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Assessing the Benefits of Nature-Inspired Algorithms
for the Parameterization of ANN in the Prediction

of Water Demand
Salah L. Zubaidi1; Nabeel Saleem Saad Al-Bdairi2; Sandra Ortega-Martorell3;
Hussein Mohammed Ridha4; Nadhir Al-Ansari5; Hussein Al-Bugharbee6;

Khalid Hashim7; and Sadik Kamel Gharghan8

Abstract: Accurate forecasting techniques for a stochastic pattern of water demand are essential for any city that faces high variability in climate
factors and a shortage of water resources. This study was the first research to assess the impact of climatic factors on urban water demand in Iraq,
which is one of the hottest countries in theworld.We developed a novel forecasting methodology that includes data preprocessing and an artificial
neural network (ANN) model, which we integrated with a recent nature-inspired metaheuristic algorithm [marine predators algorithm (MPA)].
The MPA-ANN algorithm was compared with four nature-inspired metaheuristic algorithms. Nine climatic factors were examined with different
scenarios to simulate the monthly stochastic urban water demand over 11 years for Baghdad City, Iraq. The results revealed that (1) precipitation,
solar radiation, and dew point temperature are the most relevant factors; (2) the ANN model becomes more accurate when it is used in combi-
nation with the MPA; and (3) this methodology can accurately forecast water demand considering the variability in climatic factors. These
findings are of considerable significance to water utilities in planning, reviewing, and comparing the availability of freshwater resources
and increasing water requests (i.e., adaptation variability of climatic factors). DOI: 10.1061/(ASCE)WR.1943-5452.0001602. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Baghdad City; Climatic factors; Machine learning; Metaheuristic algorithm; Water demand model.

Introduction

Secure clean water availability, quantity, and quality, for all inhabitants
under the variability in climate change is fundamental to a resilient en-
vironment in modern cities (Tortajada et al. 2019). Freshwater scarcity

has appeared as a global challenge because of the impact of climate
change and socioeconomic factors. It led to an imbalance between
water delivered and water demanded. Worldwide, more than 1 billion
individuals lack access to safe potable water (Ahmadi et al. 2020).

Several studies conducted in different areas have shown that the
magnitude and pattern of precipitation differ as a result of climate
change (Szeląg et al. 2021). The high variability of climate change
imposes an increasing challenge for the management of freshwater
resources (i.e., due to reduced freshwater availability) (Nunes
Carvalho et al. 2021), which highlights the increasing need for pro-
tecting the quantity and quality of water resources, particularly in
sensitive zones (Lama et al. 2021a, b). Management of municipal
water planning considering a nuanced quantitative understanding
of water needs is fundamental for solving the problem of water
security (Capt et al. 2021). Accordingly, forecasting municipal
water consumption in the future with greater precision is essential
when designing water distribution networks (Pandey et al. 2021).

In Iraq, located in the fastest-warming area of the world, the
temperature reaches 54°C, which is considered one of the highest
temperatures ever measured in the Eastern Hemisphere (Salman
et al. 2018). Iraq depends on the Tigris and Euphrates Rivers as
primary freshwater resources, which originate outside the Iraqi bor-
der with Turkey. The discharge rate of these rivers has reduced to
less than a third of normal capacity because of the water policies in
Turkey, Iran, and Syria. Moreover, investments in industries after
2003 (e.g., the oil industry) has led to increased water consumption
(Osman et al. 2017). Studies have been conducted to assess the
quality of fresh water in Iraq and have reported an increase in sev-
eral contaminants (Ewaid et al. 2018). Based on these problems,
coupled with others such as continuing wars, embargo, and terror-
ism, there is an unclear view of whether decision-makers can man-
age water resources under conditions of decreased availability.

1Assistant Professor, Dept. of Civil Engineering, Wasit Univ., Wasit
52001, Iraq; Assistant Professor, College of Engineering, Univ. of Warith
Al-Anbiyaa, Karbala 56001, Iraq. Email: salahlafta@uowasit.edu.iq

2Assistant Professor, Dept. of Civil Engineering, Wasit Univ., Wasit
52001, Iraq. Email: nsaleem@uowasit.edu.iq

3Senior Lecturer, Dept. of Applied Mathematics, Liverpool John
Moores Univ., Liverpool L3 3AF, UK. ORCID: https://orcid.org/0000
-0001-9927-3209. Email: s.ortegamartorell@ljmu.ac.uk

