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ABSTRACT 

A future Internet of Things (IoT) will feature a service-oriented 

architecture consisting of lightweight computing platforms offering 

individual, loosely coupled microservices. Often, an end-user will request 

a bespoke service that will require a composition of two or more 

microservices offered by different service providers. This architecture 

offers several advantages that are key to the realisation of the IoT vision, 

such as modularity, increased reliability and technology heterogeneity 

and interoperability. As a result, the adoption of this architecture in the 

IoT is being extensively researched. However, the underlying 

complexities of service compositions and the increased security risks 

inherent in such a massively decentralised and distributed architecture 

remain key problems. The use of trust management to secure the IoT 

remains a current and interesting topic; its potential as a basis for service 

compositions has not been thoroughly researched, however. 

Security through trust presents a viable solution for threat management in 

the IoT. Currently, a well-defined trust management framework for 

collaborative and composite applications on an IoT platform does not 

exist. In this thesis, a collaborative application refers to the one that 

enables collaboration among its users to jointly complete certain tasks, 

whereas a composite application is the one composed of multiple existing 

services to deliver integrated functionalities. To estimate reliably the trust 

values of nodes within a system, the trust should be measured by suitable 

parameters that are based on the nodes’ functional properties in the 

application context. Existing models do not clearly outline the 

parametrisation of trust. Also, trust decay is inadequately modelled in 

many current models. In addition, trust recommendations are usually 
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inaccurately weighted with respect to previous trust, thereby increasing 

the effect of bad recommendations.  

This thesis focuses on providing solutions to the twin issues of trust-based 

security and trust-based compositions for the IoT. First, a new model, 

CTRUST, is proposed to resolve the above stated shortcomings of 

previous trust models. In CTRUST, trust is accurately parametrised while 

recommendations are evaluated through belief functions. The effects of 

trust decay and maturity on the trust evaluation process were studied. 

Each trust component is neatly modelled by appropriate mathematical 

functions. CTRUST was implemented in a collaborative download 

application and its performance was evaluated based on the utility derived 

and its trust accuracy, convergence, and resiliency. The results indicate 

that IoT collaborative applications based on CTRUST gain a significant 

improvement in performance, in terms of efficiency and security. 

In a second study, the trust properties of service compositions in the IoT, 

along with the effect of the service architecture on the security and 

performance of the composed service, are investigated. Novel approaches 

are considered in relation to trust decomposition and composition, 

respectively. Relevant trust evaluation functions are derived to guide the 

compositions, which are used to extend CTRUST into a new trust model, 

SC-TRUST. SC-TRUST is implemented in a suitable simulation and the 

results are evaluated. The model reliably guides service compositions 

while ensuring utility to the end-user. Overall, the analyses and 

evaluations support the conclusion that the trust models are effective in 

terms of performance gain and security. The models are scalable and 

lightweight such that they could be deployed to secure applications and 

drive meaningful services and collaborations in the envisaged IoT and 

Web 3.0 sphere. 
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CHAPTER 1 INTRODUCTION 

1.1 Research Motivation 

The increasing development and pervasiveness of the IoT have facilitated 

the proliferation of a new generation of smart objects [1], [2]. A smart 

object is a physical thing or device with a unique identifier and equipped 

with some computing and networking capabilities that enable it to connect 

and communicate with similar objects and human users [3]–[5]. A major 

consequence of this rapid adoption is that human users can connect to 

their environment, data, and services at an unprecedented scale for various 

novel, multi-contextual, dynamic, and on-demand applications. The 

potential benefits and use cases of the IoT apply to virtually every domain 

of social life, including healthcare, transportation and agriculture [6]–[8]. 

The IoT paradigm is built upon other research areas such as cyber-physical 

systems (CPS), wireless sensor networks (WSNs), big data, machine 

learning, adhoc networks, mobile computing, and ubiquitous computing, 

and requires collaborations and interoperability between various devices 

and networks on a massive scale. 

Generally, the future IoT will be used to provision collaborative 

applications and service compositions. In collaborative IoT applications, 

several users or devices come together and pool their resources to execute 

a task or provide a service. The resources could be bandwidth, network 

routes and access, processing power or storage space. The motive behind 

the collaboration could be an increase in the speed of the task execution, 

as is the case in the collaborative download of a file. It could also serve to 

achieve redundancy and therefore increase reliability, as is the case in 

collaborative storage, routing, and streaming applications. These are a 

few examples of use cases where a collaboration is beneficial. Most of 
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these collaborations will be formed “on the go”; that is, the collaborating 

peers will be unknown to each other. 

Another principal and necessary component of the future IoT will be the 

provision of bespoke services on the fly to satisfy dynamic user 

requirements. This will require the cooperation and collaboration of 

individual smart devices offering unique microservices which can be 

transparently composed, as required, to provide a service offering that is 

guaranteed to fulfil the user’s service requests [9]–[11]. The process by 

which this is done is called a service composition. In this context, 

transparency means that the inner working of the composition is 

abstracted from the users or entities interacting with the composed 

service. Specifically, performance, access and location transparencies 

[12] are implied. The composed service appears as a single service to the 

user requesting the service, as the composition should be performed in an 

agnostic manner; the existence and details of the underlying 

microservices and any middleware should be abstracted from the user 

[13], [14]. 

In a service composition, the IoT middleware consists of a service-

oriented architecture (SOA) where each connected device is a service 

provider (SP) or a service requester (SR) [7], [15]. The underlying 

microservices are hosted and provided by SPs, while the middleware layer 

accepts service requests from end-users, performs service discovery and 

aggregation, SP selection, network routing functions, and security and 

trust management, and delivers the results of the composed service to the 

requesting user [16]–[19]. The middleware itself may be hosted in the 

cloud or by another device which provides the composition platform. In 

this scenario, the devices providing the underlying services can be 

referred to as wholesalers of such services, while the middleware 
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conglomerates such services and retails them to the end-user. A device 

may provide multiple services, e.g. temperature and humidity sensing. 

However, each service usually belongs to a single service class, which is 

an abstraction for all services of the same type [10]. Depending on the 

type of composition, the output of one service may be passed as input to 

another. For example, the geographical coordinates from a GPS sensor 

(geolocation service class) may be passed to a weather forecast service 

and the forecast readings are returned to the user. This network of 

interactions between users, smart objects, and the services they offer 

forms the foundation of the concept referred as the Social Internet of 

Things (SIoT) [17], [20]–[23]. 

The IoT requires the extensive interoperability of heterogeneous devices, 

networks, and technologies, for which the traditional internet is ill-suited. 

Therefore, security is of critical importance but is more complex to 

manage because this heterogeneity expands the threat landscape [24]. 

Also, due to the different IoT technologies being used, and the fact that 

most IoT devices have limited computing power, employ a distributed 

architecture and use less conventional networking methods, traditional 

security management used in the current Internet cannot be directly 

applied here [24], [25]. New security countermeasures are required that 

are lightweight, intelligent and operable in real-time [24]–[26]. While this 

remains an ongoing research challenge, an interesting candidate solution 

is security through trust. Trust is an important component of computer 

security [27]. Given that the IoT consists of services and devices provided 

by different actors who may be unknown to end users, the necessity of 

trust evaluation is higher than it is for the traditional Internet [24], [28]. 

The need for secure and trustworthy collaborations and service 

compositions is evident. Given that collaborating parties are largely 
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anonymous to one another (at least, initially and in most use cases), the 

security risks involved are high and include privacy and data loss, which 

may be used as vectors for more sophisticated attacks. The introduction 

of the notion of trust among peers is one way to minimise these threats 

[24], [26], [29]. For service compositions, there may be multiple SPs 

offering the same functionality within a service class. In composing a 

user-requested service, it would be necessary to select the most reliable 

and least malicious SPs in each required service class. This is particularly 

important given the transparent nature of the composition, as the end user 

may have no knowledge or relationship of the providers of the underlying 

services. Therefore, some method must exist to identify malicious nodes 

and preclude their service offering from the composition [30]. Also, the 

composed service itself must be guaranteed to fulfil the request of the 

user, while maintaining security and privacy. In other words, the 

middleware must consider the compatibility of the service components to 

be mixed and matched, while ensuring that the results are reliable and 

reasonably satisfy the requester’s utility [16], [31], [32]. 

The difficulty in finding universal solutions suitable for the IoT context 

establishes trust as, perhaps, the most important security metric in SOA-

based IoT systems. In fact, it has been posited that trust management is 

wider in scope than traditional security management [26], because while 

the latter is largely corrective, the former is more predictive and 

preventive, and also addresses the quality of service (QoS) provided and 

reliability of SPs [17], [26], [32]. Thus, it can be used to determine which 

nodes should be selected for interactions and service provision, while 

excluding malicious nodes from the service context. However, though 

trust is an essential and common social concept, it is difficult to define 

due to its abstract and multi-faceted nature. It is also either purely or 
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mostly subjective, and its meaning depends on the context in which it is 

used [33], [34]. Even though there is no agreed definition in literature, a 

large volume of research on trust shows it is a very important concept 

[24]. For example, a ‘trusting intention’ is given in [33] as “the extent to 

which one party is willing to depend on the other party in a given situation 

with a feeling of relative security, even though negative consequences are 

possible”. This definition correctly identifies trust as a decision taken by 

the trustor. Another issue is that several definitions of trust do not provide 

measurable indices that may be used to evaluate trust. 

The concept of computational trust is, thus, introduced. Computational 

trust is the adaptation of the social notion of trust to the digital world, so 

that it can be represented and evaluated by mathematical models [28], 

known as trust models. These determine how trust is computed in a specific 

context. A trust management system (TMS) provides methods and 

mechanisms to evaluate the trustworthiness of interacting peers, based on 

a trust model. This work focuses on the design of trust models for two 

major IoT contexts: collaborative applications and social compositions. 

1.2 Research Problems and Justification 

Several TMSs have been proposed and widely studied in literature. 

However, there are comparatively fewer studies on the management of 

trust in IoT contexts [15], [26], [30], [32]. Many of these models focus 

mainly (or only) on recommendations based on an assumed social 

relationship among interacting nodes. Little or no account is taken of other 

aspects of trust management, such as trust decay, trust parameter selection 

and the weighting of trust parameters. However, given that collaborative 

applications are task-based systems, the trust score of a trustee node 
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should indicate the degree to which a trustor believes that the trustee is 

both competent and willing to execute required task(s) reliably. 

Even less work has been done on the management of trust in SOA-IoT 

contexts [15], [32]. Furthermore, these models do not consider transparent 

service compositions, where an SR can neither provide direct trust ratings 

on nor receive recommendations on SPs of the underlying services. In 

addition, they do not consider the trustworthiness of the composed service 

separately from the trust ratings of the SPs. Also, there is an implicit 

assumption that, due to the social nature of SOA-based IoT, a social 

relationship exists between the owners of the participating IoT devices. 

Based on this assumption, such social relationships must factor into the 

trust estimation. However, in a true service-based IoT where the primary 

or only incentive for interactions is to provide or request a service, no 

other relationship may exist among SPs and SRs outside the given service 

context. The implication of this is that these models may exclude 

trustworthy nodes capable of delivering reliable services and include 

nodes which are owned by SPs who have an external social relationship 

with the SR. Finally, these models do not respect privacy, as the 

middleware composing the service must be made aware of these 

relationships among the SPs and SR. 

In summary, there is a need for reliable and well-defined trust models to 

for both collaborative applications and compositions of IoT services. 

Such models must express trust as a performance metric that is based on 

the functional properties of the utilised IoT context. This work addresses 

these research gaps by providing a comprehensive approach to trust 

evaluation management in IoT applications. The aims and objectives of 

this research are enumerated in the next section. 
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1.3 Research Aims and Objectives 

1.3.1 Aims 

This research work aims to study existing TMSs, investigate their 

limitations with respect to IoT contexts, and to design and implement 

ideal trust models suitable for collaborative applications and service 

compositions in the IoT. By modelling trust as a performance metric 

measured through assessable criteria that are derived from functional 

properties of nodes in the context, the trust models developed will ensure 

security and a reliable quality of service in IoT applications. The 

realisation of this aim will increase the adoption of IoT offerings by 

enabling the provisioning of dynamic applications built from resilient 

microservices with low-risk thresholds. 

This aim proposes to answer some research questions namely, how to: 

• Define the notion of Trust among nodes in a collaborative or 

composite IoT application. 

• Detect and measure this trust computationally while modelling it 

like social trust among humans. 

• Deduce the effects of recommendations and decay (temporal 

degradation) on trust values. 

• Decide how to aggregate and apply computed trust values to select 

“partner/friendly” devices in various contexts in the IoT. 
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1.3.2 Objectives 

To accomplish the aim of this project, the following objectives must be 

achieved: 

1. A comprehensive review of the existing literature on TMSs, 

considering trust derivation, evaluation and aggregation employed in 

these trust models, and their suitability and limitations for IoT 

contexts. 

2. Derivation of the necessary properties for an ideal functional trust 

model for IoT contexts, specifically for collaborative applications and 

service composition. 

3. A formal definition of the concept of functional trust, and proposal of 

methods for accurate trust estimation, aggregation, evaluation, decay, 

and its application in the IoT. 

4. Design and evaluation of a dynamic trust model for collaborative 

applications in the IoT. 

5. Design and evaluation a dynamic model for trustworthy service 

composition in the IoT, based on the model in (4) above. 

The methodology deployed to achieve these goals is discussed in the next 

section. 

1.4 Research Methodology and Scope 

1.4.1 Methodology 

This research was divided into four major phases, namely: 
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1. Literature review: a thorough review of the existing body of work 

regarding trust modelling and management, collaborative tasks, and 

service composition in the IoT was conducted to identify research gaps 

and generate insights into practical solutions. Thus, in this phase, 

Objective 1 is fulfilled.  

2. Requirements Analysis and specification: following on from (1), the 

current state of the art was critically analysed to elicit the necessary 

properties of ideal trust models for collaborative applications and 

service compositions in the IoT. To ensure that these models are 

viable, the architecture and limitations of IoT networks and devices 

were considered. In this phase, Objective 2 was completed, and 

Objective 3 was partly achieved. 

3. Model Design: Based on the results of the analysis in (2), initial 

parameters for the proposed models were determined. The design 

phase was divided into two sub-phases: (i) design of a trust model for 

collaborative applications and (ii) extension of the previous design to 

a new model for trustworthy service composition in the IoT. This 

phase completely fulfils Objective 3 and satisfies the design goal of 

Objectives 4-5. 

4. Implementation and evaluation: In this phase, the designed models 

were implemented by simulation of appropriate contexts, based on the 

methods developed in the design phase. Rigorous testing was carried 

out to ensure that the models meet the specified criteria derived during 

the requirements analysis phase. Furthermore, the performance of the 

implemented models was evaluated with respect to relevant existing 

work, to show its distinction and significance in the field of study. 

This, together with Phase (3), completely satisfies Objectives 4-5. 
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1.4.2 Scope 

There are several issues involved in the design of any IoT solution due to 

the heterogenous nature of the IoT, in terms of devices, technologies and 

networks. The range of IoT devices includes sensors, mobile devices, 

RFID tags, smart bands, and vehicles, and these may utilise a vast array 

of networks such as Wi-Fi, 5G, or IEEE 802.15.4 networks (such as 

ZigBee). This research focuses on broadly on trust derivation and 

evaluation for the IoT in general, especially the trust-related aspects of 

collaboration of service composition, and largely abstracts technical 

details regarding the type or topology of devices and networks. However, 

the following assumptions are made concerning IoT device capabilities in 

this project: 

1. The devices have some memory and processing abilities to perform 

lightweight processes. 

2. The devices have some form of persistent storage, even if small. 

3. The devices have some form of unique identifiers. 

4. Given that the IoT contexts studied in this research are largely peer-

to-peer (P2P) networks, it is assumed that the designed trust models 

will be implemented in a decentralised network architecture. 

Furthermore, it may not always be possible to directly compare the results 

obtained directly with other models in literature, due to different IoT 

implementation environments. It will not be feasible to adapt each one of 

these other algorithms to be implemented in our chosen contexts. In these 

situations, an indirect evaluation approach is adopted instead. This 

involves comparing the performance of the models to two baseline cases: 
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(i) to ground truth (that is, given perfect knowledge of the behaviour of 

the collaborating devices) and (ii) to results obtained from a random 

selection of peers in the same context. The results can then be indirectly 

compared to other trust models in literature that have been evaluated 

against either or both baseline cases. Statistical tests will be performed to 

determine whether any differences found are significant. 

1.5 Novel Contributions 

This research proposes the following additions to the existing body of 

work: 

1. The use of weighted trust parameters (criteria) that can be specified at 

runtime to adapt the model to different contexts. This means that trust 

parameters, in contrast to recommendations, form the basic building 

block for trust computation. In most trust models in literature, the trust 

computation is built almost entirely on recommendations. This 

approach does not consider trust as a performance metric, and thus 

weakens the trustor’s decision to trust. To the proposer’s knowledge, 

this is the first work to formally define trust as a decision-making 

process and utilise decision analysis techniques for trust elicitation, 

aggregation, and evaluation, thereby establishing its novelty. 

2. The study of the effects of trust degradation over time as a distinct 

component of the trust computation. Previous trust models use 

parameters to weight past trust to current experience. This is done 

recursively with every new interaction and therefore does not consider 

the time that has elapsed since a previous trust assessment was made. To 

resolve this, the proposed models include a novel trust decay function 
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with a dynamic component to accommodate different degrees of nodes’ 

willingness to trust. This ensures trust degrades in a consistent manner. 

3. The implementation of an improved recommendation function with the 

addition of a novel belief degree function, utilising established evidential 

reasoning (ER) techniques. Other trust models only consider the 

recommender’s trust scores in accepting recommendation. The designs 

developed in this work identified other criteria that determine the degree 

to which a recommendation is accepted in social contexts and applied 

them to model the belief degree, which is then used to weight 

recommendations received from other nodes. 

4. The design of a parameter to model trust maturity or equilibrium between 

two nodes, the point at which trust can be computed using direct 

interactions alone. This implies that it is possible to determine trusted 

nodes solely by empirical methods, which is a novel contribution.  

5. Formulation of methods for the derivation and aggregation of trust 

values based on the relevant trust parameters of SPs from different 

required service classes, based on a study of requirements identified 

for a suitable trust model for service compositions in the IoT context. 

As this is the first formal study to comprehensively investigate trust-

based service composition in the IoT, it is a novel contribution. 

6. The design of a method to reliably estimate the trust score of the 

composed service based on the indirect trust scores computed for the 

service providers in a service composition in accordance with the 

service requester’s requirements, thus providing a novel privacy-

preserving solution for transparent trust composition in the IoT. 
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7. Finally, the service composition model receives trust ratings from the 

SR based on the satisfaction received from the composed service and 

provides a method to indirectly update the trust scores of the 

underlying services. This solves the problem of transparent trust 

decomposition and is therefore a novel contribution. 

These contributions are set out in detail in subsequent chapters of the 

thesis, which are set out below. 

1.6 Organisation of The Thesis 

Chapter 2 introduces related concepts and provides a comprehensive 

overview of trust modelling and service composition techniques, 

highlights research gaps, and specifies requirements for the proposed IoT 

trust models. 

Chapters 3 and 4 specify, analyse, implement, and evaluate the designs 

of the two proposed trust models, for collaborative applications and 

service compositions in the IoT, respectively. 

Chapter 5 summarises and concludes the thesis. In addition, it points out 

some directions for further research extending from this work. 
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CHAPTER 2 BACKGROUND STUDY 

This chapter reviews previous trust-related work in the IoT, with focus on 

two broad categories: (i) trust modelling and management, discussed in 

Section 2.1 and (ii) trust-based service composition and provisioning, 

discussed in Section 2.2. In section 2.3, the desirable properties of an ideal 

IoT-centric trust model are enumerated. 

2.1 Trust Modelling and Management 

The concept of trust modelling and management in the IoT is a rapidly 

evolving research area. A system model and a holistic trust management 

framework are given in [26]. The overall objective is to ensure that trust 

models offer a balanced approach to the realisation of functional and non-

functional requirements of the IoT contexts wherein they are utilised. The 

appropriate design of a trust management system is critical, therefore, and 

must be evaluated based on verifiable trust properties which may be 

elicited based on an empirical study of the existing body of work. Thus, 

the following subsections give a review of existing trust models for IoT 

and generic reputation models, with emphasis on their perceived strengths 

and shortcomings.  

2.1.1 Existing IoT-Centric Trust Models 

The peer-to-peer (P2P) nature of collaborative IoT applications means 

that there is no central authority. Modelling and evaluating trust in such 

contexts is usually difficult [29]. Collaborating peers will often be 

strangers to one another, having no shared history between them. 

Centralised TMSs should therefore not be considered in a collaborative 

IoT context. While a centralised approach to trust management is chosen 
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in [30], the use of multiple trust management servers in different 

geographical locations is assumed. This means that all nodes must be 

registered under one of these servers and that the servers themselves are 

owned by a single entity. It does not take into consideration of collaborative 

applications that may be performed without access to the Internet. Indeed, 

the work focuses on service provisioning rather than collaborative 

situations, and only proposes a framework for different services without 

specifying solutions for individual contexts. 

The concept of social IoT trust is utilised in [15], [32], [35], [36], where 

it is argued that existing social relationships between owners must be 

taken into account in trust management. This usually involves sharing 

some confidential information, such as user identities, locations, and other 

relationships. This opens the door to personal, malicious attacks from bad 

peers [37]–[39]. While trust is a human concept, it also depends on the 

context in which it is used. In the IoT context, the trust is between the 

interacting nodes, which may sometimes be required to exchange some 

information for identification and trust computation. However, this 

should be done in a transparent and non-intrusive manner that maintains 

the privacy of non-relevant information [26]. 

In [40], a trust management model for IoT based on fuzzy reputation is 

proposed. However, the model is specific to WSNs and only evaluates 

objective properties of packet forwarding/delivery ratios and energy 

consumptions [30], [35]. Thus, the model cannot be applied to 

collaborative IoT scenarios without some extensions. Furthermore, it 

neither properly models trust as a decision of the trustor nor considers the 

subjective properties of the trustee. The trust model in [7] is designed 

specifically for health IoT systems and cannot be applied to collaborative 

IoT contexts. 
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A detailed trust model for social IoT systems is presented in [15]. 

However, the model lacks a distinct trust decay function. Instead, two 

parameters are introduced; one weights past experiences versus direct 

assessments and the other weights recommendations versus past 

experiences. This introduces several problems in the trust computation 

problem. First, every direct assessment that is followed by a 

recommendation reduces the importance of past trust because it is 

weighted twice in both interactions. This does not allow for graceful 

degradation of trust. Moreover, if the trustor receives several consecutive 

recommendations on the same node, the impact of the past trust score and 

the trustor’s direct assessment on that node rapidly declines with each 

recommendation, as is the case in [41]. This is the case even if the trustor’s 

direct assessment were made about the same time as the recommendation. 

Thus, malicious nodes can come together to influence the trust rating of 

one node with another node. Also, the model does not consider the time 

value of trust in that the recommendation made, even if genuine, could be 

based on an interaction further in time than the trustor’s last direct 

assessment of the node on which a recommendation is being received. 

Boa and Chen proposed a dynamic TMS and extended it to trust-based 

service composition in the IoT [35], [42]. The work considers three 

parameters to derive a trust value: honesty, cooperativeness as a service 

provider, and the community-interest of the nodes. The model includes a 

weighting factor to determine the relative importance of 

recommendations based on the trust level of node providing the 

recommendation. This factor can be dynamically increased to improve the 

resilience of the system with respect to the proportion of good peers and 

malicious peers. This however subjects the system to opportunistic service 

and on-off attacks [43], where a malicious node can provide good service 
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but bad recommendations about other nodes. This is a consequence of 

evaluating a node’s trust score entirely on the subjective opinions of some 

other nodes, as will be shown in the next subsection. 

There is also the need to consider the temporal nature of trust. It is usually 

useful to store trust scores from past interactions and utilize them in 

making trust decisions in the future, thereby building a trust history. This 

idea is widely employed in trust models to aggregate trust values over 

time. However, as is the case with recommendations, this notion may be 

abused by malicious nodes. If trust is to be a reliable assessment of the 

performance of nodes on functional properties, then it is necessary to track 

the behaviour of the nodes with respect to such properties and to detect 

and respond to changes over time. There is, therefore, the need for a trust 

decay function such that previous trust values degrade gracefully over 

time. This is also required to prevent on-off and opportunistic service 

attacks. In most existing trust models, however, trust decay is not 

considered. 

