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ABSTRACT

The early architectural design involves the most salient decisions. However, because of the large 
amount of variance, the decision-making is highly arduous. This article presents a methodology to 
enable the most effective design variables to be selected within the most effective value range by 
presenting a method that allows the measurement of output uncertainty depending on the impact 
of design decisions on outputs. The methodology was tested with different building functions and 
climate regions using two-phase sensitivity analysis. The values of design variables were generated 
with quasi-random sampling. They were sorted with factor prioritization. Ineffective variables were 
eliminated with factor fixing. Advanced global sensitivity analyses were performed for the total effect. 
Factor mapping was applied with the output weighting. The results were presented with parallel 
coordinate plot (PCP). The designers can make selections from alternatives with PCP. Finally, the 
study demonstrated how climate and building functions should be considered for building performance.

Keywords
Early Architectural Design, Building Function, Cooling Energy, Decision-Making, Global Sensitivity Analysis, 
Heating Energy, Overheating Degrees, Performance-Based Design, Quantitative Analysis

INTRODUCTION

In recent years, the performance-based architectural design approach has become significant because 
of climate change impacts. The main causes of climate change are the increase in energy demand 
due to industrialization, the rapid growth of urban areas, and increased fossil fuel use (Mumovic, 
2009). Thus, the design process needs to be energy efficient using analytical observations to apply 
better adaptation strategies against climate change. Although the building design and construction 
process involve many stakeholders, the most critical influence belongs to the architects. Although the 
designers are responsible for making important decisions regarding the building envelope and plan 
scheme (Granadeiro et al., 2013), many of them fall short of performance-based design and fail to 
grasp the process’s advantages (Morbitzer, 2003). Due to the performance improvements requested 
or needed in architectural projects’ proceeding stages, the design process’s early stages are often 
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returned. This situation causes losses of time and money (Hien et al., 2000). Figure 1 points out 
that the most significant influence on buildings’ energy performance comes from the early design 
process (Attia et al., 2012). For instance, improvements in the orientation of opening and building 
envelope design can reduce the building’s energy demand by 40% (Wang et al., 2005). For this reason, 
the importance given to the early design stages should be increased by doing technical reviews to 
understand better the relationship between design decisions and building performance, e.g., building 
energy simulations, statistical data review.

The performance-based architectural design allows the designer to achieve better energy use and 
environmental performance. Because the designer can quantify and visualize the building performance. 
As an example methodology for performance-based design, genetic optimization algorithms are 
frequently used among designers (Kampf & Robinson, 2010; Konis et al., 2016). The optimization 
process leads to creating high-performance design solutions by automating the design process. In the 
process, the designer only edits the value ranges and constraints of the design variables. Nevertheless, 
the designer gains a limited understanding of the established design solution’s reasons because of 
point-based performance estimation. Therefore, this approach falls short of meaningful evaluation 
of alternatives in early architectural design. An excellent solution to this problem can be found in 
statistical sampling methods to analyze the process’s uncertainty and provide a powerful alternative 
to quantifying the relationship between design variables and performance outputs (Hemsath & 
Alagheband Bandhosseini, 2015).

This study uses the simulation-based methodology in a statistical analysis framework for an early 
architectural design feedback methodology by reaching quantitative results of building performance 
results. The building energy simulations are practical for more realistic decision-making (Morbitzer, 
2003). However, energy simulations should be proactive for giving feedback about design variations 
(Attia et al., 2012; Kanters & Horvat, 2012; Rights, 2016). Unfortunately, most energy simulation 
tools cannot investigate the relationship between building and design variables in a proactive way (Y. 
Yildiz et al., 2012). Therefore, in this study, the authors suggest using statistical sensitivity analysis for 
proactive analysis. A systematic literature review was conducted of studies that statistical sensitivity 
analysis was proposed as an answer by measuring the output uncertainty and demonstrated the impact 
(i.e., effect) of the design variables (i.e., independent variable) on the performance outputs (i.e., 
dependent variable) for unbiased decision-making (De Wit & Augenbroe, 2002; O’Neill & Niu, 2017; 
Østergård et al., 2015; Ruiz Flores et al., 2012). Consequently, designers could have the possibility 
to reach effective design variable selection using performance output results.