4Ph.D. Student, Dept. of Electrical and Electronics Engineering, Faculty
of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia.
ORCID: https://orcid.org/0000-0003-4385-7154. Email: hussain_mhammad@
yahoo.com

5Professor, Dept. of Civil, Environmental and Natural Resources
Engineering, Lulea Univ. of Technology, Lulea T3334, Sweden (corre-
sponding author). Email: nadhir.alansari@ltu.se

6Assistant Professor, Dept. of Mechanical Engineering, Wasit Univ.,
Wasit 52001, Iraq. ORCID: https://orcid.org/0000-0003-1746-0137. Email:
hrazzaq@uowasit.edu.iq

7Assistant Professor, Dept. of Environment Engineering, Babylon
Univ., Babylon 51001, Iraq. Email: k.s.hashim@ljmu.ac.uk

8Professor, Dept. of Medical Instrumentation Techniques Engineering,
Electrical Engineering Technical College, Middle Technical Univ.,
Baghdad 10022, Iraq. ORCID: https://orcid.org/0000-0002-9071-1775.
Email: sadik.gharghan@mtu.edu.iq

Note. This manuscript was submitted on September 29, 2021; approved
on June 9, 2022; published online on November 7, 2022. Discussion period
open until April 7, 2023; separate discussions must be submitted for indi-
vidual papers. This paper is part of the Journal of Water Resources Plan-
ning and Management, © ASCE, ISSN 0733-9496.

© ASCE 04022075-1 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2023, 149(1): 04022075 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

82
.0

.5
6.

11
 o

n 
11

/1
4/

22
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001602
https://creativecommons.org/licenses/by/4.0/
mailto:salahlafta@uowasit.edu.iq
mailto:nsaleem@uowasit.edu.iq
https://orcid.org/0000-0001-9927-3209
https://orcid.org/0000-0001-9927-3209
mailto:s.ortegamartorell@ljmu.ac.uk
https://orcid.org/0000-0003-4385-7154
mailto:hussain_mhammad@yahoo.com
mailto:hussain_mhammad@yahoo.com
mailto:nadhir.alansari@ltu.se
https://orcid.org/0000-0003-1746-0137
mailto:hrazzaq@uowasit.edu.iq
mailto:k.s.hashim@ljmu.ac.uk
https://orcid.org/0000-0002-9071-1775
mailto:sadik.gharghan@mtu.edu.iq
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29WR.1943-5452.0001602&domain=pdf&date_stamp=2022-11-07


Predicting municipal water demand is crucial to enhancing
municipal water security, and monthly estimation is vital in the
management of dam reservoirs (Ebrahim Banihabib and Mousavi-
Mirkalaei 2019). Accurate forecasting of municipal water demand
will help utilities recognize the temporal patterns of water needed to
satisfy the balance between water delivered and water ordered,
which in turn supports the sustainability of the water system
(Altunkaynak and Nigussie 2017).

De Souza Groppo et al. (2019) and Ghalehkhondabi et al.
(2017) found that forecasting of municipal water consumption
has progressed over the last several decades, focusing on machine
learning techniques and artificial neural networks (ANNs) as the
most popular forecasting techniques. Xenochristou and Kapelan
(2020) noted that ANN models have been applied in different fields
and have been proven effective in forecasting short-, medium-, and
long-term urban water demand (Bata et al. 2020; Tiwari and
Adamowski 2015; Zubaidi et al. 2020a). Also, they have been suc-
cessfully used in ecohydraulic and environmental engineering
(Lama et al. 2021a; Pandya et al. 2017; Sadeghifar et al. 2022; Zhu
et al. 2022). However, determining the optimum hyperparameters
of machine learning models is still considered a substantial chal-
lenge. To address this, automated machine learning approaches
(such as AutoML) have been proposed to help build hybrid predic-
tion models (He et al. 2021) without extensive knowledge of
statistics and machine learning (Zöller and Huber 2021), while
reducing human effort and potential bias (Hutter et al. 2019). In
addition, recent studies (Archetti and Candelieri 2019; Chatzipavlis
et al. 2018; Frazier 2018) have investigated the use of Bayesian
Optimization (BO) to identify an optimal configuration of the hy-
perparameters of a machine learning algorithm within a limited
number of trials, especially for long-term data.

