("nAssigned");

 PeerList[s].nSuccessful = (long)l.Element("nSuccessful");

 PeerList[s].TotalBytesDownloaded = (long)l.Element("TotalBytesDownloaded");

 PeerList[s].TotalTimeTaken = (double)l.Element("TotalTimeTaken");

 PeerList[s].SessionCount = (int)l.Element("SessionCount");

 PeerList[s].simBWFactor = (double)l.Element("simBWFactor");

 PeerList[s].simReliability = (double)l.Element("simReliability");

 PeerList[s].simRiskFactor = (double)l.Element("simRiskFactor");

 }

 }

 }

 public static void CreatePeerList()

 {

 PL = new XElement("PeerList",new XComment("List of Discovered Peers"));

 foreach (Peer p in PeerList.Values)

 {

 PL.Add(new XElement("Peer",

 new XElement("ID", p.ID),

 new XElement("nAssigned", p.nAssigned),

 new XElement("nSuccessful", p.nSuccessful),

 new XElement("TotalBytesDownloaded", p.TotalBytesDownloaded),

 new XElement("TotalTimeTaken", p.TotalTimeTaken),

 new XElement("SessionCount", p.SessionCount),

 new XElement("simBWFactor", p.simBWFactor),

 new XElement("simReliability", p.simReliability),

 new XElement("simRiskFactor", p.simRiskFactor)

));

 }

 Settings.Default.PeerList = PL.ToString();

 Settings.Default.Save();

 }

 public static void UpdatePLSettings(string id)

 {

135

 foreach (var peer in PL.Elements("Peer"))

 {

 if (peer.Element("ID").Value == id)

 {

 try

 {

 peer.ReplaceNodes(new XElement("ID", id),

 new XElement("nAssigned", PeerList[id].nAssigned),

 new XElement("nSuccessful", PeerList[id].nSuccessful),

 new XElement("TotalBytesDownloaded", PeerList[id].TotalBytesDownloaded),

 new XElement("TotalTimeTaken", PeerList[id].TotalTimeTaken),

 new XElement("SessionCount", PeerList[id].SessionCount),

 new XElement("simBWFactor", PeerList[id].simBWFactor),

 new XElement("simReliability", PeerList[id].simReliability),

 new XElement("simRiskFactor", PeerList[id].simRiskFactor)

);

 Settings.Default.PeerList = PL.ToString();

 Settings.Default.Save();

 }

 catch (Exception)

 {

 //Wait till next opportunity to try;

 }

 }

 }

 }

 private static double SetBandwidthFactor()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(100, 1001) / 1000;

 }

 }

 private static double SetReliability()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(500, 1001) / 1000; //using bigger values for more space => better

randomness.

 }

 }

 private static double SetRiskFactor()

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 return (double)rng.Next(0, 50) / 1000; //return is btw 0.000 and and 0.50.

 }

 }

136

 public void InitBgWorker()

 {

 if (this.simBWFactor == 0) this.BgWorker = new BackgroundWorker();

 this.BgWorker.WorkerReportsProgress = true;

 this.BgWorker.WorkerSupportsCancellation = true;

 BgWorker.DoWork += new DoWorkEventHandler(BgWorker_DoWork);

 BgWorker.RunWorkerCompleted += new

RunWorkerCompletedEventHandler(BgWorker_RunWorkerCompleted);

 BgWorker.ProgressChanged += new

ProgressChangedEventHandler(BgWorker_ProgressChanged);

 }

 object[] DownloadBlock(Block block, BackgroundWorker worker, DoWorkEventArgs e)

 {

 object[] obj = new object[2];

 obj[0] = block.Position;

 if (worker.CancellationPending)

 {

 e.Cancel = true;

 }

 else

 {

 try

 {

 Thread.Sleep(2000);

 HttpWebRequest myHttpWebRequest =

(HttpWebRequest)WebRequest.Create(block.Link);

 myHttpWebRequest.AddRange(block.StartAddress, block.StartAddress + block.Size - 1);

 myHttpWebRequest.Timeout = 30000;

 /*Debug.WriteLine("Call AddRange(50,150)");

 Debug.Write("Resulting Request Headers: ");

 Debug.WriteLine(myHttpWebRequest.Headers.ToString());*/

 using (HttpWebResponse myHttpWebResponse =

(HttpWebResponse)myHttpWebRequest.GetResponse())

 /*Debug.Write("Resulting Response Headers: ");

 Debug.WriteLine(myHttpWebResponse.Headers.ToString());*/

 using (Stream streamResponse = myHttpWebResponse.GetResponseStream())

 using (MemoryStream ms = new MemoryStream())

 {

 streamResponse.CopyTo(ms, 16384);

 obj[1] = ms.ToArray();

 myHttpWebResponse.Close();

 }

 }

 catch (Exception ex)

 {

 //notify peer of error

 Debug.WriteLine(ex.Message + " " + block.Position);

 //Thread.Sleep(2000);

 // e.Cancel = true;

 //MainForm.BlockList[block.Position].status = BlockStatus.NotDownloaded;

 }

 }

 return obj;

 }

 void BgWorker_DoWork(object sender, DoWorkEventArgs e)

 {

 // Get the BackgroundWorker that raised this event.

