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RESEARCH ARTICLE

The combination of smoking with vitamin D deficiency impairs skeletal muscle
fiber hypertrophy in response to overload in mice
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Abstract

Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles
to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency
impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet
were exposed to CS or room air for 18wk. Six weeks after initiation of smoke or air exposure, sham surgery or denervation of
the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hyper-
trophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell
infiltration (P < 0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force, and
key markers of hypertrophic signaling (Akt, 4EBP1, and FoxO1) were not significantly affected by smoking or diet. The increase in
plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice
(smoking � diet interaction for hypertrophy, P = 0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespec-
tive of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone
did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened
when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may
be less likely to respond to a training program.

NEW & NOTEWORTHY Plantaris hypertrophy caused by compensatory overload after denervation of the soleus and gastrocne-
mius muscles showed increased mass and fiber dimensions, but to a lesser extent when vitamin D deficiency was combined
with cigarette smoking. Fatigue resistance was elevated in hypertrophied plantaris, irrespective of diet or smoking, whereas
physical fitness, hypertrophic markers, and in situ plantaris force were similar. These data showed that the hypertrophic
response to overload is attenuated when both conditions are combined.

fiber size; hypertrophy; smoking; vitamin D

INTRODUCTION

For several decades, cigarette smoking has remained a
major avoidable public health hazard as �20% of adults
worldwide are active cigarette smokers (1). Cigarette smoke
(CS) contains more than 5,000 known toxic constituents and
several other unidentified components, and it is one of the
greatest sources of human exposure to poisonous chemicals
(2, 3). CS does not only affect pulmonary function but also
has extrapulmonary deleterious effects such as CS-induced

skeletal muscle dysfunction (4–8). In humans and animal
models, chronic cigarette smoking has been associated with
skeletal muscle weakness and atrophy, impaired mitochon-
drial function, reduced vasodilation, decreased perfusion,
and diminished fatigue resistance (6, 9–11).

Skeletal muscle hypertrophy is defined as an increase in
muscle mass due to an increase in fiber size (12, 13). It occurs
mainly in response to resistance exercise training in humans
(14, 15) and in animal models by exercise training, overload-
ing a muscle via denervation (16–23), or elimination of
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synergist muscles (24–30). Although denervation of syner-
gists elicits less hypertrophy than synergist ablation (14), the
denervation surgery is much less invasive and elicits less
inflammation than ablation of synergistic muscles (31).

Skeletal muscle mass and fiber cross-sectional areas are
maintained by a tight balance between protein synthesis and
degradation, both of which are modulated by physical activ-
ity, diet, disease or injury, and hormonal balance, among
others (32). CS may impair the skeletal muscle hypertrophic
response through its negative effects on muscle protein turn-
over (9, 33) and its potential to induce systemic inflammation
and local muscle hypoxia, which may potentially impair the
skeletal muscle hypertrophic response. This has, however,
not yet been investigated.

Beside the many functions of vitamin D in metabolism,
recent studies in humans and mice have indicated that
chronic vitamin D deficiency, which is highly prevalent in
the general population, leads to muscle atrophy (particularly
in type II fibers), lower strength, lower mitochondrial func-
tion, and decreased vitamin D receptor expression (34–37).
In addition, vitamin D deficiency may impair muscle regen-
eration (38) and therefore perhaps also the muscle hyper-
trophic response to overload. Cigarette smoking has been
shown to augment the risk for vitamin D deficiency by
impairing the enzymes involved in vitamin D synthesis,
increasing the activity of enzymatic markers of liver damage
and other mechanisms (39–41). Given that both vitamin D
deficiency and cigarette smoking have been associated with
muscle wasting and mitochondrial dysfunction, it is perhaps
no surprise that a recent study reported that vitamin D defi-
ciency aggravated the muscle wasting induced by cigarette
smoking in a mouse model (34). However, whether vitamin
D deficiency alone or in combination with cigarette smoking
impairs the skeletal muscle hypertrophic response has hith-
erto not been explored. Better understanding of the interac-
tion may be relevant to human exercise training studies
where a weak response to exercise training in �30% of
patients with chronic obstructive pulmonary disease (COPD)
remains a poorly understood problem.

The objective of this study was to assess whether cigarette
smoking, vitamin D deficiency, or their combination affects
the muscle hypertrophic response to overload. To investigate
this, we used smoking mice made vitamin D deficient by diet.
We hypothesized that 1) chronic cigarette smoke exposure or
vitamin D deficiency blunts the hypertrophic response of
skeletal muscle to overload and 2) this effect is larger when
cigarette smoke exposure is combined with vitamin D defi-
ciency. To induce muscle hypertrophy, we overloaded the
plantaris muscle through denervation of the gastrocnemius
and soleusmuscles in one hind limb.