The uncertainty analysis is an important issue for the early design decision-making process 
(Macdonald, 2002). Thus, Sensitivity Analysis (SA) is a valuable option to quantify the non-linear 
relationship between design variables and performance outputs. The framework is capable of in-depth 
exploration of the model attitude by scanning for all inputs’ variations to measure each variable’s 
influence on defined model performance output(s) (Firth et al., 2010; Iooss & Lemaître, 2015). 
Previous studies have shown that different SA methods are applicable to compute uncertainty of 

Figure 1. Representation for the relationship between the effectiveness of the decisions and the lifetime of the building
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the dependent variables, i.e., screening inputs (Alam et al., 2004), meta-modeling by reducing the 
complexity of the energy model (Topcu & Ulengin, 2004), robustness framework (Burhenne et al., 
2011).

SA is capable of identifying a-priori influence and rank the sensitivity of the independent variables. 
It is possible to investigate the ‘What-if’ question by measuring the individual and total impact (Struck 
et al., 2009). Thus, the technique is commonly used among designers (Kristensen & Petersen, 2016; 
Sun, 2015). SA methods are classified into two ways, i.e., local sensitivity analysis (LSA) and global 
sensitivity analysis (GSA) (Hemsath & Alagheband Bandhosseini, 2015). LSA performs better for the 
detection of the uncertainty of the input variables around a specified point. However, it is inefficient 
to quantify the interaction between independent variables (i.e., total effect). A considerable amount 
of literature has been published on LSA implementation on build energy modeling (Rasouli et al., 
2013). GSA could scan the whole input set in terms of dependent variable activity, which contains an 
explanation for individual impact and total effect (Saltelli et al., 2007). The methodology frequently 
is used for early design building energy models, which score the total effect of independent variables 
(Menberg et al., 2016). Unlike LSA, all selected input variables are analyzed simultaneously in the 
statistical analysis process (Kristensen & Petersen, 2016). A large volume of published studies describe 
GSA’s role in building energy performance analysis (Østergård et al., 2017; Ruiz Flores et al., 2012; 
Yang et al., 2016), i.e., second-order quantification, factor mapping.

The design variable selections are essential for the early design process, and the proceeding 
design process follows these initial decisions. Therefore, early architectural design decisions should 
be analyzed to increase building performance. For various studies, analyses were rendered to quantify 
the design variables’ impact for the different performance outputs at the initial architectural design 
steps (Depecker et al., 2001; Østergård et al., 2017). Thus, this study proposes a genuine model using 
SA by quantifying the impact of the design variables into the three-phases methodology for effective 
performance-based design decision-making process; (1) measuring the individual impact of design 
variables and fixing the ineffective design variables, (2) calculating the total effect of most effective 
design variables on the performance outputs, (3) robust mapping and visualization method for most 
effective design variables and performance output values in the aspect of interactive decision-making 
during early architectural design. If designers can instantly observe the effects of building design 
variables on performance outputs, buildings’ energy use can be reduced much easier, and this can 
significantly contribute to adaptation strategies within the scope of climate change.

METHODOLOGY

The current study focuses on the early architectural design decision-making process to analyze design 
variables’ impact on the performance outputs using a three-phase methodology (Figure 2). The 
proposed methodology has been tested with four case studies in terms of different building functions 
and climatic zones. The first two case study includes examining a residential unit in Istanbul and 
Izmir cities within the scope of sensitivity analysis based on the heating and cooling energy demand 
(kWh/m2-year). The second two case study involves testing an office unit in Ankara and Kars’ cities 
with sensitivity analysis according to heating energy demand and overheating degrees.