 BackgroundWorker worker = sender as BackgroundWorker;

137

 // Assign the result of the computation to the Result property of the DoWorkEventArgs object.

This will be available to the RunWorkerCompleted eventhandler.

 e.Result = DownloadBlock((Block)e.Argument, worker, e);

 }

 void BgWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

 {

 nAssigned += 1;

 if (e.Cancelled)

 { /*echo to peer: "You cancelled the download"*/

 return;

 }

 object[] obj = e.Result as object[];

 long n = (long)obj[0];

 int sleep = (int)(((DateTime.UtcNow - MainForm.BlockList[n].StartTime).Milliseconds /

simBWFactor) * (1 - simBWFactor));

 Thread.Sleep(sleep);

 Debug.WriteLine("Position " + n);

 if (MainForm.BlockList[n].Assignee == ID)

 {

 if (e.Error != null || obj[1] == null || SimulateFailure(simReliability))

 {

 /*echo to peer: "Download failed"*/

 MainForm.BlockList[n].status = BlockStatus.NotDownloaded;

 }

 else

 {

 if (SimulateTampering(simRiskFactor)) { TamperWithBlock(ref obj[1]); }

 MainForm.BlockList[n].content = obj[1] as byte[];

 MainForm.BlockList[n].status = BlockStatus.Downloaded;

 Debug.WriteLine("Position " + n + " Completed");

 nSuccessful += 1;

 TotalBytesDownloaded += (obj[1] as byte[]).Length;

 TotalTimeTaken += ((DateTime.UtcNow -

MainForm.BlockList[n].StartTime).Milliseconds);

 }

 }

 else { /*echo to peer: "You took so long. Block has been reassigned"*/}

 }

 void BgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)

 {

 }

 private static bool SimulateFailure(double s)

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 //reliability happens 100*s % of the time, so failure happens the rest of the time.

 return !(rng.NextDouble() < s);

 }

 }

 private static bool SimulateTampering(double r)

 {

138

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[4];

 key.GetNonZeroBytes(b);

 Random rng = new Random(1 * b[1] * b[2] * b[3]);

 //this happens 100*r % of the time, so do what happens 100*r % of the time.

 return (rng.NextDouble() < r);

 }

 }

 static void TamperWithBlock(ref object o)

 {

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 key.GetNonZeroBytes((o as byte[]));

 }

 }

 public double CBA

 {

 get

 {

 return (TotalBytesDownloaded == 0) ? 0 : (TotalBytesDownloaded * 1000) /

(TotalTimeTaken * 1024); //converting to kilobytes per second.

 }

 }

 public double SCR

 {

 get

 {

 return (nAssigned == 0) ? 0.5 : Math.Sqrt((0.25 + Math.Max(0, 3 * nSuccessful - 2 *

nAssigned)) / (nAssigned + 1));

 }

 }

 }

 public class Block

 {

 public string Assignee { get; set; }

 public string Link { get; private set; }

 public long Position { get; private set; }

 public long StartAddress { get; private set; }

 public long Size { get; private set; }

 public DateTime StartTime { get; private set; }

 private BlockStatus _status;

 public BlockStatus status

 {

 get

 {

 return _status;

 }

 set

 {

 _status = value;

 if (value == BlockStatus.Downloading) this.StartTime = DateTime.UtcNow;

 if (value == BlockStatus.NotDownloaded || value == BlockStatus.Downloaded)

 { OnStatusChanged(EventArgs.Empty); }

139

 }

 }

 public byte[] content;

 public event EventHandler BlockStatusChanged;

 void OnStatusChanged(EventArgs e)

 {

 // Make a temporary copy of the event to avoid possibility of

 // a race condition if the last subscriber unsubscribes

 // immediately after the null check and before the event is raised.

 // see https://stackoverflow.com/questions/1609430/copying-delegates

 EventHandler handler = BlockStatusChanged;

 if (handler != null) { handler(this, e); }

 }

 public void BlockInit(Uri url,long pos, long start, long blockSize)

 {

 Link = url.ToString();

 Position = pos;

 StartAddress = start;

 Size = blockSize;

 }

 }

 public enum BlockStatus {NotAssigned, Downloading, Downloaded, NotDownloaded}

 public class PeerData

 {

 //public string ID;

 public int NumberOfSessionsWith { get; set; }

 public long NumberOfBytes { get; set; }

 public long NumberOfFailedBlocks { get; set; }

 public long NumberOfTamperedBlocks { get; set; }

 public long NumberOfGoodBlocks { get; set; }

 public DateTime LastSuccessfulTime { get; set; }

 public double CurrentRI { get; set; }

 public double CurrentCNorm { get; set; }

 }

}

// Form.CS

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Net;

using System.Security.Cryptography;

using System.IO;

using System.Diagnostics;

using System.Xml.Linq;

using FRIENDS.Properties;

using System.Threading;

using System.Media;

140

namespace FRIENDS

{

 public partial class MainForm : Form

 {

 public MainForm()

 {

 InitializeComponent();