Boa and Chen extended their previous work to service oriented 

architecture (SOA) based IoT systems and service management in social 

IoT in [32] and [15] respectively. The new model focuses on social trust 

based on the parameters of friendship, social contact, and community of 

interests. This model is not feasible for use in collaborative IoT contexts, 

as previously argued. Moreover, as it is based on [35] and [42], it inherits 

the limitations of subjective opinions discussed above. The nomadic, 

adhoc nature of IoT collaborations implies that collaborators may have no 

previous transactions with one another. In these cases, the use of a TMS 

solely based on reputation, such as EigenTrust [44] or PeerTrust [45], is 

not a good solution for several reasons, as will be discussed in the next 

subsection. 
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2.1.2 Traditional Reputation Models in IoT Contexts 

While reputation is an integral part of trust, the two are not equivalent. 

The reputation of a person or device usually depends on the subjective 

views of others. In a largely decentralised architecture such as 

collaborative IoT, there is no standard way to determine whether the 

present reputation score of the device was not bought or given by a group 

of malicious peers. Since there may be no central database to keep track 

of reputation ratings, it is not always feasible to find out which peer 

contributed a ranking to the present overall score. A reputation-based 

system works in large P2P networks, social networks such as Facebook, 

and e-commerce applications such as eBay because there is a centralised 

trust authority and database [29]. This makes it possible to track the 

consistency of the rankings of every peer in the system. In the case of 

social networks, the nodes or peers are linked based on social trust. 

It is necessary to distinguish between conventional social trust and the 

notion of functional trust considered in this research. The social trust 

between nodes usually refers to the degree or strength of the connection 

between them [46], [47]. Consequently, factors such as similarity, 

colocation, friendliness, and honesty are primary determinants or 

parameters of the trust score of the relationship. Also, the trust 

relationship tends to be symmetric and the trust score between the nodes 

is approximately equal in both directions [48], [49]; that is, if node A 

trusts node B, then it often implies that node B trusts node A, and the trust 

score of A on B is approximately equal to that of B on A. This is 

demonstrated in many social networks, where a “connection” or 

“friendship” between two parties on the network must be mutual.  
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Furthermore, the social trust network is usually transitive; thus, if A trusts 

B and B trust C, A is quite likely to trust C, even if there is no direct trust 

link between A and C presently. This indirect trust link is a based on the 

recommendation about C, from B to A. Recommendations are also known 

as referral trusts and are used to propagate or extend an existing trust 

network or to cold start a new one [50]–[52]. It is important to note that 

recommendation is not a trust parameter in itself; however, it is used to 

augment the trust computation process where the required information to 

directly compute a reliable trust score is either unavailable or incomplete 

[52]–[55]. In the hypothetical example above for instance, A cannot 

directly compute a trust score on C as there is no direct trust relationship 

between them. However, based on the recommendation from B, a trust 

score can then be assigned by A to C, which will be updated once a direct 

trust link between A and C is formed. A real-world example of this in 

social networks is the “friend-of-friend” feature, which is used to 

recommend new connections and content (e.g., posts or tweets) to a user. 

Functional trust, on the other hand, refers to the degree to which a trustor 

believes that the trustee is both competent and willing to execute required 

task(s) reliably in a specific functional context, which defines the trust 

scope [56], [57]. It is dependent on the trustee’s ability to perform certain 

functions and its historical performance as measured directly by the 

trustor [58]. It is immediately evident that, unlike conventional social 

trust, functional trust is asymmetric [59]. For example, the fact that A 

trusts B to perform a certain task reliably does not imply that B trusts A 

to perform the same task to the same degree of reliability, or even at all. 

Hence, functional trust is also non-mutual [60], and usually non-transitive 

[61], [62]. However, recommendations can be made, just as in social 

networks but it is not explicitly used to extend the trust network until a 
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there is a requirement to establish a new, direct trustor-trustee, 

relationship. Therefore, recommendations are only necessary at the start 

of a new trust link (i.e., where there is no trust history) and are usually 

discarded in favour of direct assessments once the relationship is formed. 

Functional trust is usually scored more on objective criteria of the 

associated context, and less on subjective criteria [63]. An objective trust 

criterion is one which is based on a functional parameter of the context 

and can be assessed quantitatively according to some metric or rule that 

has been defined within that context, thus ensuring its measurement is free 

from bias. On the other hand, a subjective trust criterion is assessed based 

on the bias of the trustor. For example, in a ride-hailing app, the distance 

driven on a journey is an objective parameter because its assessment is 

standardised; there exists a clear definition of distance and its 

measurement. However, the cleanliness of the vehicle (as measured by 

the rider) will be subjective and biased to the opinion of the rider if there 

is no defined metric or standard for its measurement. Therefore, a 

parameter may be subjective in one context but objective in another 

depending on the existence of a standardised assessment and scoring 

system in that context. Also, it is possible that a social trust factor can be 

a criterion in a functional trust context if it is relevant to the function or 

task to be performed in that context. For example, while colocation can 

be a factor used to extend a social trust network, it could be a functional 

parameter in a ride-hailing context if it is deemed important to the 

fulfilment of contextual tasks (in this case, getting a driver quickly to the 

user). In summary, functional trust relationships are formed based on the 

ability to fulfil tasks in a specific context and are isolated to that context. 

It can be seen that reputation-based trust systems, such as [64], are entirely 

based on the trustors’ subjective opinions which tend to be reinforced 
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through an inherent feedback mechanism. This works well in large 

networks due to the “wisdom of the crowd” [65]. It is highly likely that 

the opinions of 1000 people about a seller on eBay will be a true reflection 

of the seller’s activities. In a collaborative IoT scenario, however, the 

number of peers involved is small. The opinions of such a small number 

of rankers can be easily influenced and may not truly represent a trustee’s 

trustworthiness. The feedback mechanism can cause multiple counting of 

the same behaviour, leading to aggravated rewards or punishments. 

Therefore, reputation should not be used alone for trust computation in 

such contexts. 

The use of entirely subjective opinions of others to determine trust scores 

presents yet another problem in a collaborative IoT scenario. Take a 

collaborative download application as an example. Each possible helper 

peer may advertise the price charged per bandwidth used. A peer may 

receive a low ranking solely based on a higher price. This does not 

consider (and may not be a true reflection of) the helper peer’s objective 

qualities in estimating its trustworthiness. The higher price may be a 

consequence of faster and better service offered. When this level of 

service is needed, the previous ranking will affect the trust score of the 

helper peer and may prevent another peer from patronising its service. 

Traditional reputation systems mitigate this issue by providing some 

feedback on rankings. This is achieved by eliciting reviews or by 

providing categorical scores alongside an overall trust score. This 

provides additional insights to the trustor and leads to a better trust 

decision. However, such a level of detail may not be feasible in IoT 

environments due to the limited computing requirements. 

In [66], a recommender system is enhanced by adding a trust layer. 

However, the method assumes prior friendship between nodes and 
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therefore only considers social trust parameters. Lastly, because 

reputation based TMSs use recommendations, they make the 

collaborative sphere more vulnerable to bad-mouthing and good-

mouthing attacks [35]. This introduces an unnecessary bias into the trust 

model. It also corroborates the authors’ argument against the assessment 

of trust solely on subjective opinions in a collaborative IoT context. 

In summary, most existing trust models in the IoT are primarily based on 

recommendations, with the inherent risks as highlighted above. In 

contrast, our proposed trust model emphasises the parametrisation of 

trust. The trust parameters are based on the functional properties of nodes 

which are relevant to the application context. Recommendations are only 

used initially to augment the trustor’s assessment. In addition, the process 

of trust decay is clearly and adequately modelled, which is an 

improvement upon existing models. 

2.2 Trust-Based Service Composition and Provisioning 

This section presents an overview on service composition in the IoT and 

its implications for trust modelling. In general, trust estimation in most 

IoT models focuses on recommendations impacted by social 

relationships. Little work has been done in other aspects of trust 

management, such as trust decay, trust parameter selection and the 

weighting of trust parameters. Trust parameters should be based on the 

relevant functional properties of the service context that determine the 

reliability and quality of an SP’s services. Given that service compositions 

are based on the task(s) demanded by the user, the trust score of the 

composed service must be based on the efficient, reliable, risk-minimized 

completion of the task(s). While most of the work done on trust 

management has focused on trust evaluation of individual nodes, little 
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consideration has been given to determining how to use the trust values 

of SPs to estimate the trust value of the composed service (that is, a 

bottom-up approach). A review of the existing literature suggests that no 

work has focused on the decomposition of trust scores assigned to 

composed services (that is, a top-down approach). 

A suitable trust model for service compositions must include methods for 

reliable trust composition; it must adequately estimate the trust value of 

the composed service, based on the user’s utility preferences and the 

current trust scores of candidate SPs. Also, it must adequately model trust 

decomposition; it should accept the trust value given by the user upon 

consumption of the composed service and decompose that value to update 

the trust scores of the underlying services in an impartial, appropriate, and 

transparent manner. These are discussed in detail in the subsections 

below. Section 2.2.1 gives an overview of service composition concepts. 

In Sections 2.2.2 and 2.2.3, we analyse the characteristics of various 

categories of service compositions and their effects on trust evaluations. 

In Section 2.2.4, we briefly discuss consensus mechanisms; finally, in 

Section 2.2.5, we review existing trust-based service composition models, 

evaluating their suitability for IoT contexts. 

2.2.1 Service Compositions in the IoT 

The IoT provides novel ways by which users can interact with things 

around them. The data received from various sensors in the environment 

can be utilized by multiple actuators to achieve a desired result. Sensors 

and actuators have a broader meaning in this context and are not limited 

to traditional electrical devices. For example, a refrigerator may “sense” 

it is empty of some food stuff and “actuate” an app on the owner’s phone 

to create a shopping list of such items. This list may be passed to an online 
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grocery delivery service at regular intervals that are determined by a bot. 

At such intervals, the bot “actuates” the online service to create an order 

and deliver the grocery. This concept of “social sensing” is one of the 

possibilities of an SOA-based IoT. Usually, the service requested by a 

user will entail the collaboration of several microservices, as in the 

previous example. Therefore, a bespoke service will be composed for the 

user, using two or more microservices which may be offered by different 

SPs. This architecture offers several advantages that are key to the 

realisation of the IoT vision, such as modularity, increased reliability and 

technology heterogeneity and interoperability. The requirements for the 

adoption of this architecture are being extensively investigated. 

 

Fig. 2.1 A JavaScript Object Notation (JSON) specification of a smart 

device’s services 
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Fig. 2.1 illustrates a JavaScript Object Notation (JSON) representation of 

a smart device detailing its identity, location, and a description of the 

services it provides; this representation is an effective, lightweight 

method by which the smart device advertises its presence and capabilities 

to a composing platform in a universally parsable format. Fig. 2.2 

illustrates a hypothetical service composition using Business Process 

Model and Notation (BPMN), which will be explained later. The manner 

and order by which services are composed plays a role in the trust 

evaluation strategy. Basically, service compositions may be categorised 

in two ways. First, the mix of different classes of services involved may 

be considered. A service class is a logical unit into which SPs offering a 

 

Fig. 2.2 A Business Process Model and Notation (BPMN) model of a 

hypothetical service composition 
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similar service may be grouped together. It is an abstraction of a service 

type. Every service is a member of at least one service class. Secondly, 

service compositions may also be classified according to the sequence or 

workflow in which the services are ordered. We discuss both in detail in 

the following sections. 

2.2.2 Service Classes 

In connection with the service class, there are two kinds of service 

compositions: homogenous and heterogeneous. In a homogenous 

composition, all the underlying services are from the same class. An 

example of this would be an SR requesting a list of the top five taxi car 

services within the vicinity. The middleware presents the user with the 

services estimated to be the most trustworthy. From this list, the user 

determines which taxi service to order, according to their subjective 

preference. Another example would be an application that allows the SR 

to request the assistance of some SPs in the collaborative download of a 

large file by pooling their bandwidths. In these cases, it is a simple 

collaborative application similar to those discussed in [67]; and a simple 

trust model may be applied by the user to select the most trustworthy taxi 

service. The only function of the middleware, in this case, was to reduce 

the number of potential service providers that the SR had to directly 

evaluate from, say, twenty taxi services to just five. It is important to note 

that each service class is a self-contained collaboration context, to which 

a suitable IoT trust model may be applied in selecting the most 

trustworthy SPs. 

In a single-service trust model – such as used in a monolithic service - the 

trust evaluation is performed by nodes on one another. A trustor node 

evaluates trustee nodes based on their service performance and quality in 
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line with the agreed trust parameters of the collaborating context and 

weighted by the trustor’s subjective preferences. The trust score of the 

service is equivalent to the trust score of the node; there is no functional 

difference between a node and its service, as the nodes are assumed to be 

offering only one service of the same type. A distinction is made between 

the node (smart thing or device hosting a service) and the underlying 

service that it provides in a composition because we assume a node may 

host several services that it may provide to different compositions at 

various times. It may even provide multiple services of different classes 

to the same composition. Therefore, the trust scores are assigned to each 

underlying service rather than the node, and this is what is implied 

whenever the trust score of an SP is mentioned. The reason for this is that 

the provision of a good service in one class by a node or device does not 

necessarily mean the node will provide a similar level of performance in 

another class, although the node may not be malicious. Therefore, the trust 

model must distinguish between truly malicious nodes and other nodes 

which are benevolent but perform ineptly in one service class [30]. 

In a heterogeneous composition, the underlying services are mixed and 

matched from different classes, such as the composition of a geolocation 

service and a weather forecast service. In this scenario, the trust model 

must identify the most suitable SPs within each service class required for 

the service composition. The SPs are chosen based on their scores on 

relevant parameters and in line with the SR’s subjective preferences. It is 

evident that heterogeneous compositions have far much more applications 

in the IoT than homogenous ones. Consequently, they are the major focus 

of service composition algorithms. As noted earlier, a node may 

simultaneously offer multiple services from more than one class. In such 

cases, there may be conflicts between the services which could lead to the 
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degradation of the performance of some or all the services. For example, 

there might be a delay between the halt of one service and the instantiation 

of the next service. Also, there are energy and network implications. 

These are discussed in [10], where the authors introduce an algorithm to 

solve this problem in an energy-efficient manner. It is assumed that 

devices are involved in only one composition at a time, although they may 

provide multiple services to that composition. If there is a decrease in the 

QoS of one of the simultaneously provided services, the trust model should 

detect and adapt to this change by reassessing the most suitable SPs within 

that service class. Presumably, there is some incentive for the IoT devices 

participating in the composition. Therefore, the devices would be 

configured to provide services in such a way that the reward is maximized. 

A suitable trust model would ensure that this maximization is subject to 

the provision of an optimal service level required for the satisfactory 

fulfilment of the SR’s requests. 

2.2.3 Service Workflow 

The workflow refers to the order in which services are performed and 

composed. Generally, there are three basic types of workflows, which 

may be used in any combination. First, it may be a simple case of 

selection, where the SR receives a list of SPs along with their trust ratings. 

The SPs may not be from the same service class. Take an example of a 

user visiting a smart city for the first time. On receiving beacons about a 

special attraction taking place later that day, the user (the SR) queries a 

trust model for the top three ways to get to the concert at a certain time 

and from a certain location. The SR may receive a response listing a taxi 

service, a shared-ride service, and a rent-a-cycle service, depending on 

the parameters specified by the SR, and then chooses from the offered 
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options. On receiving the choice of the SR, the trust model then proceeds 

to select the most suitable SP in the service class specified by the SR’s 

choice. As can be seen, this is an interactive session between the user and 

the middleware. Rather than automatically selecting the best SP from 

across these service classes, the SR makes the decision on which mode of 

transportation to use. The initial response of the middleware may contain 

other relevant contextual information – such as the price range, average 

wait times, and the safety index – on each of these service classes, thereby 

assisting the SR in making more robust decisions. 

Services may also be composed in a parallel workflow, where two or more 

SPs simultaneously provide the same or different services. As an 

example, suppose a user-bot (SR) requests all the available weather 

information for a specific location. On receipt of the request, the 

middleware selects and retrieves the relevant information (such as 

temperature, pressure, relative humidity, and wind direction) from the 

most trustworthy SPs in each service class associated with the weather 

data. This information is then aggregated and returned to the SR. The 

collaborative download application previously mentioned would also 

require a parallel workflow, since all the SPs would be downloading 

different byte ranges of the same file concurrently. A parallel workflow 

could also be used where the SR concurrently requests information about 

a topic which is subjective by nature. For example, suppose an SR queries 

the middleware to return a list of the best attractions in the city. Then, 

three different SPs could be queried to provide tour information service, 

and an aggregate of the responses could be returned to the SR. This 

information could be used to initiate another service request, depending 

on the SR’s interest. 
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Thirdly, services may be composed in a sequential workflow where the 

results from one service are provided to the next and so on. For example, 

a user requests the relative humidity at a street address. The address is 

inputted to a geocoding service which returns the geographical 

coordinates, which are in turn inputted to a weather type service providing 

relative humidity information. The results of the second service are then 

returned to the SR. Unlike the other workflows, SPs cannot respond to or 

fulfil service requests concurrently in a sequential workflow. However, in 

most applications of IoT service compositions, this would be the most 

occurring workflow; microservices would often process the results of 

other services and then deliver the results to yet another service in the 

fulfilment of the user’s request. A sequential workflow also makes it 

possible to transparently mix services (and other workflows) in innovative 

and resourceful ways. For example, a service composition workflow may 

contain a selection workflow, then execute services in parallel based on 

the user’s response, and provide the output of those services to another 

service for processing before delivering the results to the SR. An example 

of such a complex workflow is illustrated in Fig. 2.2. In this example, a 

geolocation service returns the coordinates of the SR’s location to the 

weather and tour information services, which are composed in parallel. 

The aggregate information from both of those services is used to derive 

the best place in the city to visit under the prevailing weather condition. 

This information is inputted to a route planning service, which requires 

the SR to select either bus or taxi as the preferred mode of transportation. 

Therefore, this example contains all three kinds of workflow. It is also 

possible to have cascading service compositions, where a service 

composition functions as an underlying service itself in a higher-order 

composition. 
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2.2.4 Consensus Mechanisms 

Given the distributed architecture and heterogenous nature of IoT, the 

middleware layer may implement a consensus mechanism to ensure 

integrity and reliability in the system [68], [69]. This is particularly 

necessary where multiple trusted SPs provide different values for the same 

data point such as temperature, or varying workflows for the same service 

composition. It will be required to decide which data point is the most 

accurate, and to agree on the best workflow among suitable alternatives. It 

is important that the mechanism chosen must be resilient. Specifically, it 

should be byzantine fault tolerant, ensuring integrity and agreement 

always [70], [71]. Also, the characteristics of an IoT platform (such as 

requiring low energy and computation overhead) must inform the choice 

of a consensus mechanism. Given that participation is dynamic (SPs and 

SRs can join or leave the network at will) and the platform is decentralised, 

an ideal consensus protocol will be permissionless, encourage direct 

participation in consensus formation from the majority of nodes,  and be 

resistant to sybil attacks. 

Recently, blockchains have been increasingly utilized as middleware 

layers for service compositions in IoT applications [72]–[75] and in trust 

management systems [76]–[78]. Several consensus mechanisms have 

been proposed for blockchains since it was first described in 2008 [79], 

the most popular of which is the Proof of Work consensus mechanism, 

followed by Proof of Stake protocols [80]–[83]. Neither of this is suitable 

for IoT applications due to high energy usage in the former [68] and the 

tendency for super nodes (which in turn decreases decentralization of the 

network) in the latter [69]. However, other consensus mechanisms exist 

that may be more suitable, some of which have been implemented for IoT; 
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these include Tangle [84]; Proof of Comprehensive Performance [85];  

Proof of Authority [86], [87]; Proof of Personhood [88]; Proof of Identity 

[89]; Proof of Reputation [90]–[93]; Proof of Benefit [94], [95]; Proof of 

History [96]; Proof of Elapsed Work [97]; Proof of Space (or Capacity) 

[69], [98]; and some variants of Byzantine Fault Tolerance consensus 

mechanisms [70], [71], [82]. Conversely, some authors have proposed 

using trust-based consensus mechanisms in blockchains [99]–[102]. In 

this thesis, details of the middleware are generally abstracted and only 

briefly highlighted, in line with the research scope. 

2.2.5 Existing Trust-Based IoT Service Composition Models 

Only a few trust models for service composition exist in the literature. 

This is due, in part, to the complexity of modelling trust in a decentralized 

manner [29]. Moreover, no previous works have provided methods for 

transparent trust composition and decomposition in the IoT. Existing 

models measure trust mainly on social trust parameters, such as 

friendship, honesty, cooperativeness and kindness, based on direct 

observations and recommendations [17], [32], [35], [103]. The reasoning 

behind this modelling paradigm is the notion of the “social” nature of 

service oriented IoT applications. Hence some social characteristics of 

human relationships are inaccurately applied and modelled in the IoT. It 

is important to observe that the social nature of the IoT is much different 

from human social interactions. In the IoT, the focus is much more on the 

ecosphere of humans, the environment, and smart things. Users 

interacting with services need not have a relationship with the devices 

providing such services, or their owners. Depending on the kind of service 

being provided, the SRs may not need to be co-located or share the same 

community of interest with SPs or their owners. The primary goal of the 



33 
 

SR in trusting a service or SP is the provision of a reliable, quality service 

that meets the specification of the SR without posing any risks. Thus, 

while a social interaction exists in the IoT, the relationships formed, and 

the parameters for measuring those relationships, are based on the 

required functional properties of the context of interaction; that is the 

request and provision of a service. As such, the dominant type of trust in 

this context is functional trust, which has been previously described and 

contrasted with social trust. 

Moreover, although trust is primarily a social concept, it is not reasonable 

to directly apply the aspects of trust, as it applies in human relationships, 

to evaluating computational trust without some conceptual adaptation 

represented by mathematical models [28]. Even in human circles, the 

meaning of trust must be implied from the context and depends on the 

subjective assessment of the trustor [33], [34]. For example, the 

contextual meaning of trust in the statement “I trust my doctor” is much 

different from what is implied in the statement “I trust my spouse”. In 

both cases, however, the trustor makes a quantifiable evaluation of trust 

based on parameters that are relevant to the context and accounting for 

any risks that may be encountered in interactions with the trustee. A 

person trusts another person to be his or her doctor based on qualities the 

trustor believes a doctor should have, and not on generic personality traits. 

The trustor has a social relationship with the trusted doctor, but only with 

reference to the trustee’s profession and the service context. The trustor 

may trust this trustee in other spheres such as personal friendship, or as a 

husband or wife. This introduces the notion of multivariate trust, where a 

trustor has a trust relationship with a trustee in multiple trust contexts. 

Hence, we conclude that even in human relationships, trust in many 

contexts is predominantly functional, except for some cases of absolute 
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trust or distrust. Therefore, in adapting trust to the SIoT, the notions of 

context and function must be preserved because they form the basis of 

functional trust [104]. This does not preclude the overall subjective nature 

of trust however, as trust scores on functional parameters may be 

weighted according to the trustor’s subjective preferences. 

In [22], a self-enforcing, privacy-preserving and decentralised TMS for 

SIoT is proposed. The protocol makes use of non-interactive zero-

knowledge proofs in securing the network and for the reliable update of 

trust scores. However, the cryptographic protocol used is computationally 

intensive. While the computational overhead is manageable on systems 

with adequate computing resources, it is impractical for use on IoT 

devices which typically have limited computing resources. Also, the 

model does not satisfy the trust resilience property as it does not adapt to 

changes in the behaviour of a node during a trust session. Moreover, the 

model neither assigns weights to different trust parameters to indicate the 

trustor’s subjective preferences, nor includes trust parametrization. 

Therefore, it cannot be applied to different contexts. In [105], a 

trustworthiness inference framework for SIoT is proposed based on 

familiarity and similarity trust, with contextual information based on time 

and location. The model does not consider the notion of functional trust 

or service contexts, which are important to guide service compositions. A 

trust-based service architecture for IoT is proposed in [106], with 

emphasis on improved efficiency of IoT services. However, the model 

operates in a centralized cloud architecture, thus limiting its applicability 

to service compositions in the IoT. Also, the model contains no notion of 

trust parametrization or service contexts, neither does the model in [107]. 

In [108], a trust architecture for software-defined networks in the IoT is 

proposed. The model uses reputation evaluation for trust establishment, 
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with no notion of objective, functional parameters on which trust could 

be measured in a service-based application. In [64], a reputation-based 

trust system is proposed for IoT applications. However, a rigorous 

analysis conducted in [67] shows that reputation-based models used in the 

IoT are vulnerable to trust-related attacks such as bad-mouthing, ballot 

stuffing, and opportunistic service attacks, especially in a decentralized 

architecture. A similar argument may be applied to the trust-enhanced 

recommender system proposed in [66]. TMSs for dynamic trust 

management for SOA-IoT applications and service management in SIoT 

are proposed in [15], [31], [32]. The models produced are similar and 

measure the trust between nodes based on similarities in friendship, social 

contact, and community of interests. Functional constraints of the service 

contexts are not considered. Likewise, the models do not account for an 

SR’s preferences and requirements, which should guide the service 

composition in an ideal trust model. Indeed, the models focus on 

achieving “subjective trust” by utilising a recommendation score that is 

primarily based on similarities and relationships between the owners of 

the IoT devices. This is contrary to the actual social nature of service 

applications in the IoT, which should be based on the service context. 