Although several automated machine learning approaches have
been applied in the last decades in forecasting water demand, there
is still room for improvement (De Souza Groppo et al. 2019). For
example, Candelieri and Archetti (2018) reported a substantial im-
provement in forecast precision over that reported in other research
studies (Candelieri 2017; Shabani et al. 2018). Furthermore, Can-
delieri and Archetti (2018) intend to utilise the other automated
machine learning techniques in other application fields. These re-
search studies highlight the importance of continuing the investi-
gation of new methodologies that may offer useful scientific
insights to policymakers. Based on recent literature (Archetti
and Candelieri 2019; Chatzipavlis et al. 2018; Frazier 2018), Baye-
sian optimization (BO) can identify an optimal configuration of the
hyperparameters of a machine learning algorithm within a limited
number of trials, especially for long-term data.

In our study, five nature-inspired optimization algorithms were
integrated in the ANN model to simulate monthly stochastic water
demand data. These algorithms include (1) the slime mold algo-
rithm (SMA), which was proposed by Li et al. (2020) and success-
fully applied in feature selection (Abdel-Basset et al. 2021), wind
power prediction (Yan and Wu 2020), and image segmentation
(Abdel-Basset et al. 2020a); (2) the marine predators algorithm
(MPA), which was proposed by Faramarzi et al. (2020) and effec-
tively applied in COVID-19 detection (Abdel-Basset et al. 2020b),
engineering applications (Ghafil and Jármai 2020), and tensile
behavior prediction (Abd Elaziz et al. 2020); (3) multiverse opti-
mizer (MVO), which was efficiently utilized in engineering opti-
mization (Sulaiman et al. 2020), streamflow prediction modeling
(Mohammadi et al. 2020), and design optimization of a cam-
follower mechanism (Abderazek et al. 2020); (4) backtracking
search algorithm (BSA), which was successfully used in identifi-
cation of soil parameters (Jin and Yin 2020), parameter estimation
of power signals (Mehmood et al. 2020), and optimization of

photovoltaic models (Zhang et al. 2020); and (5) crow search algo-
rithm (CSA), which was effectively applied in feature selection
(Ouadfel and Abd Elaziz 2020), reinforced concrete applications
(Sultana et al. 2020), and solving optimal control issues (Turgut
et al. 2020).

Currently, urban water demand forecasting is extremely chal-
lenging for water companies that are struggling to adapt water sys-
tems, specifically in terms of increasing concerns about the impact
of climate change and water security. Additionally, there are very
few studies about forecasting the stochastic signal of water needed,
based on climatic factors. Consequently, considerable uncertainty
still exists concerning the unexpected growth of stochastic patterns
in water demand resulting from the stochastic impact of climatic
factors (Zubaidi et al. 2018, 2020c). Based on the literature review,
the innovation of this research is to (1) assess, for the first time in
Iraq, the extent to which climatic factors have driven urban water
demand; (2) integrate the ANN model and the recently developed
MPA algorithm to create MPA-ANN, the first application in the
field of urban water demand forecasting; (3) compare MPA-ANN
with four nature-inspired optimization algorithms (SMA, MVO,
BSA, and CSA) to increase the forecasting range and decrease un-
certainty; (4) apply a novel methodology (data preprocessing and
hybrid model) to forecast the monthly stochastic pattern of water
demand; and (5) offer a scientific view to decision-makers of the
impact of climatic factors on water demand to satisfy sustainability
in a country that faces a unique environment of climate change and
water scarcity.

Study Area

Iraq is one of the Arab countries located in an arid to semiarid area
in the Middle East. Its capital is Baghdad City, which is situated in
the center of Iraq, covering an area of around 204.2 km2 (Fig. S1).
Baghdad City suffered from sectarian violence from 2004 to 2017
that impacted the pattern and rate of its population growth. How-
ever, Iraq had a rapid population growth rate of 2.5% in 2018, with
more than 8.5 million inhabitants living in Baghdad. The Mayor-
alty of Baghdad City has ten water treatment projects to treat and
deliver potable water from the Tigris River to residential, institu-
tional, industrial, and commercial customers. The predominant cli-
mate in Iraq is dry and hot to extremely hot in summer, and cold
and wet in winter. The country faces considerable climate change
that causes extreme heat waves and decreases the amount and
changes the pattern of precipitation. Hence, the capacity of fresh-
water resources has decreased and the municipal water system is
under stress (Chabuk et al. 2020; Ewaid et al. 2018; Zubaidi et al.
2019).

Methodology

The urban water demand methodology suggested here allows
medium-term time series demand forecasting to be calculated based
on climatic factors. Fig. 1 shows the steps needed to build it.