 //Application.Idle += new System.EventHandler(this.RunTests);

 }

 private void RunTests(object sender, EventArgs e)

 {

 if (FileSize > 0 && OpenButton.Enabled) MessageBox.Show("Idle", "Yeah!!!");

 }

 Dictionary<string, PeerData> KnownPeerStore;

 Dictionary<string, bool> SessionPeers;

 static Dictionary<string, double> TrustRating;

 string[] PeerCDGroup;

 double WCBA, WSCR, WRI, CMax, CMin;

 Uri DownloadLink;

 string FileName, Method;

 long FileSize, MaxPeers = 3;

 long CompletedBlocks = 0, BlockSize = 400 * 1024;

 static public Block[] BlockList;

 byte[] FileAsByteArray, CheckFileAsByteArray; //consider using a file stream afterwards

 long[][] FileCheck;

 bool DownloadCancelled;

 XElement KPS;

 Stopwatch swc;

 private void Slider_Scroll(object sender, EventArgs e)

 {

 string txtName = (sender as TrackBar).Name.Replace("Slider", "Txt");

 (sender as Control).Parent.Controls[txtName].Text = Convert.ToString(((double)(sender as

TrackBar).Value) / 20);

 //this.Controls[txtName].Text = Convert.ToString(((double)(sender as TrackBar).Value) / 20);

 }

 private void InitialiseSliders()

 {

 SCRSlider.Value = (int)Math.Round(Double.Parse(SCRTxt.Text) * 20);

 CBASlider.Value = (int)Math.Round(Double.Parse(CBATxt.Text) * 20);

 RISlider.Value = (int)Math.Round(Double.Parse(RITxt.Text) * 20);

 }

 private void maskedTextBox_TextChanged(object sender, EventArgs e)

 {

 //MaskedTextBox mtxt = sender as MaskedTextBox;

 if (Double.Parse((sender as MaskedTextBox).Text) > 1.00) (sender as MaskedTextBox).Text =

"1.00";

 string sliderName = (sender as Control).Name.Replace("Txt", "Slider");

 ((sender as Control).Parent.Controls[sliderName] as TrackBar).Value =

(int)Math.Round(Double.Parse((sender as MaskedTextBox).Text) * 20);

 NormaliseWeights();

 RatePeers();

 RefreshDisplayBox();

 }

141

 private void NormaliseWeights()

 {

 double s = double.Parse(SCRTxt.Text);

 double c = double.Parse(CBATxt.Text);

 double r = double.Parse(RITxt.Text);

 WSCR = s / (s + c + r);

 WCBA = c / (s + c + r);

 WRI = r / (s + c + r);

 nwSCR.Text = WSCR.ToString("F4");

 nwCBA.Text = WCBA.ToString("F4");

 nwRI.Text = WRI.ToString("F4");

 }

 void RatePeers()

 {

 CMax = Peer.PeerList.Values.Max(c => c.CBA) * 4 / 3;

 CMin = (CMax == 0) ? 0 : Peer.PeerList.Values.Min(c => c.CBA) * 2 / 3;

 Dictionary<string, double> TR = new Dictionary<string, double>();

 foreach (Peer p in Peer.PeerList.Values)

 {

 double CNorm = (p.CBA == 0) ? 0.5 : (p.CBA - CMin) / (CMax - CMin);

 KnownPeerStore[p.ID].CurrentCNorm = CNorm;

 PeerData pr = KnownPeerStore[p.ID];

 double RI = (pr.NumberOfGoodBlocks + pr.NumberOfTamperedBlocks == 0) ? 0.5 :

(double)(pr.NumberOfGoodBlocks - pr.NumberOfTamperedBlocks) / (pr.NumberOfGoodBlocks +

pr.NumberOfTamperedBlocks);

 if (RI < 0) RI = 0;

 KnownPeerStore[p.ID].CurrentRI = RI;

 double t = (CNorm * WCBA) + (p.SCR * WSCR) + (RI * WRI);

 TR.Add(p.ID, t);

 }

 TrustRating = TR.OrderByDescending(key => key.Value).ToDictionary(k => k.Key, v =>

v.Value);

 }

 bool GetFileNameAndSize()

 {

 if (!Uri.TryCreate(AddressBox.Text, UriKind.Absolute, out DownloadLink) ||

(DownloadLink.Scheme != Uri.UriSchemeHttp && DownloadLink.Scheme != Uri.UriSchemeHttps))

 {

 MessageBox.Show("Error in url. Please input a valid http or https url.", "Error!",

MessageBoxButtons.OK, MessageBoxIcon.Error); return false;

 }

 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(DownloadLink);

 req.Method = "HEAD";

 HttpWebResponse resp = (HttpWebResponse)(req.GetResponse());

 if (!resp.Headers.AllKeys.Contains("Accept-Ranges") || !resp.Headers["Accept-

Ranges"].Contains("bytes"))

 {

 MessageBox.Show("The specified server does not support byte range requests, sorry.",

"Error!", MessageBoxButtons.OK, MessageBoxIcon.Error); return false;

 }

 if (resp.ContentLength <= 400 * 1024)