However, the models do consider transparent trust composition for the 

IoT based on the workflow, using a method derived from reliability/fault 

analysis. Thus, the trust score of a service composed of two microservices 

in sequence (series) is given to be the product of trust scores of the 

microservices. This assumption does not hold in many service 

applications, as discussed below. 

It is possible to compose a service of high trust from microservices which 

have low or average trust scores. Take the case of a pizzeria which 

provides a pizza ordering service, makes excellent pizza but has slow 
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delivery times. As a result, it is given an average trust score by an SR that 

gives significant weighting to delivery times. Suppose this SR also has a 

trust relationship with a ride-hire service which has exceptionally low 

wait times but rude drivers. The SR is uneasy for the duration of the ride 

because of the driver’s continuous boorish remarks; therefore, the SR 

gives a low rating to this service. Suppose that the two services are 

composed sequentially with the pizzeria producing the pizza and the fast 

ride-hire service delivering it to the SR. If the composition is done 

transparently to the SR, then the composed service would have a high trust 

rating, because the pizza is delivered faster, and the SR does not hear the 

driver’s remarks. This is contrary to the results that the reliability formula 

mentioned earlier would have produced: low trust X average trust = lower 

trust. Also, reliability analysis states that the reliability of a group of 

components is increased when the components operate in parallel, for 

redundancy. However, this does not necessarily apply to trust 

computation in IoT service composition. As an example, suppose that an 

SR requests a list of the top attractions in a city, and results from the two 

highly trusted information services are composed such that only items 

which appear on both lists are contained in the response to the SR. 

However, this may increase the response time and energy usage; 

consequently, the SR may assign a lower trust score to the resulting 

composed service. 

From these examples, it is evident that to transparently compose trust in 

a service composition, there must be a mechanism to elicit the weighting 

that the SR assigns to each parameter, such that parameters irrelevant to 

the service composition (such as the driver’s behaviour in the previous 

example) would have little or no effect on the overall trust score. Thus, 

there may be a slight change in context for a service composition, 
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dependent upon the workflow of the composition. Moreover, most of 

these models do not consider the temporal nature of trust and its effect on 

the decay of previously accumulated trust. It is necessary to track the 

behaviour of SPs in relation to the functional trust parameters and to detect 

and respond to changes over time. In summary, there exists a need for a 

suitable trust model for service compositions in the IoT, which correctly 

parametrizes trust, considers trust decay and provides mechanisms for 

both transparent trust composition and decomposition in addition to other 

relevant trust properties, which are enumerated in the next section. 

2.3 Ideal IoT-Centric Trust Model 

IoT applications generally consist of collaboration and service 

provisioning [17]. Therefore, an ideal IoT trust model should provide a 

balance between security, functionality and usability while considering 

the constraints imposed by the limited resources available to most IoT 

devices. Based on the previous work done in [26], [32], [67], [109], [110], 

a list of suitable attributes for an ideal TMS for IoT are enumerated below: 

1. Platform Consideration: IoT devices have low computing capabilities, 

are pervasive and usually employ a decentralized architecture. 

Therefore, a TMS for the IoT should be lightweight, resilient, scalable, 

decentralized, and adaptable to different service contexts. 

2. Trust as a Decision (TaaD): The concept of trust in the IoT is 

essentially functional trust, and this should be modelled as a decision-

making process with the objective and subjective trust properties of 

the trustor taken into consideration. Each trustor (i.e., SR) should be 

able to decide the importance of a trust criterion or recommendation. 

Thus, different trust values may be computed by different SRs on the 
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same node or service, depending on each SR’s subjective trust 

dispositions. 

3. Contextual Trust Parametrization: The TMS should incorporate the 

necessary objective (quality of service, QoS) and subjective (social) 

properties of each service class in the composition as trust parameters 

so that the SR can make a well-informed trust decision as it applies to 

the current contexts. This also ensures that the model is robust and 

adaptable to different contexts. 

4. Trust Persistence: Natural trust considers historical interactions in the 

trust relationship, which are accumulated and utilized to make a trust 

decision in the present. Hence, the TMS must provide an effective 

means for persisting trust values, considering both the low storage and 

decentralized architecture of IoT devices. 

5. Trust Decay: Trust is temporal by nature. Stored or previous trust 

values degrade gracefully over time. A suitable function to evaluate 

trust decay should be included in the TMS. 

6. Risk Mitigation: It should provide effective mitigation of self-

promotion, bad-mouthing, ballot-stuffing, opportunistic service, and 

on-off attacks, as described in [17], [43], [104], [109]. The inclusion 

of a robust recommendation and belief function in the TMS would 

make it difficult for nodes to profit from malicious activities. 

7. Trust Accuracy: This is a measure of how close the trust value 

computed for a node is to the ground trust. The ground trust for a node 

is the trust value that we would compute if we had perfect knowledge 

of its behaviour. The TMS must have a high degree of trust accuracy.  
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8. Trust Convergence: This is a measure of how long it takes for the trust 

value computed for a node to reach its ground trust and maintain it as 

long as the node’s behaviour is consistent. The TMS should ensure 

trust converges quickly. 

9. Trust Resilience: This is a measure of the ability of the TMS to adapt 

to changes in the trust community, such as an increase in the ratio of 

malicious SPs to good SPs. An ideal TMS should be sensitive to these 

changes and compute trust values in such a manner that it remains 

accurate by quickly converging to the new ground truth values of the 

affected nodes. 

In addition to these, trust models for service composition in the IoT must 

also possess the following requirements: 

10. Transparent Trust Composition: The trust model must include 

methods for estimating the trust score or trustworthiness of a 

composed service appropriately, considering the trust scores of the 

SPs, the service context, and the workflows involved in the 

composition. This should be done transparently to the SR; that is, the 

SR should not be aware of the internal details of the composition, or 

of the underlying services. 

11. Transparent Trust Decomposition: Ideally, the SR would give a trust 

score after consuming the composed service. However, it has been 

established that the SRs will not interact directly with, or even know, 

the SPs in a service composition. Therefore, the TMS must incorporate 

methods to decompose the trust score from the SR and utilize it to 

update the trust scores of the underlying services in an impartial and 

transparent manner. 
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The basic components of a TMS are illustrated in Fig. 2.3 and shall be 

discussed in detail in the next chapter. The interactions of these 

components form the basis of the models proposed in Chapters 3 and 4, 

and these interactions shall be thoroughly explained in those chapters. 

2.4 Chapter Summary 

In this chapter, an extensive review of the existing literature on trust 

aggregation, evaluation, and management for collaborative applications 

and service composition in the IoT was documented. The concept of 

computational trust was formalised, and key concepts were discussed. 

 

Fig. 2.3 Core components of a TMS and their interactions 
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The achievements and shortcomings of previous trust models for IoT 

contexts were detailed. The categories of service compositions were 

analysed with respect to the classes and workflows. 

Based on the studies conducted, the necessary attributes and requirements 

for an ideal IoT-centric trust model were elicited and detailed. The rest of 

this work follows on from this by proposing trust models for different IoT 

contexts in accordance with requirements specified in this section. In the 

next chapter, a trust model for collaborative IoT applications is proposed, 

discussed, and evaluated. 
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CHAPTER 3 CTRUST: A DYNAMIC TRUST MODEL FOR 

COLLABORATIVE IOT APPLICATIONS 

3.1 Model Design and Analysis 

CTRUST is proposed as a suitable trust model to evaluate and manage 

trust between nodes in collaborative applications in the IoT. The trust a 

node has in another is based on its assessment of their current and past 

direct interactions and the recommendations it accepts from other nodes. 

Trust criteria form the basis on which assessments are made, and a trustor 

determines the weights of each criterion. A node can then compute trust 

scores which it uses to choose which other nodes to collaborate with. 

Trust scores are stored and are used to guide future interactions, although 

their importance declines over time. The model consists of trust 

assessment, decay recommendation and aggregation functions, all of 

which are discussed in detail in subsequent subsections. A high-level 

workflow of the model is illustrated in Fig. 3.1. The following gives an 

overview of CTRUST: 

1. Trust would be composed of one or more trust criteria (parameters) 

relevant to a collaborating context. Each trust parameter could be 

objective (QoS) or subjective (social) in terms of assessment. An 

assessment of a node on a parameter is called a partial trust score. 

2. A trustor would be able to assign weights to each trust parameter. The 

weights indicate the relative importance of each parameter to the 

trustor. Therefore, partial trust scores are weighted before trust 

aggregation. 
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3. Trust would be propagated in a distributed manner, with no 

intervening central authority. Each node stores its previously 

computed trust values and may accept trust recommendations on 

partial trust scored from other nodes. 

4. A recommendation function is implemented to guide the degree of 

acceptance of trust recommendations on partial trust scores. We call 

this degree of acceptance belief change, and it is modelled based on 

social characteristics. 

 

Fig. 3.1 Flow diagram illustrating the basic steps involved in trust 

computation in the CTRUST model 
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5. Trust scores decay over time based on a mathematically modelled trust 

decay function. We also define the points at which previous trust has 

decayed completely and when current trust has reached maturity. 

6. A trust aggregation function determines how partial trusts are 

aggregated to compute an overall trust score for a node. The 

aggregation function chosen depends on the collaboration context. In 

this study, we used a dynamic weighted sum method. Trust updates (on 

partial trust scores) are event-driven and occur whenever nodes 

interact with one another. 

The model may now be defined in detail. Let C be the set of all possible 

collaborating nodes under the current application or collaboration context. 

T[C], the trust space over C, is then a sextuple expressed by the following 

notation: 

𝑇[𝐶] ≡ [𝑇𝑖𝑗 , 𝑃,𝑊𝑖 , 𝑉𝑖𝑗 , 𝐹, 𝑡1
2

(𝑖)] ∀𝑖, 𝑗 ∈ 𝐶 (3. 1) 

Where 

𝑇𝑖𝑗 is the trust score of node j as computed by node i; 

𝑃 = {𝑝𝑖 , 𝑝2, 𝑝3, . . . , 𝑝𝑛} is the set of trust parameters or properties on 

which each node in C is assessed by other nodes; 

𝑊𝑖 = {𝑤𝑖(𝑝1), 𝑤𝑖(𝑝2),𝑤𝑖(𝑝3), . . . , 𝑤𝑖(𝑝𝑛)} is the set of weights on each 

parameter in P, as assigned by i; 

𝑉𝑖𝑗 = {𝑉𝑖𝑗(𝑝1), 𝑉𝑖𝑗(𝑝2), 𝑉𝑖𝑗(𝑝3), . . . , 𝑉𝑖𝑗(𝑝𝑛)} is the set of values denoting 

node i’s assessment (partial trust score) of j on each parameter 𝑝 ∈ 𝑃; 

𝐹 = 𝑓(𝑊, 𝑉) ≡ 𝑇𝑖𝑗 is the trust aggregation function; and 
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𝑡1
2

(𝑖) is the half-life of any partial trust score computed by i. 

3.1.1 Trust Parameters 

Our design follows a multi-criteria approach towards trust computation. 

A trustor makes a trust decision based on multiple criteria. Each criterion 

is a trust parameter. Parameters could either be objective or subjective. 

Parameters are considered objective if they are verifiably measured. Such 

properties include the speed of a transaction, reliability, rate of work, 

proximity, cost of a service, stake in the collaboration, etc. If p is an 

objective parameter, then for a node 𝑗 ∈ 𝐶, (𝑉𝑖𝑗(𝑝))
𝑡
 is approximately the 

same if measured by any 𝑖 ∈ 𝐶 at instant t. Subjective parameters such as 

honesty, cooperativeness or friendliness are assessed as perceived by the 

trustor. Therefore (𝑉𝑖𝑗(𝑝))𝑡 does not have the same value from all 𝑖 ∈ 𝐶, 

even if they all assessed j at the same instant, t. Therefore, the trust model 

supports both QoS and social trust parameters, which means a greater 

robustness and latitude of applications. 

We do not explicitly specify the trust parameters in our model. This is 

because the choice of which parameters to use depends on the 

collaboration context and should be decided when C is set up. Suppose a 

service composition with n collaboration contexts,𝐶1…𝐶𝑛 is set up. One 

approach will be to populate the set P with all possible parameters for all 

the contexts wherein the trust model will be implemented. Then the 

weights of parameters which are not relevant to the current context can be 

set to 0. 
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3.1.2 Parameter Weights 

The weights determine how important a parameter is relative to the 

overall trust score. Each node determines the weight of each parameter, 

based on their current subjective opinions. As a result, two nodes may 

have an equivalent value set, V, at a given instant, yet compute different 

trust scores, T, for a third node. The weights are assigned such that: 

𝑤𝑖(𝑝) ∈ [0,1]∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃 and ∑𝑊𝑖 = 1 (3. 2) 

Even though set P is the same for every node in C, a node can eliminate 

parameters that it does not want to consider by assigning them a weight 

of 0. The weights can be dynamically adjusted by the trustor at any time 

during a session of interactions. Nodes can update their record of set W at 

any time, according to changes in their perceptions of relative importance 

of each parameter. The dynamic weighting allows for more accurate 

modelling of human trust. The relative importance of the factors that 

determine the extent to which a person trusts another can vary greatly over 

time. Similarly, the relative importance of collaboration criteria can vary 

for each node from one session to another. 

3.1.3 Partial Trust Scores and Aggregation 

The set 𝑉𝑖𝑗 represents the normalised assessment of node j, by node i, on 

each of the trust parameters in P. The collaboration context defines the 

parameters, i.e. how they are measured and on what scale. Objective 

parameters such as rate of work or network speed are well defined and 

will be measured uniformly across C, while the measurement scale for 

subjective ones such as friendliness may differ from node to node. Each 

member of 𝑉𝑖𝑗 is a partial trust score as they determine the overall trust 
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score, 𝑇𝑖𝑗. The values are normalised to [0, 1] so that 𝑇𝑖𝑗 is also within the 

same range, and the normalisation method must be defined in C. 

Three factors account for any 𝑉𝑖𝑗(𝑝) at the current time: its previous value 

based on past interactions; the current, direct assessment of j by i; and 

indirect assessment of j by some other node k. These will be discussed in 

detail later. 

The trust aggregation function, F, specifies how the partial trust scores 

are aggregated to compute 𝑇𝑖𝑗 and enables us to model trust evaluation as 

a decision-making problem and apply multiple-criteria decision analysis 

(MCDA) methods to solve it. In this scenario, a weighted sum function, 

𝐹 = 𝑊 × 𝑉, is used. Therefore, 

𝑇𝑖𝑗 =∑𝑤𝑖(𝑝𝑥)

𝑛

𝑥=1

× 𝑉𝑖𝑗(𝑝𝑥)∀𝑖, 𝑗 ∈ 𝐶, 𝑝𝑥 ∈ 𝑃 (3. 3) 

It can be observed that the derivation of this function incorporates 

objective and subjective properties of both the trustor and trustee. 

Furthermore, our trust model allows for the aggregation function to be left 

unspecified until the collaboration context is set up, which is expressed as 

𝐹 = 𝑓(𝑊, 𝑉). This is important because the context should determine the 

method by which partial trust scores are aggregated. Some contexts may 

require a product of weighted scores, or a more complex function such as 

Bayesian inference or regression analysis, to compute a trust value [109], 

[111]. Therefore, it is best to leave the aggregation function unspecified 

until the context is set up, as this makes the model robust and applicable 

to more contexts. 
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3.1.4 Trust Decay 

It is necessary to model the impact, over time, of previous trust scores on 

the current trust values; this is achieved by introducing the concept of trust 

decay. The trust score, 𝑇𝑖𝑗, gradually degrades over time when there is no 

interaction between i and j. In the social world, the longer we are further 

away from a person, the easier it is to distrust that person. This is so 

because we are not sure whether they still retain the values for which we 

admired them. Interactions help to re-evaluate our opinions of them on 

these values, and serve to reinforce the trust relationship, or score. 

Accurately modelling trust decay is exceedingly difficult, and there is 

limited existing literature on the subject. The following assumptions seem 

to hold true in the usual social context, and form the basis for the trust 

decay function of our model: 

1. As the trust formation depends on partial trust values on each trust 

component, trust decay applies to these values and not the overall trust 

score, which may not correlate with the trust decay rate. The reason 

for this is that in the interval between interactions, the trustor’s 

perception of the relative importance of some of the trust parameters 

may have changed. 

2. The rate of trust decay is almost entirely subjective. It depends on the 

trustor’s willingness to trust and the length of time or number of 

interactions the trustor requires to establish a node’s behaviour in the 

present. 

3. It is reasonable to assume that trust decays at an exponential rate in the 

absence of interactions [112]. The longer the period of inactivity 

between the peers, the greater the rate of decay. 
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4. When a new session of interactions is made in the present time, 

previous trust decays with every new interaction. This is so because 

the new interactions tend to form the trustor’s new opinions and 

therefore, the trust score of the trustee. After a certain number of new 

interactions, past trust values may no longer be relevant to trust 

computation in the present. 

The above assumptions provide the basis by which trust decay is 

incorporated into our model. Let 𝑡1
2

(𝑖) be the duration required for a 

partial trust score assigned by i to decay to half of its initial value, i.e. its 

half-life. The decay function follows an exponential trend and is 

represented by the following mathematical equations: 

(𝑉𝑖𝑗(𝑝))
0→𝑡

= (𝑉𝑖𝑗(𝑝))
0
×
1

2

𝑡
𝑡1
2

(𝑖)

≡ (𝑉𝑖𝑗(𝑝))
0
× 𝑒−𝜆𝑖𝑡

≡ (𝜙𝑖)𝑡  × (𝑉𝑖𝑗(𝑝))
0
∀𝑖, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃

(3. 4) 

𝜆𝑖 =
ln2

𝑡1
2

(𝑖)
≈
0.693

𝑡1
2

(𝑖)
(3. 5) 

(𝜙𝑖)𝑡 = 𝑒
−𝜆𝑖𝑡 (3. 6) 

Where 

(𝑉𝑖𝑗(𝑝))0 is a partial trust score at the end of the last session of 

interactions between i and j;  

(𝑉𝑖𝑗(𝑝))0→𝑡 is the current value of (𝑉𝑖𝑗(𝑝))0 after time t of no interactions 

between i and j; 

 𝜆𝑖 is the decay constant for partial trust scores from i; and 
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(𝜙𝑖)𝑡 is the trust decay multiplier for node i. 

The multiplier is the proportion of the partial trust score that has not 

decayed after time, t, of no interaction. Equation (3.4) can then be 

simplified and rewritten as: 

(𝑉𝑖𝑗(𝑝))
0→𝑡

= (𝜙𝑖)𝑡 × (𝑉𝑖𝑗(𝑝))
0
∀𝑖, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (3. 7) 

After an adequate number of interactions in a new session, the effective 

proportion of (𝑉𝑖𝑗(𝑝))0 that determines 𝑉𝑖𝑗(𝑝) in the current session 

becomes 0, according to Assumption (4) above. At this point, the trust has 

attained maturity in that session. Trust maturity is discussed further in 

Section 3.1.6. 

3.1.5 Trust Recommendations and the Belief Function 

There may be times when node i is about to start a new session of 

interactions with node j, and it is currently in a session with another node 

k, which has some assessment on j. Node i may make use of this 

assessment to make an initial update of j’s partial trust scores prior to 

initiating interactions. This is called an indirect assessment, or a 

recommendation, on j by i, through k. The drawbacks of trust systems 

solely based on reputation or recommendations (see Section 2.1.2), must 

be avoided. A recommendation belief function is therefore required to 

determine the degree to which any node i accepts k’s recommendations 

on j. The following premises should be taken into consideration to model 

the belief function accurately: 

1. The purpose of recommendations is usually to guide i as it attempts to 

initiate or re-initiate interactions with j. They either make the trustor 

initially more sceptical or more open to trusting j. After interactions 
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are made, k’s indirect recommendations are quickly discarded, as i’s 

direct assessment forms the basis of the trust score. 

2. Recommendations do not necessarily affect i’s trust relations with k, 

even if they are proven to be incorrect. k might have been misinformed. 

It follows then, that the best way to prevent good and bad-mouthing 

attacks is to minimise the effect of indirect recommendations on a 

partial trust score, and hence, 𝑇𝑖𝑗. 

3. Let the change between k’s current recommendation and i’s previous 

partial trust score of j on some parameter be Δ𝑉. The smaller the 

absolute proportion of change, |
Δ𝑉

(𝑉𝑖𝑗(𝑝))0
|, the easier it is for i to accept. 

This stems from the observation that in a social context, we are less 

likely to receive a recommendation about a person if the 

recommendation represents a significant difference from previously 

observed behaviour. 

4. The longer the time t that has passed since the last session of 

interactions between i and j, the more open i will be in accepting k’s 

recommendation. This is because of trust decay; the longer the time t, 

the smaller the proportion, 𝜙𝑖, of previous trust left. The value of trust 

is a function of time; the extent to which we would believe a value that 

implies a significant change in a person’s behaviour depends on the 

time that has elapsed since our last interaction with them. 

5. The greater the value of 𝑇𝑖𝑘, or more specifically 𝑉𝑖𝑘(𝑝), the more 

likely we are to receive the recommendation of k on j on some trust 

parameter, p. In a social context, we more readily believe 

recommendations on a subject from someone who we rate high on the 

same subject. 
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The belief function can be then derived mathematically from premises (3) 

– (5) above: 

Belief, 𝛽𝑖𝑗←𝑘 ∝ (1 − |
𝑉𝑘𝑗(𝑝) − (𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|)

𝛽𝑖𝑗←𝑘 ∝ (1 − 𝜙𝑖)

𝛽𝑖𝑗←𝑘 ∝ 𝑉𝑖𝑘(𝑝) 

(3. 8) 

⇒ 𝛽𝑖𝑗←𝑘 =

𝐾(1 − |
𝑉𝑘𝑗(𝑝) − (𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|) × (1 − 𝜙𝑖) × 𝑉𝑖𝑘(𝑝) (3. 9)
 

Where K is a constant. The value of K does not need to be verified. Since 

the change belief is a relative indicator of how much a recommendation 

is to be accepted, the exact value of K need not be known. Therefore, we 

set K = 1 so that at the beginning of a new session of interactions between 

i and j: 

𝛽𝑖𝑗←𝑘 = (1 − |
𝑉𝑘𝑗(𝑝)−(𝑉𝑖𝑗(𝑝))

0

(𝑉𝑖𝑗(𝑝))
0

|) × (1 − 𝜙𝑖) × 𝑉𝑖𝑘(𝑝) (3. 10)  

This belief function indicates how much node i is willing to accept a 

recommendation on j from k, i.e., the weight i assigns to that 

recommendation. It therefore determines i’s indirect assessment of j 

through k, on parameter p, which is expressed as Ψ𝑖𝑗←𝑘(𝑝), and defined 

by: 

Ψ𝑖𝑗←𝑘(𝑝) = 𝛽𝑖𝑗←𝑘 × 𝑉𝑘𝑗(𝑝), 𝑗 ≠ 𝑘 (3. 11) 

A node cannot provide recommendations on itself. This comprehensively 

defends against self-promotion attacks. Once new interactions begin 
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between i and j, then according to premise (1) above, 𝛽𝑖𝑗←𝑘 = 0. This 

renders any good-mouthing or ballot-stuffing attacks by k useless. 

Together with the trust decay function, it also provides an effective 

defence against opportunistic or on-off attacks by k. This is so because i 

does not accept recommendations on nodes it is currently interacting with. 

Also, a node performing random attacks simply degrades the partial trust 

score it receives from i. Thus, a malicious node stands little chance to gain 

by providing a bad recommendation or service to i, and its ability to 

impact 𝑉𝑖𝑗(𝑝) is severely limited. 

3.1.6 Trust Update and Maturity 

Let 𝐷𝑖𝑗(𝑝) be i’s direct assessment of j on trust parameter p in the current 

session of interactions. The method of assessing 𝐷𝑖𝑗(𝑝) depends on the 

parameter. It could be a rate of work done, which can be computed simply 

based on observation. It could also be a co-location score, for which a 

formula needs to be applied. Generally, the method for evaluating direct 

assessments must be specified for each parameter when designing the 

collaboration context. 