Forecast Model Data

Historical data can assist in estimating and extrapolating possible
impacts in the future, and the forecast will contribute to building a
looked-for future (Partidário 2007). Development of the urban
water demand-forecast model necessitates the availability of his-
torical water consumption and climatic factors time series data.
Accordingly, in this study nine climatic factors were used to simulate
monthly municipal water demand (million cubic meters; MCUM)
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over 11 years (2003–2013) in Baghdad City. These climatic factors
have been used effectively to forecast water demand in different
scenarios in studies focusing on different regions. Here they in-
cluded maximum temperature, Tmax ð°CÞ, minimum temperature,
Tmin ð°CÞ, mean temperature, Tmean ð°CÞ, precipitation, P (mm),
wind, W (m=s), solar radiation, Srad ðMJ=m2Þ, relative humidity,
RH (%), dew point temperature, Tdp ð°CÞ, and surface pressure,
Sp (kPa).

Socioeconomic factors (e.g., population) are deterministic com-
ponents (Rasifaghihi et al. 2020; Zubaidi et al. 2020c) and therefore
out of the scope of this study, which focused on the impact of climatic
factors, which have stochastic behavior, on water consumption.

Data Preprocessing

Data preprocessing is a substantial phase that brings the data to a
state that enables to easy and accurate forecasting by the developed
model. It can be divided into normalization, cleaning, and choice of
model input (Tabachnick and Fidell 2013). Haque et al. (2018)
claimed that time series should be scaled down (normalized) to
make the output space smoother and reduce the impact of outliers;
Cleophas and Zwinderman (2016) suggested applying natural log-
arithm to normalize the time series.

Data cleaning means decomposing time series trends, seasonal
(nonstationary) components, the stochastic (stationary) component,
and noise, and then selecting the stochastic component only for

dependent and independent factors because of the stochastic rela-
tionship between climatic factors and water consumption (Zubaidi
et al. 2020c). Thus, the pretreatment signal approach was used here
to implement this step.

The main aim of a factor choice procedure is to find the right
independent factors, which have a significant effect on the depen-
dent factor and yield a robust forecast model (Seo et al. 2018). In
this research, the tolerance technique was used to select the model
input factors by avoiding multicollinearity. Each independent
factor in the best scenario had to have a tolerance coefficient of
more than 0.2 to ensure that there was no collinearity (Cleophas
and Zwinderman 2016).

Artificial Neural Network

ANN is currently the most common machine learning technique
applied in the hydrological area, particularly learning using a feed-
forward back-propagation (FFBP) structure The FFBP was used
in precisely simulating municipal water needed across various
spatiotemporal scales because of its ability to map the nonlinear
(i.e., trend and seasonal) behavior of water data (Shirkoohi et al.
2021; Zounemat-Kermani et al. 2020).

The Levenberg-Marquardt (LM) algorithm was used to train the
ANN approach because it is known to minimize prediction error
and efficiently simulate any predictor/response map (Bayatvarkeshi
et al. 2018; Zare Abyaneh et al. 2016). As in Zubaidi et al. (2020c),
the topology of the ANN was classified into four layers of neurons,
including the input layer, which contained the predictor factors
(i.e., climatic factors), two hidden layers, and the output layer,
which contained the response factors (i.e., water demand) (Fig. S2).
The tansigmoidal activation function was chosen in the first and
second hidden layers, while the linear activation function was em-
ployed in the output layer. The process of ANN training was re-
peated many times over an epoch (i.e., 1,000 iterations) until the
error between the actual and simulated urban water time series data
reached its minimum. In this study, for each variable, 70% of the
data set (92 out of 132 data points) was used for training, 15% was
used as the test set (20 out of 132 data points), and 15% was used
for validation (20 out of 132 data points). Choosing these percent-
ages followed earlier studies, (e.g., Chyad et al. 2022; Zubaidi et al.
2020b, c).

Indeed, ANN performance relies on the optimization of its hy-
perparameters, which define topology options and ANN learning.
Recently, ANN models were successfully integrated by various
metaheuristic algorithms to select the best hyperparameters for the
short and long term. However, these combined techniques were ap-
plied in limited way in the urban water demand field and additional
research effort is required to develop more effective and precise
combined models in the future (Shirkoohi et al. 2021; Zounemat-
Kermani et al. 2020).

In this study, the ANN model was combined with the MPA al-
gorithm to select the learning rate (Lr) and the number of hidden
neurons (N1 and N2) for the first and second hidden layers instead
of the trial-and-error approach. The MPA-ANN algorithm was
compared with SMA-ANN, CSA-ANN, BSA-ANN, and MVO-
ANN to increase the forecasting range and decrease the uncertainty.