 {

 MessageBox.Show("The specified file is less than 400KB. Please download it yourself",

"Error!", MessageBoxButtons.OK, MessageBoxIcon.Error); return false;

 }

 FileSize = resp.ContentLength;

 if (resp.Headers.AllKeys.Contains("content-disposition") && resp.Headers["content-

disposition"].ToLower().Contains("filename="))

142

 {

 FileName =@"C:\Friends\" + new

System.Net.Mime.ContentDisposition(resp.Headers["content-disposition"]).FileName;

 }

 else

 {

 int i = DownloadLink.AbsolutePath.LastIndexOf('/') + 1;

 FileName = @"C:\Friends\" + DownloadLink.AbsolutePath.Substring(i);

 }

 FileName = Uri.UnescapeDataString(FileName);

 string sb = FileName.Substring(11);

 CheckFileAsByteArray = File.ReadAllBytes(@"C:\Friends\Check\mp3s\" + sb);//in real life

we won't use this..It is only used to avoid Error 429 in the simulation.

 int n = 1;

 while (File.Exists(FileName))

 {

 FileName = string.Format(@"C:\Friends\{0}_{1}", n++, sb);

 }

 System.IO.Directory.CreateDirectory(@"C:\Friends");

 //MessageBox.Show("Check Succeeded. You are good to go!", "Success",

MessageBoxButtons.OK);

 return true;

 }

 void FormPeerGroup()

 {

 PeerCDGroup = new string[MaxPeers];

 switch (Method)

 {

 case "Random":

 var rng = new Random();

 int c = -1;

 PeerSelectBox.ClearSelected();

 for (int r = 0; r < MaxPeers; r++)

 {

 while (c == -1 || PeerSelectBox.GetSelected(c))

 {

 c = rng.Next(0, PeerSelectBox.Items.Count);

 }

 PeerSelectBox.SetSelected(c, true);

 PeerCDGroup[r] = PeerSelectBox.Items[c].ToString();

 }

 break;

 case "Select":

 for (int s = 0; s < PeerSelectBox.SelectedItems.Count; s++)

 {

 PeerCDGroup[s] = PeerSelectBox.SelectedItems[s].ToString();

 }

 break;

 case "Trust": //just to show that Trust in the default option..

 default:

 int n = 0;

 foreach (var s in SessionPeers.Keys)

 {

 if (SessionPeers[s]) PeerCDGroup.SetValue(s, n++);

 }

 RatePeers();

 var tmp = TrustRating.Keys.ToArray();

 for (int i = 0; i < MaxPeers - n; i++)

 {

143

 PeerCDGroup[n + i] = tmp[i];

 }

 break;

 }

 }

 void AssignBlocks()

 {

 Peer p;

 int n = 0;

 double pCBAF; //peerCBAFactor; used to compute p.CBA * 1024, i.e CBA in bytes/s;

 foreach (string s in PeerCDGroup)

 {

 if (s == null) continue;

 p = Peer.PeerList[s];

 if (n == -1) return;

 if (!p.BgWorker.IsBusy)

 {

 pCBAF = p.CBA * 1024;//blocksize/pCBAF = maximum time spendable for block

download;

 n = Array.FindIndex(BlockList, b => b.status == BlockStatus.NotAssigned || (b.status ==

BlockStatus.Downloading && (DateTime.UtcNow - b.StartTime).Seconds - 2000 > b.Size / pCBAF));

 if (n > -1)

 {

 FileIntegrityCheck(BlockList[n]);

 BlockList[n].status = BlockStatus.Downloading;

 BlockList[n].Assignee = p.ID;

 p.BgWorker.RunWorkerAsync(BlockList[n]);

 if (!SessionPeers.ContainsKey(p.ID))

 {

 KnownPeerStore[p.ID].NumberOfSessionsWith += 1;

 Peer.PeerList[p.ID].SessionCount += 1;

 }

 SessionPeers[p.ID] = true;

 }

 }

 }

 }

 static void SimulateWLanDiscovery()

 {

 Peer.LoadPeerList();

 if (Peer.PeerList == null)

 {

 Peer.PeerList = new Dictionary<string, Peer>();

 for (int i = 0; i < 10; i++) //10 peers

 {

 Peer p = new Peer();

 while (Peer.PeerList.Keys.Contains(p.ID)) { p = new Peer(); }

 Peer.PeerList.Add(p.ID, p);

 }

 Peer.CreatePeerList();

 }

 }

 void InitializePeerStore()

 {

 LoadPeerStore();

 if (KnownPeerStore == null)

 {

144

 KnownPeerStore = new Dictionary<string, PeerData>();

 foreach (Peer peer in Peer.PeerList.Values)

 {

 KnownPeerStore.Add(peer.ID, new PeerData());

 }

 }

 else

 {

 foreach (Peer p in Peer.PeerList.Values)

 {

 if (!KnownPeerStore.Keys.Contains(p.ID)) { KnownPeerStore.Add(p.ID, new

PeerData()); }

 }

 }

 KPS = new XElement("KnownPeers", new XComment("List of Known Peers"));

 foreach (var s in KnownPeerStore)