To update trust reliably, the concept of trust maturity must now be 

introduced. In addition to direct assessments, previous trust scores and 

recommendations impact the current value of any partial trust score, and 

we have described trust decay and recommendation belief functions for 

these. There should be a point in time at which direct assessments are 

sufficient to compute trust scores. Let Γ be the number of interactions 

required to reliably measure 𝑉𝑖𝑗(𝑝) based on 𝐷𝑖𝑗(𝑝) only. After Γ 

interactions between two nodes in any session, the trust score computed 

by one on the other attains maturity or equilibrium. In other words, trust 
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maturity is a state that is attained in a collaborative session when direct 

assessments of the interactions between any two nodes are sufficient for 

either node to accurately assess the other’s trust scores. At this point, past 

trust between the nodes is assumed to have decayed completely and 

recommendations are not considered in computing the trust scores of 

either node. 

The value of Γ depends on the collaboration context, C, and must be 

determined by initial experiments. Once this value has been determined, 

it can be used in future sessions to weight previous trust scores. For 

example, after Ζ interactions between i and j in a new session, the effective 

proportion of a previous trust score, (𝑉𝑖𝑗(𝑝))
0
, is given by: 

𝜇𝑖 = max((1 −
𝑍

Γ
) × (𝜙𝑖)𝑡, 0) (3. 12) 

In other words, once 𝑍 ≥ Γ, 𝜇𝑖 = 0 in accordance with Assumption (4) in 

section 3.1.4. At the start of a new session of interactions between i and j, 

the initial value of 𝐷𝑖𝑗(𝑝) = 0.5. This is the midpoint between complete 

distrust (0) and perfect trust (1). It is taken as the neutral trust value in the 

absence of any information. It is also the default assessment value that is 

used for computing trust scores for a node with which i has had no 

previous interactions. 

We have now discussed all the three factors needed to compute 𝑉𝑖𝑗(𝑝) at 

current time, (𝑉𝑖𝑗(𝑝))
𝑡
. Let 𝐺 ⊆ 𝐶 be the set of nodes currently in a 

collaboration session with node i. Suppose there are s nodes in G, 

𝐺(1)…𝐺(𝑠), that have a recommendation on j, then: 
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(𝑉𝑖𝑗(𝑝))𝑡 =

{
 
 

 
 𝐷𝑖𝑗(𝑝)+(𝜙𝑖×(𝑉𝑖𝑗(𝑝))0)+∑ Ψ𝑖𝑗←𝐺(𝑥)(𝑝)

𝑠

𝑥=1

1+𝜙𝑖+∑ 𝛽𝑖𝑗←𝐺(𝑥)(𝑝)
𝑠

𝑥=1

𝑍 = 0

𝐷𝑖𝑗(𝑝)+(𝜇𝑖×(𝑉𝑖𝑗(𝑝))
0
)

1+𝜇𝑖
𝑍 > 0

,

∀𝑝 ∈ 𝑃, 𝐺(𝑥) ∈ 𝐺, 𝑗 ∉ 𝐺 (3. 13)

  

Table 3.1 List of CTRUST Model Properties 

 

Symbol Description Type 

𝑇𝑖𝑗  Trust value of j as computed by i, at the current 

instance and context 

Derived 

𝑝 A trust metric or parameter by which trust is 

assessed in the current context 

Design 

𝑤𝑖(𝑝) The importance of p as determined by i Input 

𝐷𝑖𝑗 (𝑝) The direct assessment score of j, as measured or 

perceived by i, on parameter p 

Derived 

(𝑉𝑖𝑗 (𝑝))
𝑡
 The trust score of j, as determined by i, on 

parameter p, at time t 

Derived 

(𝑉𝑖𝑗 (𝑝))
0
 The trust score of j, as determined by i, on 

parameter p, at the end of the last session 

Derived 

(𝜙𝑖)𝑡  weight of (𝑉𝑖𝑗 (𝑝))
0
in next session of interactions 

after time t of no interactions between i and j 

Input 

(𝑉𝑖𝑗 (𝑝))
0→𝑡

 The real value of (𝑉𝑖𝑗 (𝑝))
0
 that determines 

(𝑉𝑖𝑗 (𝑝))
𝑡
 at time t, in the current session 

Derived 

𝜇𝑖  Best defined as (𝑉𝑖𝑗 (𝑝))
0→𝑡

 / (𝑉𝑖𝑗 (𝑝))
0
 Derived 

𝛽𝑖𝑗←𝑘  The proportion of a recommendation on j, from k, 

that i is willing to accept 

Derived 

Ψ𝑖𝑗 ←𝑘(𝑝) The indirect assessment score of j on parameter p, 

as received by i from k, based on 𝛽𝑖𝑗 ←𝑘  

Derived 

Γ Number of interactions in a session required to 

reliably measure trust by direct assessment only 

Design 

N[C] Number of all nodes in the collaboration context 

and community, C 

Input 

N[G] Number of nodes in C that are actively in 

collaboration with i at the current instance 

Input 
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Every property required to setup the CTRUST model has now been 

defined. A brief description of each property is given in Table 3.1 for easy 

reference. Fig. 3.1, as noted earlier, is a basic illustration of the trust 

computation process in CTRUST which has been discussed in the 

preceding subsections. 

It has been shown that CTRUST supports multiple QoS and social 

parameters. While CTRUST allows the aggregation function to be 

specified according to the context, a dynamic weighted sum is used in this 

case. Also, trust recommendations in CTRUST are propagated in a 

distributed and decentralised manner. It has also been shown that the trust 

update mode is event-based; i.e. trust scores are updated after every 

interaction. In [43] and [109], trust computation models are classified 

according to their trust composition, propagation, aggregation, update and 

formation. Using that classification scheme and notation, CTRUST is a 

QoS + Social / Distributed / Dynamic weighted sum / Event / Multi-Trust 

with dynamic weighted sum. The performance of the model is evaluated 

in the next section. 

3.2 Model Performance and Evaluation 

For evaluation, the trust model was implemented in a collaborative 

download application. The aim here is to measure the performance of the 

model in a real-word collaborative context, in terms of the trust properties 

of trust accuracy, convergence and resilience. In turn, this will prove the 

effectiveness of the trust composition, persistence, decay, and risk 

mitigation methods applied in the model, as discussed in the previous 

section. The trust properties of platform consideration (IoT) and trust as a 

decision (TaaD) are implicit in the model’s design. Thus, it shall be 
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proven that CTRUST satisfies all the trust properties of a suitable TMS 

for the IoT as enumerated in Section 2.3. 

In the following subsection, the experimental collaboration setup is 

introduced and explained. In Section 3.2.2, the trust parameters are 

defined, and initialization values are provided for other model parameters 

as required. The actual evaluation is discussed in Sections 3.2.3-3.2.5. 

3.2.1 Context Overview: Collaborative Downloading 

The concept of collaborative downloading (CD) has been addressed in 

previous works [113]–[115]. Collaborative downloading is a peer-to-peer 

(P2P) paradigm where the bandwidth of multiple devices is pooled to 

download a resource. Usually, a peer requiring a resource requests that 

the other collaborating peers assist to download the resource using their 

Internet connection and bandwidth, as illustrated in Fig. 3.2. This is 

especially useful where the peers or nodes are nomadic, and individual 

mobile bandwidth is small relative to the resource to be downloaded. One 

scenario is where the content to be downloaded is commonly requested 

by the collaborating peers. Rather than downloading the resource 

individually, they can collaborate so that each peer downloads partitioned 

data ranges of the resource. These partitions can then be aggregated and 

delivered to each peer.  

Another scenario is in places where there is limited or no Wi-Fi, ADSL 

or other broadband, and the only available Internet connectivity is the 

more expensive and/or slower mobile 2/3/4 G network. Peers may 

collaborate to save money and time in such cases. Access to a resource 

server or WSN sink is also optimised using this technique. Rather than 

making multiple connections to the same server (or sink in WSN) for the 
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same data ranges, each peer downloads a different data range at a time, 

thus optimising the server or sink uplink. 

In a CD system, nodes available to help with a download send out 

broadcasts of their availability. These broadcasts are seen by all other 

nodes in the same geographic vicinity. These nodes form the set C. A node 

wishing to initiate a download (we call this node the initiator) will pick 

collaborators from this set of nodes using some selection algorithm. The 

selected nodes form the set G. The initiator sends out the URL of the 

resource (workload) to be downloaded to these nodes. The workload is 

divided into blocks. Each block is a range of bytes of the workload. The 

blocks are distributed among each node in G using some work schedule 

algorithm. The nodes transfer the completed blocks by uploading the byte 

range downloaded as a file object to initiating device over the wireless 

 

Fig. 3.2. Illustration of a collaborative download session 

Collaborators download byte ranges of the requested resource and 

transfer back to the initiator using a WLAN connection. 
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communication channel. Therefore, the CD application could be thought 

of as a distributed download manager. When all the blocks have been 

downloaded, the file objects are combined to retrieve the original 

resource. 

3.2.2 Collaboration Context Setup 

We identified three criteria to judge the suitability of a node as a 

collaborator in the CD context described above: its download speed, 

reliability in successfully completing workloads and the level of security 

risk it poses to the collaboration. Based on these criteria, we now define 

the following three trust parameters to evaluate the CTRUST model in 

this collaboration context: 

1. Successful Completion Rate (SCR): This is a measure of the reliability 

of a collaborating node. It is based on the number of times, in the 

current session, that a node has successfully both downloaded and 

transferred a work queue block back to the initiating node. In a new 

session of collaboration, the direct assessment 𝐷𝑖𝑗(𝑆𝐶𝑅) begins at 0.5. 

The initiating node keeps a cumulative count of the total number of 

both assigned and successful blocks in the current session. 

2. Cumulative Bandwidth Average (CBA): This is a measure of the work 

speed of the collaborating node. It is determined by the average 

bandwidth of a node, as measured by the initiator. It is cumulative over 

the current session of interactions. The initiating node keeps a running 

total of the total number of bytes and time taken, for each collaborating 

node in the current session. The CBA is then normalised. At the 

beginning of a new session of interactions the default value of 

𝐷𝑖𝑗(𝐶𝐵𝐴𝑛𝑜𝑟𝑚) = 0.5 is used. 
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3. Inverse Risk Index (IRI): A malicious collaborating node may modify 

blocks before sending them to the initiator. It may even just send a 

block of the expected size, with all bytes set to 0 or 1. It may also try 

to disrupt the CD session, by ignoring the work queue order, for 

example. The introduction of a parameter to assess the nodes’ 

malicious intent is required to keep would-be malicious nodes in 

check. Whenever some tampering or fraud is discovered, either in a 

block marked as complete or in the work queue, the initiator marks 

that block (or whatever block the malicious node is currently 

downloading) as a bad block and updates 𝐷𝑖𝑗(𝑆𝐶𝑅) to reflect the risk 

that the node poses. IRI is cumulative over a session. As usual, the 

initial value of 𝐷𝑖𝑗(𝐼𝑅𝐼) at the beginning of a new collaboration 

session is 0.5. 

These parameters were considered by the proposer to be the most 

important functional parameters in a collaborative download context. For 

any context, a decision must be made to determine which functional 

requirements may serve as trust parameters. This is an initial step in 

setting up the collaboration context without which the trust model cannot 

be implemented. 

We now proceed to compute (𝑉𝑖𝑗(𝑝))
𝑡
 as follows. If there has been no 

previous interaction between i and j, and there are no recommendations 

on j from any of the other collaborating nodes, then (𝑉𝑖𝑗(𝑝))
𝑡
=

 (𝐷𝑖𝑗(𝑝))
𝑡
. At the end of a session of interactions (which is one download 

session), the final computed value for (𝑉𝑖𝑗(𝑝))
𝑡
 becomes (𝑉𝑖𝑗(𝑝))

0
for 

the next collaboration session. Indirect assessments are handled as 

described in section 3.1.5. Once the initiator has set the weights for each 
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parameter, 𝑇𝑖𝑗 can be computed as described in section 3.1.3. The results 

of the simulation are discussed below. 

We set up the collaboration community with size, 𝑁[𝐶] = 10 per session. 

Also, the maximum number of nodes the initiator i collaborates with at 

any time, 𝑁[𝐺] = 5, except where it is necessary to increase the group 

size to illustrate a point. An example of such case is the speedup 

illustration in Fig. 3.3 that will be explained later. In this experiment, we 

assumed that the subjective utility function of the initiator is linear and 

that all parameters are of equal importance. Therefore, we used an equal 

weight for all the parameters, i.e. 𝑤1 = 𝑤2 = 𝑤3 =
1

3
. In each simulation, 

there were 60 download sessions of interactions. The default trust value is 

0.5. In simulating the behaviour of nodes with respect to the parameters, 

nodes are randomly set up such that they tend to complete anywhere 

between 50-100% of the blocks assigned to them. The same goes for block 

tampering or risk. A random average bandwidth between 0.5B to 1B is 

assigned to each node. The performance of the model is discussed in the 

following subsections. 

3.2.3 Utility of the Model in Collaboration Context 

The aim of the collaboration is to increase the download speed of a 

resource. Fig. 3.3 illustrates the speedup achieved. To understand the 

effect of the computing and time overhead expended on node selection, 

we run two different modes of CTRUST. In the first, the initiator utilises 

the nodes selected at the beginning of a session until the end. In the 

second, after a trust update of a node, the initiator decides whether to 

continue with that node, or to check [C] for another known node with a 

higher trust score. Trust update is triggered by the event of change to the 
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status of a block; that is, whenever a block is returned to the initiator. This 

second mode is an adaptive mode, which we call CTRUST-A. For 

comparison, we run another simulation with the same group of nodes but 

selected randomly. In this experiment N[C] = 10, that is the maximum 

number of nodes available for collaboration. 

 

Fig. 3.3 Plot of Speed-up against different group sizes, N[G] 

This shows the download speed-up achieved using either modes of 

CTRUST for node selection compared to a random selection of nodes. 

Table 3.2 Two-Sample T-Test Comparing Session Speeds Obtained 

Using CTRUST and Random Modes for Node Selection 

 

 
Random 

vs. 

CTRUST 

Random vs. 

CTRUST-A 

CTRUST vs. 

CTRUST-A 

Observations 60 60 60 

P value at 
(α=0.05) 

1.27E-17 3.77E-23 0.0516 (lowest 
value obtained) 
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We observe that even when the utilization level is up to 70% of the nodes 

in such a small community (i.e. N[G] = 7), there is still a significant 

improvement in the speedup achieved when nodes are selected based on 

the trust model as opposed to randomly. Beyond this point, i.e. if 

N[C]/N[G] > 0.7, then the initiator has limited ability to discriminate 

based on its preferences, since it can reject only 30% or less of the 

available nodes regardless of their trust scores. As a result, the impact of 

the trust model on speedup rapidly decreases. When N[G] =N[C], no 

selection takes place since all the nodes in the collaboration community 

are being utilised for downloading. Thus, there is no difference in speedup 

when N[G] = 10, as can be seen in Fig. 3.3.  

The speedup achieved is comparable to the results that were obtained in 

[113], with the added advantage of trust. We observe that even with the 

extra computation involved, CTRUST and CTRUST-A outperform the 

random selection in speedup. A two-tailed test also shows a significant 

difference in the overall average speed obtained per session between 

random selection and CTRUST, as shown in Table 3.2. Hence, we 

conclude that incorporating the trust model into the CD protocol does not 

negatively impact on the performance of the protocol. The difference in 

speedup over the course of a session between the two modes of C-Trust 

is statistically insignificant. However, CTRUST-A computes fresh trust 

scores after each interaction. Therefore, this mode is more sensitive and 

adaptive to changes in node behaviour within a session. This adaptability, 

known as trust resilience, is a desired property and is evaluated below. 

For this reason, CTRUST-A is the default mode used in our experiments. 
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3.2.4 Evaluating Trust Model Accuracy and Convergence 

We now compare the trust scores obtained by the model to the ground 

truth status, and how long it takes to converge to ground truth status. The 

ground truth status is obtained by computing what the trust score should 

be based on the randomly assigned nodal characteristics. It is the truth 

value that would be assigned to the node if the trustor had perfect 

knowledge of its behaviour. This comparison is important because it 

shows the effectiveness of the model in accurately estimating 

trustworthiness of nodes in a reasonable time. The results obtained are 

presented in Fig. 3.4-3.6.  

The results show that the trust value of the node being assessed converges 

to the ground truth status after about 250-300 interactions. This number, 

 

Fig. 3.4 Convergence of SCR to ground truth. 
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though seemingly high, is to be expected. This collaboration context 

requires a short timeframe for each interaction. Therefore, a relatively 

high number of interactions would be required to accurately compute trust 

values. Also, the fluctuations that can be observed are to be expected 

because the behaviour of a node may be perceived differently due to 

environmental or external factors. However, it should be noted that if the 

node characteristic remains the same, the trust value will converge back 

to the ground truth. 

The large dip in Fig. 3.6 after initial convergence is due to the sensitivity 

of the parameter (IRI) to slight changes in assessment. This is a property 

of this collaboration context. Unlike in [35], where the trust value is 

tracked over 100 hours, the results here show the trust value over the 

interactions in one session. This is more logical in our opinion, as trust 

 

Fig. 3.5 Convergence of CBA to ground truth. 
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scores are a function of interactions over time. For comparison, however, 

the usual duration of one session is about 2 hours. 

3.2.5 Evaluating Trust Model Resilience 

Resilience is the ability of the model to adapt to changes in the 

collaboration community and maintain a high efficiency under such 

circumstances. The three major factors affecting this are bad 

recommendations from other nodes, change in node behaviour, and 

increase in the proportion of malicious nodes in the collaboration 

community. By design, bad recommendations have negligible effect on 

CTRUST, as explained in Section 3.1.5. Recommendations are only used 

at the beginning of a new session of interactions with a node. A bad 

recommendation will show only as a minor initial fluctuation on the 

graph. The adaptive mode of CTRUST ensures this. Therefore, this is not 

discussed further. 

 

Fig. 3.6 Convergence of IRI to ground truth 
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CTRUST adapts to change in a node’s behaviour both within a session 

and between sessions. The former has been illustrated in the previous 

subsection. The results show that any nodes can reliably assess one 

another without the necessity of recommendations after about 250 direct 

interactions between them. Thus, trust maturity is reached after 250 

interactions, i.e. Γ = 250. Fig. 3.7-3.9 illustrate the resilience of 

CTRUST to changes in node behaviour across two sessions, using the 

same node as in the previous simulations. The second session begins with 

the 470th interaction, at which point 𝜙𝑖 = 0.8. For comparison, there are 

two plots for each parameter; one with the trust decay function described 

in section 3.1.4, and the other without it. 

 

Fig. 3.7 Resilience of CTRUST to change in CBA 
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Fig. 3.8 Resilience of CTRUST to change in SCR 

 

Fig. 3.9 Resilience of CTRUST to change in IRI 
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The results show that without the trust decay function, it takes much 

longer to start to converge, and it may never reach the new ground truth 

status. With the trust decay function however, the new ground truth is 

reached after about 250 interactions, thus keeping the trust maturity index, 

Γ, constant in the collaboration context. This proves the efficacy of the 

trust decay function. 

In Fig. 3.7, an early dip in the curve is noticeable. This is due to the nature 

of the parameter being assessed and the behaviour of the node being 

assessed. CBA is a cumulative measure of reliability. Therefore, if a node 

achieves little in initially completing workloads, then it requires a steeper 

curve to reach ground truth status afterwards. The ground truth value for 

CBA, in this case, was 0.82. The assessed value dropped to 0.68 due to 

some failed blocks in the simulation. The dynamic update method in 

CTRUST-A implies that trust scores are updated after every interaction. 

This accounts for the variations that can be seen in Fig. 3.7-3.9. In the 

non-adaptive mode of CTRUST, the variations would balance out over 

the course of a session of interactions. The dynamic mode is preferred, 

however, because changes in the behaviour of collaborating nodes are 

continuously tracked and this makes it easier to spot malicious behaviour 

or a sudden drop in service level.  

The initiator can define a minimum expected level of speedup to address 

the problem of suspected increase in the proportion of malicious nodes in 

the community, especially when the derived utility (speedup) suddenly 

drops significantly. The initiator can also alter the relative weights of the 

parameters to achieve its desired service level. For instance, if there are a 

lot of failed blocks, the weight of SCR may be increased by 20%. The 

same rule applies to every other parameter. If after two iterations the 

service level is not met, then the initiator may never achieve its minimum 
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utility. The initiator should terminate the collaboration at this point 

because its objective cannot be achieved. 

Having shown that CTRUST meets the required criteria for an ideal trust 

model for collaborative applications in the IoT, as outlined in Section 2.3, 

the model is compared to related work in the next section. 

3.2.6 Comparison to Related Work 

A survey of trust models in the existing literature has already been 

reported in Chapter 2. In this section, CTRUST is compared to the similar 

models for trust management for IoT applications.  This is done to show 

the importance and distinction of the work, and the contributions it makes 

to this field of study. 

In Section 2.1, the limitations of existing trust and reputation models have 

been discussed, particularly with respect to an overdependence on 

recommendations – which are usually utilised unmodified - and the lack 

of a trust decay function to account for the temporal degradation of trust 

values. In CTRUST, however, there are separate recommendation and trust 

decay functions, each of which takes the temporal nature of trust into 

consideration. The recommendation function aggregates multiple 

recommendations received around the same time on the same node into a 

group recommendation score. Finally, we combine weighted values of 

direct assessments, past trust scores and group recommendations to 

compute present trust scores. This ensures that trust scores are weighted 

once, and it mitigates the risks posed by a ring of bad recommenders. 

Chapter 2 discussed the risks inherent in using trust models that are solely 

based on reputation for IoT, such as [35], [44], [45]. CTRUST, on the 

other hand, utilises both objective and subjective trust parameters in 
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computing trust values for nodes. The trustor also decides the relative 

importance of each parameter. Hence, rather than having to use two 

different trust models in an IoT application context where both QoS and 

social trust must be considered, our trust model ensures we can compute 

one aggregate trust value in such contexts. Our model also dynamically 

adapts to changes in the trust community similar to [15], [32]. Both 

models correctly state that bad recommendations make it difficult to reach 

a new ground truth status quickly, as was also discussed in this chapter. 

In those models, however, two different model parameters must be tuned 

to achieve a high degree of trust resilience. The method with which we 

manage recommendations in our model ensures that we achieve a similar 

level of trust resilience without having to continuously tune system 

parameters during interactions. 

In most of the trust models cited in Section 2.1, the reputation of a node 

providing a recommendation is the only factor that is taken into 

consideration in deciding the weight of that recommendation. In 

CTRUST, the recommendation function also considers how recently 

direct interactions were made between the trustor and the node on which 

a recommendation is being provided, and the difference between the past 

trust value and the recommendation value for that node. This makes 

recommendations more robust and effectively deters opportunistic service 

attacks. We also determined the point at which the trust between two nodes 

reaches maturity. When trust maturity is reached within a session, a node 

can reliably compute trust values based on direct assessments alone. This 

reduces both the processing and storage overhead involved in trust 

computation, which is vital in the IoT platform where low computing 

power is a major characteristic. 
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3.3 Chapter Summary 

CTRUST models trust as a result-oriented metric evaluated on parameters 

that are mapped to the functional requirements in the applied context. The 

model was evaluated in a collaborative download context. The analysis 

shows that the model is effective, and its trust estimation and performance 

show a high degree of accuracy, reliability, and resilience. The model is 

adaptable to several collaborative contexts. CTRUST effectively 

addresses self-promotion, good-mouthing, ballot-stuffing, opportunistic 

service, and on-off attacks. It requires little computing and energy 

resources for trust computation. 

CTRUST is flexible since several design parameters can be set up based 

on the applied context. We implemented a robust trust decay function and 

mathematically modelled the acceptance of recommendations based on 

insights from social interactions. We were also able to determine the 

number of direct interactions required to achieve trust maturity between 

any two nodes. From the literature available to us, we conclude these are 

novel and important contributions to the study of trust management in the 

IoT. It should be noted that while the importance of trust-based security 

in the IoT has been recognised, trust management for IoT is still evolving. 

The proposed model, CTRUST, is a major contribution to this field, fills 

important research gaps, and will provide a better well-rounded approach 

to trust modelling in the IoT. This work has been published in the IEEE 

Internet of things Journal [67]. In the next chapter, CTRUST is extended 

to design a new model for trust evaluation and management in service 

compositions. 
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CHAPTER 4 SC-TRUST: A DYNAMIC MODEL FOR 

TRUSTWORTHY SERVICE COMPOSITION IN THE INTERNET 

OF THINGS 

In the previous chapter, CTRUST was proposed as an ideal trust model 

for use in the IoT. However, the work focused only on collaborative 

applications where the trustor (i.e. SR) directly requests and receives 

services from SPs and can, therefore, provide a direct trust rating of the 

nodes based on their performance, thus establishing a trustor-trustee 

relationship. Even though service compositions are a special category of 

collaborative applications, there is no direct trustor-trustee relationship, 

meaning that the SR is unlikely to be aware of the identities or trust scores 

of the SPs given that the detail of the composition is abstracted from the 

SR. The general properties of an ideal trust model for the IoT, as enumerated 

by Requirements (1-9) in Section 2.3, are satisfied by CTRUST. However, 

no previous trust models meet Requirements (10-11) listed in the same 

section. Thus, the model described hereafter encapsulates and 

significantly extends the CTRUST model by fulfilling the latter 

requirements, with a focus on dynamic trust management for service 

compositions in the IoT. 