Marine Predators Algorithm

The marine predator algorithm (MPA) is a novel metaheuristic op-
timization algorithm in which the behavior of ocean creatures in
their search for food is simulated. These creatures include sharks,
monitor lizards, sunfish, equine fishes, and swordfish. In the ocean,
both predators and prey strive to get food to survive. Their behavior

Metaheuristic algorithms            

(Water consumption 
and ten climatic 

factors) (2003-2013)

Natural Logarithm

Pre-treatment Signal

Tolerance 

Model evaluations      

MPA MVO SMA 

Monthly
data

Best ANN
model

prediction 

BSA CSA 

Fig. 1. (Color) Flowchart for forecasting future municipal water
demand.
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inspired researchers to follow this approach to derive a sound al-
gorithm in terms of fitness. Formulation of MPA begins with
assigning an initial random set of solutions based on the search
space, as illustrated in Eq. (1)

Z ¼ Xlower þ rand × ðXupper − XlowerÞ ð1Þ

where Xlower and Xupper = lower and upper bound of the search
space, respectively; and rand = random number with a range
of [0, 1].

Two matrices must be defined in MPA because of the nature of
the algorithm, in which both predator and prey are looking for food.
Therefore, both are considered search agents. These two matrices
are referred to as elite (for predator) and prey, respectively, as
shown in Eqs. (2) and (3). According to the concept of “survival
of the fittest,” the top predators should be the ones with higher
hunting kills and merits in the search space. As such, the elite
matrix should include only the fittest agents in the search space
(predators). Then, depending on the prey positions, the matrix is
updated. The dimensions of the prey matrix must be the same as
for the elite matrix. In Elite matrix, the predator updates its position
based on Prey matrix

Elite ¼

2
66666664

X1
11

X1
21

·

·

X1
n1

X1
12

X1
22

·

·

X1
n2

·
·

·

·
·

X1
1d

X1
2d

·

·

X1
nd

3
77777775

ð2Þ

Prey ¼

2
66664

X11 X12 · X1d

X21 X22 · X2d

· · · ·

Xn1 Xn2 · Xnd

3
77775 ð3Þ

where X1
1 = optimal predator vector; n = number of search agents;

and d = number of dimensions.
In the two matrices, the positions of the predators and preys are

updated according to three phases. These phases are merely depen-
dent on the velocity difference between the two. To simulate the
whole life of both predator and prey in nature, a designated number
of iterations should be assigned in each phase. The details of each
phase are discussed in the following subsections.

Phase 1: High-Velocity Ratio

In Phase 1, the predator is faster than the prey. This phase occurs in
one-third of the total number of iterations (i.e., 1=3tmaxÞ. The step
size of prey movement is updated as in Eq. (4)

Si ¼ RB ⊗ ðElitei − RB ⊗ PreyiÞ; i ¼ 1; 2; : : : ; n ð4Þ

Preyi ¼ Preyi þ P:R ⊗ Si ð5Þ
where R = random vector with a range of [0, 1]; P ¼ 0.5 ¼ a con-
stant number; RB = random vector referring to Brownian motion;
and ⊗ = element-wise multiplication.

Phase 2: Unit Velocity Ratio

In Phase 2, the predator and prey are moving at the same pace. The
prey is represented by Levy flight while the predator is represented
by Brownian motion. This phase occurs in the second third of

the total iterations (i.e., 1=3tmax < t < 2=3tmax). The following
equations are applied to the first half of the population

Si ¼ RL ⊗ ðElitei − RL ⊗ PreyiÞ; i ¼ 1; 2; : : : ; n ð6Þ

Preyi ¼ Preyi þ P:R ⊗ Si ð7Þ
where RL= numbers following Levy distribution. The second half
of the population is subjected to the following equations:

Si ¼ RB ⊗ ðRBElitei − PreyiÞ; i ¼ 1; 2; : : : ; n ð8Þ

Preyi ¼ Preyi þ P:CF ⊗ Si; CF ¼
�
1 − t

tmax

�
2
�

t
tmax

�
ð9Þ

where CF= parameter controlling the movement step size of the
predator.

Phase 3: Low-Velocity Ratio

Phase 3, the final phase of the optimization, simulates predator
movements when the predator is faster than the prey. It occurs
in the final third of the total iterations (i.e., 2=3tmax)

Si ¼ RL ⊗ ðRL ⊗ Elitei − PreyiÞ; i ¼ 1; 2; : : : ; n ð10Þ

Preyi ¼ Preyi þ P:CF ⊗ Si; CF ¼
�
1 − t

tmax

�
2
�

t
tmax

�

ð11Þ

Details on both Levy and Brownian motions are further
discussed in the following paragraphs.

