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Synergistic Path Planning of Multi-UAVs for Air Pollution Detection 1 

of Ships in Ports 2 

 3 

Abstract: The phenomena of the COVID-19 outbreak and the Arctic Iceberg melting over the past 4 

two years make us reconsider the impact our way of life has on the environment and the 5 

responsibility of business toward minimizing and potentially eliminating emissions. Increasing ship 6 

traffic in ports leads to the growing emission of air pollutants, which influences the air quality and 7 

public health in the surrounding areas. The International Maritime Organization (IMO) has 8 

adopted relevant regulations (e.g., Annex VI of IMO's pollution prevention treaty (MARPOL) and 9 

mandatory energy-efficiency measures) to address ship emissions. To ensure the effective 10 

implementation of such regulations and measures, air emission detection and monitoring has 11 

become crucial. In this paper, a dynamic multitarget path planning model is developed to realize 12 

multi-UAVs (Unmanned Aerial Vehicles) performing synergistic detection of ship emissions in 13 

ports. A path planning algorithm under a dynamic environment is developed to establish the model. 14 

This algorithm incorporates a Tabu table into particle swarm optimization (PSO) to improve its 15 

optimization ability, and it obtains the initial detection route of each UAV based on a "minimum 16 

ring" method. This paper describes a multi-UAVs synergistic algorithm to formulate the path 17 

reprogramming time in a dynamic environment by judging and cutting the "minimum ring". This 18 

finding proves the improved efficiency of air pollution detection by UAVs. It provides useful 19 

insights for maritime and port authorities to detect ship emissions in practice and to ensure ship 20 

emission reduction for better air quality in the postpandemic era.   21 

 22 
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1. Introduction 1 

The phenomena of the COVID-19 outbreak and Arctic Iceberg melting over the past two years 2 

make us reconsider the impact our way of life has on the environment and the responsibility of 3 

business toward minimizing and potentially eliminating emissions. Over 90% of world trade is 4 

carried by sea (UN, 2019). With increasing ship traffic in ports, the environmental pollution from 5 

ships is on the top agenda of the international maritime society. Shipping contributes to the third 6 

largest air pollution after motor vehicles and industrial production (Liang, 2016). Exhaust gas from 7 

shipping activities is composed of carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur oxides 8 

(SOx), among other components (see e.g., UNCTAD, 2017; Zheng et al., 2017). According to the 9 

International Maritime Organization (IMO), shipping operations account for almost 10–15% of 10 

anthropogenic SOx emissions around the world, with most of these emissions coming from densely 11 

populated coastal regions (IMO, 2018). 12 

High shipping emissions result in strong motivation for local governments and the IMO to 13 

adopt a variety of regulations to ameliorate the polluted environment. In 2009, the International 14 

Maritime Organization (IMO) revised and implemented the International Convention for the 15 

prevention of pollution from ships (MARPOL) on the basis of the International Convention for the 16 

prevention of marine oil pollution (IMO, 2009). In 2011, IMO adopted the amendment to Annex VI 17 

of MARPOL Convention. According to the requirements of the resolution, the emission control 18 

zones of the Baltic Sea, the North Sea, the North American Sea and the Caribbean Sea have 19 

implemented the standard of sulfur content of ship fuel to not exceed 0.1% since January 1, 2014 20 

(IMO, 2011). In 2016, the IMO MEPC announced the establishment of NOx emission control areas 21 

in the Baltic Sea and the North Sea, which will come into force on January 1, 2021 (International 22 

ship network, 2016). The IMO MEPC also decided to implement the global sulfur limitation in 23 

2020, which requires all ships that sail outside the sulfur emission control areas to use fuel with a 24 

sulfur quantity that does not exceed 0.5% (Sindh marine, 2016). In China, during berthing (except 25 

for after berthing and one hour before departure), vessels shall use fuel oil with sulfur content that 26 

does not exceed 0.5% m/M (Ministry of transport of the people's Republic of China, 2015). In 2020, 27 

the Maritime Safety Administration, the Ministry of Communications of China, announced the 28 

formal implementation of the Implementation Plan for global Marine Fuel Sulphur Restriction 2020 29 

and the Guidelines for the Supervision and Management of Air Pollutant Emissions from Ships. 30 

The requirements for ship exhaust emission limitations are as follows: The sulfur content of Marine 31 

fuel used by all types of Marine vessels in inland river discharge control areas shall not be greater 32 

than 0.1% m/m. The sulfur content of Marine fuel used by all types of sea-going and river-sea 33 

direct vessels in coastal air pollutant discharge control zones and international navigation vessels in 34 

nondischarge control zones shall be no more than 0.5% m/m (Soarabolity, 2020). 35 

The expansion of the detection range and the improvement of the detection standards pose 36 

more severe imitations; however, since using low-sulfur fuels leads to high operation costs, many 37 

shipowners take the risk of not complying with the regulations. Such noncompliance ratios even 38 
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reach up to 12.3% according to historical cases (OECD, 2018). All of the above are a challenge to 1 

the detection technology. 2 

UAVs have the characteristics of low cost, fast flight speed and portable mission load, which 3 

makes them have unique advantages in performing complex tasks. With the rapid development of 4 

UAV technology, its flight speed, stability and wind resistance level have been greatly improved. At 5 

present, UAVs have played an important role in maritime search and rescue, such as sea patrol, 6 

channel mapping and other aspects (Zhu, 2020; Zhang, 2020; Jing et al., 2017). Over the past two 7 

years, UAVs have been attempted to detect the air pollution of ships. For instance, on April 23, 8 

2020, Yangzhou MSA used Dajiang M210 UAV (rotor UAV, with a maximum speed of 82.8 km/h) 9 

equipped with sniffers to monitor the exhaust gas of dozens of ships through the supporting 10 

software enabling real-time visualization analysis. On May 20, 2020, Dajiang M210 UAV was 11 

equipped with a sniffer to measure the ship exhaust gas around the perimeter zone of Han River 12 

Maritime Department of Yangzhou maritime administration (Soarabolity, 2020). However, the 13 

application of UAVs in ship air pollution detection is still in its infancy. There are still many 14 

problems that must be studied and solved, such as the paths of UAVs detect planning, UAV 15 

air traffic control, and so on. In this paper, we propose new path planning model and algorithm to 16 

optimize the use of multiple UAVs to detect the air pollution of ships in real time. 17 