MATERIALS AND METHODS

Study Design

Seventy-two 3-wk-old male C57Bl/6JolaH mice were ran-
domly divided into two groups of 36 mice: one group received
a standard diet (wt/wt: 1% calcium and 0.7% phosphorus),
whereas the other group received a vitamin D-depleted diet
(<200 IU/kg body mass vitamin D) with 20% lactose, 2% cal-
cium, and 1.25% phosphorus to preserve serum calcium and

phosphorus homeostasis (34, 42, 43). All mice were housed in
an ultraviolet-light-free environment to prevent de novo syn-
thesis of vitamin D in the skin. At the age of 8wk, mice were
subdivided into four groups of 18 mice each: normal diet-air-
exposed (NAir), normal diet-smoke-exposed (NSmo), vitamin
D-deficient diet-air-exposed (DAir), and vitamin D-deficient
diet-smoke-exposed (DSmo) groups. After acclimatization by
progressive exposure to cigarette smoke (CS) or room air in
soft restrains, the CS-exposed mice were exposed via a nose-
only exposure system (InExpose System, SCIREQ, Montreal,
Canada) to six 3R4F research cigarettes with filter (Kentucky
Tobacco Research and Development Center, University of
Kentucky) twice daily, 5 days a week (9, 44) for 18wk. The air-
exposed animals were exposed to room air in soft restrains for
the same length of time. After 6wk of exposure to either room
air or CS, the left plantaris muscle was overloaded to induce
compensatory hypertrophy (Fig. 1). The model of functional
elimination of synergist muscles through denervation of the
gastrocnemius and soleusmuscles was chosen in this study to
overload the plantaris muscle. This model of compensatory
hypertrophy of the plantaris muscle is associated with
lower inflammation and less-invasive nature of surgery
than the ablation model (31), putting a lesser burden on
the animal in line with “Refinement” of the three Rs
(Replacement, Reduction, and Refinement) to minimize
potential pain, suffering, or distress of animals.

Total particle density in CS was measured daily using a
particle density meter (Microdust, Casella CEL, Bedford,
UK). The average level of total particulate density in CS was
188± 29mg/m3 during each smoking session. Body mass and
food intake were measured weekly using a laboratory bal-
ance (KERN Precision balance). Food intake was not meas-
ured during the weeks of surgery and recovery.

All experiments were performed in line with the institu-
tional, national, and European guidelines for animal welfare
andwere approved by the ethical committee for animal experi-
mentation of the KU Leuven (Authorization No. P050/2016).

Induction of Hypertrophy in the Left Plantaris Muscle

The overload of the left plantaris muscle started after 6wk of
cigarette smoke/room air exposure. Mice were anesthetized
with a mixture of ketamine (100mg/kg, Ketalar, Pfizer,
Belgium), xylazine (10mg/kg, Rompun, Bayer, Belgium), and
acepromazine (3mg/kg, Placivet, Kela, Belgium) administered
intraperitoneally at a volume of 150mL/25 g. After cessation of
nociceptive responses, an incision was made in the popliteal
area of the left hind limb to expose the tibial nerve with blunt
dissection. The branches of the tibial nerve that innervate the
soleus and gastrocnemius muscles were cut and small seg-
ments removed to prevent reinnervation. This strategy imposes
an overload and subsequent compensatory hypertrophy of the
plantaris muscle (17, 18). A sham operation was performed on
the right hind limb that served as an internal control.
Postoperative care included intraperitoneal injections of bupre-
norphine (0.2mg/kg) once a day for 3days. After this 3-day re-
covery,mice were again exposed to either room air or CS.

Physical Fitness

Maximal exercise capacity and whole body strength were
measured before the start of CS or room air exposure
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(baseline), before surgery (week 6), and after 18wk. The test
to measure maximal exercise capacity consisted of a 5-min
warm up on a treadmill (0% incline, 3m/min), followed by
1m/min increments in speed every minute until exhaustion.
Maximal exercise capacity was defined as the maximum
speed attained by each animal. Whole body strength was
measured by placing the mouse on a grid that was subse-
quently inverted and the latency-to-fall time was recorded.
This served as a proxy for maximal muscle strength.

In Situ Contractile Properties

The force generating capacity and fatigue resistance were
determined in situ in the overloaded and sham plantaris
muscle, as described before (9, 18). Mice were anaesthetized
with a mixture of ketamine (100mg/kg, Ketalar, Pfizer,
Belgium), xylazine (10mg/kg, Rompun, Bayer, Belgium), and
acepromazine (3mg/kg, Placivet, Kela, Belgium) adminis-
tered intraperitoneally at a volume of 150mL/25 g. The plan-
taris muscle was prepared free, keeping its blood and nerve
supply intact, and the distal tendon was attached to a FORT-

100 force transducer (World Precision Instruments, Sarasota,
FL). The tibial nerve was cut proximally, and the distal end
was placed over stimulating electrodes to elicit contractions
by supramaximal stimulation. The force was digitally
recorded. Optimal muscle length was set with repeated
twitch contractions 30s apart and defined as the length at
whichmaximal active twitch force was developed. Themaxi-
mal twitch (at 1Hz) and tetanic (at 200Hz, train duration =
250ms) tensions were recorded.