 {

 KPS.Add(new XElement("Peer",

 new XElement("ID", s.Key),

 new XElement("CurrentCNorm", s.Value.CurrentCNorm),

 new XElement("CurrentRI", s.Value.CurrentRI),

 new XElement("LastSuccessfulTime", s.Value.LastSuccessfulTime),

 new XElement("NumberOfBytes", s.Value.NumberOfBytes),

 new XElement("NumberOfFailedBlocks", s.Value.NumberOfFailedBlocks),

 new XElement("NumberOfGoodBlocks", s.Value.NumberOfGoodBlocks),

 new XElement("NumberOfSessionsWith", s.Value.NumberOfSessionsWith),

 new XElement("NumberOfTamperedBlocks", s.Value.NumberOfTamperedBlocks)

));

 }

 Settings.Default.KnownPeerStore = KPS.ToString();

 Settings.Default.Save();

 PeerComboBox.Items.AddRange(KnownPeerStore.Keys.ToArray());

 PeerSelectBox.Items.AddRange(KnownPeerStore.Keys.ToArray());

 }

 void LoadPeerStore()

 {//try to get stored Known Peers else return leaving KPS null

 if (Settings.Default.KnownPeerStore == "") return;

 KPS = XElement.Parse(Settings.Default.KnownPeerStore);

 if (KPS.Elements("Peer").Count() != 0)

 {

 KnownPeerStore = new Dictionary<string, PeerData>();

 foreach (var k in KPS.Elements("Peer"))

 {

 string s = k.Element("ID").Value;

 KnownPeerStore.Add(s, new PeerData());

 KnownPeerStore[s].CurrentCNorm = (double)k.Element("CurrentCNorm");

 KnownPeerStore[s].CurrentRI = (double)k.Element("CurrentRI");

 KnownPeerStore[s].LastSuccessfulTime = (DateTime)k.Element("LastSuccessfulTime");

 KnownPeerStore[s].NumberOfBytes = (long)k.Element("NumberOfBytes");

 KnownPeerStore[s].NumberOfFailedBlocks =

(long)k.Element("NumberOfFailedBlocks");

 KnownPeerStore[s].NumberOfGoodBlocks =

(long)k.Element("NumberOfGoodBlocks");

 KnownPeerStore[s].NumberOfSessionsWith =

(int)k.Element("NumberOfSessionsWith");

 KnownPeerStore[s].NumberOfTamperedBlocks =

(long)k.Element("NumberOfTamperedBlocks");

 }

145

 }

 }

 void InitializeBlockList()

 {

 FileAsByteArray = new byte[FileSize];

 long div = FileSize / BlockSize;

 long count = (FileSize % BlockSize < BlockSize / 2) ? div : div + 1;

 BlockList = new Block[count];

 FileCheck = new long[count][];

 for (int i = 0; i < count-1; i++)

 {

 BlockList[i] = new Block();

 BlockList[i].BlockInit(DownloadLink, i, i * BlockSize, BlockSize);

 BlockList[i].BlockStatusChanged+=new EventHandler(Block_StatusChanged); //C#1.0

syntax

 }

 //could have checked from end in the for loop rather than doing this, but it's computationally

wasteful.

 long rem = (count - 1) * BlockSize;

 BlockList[count - 1] = new Block();

 BlockList[count - 1].BlockInit(DownloadLink,count - 1, rem, FileSize - rem);

 BlockList[count - 1].BlockStatusChanged += Block_StatusChanged; //C#2.0 syntax.

equivalent to 1.0

 }

 void Block_StatusChanged(object sender, EventArgs e)

 {

 Block bl = (Block)sender;

 if (bl.status == BlockStatus.Downloading || bl.status == BlockStatus.NotAssigned) return;

 if (bl.status == BlockStatus.NotDownloaded || !VerifyDownload(bl))

 {

 if (bl.status == BlockStatus.NotDownloaded)

 { KnownPeerStore[bl.Assignee].NumberOfFailedBlocks += 1; }

 BlockList[bl.Position].status = BlockStatus.NotAssigned;

 }

 else if (!DownloadCancelled)

 {

 Array.Copy(bl.content, 0, FileAsByteArray, bl.StartAddress, bl.content.LongLength);

 CompletedBlocks += 1;

 DProgressBar.Value = (int)(CompletedBlocks * 100 / BlockList.LongLength);

 DProgressBar.ToolTipText = string.Format("Download Progress: {0}% Completed",

DProgressBar.Value);

 }

 SessionPeers[bl.Assignee] = false;

 RatePeers();

 UpdateKPSSettings(bl.Assignee);

 Peer.UpdatePLSettings(bl.Assignee);

 if (CompletedBlocks != BlockList.LongLength)

 {

 if (Method == "Trust" && AdaptiveButton.Checked) FormPeerGroup();

 else AssignBlocks();

 }

 else

 {

 swc.Stop();

 File.WriteAllBytes(FileName, FileAsByteArray);

 statusLbl.Text = string.Format("Download Completed in {0} ms",

swc.ElapsedMilliseconds);

 OpenButton.Enabled = true;