The core of the decision is to assign each UAV a sequence of detection tasks with time 18 

schedules that regard the characteristics of ship emission detections by multi-UAVs, Decisions 19 

involved must be made by considering the following aspects: the number of ships for detection can 20 

be very large in certain time periods, and the positions and quantity of the ships to be detected in 21 

the detection area are dynamic; assigning multiple detection tasks for each operated tour to increase 22 

the utilization of the UAV fleet; the length of time required to detect each ship is dynamic; 23 

multiple-UAVs are used for synergism detection; and the flight time of the UAVs is limited because 24 

of their limited battery capacity. 25 

Synergism detection of ship air pollution by multiple UAVs is attributed to a special traveling 26 

salesman problem (TSP). It is a dynamic multiperson and multiobjective traveling salesman 27 

problem Called the dynamic traveling salesman problem (DTSP), which is known to be an NP-hard 28 

problem (Michael R, 1979). Although there are many effective models and algorithms for solving 29 

dynamic multi-person multiobjective TSP problems and the related problems also, most of them 30 

cannot be directly applied to tackle a generalized setting of multi-UAVs with synergistic detection 31 

of dynamic ships’ air emissions (Strąk, 2019). 32 

The contribution of this study can be summarized as follows. First, this paper provides a new 33 

solution for path planning that demonstrate how UAVs can be used as a detection tool for air 34 

emission of ships in ports to improve the efficiency of detecting air pollution of ships. COVID-19 35 

changes social behaviors, and the use of autonomous vehicles for mobility is growing. Under such a 36 

circumstance, the issue of investigating how UAVs can be used to replace or relieve in part or full 37 

ship air emissions detection by human beings becomes emerging and significant. It obviously has a 38 
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potential impact on improving environmental protection regulations enforcement. Second, the 1 

number and positions of the investigated ships are defined as dynamic parameters in this study to 2 

well reflect the practical scenarios. Routing UAVs among sailing ships with less detection cost and 3 

higher detection efficiency is derived in a new DTSP problem in this paper. It has academic 4 

significance because of the involvement of specific features that generalize the well-known DTSP 5 

from the literature. We model the dynamics of ships’ emission detection through comparing a preset 6 

threshold and the change in the "minimum loop" length to determine the path reprogramming time. 7 

Third, an improved PSO algorithm based on Tabu is proposed; the case of Yangzhou is referred to 8 

simulate data and experimentally solve the proposed formulation, and we compare the new 9 

algorithm with the traditional PSO algorithm. The experiment proves that the new algorithm has a 10 

faster iterative speed. 11 

This paper is organized as follows. Following the introduction in Section 1, Section 2 presents 12 

the previous studies on the air pollution of ships, with applications of UAVs in the field of logistics 13 

and path planning. Section 3 describes the problem of synergistic path planning of multi-UAVs for 14 

air pollution detection of ships in ports. Section 4 establishes the model of synergistic path planning 15 

of multi-UAVs. Section 5 proposes the solution based on a PSO. Section 6 describes the 16 

experimental data and results. Section 7 concludes the paper. 17 

2. Literature Review 18 

In this section, we summarize the current research on ship air pollution emissions, the impact 19 

of ship air pollution on the environment and the ship air pollution detection methods. In Section 2.1, 20 

we address the research results of UAVs and introduced their applications in logistics, traffic 21 

inspection and other relevant fields. In Section 2.2, we review the state-of-the-art techniques for 22 

path planning models and algorithms involved in DTSP, especially for UAV routing problems of 23 

DTSP in Section 2.3.  24 

2.1. Related work on ship air pollution 25 

In recent years, ship air pollution has become a hot issue. It was found that ship emissions 26 

increased the concentration of pollutants in the area rapidly and caused serious adverse effects on 27 

the environment. Liu et al. (2019) found that the total amount of air pollutants emitted by container 28 

ships, bulk carriers and cruise ships accounted for approximately 90% of the total pollutants from 29 

ships. In terms of the impact of ship air pollution on the environment, Lou et al. (2019) studied the 30 

gaseous intermediate volatile organic compounds (IVOC) produced by ships burning heavy fuel oil 31 

(HFO) and found that a large amount of emitted IVOC seriously affected the air quality. Ship 32 

exhaust is an important cause of haze, and a general circulation model shows that haze was 33 

significantly disturbed by a tropical rainfall model and hydrological cycle, and it had an impact on 34 

the global climate (Ramanathan et al., 2001). Boersma et al. (2015) analyzed the changes of 35 

nitrogen oxide emissions in European shipping and found that the total nitrogen oxide emissions of 36 

shipping in Europe kept increasing, which suggested that more attention should be paid to NOx 37 
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emission in the shipping industry. Alahmadi et al. (2019) used a local geographic weighted 1 

regression (GWR) model under the geographic information system (GIS) environment to 2 

characterize and quantify the contribution of marine sector emissions to the concentration of  3 

in the Red Sea region. 4 

Therefore, it is urgent to strengthen the detection of ship exhaust gas for the purpose of 5 

controlling ship air pollution effectively. The traditional detection methods for air pollution of ships 6 

include manual boarding detection and detection by fixed position loading equipment. For manual 7 

boarding detection, one type of approach is checking the oil change records in the logbook and 8 

taking oil samples for testing, then bringing the data into a unified data system for analysis. 9 

However, such sampling inspection is blind and lagging, and the inspection efficiency is limited 10 

(Wu, 2020). Another method of manual boarding detection is using a marine fuel sulfur content 11 

rapid detector for detection. Relatively speaking, the efficiency has improved, but the work process 12 

is relatively complex and must be operated by a large number of people on board the ship for 13 

on-site determination. As is known, the manual boarding method obviously affects the detection’s 14 

immediacy and convenience (Ministry of transport of the people's Republic of China, 2020). 15 

Moreover, given the effect of Covid-19, the method of boarding inspection will become risky. For 16 

the method of detection by fixed positions loading, we have the following situation: In 2012, 17 

sniffers were installed on ships for air pollution detection in Neva Bay and Gulf of Finland. In early 18 

2014, Denmark installed a sniffer on the Great Belt Bridge to detect air pollution from ships (Chang 19 

et al, 2017). Fixed sniffer technology and optical remote sensing technology have the features of 20 

mature technology and lower cost. However, they are types of passive detection methods, which 21 

lack flexibility and have limitations in their detection effect because the location relationship 22 

between the sniffers and the pollution sources have a large impact on the detection results (Chang et 23 

al, 2017). Therefore, there is an urgent need to adopt new technologies and new ideas to develop 24 

the real-time detection of port ship air pollution (Wu, 2016).  25 

With the development of technology, recent studies have shown that UAVs that carry sniffers 26 

for ship air emissions detection can greatly improve the efficiency of sniffing (Soarabolity, 2020). 27 

However, there is only a limited number of applications and academic research related to this field 28 

at present. 29 

2.2 Existing studies for routing UAVs in various applications 30 

Currently, given their low costs in both capital and operations, UAVs have been widely used in 31 

many fields, such as military surveillance (see, e.g., Xia et al., 2017), logistics delivery operations 32 

(see, e.g., Murray and Chu, 2015; Wang et al., 2017; Carlsson and Song, 2017) and traffic 33 

inspection (Wang et al., 2018). Because the UAVs’ tasks are quite different in different fields, the 34 

models and algorithms are designed differently. For example, military surveillance problems are 35 

often considered to have dynamics and uncertainties, and the solutions must always consider the 36 

dynamic appearances of new targets or the uncertain information collected from locations that have 37 

very limited communications (Xia, 2017). At present, UAV has played an important role in 38 
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maritime search and rescue, Sea Patrol, channel mapping, ship air emission and other aspects (Zhu, 1 

2020; Zhang, 2020; Jing et al., 2017; Soarabolity, 2020). 2 

Synergistic mission of UAVs is also an important research direction of UAV applications. For 3 

example, Chen et al. (2016) provided theoretical support for synergistic path planning of multiple 4 

UAVs by analyzing the constraints and common algorithms of path planning. Yan (2017) proposed 5 

a strategy for UAVs to collect battlefield information based on scenario analysis. Rastgoftar et al. 6 

(2019) proposed that the UAV multicluster cooperation protocol also extended the previous 7 

synergistic control mechanism, and they realized location detection and collision avoidance 8 

technologies when multiple cooperation clusters had different destinations. Ding et al. (2019) 9 

studied the UAVs path planning problem for a team of cooperating heterogeneous vehicles 10 

composed of one UAV and multiple unmanned ground vehicles (UGVs).  11 

Nowadays, UAVs have been widely used in some fields, the characteristics of UAVs are quite 12 

suitable for the detection of ships’ emission in motion without manual boarding. However, 13 

researches and applications involved ship air emission detection by UAVs are still in their infancy. 14 