Subsequently, two sequential fatigue resistance tests were
performed. The first one, which activates muscle metabo-
lism and blood flow (9, 18), consisted of a 1-min test with
100-Hz contractions with a duty cycle of 100ms on/1,900ms
off for 1min (FI100). The second fatigue test consisted of re-
petitive isometric contractions at 30Hz with a duty cycle of
330ms on/670ms off for 4min (FI30). Fatigue indices were
computed as follows: for FI100, force of the last contraction
was divided by the highest contraction in this cycle, whereas
for FI30, force 2min after the strongest contraction was di-
vided by the strongest contraction in this cycle. After the

Figure 1. Study design. A: seventy-two 3-wk-old male C57Bl/6JolaH mice were randomly assigned to two equal groups and fed for 5wk with a normal diet
or vitamin D-deficient diet. B: at the age of 8wk, the mice were subdivided into four equal groups (n= 18/36) and acclimatized to the setup for 1 wk to be
exposed to cigarette smoke (CS) or room air. Surgery to overload the left plantaris muscle was performed 6wk after starting exposure to CS or room air.
Analysis was performed 18wk after the start of exposure. More details are presented in Study Design section. DAir, vitamin D-deficient diet-air-exposed;
DSmo, vitamin D-deficient diet-smoke-exposed; NAir, normal diet-air-exposed; NSmo, normal diet-smoke-exposed; vit. D, vitamin D.
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fatigue test, the optimal length was measured and the plan-
taris muscle excised and weighed. Forces were reported in
mN and as specific force (force normalized to the anatomical
cross-sectional area of the muscle). Anatomical cross-sec-
tional area was calculated as follows:

Anatomical CSA ¼ ½ðmuscle mass gð Þ�=
f½optimal length cmð Þ� � ð1:056 g=cm3Þg; ð1Þ

where 1.056 represents the muscle density.

Inflammatory Cell Counts in the Bronchoalveolar
Lavage Fluid

To assess lung inflammation, mice were tracheotomized,
and the lungs were lavaged four times using Dulbecco’s
phosphate-buffered saline to obtain bronchoalveolar lavage
fluid. Total cell counts were performed with pooled fractions
using a hemocytometer (B€urker bright-line, Optic Labor)
with trypan blue staining. The rest of the fluid was centri-
fuged at 1,000 g for 10min at 4�C, and the resulting cell pel-
lets were stained with Diff-Quick (Medical Diagnostics,
D€udingen, Germany) and 3� 100 cells were counted to
obtain differential cell counts (neutrophils, macrophages,
and lymphocytes).

SerumMeasurements

Serum from blood collected from the vena cava was used
to measure 25-OH Vitamin-D3-D6 levels using liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) (LC,
Shimadzu and MS, Qtrap 5500, Sciex) as described previ-
ously (44).

Muscle Histology

Left and right plantaris muscles were frozen using isopen-
tane cooled in liquid nitrogen and stored at �80�C. Serial 5-
mm cross sections were stained with hematoxylin-eosin to vis-
ualize potential structural alterations, and the periodic acid-
Schiff (PAS) staining was used to assess glycogen content. To
discriminate glycogen from other PAS-positive components
(such as glycoproteins and proteoglycans), a serial section per
muscle was pretreated with 0.05% a-amylase to digest glyco-
gen and then with PAS, whereas another section was solely
stained with PAS. Immunohistochemical staining for myosin
heavy chain isoforms was performed on serial sections to
measure the fiber cross-sectional areas (FCSA) and fiber type
distribution (34). The pooled FCSA was calculated as total
FCSA normalized for fiber type distribution. Areal fiber pro-
portions were calculated as (e.g., for type IIA) follows:

100%� fðCSA IIA�%IIAÞ=½ðCSA IIA�%IIAÞ
þ ðCSA IIX�%IIXÞ þ ðCSA IIB�%IIBÞ�g: ð2Þ

In each section, 150–180 fibers were analyzed for fiber
type composition and FCSA.

Western Immunoblotting of Key Markers of
Hypertrophic Signaling

Total protein concentration.
The plantaris muscles were homogenized in Tris-HCl buffer
(5mM EDTA and 5mM Tris-HCl, pH 7.5) 1:10 (wt/vol) con-
taining a protease inhibitor cocktail (Roche, Complete) as
described previously (45). Total protein concentration was

measured using the Bradford method and was expressed as
mg/mg plantaris weight.