Brownian motion is inspired by normal distribution with a mean
of 0 (μ ¼ 0) and a variance of 1 (σ2 ¼ 1). To determine the prob-
ability density function (PDF) corresponding to this motion at Point
x, the following formula should be used:

PBðx;μ; σÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
− ðx − μÞ2

2σ2

�
¼ 1ffiffiffiffiffiffi

2π
p exp

�
x2

2

�
ð12Þ

Levy flight is a stochastic and random step size in which Levy
distribution is followed. The probability function of Levy distribu-
tion is formulated as

LðxjÞ ≈ jxjj1−α ð13Þ

where xj = flight length; and α = exponent of the power law that has
the range (1< α ≤ 2). The PDF of the Levy distribution is formu-
lated as

PLðx;μ; σÞ ¼
1

π

Z ∞
0

expð−γqαÞ cosðqxÞdq ð14Þ

where γ = scale unit. The integral form can be used if α falls within
its normal range (1, 2). As such, a Gaussian distribution is obtained
if α equals 2 while Cauchy distribution can be obtained if α is 1.
Higher values of x require series expansion method

PLðx;μ; σÞ ¼
γΓð1þ αÞ sin

�
πα
2

�
πxð1þαÞ ; x ¼ ∞ ð15Þ

where Γ = gamma function in which Γð1þ αÞ ¼ α!. Here,
α ranges from 0.3 to 1.99. The present study followed Levy
distribution to generate a random number
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LevyðαÞ ¼ 0.05 ×
x

jyjð1aÞ ð16Þ

where y and x = variables with normal distributions of x ¼
Normalð0;σ2

xÞ and y ¼ Normalð0; σ2
yÞ, where σ2 can be deter-

mined as

σx ¼
2
4 Γð1þ αÞnðπα

2
Þ

Γ
�
ð1þαÞ

2

�
α2ðα−12 Þ

3
5

1
α

ð17Þ

where σy ¼ 1; and α ¼ 1.5.

Eddy Formation and Effect of FAD

It should be noted that in formulating the MPA, the surrounding
environment can play a vital role in terms of its impacts on the behav-
ior of prey, specifically eddy formulation and fish-aggregating devi-
ces (FADs). This effect can be presented as

Preyi¼
	
PreyiþCF½XminþR⊗ðXmax−XminÞ�⊗ Ū if r<FAD

Preyiþ½FADsð1−rÞþr�ðPreyr1−Preyr2Þ if r>FAD

ð18Þ
where r = random value ranging 0–1; r1 and r2 = random indices of
prey matrix; FADs ¼ 0.2 = probability of FADs effect; Ū = binary
vector; and Xmax;Xmin = vectors of lower and upper bounds of
dimensions.

In the MPA technique, memory saving should be done so that
the old position of the prey can be saved to compare the fitness
values of the old position with other successive solutions in which
prey update their positions during the simulation. The flowchart of
the MPA-ANN algorithm is presented in Fig. S3.

Performance Evaluation Criteria

The parameters of statistical criteria indicate the accuracy of pre-
diction, so forecast error plays a significant role in the choice of an
appropriate model that diminishes deviations in future forecasts
(Donkor et al. 2014). Because there are no global performance cri-
teria, it is essential to select criteria that are proper for a particular
application (Seo et al. 2018). In this study, different performance
criteria were considered for assessing the performance of the
model. These criteria included coefficient of determination (R2),
coefficient of efficiency (CE), Nash-Sutcliffe index (NSI), root
mean-square error (RMSE), mean absolute error (MAE), and mean

bias error (MBE). The forecast technique has good accuracy and
high performance in simulating the water advance time when sat-
isfying one of these values of R2, when CE is more than 0.9, when
RMSE, MAE, and MBE approach zero (Dawson et al. 2007; Li
et al. 2013), or if the value of NSI approaches 1 (Jain and Sudheer
2008).

The augmented Dickey-Fuller (ADF) test and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test were conducted to examine and
determine the stochastic signal of all-time series of the dependent
and independent variables.

Results

Data Preprocessing

The first step in data preprocessing is to normalize the time series
of dependent and independent variables and detect and treat out-
liers (as discussed in “Methodology”). Figs. 2 and 3 highlight
the differences between the raw data and the normalized and
cleaned data.