Solution for routing UAVs is the key in this field. Much fewer works related synergistic mission of 15 

UAVs have been mentioned in the references. 16 

2.3 Related work on the DTSP 17 

The Traveling Salesman Problem (TSP) is an optimal combinatorial problem, and DTSP is the 18 

dynamic traveling salesman problem, which belongs to NP hard problems (Michael R, 1979). The 19 

research on path planning in a dynamic environment mainly started approximately in year 2000. 20 

Carlisle and Dozier (2000) began to apply a PSO algorithm to solve dynamic tracking problems in 21 

2000. Based on the analogy of electrostatic field energy, Blackwell et al. (2002) proposed a 22 

“charged particle” PSO algorithm. To keep the diversity of the population and address the dynamic 23 

environment, an additional acceleration factor was added to simulate the repulsion effect of charged 24 

particles on other charged particles. Jatmiko et al. (2006) combined a CPSO algorithm with the 25 

standard PSO algorithm and added a rejection function to keep the balance of the system diversity, 26 

to address the dynamic changes in the environment. Hu et al. (2015) studied a dynamic closed-loop 27 

vehicle routing problem, which was an extension of the dynamic closed-loop vehicle routing 28 

problem in closed-loop logistics. Liu et al. (2018) proposed an optimization algorithm based on 29 

decomposition and prediction of multiple PSOs to solve dynamic multiobjective optimization 30 

problems. Wang et al. (2018) established an online optimization scheduling method based on 31 

multi-prediction scenarios for real-time distribution in the same city, and they integrated multiple 32 

scenarios with predicted orders into the path planning process. Strąk and Łukasz (2019) proposed a 33 

self-adaptive discrete PSO algorithm with heterogeneous parameter values for the DTSP. Through 34 

the above review, the PSO is found to be an effective and efficient algorithm to solve the problems 35 

involved in the DTSP. However, the PSO has the problem of slow convergence speed and ease of 36 

falling into a locally optimal solution in the later stages of the algorithm. A Tabu table is considered, 37 

which is incorporated into the iterative calculation of the PSO to improve the optimization ability of 38 



7 

 

the algorithm and to overcome the disadvantages of the PSO in this paper. 1 

UAV path planning in a dynamic environment is an NP-hard problem, and the available 2 

solutions in the literature include the reinforcement learning methods based on Markov decision 3 

process, such as the Q-learning algorithm (e.g., Zhao, 2017). They use a reward function and a state 4 

transition strategy to explore and predict the environment step by step, and they improve the UAV's 5 

ability to address a complex unknown environment through an autonomous learning process. An 6 

adaptive random exploration method that is combined with reinforcement learning is used to guide 7 

UAV navigation and obstacle avoidance tasks within the context of the path planning of UAVs used 8 

to detect ship emissions in a dynamic environment. Bouman (2018) proposed an algorithm based 9 

on dynamic programming to solve the new task assignment problem generated by the synergism of 10 

UAVs and trucks. Xia et al. (2019) proposed path planning methods for UAVs’ detection of ship air 11 

pollution. They regarded the UAVs’ scheduling problem as a generalized team-orienteering 12 

problem and modeled the dynamics of each sailing vessel based on the advanced prediction of ship 13 

positions creatively. To solve this proposed formulation, they developed a Lagrangian 14 

relaxation-based method that can obtain near-optimal solutions. Numerical experiments were 15 

conducted to validate the effectiveness and efficiency of the proposed method. However, the ship's 16 

trajectory is often difficult to predict accurately, even though there could be an automatic 17 

identification system. Ships’ real-time locations are uncertain in practice; for example, a vessel can 18 

occasionally adjust its sailing speed and course rather than stick to a given plan for safety or 19 

congestion reasons (Qu et al., 2011; Weng et al., 2012). However, Xia’s paper discussed two simple 20 

extensions for deviation correction of the prediction. Thus, we attempt to provide another idea to 21 

solve the dynamic ships’ emissions detection by UAVs: we model the dynamics of ships through 22 

comparing a preset threshold and the change in the "minimum loop" length to determine the path 23 

reprogramming time.  24 

From what has been reviewed and discussed above, we find it is urgent to adopt new 25 

technologies and ideas to strengthen the real-time detection of air pollution of ships in ports based 26 

on the discussion on the impact on the environment and measurement of emission. In recent years, 27 

UAVs have been attempted to detect the air pollution of ships. However, the applications of UAV 28 

for ship air pollution detection are still at its infancy stage. How to plan the flight path of UAV is 29 

the key to improve the detection efficiency and reduce the detection cost. In this paper, UAVs path 30 

planning in dynamic environment is derived as a DTSP problem, which is a NP hard problem. The 31 

research serves as a more general solution for routing UAVs regarding ship emission detection’s 32 

specialties , such as the number of ships for detection can be very large in certain time periods and 33 

the positions and quantity of the ships to be detected in the detection area are dynamic. Moreover, 34 

assigning multiple detection tasks for each operated tour for one UAV and multiple-UAVs are used 35 

for synergism detection and flight time of a UAV is considered with the limitation of its battery 36 

capacity. 37 

3. Problem Description 38 

The investigated problem in this paper is how to plan the routes of multiple UAVs for 39 
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detecting ships’ emissions in ports in a synergistic way. First, the initial positions and number of 1 

ships to be detected are determined, which is regarded as part of the detection tasks of the UAVs. 2 

Then, these detection tasks are merged into the control platform to assign the detection tasks for 3 

each UAV. Then, multiple UAVs (each carrying a portable multigas detector) work together to 4 

conduct real-time emissions detection of ships in the port, and the detection results can be 5 

transmitted to the control center through wireless transmission. Fig. 1 illustrates the main process of 6 

air detection by UAVs. 7 

[Please insert Fig 1 here] 8 

The specific process of multi-UAVs detection of air pollution from ships is as follows: (1) The 9 

flight paths of UAVs are represented by lines. The UAVs start from the ports and fly to the ships 10 

that are to be detected in sequence according to the assigned tasks. Because the ships are in motion, 11 

when any UAV has completed the first detection of a ship, it is necessary to determine whether to 12 

replan the UAV detection path. If it is necessary, then they replan the flight path of the UAVs to the 13 

ships that have not been detected and the ships newly added to the detection queue; otherwise, 14 

when the ship has been completely detected, they replan the UAVs' detection path to the new ship 15 

to be detected. (2) In the process of detection, if there are UAVs that are idle when they complete 16 

their own workload, they need to be synergistic with other UAVs to complete their detection tasks. 17 

(3) When the quantity of UAVs flying in the port is more than the quantity of ships detected, the 18 

redundant UAVs flying back to the ports will no longer be assigned with detection tasks. At this 19 

moment, the working state of these UAVs is called "nonworking state". The battery power of each 20 

UAV is limited, and it must fly within the battery power limit. When the power of the UAVs is 21 

insufficient, it must return to the charging pile. At this time, a standby UAV from shore is assigned 22 

to detect the ship. In the whole detection process, weather factors (such as strong winds) and air 23 

flow around the running ship will not be considered in this paper. 24 

The flight path problem of UAVs detecting air pollution of ships is abstracted into a topology 25 

structure (see Fig. 2). The lines in the figure show the possible flight paths of the UAVs. It can be 26 

seen from the figure that the UAVs can fly to the ship to be detected and the charging pile, and the 27 