Western blotting.
We performed Western blotting on the overloaded muscles
to assess whether there were different expression patterns
of the hypertrophic markers between the different groups.
For that purpose, equal concentrations of protein (15–
30 mg) were separated under reducing conditions using
12% SDS-PAGE (Biorad mini-PROTEAN) and transferred
onto polyvinylidene fluoride membranes (Millipore). The
membranes were blocked in 5% nonfat dry milk or 5% bovine
serum albumin in TBS-0.1% Tween 20 and then incubated
overnight at 4�C with primary antibody. The following pri-
mary antibodies from Cell Signaling Technologies (Leiden,
The Netherlands) were used: anti-phospho-Akt (No. 4060S,
1:2,000), anti-Akt (No. 9272S, 1:2,000), anti-phospho-4EBP1
(No. 2855S, 1:1,000), anti-4EBP1 (No. 9644S, 1:1,000), anti-
phospho FoxO1 (No. 9461S, 1:1,000), and anti-FoxO1 (No.
2880S, 1:1,000). After incubation with the horseradish peroxi-
dase (HRP)-conjugated secondary antibody (P0217, Sigma),
protein bands were detected using an enhanced chemilumi-
nescence system (Sigma-Aldrich, Belgium and Thermo Fisher
Scientific) and analyzed using the software package (Bio 1D)
of the blot imaging system (Photo print, Vilber, France), and
phosphorylation status (activity) was determined as the ratio
of phosphorylated to total protein.

Statistical Analysis

The data were analyzed using GraphPad prism for windows,
version 8.2.1 (GraphPad Software, CA) and SPSS statistics v.
26.0 (IBM corporation, NY). A Shapiro–Wilk test was used to
test whether the data in each group were normally distributed.
Comparison of body mass, whole body strength, maximal
exercise capacity, protein levels, and lung inflammation
between groups was done using a two-way analysis of variance
(ANOVA) with CS exposure and vitamin D deficiency as inde-
pendent factors. Muscle mass and histology data were ana-
lyzed using a three-way ANOVA with CS exposure, vitamin D
deficiency, and hypertrophy/atrophy as independent factors.
Tukey’s post hoc tests were used for multiple comparisons.
Mixed-model analysis followed by Tukey’s post hoc test was
done when the data had random missing values. Multifactor
ANOVA was used when the comparison between groups
involved more than three variables as was the case with FCSA
and proportions. Significance level was set at P < 0.05. Values
are presented asmeans ± standard deviation (SD).

RESULTS

Vitamin D Levels in Serum

Serum levels of 25(OH)D in the mice on vitamin D-defi-
cient diet were below the level of detection (<2.1mg/L) and
lower than in the mice on normal diet (19.4±2.8mg/L).
Exposure to CS did not significantly alter the serum vitamin
D concentration.

Lung Inflammatory Cell Count

Exposure to CS caused significant lung inflammation as
reflected by the higher total cell count, neutrophils, and
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macrophages (all P < 0.0001) in the bronchoalveolar lavage
fluid after smoking, irrespective of diet (Fig. 2,A–C).

Body Mass and Food Intake

Bodymass increased over time but significantly less in CS-
exposed animals from the 11th week on, irrespective of diet
(Fig. 3A).

Food intake was similar in all groups for the first 2wk.
From week 3 on, mice on a vitamin D-deficient diet ate less
than their counterparts on a normal diet (P< 0.05). Also, CS-
exposed mice generally ate less than their air-exposed coun-
terparts fromweek 5 on (P< 0.05). There were no interaction
effects (Fig. 3B).

Physical Fitness

CS exposure and/or vitamin D deficiency did not signifi-
cantly affect maximal exercise capacity at any timepoint
(Fig. 4A). There were also no differences in whole body
strength between groups at any timepoint (Fig. 4B).

Skeletal Muscle Structure and Contractile Function

Muscle mass.
There was no significant effect of either smoking or vitamin
D deficiency on the mass of the control and overloaded plan-
taris muscle (Fig. 5A). As expected, the mass of the over-
loaded left plantaris muscles was higher than that of the
contralateral muscle (þ 32%, P < 0.0001). This response was
not significantly affected by CS exposure or vitamin D defi-
ciency (Fig. 5A).

The soleus and gastrocnemius (Fig. 5, B and C) mass in the
smoking mice was lower than that of nonsmoking mice, irre-
spective of diet (P = 0.012). The mass of the denervated sol-
eus and gastrocnemius (Fig. 5, B and C) muscles was lower
than the contralateral muscles (P < 0.0001), irrespective of
group (Fig. 5B). The vitamin D � atrophy interaction (P =

0.008) for the gastrocnemius muscle was reflected by a
larger decrease in muscle mass in vitamin D-deficient mice,
irrespective of smoking status (Fig. 5C).

Plantaris muscle force and fatigue index.
Despite plantaris hypertrophy, no significant differences
were observed in absolute (N) twitch (Fig. 6A) and tetanic
(Fig. 6B) forces compared with the contralateral muscle. The
same holds true for specific twitch and tetanic force (Table
1). However, when we compared force measurements from
the pooled sham and hypertrophied muscles, not consider-
ing the vitamin D or smoking status, we found that the over-
loaded muscles produced higher absolute twitch (P = 0.043)
and tetanic (P = 0.038) forces than the sham muscles,
whereas specific force did not differ significantly (Table 1).