4.1 Model Design and Analysis 

Based on the study discussed in Sections 2.2-2.3, SC-TRUST is proposed 

as a suitable model to guide compositions of IoT services. Underlying 

services and SPs are assumed to have trust scores assigned to them prior 

to the composition, based on their direct interactions with other nodes or 

peers outside a service composition context. Just as in CTRUST, a trust 

score is computed based on the objective measurement of a node’s 

performance on functional parameters, which form the basis on which the 
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trust assessment is made. Trust criteria are modelled based on these 

parameters; a trustor determines the weights of each criterion. Trust 

scores are stored and are used to guide future interactions, although their 

importance declines over time. SC-TRUST extends the trust assessment, 

decay recommendation and aggregation functions of CTRUST to include 

two novel functions for transparent trust composition and decomposition. 

A high-level workflow of the model is illustrated in Fig. 4.1. A stepwise 

overview of the service composition process can be thus described: 

1. Underlying services are assessed on one or more trust criteria 

(parameters) relevant to their service class. Each trust parameter could 

be objective (QoS) or subjective (social) in terms of the assessment. 

The assessment results are called partial trust scores. 

2. An SR requests a request-granting service, which is the middleware for 

composing the services and upon which SC-TRUST is built. Further 

details of the middleware are abstracted; it is assumed that the 

middleware is impartial, agnostic and can operate in a decentralized 

architecture. A candidate platform would be a blockchain built for this 

purpose, similar to those proposed in [72]–[76]. 

3. The middleware composes a service workflow pattern to match the SR’s 

requests. The details of the mechanism for this are not relevant to this 

discussion. It is sufficient to note that examples of candidate middleware 

solutions exist in the literature [16], [19]. SC-TRUST can be integrated 

into a suitable middleware platform. 

4. After the service workflow is decided, a handover is made to SC-

TRUST to guide the actual composition process. For each service class 

required in the composition, SC-TRUST identifies the parameters 

relevant to the composition, to which the SR may assign weights. 
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5. The prior partial trust scores on the parameters identified in (4) for each 

SP are aggregated according to the SR’s weight assignment, to calculate 

a single trust score for each SP. The trust aggregation function in 

CTRUST is utilized here. The most trustworthy SP(s) in each service 

class is(are) selected according to this score. 

6. The trust score of the composed service is estimated transparently 

through a trust composition function of SC-TRUST based on the 

workflow, relevant partial trust scores of the SPs, and weights assigned 

by the SR. 

7. Upon service consumption, the SR may provide a score on each 

parameter; this is used to transparently update the posterior partial trust 

scores of the SPs through a trust decomposition function of SC-TRUST. 

 

Fig. 4.1 Basic processes involved for trust computation in SC-TRUST 



76 
 

8. The trust decay and recommendation functions of CTRUST are 

inherited and utilized as required. 

Let S be the set containing the SR and all the SPs available for 

composition under the model. T[S], the trust space over S, is an octuple 

expressed by the following notation: 

𝑇[𝑆] ≡ [𝑇𝑖𝑗 , 𝑃,𝑊𝑖 , 𝑉𝑖𝑗 , 𝐹, 𝑡1
2

(𝑖), 𝐶, 𝐷] ∀𝑖, 𝑗 ∈ 𝑆 (4. 1) 

Where 

- 𝑇𝑖𝑗 is the trust score of SP j from the perspective of SR i; 

- 𝑃 = {𝑝𝑖 , 𝑝2, 𝑝3, . . . , 𝑝𝑛} is the set of all trust parameters or properties 

from every service class in the composition; 

- 𝑊𝑖 = {𝑤𝑖(𝑝1), 𝑤𝑖(𝑝2),𝑤𝑖(𝑝3), . . . , 𝑤𝑖(𝑝𝑛)} is the set of weights on each 

parameter in P, as assigned by SR i; 

- 𝑉𝑖𝑗 = {𝑉𝑖𝑗(𝑝1), 𝑉𝑖𝑗(𝑝2), 𝑉𝑖𝑗(𝑝3), . . . , 𝑉𝑖𝑗(𝑝𝑛)} is the set of values 

denoting SR i’s perceived assessment (partial trust score) of SP j on each 

parameter in P; 

- 𝐹 = 𝑓(𝑊, 𝑉) ≡ 𝑇𝑖𝑗 is the trust aggregation function; 

- 𝑡1
2

(𝑖) is the half-life of any partial trust score computed for i, that is, the 

time required for a partial trust score to decay to half of its original value; 

- C is the trust composition function; and 

- D is the trust decomposition function. 
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The CTRUST functions described in Section 3.1 apply to SC-TRUST; 

therefore, the discussion in this chapter focuses on the extensions 

provided by the model, specifically transparent trust composition and 

decomposition, which are described in the subsequent subsections. 

4.1.1 Transparent Trust Composition 

It is necessary to provide an SR with a reliably estimated prior trust score 

of the composed service requested, to assist the SR in making an informed 

decision to accept or reject the service offer. The goal is to provide the SR 

a guarantee of the minimum level of satisfaction derived from the 

composed service. As such, this is not a trust judgement on the SPs 

themselves; rather, it is an indication of the likelihood that the composed 

service meets the SR’s requests. Upon consumption, the SR’s posterior 

feedback may indicate a higher or lower level of satisfaction compared to 

the prior estimated score. A reliable prior trust estimate should not be 

higher than the posterior feedback from the SR. Therefore, a novel, 

bottom-up approach is proposed to compose the trust value. The objective 

here is to satisfice [116], that is to initially find a suitable composition 

which meets the SR’s threshold of acceptability, even if it is not the best 

possible composition. This is an optimal strategy because it reduces the 

time, energy and computational costs involved in composing a service. 

Then, based on the feedback from the SR, we can update the trust scores 

of the SPs and compose a better service with every iteration. Thus, this 

strategy leads to an optimal service composition eventually. 

The set of prior partial trust scores of each selected SP j is denoted now 

as 𝑉𝑗, and the set P contains all parameters for all service classes 

represented in the composition. These sets may be stored in a 

decentralised architecture, such as in a blockchain [74], [77], [78], where 
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similar composition platforms may access these values. The details of the 

storage and retrieval mechanisms are not relevant to the model design at 

hand. The SR assigns weights to each of these parameters to indicate their 

order of relative importance. This could be implemented in several ways. 

One way would be to assign a default weighting of 0.5 on a scale of 0 to 

1.0 for each parameter. Then the SR can adjust the weighting of any 

parameter as desired. Another method could be to request that the SR 

provide pairwise comparisons or ratios on matched parameters (e.g. taxi 

fare vs cleanliness, cleanliness vs vehicle emissions). Analytic Hierarchy 

Process (AHP) methods can then be used to elicit consistent weights for 

each parameter. Once the weights have been determined, we can proceed 

to estimate the trust score of the composed service recursively, as 

determined by the workflow. Each workflow is resolved to an equivalent 

single service characterized by an appropriate set of partial trust scores. 

The method by which this is done for each workflow type is discussed in 

the following subsections. 

4.1.1.1 Selection Workflow 

In a selection workflow, the SR must select one SP from a group of two 

or more SPs that are from the same or associated service classes and offer 

similar services. Therefore, we know that this group can be represented 

by the SP with that highest trust score, as this is the SP most likely to be 

chosen by the SR. Once an SP is chosen, the services of the others are not 

used (not at this level, at least) and therefore do not impact on the 

composite trust score. Therefore, to resolve or simplify this workflow, we 

determine the SP with the maximum prior trust score based on the partial 

trust values on the same set of parameters, using weights assigned by the 
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SR. Let Q be the set of SPs from which a selection is to be made, and R 

⊆ P be the set of parameters common to every member of Q. We compute: 

𝑇𝑗 =∑ 𝑤(𝑝𝑥) × 𝑉𝑗(𝑝𝑥),
𝑝𝑥 ∈ 𝑅

 ∀𝑗 ∈ 𝑄 (4. 2) 

Therefore, the set Q can be resolved to a single logical service that has the 

equivalent trust characteristics (the same set of partial trust scores, V) as 

the SP with the highest trust score as computed by the above equation. 

Two or SPs may tie for the highest trust score. This does not affect the 

resolution of the services, because the trust score represents the estimated 

maximum utility that the SR may derive from the consumption of any of 

such services. Unless there are other non-functional constraints, we can 

choose the partial trust score set of any of these SPs for the equivalent 

logical service. This set is represented mathematically by: 

𝑉 ≝ 𝑉𝑗 , where 𝑇𝑗 = 𝑚𝑎𝑥({𝑇𝑙}𝑙∈𝑄) (4. 3) 

4.1.1.2 Parallel Workflow 

In a parallel workflow, multiple SPs provide services concurrently. The 

SPs may be of the same or different service classes. Consider the case of 

SPs of the same class (and therefore offering the same service). An 

example of this would be a collaborative download session. If two SPs 

have a score of 0.7 and 0.9 respectively on a trust parameter based on 

bandwidth, then the average bandwidth would be 0.8. In this case, the 

collective services provided by this group of SPs could be reliably 

substituted by a single service with a partial trust score equal to the 

average group score on each trust parameter.  

Suppose that the SPs are from different service classes. For example, an 

SR could request readings from a relative humidity SP and a temperature 
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SP simultaneously. In this case, the SPs could be logically replaced by a 

single service that offers both services. This single service has a set of 

partial trust scores that is given by the union of the sets of partial trust 

scores of all the SPs. Where two or more SPs have a partial trust score on 

the same trust parameter, the replacement service is assigned the average 

(arithmetic mean) value of the scores on this parameter. This is true for 

both cases above.  

To formalise the above cases, let Q be the set of SPs in the parallel 

workflow and R ⊆ P be the set of unique parameters for all the SPs in Q. 

Then the set V for a single service to replace Q is given by: 

𝑉 ≝ {
∑ 𝑉𝑗(𝑝𝑥)𝑗∈𝑄 ∧ 𝑜𝑗(𝑝𝑥)=1

∑ 𝑜𝑗(𝑝𝑥)𝑗∈𝑄
}
𝑝𝑥 ∈ 𝑅

 

𝑜𝑗(𝑝𝑥)  =  {
1, if 𝑉𝑗(𝑝𝑥) ∈  𝑉𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑗 ∈ 𝑄, 𝑝𝑥 ∈ 𝑅

(4. 4) 

Here, 𝑜𝑗(𝑝𝑥) is used to decide whether partial trust score 𝑉𝑗(𝑝𝑥) is in SP 

j’s set 𝑉𝑗. Every value in 𝑉 is the average partial trust score computed 

separately on each parameter 𝑝𝑥 in R from all the partial trust scores on 

𝑝𝑥 collated from the SPs in Q. 

4.1.1.3 Sequential Workflow 

Every service composition can eventually resolve to a sequential 

workflow. To understand how two microservices composed in sequence 

may affect the prior trust estimation of the composed service, we study 

two examples. First, suppose that we have a food delivery service 

composed of a restaurant service class and a driver/delivery service class. 

This is a sequential workflow. Assume that the restaurant service class 

has two parameters, food quality and eat-in/indoor quality with a weight 
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of 0.65 and 0.35 respectively assigned by the SR in previous direct 

interactions. The driver/delivery class has two parameters: politeness and 

timeliness, with an equally assigned weight of 0.5 each. Suppose that the 

SR requests a pizza; the pizzeria (SP) with the highest trust ratings is Alice 

Pizzas with a food quality score of 0.9 and an eat-in score of 0.5. 

Therefore, its individual trust score would be 0.65*0.9 + 0.35*0.5 = 0.76. 

Similarly, the trust score for a selected driver with scores of 0.4 and 0.9 

on politeness and timeliness respectively would be 0.5*0.4 + 0.5*0.9 = 

0.65. Note that both the weights and trust scores are normalized in the 

interval [0,1]. However, in delivering food, the politeness score of the 

driver is not relevant as the SR does not interact with the driver. A similar 

reasoning applies to the eat-in parameter. Therefore, the composed 

service can be scored on two parameters: food quality and timeliness, to 

which the SR now assigns weights of 0.6 and 0.4 respectively (the other 

parameters are assigned weights of 0). Therefore, the estimated trust 

rating of the composed service at this level would be: 

0.6*0.9 + 0.4*0.9 = 0.9 

The second example is somewhat more complex. Suppose that the SR is 

visiting a new city and does not speak or understand the language of this 

city. The SR is interested in a museum and wants a summary of Internet 

articles about the museum translated to the SR’s native language. Two 

microservices are required for the composed service: a summarization 

service assumed to have accuracy and response time parameters; then a 

translation service with an accuracy parameter. Suppose that the selected 

summarization SP has prior partial trust scores of 0.7 and 0.9 on accuracy 

and response time, respectively. The translation service has an accuracy 

of 0.8. In this case, the overall accuracy of the composed service cannot 

be reliably estimated to be greater than 0.7 prior to feedback from the SR. 
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The accuracy parameter is a shared parameter that simultaneously belongs 

to two or more service classes in the composition. If the SR-assigned 

weights are 0.7 and 0.3 for accuracy and response time respectively, then 

the prior trust score of the composed service is computed as: 

Min. (0.7, 0.8) * 0.7 + 0.9*0.3 = 0.76 

Therefore, we can now define the trust characteristics for a single logical 

service that is reasonably equivalent to two or more services in a 

sequential workflow. Let Q be the set of all SPs in a sequential workflow 

and R ⊆ P be the set of unique parameters for all the SPs in Q. Then the 

set V of the single service is the union of all distinct elements which have 

a non-zero weighting, taken from the sets of partial trust scores of all the 

SPs in Q. Where two or more SPs each have a partial trust score on the 

same (shared) parameter, the set V contains the minimum partial trust 

score on this parameter. The minimum partial trust score is computed 

separately for each parameter in R. This is represented mathematically by: 

𝑉 ≝ {min ({𝑉𝑗(𝑝𝑥)}𝑗∈𝑄 ∧ 𝑜𝑗(𝑝𝑥)=1
)}
𝑝𝑥 ∈ 𝑅

(4. 5) 

Having discussed the methods by which each type of workflow may be 

resolved into and replaced by a single equivalent logical service, we can 

apply them recursively as required until the whole composition is 

replaced by an equivalent logical service that is defined by the appropriate 

trust characteristics in its set V. Then the estimated trust score of the 

composed service is equivalent to the trust score of this logical service 

and computed according to the following equation, where 𝑤(𝑝𝑥) = 0 if 

no weight is assigned to 𝑝𝑥 by the SR: 

𝑇 =∑ 𝑤(𝑝𝑥) × 𝑉(𝑝𝑥)
𝑝𝑥 ∈ 𝑃  

(4. 6) 
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We derive this estimation by resolving the chain of services, regardless of 

its complexity, to a conceptual model consisting of a single logical service 

that is an equivalent abstraction of the composed service. This model is 

the view that the SR “sees” in interacting with the composed service. The 

SR need not have any knowledge of the individual underlying 

microservices. Thus, we have successfully composed the trust 

transparently for the SR. Also, none of the SPs gains any knowledge of 

either the SR or another SP from the composition process. Therefore, the 

method is privacy-preserving and makes it sufficiently difficult for an 

adversary to bad-mouth, ballot-stuff or perform on-off attacks. The SR 

then gives a posterior trust evaluation after consuming the service. The 

method by which this posterior score is transparently decomposed to 

update the partial trust scores of the SPs involved is discussed in the next 

section. 

4.1.2 Transparent Trust Decomposition 

The problem of transparent trust decomposition is inherent in the trust 

composition model presented in the previous section; the SR consumes 

and gives feedback on a single logical service based on the same 

parameters from Equation 4.6. However, the composed service consists of 

several microservices. Therefore, a method is required to reliably 

decompose the partial trust scores given by the SR to the underlying 

services in a manner that is both reasonable and impartial to all the SPs 

involved. This should be done through a top-down approach while 

persisting the logical view of the composed service to the SR and without 

revealing any details of the underlying services. While this is a novel and 

complex problem in the IoT, it is somewhat similar to the problem of 

group assessment in education, which has been widely studied [117]–
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[119]. Therefore, we analyse the composed service and adapt concepts 

from methods proposed to assess individual contributions to group 

assessments. 

Some observations can be made from the studies cited above. First, group 

assessments can be an effective method of assessment for both the 

assessor (SR) and the assessee (SPs) and it is widely used in both formal 

and informal education. It can increase coordination, cooperation, and 

collaboration among the assesses while providing a straightforward way 

for the assessor to evaluate the performance of all the group members at 

once. However, it may give malicious SPs an inducement to “free-ride” 

because the differential contributions of SPs are not acknowledged given 

that everyone gets the same scores on the same parameters. Also, it may 

de-incentivize high performing SPs because they may be punished for the 

low performance of other SPs. This leads to a degradation in the quality 

of experience for the SR because there is no motivation for SPs to provide 

better services. Moreover, some SPs may refuse to offer their services to 

the composition platform if they reckon that the cost of the services 

provided is not commensurate with the returns they receive, in terms of 

their trust scores. The focus of the studies in the literature has been to 

develop techniques to maximize the stated advantages and eliminate or 

minimize the problems raised. 

Several methods have been proposed to improve the quality and fairness 

of group assessments which may be classified into one of three broad 

categories. First, the group members may be asked to provide a peer 

assessment or feedback that details what was done by each member. This 

can be used to assign marks or augment the assessor’s marks to create a 

distribution of scores that is fairer to the group members than a general 

score. This method cannot be adapted to our proposed context for several 
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reasons. One, it does not preserve the privacy and transparency of the 

service composition. Secondly, because this is a type of recommendation, 

it creates opportunities for malicious nodes to carry out bad-mouthing and 

ballot stuffing attacks. Therefore, it is counterproductive as good and 

reliable SPs could be unrewarded or even punished despite offering 

quality services. Another method proposes that the group members 

moderate the marks given by the assessor. This also is susceptible to trust 

attacks previously mentioned and is not suitable for trust decomposition 

in the IoT. 

A third method assigns both a group score and an individual score to the 

group members. The individual component is based on a separate piece 

of work produced by each group member in addition to the group work. 

Thus, the advantages of collaboration and group assessment may be 

achieved while providing an incentive for the improvement of individual 

performance. Similarly, the individual component punishes bad or low-

performing members, thus creating a fair distribution of the marks among 

the group members. These characteristics make this method feasible for 

use in our context. Moreover, the group members are not required to 

provide feedback on their peers. Therefore, it is possible to maintain the 

privacy aspects of the composition with this method. The same assessor 

may evaluate and award both the group and individual components. 

Although this method does not result in a perfect distribution of scores, it 

creates a much fairer distribution that will be reasonably accepted by the 

SPs. Therefore, it may be used to update their trust scores posteriorly. It 

is also required that we do this transparently. Now, it must be determined 

how this method can be adapted for trust decomposition in the IoT. 

Oftentimes, only one SP per service class would be required in a service 

composition. Also, each service class is usually differentiated by one 
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parameter, at least. Classes may share parameters. To express this 

symbolically, out of n parameters on which trust is evaluated in a service 

class, at most n-1 would be shared. This creates a method to give an 

individual rating to an SP of the same class. Therefore, an SP j from any 

service class would share at most n-1 trust ratings with another SP from a 

different service class, and the rating for at least one parameter would 

uniquely apply to j. Usually, this unique parameter of the class is also the 

defining parameter that is likely to be regarded as the most important by 

most SRs. In any case, this parameter would be relevant enough to be one 

of the trust characteristics of the logical model of the service composition, 

as derived in the previous section. It is reasonable to assume that the 

subset of unique parameters of the logical model would carry a significant 

fraction of the overall weight on trust estimation. Thus, it is reasonable 

and appropriate to expect that these parameters would incentivize better 

quality of service from good nodes and significantly lower the trust scores 

of malicious nodes. Therefore, when the SR provides feedback on the 

composed service, any score given on this parameter would only affect 

the SP from that service class. If a distinction between the service classes 

is ensured, then this method provides a reliable means to assign 

differential trust scores to the SPs. The set of unique parameters, U⊆ P, 

may be expressed mathematically by the following equation: 

𝑈 ≝ {𝑝 ∶  𝑝 ∈ 𝑃 ∧∑ 𝑜𝑗(𝑝)
𝑗 ∈ 𝑆

= 1} (4. 7) 

Suppose that an SP adjusts its service provision such that it receives good 

ratings on its unique parameters but bad ratings on the others. This is an 

opportunistic service attack. However, the attack fails because the SP 

destroys its own reputation as well with no overall gains. Our model can 

also deter such attacks. First, the SP does not know the identities of other 
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SPs involved in the collaboration. Therefore, it cannot perform selective 

attacks. Second, the middleware platform composing the service is a 

“wholesale buyer” of services and interacts directly with the SP. Even 

though the agnostic middleware platform does not provide trust ratings 

on the SP, the SP cannot distinguish between a direct interaction from a 

conventional SR (as in the cases covered by the CTRUST model) and the 

interaction from the middleware (which appears as an SR to the SP). 

Therefore, the SP cannot selectively attack service compositions because 

it cannot tell whether its services are being utilized in a composition or 

otherwise. If any malicious behaviour from the SP is detected, the SP is 

removed from the service composition and receives a negative trust 

feedback. This harms its reputation, making it unsuitable for any kind of 

service provision in the future. Because SC-TRUST is built atop 

CTRUST, it quickly converges to the ground truth of the nodes as we 

show in the next section. Third, given that there are costs to service 

provisioning and the SP cannot gain from malicious behaviour or disrupt 

the composition eventually, a rational SP would be motivated to provide 

good services. 

On a shared parameter, the post-service trust score received from an SR 

is decomposed according to the individual partial trust scores (given by 

Equation 3.13 in the previous chapter) AND the composed partial trust 

score on that parameter (as defined in Equation 4.5). Suppose 𝑉(𝑝) and 

𝑉+(𝑝) are the composed and post-service feedback scores, respectively, 

on parameter p. Then, the partial trust score of each SP sharing this 

parameter is updated according to the following equation: 

𝑉𝑗
+(𝑝) = 𝑉𝑗(𝑝) + (𝑉

+(𝑝) − 𝑉(𝑝)) ×
𝑉𝑗(𝑝)

∑ 𝑉𝑗(𝑝)𝑗∈𝑆 ∧ 𝑜𝑗(𝑝)=1

(4. 8) 
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Where 𝑉𝑗(𝑝) 𝑎𝑛𝑑 𝑉𝑗
+(𝑝) are the pre-service and updated partial trust 

scores, respectively, for SP j on parameter p. Equation 4.8 utilizes a game 

theory approach that de-incentivizes freeloading. This is achieved by 

differentially penalizing each SP sharing the parameter if the post-service 

score is lower than the prior estimated score. Given that the SPs have zero 

knowledge of the partial trust scores of one another, a rational SP would 

act to avoid the penalty by ensuring that the posterior score received on 

the shared parameter is as high as possible. Also, given that an SP cannot 

readily tell whether its services are being offered directly to a node or to 

a composition platform, a rational SP would seek to avoid being penalized 

so that its partial trust scores can remain high enough to be selected to 

provide services in the future. This fosters cooperation and motivates each 

SP to provide their best possible service. 

The above discussion shows that the SC-TRUST model is privacy-

preserving and transparent to both the SP and the SR and can significantly 

reduce the ability of either peer to perform maliciously. In addition to the 

deterrence of the SP’s misbehaviour, SC-TRUST can also deter the 

middleware platform from being biased or malicious. This is because 

good SPs who have received good ratings from other nodes or platforms 

would eventually decline to interact with a misbehaving middleware 

platform. Therefore, the quality of its composed services would be low, 

and SRs would no longer subscribe to its services, leading to a loss of 

reputation and revenue. Given that there are other such composing 

platforms from which SRs can request services, the provider of the 

platform is sufficiently motivated to remain neutral and provide 

trustworthy services. 

Having described the SC-TRUST in detail, the next section evaluates the 

performance of the model. 
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4.2 Model Performance and Evaluation 

SC-TRUST was evaluated in a collaborative download (CD) application, 

utilising a similar experimental setup to the one detailed in Section 3.2.2 

but with a service composition approach, instead. The evaluation aims to 

measure the performance of the model in a practical application and is 

approached along two different strategies. In the first, we evaluate the 

impact of the model on the level of utility gained by an SR. We compare 

the performance of the trust-based composition to a random composition 

and an SR-composed composition (that is, the SR directly shops for the 

individual services). In the second, we evaluate three major trust 

properties of the model, namely trust accuracy, convergence, and 

resilience. We compare the results to those obtained in CTRUST. 