UAVs in the charging pile can fly to the ships. 28 

[Please insert Fig 2 here] 29 

4. Establishing the Model 30 

4.1 Model assumptions 31 

In reality, it is very complex to use UAVs to detect sailing ships. To simplify the model, the 32 

following assumptions are set for the model formulation . 33 

a. The flight formation composed of UAVs detects 𝐷 ships (the value of 𝐷 is variable). 34 

b. Each ship is detected by only one UAV, while one UAV can detect multiple ships. 35 

c. The time and cost of the UAVs going from one ship to another are calculated based on only 36 

the distance between the two ships. 37 

d. UAVs move in only two dimensions. 38 
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e. When one UAV is in charge, the standby UAV is automatically added to the detection tasks. 1 

f. The influence of weather and air flow around the ships on the detection is not accounted for. 2 

h. Ships move slowly when they are in the waters in port. The flight speed of the UAVs is 3 

much faster than the ship speed (Shi et al., 2014; Huang et al., 2016), and thus, the influence of the 4 

ship speed is ignored in the model formulation. 5 

4.2 Indicators and sets 6 

𝐺(𝑁, 𝐸) is a network with vertex set N and directed edge set E. 7 

𝑖, 𝑗 ∈ 𝑁, 𝑁 = {0,1,∙∙∙, |𝑁|}, (𝑖, 𝑗) ∈ 𝐸.  8 

𝑝 —— the real-time position of the ship to be detected. 9 

𝑁 —— a set of ships to be detected, 𝑝 ∈ 𝑁. 10 

𝑔 —— UAVs’ charging pile. 11 

𝑐 —— UAV’s position. 12 

𝑘 —— index of UAVs. 13 

𝐾—— set of all UAVs, 𝐾 = {1,2, … , 𝑘, |𝐾|}. 14 

𝑡𝑖,𝑗—— flight time of UAVs from 𝑖 to 𝑗. 15 

𝐶𝑖,𝑗—— power required by UAVs from 𝑖 to 𝑗. 16 

𝑇𝑃—— time needed to detect ship 𝑝. 17 

𝐶𝑐
𝑚𝑖𝑛—— minimum total cost of detection.  18 

𝐶𝑇
𝑚𝑖𝑛—— minimum the total time of detection. 19 

𝑑𝑖,𝑗—— 0-1 variable, the connection between two points is 1, (𝑖, 𝑗) ∈ 𝑁, otherwise is 0. 20 

�̅�—— battery capacity of UAVs. 21 

𝛿𝑘—— current electric quantity of UAVs. 22 

𝑟𝑖,𝑗,𝑘—— 0-1 variable. When the UAV k passes the route(𝑖, 𝑗) ∈ 𝐸, it is 1; otherwise, it is 0. 23 

𝜂𝑘—— 0-1 variable. When the UAV is not working, it is 1; otherwise, it is 0. 24 

𝑢, 𝑧, 𝜆—— constant. 25 

𝑀—— a sufficiently large positive number. 26 

4.3 Synergistic path planning model of multi-UAVs 27 

4.3.1 Cost minimization objective 28 

The cost of using UAVs to detect the ships mainly includes the electricity cost of the UAV’s 29 
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flight, the communication cost between UAVs, the extra cost of exhaust gas detection involving 1 

sniffers, UAV’s maintenance, and depreciation cost. This paper mainly considers the electricity cost 2 

of the UAV’s flight, which is strongly associated with the path programming. In addition, the length 3 

of UAV’s flight path determines the flight cost of the UAV, and it also affects the efficiency of 4 

detection, timeliness of detection, carbon emissions per kilometer, and more, which are important 5 

indicators for judging the quality of the path planning(Li, 2020). Therefore, the power cost of a 6 

UAV from one ship to another is directly proportional to the distance between the two ships. 7 

The total electricity cost of flight for UAV k is  ∑ ∑ (Ci,jri,j,k)j∈Ni∈N . 8 

The total cost of the flight electricity for the whole UAVs fleet is ∑ ∑ ∑ (Ci,jri,j,k)k∈Kj∈Ni∈N . 9 

4.3.2 Time minimization objective 10 

The UAV’s detection time mainly consists of two parts, which are the time needed for the 11 

UAV’s flight and the time needed for the ship detection. 12 

The flight time of UAV 𝑘 is ∑ ∑ (𝑡𝑖,𝑗𝑟𝑖,𝑗,𝑘)𝑗∈𝑁𝑖∈𝑁 ; 13 

The total time of the UAV’s formation detection is max (∑ ∑ (𝑡𝑖,𝑗𝑟𝑖,𝑗,𝑘 + 𝑇𝑗))𝑗∈𝑁𝑖∈𝑁 . 14 

In the detection process, to shorten the total detection time, if there is a free UAV or lower 15 

workload UAV, when it completes its work, it will be assigned to the detection route of other UAVs 16 

to help other UAVs to detect, but this action will increase the total cost of detection. Therefore, the 17 

objective of cost minimization is not the same as the objective of time minimization. Instead, they 18 

can conflict with each other. Therefore, this paper gives the two objectives a certain weight 𝑢 and 19 

𝑧, and then, it adds the two goals to transform the problem into a single objective problem for an 20 

optimal solution. Here, 𝑢 and 𝑧 reflect the importance of the two objective functions, respectively. 21 

When the air pollution of the ships in the ports is serious, it is necessary to reduce the value of 𝑢 𝑧⁄ . 22 

When the air pollution control of the ships has reached the specified goal, it can increase the value 23 

of 𝑢 𝑧⁄  accordingly. 24 

4.3.3 Mathematical model 25 

The mathematical model of the UAVs’ path planning established in this paper is as follows: 26 

𝑂𝑏𝑗.  

Min 𝐶 = 𝑢 ∗
𝐶𝐶−𝐶𝐶

𝑚𝑖𝑛

𝐶𝐶
𝑚𝑖𝑛 + 𝑧 ∗

𝐶𝑇−𝐶𝑇
𝑚𝑖𝑛

𝐶𝑇
𝑚𝑖𝑛   (1) 

𝒔. 𝒕.  

𝐶𝐶 = ∑ ∑ ∑ (𝐶𝑖,𝑗𝑟𝑖,𝑗,𝑘)
𝑘∈𝐾𝑖∈𝑁𝑖∈𝑁

      (2) 

𝐶𝑇 = max (∑ ∑ (𝑡𝑖,𝑗𝑟𝑖,𝑗,𝑘 + 𝑇𝑗)), 𝑘 ∈ 𝐾𝑗∈𝑁𝑖∈𝑁     (3) 

𝑢 + 𝑧 = 1         (4) 

∑ (𝑟𝑖,𝑗,𝑘 + 𝑟𝑗,𝑖,𝑘) ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸𝑘∈𝐾    (5) 

∑ ∑ (𝐶𝑖,𝑗𝑟𝑖,𝑗,𝑘) ≤ 𝛿𝑘 , ∀𝑘 ∈ 𝐾𝑗∈𝑁𝑖∈𝑁    (6) 

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.9.4.0/resultui/html/index.html#/javascript:;
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∃𝑔, 𝐶𝑘,𝑔 < 𝛿𝑘 , 𝑔 ∈ 𝑁     (7) 

𝑟𝑖,𝑗,𝑘 ≤ 𝑀(1 − 𝜂𝑘), ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁   (8) 

𝛿𝑘,𝑜 = �̅�, ∀𝑘 ∈ 𝐾   (9) 

𝑟𝑔,𝑐,𝑘 = 0       (10) 

0 ≤ 𝛿𝑘 ≤ 𝑄𝑘
̅̅̅̅ , ∀𝑘 ∈ 𝐾  (11) 

𝑑𝑖,𝑖 = 0, 𝑖 ∈ 𝐸    (12) 

𝑑𝑖,𝑗 ≥ 𝑟𝑖,𝑗,𝑘 (13) 

𝐶𝑔 = 0   (14) 

𝑇𝑔 = 0 (15) 

𝑟𝑖,𝑗,𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐸, ∀𝑘 ∈ 𝐾   (16) 

𝛼𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾   (17) 

𝛿𝑘 ≥ 0, ∀𝑘 ∈ 𝐾  (18) 

𝑑𝑖,𝑗 ∈ {0,1}   (19) 

Objective (1) is to minimize the weighted sum of the total cost and time. Constraint (2) 1 

represents the total cost of detection. Constraint (3) represents the total time of detection. Constraint 2 

(4) specifies that the sum of 𝑢 and 𝑧 is equal to 1. Constraint (5) means that at most one UAV 3 

passes through each side. Constraint (6) describes the UAV's electric quantity constraint, which 4 

means that the power consumed by a UAV cannot exceed its remaining power. Constraint (7) 5 

means that the remaining electric power can fly to the nearest charging post. Constraint (8) 6 

indicates that the UAV does not perform the detection task when it is not working. Constraint (9) 7 

indicates that the initial electric power of the UAV’s battery is the battery capacity. Constraint (10) 8 

indicates that the UAVs can only fly to the charging pile or the ships to be detected. Constraint (11) 9 

indicates the UAV’s electric power constraint. Constraint (12) indicates that the distance between 10 

the same points is 0. Constraint (13) indicates that the UAVs can fly along the line only when there 11 

is a connection between two points. Constraint (14) indicates that the UAVs do not consume cost 12 

when charging. Constraint (15) indicates that the UAVs do not consume time when charging (the 13 

standby UAVs will join the operation immediately). Constraint (16) (17) (18) and (19) are 14 

self-explanatory constraints.  15 

5. The New Improved PSO Algorithm 16 

The above model is an NP-hard problem, which must be solved by a heuristic algorithm. The 17 

PSO, which has been widely used to solve dynamic path planning, is adopted in this paper to tackle 18 

the real-time requirements of dynamic ship pollution detection problems. Therefore, this paper 19 

chooses the improved PSO algorithm to solve the model. 20 
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5.1 Basic PSO 1 

The basic PSO seeks the optimal solution by tracking two optimal values, one of which is the 2 

optimal value 𝑝𝑏𝑒𝑠𝑡 of the particle itself in the whole process of motion, while the other is the 3 

optimal solution 𝑔𝑏𝑒𝑠𝑡 of the whole PSO thus far. In the basic POS algorithm, the calculation 4 

formula of the d-dimensional neighborhood function of the 𝑖𝑡ℎ particles at time 𝑘 + 1 is as 5 

follows: 6 

𝑣𝑖𝑑
(𝑘+1)

= ω ∗ 𝑣𝑖𝑑
(𝑘)

+ 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑
(𝑘)

− 𝑥𝑖𝑑
(𝑘)

) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑖𝑑
(𝑘)

− 𝑥𝑖𝑑
(𝑘)

)  (20) 

𝑥𝑖𝑑
(𝑘+1)

= 𝑥𝑖𝑑
(𝑘)

+ 𝑣𝑖𝑑
(𝑘+1)

  (21) 

|𝑣𝑖𝑑
(𝑘)

| ≤ 𝑉𝑚𝑎𝑥 (22) 

where ω is the inertia factor, 𝑘 is the iteration period, 𝑣𝑖𝑑
(𝑘)

 is the particle velocity, 𝑝𝑖𝑑
(𝑘)

 is the 7 

optimal position of the particle, 𝑥𝑖𝑑
(𝑘)

 is the current position of the particle, 𝑐1, 𝑐2  is the 8 

acceleration factor, 𝑟1, 𝑟2 is the random number between (0,1), and 𝑉𝑚𝑎𝑥 is the velocity vector 9 

limit constant. 10 

Formula (20) is mainly composed of three parts: the first part is the velocity inertia of the 11 

particles in advance. The second part is the self-cognition part, which represents the thinking of 12 

particles themselves, which can be understood as the distance between the current position of the 13 

particles and their best position. This part enables the particle to have the global searching ability 14 

and to avoid falling into a locally optimal solution. The third part is the social part, which embodies 15 

the information sharing between particles. It can be understood as the distance between the current 16 

position of the particles and the optimal position of the group. A fitness function is used to judge the 17 

fitness of the particles. 18 

5.2 PSO based on a Tabu Search (TS) 19 

At the later stage of the PSO, when an optimal position is found in a certain iteration, all of the 20 

particles will move closer to that position, and the particle swarm tends to be the same point, which 21 

results in a failure to search again in the solution space, a slow convergence rate, and ease of falling 22 

into a locally optimal solution. At this point, based on the classical Tabu search algorithm, a Tabu 23 

table is introduced to improve the optimization ability and precision of the algorithm. 24 

5.3 Thoughts and flows of synergistic path planning of multi-UAVs 25 

In this paper, the path planning of multi-UAVs synergistic detection of ship pollution is solved 26 

based on "minimum ring". A "minimum ring" is a concept in graph theory that refers to a loop (i.e., 27 

"ring") that returns to the starting point by passing through any number of vertices on the graph at 28 

most once each. The "minimum ring" is the ring with the smallest length added to the edges of all 29 
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rings. Specific strategies are as follows.  1 

(1) Acquisition of each UAV detection path. According to the positions of all UAVs and the 2 

ships to be detected at a certain time, we calculate the "minimum ring" 𝑅1 (see solid line ring in 3 

Fig. 3) that connects all UAVs to the ships to be tested and the "minimum ring" 𝑅2 (see dotted line 4 

ring in Fig. 3) that connects the ships to be tested. Then, we cut 𝑅1 to obtain the flight detection 5 

path of each UAV. The cutting method is based on the principle of the shortest general route, and 6 

one of the two adjacent lines of each UAV is disconnected to obtain multiple paths starting from the 7 

UAV (as shown in Fig. 4, strategy 1). The UAV will be detected according to this path.  8 

[Please insert Fig 3 here] 9 

[Please insert Fig 4 here] 10 

(2) According to the dynamic environment change, the UAV detection reprogramming path is 11 

acquired. Since the ship is always in motion, every time a ship is detected, the ship is taken as a 12 

fixed point, and the length of 𝑅2 at that time is calculated. If the difference between the current 13 

length of 𝑅2  and the minimum value of 𝑅2  at all times exceeds the preset threshold The 14 

threshold value here refers to the gap between existing length of the minimized circle and the 15 

shortest one over the past moment n. In practice, this threshold value indicates the maximum flying 16 

distance of the drone for completing all asked inspection tasks but without rescheduling the route. 17 

The "minimum ring" composed of the UAV, undetected ship and incoming ship will be regenerated. 18 

Otherwise, after all of the ships in the "minimum ring" have been detected, the flight path of the 19 