The hypertrophied plantaris muscles had a higher fatigue
index (FI100 and FI30) than the contralateral muscle (P =
0.010 for FI100 and P = 0.009 for FI30, Fig. 6, C and D) with
no significant effect of smoking and/or vitamin D deficiency.

Plantaris Muscle Histology

Compared with shamplantarismuscle, hematoxylin-eosin
staining did not show any signs of structural alterations or
presence of inflammation in the overload plantaris muscle
of any group (Fig. A1). There was also no evidence for glyco-
gen storage in the overload plantaris muscle compared with
sham plantaris muscle in any of the groups (Fig. A2).

Plantaris Muscle Fiber Cross-Sectional Area and Fiber
Type Composition

Fiber cross-sectional area.
A typical example of a plantaris muscle cross section stained
for different myosin heavy chain isoforms used to determine
fiber types, areas, and proportions is shown in Fig. 7, A and
B. Due to the low presence or complete absence of type I

Figure 2. Lung inflammatory cell count.
Total cell count (A), number of neutrophils
(B), and macrophages (C) were signifi-
cantly higher in the bronchoalveolar la-
vage fluid after smoking, irrespective of
diet. DAir, vitamin D-deficient diet-air-
exposed (brick bars); DSmo, vitamin D-de-
ficient diet-smoke-exposed (gray bars);
NAir, normal diet-air-exposed (open bars);
NSmo, normal diet-smoke-exposed (black
bars) mice. ����P < 0.0001. Data are pre-
sented as means ± SD.
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muscle fibers in the plantaris, they were not considered in all
histological analyses.

The fibers of overloaded plantaris muscles were larger [P =
0.0003 (IIA); P = 0.0002 (IIX); P = 0.0004 (IIB)] compared
with the contralateral muscle, when analyzed per type (Fig.
7, C–E) or pooled (Fig. 7F, P = 0.0016), irrespective of vitamin
D deficiency or smoking. However, the increase in FCSA (hy-
pertrophic response) in the vitamin D-deficient smoking
mice was smaller (interaction effect between smoking and
vitamin D deficiency for hypertrophy; P = 0.03), suggestive
of a blunted hypertrophic response in the vitamin D-defi-
cient CS-exposedmice.

Fiber type distribution and areal proportions.
There were no significant main effects of CS exposure, hy-
pertrophy, or vitamin D deficiency on the proportion of
type IIA and IIX fibers. However, there were significant
interactions between vitamin D deficiency and hypertro-
phy (P = 0.021) and between CS exposure and hypertrophy
(P = 0.038) for the proportion of IIX fibers (Fig. 8A), which
implies that the combination of vitamin D deficiency and
CS exposure led to a higher percentage of IIX fibers in the
overloaded muscles but not in the other groups. The nu-
merical (Fig. 8B) and areal (Fig. 8C) proportions of type
IIB fibers were lower in the hypertrophied muscles, irre-
spective of CS exposure and/or vitamin D deficiency (P =
0.04).

Total protein concentration and protein synthesis
markers.
Total protein concentration was similar in the sham and
overloaded plantaris, irrespective of smoking or vitamin D
status (pooled values: sham 0.153±0.036 mg/mg vs. overload
0.147±0.022mg/mg plantaris weight).

There were no significant main effects of, or interactions
between, CS exposure and vitamin D status on the total pro-
tein concentration and activity of Akt (Fig. 9B), 4EBP1 (Fig.
9C), and FoxO1 (Fig. 9D) in the hypertrophied plantaris mus-
cle. Typical examples of Western blots for Akt, phospho-Akt,
4EBP1, phospho-4EBP1, FoxO1, and phospho-FoxO1 can be
seen in Fig. 9A.

DISCUSSION

This study examined for the first time whether cigarette
smoking and/or vitamin D deficiency affect the hypertrophic
response of skeletal muscle to overload in mice. Our data
reveal that CS exposure or vitamin D deficiency alone did
not attenuate muscle fiber hypertrophy in the overloaded
plantaris, but this response was reduced in vitamin D-defi-
cient CS-exposed mice. If this can be translated to human
application, it might be considered as one possible avenue to
explain less training response to resistance training if such
patients undergo a training program.

In agreement with previous studies, CS exposure led to
significantly lower body mass (4, 8, 9, 46, 47), loss of soleus
and gastrocnemius muscle mass (5, 34, 46), and lung inflam-
matory cell infiltration (47, 48), irrespective of diet. We con-
firmed that maximal exercise capacity and whole body
strength remained unaffected after 14–24wk of CS exposure
(9, 48).