Through this we show the efficiency of the model in service composition 

applications, as well as the effectiveness of the model in mitigating trust-

related attacks. The model is privacy-preserving by design, as we have 

shown in the preceding section. 

Note that as pointed out in Section 2.2.4, there is a lack of existing work 

on trust modelling for service compositions, so there is no other suitable 

model for a direct comparison with SC-TRUST. 

The purpose of experiments detailed below is to show that the trust scores 

obtained by both transparent trust composition and decomposition are not 

significantly different from the scores that would have been elicited if the 

SR was in a direct collaboration with the SPs. Therefore, we show that by 

utilising a robust trust model as SC-TRUST, the advantages of service 

composition in the IoT can be achieved while mitigating the realisation 

and effects of trust risks. Given that the model is based on CTRUST, it 

inherits the verified methods of trust persistence, decay, and 
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parametrization. The trust properties of platform consideration and Trust 

as a decision (TaaD) are implicit in the model’s design. We will show 

that the trust composition and decomposition methods provide reliable 

estimates of the trust values of an SP and approach the ground truth 

values. Overall, we prove that SC-TRUST includes all the attributes 

required in an ideal trust model for IoT service composition, as 

enumerated in Section 2.3. 

The simulation environment is largely the same as that used to evaluate 

CTRUST in the preceding chapter except for a few changes required for 

the service composition context. The hardware remains the same, but the 

virtual environment used is Mininet, an emulator for prototyping 

Software Defined Networks (SDN), running in VirtualBox. An emulator, 

rather than a simulator, is used to better model the host and network 

constraints expected in the IoT networks. Mininet was chosen because it 

is already suited for SDN-type networks and is easily extensible for our 

purpose. In addition, it is open source, written in python and well-

documented. This supports reproducibility of both the experimental setup 

and results. 

The composition process is as follows: first, an SR requests a CD session, 

sending the URL of the file to be downloaded as input. Then the 

middleware composes the services as follows: SPs which offer the 

download services are selected through the trust management system. The 

download services are composed in sequence with an aggregation service 

offered by a different SP. The aggregation SP divides the resource into 

workloads or blocks, verifies the downloaded contents, and checks for 

errors or malicious modifications. Then, it aggregates the verified blocks 

into the originally requested resource and sends the complete content to 

the SR over the local network connection. The communication protocol 
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is managed by the middleware layer in a way that preserves the privacy 

of the SPs. This setup is illustrated in Fig. 4.2. 

In our simulation, there are 5 members of the aggregation service class, 

from which one is selected per CD session. There are 10 members of the 

download service class, from which a range of 3-5 SPs are selected for 

each CD session. During a CD session, the aggregation SP may not be 

changed, but download SPs may be removed and/or added to the 

composition as required. The SPs are simulated using a uniform random 

distribution such that their behaviour should yield a partial trust score 

(that is, the ground truth value) in the range [0.5,1]. Thus, there is a 

uniform distribution of malicious or underperforming SPs as well as good, 

 

Fig. 4.2 Service composition for a collaborative download 

This setup consists of one aggregation SP and three download SPs 

working in parallel. 
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high-performance SPs. The simulation involves 100 such download 

sessions. 

In Section 4.2.1, the utility of the model is evaluated to determine the 

accuracy of the transparent trust composition in SC-TRUST. Then the 

trust properties (accuracy, convergence, and resilience) of the model are 

evaluated in Section 4.2, and they show the effectiveness of the 

transparent trust decomposition method utilized in the model. 

4.2.1 Evaluating Utility Gain in SC-TRUST 

The purpose of utilising multiple download SPs is to increase the 

throughput, that is the speed at which the content is retrieved and 

delivered to the SR. Therefore, a faster download increases the utility 

gained by the SR. Fig. 4.3 illustrates the relative speedup (in comparison 

to the SR’s average download speed) achieved for different cardinalities 

of the set Q of download SPs. We compare the speedups achieved using: 

(i) SC-TRUST in a service composition, (ii) CTRUST in a collaboration 

context, as in [67] and (iii) a random selection of SPs in a service 

composition. SC-TRUST achieves a similar speedup to CTRUST for each 

group size. SC-TRUST performs marginally better than CTRUST 

initially. This is due to the logistical overhead incurred by CTRUST, 

because in a direct collaboration, the service requester must select the SPs 

and compose the service directly. 

As the session progresses, CTRUST slightly overtakes SC-TRUST in 

terms of speedup. This is probably due to the recurring overhead involved 

in communicating with the middleware layer. However, the difference 

between both models is statistically insignificant at a significance level, 

α=0.05, as shown in Table 2. Therefore, we can conclude that SC-TRUST 



93 
 

provides as much utility gain for the SR as CTRUST, while providing the 

benefits of an automatic service composition. For example, using SC-

TRUST, the SR does not need to request and assess SPs directly. Also, 

the SR does not incur energy and computation costs involved in running 

a service composition, as these are shifted to and borne by the 

middleware. Moreover, the SR does not need to keep a record of known 

SPs but can rely on the middleware to select appropriate SPs according to 

its service request. 

Additionally, it is evident that the use of SC-TRUST increases the 

speedup quite significantly as compared to a random selection. We 

observe that SC-TRUST outperforms the random selection and that there 

is a consistent increase in the speedup even when the utilisation level of 

 

Fig. 4.3 Plot of Speed-up against varied sizes of the set Q of download 

SPs working in parallel 

The figure shows the speed-up achieved using SC-TRUST in a service 

composition, compared to a random selection of SPs, or to CTRUST in 

a similar collaborative context. 
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available download SPs is almost 80% (i.e. the number of selected SPs in 

set Q is 8, which is denoted as n(Q) = 8). Thus, SC-TRUST selects the 

most reliable SPs for service provision until there is no alternative. 

However, once n(Q) >= 6, the speedup of the random selection begins to 

sharply increase to match that of SC-TRUST and eventually a similar 

speedup is achieved at n(Q) = 10. This is so because SC-TRUST 

accurately selects the most trustworthy SPs first. Therefore, the marginal 

increase in speedup reduces as n(Q) approaches n(S) (i.e. the total number 

of SPs). This is because the random mode is more likely to select 

trustworthy SPs, which were originally left out, as n(Q) increases. When 

n(Q) = n(S), there is no difference in speedup between both modes, as the 

trust model cannot perform any choice because (𝑛
𝑛
) = 1. 

Therefore, given that the speedup achieved is comparable to the results 

that were obtained in [67], [120] and [113], we conclude that the 

transparent trust composition in SC-TRUST yields an accurate trust score 

with a performance level equalling that of CTRUST. Also, utilising SC-

TRUST in a service composition increases the utility gained by the SR 

with no significant overhead incurred, while providing the trust-based 

security required for the realization of all the potential benefits of an SOA-

based IoT application. 

Table 4.1 Two-Tailed Paired Sample T-Test Comparing the Speedup 

Obtained Using SC-TRUST, CTRUST and Random modes for 

Selection of SPs 

 

 
SC-TRUST 

vs. Random 

SC-TRUST vs. 

CTRUST 

Observations 100 100 

P value at 

(α=0.05) 

4.25E-14 0.053 (lowest 

value obtained) 
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4.2.2 Evaluating Trust Model Accuracy, Resilience and Convergence 

In evaluating the accuracy and convergence of SC-TRUST, it is necessary 

to establish the ground truth. The ground truth value is obtained by 

computing the trust score of an SP based on the perfect information of its 

behaviour and trust characteristics. This information is obtained from the 

record of the random trust behaviour assigned to each SP at the start of 

the simulation. In real-world applications, neither the SR nor the 

middleware would have perfect knowledge of the behaviour of any SP. 

Hence, there is the need for a trust model in the first instance. A trust 

model which performs accurately in simulations by closely matching 

known ground truth values in a reasonable time will perform well in real-

world applications. Trust resilience is a measure of the ability of the 

model to adapt to changes in the behaviour of SPs and maintain optimum 

performance (in terms of the utility derived by the SR) under such 

circumstances. This is important because the trust characteristics of SPs 

may be changed during a session due to malicious or non-malicious 

reasons. A resilient trust model must identify and adapt to these changes 

and converge to the new trust score quickly and accurately. By doing this, 

a high-level of utility is maintained (as current high-performing nodes are 

selected) and trust risks are minimized. The results obtained for SC-

TRUST are presented in Fig. 4.4-4.7. 

To generate sufficient interactions for these evaluations, the CD sessions 

were adapted for collaborative streaming. The only difference is that 

instead of waiting for the entire content to be downloaded before 

consumption by the SR, each downloaded block is streamed instantly to 

the SR. If the stream progresses successfully with no block missing, then 

the SCR increases. The inverse is also true. Similarly, if there is no 
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buffering, then the CBA is increased. If the block arrives but not in time 

or sequence, then the SR automatically gives a negative feedback score 

on the CBA. SC-TRUST decomposes the SR’s feedback according to the 

method detailed in Section 4.1.2. Each streaming session includes 400-

800 blocks and an equivalent number of interactions. 

Fig. 4.4 shows the results obtained on the SCR parameter after both trust 

composition and decomposition. Since the SCR parameter is unique to 

the aggregation service class, the decomposed trust scores only affect the 

selected aggregation SP. A smoothed plot of the decomposed SCR values 

in Fig. 4.4 shows that it converges from default state (no previous 

interaction) to the ground truth in less than 400 interactions. This is 

slightly higher than the ≈300 interactions required by CTRUST to 

converge to the ground truth. The reason for this is that the interactions in 

this simulation are shorter than those in the CTRUST simulation. Overall, 

 

Fig. 4.4 Convergence of a Trust Parameter to the ground truth based on 

the decomposition of feedback from the SR 
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the duration of the session in both models are similar. Therefore, SC-

TRUST shows a high degree of convergence and accuracy. The 

fluctuations seen in the raw data are expected, as the utility of the SR and 

its perception of the composed service are sensitive to changes in the 

behaviour of the SP. However, if the trust characteristics of the SP are 

consistent, then the decomposed trust value will always converge to the 

ground truth. 

In Fig. 4.5, the SCR measured by SC-TRUST is compared to that of 

CTRUST. We see that while the value of CTRUST is closer to the ground 

truth, SC-TRUST follows the same pattern with a slight lag in the 

measurement of the trust score. However, this difference is statistically 

insignificant. It should be recalled that these values were decomposed 

transparently from the SR’s feedbacks. Therefore, we can conclude that 

 

Fig. 4.5 Comparison of the trust accuracy and convergence properties in 

SC-TRUST and CTRUST 
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the trust decomposition method in the model not only converges to the 

ground truth but offers a level of accuracy on par with CTRUST, but in a 

service composition context. It can be observed that the trend in both plots 

is similar. This is so because SC-TRUST is built on top of CTRUST and 

utilizes some of the latter’s methods. 

In Fig. 4.6, the trust characteristic (ground truth) of the aggregation SP is 

modified to a higher value. It can be observed that SC-TRUST converges 

quickly to the new ground truth within 400 interactions. Also, it should 

be observed that SC-TRUST is conservative in trust evaluation; that is, 

the composed or decomposed trust value is never higher than the ground 

truth. This is in accordance with the specifications in Sections 3.2 and 3.3; 

therefore, the SR always receives the estimated level of utility or higher, 

 

Fig. 4.6 Comparison of the trust resilience on a unique parameter in 

SC-TRUST and CTRUST 
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but never lower. This, in turn, increases the SR’s trust in both the 

composing platform and composition services offered on the platform. As 

previously noted, SC-TRUST slightly lags behind CTRUST in the 

measured trust value, but this difference is insignificant and expected. 

CTRUST measures the trust scores from direct interactions; therefore, it 

is not suitable for transparent trust computations which are required in 

these service compositions. 

Finally, in Fig. 4.7, we investigate the trust properties of SC-TRUST in 

the measurement of a shared parameter. The CBA is a parameter common 

to all download SPs. Therefore, it is more difficult to accurately 

decompose the SR’s feedback in a manner that is fair to each SP. 

 

Fig. 4.7 Comparison of the trust resilience on a shared parameter in SC-

TRUST and CTRUST 
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However, due to the internal use of the IRI parameter to identify malicious 

and underperforming SPs, SC-TRUST performs reasonably well in 

converging to the ground truth on this parameter. It can be observed that 

while CTRUST may produce trust scores higher than the ground truth 

(and therefore misleading the SR in a service composition), both the 

composed and decomposed trust scores in SC-TRUST are almost always 

lower than or equal to the ground truth. After 450 interactions, the trust 

characteristic of this SP is changed to a lower value. Again, SC-TRUST 

adapts and converges to the ground truth in a reasonable time, no more 

than required to establish and converge to the initial ground truth value. 

After 850 interactions, the value of SC-TRUST is a little higher than the 

ground truth. In this exceptional case, however, the increase over the 

ground truth is less than 1%. Therefore, SC-TRUST produces reliable and 

highly accurate trust scores, within the margin of low and acceptable 

errors. 

From the above analysis, it is evident that SC-TRUST meets 

Requirements (10-11) for an ideal trust model for IoT service 

compositions, as enumerated in Section 2.3, in addition to Requirements 

(1-9) which are fulfilled by inheritance from CTRUST. In comparison to 

the few existing trust models for service composition, SC-TRUST 

produces a more accurate and reliable score. For example, the trust scores 

produced by the models in both [15] and [31] diverge significantly from 

the ground truth when the percentage of malicious SPs is greater than 

30%. In contrast, SC-TRUST shows a high degree of resilience such that 

even when half of the SPs are malicious, it retains its high accuracy and 

convergence. 
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4.3 Chapter Summary 

SC-TRUST was designed as a suitable model for service compositions in 

the SOA-based IoT context, utilising concepts discussed in Section 2.2 and 

in accordance with the requirements specification in Section 2.3. The 

simulations and evaluations performed show that the use of SC-TRUST in 

a service composition increased the utility gained. Also, SC-TRUST 

showed a robust performance in trust accuracy, convergence, and 

resilience. Therefore, the model minimizes the impact of trust-related 

attacks, including ballot stuffing, bad-mouthing, and opportunistic service 

attacks. SC-TRUST was modelled with the platform characteristics of the 

IoT in consideration, so its trust evaluations and algorithms require 

minimal computational resources. In addition, the flexibility of the design 

ensures that the model can be easily applied to any service composition 

context. Thus, SC-TRUST addresses critical gaps that exist in the trust 

management research for the IoT by providing a dynamic, systematic, and 

holistic approach to trust modelling in SOA-based IoT, especially for trust-

based service compositions. In addition, the elegant solutions for 

transparent trust composition and decomposition are novel contributions. 

The proposed model has been peer-reviewed and published in the IEEE 

Internet of Things Journal [121]. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, the concept and meanings of computational trust has been 

formalised and an extensive study has been done on trust modelling, 

evaluation and management in the IoT. The limitations of existing 

models, based on a thorough review of the existing literature, have been 

clearly elucidated. Consequently, requirements for an ideal trust model 

for collaborative applications and service compositions in the IoT were 

specified. Also, the techniques for collaborations and service 

compositions were analysed in detail, in relation to trust management for 

the IoT. Based on findings, two models were proposed in this work, 

CTRUST to guide peer selection in collaborative applications, and SC-

TRUST for trust-based service composition in the IoT. 

In CTRUST, trust is accurately parametrised while recommendations are 

evaluated through belief functions. The effects of trust decay and maturity 

on the trust evaluation process were studied. Each trust component is 

neatly modelled by appropriate mathematical functions. CTRUST was 

implemented in a collaborative download application and its performance 

was evaluated based on the utility derived and its trust accuracy, 

convergence, and resiliency. The results indicate that IoT collaborative 

applications based on CTRUST gain a significant improvement in 

performance, in terms of efficiency and security. 

SC-TRUST was designed with consideration of the trust properties of 

service compositions and the effect of service workflows on transparent 

trust composition and decomposition. It was implemented in a suitable 

application and its performance, in terms of the utility derived and the 
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trust accuracy, convergence and resiliency, was evaluated. The results 

show that SC-TRUST improves the quality-of-service compositions and 

adequately mitigates trust-related attacks, thus increasing both efficiency 

and security. 

5.2 Further Work 

The following are research directions stemming from the work done in 

this thesis: 

1. In normalising values on each trust parameter, a linear value function 

was used. However, sometimes the utility function of the initiator is 

marginally non-linear. To model trust more accurately in these 

applications, it would be useful to consider defining a utility function 

and threshold scales for each parameter in a future work. 

2. It would also be useful to extend both models to automate and 

dynamically update parameter weights, in response to changes in the 

availability and behaviour of nodes, for example, changes in the ratio 

of good to malicious service providers. 

3. CTRUST could be extended to and evaluated in other collaboration 

contexts in the IoT, such as collaborative sensing, storage, and 

processing. 

4. It is observed that, by increasing performance and reducing trust 

attacks, SC-TRUST seems to reduce the overall energy usage required 

in a composed service. However, this requires further investigation. 

5. Finally, the effects non-functional constraints, such as price and 

energy, exert on the service composition were not considered. The 

prices which SPs charge for their services may affect their selection 
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depending on the limit of the SR’s budget. However, the price is not a 

trust characteristic, as it is not a functional parameter of the 

composition context, but rather an external constraint on the process. 

It may be argued that more trustworthy compositions would generally 

cost more because the price is an incentive for an SP to produce better 

services. It would be beneficial to study the effects of external 

constraints, such as price and an SR’s budget, on the service 

composition process and the trust scores of SPs. 
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APPENDIX A: DEFINITION OF TERMS 

• Functional Trust: Functional trust refers to the degree to which a 

trustor believes that the trustee is both competent and willing to 

execute required task(s) reliably in a specific functional context, which 

defines the trust scope. It is dependent on the trustee’s ability to 

perform certain functions and its historical performance as measured 

directly by the trustor. It is usually asymmetric, and not necessarily or 

transitive. Functional trust relationships are formed based on the 

ability to fulfil tasks in a specific context and are isolated to that 

context. See Section 2.1.2 for a further discussion of this term. 

• Social Trust: The social trust between nodes usually refers to the 

degree or strength of the connection between them. Consequently, 

factors such as similarity, colocation, friendliness, and honesty are 

primary determinants or parameters of the trust score of the 

relationship. It is usually symmetric, transitive, and mutual. See See 

Section 2.1.2 for a further discussion of this term. 

• Objective Parameter: An objective trust parameter is one which is 

based on a functional parameter of the context and can be assessed 

quantitatively according to some metric or rule that has been defined 

within that context, thus ensuring its measurement is free from bias. 

Its assessment is standardised; there exists a clear definition of 

distance and its measurement. 

• Subjective Parameter: A subjective trust parameter is assessed based 

on the bias of the trustor. A parameter will be subjective and biased to 

the opinion of the rider if there is no defined metric or standard for its 

measurement. Therefore, a parameter may be subjective in one context 
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but objective in another depending on the existence of a standardised 

assessment and scoring system in that context. 

• Recommendation: A recommendation, also known as a referral trust 

score, is trust value received from a third party about another node, 

usually for which the receiving party has little or no previous trust 

history. For example, if node A accesses node C, and passes that trust 

score to node B, then B is said to have received a recommendation on 

C from A. 

• Trustworthiness: The degree, assessed post priori, to which a node 

reliably performs an assigned task in line with the a priori estimated 

trust value. In this thesis, this is the same as the current value of the 

functional trust score. 
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APPENDIX B: MAIN CODEBASE 

// NewPeer.CS 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.ComponentModel; 

using System.Threading; 

using System.Net; 

using System.Diagnostics; 

using System.IO; 

using System.Security.Cryptography; 

using System.Xml.Linq; 

using NewFriends.Properties; 

 

namespace NewFriends 

{ 

    class PeerNode 

    { 

        public string ID { get; private set; } 

        //number of assigned blocks and number of successful blocks downloaded. 

        //members, e.g. of class, are automatically assigned. Locals (of methods) aren't. rememeber... 

        long nAssigned, nSuccessful, TotalBytesDownloaded; //sim=simulated. 

        double simReliability, simBWFactor, simRiskFactor, TotalTimeTaken;//in milliseconds 

        public int SessionCount { get; set; } 

        public BackgroundWorker BgWorker; 

        public static XElement PL; 

        public static Dictionary<string, PeerNode> PeerList; 

 

        public PeerNode() 

        { 

            ID = Guid.NewGuid().ToString("n").Substring(0, 16); 

            InitBgWorker(); 

            simReliability = SetReliability(); 

            simBWFactor = SetBandwidthFactor(); 

            simRiskFactor = SetRiskFactor(); 

        } 

 

        public static void LoadPeerList() 

        {//try to get stored PeerList else return leaving PL null. 

            if (Settings.Default.PeerList == "") return; 

            PL = XElement.Parse(Settings.Default.PeerList); 

            if (PL.Elements("Peer").Count() != 0) 

            { 

                PeerList = new Dictionary<string, PeerNode>(); 

                foreach (var l in PL.Elements("Peer")) 

                { 

                    string s = l.Element("ID").Value; 

                    PeerList.Add(s, new PeerNode()); 

                    PeerList[s].ID = s; 

                    PeerList[s].nAssigned = (long)l.Element("nAssigned"); 

                    PeerList[s].nSuccessful = (long)l.Element("nSuccessful"); 

                    PeerList[s].TotalBytesDownloaded = (long)l.Element("TotalBytesDownloaded"); 

                    PeerList[s].TotalTimeTaken = (double)l.Element("TotalTimeTaken"); 

                    PeerList[s].SessionCount = (int)l.Element("SessionCount"); 

                    PeerList[s].simBWFactor = (double)l.Element("simBWFactor"); 

                    PeerList[s].simReliability = (double)l.Element("simReliability"); 

                    PeerList[s].simRiskFactor = (double)l.Element("simRiskFactor"); 



128 
 

                } 

 

                foreach (PeerNode p in PeerList.Values) 

                { 

                    File.AppendAllText(@"C:\NewFriends\PeerList.txt", string.Format("{0,-16} \t{1,-

5} \t{2,-5} \t{3,-

5}{4}", p.ID, p.simBWFactor, p.simReliability, p.simRiskFactor, Environment.NewLine)); 

                } 

            } 

        } 

 

        public static void CreatePeerList() 

        { 

            PL = new XElement("PeerList", new XComment("List of Discovered Peers")); 

 

            foreach (PeerNode p in PeerList.Values) 

            { 

                PL.Add(new XElement("Peer", 

                    new XElement("ID", p.ID), 

                    new XElement("nAssigned", p.nAssigned), 

                    new XElement("nSuccessful", p.nSuccessful), 

                    new XElement("TotalBytesDownloaded", p.TotalBytesDownloaded), 

                    new XElement("TotalTimeTaken", p.TotalTimeTaken), 

                    new XElement("SessionCount", p.SessionCount), 

                    new XElement("simBWFactor", p.simBWFactor), 

                    new XElement("simReliability", p.simReliability), 

                    new XElement("simRiskFactor", p.simRiskFactor) 

                    )); 

                File.AppendAllText(@"C:\NewFriends\PeerList.txt", string.Format("{0,-16} \t{1,-5} \t{2,-

5} \t{3,-5}{4}", p.ID, p.simBWFactor, p.simReliability, p.simRiskFactor, Environment.NewLine)); 

            } 

            Settings.Default.PeerList = PL.ToString(); 

            Settings.Default.Save(); 

        } 

 

        public static void UpdatePLSettings(string id) 

        { 

            foreach (var peer in PL.Elements("Peer")) 

            { 

                if (peer.Element("ID").Value == id) 

                { 

                    try 

                    { 

                        peer.ReplaceNodes(new XElement("ID", id), 

                            new XElement("nAssigned", PeerList[id].nAssigned), 

                    new XElement("nSuccessful", PeerList[id].nSuccessful), 

                    new XElement("TotalBytesDownloaded", PeerList[id].TotalBytesDownloaded), 

                    new XElement("TotalTimeTaken", PeerList[id].TotalTimeTaken), 

                    new XElement("SessionCount", PeerList[id].SessionCount), 

                    new XElement("simBWFactor", PeerList[id].simBWFactor), 

                    new XElement("simReliability", PeerList[id].simReliability), 

                    new XElement("simRiskFactor", PeerList[id].simRiskFactor) 

                    ); 

                        Settings.Default.PeerList = PL.ToString(); 

                        Settings.Default.Save(); 

                    } 

                    catch (Exception) 

                    { 

                        //Wait till next opportunity to try; 

                    } 
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                } 

            } 

        } 

 

        private static double SetBandwidthFactor() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(50, 101) / 100; 

            } 

        } 

 

        private static double SetReliability() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(50, 101) / 100; //using bigger values for more space => better rand

omness? 

            } 

        } 

 

        private static double SetRiskFactor() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(0, 51) / 100; //return is btw 0.00 and and 0.50. 