UAV to detect the new ship to be tested is replanned (strategy 2). 20 

(3) UAV coordinated operation. During the detection process, if there is an idle UAV, it will be 21 

synergistic with the other UAVs to complete the detection task. The specific methods are as follows. 22 

First, we calculate the remaining tasks of the other assigned UAVs on their respective "loop lines" 23 

(number of ships + length of loop lines), and we sort the "loop lines" in turn according to the size of 24 

the remaining tasks. Second, on the basis of the sorted loop lines, the unassigned UAV is calculated 25 

one by one to evaluate whether the value of the objective function relating to each ship can be 26 

reduced. The ship that can reduce the value of the objective function the most, which is called the 27 

asterisk ship (i.e., ship B in Fig. 5 and ship D in Fig. 6). Third, if an asterisk ship is not the last one 28 

of the "loop lines" (e.g., ship B in Fig. 5), then we disconnect the edge between the ship and the 29 

adjacent ship in the opposite direction of the loop line (the edge between ship B and C in Fig. 5), 30 

and a new detection route of idle UAVs and ships to be tested (ships B, C and D in Fig. 5) is formed. 31 

If the asterisk ship happens to be the last one on a "loop" (e.g., ship D in Fig. 6), then ships along 32 

this route are relatively evenly distributed with respect to the associated UAVs for detection (see 33 

Fig. 6, the ships detected by idle UAVs are D and C). At the same time, we cancel other UAVs’ 34 

detection tasks (strategy 3).  35 

Because it is difficult to calculate the shortest time of each UAV in advance, we develop a 36 

method to calculate the approximate shortest time. 37 

      𝐶𝑇
𝑚𝑖𝑛= ⌈

𝑆𝑢𝑚(𝑃𝑖)

𝑆𝑢𝑚(𝑦𝑖)
⌉*T + 

𝑋𝑚𝑖𝑛−𝑚𝑎𝑥 (∑ 𝑌𝑟𝑖𝑔ℎ𝑡
𝑖

𝑖∈𝐾  ,∑ 𝑌𝑙𝑒𝑓𝑡
𝑖

𝑖∈𝐾  )

𝑣∗𝑆𝑢𝑚(𝑦𝑖)
   (23) 
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𝑆𝑢𝑚(𝑆𝑖) represents the number of ships to be detected. 𝑆𝑢𝑚(𝑃𝑖) represents the total number 1 

of UAVs. T is the expected average detection time of each ship. 𝑋𝑚𝑖𝑛 is the length of the 2 

“minimum loop” formed by the connection of UAVs and ships. 𝑌𝑟𝑖𝑔h𝑡
𝑖  represents the length of the 3 

first flight path of the UAVs in the counterclockwise direction (see Fig. 4), and 𝑣 is the average 4 

flight speed of the UAVs. 5 

[Please insert Fig 5 here]   6 

[Please insert Fig 6 here]   7 

(4) Due to the limitations of the UAV battery power, when the UAV power is low, the UAV 8 

must fly back to the charging pile (i.e., g) for charging. At this point, a backup UAV sets off from 9 

the port to replace the UAV that has low power to ensure the overall efficiency of the UAV fleet 10 

detection. At the same time, the paths of all UAVs are reprogrammed to find the optimal flight path 11 

of each UAV. In this paper, the weighted sum of the cost of the UAV detection and the minimum of 12 

the detection time is taken as the target, and as many ships are required to be inspected as possible. 13 

5.4 Algorithm implementation 14 

To describe the improved PSO in the context of ship emission detection, this section first 15 

defines the important symbols involved in the algorithm, as shown in Table 1. 16 

[Please insert Table 1 here] 17 

Second, an optimized PSO is implemented. The implementation process of the algorithm is as 18 

follows. 19 

𝑺𝒕𝒆𝒑 𝟏 Initialize the particle swarm and Tabu table. Set 𝑁𝐶−𝑀𝐴𝑋, particle position, initial 

speed, 𝐵𝑒𝑡𝑎, 𝐴𝑙𝑝ℎ𝑎, 𝑙, 𝑇𝑆−𝑀𝐴𝑋. 

𝑺𝒕𝒆𝒑 𝟐 Calculate the fitness value of the individual (the fitness value is the total path length 

selected), and leave the Tabu table blank. 

𝑺𝒕𝒆𝒑 𝟑 update 𝑝𝑏𝑒𝑠𝑡   𝑎𝑛𝑑 𝑔𝑏𝑒𝑠𝑡. 

𝑺𝒕𝒆𝒑 𝟒 Use formulas (20) and (21) to update the speed and position of an individual. 

𝑺𝒕𝒆𝒑 𝟓 Determine whether the maximum number of iterations of the PSO has been reached 

or the convergence condition has been met. If not, go to step 2. Otherwise, perform 

the next step. 

𝑺𝒕𝒆𝒑 𝟔 A certain number of neighborhood solutions is generated by the current solution, and 

a Tabu search is conducted, and some candidate solutions with the best adaptability 

are selected. 

𝑺𝒕𝒆𝒑 𝟕 Determine whether there is a candidate solution that meets the amnesty criteria. If 

yes, then replace the current solution with the best candidate solution that meets the 

amnesty criteria, and replace the object that first enters into the Tabu table with the 

corresponding Tabu object. At the same time, replace the historical optimal solution 

with the candidate solution, and then, turn to step 9. Otherwise, perform the next 

step. 

𝑺𝒕𝒆𝒑 𝟖 The Tabu attribute of each object that corresponds to the candidate solution is 

determined, and the best state that corresponds to the non-Tabu object in the 
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candidate solution set is selected to replace the current solution. At the same time, the 

corresponding Tabu object is replaced by the first Tabu object in the Tabu list. 

𝑺𝒕𝒆𝒑 𝟗 Determine whether the maximum number of iterations of the Tabu search algorithm 

is reached. If the maximum number of iterations is reached, then   𝑋𝑚𝑖𝑛 =

(𝑦1, 𝑥1, 𝑥2, … 𝑦2, … , 𝑥𝑖 , 𝑦𝑗 , … , 𝑥𝑘) to perform the next step; otherwise, go to step 6. 

𝑺𝒕𝒆𝒑 𝟏𝟎 According to Strategy 1, cut the obtained loop line 𝑋𝑚𝑖𝑛, and the objective function 

is combined to obtain the scheduling scheme of each UAV. Next, we will discuss the 

details of Strategy 1. 

𝑺𝒕𝒆𝒑 𝟏𝟏 Every time a ship is detected, the ship is regarded as a fixed point, and the 

environment is tested according to Strategy 2. If it is determined that the 

environment changes, Step 1 is executed; otherwise, Step 11 is executed. 