Corresponding with previous studies, mice on the vitamin
D-deficient diet became severely deficient as compared with
those on a normal diet (44). Even though CS exposure is a
known risk factor for vitamin D deficiency (39), it did not al-
ter the levels of vitamin D. Although the mice on a vitamin
D-deficient diet generally ate less, their body mass gain was
not lower than their counterparts on a normal diet. This

Figure 3. Body mass and food intake dur-
ing cigarette smoke or air exposure. Body
mass gain (A) was lower in the cigarette
smoke (CS)-exposed mice and food intake
(B) in vitamin D-deficient mice was less
from week 2. DAir, vitamin D-deficient diet-
air-exposed (open squares); DSmo, vitamin
D-deficient diet-smoke-exposed (crosses);
NAir, normal diet-air-exposed (open trian-
gles); NSmo, normal diet-smoke-exposed
(closed circles) mice. Black arrows indicate
overload surgery. �P < 0.05 vs. smoking,
#P < 0.05 vs. vitamin D deficiency. Values
are presented as means ± SD.

Figure 4. Physical fitness at euthanasia.
Maximal exercise capacity (A) and whole
body strength (latency-to-fall time) (B) at
euthanasia in all groups. There was no sig-
nificant difference in maximal exercise
capacity or whole body strength between
groups. DAir, vitamin D-deficient diet-air-
exposed (brick bars); DSmo, vitamin D-defi-
cient diet-smoke-exposed (gray bars); NAir,
normal diet-air-exposed (open bars); NSmo,
normal diet-smoke-exposed (black bars)
mice. Values are presented as means ± SD.
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suggests that the energy efficiency was elevated or physical
activity levels were reduced in mice on a vitamin D-deficient
diet. However, the maximal exercise capacity, whole body
strength, and skeletal muscle fatigue resistance were not

diminished by smoking or vitamin D deficiency. Although
all animals underwent a unilateral denervation, and hence
most likely had a somewhat altered running gait, these data
indicate that the physical activity was not so diminished to

Figure 6. Effects of cigarette smoke expo-
sure and vitamin D deficiency on contract-
ile properties. In situ left hypertrophied
(Hyp) and right (Sham) plantaris muscle
absolute twitch (1Hz) force (A), absolute
tetanic (200Hz) force (B), fatigue index at
100Hz stimulation (FI100; C), and fatigue
index at 30Hz stimulation (FI30; D).
Hypertrophied plantaris muscles had a
higher fatigue resistance, irrespective of
diet and/or smoking. Abs., absolute; DAir,
vitamin D-deficient diet-air-exposed (brick
bars); DSmo, vitamin D-deficient diet-
smoke-exposed (gray bars); NAir, normal
diet-air-exposed (open bars); NSmo, nor-
mal diet-smoke-exposed (black bars)
mice; vit. D, vitamin D. �P < 0.05 vs. con-
tralateral control. Values are presented as
means ± SD.

Figure 5. Effects of cigarette smoke expo-
sure, vitamin D deficiency, and overload/
denervation on plantaris, soleus, and gas-
trocnemius muscle mass. Mass of the
overloaded (left) and sham (right) plantaris
(A), denervated and sham soleus (B), and
denervated and sham gastrocnemius (C).
Plantaris muscle overload led to a signifi-
cant increase in mass, whereas denerva-
tion of the soleus and gastrocnemius
caused significant decrease in mass. DAir,
vitamin D-deficient diet-air-exposed (brick
bars); DSmo, vitamin D-deficient diet-
smoke-exposed (gray bars); NAir, normal
diet-air-exposed (open bars); NSmo, nor-
mal diet-smoke-exposed (black bars)
mice; vit. D, vitamin D. �Significant hyper-
trophic or atrophic response (P < 0.05);
#P < 0.05 for air vs. CS; $More atrophy in
the gastrocnemius muscles of vitamin D-
deficient mice. Values are presented as
means ± SD.
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have an impact on skeletal muscle structure and function.
In line with this, it has been shown that vitamin D-defi-
cient mice showed no alterations in physical fitness even
after 24wk except when specific muscles were immobi-
lized (49).

In agreement with previous studies reporting muscle
wasting due to smoking (48, 50), we also observed a lower
muscle mass in smoking mice. Similarly, in our study, there
was no significant effect of the vitamin D status on muscle
mass in line with previous studies in vitamin D-deficient rats
where calcium and phosphorus serum levels were main-
tained within the normal range (51, 52). Another factor that
may underlie the muscle wasting in these conditions is
disuse as suggested by the reduced exercise capacity in
vitamin D deficiency (53), although the mice in our and
another study (49) showed no indication of reduced exer-
cise capacity.