146

 SystemSounds.Beep.Play();

 ResetForm();

 }

 }

 bool VerifyDownload(Block b)

 {

 if (b.content == null || b.content.LongLength != b.Size)

 {

 KnownPeerStore[b.Assignee].NumberOfTamperedBlocks += 1;

 return false;

 }

 foreach (long index in FileCheck[b.Position])

 {

 for (int i = 0; i < 2048; i++)

 {

 if (CheckFileAsByteArray[index + i] != b.content[index - b.StartAddress + i])

 {

 KnownPeerStore[b.Assignee].NumberOfTamperedBlocks += 1;

 return false;

 }

 }

 }

 KnownPeerStore[b.Assignee].NumberOfGoodBlocks += 1;

 KnownPeerStore[b.Assignee].NumberOfBytes += b.content.LongLength;

 KnownPeerStore[b.Assignee].LastSuccessfulTime = DateTime.UtcNow;

 return true;

 }

 void FileIntegrityCheck(Block a)

 {

 int seed = 1;

 List<long> indices = new List<long>();

 using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider())

 {

 byte[] b = new byte[1];

 key.GetNonZeroBytes(b);

 Random rng = new Random(b[0]);

 b = new byte[rng.Next(5, 9)];//b can be 8 - 15 'bytes' (array length) long.

 for (int i = 0; i < a.Size; i += 40960)//40KB

 {

 key.GetNonZeroBytes(b);

 int mod = (a.Size - i >= 40960) ? 38913 : (int)a.Size - i - 2047;

 //you can later modify this to select the last 5KB in the block.. duplicate downloads with

the last byte possible

 if (mod < 128) break; //So currently if last piece of block is less than 383 (255+128) dont

download/check that part.

 //e.g. if 5KB, 4864= 5*1024 - 256, max start index for a 256byte piece in a 5KB (5*1024)

block; 4865 = 4864 + 1 to do mod so you can also get 4864; 4865= 5*1024-255

 seed = Math.Abs(b.Aggregate(1, (x, y) => x * y)) % mod;

 indices.Add(a.StartAddress + i + seed);

 }

 }

 FileCheck[a.Position] = indices.ToArray();

 //Code below not used because of the high possibility of error 429 (too many requests) from

webserver. It is left because it will work in real life scenarios with actually different phones.

 /* while (this.InitiatorWorker.IsBusy)

 {

147

 //while waiting for the backgroundWorker to be free, inform the iniatiator and keep UI

reponsive

 statusLbl.Text += "\nOne more block check download task pooled.";

 Application.DoEvents();

 } */

 /* or use this instead of above to search only if the chance is there:

 if (!InitiatorWorker.IsBusy)

 {

 InitiatorWorker.RunWorkerAsync(FileCheck[a.Position]);

 statusLbl.Text = "Block check download in background.";

 } */

 //so this is used instead in the simulation: a CheckFileAsByteArray which is the original file

predownloaded to serve as a check. The reason is the Error 429 that will be received on trying to start

so many requests to the server from the same application.

 }

 object DownloadPiece(long start, BackgroundWorker worker, DoWorkEventArgs e)

 {

 object obj = new object();

 if (worker.CancellationPending)

 {

 e.Cancel = true;

 }

 else

 {

 try

 {

 HttpWebRequest myHttpWebRequest =

(HttpWebRequest)WebRequest.Create(DownloadLink);

 myHttpWebRequest.AddRange(start, start + 2047);

 HttpWebResponse myHttpWebResponse =

(HttpWebResponse)myHttpWebRequest.GetResponse();

 using (Stream streamResponse = myHttpWebResponse.GetResponseStream())

 using (MemoryStream ms = new MemoryStream())

 {

 //we know the stream response should be 256 bytes long.

 // default buffer is 4096 bytes. That's wastage for us here!

 //so in copying, we use a buffer = 2*256 + 8 extra bytes (to avoid any unanticipated

issues). 2*256 + 8 = 520. OK. no magic number here. lol.

 streamResponse.CopyTo(ms);

 obj = ms.ToArray();

 }

 }

 catch (Exception)

 {

 e.Cancel = true;

 }

 }

 return obj;

 }

 private void InitiatorWorker_DoWork(object sender, DoWorkEventArgs e)

 {

 BackgroundWorker worker = sender as BackgroundWorker;

 long[] aIndices = (long[]) e.Argument;

 object[] aResult = new object[aIndices.Length + 1];

 aResult[0] = aIndices;

 for (int i = 0; i < aIndices.Length; i++)

 {

148

 aResult[i + 1] = DownloadPiece(aIndices[i], worker, e);

 Thread.Sleep(2000);

 }

 e.Result = aResult;

 }

 private void InitiatorWorker_RunWorkerCompleted(object sender,

RunWorkerCompletedEventArgs e)

 {

 if (statusLbl.Text.Contains("Block")) statusLbl.Text = "";

 if (e.Error != null)

 {

 }

 else if (e.Cancelled)

 {

 }

 else

 {

 object[] obj = e.Result as object[];

 for (int i = 0; i < obj.Length - 1; i++)