Our main emphasis in this study was on the stochastic com-
ponent only (as earlier discussed). To develop a water demand
model based on climatic factors, water consumption, and climatic
factor time series should first be decomposed using the pre-
treatment signal approach. Fig. 4 shows the normalized and
cleaned water time series coupled with the first four signals (trend,
seasonal, stochastic, and noise). The stationarity of the stochastic
signal for the all-time series is assessed and confirmed by the ADF
and KPSS tests.

Table 1 shows the difference in correlation coefficient between
dependent and independent variables in raw and stochastic stages.
It is obvious that the values corresponding to climatic factors in the
stochastic stage are much higher than the values in the raw data. For
example, the R between water consumption and precipitation in-
creased from −0.535 to −0.931.

In the final part of data preprocessing, it is necessary to deter-
mine the highly correlated predictors (climatic factors) and at the
same time avoid multicollinearity. According to the tolerance
technique described in the section “Data Preprocessing,” the sce-
nario of selecting the best model input is repeated several times to
choose predictors with a tolerance coefficient not less than 0.2.
Accordingly, Table 2 reveals P, Srad, and Tdp as the optimum sce-
nario with coefficients of more than 0.2, meaning that there was
no multicollinearity.

)b()a(

a b

Fig. 2. (Color) (a) Monthly raw time series; and (b) urban water consumption for Baghdad City.
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Model Configuration

The systematic configuration of the ANN model rather than by trial
and error is necessary to build an accurate water demand prediction
model. Accordingly, five hybrid metaheuristic algorithms (MVO-
ANN, SMA-ANN, BSA-ANN, CSA-ANN, and MPA-ANN) were
used to locate the ANN model’s optimal hyperparameters (Lr, N1,
and N2). Five swarm sizes (10, 20, 30, 40, and 50) were attempted
by combining different algorithms with ANN, and each swarm for
each algorithm was implemented five times to obtain the optimal
solution (e.g., the MPA-ANN algorithm in Fig. S4, the best swarms
are 10-3, 20-2, 30-3, 40-5, and 50-4). After that, the optimal swarm
for each algorithm was selected to compare it with other swarms for
the same algorithm (Fig. S5). From the figure, one can see that the

best swarms are 30 for CSA-ANN, 40 for MPA-ANN, and 50 for
SMA-ANN, MVO-ANN, and BSA-ANN.

Among all five hybrid metaheuristic algorithms, MPA-ANN
was superior (Fig. 5). It yielded the lowest fitness function (RMSE)
of 0.003993 after 42 iterations (fewer than the other algorithms).
As such, adopting MPA-ANN is feasible and warranted. The
40 swarms of the MPA-ANN algorithm yielded Lr, N1, and
N2 values of 0.213, 7, and 1, respectively.

Evaluation of Model Performance

After integrating the ANN approach by determining the optimum
hyperparameters, the model was run several times to locate a better
network (weights and biases) that can precisely forecast the
monthly stochastic signal of water demand. Various kinds of stat-
istical tests were carried out to evaluate the ANN’s ability to gen-
eralize stochastic water demand data depending on climatic factors
in the validation phase.

Five statistical indicators were used to gauge the performance of
the model as presented in Table 3. CE and NSE assessed the linear
dependency between observed and predicted water demand, while
MAE, RMSE, and MBE evaluated the nonlinear dependency be-
tween observed and predicted water demand. According to the
limitation in the section “Performance Evaluation Criteria,” the
ANN model offered good accuracy.

The estimated model was further validated to double-check the
model’s power to accurately predict water consumption in the city
of Baghdad. The target data of water consumption (x-axis) was
plotted against simulated data (y-axis), with a 95% confidence in-
terval (CI) (Fig. 6). It is noticeable that the target and simulated data

)b()a(

b

a

Fig. 3. (Color) (a) Monthly normalized and clean time series; and (b) box-plot of urban water consumption.

Fig. 4. (Color) Normalized and cleaned data and the first four signals
obtained by pretreatment signal.

Table 1. Correlation of dependent and independent factors in raw and stochastic stages

Data Tmax Tmin Tmean P W Srad Tdp RH Sp

Raw 0.558 0.585 0.571 −0.535 0.396 0.453 0.376 −0.541 −0.523
Stochastic 0.92 0.93 0.926 −0.931 0.835 0.728 0.794 −0.917 −0.869

Table 2. Collinearity statistics for chosen predictors

Predictor Tolerance coefficient

P 0.35
Srad 0.23
Tdp 0.33
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reveal a high level of consistency with R ¼ 0.978, which supports
the accuracy of the prediction model based on the limitation
described in the section “Performance Evaluation Criteria.”