As expected, overload of the left plantaris muscle by de-
nervation of synergists in our study led to hypertrophy as
demonstrated by the increase in plantaris mass and FCSA.
Although CS exposure and/or vitamin D deficiency alone did
not attenuate the compensatory increase in plantaris mass
and fiber size, combination of smoking and vitamin D defi-
ciency reduced the overload-induced fiber hypertrophy. It

Figure 7. Effects of cigarette smoke expo-
sure, vitamin D deficiency, and overload
on plantaris muscle fiber cross-sectional
area (FCSA). Representative example of
left hypertrophied (Hyp) (A) and right
(Sham) (B) plantaris muscle cross sections
stained for the different myosin heavy
chain isoforms. IIA (C), IIX (D), IIB (E), and
pooled (F) fiber cross-sectional areas
(FCSA) in Hyp and sham plantaris in DAir,
vitamin D-deficient diet-air-exposed (brick
bars); DSmo, vitamin D-deficient diet-
smoke-exposed (gray bars); NAir, normal
diet-air-exposed (open bars); NSmo, nor-
mal diet-smoke-exposed (black bars)
mice. Hypertrophy led to an increase in
FCSA, irrespective of diet or smoking.
�Significant effect of hypertrophy (P <
0.05 vs. contralateral control); $Blunted
hypertrophic response in vitamin D-defi-
cient CS-exposed mice (P < 0.05). Values
are presented as means ± SD. vit. D, vita-
min D.

Table 1. Specific twitch and tetanic force in vitamin-suffi-
cient (normal) and -deficient mice in the different groups

Twitch Force, N/cm2 Tetanic Force, N/cm2

Plantaris Muscle Normal Deficient Normal Deficient

Air-Hyp 6.3 ± 2.9 7.1 ± 2.2 20.9 ± 10.0 24.9 ± 8.8
Air-Sham 6.3 ± 2.7 6.2 ± 1.7 22.6 ± 6.9 21.1 ± 8.7
Smo-Hyp 5.2 ± 1.8 7.3 ± 1.3 20.6 ± 7.5 28.4 ± 10.5
Smo-Sham 7.3 ± 2.2 6.3 ± 1.0 24.2 ± 4.7 29.0 ± 6.7

Values are presented as means ± SD. Air-Hyp, air-exposed and
overload plantaris; Air-Sham, air-exposed and sham plantaris;
Smo-Hyp, cigarette smoke-exposed and overload plantaris; Smo-
Sham, cigarette smoke-exposed and sham plantaris.
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might be possible that an overload model, like synergist
ablation that induces a larger amount of hypertrophy than
denervation of synergists (14), would have shown a more
profound inhibition of the hypertrophic response. Despite
the attenuated fiber hypertrophy, the smoking vitamin D-de-
ficient mice showed no attenuated increase in muscle mass.
This apparent dissociation between muscle fiber hypertro-
phy and the increase in muscle mass may be attributable to
measuring errors in muscle mass that were proportionally
larger for smaller than larger muscle masses and/or a type II
statistical error. Whatever the cause, the findings of the atte-
nuated fiber hypertrophy in smoking and vitamin D-defi-
cient mice give an indication that current smokers who also
present with vitamin D deficiency may be less likely to
respond to a training program.

Despite the overload-induced increase in plantaris muscle
mass and FCSA, there were no significant changes in planta-
ris force-generating capacity, irrespective of CS exposure
and/or vitamin D deficiency. Although the plantaris muscle
was not stronger, it is unlikely that the hypertrophy was
related to inflammation, as inflammation has been shown to
occur within the first week of overload only (28, 54, 55), and
the model we used is associated with less inflammation than
ablation of synergists (31). This is further confirmed in our
study by the absence of signs of inflammation in hematoxy-
lin-eosin-stained muscle sections. In addition, hypertrophy
was probably not related to water retention due to glycogen,
as the glycogen content appeared similar in sham and over-
loaded muscles. Perhaps the most convincing argument
against any pseudohypertrophy is the similar specific
tension in sham and overloaded muscles, a consistent

observation in this model of overload by denervation of syn-
ergist muscles (16, 20, 23), whereas ablation is often accom-
panied by a reduction in specific tension (26, 56). There
were, however, no significant interactions with vitamin D
or smoking status, and when all data were pooled, not
considering smoking or vitamin D status, hypertrophy
was associated with an increase in force-generating
capacity. This overload-induced increase in force-gener-
ating capacity is in line with previous studies in both rats
on a normal diet (19) and mice (17, 23, 26).

The hypertrophied plantaris muscles of the mice in our
study were more resistant to fatigue, irrespective of CS expo-
sure and/or vitamin D deficiency. This improved fatigue re-
sistance may be the result of a decreased proportion of type
IIB fibers as observed here and by others (22, 57), as the ATP
cost for isometric tension is higher for type IIB than any
other fiber type (58). Thus, although the hypertrophic
response was blunted in the presence of both vitamin D defi-
ciency and smoking, this combination did not attenuate the
improvement in fatigue resistance during hypertrophy.