 1 

Strategy 1: Route segmentation strategy of Xmin (obtain the initial detection path of each 2 

UAV). 3 

if  ∑ 𝑌𝑟𝑖𝑔ℎ𝑡
𝑖 >∑ 𝑌𝑙𝑒𝑓𝑡

𝑖  then 4 

 Disconnect all 𝑌𝑟𝑖𝑔ℎ𝑡
𝑖 ; 5 

else 6 

 Disconnect all 𝑌𝑙𝑒𝑓𝑡
𝑖 ; 7 

In the whole process of detecting the air pollution of ships, 8 

if 𝑦𝑖 is idle then 9 

 Strategy 3; 10 

Strategy 2: Environmental detection method (minimum loop method) (determine the path 11 

rescheduling time). 12 

if  ∆d >𝑋𝑛𝑜𝑤
𝑠ℎ𝑖𝑝

− 𝑚𝑖𝑛 (𝑋𝑚𝑖𝑛
𝑠ℎ𝑖𝑝

) or the UAV’s electric quantity shortage then  13 

 Path replanning; 14 

else Continue detecting as originally planned; 15 

Strategy 3: Allocation strategy of idle UAV 𝒚𝒋 (synergistic strategy) (see Fig. 5, Fig. 6). 16 

 Z= Sort (𝑋𝑖); 17 

for 𝑥 in 𝑍: 18 

 for 𝑋𝑙𝑎𝑡𝑒
𝑖  in 𝑥: 19 

if 𝑦𝑗  detects 𝑋𝑙𝑎𝑡𝑒
𝑖  make max (𝐶𝑛𝑜𝑤 −  𝐶𝑒𝑥𝑝𝑒𝑐𝑡)  20 

 if 𝑋𝑙𝑎𝑡𝑒
𝑖  is not the last ship on the route then 21 

        𝑦𝑗  detects 𝑋𝑙𝑎𝑡𝑒
𝑖  and later ships; 22 

Disconnect the previous path of 𝑋𝑙𝑎𝑡𝑒
𝑖 ; 23 

    else  24 

  Divide the undetected ships of this route into two UAVs for monitoring; 25 

  Disconnect the line at the junction; 26 

else 𝑋𝑙𝑎𝑡𝑒
𝑖  is the previous ship of 𝑋𝑙𝑎𝑡𝑒

𝑖 . 27 

        end; 28 

     end;  29 
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6. Experiment and Analysis 1 

In this paper, we use MATLAB r2010b to simulate the data in the Windows 10 i5-2.11ghz 2 

8GB 64-bit operating system.  3 

6.1 Data preparation 4 

In this paper, the ships sailing in the ports on a certain day are derived from real cases for the 5 

experiment. Some parameters involved in the experiment are shown in Table 2.  6 

[Please insert Table 2 here] 7 

Statements about the main parameters in Table 2 are as follows: 8 

Average Flight Speed of UAV: The average flight speed of UAVs was referred to the 9 

experiment results by Yangzhou Maritime Administration of China in which the max speed was 10 

82.8km/h (Soarabulity, 2020). Based on such information and taking into account the wind effect at 11 

seas (IT home, 2017), we set the average speed as 50 km/h in this study.  12 

Estimated Average Inspection Time of Each Ship: We set the estimated average inspection 13 

time of each ship as 2min / ship based on the experiences of Yangzhou maritime administration 14 

When UAV works, it can be measured in the air without emission to obtain the background 15 

concentration value of corresponding gas components. Then, the UAV flies to the bottom of the 16 

ship's tail gas plume and keeps following for about 1 minute. Then, the real-time estimated sulfur 17 

content of the ship can be viewed on the ground software (Soarabulity, 2020). 18 

Number of UAVs used: According to the case of Yangzhou Maritime Safety Administration 19 

measuring exhaust gas from ships, we set the number of UAVs to 3. 20 

Detection range: The endurance of Dajiang M210 UAV (rotor UAV) is 35 minutes. According 21 

to the average flight speed of 50km / h, the max light distance of the UAV after full charging is 22 

about 29km. Considering the limitation of the number of UAV and ensuring that UAV can detect a 23 

certain number of ships in one endurance time, the detection range of ships is set as 3nmi * 3nmi, 24 

that is about 31 square kilometers. 25 

Threshold: If the threshold value is too large, it cannot adjust the flight path of UAVs in time 26 

according to the change of ships position. If the threshold value is too small, the UAVs' path re 27 

planning will be too frequent. After the test for the algorithm, when the threshold value is about 5, 28 

the algorithm obtains relatively good path planning effect. 29 

In this paper, the detection range and ship coordinates are scaled to 10 ∗ 10 coordinates in 30 

the proportion 𝜓. We randomly generated some data as the initial ship position coordinates for 31 

simulation. (see Table 3), and UAV (see Table 4) are set randomly for the experiment (𝑆𝑖 represents 32 

the 𝑖th ship, 𝑃𝑖 represents the 𝑖th UAV, (X, Y) represents the position coordinates). Fig. 7 shows 33 

a schematic diagram of the positions of the ship to be detected and the UAVs. 34 

[Please insert Table 3 here]   35 

[Please insert Table 4 here]   36 
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[Please insert Fig 7 here] 1 

6.2 Algorithm contrast 2 

 In this paper, the UAV and ship position data obtained in Fig. 7 are used to compare the 3 

performance of the TS-based PSO with the classical standard PSO. Fig. 8 presents comparison 4 

results between the PSO and the TS-based PSO. 5 

[Please insert Fig 8 here]   6 

After the experiments, it is verified that the PSO based on TS can jump out of a locally 7 

optimal solution, and the experiments revealed a better optimization ability than the PSO. The 8 

optimal parameter combination of the improved PSO algorithm is obtained after several 9 

experiments. The basic parameters are set as follows: 𝐴𝑙𝑝ℎ𝑎 = 0.35, 𝐵𝑒𝑡𝑎 = 0.45, 𝑁𝐶−𝑀𝐴𝑋 =10 

700, 𝑇𝑆−𝑀𝐴𝑋 = 300, and we set 𝑢 = 0.1, 𝑧 = 0.9, with threshold ∆𝑑 = 5, and random setting 11 

of the other parameters. 12 

6.3 Solving the UAVs’ flight paths 13 

Based on the condition of minimizing the cost of UAV detection of ship air pollution, the total 14 

time for the UAV-to-ship air pollution detection is optimized, and finally, the allocation of the UAV 15 

initial detection tasks is obtained under the consideration of cost and efficiency. 16 

(1) Acquisition of the initial detection path of each UAV 17 

First, with the minimum cost in the UAV path planning model, the improved PSO algorithm is 18 

used to solve the initial flight path of each UAV (as shown in Fig. 9), as well as the flight distance 19 

and total detection time of each UAV (as shown in Table 5).  20 

[Please insert Fig 9 here] 21 

[Please insert Table 5 here] 22 

(2) UAV rerouting and synergistic operation 23 

When a UAV, such as P2, completes its current mission, it must work with other UAVs. 24 

According to the calculation of (Strategy 2), the new operation paths of UAV P2 and P3 are 25 

obtained (as shown in Fig. 10). Table 6 shows the task allocation of the UAV synergistic operation 26 

under the consideration of both cost and efficiency. 27 

[Please insert Fig 10 here] 28 

[Please insert Table 6 here] 29 

(3) UAV path reprogramming 30 

Since the ship is moving and is always in a dynamic state, the ship position change data is 31 

simulated to show how the UAV adapts to the change in the external environment through 32 

continuous rerouting. In Table 7, for each detection after a ship (see 𝑆3), we allocate the ship as a 33 

stationary point and calculate the moment 𝑅2 length (as shown in Fig. 3). If the difference 34 

between the current length of 𝑅2 and the minimum value of 𝑅2 at all times exceeds a preset 35 

threshold, then the "minimum ring" 𝑅1 is regenerated, and the newly generated 𝑅1 is cut. After 36 

the calculation, when testing the 𝑆4, namely, 6.83 min, 𝑋𝑛𝑜𝑤 − min(𝑋𝑖) = 41.97 − 31.66 = 10.31 >37 
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∆𝑑 =  5, and the UAV path is submitted for rezoning.  1 