According to the statistical tests used, the model demonstrated
good performance in forecasting water consumption data in the val-
idation stage.

Discussion

The selection of the stochastic component improved the correlation
coefficients to climatic factors much higher than the counterpart
values in the raw data. For example, between water consumption
and precipitation, R increased from −0.535 to −0.931. The toler-
ance technique was shown to be very helpful in selecting the best
model input among the nine independent variables. The climatic
factors P, Srad, and Tdp were selected to be the optimum scenario

with tolerance coefficients of more than 0.2, which means no multi-
collinearity existed.

When the five metaheuristic algorithms were combined with the
ANN for obtaining the hyperparameters at various numbers of
swarms, the optimum swarm size was different for each algorithm
based on the RMSE value. The performance of the metaheuristic
algorithms was then compared at these optimum swarm sizes as
there was no direct guide for selecting a swarm size for all of them.
Comparing the performance of hybridized ANN, it was observed
that MPA-ANN provided the highest prediction accuracy with the
lowest RMSE value in fewer iterations than needed by the other hy-
brid algorithms. Consequently, the ANN optimum hyperparameters
values were determined. Model validation process showed the mod-
el’s very good performance in forecasting future values of water con-
sumption with a coefficient of determination value of R2 ¼ 0.978.

Wolpert and Macready (1997) noted that, according to the “no
free lunch” (NFL) concept, there is no specific theorem that can
deliver the best solution compared with other theorems for all opti-
mization problems. Using NFL, Faramarzi et al. (2020) developed
the combined MPA theorem for guaranteeing a global solution de-
pending on several strategies and techniques during optimization.
Different foraging strategies have inspired MPA in the biological
interaction between the prey and predators. Consequently, the
Brownian and LF distributions were designed not only to have a
systematic, efficient explorer-exploiter tendency but also to signifi-
cantly enhance the search capability in each implementation. These
permitted the MPA algorithm to precisely locate the global optima
to solve the optimization issues considered in this research.

As a final note, since the size of the data set used in this study
was relatively small, Bayesian optimization could have been used
in conjunction with the MPA algorithm to increase execution speed
and accuracy. Also, further methodological advances in ANN may
substantially increase model performance after a limited number of
iterations (i.e., faster convergence time). Since computation time
was not a critical consideration in our study given that the measured
data was obtained offline, we did not require Bayesian optimiza-
tion. Bayesian optimization methods become relevant when using
online data, which involves prolonged training and is computation-
ally expensive. The main objective of our study was to reduce the
error between the measured and simulated data.

Conclusion

Precise water demand prediction has received significant attention
from water companies in the last few decades due to water scarcity
and the rapid growth of water consumption. We used a novel meth-
odology to estimate monthly stochastic municipal water demand
based on some climatic factors by employing data over 11 years
in Baghdad City. Ours is the first study to focus on in Iraq, which
is one of the hottest countries in the world. The methodology con-
tains data preprocessing and five metaheuristic algorithms (MPA,
SMA, CSA, BSA, and MVO) combined with an ANN model.
Considering the outcomes, data preprocessing was found to be a
powerful technique for analyzing and selecting the stochastic com-
ponent of any time series by applying pretreatment signals, and to
determine the best model input scenario using tolerance. Accord-
ingly, we have provided a guide for choosing suitable parameters
that drive water demand. MPA was found to be a robust optimiza-
tion algorithm that selects the best hyperparameters of ANN. The
developed methodology can accurately forecast the monthly sto-
chastic signal of urban water demand based on various statistical
tests. These findings are of considerable significance to water util-
ities in planning, reviewing, and comparing the availability of

Fig. 5. (Color) Performance comparison of the five hybrid algorithms.

Table 3. MPA-ANN model statistical indicators in validation phase

Data MAE RMSE CE NSE MBE

Validation 0.0057 0.0071 0.998 0.975 −0.0007

Fig. 6. (Color) Target water consumption data versus simulated data in
the validation stage.
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freshwater resources against increasing water demand. Finally, our
methodology can be applied to other cities in surrounding countries
at various scales.

Data Availability Statement

Some or all data, models, or code used during the study were
provided by the Mayoralty of Baghdad. Direct request for these
materials may be made to the provider as indicated in the
Acknowledgments.
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