 {

 Array.Copy(obj[i + 1] as byte[], 0, FileAsByteArray, (obj[0] as long[])[i], (obj[i + 1] as

byte[]).Length);

 }

 }

 }

 private void ResetForm()

 {

 swc.Stop();

 CheckButton.Enabled = true;

 DownloadButton.Enabled = CancelDButton.Enabled = false;

 CompletedBlocks = 0;

 DProgressBar.Value = 0;

 DProgressBar.Visible = false;

 DProgressBar.ToolTipText = "Download Progress";

 RefreshDisplayBox();

 foreach (Peer p in Peer.PeerList.Values)

 {

 p.BgWorker.Dispose();

 p.BgWorker = null;

 p.BgWorker = new BackgroundWorker();

 p.InitBgWorker();

 }

 // will be necessary in real life situation where we have to actually download the checks.

 /*

 this.InitiatorWorker.Dispose();

 this.InitiatorWorker = new BackgroundWorker();

 this.InitiatorWorker.WorkerReportsProgress = true;

 this.InitiatorWorker.WorkerSupportsCancellation = true;

 this.InitiatorWorker.DoWork += new DoWorkEventHandler(this.InitiatorWorker_DoWork);

 this.InitiatorWorker.RunWorkerCompleted += new

RunWorkerCompletedEventHandler(this.InitiatorWorker_RunWorkerCompleted); */

 }

 private void DownloadButton_Click(object sender, EventArgs e)

 {

 DownloadCancelled = false;

 CheckButton.Enabled = OpenButton.Enabled = DownloadButton.Enabled = false;

149

 CancelDButton.Enabled = true;

 SessionPeers = new Dictionary<string, bool>();

 statusLbl.Text = "Downloading in progress...";

 DProgressBar.Visible = true;

 swc = Stopwatch.StartNew();

 FormPeerGroup();

 AssignBlocks();

 }

 private void MainForm_Load(object sender, EventArgs e)

 {

 this.Size = Settings.Default.MainFormSize;

 InitialiseSliders();

 SimulateWLanDiscovery();

 InitializePeerStore();

 NormaliseWeights();

 RatePeers();

 PeerSelectBox.SelectedIndex = PeerComboBox.SelectedIndex = 0;

 }

 private void CancelButton_Click(object sender, EventArgs e)

 {

 DownloadCancelled = true;

 statusLbl.Text = "You cancelled the download";

 ResetForm();

 }

 void radioButton_CheckedChanged(object sender, EventArgs e)

 {

 RadioButton rb = sender as RadioButton;

 Method = rb.Text;

 switch (Method)

 {

 case "Random":

 case "Trust": int n;

 MaxPeers = int.TryParse(MaxPeersTxt.Text, out n) ? Math.Min(n, Math.Min(FileSize /

BlockSize, KnownPeerStore.Count)) : 3;

 if (MaxPeers == 0) MaxPeers = 3;

 selPeers.Enabled = false;

 PeerSelectBox.Enabled = false;

 break;

 case "Select": MaxPeers = Math.Min(FileSize / BlockSize, KnownPeerStore.Count);

 selPeers.Text = string.Format("Select Peers below. Max = {0}", MaxPeers);

 selPeers.Enabled = true;

 PeerSelectBox.Enabled = true;

 break;

 }

 statusLbl.Text = string.Format("Number of peers being used: {0}", MaxPeers);

 }

 private void BlockSizeBox_SelectedIndexChanged(object sender, EventArgs e)

 {

 BlockSize = (long)BlockSizeBox.SelectedItem * 1024;

 }

 private void PeerComboBox_SelectedIndexChanged(object sender, EventArgs e)

 {

 RefreshDisplayBox();

 }

150

 private void RefreshDisplayBox()

 {

 RatePeers();

 string s = PeerComboBox.SelectedItem.ToString();

 DisplayBox.ResetText();

 DisplayBox.AppendText("OVERALL TRUST RATING:\t\t" + TrustRating[s].ToString("F4")

+ "\t(as per weights selected)\n");

 DisplayBox.AppendText("CBA:\t\t\t\t" + Peer.PeerList[s].CBA.ToString("F4") + "\n");

 DisplayBox.AppendText("CBA Normalised:\t\t\t" +

KnownPeerStore[s].CurrentCNorm.ToString("F4") + "\n");

 DisplayBox.AppendText("SCR:\t\t\t\t" + Peer.PeerList[s].SCR.ToString("F4") + "\n");

 DisplayBox.AppendText("1-RI (positive):\t\t\t" +

KnownPeerStore[s].CurrentRI.ToString("F4") + "\n");

 DisplayBox.AppendText("Last Successful Time:\t\t" +

((KnownPeerStore[s].LastSuccessfulTime.Year<2015)?"--------

\n":KnownPeerStore[s].LastSuccessfulTime.ToString("ddd, MMM. d, yyyy h:mm tt") + " (UTC)\n"));

 DisplayBox.AppendText("Total Bytes Downloaded:\t\t" +

KnownPeerStore[s].NumberOfBytes + "\n");