[Please insert Table 7 here] 2 

At this time, the ships that have not been detected, the ships that have newly joined the 3 

detection task and the coordinates of the UAV are as follows:  4 

[Please insert Table 8 here] 5 

[Please insert Table 9 here] 6 

It can be seen from Table 8 that ship 𝑆7 has moved out of the detection range, and thus, the 7 

re-planned route does not include ship 𝑆7. The method of path re-planning is the following: first, 8 

the ships 𝑆3, 𝑆4, 𝑆8, 𝑆9, which have been detected, and ship 𝑆7, which has been driven out of the 9 

detect range, are eliminated; then, the new ships 𝑆10, 𝑆11…𝑆𝑖, which are to be detected, are added, 10 

and finally, the UAV has a plan created to detect the paths of the ships (𝑆1, 𝑆2, 𝑆5, 𝑆6, 𝑆10 … 𝑆𝑖) 11 

to be detected (as shown in Fig. 11), and so on. 12 

[Please insert Fig 11 here] 13 

(4) More test scenarios  14 

We added new test scenarios based on the original test data. For the ships that have not been 15 

detected in the first group of data and the newly added ships that have not been detected, the UAV 16 

detection path planning is continued. The new test results show the effectiveness of the algorithm. 17 

[Please insert Table 10 here] 18 

[Please insert Table 11here] 19 

[Please insert Table 12 here] 20 

6.4 Results discussion 21 

An analysis of the efficiency of the UAVs’ detection of the ships’ air pollution was made. 22 

Table 13 shows the efficiency of the UAVs’ detection of the ships’ air pollution. According to Table 23 

13, the average time for completing the first ship’s detection is 4.23 min/ship, 2.51 min/ship is for 24 

the second ship and when the fourth ship detection is completed, the average detection time 25 

becomes 1.71 min/ship. It can be seen that with the UAVs' detection of the ships’ air pollution, the 26 

detection efficiency is gradually improved. Then, we simulated more test scenarios as shown above 27 

and analyzed the efficiency of the UAVs’ detection of ships’ air pollution based on the new scenario. 28 

According to the analysis results in Table 14 and Fig. 12, the average detection time (including the 29 

gas detection and flight time) of the UAVs’ detection of ships gradually decreases with an 30 

increasing number of ships to be detected in the port.  31 

[Please insert Table 13 here] 32 

[Please insert Table 14here] 33 

[Please insert Fig 12 here] 34 

Then, we analyzed the influences of the changes in the u and z values on the route strategy of 35 

the UAVs detecting ships’ air pollution (see Table 15). Based on the above analysis, the changed in 36 

the u and z value will affect the flight path of the UAVs. When u > z, the path planned for the UAVs 37 

will be more inclined to sacrifice certain efficiency and reduce the cost of detection. When u < z, 38 

the path planned for the UAVs will be more inclined to invest more into improving the detection 39 
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efficiency.  1 

[Please insert Table 15 here] 2 

The above analysis shows that the changes in u and z have an impact on the flight strategy of 3 

the UAVs detecting ships. These analysis results implicated that the u/z ratio should be reduced 4 

appropriately in the ports that face high air pollution to improve the detection efficiency, while in 5 

the ports with low air pollution, the u/z ratio should be increased to reduce the total detection cost. 6 

7. Conclusions 7 

 In this paper, a new synergistic path planning model of multi-UAVs is developed for ship air 8 

pollution detection in a dynamic environment, and an improved PSO is used to solve the model. 9 

The contributions of this paper are as follows: 10 

(1) This paper provides a new solution on path planning for demonstrating how UAVs can be 11 

used as a detection tool for air pollution of ships in ports to improve the efficiency of detecting air 12 

pollution of ships and reduce the cost of detection. COVID-19 changes social behaviors and use of 13 

autonomous vehicles for mobility is growing. Under such a circumstance, the issue of investigating 14 

how UAVs can be used to replace or relief in part or full ship air emission detection by human 15 

beings becomes emerging and significant. It focuses on the decision making of scheduling and 16 

routing of UAVs, and the results can be incorporated into and provide useful insights for any tested 17 

in which UAVs are used to detect ship emission in practice.  18 

(2) The core of the decision is to assign each UAV a sequence of detection tasks with 19 

time schedules that regard the characteristics of ship emission detections by multi-UAVs, Decisions 20 

involved must be made by considering the following aspects: the number of ships for detection can 21 

be very large in certain time periods, and the positions and quantity of the ships to be detected in 22 

the detection area are dynamic; assigning multiple detection tasks for each operated tour to increase 23 

the utilization of the UAV fleet; the length of time required to detect each ship is dynamic; 24 

multiple-UAVs are used for synergism detection; and the flight time of the UAVs is limited because 25 

of their limited battery capacity. 26 

Synergism detection of sailing ship air pollution by multiple UAVs in this paper is attributed to 27 

a problem of DTSP, which is known to be an NP-hard problem. Although there are some effective 28 

models and algorithms for solving DTSP problems and the related problems also, most of them 29 

cannot be directly applied to tackle a generalized setting of multi-UAVs with synergistic detection 30 

of dynamic ships’air emissions. 31 

(3) UAV path planning in dynamic environment is a NP hard problem, fewer available 32 

solutions in the literature include the reinforcement learning methods based on Markov decision 33 

process, such as a Q-learning algorithm (e.g. Zhao, 2017). Xia et al. (2019) used AIS data to 34 

undertake ship location prediction, and then established a path planning model for UAV detection 35 

of ship air pollution. It developed a new method based on Lagrange relaxation to solve the problem. 36 

Although showing some attractiveness, the effectiveness of previous prediction-based methods 37 

depend on the accuracy of ship position prediction. In port, ships often change their speeds and 38 
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courses for various reasons (e.g. anti-collisions), it is therefore difficult to accurately predict the 1 

ship position (Qu et al., 2011; Weng et al., 2012). 2 

To cope with the detection of the different number of ships using different UAVs under 3 

uncertainty caused by the dynamic position of the ships, it proposes a multi UAVs cooperative 4 

detection strategy with less detection cost and higher detection efficiency. The time of path 5 

reprogramming in dynamic environment is determined by comparing the preset threshold with the 6 

change of "minimum loop" length. The threshold value is defined as the gap between existing 7 

length of the minimized circle and the shortest one over the past moment n. In practice, this 8 

threshold value indicates the maximum flying distance of the drone for completing all asked 9 

inspection tasks but without rescheduling the route.The algorithm proposed in this paper is based 10 

on the threshold to determine the path re planning time of each UAV in dynamic environment, 11 

which provides a new idea for solving the path planning problem in dynamic environment.  12 

(4) In order to adapt to the real-time requirements of dynamic environment, this paper 13 

improved PSO algorithm based on Tabu search algorithm and the "minimum ring" method to solve 14 

the dynamic path planning model, and compares the new algorithm with the traditional PSO 15 

algorithm. The experiment proves that the new algorithm has a faster iterative speed, providing a 16 

new direction on solving the dynamic scheduling problem of UAVs.     17 

However, there are still some limitations in this study. For example, the influence of the sea 18 

wind speed and the influence of air control on the UAV flight path, and testing with more 19 

large-scale data in scenarios must be further studied. Moreover, in this study, there can be escaped 20 

ships to be detected. Therefore, it is an important research topic to divide the detection area and 21 

study the synergism among multiple areas to reduce the appearance of escaped ships. In addition, 22 

the solution method based on PSO is essentially a heuristic method, and using a heuristic algorithm 23 

to solve VRP is still a challenging subject. These limitations will be our research directions in the 24 

future. 25 
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