            } 

        } 

 

        public void InitBgWorker() 

        { 

            if (simBWFactor == 0) BgWorker = new BackgroundWorker(); 

            BgWorker.WorkerReportsProgress = true; 

            BgWorker.WorkerSupportsCancellation = true; 

            BgWorker.DoWork += new DoWorkEventHandler(BgWorker_DoWork); 

            BgWorker.RunWorkerCompleted += new RunWorkerCompletedEventHandler(BgWorker_R

unWorkerCompleted); 

            BgWorker.ProgressChanged += new ProgressChangedEventHandler(BgWorker_ProgressCha

nged); 

        } 

        object[] SimulateDownloadBlock(Block block, BackgroundWorker worker, DoWorkEventArgs 

e) 

        { 

            object[] obj = new object[2]; 

            obj[0] = block.Position; 

            if (worker.CancellationPending) 

            { 

                e.Cancel = true; 

            } 

            else 

            { 
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                try 

                { 

                    /* assume reference bandwidth, B = 2 MB/s (2048KB/s  or 16Mb/s). 

                    A block will take (block.size (in bytes) / peer.SimBWFactor (in B)) time to download 

                    This is equal to (block.size bytes)/(peer.SimBWFactor*2048*1024 bytes/second) 

                    We multiply that by 1000 to get the sleep time, in milliseconds, of the thread, since we ar

e simulating 

                    */ 

                    int sleepTime = (int)Math.Round((block.Size * 1000) / (simBWFactor * 2048 * 1024)); 

                    Thread.Sleep(sleepTime); 

                    obj[1] = MyMethods.Table((byte)1, block.Size).ToArray(); 

                } 

                catch (Exception ex) 

                { 

                    //notify peer of error 

                    Debug.WriteLine(ex.Message + " " + block.Position, "Error"); 

                    //Thread.Sleep(2000); 

                    // e.Cancel = true; 

                    //MainForm.BlockList[block.Position].status = BlockStatus.NotDownloaded; 

                } 

            } 

            return obj; 

        } 

        

        void BgWorker_DoWork(object sender, DoWorkEventArgs e) 

        { 

            // Get the BackgroundWorker that raised this event. 

            BackgroundWorker worker = sender as BackgroundWorker; 

 

            // Assign the result of the computation to the Result property of the DoWorkEventArgs object.

 This will be available to the RunWorkerCompleted eventhandler. 

 

            e.Result = SimulateDownloadBlock((Block)e.Argument, worker, e); 

        } 

 

        void BgWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) 

        { 

            nAssigned += 1; 

            if (e.Cancelled) 

            { /*echo to peer: "You cancelled the download"*/ 

                return; 

            } 

            object[] obj = e.Result as object[]; 

            long n = (long)obj[0]; 

            if (FrontEnd.BlockList[n].Assignee == ID) 

            { 

                if (e.Error != null || obj[1] == null || SimulateFailure(simReliability)) 

                { 

                    /*echo to peer: "Download failed"*/ 

                    Debug.WriteLine("Position {0} failed", n); 

                    FrontEnd.BlockList[n].Status = BlockStatus.NotDownloaded; 

                } 

                else 

                { 

                    if (SimulateTampering(simRiskFactor)) { TamperWithBlock(ref obj[1]); } 

                    FrontEnd.BlockList[n].content = obj[1] as byte[]; 

                    nSuccessful += 1; 

                    TotalBytesDownloaded += (obj[1] as byte[]).Length; 

                    double TimeTaken = Math.Round((DateTime.UtcNow - FrontEnd.BlockList[n].StartTim

e).TotalMilliseconds); 
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                    TotalTimeTaken += TimeTaken; 

                    Debug.WriteLine("Position {0} returned as completed; Time Taken: {1}ms", n, TimeTa

ken); 

                    FrontEnd.BlockList[n].Status = BlockStatus.Downloaded; 

                } 

            } 

            else { Debug.WriteLine("Block in position {0} has been reassigned somewhere along the way

. Original assignee took longer than could be allowed", n); 

                /*also echo to this to peer in a message: */  } 

        } 

 

        void BgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e) 

        { 

             

        } 

 

        private static bool SimulateFailure(double s) 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                //reliability happens 100*s % of the time, so failure happens the rest of the time. 

                return !(rng.NextDouble() < s); 

            } 

        } 

 

        private static bool SimulateTampering(double r) 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                //this happens 100*r % of the time, so do what happens 100*r % of the time. 

                return (rng.NextDouble() < r); 

            } 

        } 

 

        static void TamperWithBlock(ref object o) 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                key.GetNonZeroBytes((o as byte[])); 

            } 

        } 

 

        public double CBA 

        { 

            get 

            { 

                return (TotalBytesDownloaded == 0) ? 0 : (TotalBytesDownloaded * 1000) / (TotalTimeTa

ken * 1024); //converting to kilobytes per second. 

            } 

        } 

 

        public double SCR 

        { 

            get 
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            { 

                return (nSuccessful + 0.5) / (nAssigned + 1); 

            } 

        } 

 

         

    } 

 

    public class Block 

    { 

        public string Assignee { get; set; } 

        public string Link { get; private set; } 

        public long Position { get; private set; } 

        public long StartAddress { get; private set; } 

        public long Size { get; private set; } 

        public DateTime StartTime { get; private set; } 

        private BlockStatus _status; 

        public BlockStatus Status 

        { 

            get 

            { 

                return _status; 

            } 

            set 

            { 

                _status = value; 

                if (value == BlockStatus.Downloading) 

                { StartTime = DateTime.UtcNow; } 

                else if (value == BlockStatus.NotDownloaded || value == BlockStatus.Downloaded) 

                { OnStatusChanged(EventArgs.Empty); } 

            } 

        } 

        public byte[] content; 

 

        public event EventHandler BlockStatusChanged; 

 

        void OnStatusChanged(EventArgs e) 

        { 

            // Make a temporary copy of the event to avoid possibility of 

            // a race condition if the last subscriber unsubscribes 

            // immediately after the null check and before the event is raised. 

            // see https://stackoverflow.com/questions/1609430/copying-delegates 

            EventHandler handler = BlockStatusChanged; 

            if (handler != null) { handler(this, e); } 

        } 

 

        public void BlockInit(Uri url,long pos, long start, long blockSize) 

        { 

            Link = url.ToString(); 

            Position = pos; 

            StartAddress = start; 

            Size = blockSize; 

        } 

    } 

 

    public enum BlockStatus {NotAssigned, Downloading, Downloaded, NotDownloaded} 

 

    public class PeerData 

    { 

        //public string ID; 
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        public int NumberOfSessionsWith { get; set; } 

        public long NumberOfBytes { get; set; } 

        public long NumberOfFailedBlocks { get; set; } 

        public long NumberOfTamperedBlocks { get; set; } 

        public long NumberOfGoodBlocks { get; set; } 

        public DateTime LastSuccessfulTime { get; set; } 

        public double CurrentRI { get; set; } 

        public double CurrentCNorm { get; set; } 

    } 

 

    public static class MyMethods 

    { 

        //Imitating Basic Table in Mathematica 

        public static List<T> Table<T>(this T value, long count) 

        { 

            List<T> temp = new List<T>(1073741824); 

            for (long i = 0; i < count; i++) 

            { 

                temp.Add(value); 

            } 

            return temp; 

        } 

 

        //http://stackoverflow.com/questions/1014005/how-to-populate-instantiate-a-c-sharp-array-with-

a-single-value 

        public static void Populate<T>(this T[] arr, T value) 

        { 

            for (int i = 0; i < arr.Length; i++) 

            { 

                arr[i] = value; 

            } 

        } 

    } 

} 

 

// Peer.CS 

 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.ComponentModel; 

using System.Threading; 

using System.Net; 

using System.Diagnostics; 

using System.IO; 

using System.Security.Cryptography; 

using System.Xml.Linq; 

using FRIENDS.Properties; 

 

namespace FRIENDS 

{ 

    class Peer 

    {         

        public string ID { get; private set; } 

        //number of assigned blocks and number of successful blocks downloaded. 

        //members, e.g. of class, are automatically assigned. Locals (of methods) aren't. rememeber... 

        long nAssigned, nSuccessful, TotalBytesDownloaded; //sim=simulated. 

        double simReliability, simBWFactor, simRiskFactor, TotalTimeTaken;//in milliseconds 

        public int SessionCount { get; set; } 
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        public BackgroundWorker BgWorker; 

        public static XElement PL; 

        public static Dictionary<string, Peer> PeerList; 

 

        public Peer() 

        { 

            ID = Guid.NewGuid().ToString("n").Substring(0, 16); 

            InitBgWorker(); 

            simReliability = SetReliability(); 

            simBWFactor= SetBandwidthFactor(); 

            simRiskFactor = SetRiskFactor(); 

        } 

 

        public static void LoadPeerList() 

        {//try to get stored PeerList else return leaving PL null. 

            if (Settings.Default.PeerList == "") return; 

            PL = XElement.Parse(Settings.Default.PeerList); 

            if (PL.Elements("Peer").Count() != 0) 

            { 

                PeerList = new Dictionary<string, Peer>(); 

                foreach (var l in PL.Elements("Peer")) 

                { 

                    string s = l.Element("ID").Value; 

                    PeerList.Add(s, new Peer()); 

                    PeerList[s].ID = s; 

                    PeerList[s].nAssigned = (long)l.Element("nAssigned"); 

                    PeerList[s].nSuccessful = (long)l.Element("nSuccessful"); 

                    PeerList[s].TotalBytesDownloaded = (long)l.Element("TotalBytesDownloaded"); 

                    PeerList[s].TotalTimeTaken = (double)l.Element("TotalTimeTaken"); 

                    PeerList[s].SessionCount = (int)l.Element("SessionCount"); 

                    PeerList[s].simBWFactor = (double)l.Element("simBWFactor"); 

                    PeerList[s].simReliability = (double)l.Element("simReliability"); 

                    PeerList[s].simRiskFactor = (double)l.Element("simRiskFactor"); 

                } 

            } 

        } 

 

        public static void CreatePeerList() 

        { 

            PL = new XElement("PeerList",new XComment("List of Discovered Peers")); 

            foreach (Peer p in PeerList.Values) 

            { 

                PL.Add(new XElement("Peer", 

                    new XElement("ID", p.ID), 

                    new XElement("nAssigned", p.nAssigned), 

                    new XElement("nSuccessful", p.nSuccessful), 

                    new XElement("TotalBytesDownloaded", p.TotalBytesDownloaded), 

                    new XElement("TotalTimeTaken", p.TotalTimeTaken), 

                    new XElement("SessionCount", p.SessionCount), 

                    new XElement("simBWFactor", p.simBWFactor), 

                    new XElement("simReliability", p.simReliability), 

                    new XElement("simRiskFactor", p.simRiskFactor) 

                    )); 

            } 

            Settings.Default.PeerList = PL.ToString(); 

            Settings.Default.Save(); 

        } 

 

        public static void UpdatePLSettings(string id) 

        { 
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            foreach (var peer in PL.Elements("Peer")) 

            { 

                if (peer.Element("ID").Value == id) 

                { 

                    try 

                    { 

                        peer.ReplaceNodes(new XElement("ID", id), 

                            new XElement("nAssigned", PeerList[id].nAssigned), 

                    new XElement("nSuccessful", PeerList[id].nSuccessful), 

                    new XElement("TotalBytesDownloaded", PeerList[id].TotalBytesDownloaded), 

                    new XElement("TotalTimeTaken", PeerList[id].TotalTimeTaken), 

                    new XElement("SessionCount", PeerList[id].SessionCount), 

                    new XElement("simBWFactor", PeerList[id].simBWFactor), 

                    new XElement("simReliability", PeerList[id].simReliability), 

                    new XElement("simRiskFactor", PeerList[id].simRiskFactor) 

                    ); 

                        Settings.Default.PeerList = PL.ToString(); 

                        Settings.Default.Save(); 

                    } 

                    catch (Exception) 

                    { 

                        //Wait till next opportunity to try; 

                    } 

                } 

            } 

        } 

 

        private static double SetBandwidthFactor() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(100, 1001) / 1000; 

            } 

        } 

 

        private static double SetReliability() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(500, 1001) / 1000; //using bigger values for more space => better 

randomness. 

            } 

        } 

 

        private static double SetRiskFactor() 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                return (double)rng.Next(0, 50) / 1000; //return is btw 0.000 and and 0.50. 

            } 

        } 
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        public void InitBgWorker() 

        { 

            if (this.simBWFactor == 0) this.BgWorker = new BackgroundWorker(); 

            this.BgWorker.WorkerReportsProgress = true; 

            this.BgWorker.WorkerSupportsCancellation = true; 

            BgWorker.DoWork += new DoWorkEventHandler(BgWorker_DoWork); 

            BgWorker.RunWorkerCompleted += new 

RunWorkerCompletedEventHandler(BgWorker_RunWorkerCompleted); 

            BgWorker.ProgressChanged += new 

ProgressChangedEventHandler(BgWorker_ProgressChanged); 

        } 

        object[] DownloadBlock(Block block, BackgroundWorker worker, DoWorkEventArgs e) 

        { 

            object[] obj = new object[2]; 

            obj[0] = block.Position; 

            if (worker.CancellationPending) 

            { 

                e.Cancel = true; 

            } 

            else 

            { 

                try 

                { 

                    Thread.Sleep(2000); 

                    HttpWebRequest myHttpWebRequest = 

(HttpWebRequest)WebRequest.Create(block.Link); 

                    myHttpWebRequest.AddRange(block.StartAddress, block.StartAddress + block.Size - 1); 

                    myHttpWebRequest.Timeout = 30000; 

                    /*Debug.WriteLine("Call AddRange(50,150)"); 

                    Debug.Write("Resulting Request Headers: "); 

                    Debug.WriteLine(myHttpWebRequest.Headers.ToString());*/ 

                    using (HttpWebResponse myHttpWebResponse = 

(HttpWebResponse)myHttpWebRequest.GetResponse()) 

                    /*Debug.Write("Resulting Response Headers: "); 

                    Debug.WriteLine(myHttpWebResponse.Headers.ToString());*/ 

                    using (Stream streamResponse = myHttpWebResponse.GetResponseStream()) 

                    using (MemoryStream ms = new MemoryStream()) 

                    { 

                        streamResponse.CopyTo(ms, 16384); 

                        obj[1] = ms.ToArray(); 

                        myHttpWebResponse.Close(); 

                    } 

                } 

                catch (Exception ex) 

                { 

                    //notify peer of error 

                    Debug.WriteLine(ex.Message + " " + block.Position); 

                    //Thread.Sleep(2000); 

                    // e.Cancel = true; 

                    //MainForm.BlockList[block.Position].status = BlockStatus.NotDownloaded; 

                } 

            } 

            return obj; 

        } 

        void BgWorker_DoWork(object sender, DoWorkEventArgs e) 

        { 

            // Get the BackgroundWorker that raised this event. 

            BackgroundWorker worker = sender as BackgroundWorker; 
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            // Assign the result of the computation to the Result property of the DoWorkEventArgs object. 

This will be available to the RunWorkerCompleted eventhandler. 

 

            e.Result = DownloadBlock((Block)e.Argument, worker, e); 

        } 

 

        void BgWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e) 

        { 

            nAssigned += 1; 

            if (e.Cancelled) 

            { /*echo to peer: "You cancelled the download"*/ 

                return; 

            } 

            object[] obj = e.Result as object[]; 

            long n = (long)obj[0]; 

            int sleep = (int)(((DateTime.UtcNow - MainForm.BlockList[n].StartTime).Milliseconds / 

simBWFactor) * (1 - simBWFactor)); 

            Thread.Sleep(sleep); 

            Debug.WriteLine("Position " + n); 

            if (MainForm.BlockList[n].Assignee == ID) 

            { 

                if (e.Error != null || obj[1] == null || SimulateFailure(simReliability)) 

                { 

                    /*echo to peer: "Download failed"*/ 

                    MainForm.BlockList[n].status = BlockStatus.NotDownloaded; 

                } 

                else 

                { 

                    if (SimulateTampering(simRiskFactor)) { TamperWithBlock(ref obj[1]); } 

                    MainForm.BlockList[n].content = obj[1] as byte[]; 

                    MainForm.BlockList[n].status = BlockStatus.Downloaded; 

                    Debug.WriteLine("Position " + n + " Completed"); 

                    nSuccessful += 1; 

                    TotalBytesDownloaded += (obj[1] as byte[]).Length; 

                    TotalTimeTaken += ((DateTime.UtcNow - 

MainForm.BlockList[n].StartTime).Milliseconds); 

                } 

            } 

            else { /*echo to peer: "You took so long. Block has been reassigned"*/} 

        } 

 

        void BgWorker_ProgressChanged(object sender, ProgressChangedEventArgs e) 

        { 

             

        } 

 

        private static bool SimulateFailure(double s) 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                //reliability happens 100*s % of the time, so failure happens the rest of the time. 

                return !(rng.NextDouble() < s); 

            } 

        } 

 

        private static bool SimulateTampering(double r) 

        { 
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            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[4]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(1 * b[1] * b[2] * b[3]); 

                //this happens 100*r % of the time, so do what happens 100*r % of the time. 

                return (rng.NextDouble() < r); 

            } 

        } 

 

        static void TamperWithBlock(ref object o) 

        { 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                key.GetNonZeroBytes((o as byte[])); 

            } 

        } 

 

        public double CBA 

        { 

            get 

            { 

                return (TotalBytesDownloaded == 0) ? 0 : (TotalBytesDownloaded * 1000) / 

(TotalTimeTaken * 1024); //converting to kilobytes per second. 

            } 

        } 

 

        public double SCR 

        { 

            get 

            { 

                return (nAssigned == 0) ? 0.5 : Math.Sqrt((0.25 + Math.Max(0, 3 * nSuccessful - 2 * 

nAssigned)) / (nAssigned + 1)); 

            } 

        } 

 

         

    } 

 

    public class Block 

    { 

        public string Assignee { get; set; } 

        public string Link { get; private set; } 

        public long Position { get; private set; } 

        public long StartAddress { get; private set; } 

        public long Size { get; private set; } 

        public DateTime StartTime { get; private set; } 

        private BlockStatus _status; 

        public BlockStatus status 

        { 

            get 

            { 

                return _status; 

            } 

            set 

            { 

                _status = value; 

                if (value == BlockStatus.Downloading) this.StartTime = DateTime.UtcNow; 

                if (value == BlockStatus.NotDownloaded || value == BlockStatus.Downloaded) 

                { OnStatusChanged(EventArgs.Empty); } 
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            } 

        } 

        public byte[] content; 

 

        public event EventHandler BlockStatusChanged; 

 

        void OnStatusChanged(EventArgs e) 

        { 

            // Make a temporary copy of the event to avoid possibility of 

            // a race condition if the last subscriber unsubscribes 

            // immediately after the null check and before the event is raised. 

            // see https://stackoverflow.com/questions/1609430/copying-delegates 

            EventHandler handler = BlockStatusChanged; 

            if (handler != null) { handler(this, e); } 

        } 

 

        public void BlockInit(Uri url,long pos, long start, long blockSize) 

        { 

            Link = url.ToString(); 

            Position = pos; 

            StartAddress = start; 

            Size = blockSize; 

        } 

    } 

 

    public enum BlockStatus {NotAssigned, Downloading, Downloaded, NotDownloaded} 

 

    public class PeerData 

    { 

        //public string ID; 

        public int NumberOfSessionsWith { get; set; } 

        public long NumberOfBytes { get; set; } 

        public long NumberOfFailedBlocks { get; set; } 

        public long NumberOfTamperedBlocks { get; set; } 

        public long NumberOfGoodBlocks { get; set; } 

        public DateTime LastSuccessfulTime { get; set; } 

        public double CurrentRI { get; set; } 

        public double CurrentCNorm { get; set; } 

    } 

} 

 

// Form.CS 

 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using System.Net; 

using System.Security.Cryptography; 

using System.IO; 

using System.Diagnostics; 

using System.Xml.Linq; 

using FRIENDS.Properties; 

using System.Threading; 

using System.Media; 
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namespace FRIENDS 

{ 

    public partial class MainForm : Form 

    { 

        public MainForm() 

        { 

            InitializeComponent(); 

            //Application.Idle += new System.EventHandler(this.RunTests); 

        } 

 

        private void RunTests(object sender, EventArgs e) 

        { 

            if (FileSize > 0 && OpenButton.Enabled) MessageBox.Show("Idle", "Yeah!!!"); 

        } 

 

 

        Dictionary<string, PeerData> KnownPeerStore; 

        Dictionary<string, bool> SessionPeers; 

        static Dictionary<string, double> TrustRating; 

        string[] PeerCDGroup; 

        double WCBA, WSCR, WRI, CMax, CMin; 

        Uri DownloadLink; 

        string FileName, Method; 

        long FileSize, MaxPeers = 3; 

        long CompletedBlocks = 0, BlockSize = 400 * 1024; 

        static public Block[] BlockList; 

        byte[] FileAsByteArray, CheckFileAsByteArray; //consider using a file stream afterwards 

        long[][] FileCheck; 

        bool DownloadCancelled; 

        XElement KPS; 

        Stopwatch swc; 

 

        private void Slider_Scroll(object sender, EventArgs e) 

        { 

            string txtName = (sender as TrackBar).Name.Replace("Slider", "Txt"); 

            (sender as Control).Parent.Controls[txtName].Text = Convert.ToString(((double)(sender as 

TrackBar).Value) / 20); 

            //this.Controls[txtName].Text = Convert.ToString(((double)(sender as TrackBar).Value) / 20); 

        } 

 

        private void InitialiseSliders() 

        { 

            SCRSlider.Value = (int)Math.Round(Double.Parse(SCRTxt.Text) * 20); 

            CBASlider.Value = (int)Math.Round(Double.Parse(CBATxt.Text) * 20); 

            RISlider.Value = (int)Math.Round(Double.Parse(RITxt.Text) * 20); 

        } 

 

        private void maskedTextBox_TextChanged(object sender, EventArgs e) 

        { 

            //MaskedTextBox mtxt = sender as MaskedTextBox; 

            if (Double.Parse((sender as MaskedTextBox).Text) > 1.00) (sender as MaskedTextBox).Text = 

"1.00"; 

            string sliderName = (sender as Control).Name.Replace("Txt", "Slider"); 

            ((sender as Control).Parent.Controls[sliderName] as TrackBar).Value = 

(int)Math.Round(Double.Parse((sender as MaskedTextBox).Text) * 20); 

            NormaliseWeights(); 

            RatePeers(); 

            RefreshDisplayBox(); 

        } 
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        private void NormaliseWeights() 

        { 

            double s = double.Parse(SCRTxt.Text); 

            double c = double.Parse(CBATxt.Text); 

            double r = double.Parse(RITxt.Text); 

            WSCR = s / (s + c + r); 

            WCBA = c / (s + c + r); 

            WRI = r / (s + c + r); 

            nwSCR.Text = WSCR.ToString("F4"); 

            nwCBA.Text = WCBA.ToString("F4"); 

            nwRI.Text = WRI.ToString("F4"); 

        } 

 

        void RatePeers() 

        { 

            CMax = Peer.PeerList.Values.Max(c => c.CBA) * 4 / 3; 

            CMin = (CMax == 0) ? 0 : Peer.PeerList.Values.Min(c => c.CBA) * 2 / 3; 

            Dictionary<string, double> TR = new Dictionary<string, double>(); 

            foreach (Peer p in Peer.PeerList.Values) 

            { 

                double CNorm = (p.CBA == 0) ? 0.5 : (p.CBA - CMin) / (CMax - CMin); 

                KnownPeerStore[p.ID].CurrentCNorm = CNorm; 

                PeerData pr = KnownPeerStore[p.ID]; 

                double RI = (pr.NumberOfGoodBlocks + pr.NumberOfTamperedBlocks == 0) ? 0.5 : 

(double)(pr.NumberOfGoodBlocks - pr.NumberOfTamperedBlocks) / (pr.NumberOfGoodBlocks + 

pr.NumberOfTamperedBlocks); 

                if (RI < 0) RI = 0; 

                KnownPeerStore[p.ID].CurrentRI = RI; 

                double t = (CNorm * WCBA) + (p.SCR * WSCR) + (RI * WRI); 

                TR.Add(p.ID, t); 

            } 

            TrustRating = TR.OrderByDescending(key => key.Value).ToDictionary(k => k.Key, v => 

v.Value); 

        } 

 

        bool GetFileNameAndSize() 

        { 

            if (!Uri.TryCreate(AddressBox.Text, UriKind.Absolute, out DownloadLink) || 

(DownloadLink.Scheme != Uri.UriSchemeHttp && DownloadLink.Scheme != Uri.UriSchemeHttps)) 

            { 

                MessageBox.Show("Error in url. Please input a valid http or https url.", "Error!", 

MessageBoxButtons.OK, MessageBoxIcon.Error); return false; 

            } 

            HttpWebRequest req = (HttpWebRequest)WebRequest.Create(DownloadLink); 

            req.Method = "HEAD"; 