To determine whether there was a different expression pat-
tern of the hypertrophic markers in the overloaded plantaris
depending on whether the animals were smokers or vitamin
D deficient or sufficient, key markers of hypertrophic signal-
ing pathways were measured in the hypertrophied plantaris
muscles. No differences in protein levels of positive regulators
(Akt and 4EBP1) (57) and negative regulators (FoxO1) (59) of
muscle protein homeostasis were observed between the dif-
ferent groups, indicating no effect of CS and/or vitamin D
deficiency on these hypertrophic markers within the overload
plantaris. The lack of differences in the levels of hypertrophic

Figure 8. Fiber proportions and contribu-
tion to total area. Numerical proportions of
type IIX (A), IIB (B), and areal proportions
of IIB (C) fibers in the hypertrophied (Hyp)
and sham plantaris muscle in DAir, vitamin
D-deficient diet-air-exposed (brick bars);
DSmo, vitamin D-deficient diet-smoke-
exposed (gray bars); NAir, normal diet-air-
exposed (open bars); NSmo, normal diet-
smoke-exposed (black bars) mice. The
hypertrophied plantaris muscle had a lower
numerical and areal proportion of type IIB
fibers, whereas type IIX fiber proportions
only showed interactions (vitamin D defi-
ciency � hypertrophy; CS-exposure � hy-
pertrophy) with no main effects of CS
exposure, hypertrophy, or vitamin D defi-
ciency. �Significant effect of hypertrophy
(P < 0.05 vs. contralateral control); $Larger
overload effect comparedwith CS exposure
(P = 0.038); &Larger overload effect com-
pared with vitamin D deficiency. The inter-
actions suggest that combined treatment
caused lower %IIX. Values are presented as
means ± SD. vit. D, vitamin D.
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markers in our study might reflect that the increase in these
hypertrophic markers is of a similar magnitude in the differ-
ent groups and/or that we were too late in the time course of
the development of hypertrophy to still be able to detect acti-
vation of the hypertrophic signaling pathways. Indeed, the
activation of hypertrophic signaling pathways during over-
load is a transient phenomenon, with enhanced hypertrophic
markers occurring during the first 3 wk after overload to then
normalizing to control levels. For instance, it has been
reported that IGF-1, mechanosensitive growth factor (MGF),
and myogenin remained elevated for 2–4wk after induction
of plantaris overload (24, 25) to then return to baseline levels
(24). Similarly, phosphorylation of 4EBP1 remained elevated
15days after overload and had returned to control levels by
90days (24), and phosphorylation of Akt was reported 2–
10days after overload (27) and had returned to baseline values
after 14days of overload (26). Our data on unchanged 4EBP1
and Akt 12wk (84days) in the overloadmuscles are, therefore,
not completely surprising and would support the interpreta-
tion of being too late to still detect activation of hypertrophic
signaling. However, it may well be possible that the hyper-
trophic response was somewhat delayed during smoking or
vitamin D deficiency as a consequence of an attenuated acti-
vation of these signaling pathways, but with our study design,

we did not catch this event. Such a situation is reminiscent to
the delayed response to electrical stimulation in muscles (60)
and the delayed hypertrophy after reloading of disused mus-
cle (61) from old rodents. It therefore remains to be seen
whether the development of hypertrophy is delayed in vita-
min D deficiency and/or smoking.

We can, however, not entirely exclude that these markers
were elevated in the overloaded muscles, as the expression
was solely determined in the overload and not in the corre-
sponding sham plantaris muscles. Admittedly, if we also had
the data for the sham legs, we could have determinedwhether
the markers were elevated in the hypertrophied muscles.
Nevertheless, the expression levels of thesemarkers were sim-
ilar in the hypertrophic muscles of the different groups, sug-
gesting that at least after 84days of overload, there is indeed
no indication of a different response to overload of these
markers in the different groups.

To conclude, even though smoking and vitamin D defi-
ciency individually did not alter the hypertrophic response
of skeletal muscle to overload, the combination of smoking
and vitamin D deficiency did blunt the development of over-
load-induced hypertrophy. These findings should be kept in
mind especially when attempting to improvemuscle mass in
individuals who are smoking and vitamin D deficient.

Figure 9. Protein synthesis markers in left plantaris. A: representative examples of Western immunoblots from hypertrophied plantaris muscles for phos-
pho-Akt, total-Akt, phospho-4EBP1, total-4EBP1, phospho-FoxO1, and total-FoxO1. Phospho-Akt/total-Akt ratios (B), phospho-4EBP1/total-4EBP1 ratios (C),
and phospho-FoxO1/total-FoxO1 ratios (D) in DAir, vitamin D-deficient diet-air-exposed (brick bars); DSmo, vitamin D-deficient diet-smoke-exposed (gray
bars); NAir, normal diet-air-exposed (open bars); NSmo, normal diet-smoke-exposed (black bars) mice. There were no significant effects of cigarette
smoking or vitamin D status. Values are presented as means ± SD.
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