Model Description and Thermal Modeling
The analysis geometry, which is used for all case studies, is a hypothetical single-zone unit and the 
dimensions are 8 meters * 8 meters * 3 meters. The total area and volume do not change during 
alternative generations. Except for the window-to-wall ratio and horizontal shading design variables, 
all design variables are construction-based or operational. In Figure 3, all design variables were 
explained with graphical visualization of where or what they effect the analysis geometry.

In this study, the performance outputs (i.e., dependent variables) are heating and cooling energy 
demand for the residential unit and heating demand and overheating degrees (OHD) for the office 
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unit. The heating and cooling demand were annually calculated per sqm. OHD was calculated using 
a fixed upper-temperature limit for each zone type. The calculation of OHD is the annual summation 
of the indoor operative temperature above 28°C for the living room and 26°C in the bedroom (CIBSE, 
2006). The design variables (i.e., independent variables) were separated into four different groups 
(Table 1), i.e., heat transmission by conduction, solar gain, air changes, and internal gain. The values 
of design variables for generated alternatives were arranged as functions to modify the input data file 
(.idf) of the building energy simulation engine of the EnergyPlus (E+) (Winkelmann, 2000). The 
EnergyPlus input data dictionary (.idd) was taken as default for a thermo-physical function library. 
The other thermal properties of the energy model were selected according to (ASHRAE, 2004, 2013b).

The construction material organization consists of basic EnergyPlus definitions, e.g., thickness, 
thermal resistance, and thermal mass features. The two-layer constructions were defined for the 
surfaces of the digital building envelope. The symbols before the material name identify the material 
type and the constructions’ layer (Table 2). NoMass materials are responsible for varying thermal 
transmittance of the u-value (kWh/m2-K) of the construction variables. The material does not have 
any thermo-physical properties in terms of conductivity, density. For each surface, different NoMass 
materials were assigned.

The setpoint temperatures were different for two different climate type, i.e., warm-humid climate 
for the residential unit, cold-dry environment for the office unit. Setpoint temperatures refer to values 
under which degree heating should be activated or above the degree cooling should be activated; thus, 
the pre-defined values directly influence energy demand and indoor thermal comfort (I. Yildiz & 
Sosaoglu, 2007). For all regions, the setpoint temperature of heating is 22.0 °C, and the setback is 10 
°C. For Istanbul and Izmir, the setpoint temperature of cooling is 26.0 °C and the setback is 28.0 °C.

The building energy model alternatives were generated with Monte Carlo simulation techniques, 
quasi-random sampling. Then, alternatives were simulated in EnergyPlus building energy simulation 
software (Reference & Calculations, 2015). EnergyPlus works with text-based file mode (.idf). In 
the proposed methodology, .idf was modified to implement thermal and geometrical design variable 

Figure 2. Flowchart of the proposed model

Figure 3. Digital building model initial dimensions with design variables
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alternatives in the energy model. The .idf modification was realized for thermal and geometrical design 
variables using eppy and Python 3.7 libraries (Philip et al., 2011). For sensitivity analysis calculation 
functions, the SALib library was chosen (Herman, J. & Usher, 2017). For each climate region, many 
simulations were needed to quantify the design variables’ impact. Therefore, in this article, all process 
was coded as automated serial simulations with batch-processing (Python Software Foundation, 2020).

The conditioning system’s set point and set back values are the identical for all case studies 
(Table 3). The glass opening ratio (x16), is directly related to natural ventilation, so the conditions 

Table 1. Design variables and performance outputs of the residential and office unit

Type Physical Physical Physical Physical Physical Physical Physical Physical Physical

Decision 
Variable

WWR 
North 
(x1)

WWR 
East 
(x2)

WWR 
South 
(x3)

WWR 
West 
(x4)

U-value 
of the 
Window 
(x5)

U-Value 
of Roof 
(x6)

U-Value 
of Floor 
(x7)

U-Value 
of Wall 
(x8)