            HttpWebResponse resp = (HttpWebResponse)(req.GetResponse()); 

            if (!resp.Headers.AllKeys.Contains("Accept-Ranges") || !resp.Headers["Accept-

Ranges"].Contains("bytes")) 

            { 

                MessageBox.Show("The specified server does not support byte range requests, sorry.", 

"Error!", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; 

            } 

            if (resp.ContentLength <= 400 * 1024) 

            { 

                MessageBox.Show("The specified file is less than 400KB. Please download it yourself", 

"Error!", MessageBoxButtons.OK, MessageBoxIcon.Error); return false; 

            } 

            FileSize = resp.ContentLength; 

            if (resp.Headers.AllKeys.Contains("content-disposition") && resp.Headers["content-

disposition"].ToLower().Contains("filename=")) 
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            { 

                FileName =@"C:\Friends\" + new 

System.Net.Mime.ContentDisposition(resp.Headers["content-disposition"]).FileName; 

            } 

            else 

            { 

                int i = DownloadLink.AbsolutePath.LastIndexOf('/') + 1; 

                FileName = @"C:\Friends\" + DownloadLink.AbsolutePath.Substring(i); 

            } 

            FileName = Uri.UnescapeDataString(FileName); 

            string sb = FileName.Substring(11); 

            CheckFileAsByteArray = File.ReadAllBytes(@"C:\Friends\Check\mp3s\" + sb);//in real life 

we won't use this..It is only used to avoid Error 429 in the simulation. 

            int n = 1; 

            while (File.Exists(FileName)) 

            { 

                FileName = string.Format(@"C:\Friends\{0}_{1}", n++, sb); 

            } 

            System.IO.Directory.CreateDirectory(@"C:\Friends"); 

            //MessageBox.Show("Check Succeeded. You are good to go!", "Success", 

MessageBoxButtons.OK); 

            return true; 

        } 

 

        void FormPeerGroup() 

        { 

            PeerCDGroup = new string[MaxPeers]; 

            switch (Method) 

            { 

                case "Random": 

                    var rng = new Random(); 

                    int c = -1; 

                    PeerSelectBox.ClearSelected(); 

                    for (int r = 0; r < MaxPeers; r++) 

                    { 

                        while (c == -1 || PeerSelectBox.GetSelected(c)) 

                        { 

                            c = rng.Next(0, PeerSelectBox.Items.Count); 

                        } 

                        PeerSelectBox.SetSelected(c, true); 

                        PeerCDGroup[r] = PeerSelectBox.Items[c].ToString(); 

                    } 

                    break; 

                case "Select": 

                    for (int s = 0; s < PeerSelectBox.SelectedItems.Count; s++) 

                    { 

                        PeerCDGroup[s] = PeerSelectBox.SelectedItems[s].ToString(); 

                    } 

                    break; 

                case "Trust": //just to show that Trust in the default option.. 

                default: 

                    int n = 0; 

                    foreach (var s in SessionPeers.Keys) 

                    { 

                        if (SessionPeers[s]) PeerCDGroup.SetValue(s, n++); 

                    } 

                    RatePeers(); 

                    var tmp = TrustRating.Keys.ToArray(); 

                    for (int i = 0; i < MaxPeers - n; i++) 

                    { 



143 
 

                        PeerCDGroup[n + i] = tmp[i]; 

                    } 

                    break; 

            } 

        } 

 

        void AssignBlocks() 

        { 

            Peer p; 

            int n = 0; 

            double pCBAF; //peerCBAFactor; used to compute p.CBA * 1024, i.e CBA in bytes/s; 

            foreach (string s in PeerCDGroup) 

            { 

                if (s == null) continue; 

                p = Peer.PeerList[s]; 

                if (n == -1) return; 

                if (!p.BgWorker.IsBusy) 

                { 

                    pCBAF = p.CBA * 1024;//blocksize/pCBAF = maximum time spendable for block 

download; 

                    n = Array.FindIndex(BlockList, b => b.status == BlockStatus.NotAssigned || (b.status == 

BlockStatus.Downloading && (DateTime.UtcNow - b.StartTime).Seconds - 2000 > b.Size / pCBAF)); 

                    if (n > -1) 

                    { 

                        FileIntegrityCheck(BlockList[n]); 

                        BlockList[n].status = BlockStatus.Downloading; 

                        BlockList[n].Assignee = p.ID; 

                        p.BgWorker.RunWorkerAsync(BlockList[n]); 

                        if (!SessionPeers.ContainsKey(p.ID)) 

                        { 

                            KnownPeerStore[p.ID].NumberOfSessionsWith += 1; 

                            Peer.PeerList[p.ID].SessionCount += 1; 

                        } 

                        SessionPeers[p.ID] = true; 

                    } 

                } 

            } 

        } 

 

        static void SimulateWLanDiscovery() 

        { 

            Peer.LoadPeerList(); 

            if (Peer.PeerList == null) 

            { 

                Peer.PeerList = new Dictionary<string, Peer>(); 

                for (int i = 0; i < 10; i++) //10 peers 

                { 

                    Peer p = new Peer(); 

                    while (Peer.PeerList.Keys.Contains(p.ID)) { p = new Peer(); } 

                    Peer.PeerList.Add(p.ID, p); 

                } 

                Peer.CreatePeerList(); 

            } 

        } 

 

        void InitializePeerStore() 

        { 

            LoadPeerStore(); 

            if (KnownPeerStore == null) 

            { 
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                KnownPeerStore = new Dictionary<string, PeerData>(); 

                foreach (Peer peer in Peer.PeerList.Values) 

                { 

                    KnownPeerStore.Add(peer.ID, new PeerData()); 

                } 

            } 

            else 

            { 

                foreach (Peer p in Peer.PeerList.Values) 

                { 

                    if (!KnownPeerStore.Keys.Contains(p.ID)) { KnownPeerStore.Add(p.ID, new 

PeerData()); } 

                } 

            } 

            KPS = new XElement("KnownPeers", new XComment("List of Known Peers")); 

            foreach (var s in KnownPeerStore) 

            { 

                KPS.Add(new XElement("Peer", 

                    new XElement("ID", s.Key), 

                    new XElement("CurrentCNorm", s.Value.CurrentCNorm), 

                    new XElement("CurrentRI", s.Value.CurrentRI), 

                    new XElement("LastSuccessfulTime", s.Value.LastSuccessfulTime), 

                    new XElement("NumberOfBytes", s.Value.NumberOfBytes), 

                    new XElement("NumberOfFailedBlocks", s.Value.NumberOfFailedBlocks), 

                    new XElement("NumberOfGoodBlocks", s.Value.NumberOfGoodBlocks), 

                    new XElement("NumberOfSessionsWith", s.Value.NumberOfSessionsWith), 

                    new XElement("NumberOfTamperedBlocks", s.Value.NumberOfTamperedBlocks) 

                    )); 

            } 

            Settings.Default.KnownPeerStore = KPS.ToString(); 

            Settings.Default.Save(); 

            PeerComboBox.Items.AddRange(KnownPeerStore.Keys.ToArray()); 

            PeerSelectBox.Items.AddRange(KnownPeerStore.Keys.ToArray()); 

 

        } 

 

        void LoadPeerStore() 

        {//try to get stored Known Peers else return leaving KPS null 

            if (Settings.Default.KnownPeerStore == "") return; 

            KPS = XElement.Parse(Settings.Default.KnownPeerStore); 

            if (KPS.Elements("Peer").Count() != 0) 

            { 

                KnownPeerStore = new Dictionary<string, PeerData>(); 

                foreach (var k in KPS.Elements("Peer")) 

                { 

                    string s = k.Element("ID").Value; 

                    KnownPeerStore.Add(s, new PeerData()); 

                    KnownPeerStore[s].CurrentCNorm = (double)k.Element("CurrentCNorm"); 

                    KnownPeerStore[s].CurrentRI = (double)k.Element("CurrentRI"); 

                    KnownPeerStore[s].LastSuccessfulTime = (DateTime)k.Element("LastSuccessfulTime"); 

                    KnownPeerStore[s].NumberOfBytes = (long)k.Element("NumberOfBytes"); 

                    KnownPeerStore[s].NumberOfFailedBlocks = 

(long)k.Element("NumberOfFailedBlocks"); 

                    KnownPeerStore[s].NumberOfGoodBlocks = 

(long)k.Element("NumberOfGoodBlocks"); 

                    KnownPeerStore[s].NumberOfSessionsWith = 

(int)k.Element("NumberOfSessionsWith"); 

                    KnownPeerStore[s].NumberOfTamperedBlocks = 

(long)k.Element("NumberOfTamperedBlocks"); 

                } 
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            } 

        } 

 

        void InitializeBlockList() 

        { 

            FileAsByteArray = new byte[FileSize]; 

            long div = FileSize / BlockSize; 

            long count = (FileSize % BlockSize < BlockSize / 2) ? div : div + 1; 

            BlockList = new Block[count]; 

            FileCheck = new long[count][]; 

            for (int i = 0; i < count-1; i++) 

            { 

                BlockList[i] = new Block(); 

                BlockList[i].BlockInit(DownloadLink, i, i * BlockSize, BlockSize); 

                BlockList[i].BlockStatusChanged+=new EventHandler(Block_StatusChanged); //C#1.0 

syntax 

            } 

            //could have checked from end in the for loop rather than doing this, but it's computationally 

wasteful. 

            long rem =  (count - 1) * BlockSize; 

            BlockList[count - 1] = new Block(); 

            BlockList[count - 1].BlockInit(DownloadLink,count - 1, rem, FileSize - rem); 

            BlockList[count - 1].BlockStatusChanged += Block_StatusChanged; //C#2.0 syntax. 

equivalent to 1.0 

        } 

         

        void Block_StatusChanged(object sender, EventArgs e) 

        { 

            Block bl = (Block)sender; 

            if (bl.status == BlockStatus.Downloading || bl.status == BlockStatus.NotAssigned) return; 

            if (bl.status == BlockStatus.NotDownloaded || !VerifyDownload(bl)) 

            { 

                if (bl.status == BlockStatus.NotDownloaded) 

                { KnownPeerStore[bl.Assignee].NumberOfFailedBlocks += 1; } 

                BlockList[bl.Position].status = BlockStatus.NotAssigned; 

            } 

            else if (!DownloadCancelled) 

            { 

                Array.Copy(bl.content, 0, FileAsByteArray, bl.StartAddress, bl.content.LongLength); 

                CompletedBlocks += 1; 

                DProgressBar.Value = (int)(CompletedBlocks * 100  / BlockList.LongLength); 

                DProgressBar.ToolTipText = string.Format("Download Progress: {0}% Completed", 

DProgressBar.Value); 

            } 

            SessionPeers[bl.Assignee] = false; 

            RatePeers(); 

            UpdateKPSSettings(bl.Assignee); 

            Peer.UpdatePLSettings(bl.Assignee); 

            if (CompletedBlocks != BlockList.LongLength) 

            { 

                if (Method == "Trust" && AdaptiveButton.Checked) FormPeerGroup(); 

                else AssignBlocks(); 

            } 

            else 

            { 

                swc.Stop(); 

                File.WriteAllBytes(FileName, FileAsByteArray); 

                statusLbl.Text = string.Format("Download Completed in {0} ms", 

swc.ElapsedMilliseconds); 

                OpenButton.Enabled = true; 



146 
 

                SystemSounds.Beep.Play(); 

                ResetForm(); 

            } 

        } 

 

        bool VerifyDownload(Block b) 

        { 

            if (b.content == null || b.content.LongLength != b.Size) 

            { 

                KnownPeerStore[b.Assignee].NumberOfTamperedBlocks += 1; 

                return false; 

            } 

            foreach (long index in FileCheck[b.Position]) 

            { 

                for (int i = 0; i < 2048; i++) 

                { 

                    if (CheckFileAsByteArray[index + i] != b.content[index - b.StartAddress + i]) 

                    { 

                        KnownPeerStore[b.Assignee].NumberOfTamperedBlocks += 1; 

                        return false; 

                    } 

                } 

            } 

            KnownPeerStore[b.Assignee].NumberOfGoodBlocks += 1; 

            KnownPeerStore[b.Assignee].NumberOfBytes += b.content.LongLength; 

            KnownPeerStore[b.Assignee].LastSuccessfulTime = DateTime.UtcNow; 

            return true; 

        } 

 

        void FileIntegrityCheck(Block a) 

        { 

            int seed = 1; 

            List<long> indices = new List<long>(); 

            using (RNGCryptoServiceProvider key = new RNGCryptoServiceProvider()) 

            { 

                byte[] b = new byte[1]; 

                key.GetNonZeroBytes(b); 

                Random rng = new Random(b[0]); 

                b = new byte[rng.Next(5, 9)];//b can be 8 - 15 'bytes' (array length) long. 

                for (int i = 0; i < a.Size; i += 40960)//40KB 

                { 

                    key.GetNonZeroBytes(b); 

                    int mod = (a.Size - i >= 40960) ? 38913 : (int)a.Size - i - 2047; 

                    //you can later modify this to select the last 5KB in the block.. duplicate downloads with 

the last byte possible 

                    if (mod < 128) break; //So currently if last piece of block is less than 383 (255+128) dont 

download/check that part. 

                    //e.g. if 5KB, 4864= 5*1024 - 256, max start index for a 256byte piece in a 5KB (5*1024) 

block; 4865 = 4864 + 1 to do mod so you can also get 4864; 4865= 5*1024-255 

                    seed = Math.Abs(b.Aggregate(1, (x, y) => x * y)) % mod; 

                    indices.Add(a.StartAddress + i + seed); 

                } 

            } 

            FileCheck[a.Position] = indices.ToArray(); 

 

            //Code below not used because of the high possibility of error 429 (too many requests) from 

webserver. It is left because it will work in real life scenarios with actually different phones. 

           /* while (this.InitiatorWorker.IsBusy) 

            { 
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              //while waiting for the backgroundWorker to be free, inform the iniatiator and keep UI 

reponsive 

                statusLbl.Text += "\nOne more block check download task pooled."; 

                Application.DoEvents(); 

            } */ 

            /* or use this instead of above to search only if the chance is there: 

            if (!InitiatorWorker.IsBusy) 

            { 

                InitiatorWorker.RunWorkerAsync(FileCheck[a.Position]); 

                statusLbl.Text = "Block check download in background."; 

            } */ 

 

            //so this is used instead in the simulation: a CheckFileAsByteArray which is the original file 

predownloaded to serve as a check. The reason is the Error 429 that will be received on trying to start 

so many requests to the server from the same application. 

        } 

 

        object DownloadPiece(long start, BackgroundWorker worker, DoWorkEventArgs e) 

        { 

            object obj = new object(); 

            if (worker.CancellationPending) 

            { 

                e.Cancel = true; 

            } 

            else 

            { 

                try 

                { 

                    HttpWebRequest myHttpWebRequest = 

(HttpWebRequest)WebRequest.Create(DownloadLink); 

                    myHttpWebRequest.AddRange(start, start + 2047); 

                    HttpWebResponse myHttpWebResponse = 

(HttpWebResponse)myHttpWebRequest.GetResponse(); 

                    using (Stream streamResponse = myHttpWebResponse.GetResponseStream()) 

                    using (MemoryStream ms = new MemoryStream()) 

                    { 

                        //we know the stream response should be 256 bytes long. 

                        // default buffer is 4096 bytes. That's wastage for us here! 

                        //so in copying, we use a buffer = 2*256 + 8 extra bytes (to avoid any unanticipated 

issues). 2*256 + 8 = 520. OK. no magic number here. lol. 

                        streamResponse.CopyTo(ms); 

                        obj = ms.ToArray(); 

                    } 

                } 

                catch (Exception) 

                { 

                    e.Cancel = true; 

                } 

            } 

            return obj; 

        } 

 

        private void InitiatorWorker_DoWork(object sender, DoWorkEventArgs e) 

        { 

            BackgroundWorker worker = sender as BackgroundWorker; 

            long[] aIndices = (long[]) e.Argument; 

            object[] aResult = new object[aIndices.Length + 1]; 

            aResult[0] = aIndices; 

            for (int i = 0; i < aIndices.Length; i++) 

            { 
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                aResult[i + 1] = DownloadPiece(aIndices[i], worker, e); 

                Thread.Sleep(2000); 

            } 

            e.Result = aResult; 

        } 

 

        private void InitiatorWorker_RunWorkerCompleted(object sender, 

RunWorkerCompletedEventArgs e) 

        { 

            if (statusLbl.Text.Contains("Block")) statusLbl.Text = ""; 

            if (e.Error != null) 

            { 

            } 

            else if (e.Cancelled) 

            { 

            } 

            else 

            { 

                object[] obj = e.Result as object[]; 

                for (int i = 0; i < obj.Length - 1; i++) 

                { 

                    Array.Copy(obj[i + 1] as byte[], 0, FileAsByteArray, (obj[0] as long[])[i], (obj[i + 1] as 

byte[]).Length); 

                } 

            } 

             

        } 

 

        private void ResetForm() 

        { 

            swc.Stop(); 

            CheckButton.Enabled = true; 

            DownloadButton.Enabled = CancelDButton.Enabled = false; 

            CompletedBlocks = 0; 

            DProgressBar.Value = 0; 

            DProgressBar.Visible = false; 

            DProgressBar.ToolTipText = "Download Progress"; 

            RefreshDisplayBox(); 

            foreach (Peer p in Peer.PeerList.Values) 

            { 

                p.BgWorker.Dispose(); 

                p.BgWorker = null; 

                p.BgWorker = new BackgroundWorker(); 

                p.InitBgWorker(); 

            } 

            // will be necessary in real life situation where we have to actually download the checks. 

            /* 

            this.InitiatorWorker.Dispose(); 

            this.InitiatorWorker = new BackgroundWorker(); 

            this.InitiatorWorker.WorkerReportsProgress = true; 

            this.InitiatorWorker.WorkerSupportsCancellation = true; 

            this.InitiatorWorker.DoWork += new DoWorkEventHandler(this.InitiatorWorker_DoWork); 

            this.InitiatorWorker.RunWorkerCompleted += new 

RunWorkerCompletedEventHandler(this.InitiatorWorker_RunWorkerCompleted); */ 

        } 

 

        private void DownloadButton_Click(object sender, EventArgs e) 

        { 

            DownloadCancelled = false; 

            CheckButton.Enabled = OpenButton.Enabled = DownloadButton.Enabled = false; 
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            CancelDButton.Enabled = true; 

            SessionPeers = new Dictionary<string, bool>(); 

            statusLbl.Text = "Downloading in progress..."; 

            DProgressBar.Visible = true; 

            swc = Stopwatch.StartNew(); 

            FormPeerGroup(); 

            AssignBlocks(); 

 

        } 

 

        private void MainForm_Load(object sender, EventArgs e) 

        { 

            this.Size = Settings.Default.MainFormSize; 

            InitialiseSliders(); 

            SimulateWLanDiscovery(); 

            InitializePeerStore(); 

            NormaliseWeights(); 

            RatePeers(); 

            PeerSelectBox.SelectedIndex = PeerComboBox.SelectedIndex = 0; 

        } 

 

        private void CancelButton_Click(object sender, EventArgs e) 

        { 

            DownloadCancelled = true; 

            statusLbl.Text = "You cancelled the download"; 

            ResetForm(); 

        } 

 

        void radioButton_CheckedChanged(object sender, EventArgs e) 

        { 

            RadioButton rb = sender as RadioButton; 

            Method = rb.Text; 

            switch (Method) 

            { 

                case "Random": 

                case "Trust": int n; 

                    MaxPeers = int.TryParse(MaxPeersTxt.Text, out n) ? Math.Min(n, Math.Min(FileSize / 

BlockSize, KnownPeerStore.Count)) : 3; 

                    if (MaxPeers == 0) MaxPeers = 3; 

                    selPeers.Enabled = false; 

                    PeerSelectBox.Enabled = false; 

                    break; 

                case "Select": MaxPeers = Math.Min(FileSize / BlockSize, KnownPeerStore.Count); 

                    selPeers.Text = string.Format("Select Peers below. Max = {0}", MaxPeers); 

                    selPeers.Enabled = true; 

                    PeerSelectBox.Enabled = true; 

                    break; 

            } 

            statusLbl.Text = string.Format("Number of peers being used: {0}", MaxPeers); 

        } 

 

        private void BlockSizeBox_SelectedIndexChanged(object sender, EventArgs e) 

        { 

            BlockSize = (long)BlockSizeBox.SelectedItem * 1024; 

        } 

 

        private void PeerComboBox_SelectedIndexChanged(object sender, EventArgs e) 

        { 

            RefreshDisplayBox(); 

        } 
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        private void RefreshDisplayBox() 

        { 

            RatePeers(); 

            string s = PeerComboBox.SelectedItem.ToString(); 

            DisplayBox.ResetText(); 

            DisplayBox.AppendText("OVERALL TRUST RATING:\t\t" + TrustRating[s].ToString("F4") 

+ "\t(as per weights selected)\n"); 

            DisplayBox.AppendText("CBA:\t\t\t\t" + Peer.PeerList[s].CBA.ToString("F4") + "\n"); 

            DisplayBox.AppendText("CBA Normalised:\t\t\t" + 

KnownPeerStore[s].CurrentCNorm.ToString("F4") + "\n"); 

            DisplayBox.AppendText("SCR:\t\t\t\t" + Peer.PeerList[s].SCR.ToString("F4") + "\n"); 

            DisplayBox.AppendText("1-RI (positive):\t\t\t" + 

KnownPeerStore[s].CurrentRI.ToString("F4") + "\n"); 

            DisplayBox.AppendText("Last Successful Time:\t\t" + 

((KnownPeerStore[s].LastSuccessfulTime.Year<2015)?"--------

\n":KnownPeerStore[s].LastSuccessfulTime.ToString("ddd, MMM. d, yyyy h:mm tt") + " (UTC)\n")); 

            DisplayBox.AppendText("Total Bytes Downloaded:\t\t" + 

KnownPeerStore[s].NumberOfBytes + "\n"); 

            DisplayBox.AppendText("Number of Sessions With:\t\t" + 

KnownPeerStore[s].NumberOfSessionsWith + "\n"); 

            DisplayBox.AppendText("Number of Successful Blocks:\t\t" + 

KnownPeerStore[s].NumberOfGoodBlocks + "\n"); 

            DisplayBox.AppendText("Number of failed Blocks:\t\t" + 

KnownPeerStore[s].NumberOfFailedBlocks + "\n"); 

            DisplayBox.AppendText("Number of Blocks Tampered With:\t" + 

KnownPeerStore[s].NumberOfTamperedBlocks + "\n"); 

            DisplayBox.AppendText("Total Number of Sessions for Peer:\t" + 

Peer.PeerList[s].SessionCount + "\n"); 

        } 

 

        private void OpenButton_Click(object sender, EventArgs e) 

        { 

            Process.Start("explorer.exe", "/select," + FileName); 

        } 

 

        void UpdateKPSSettings(string id) 

        { 

            foreach (var peer in KPS.Elements("Peer")) 

            { 

                if (peer.Element("ID").Value == id) 

                { 

                    try 

                    { 

                        peer.ReplaceNodes(new XElement("ID", id), 

                    new XElement("CurrentCNorm", KnownPeerStore[id].CurrentCNorm), 

                    new XElement("CurrentRI", KnownPeerStore[id].CurrentRI), 

                    new XElement("LastSuccessfulTime", KnownPeerStore[id].LastSuccessfulTime), 

                    new XElement("NumberOfBytes", KnownPeerStore[id].NumberOfBytes), 

                    new XElement("NumberOfFailedBlocks", KnownPeerStore[id].NumberOfFailedBlocks), 

                    new XElement("NumberOfGoodBlocks", KnownPeerStore[id].NumberOfGoodBlocks), 

                    new XElement("NumberOfSessionsWith", 

KnownPeerStore[id].NumberOfSessionsWith), 

                    new XElement("NumberOfTamperedBlocks", 

KnownPeerStore[id].NumberOfTamperedBlocks) 

                    ); 

                        Settings.Default.KnownPeerStore = KPS.ToString(); 

                        Settings.Default.Save(); 

                    } 

                    catch (Exception) 
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                    { 

                        //Wait_till_next_opportunity; 

                    } 

                } 

            } 

        } 

 

        private void MainForm_FormClosing(object sender, FormClosingEventArgs e) 

        { 

            foreach (string s in KnownPeerStore.Keys) 

            { 

                UpdateKPSSettings(s); 

                Peer.UpdatePLSettings(s); 

            } 

            Settings.Default.MainFormSize = this.Size; 

            Settings.Default.Save(); 

        } 

 

        private void CheckButton_Click(object sender, EventArgs e) 

        { 

            if (GetFileNameAndSize()) DownloadButton.Enabled = true; 

            InitializeBlockList(); 

        } 

     

    } 

} 
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