 DisplayBox.AppendText("Number of Sessions With:\t\t" +

KnownPeerStore[s].NumberOfSessionsWith + "\n");

 DisplayBox.AppendText("Number of Successful Blocks:\t\t" +

KnownPeerStore[s].NumberOfGoodBlocks + "\n");

 DisplayBox.AppendText("Number of failed Blocks:\t\t" +

KnownPeerStore[s].NumberOfFailedBlocks + "\n");

 DisplayBox.AppendText("Number of Blocks Tampered With:\t" +

KnownPeerStore[s].NumberOfTamperedBlocks + "\n");

 DisplayBox.AppendText("Total Number of Sessions for Peer:\t" +

Peer.PeerList[s].SessionCount + "\n");

 }

 private void OpenButton_Click(object sender, EventArgs e)

 {

 Process.Start("explorer.exe", "/select," + FileName);

 }

 void UpdateKPSSettings(string id)

 {

 foreach (var peer in KPS.Elements("Peer"))

 {

 if (peer.Element("ID").Value == id)

 {

 try

 {

 peer.ReplaceNodes(new XElement("ID", id),

 new XElement("CurrentCNorm", KnownPeerStore[id].CurrentCNorm),

 new XElement("CurrentRI", KnownPeerStore[id].CurrentRI),

 new XElement("LastSuccessfulTime", KnownPeerStore[id].LastSuccessfulTime),

 new XElement("NumberOfBytes", KnownPeerStore[id].NumberOfBytes),

 new XElement("NumberOfFailedBlocks", KnownPeerStore[id].NumberOfFailedBlocks),

 new XElement("NumberOfGoodBlocks", KnownPeerStore[id].NumberOfGoodBlocks),

 new XElement("NumberOfSessionsWith",

KnownPeerStore[id].NumberOfSessionsWith),

 new XElement("NumberOfTamperedBlocks",

KnownPeerStore[id].NumberOfTamperedBlocks)

);

 Settings.Default.KnownPeerStore = KPS.ToString();

 Settings.Default.Save();

 }

 catch (Exception)

151

 {

 //Wait_till_next_opportunity;

 }

 }

 }

 }

 private void MainForm_FormClosing(object sender, FormClosingEventArgs e)

 {

 foreach (string s in KnownPeerStore.Keys)

 {

 UpdateKPSSettings(s);

 Peer.UpdatePLSettings(s);

 }

 Settings.Default.MainFormSize = this.Size;

 Settings.Default.Save();

 }

 private void CheckButton_Click(object sender, EventArgs e)

 {

 if (GetFileNameAndSize()) DownloadButton.Enabled = true;

 InitializeBlockList();

 }

 }

}

	Abstract
	Acknowledgments
	Publications
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 Research Problems and Justification
	1.3 Research Aims and Objectives
	1.3.1 Aims
	1.3.2 Objectives

	1.4 Research Methodology and Scope
	1.4.1 Methodology
	1.4.2 Scope

	1.5 Novel Contributions
	1.6 Organisation of The Thesis

	Chapter 2 Background Study
	2.1 Trust Modelling and Management
	2.1.1 Existing IoT-Centric Trust Models
	2.1.2 Traditional Reputation Models in IoT Contexts

	2.2 Trust-Based Service Composition and Provisioning
	2.2.1 Service Compositions in the IoT
	2.2.2 Service Classes
	2.2.3 Service Workflow
	2.2.4 Consensus Mechanisms
	2.2.5 Existing Trust-Based IoT Service Composition Models

	2.3 Ideal IoT-Centric Trust Model
	2.4 Chapter Summary

	Chapter 3 CTRUST: A Dynamic Trust Model for Collaborative IoT Applications
	3.1 Model Design and Analysis
	3.1.1 Trust Parameters
	3.1.2 Parameter Weights
	3.1.3 Partial Trust Scores and Aggregation
	3.1.4 Trust Decay
	3.1.5 Trust Recommendations and the Belief Function
	3.1.6 Trust Update and Maturity

	3.2 Model Performance and Evaluation
	3.2.1 Context Overview: Collaborative Downloading
	3.2.2 Collaboration Context Setup
	3.2.3 Utility of the Model in Collaboration Context
	3.2.4 Evaluating Trust Model Accuracy and Convergence
	3.2.5 Evaluating Trust Model Resilience
	3.2.6 Comparison to Related Work

	3.3 Chapter Summary

	Chapter 4 SC-TRUST: A Dynamic Model for Trustworthy Service Composition in the Internet of Things
	4.1 Model Design and Analysis
	4.1.1 Transparent Trust Composition
	4.1.1.1 Selection Workflow
	4.1.1.2 Parallel Workflow
	4.1.1.3 Sequential Workflow

	4.1.2 Transparent Trust Decomposition

	4.2 Model Performance and Evaluation
	4.2.1 Evaluating Utility Gain in SC-TRUST
	4.2.2 Evaluating Trust Model Accuracy, Resilience and Convergence

	4.3 Chapter Summary

	Chapter 5 Conclusion And Future Work
	5.1 Conclusion
	5.2 Further Work

	References
	Appendix A: Definition of Terms
	Appendix B: Main Codebase