Context 
Height (x9)

Range [0.1-
1.0]

[0.1-
1.0]

[0.1-
1.0]

[0.1-
1.0]

[0.773-
5.778]﻿
**﻿
W/m2-K

[0.104-
0.840]﻿
** W/
m2-K

[0.104-
0.840]﻿
**﻿
W/m2-K

[0.114-
2.330] W/
m2-K

[3-12]﻿
meter

Type Physical Physical Physical Physical Physical Physical Functional Functional Functional

Decision 
Variable

SHD 
North 
(x10)

SHD 
East 
(x11)

SHD 
South 
(x12)

SHD 
West 
(x13)

Infiltration﻿
(x14) ****

SHGC﻿
(x15)

Glazing 
Opening﻿
***** 
(x16)

Lighting 
Density 
(x17)

Equipment 
Load (x18)

Range [0.1-
1.0]

[0.1-
1.0]

[0.1-
1.0]

[0.1-
1.0]

[0.0001-
0.0006]﻿
m3/s per 
m2 

[0.132-
0.905]﻿
**

[0.0-1.0] [3-15]﻿
W/m2

[3-15]﻿
W/m2

PO Heating Demand (kWh/m2) Cooling Demand (kWh/m2) *** Overheating Hours

*Heat transfer by transmission: HTT, Solar Gain: SG, Internal Gain: IG, Air Changes: AC, WWR: Window-to-Wall-Ratio, SHD: Shading Depth, SHGC: 
Solar Heat Gain Coefficient

**Range values according to EnergyPlus Standard Constructions (LBNL, 2009)
***Cooling Demand is active only for Izmir (ASHRAE 3A) and Istanbul (ASHRAE 4A)
****ASHRAE.90.1.2013, ASHRAE.62.1.2013 (ASHRAE, 2013a, 2013b)
*****Glazing opening ratio for natural ventilation

Table 2. The properties of construction materials

Construction Outside Layer Layer 2 Layer 3 Initial 
U-value

Range of 
U-value*

Roof Construction M14a 100mm 
heavyweight 
concrete

- Material: No 
Mass: Roof

0.052 [0.052-0.752]

Exterior Wall 
Construction

M01 100mm brick - Material: No 
Mass: Wall

0.114 [0.114-2.330]

Floor Construction F16 Acoustic tile - Material: No 
Mass: Floor

0.318 [0.318-2.330]

Window Construction Sgl Clr 3mm Clear 
3mm

Material:No 
Mass: Glazing

0.773 [0.773-5.778]

*Upper limit of constructions are the construction values of Energyplus construction library, i.e., ASHRAE_HOF_Materials
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and times of natural ventilation are arranged by air conditioning systems. Limits have been added 
to indoor and outdoor air temperatures to prevent any conflict between natural ventilation and air 
conditioning systems during the day. Otherwise, this may result in excessive energy use. Daily natural 
ventilation and air conditioning usage schedules were determined by default schedules selected from 
the E+ library. Limit values for both examinations were determined according to ASHRAE standards 
(ASHRAE, 2013a).

Weather Data Selection and Urban Weather Data Generation
In this study, the simulations were produced in two building types and four different locations to 
compare climate and building function difference impact on the performance outputs. Residential 
unit simulations were executed for Istanbul and Izmir region, and office building simulations were 
in Ankara and Kars. Four different climate regions were grouped under two climate types. Istanbul 
(ASHRAE climate zone 4A, Cooling Degree Days 10°C £ 2500, Heating Degree Days 18°C £ 3000) 
and Izmir (ASHRAE climate zone 3A, 2500 < Cooling Degree Days 10°C < 3500) have warm-humid 
climate. Ankara (ASHRAE climate zone 5B, 3000 £ Heating Degree Days 10°C £ 4000) and Kars 
(ASHRAE climate zone 7, 5000 < Heating Degree Days 18°C £ 7000) have cold-dry climate.

Figure 4 represents the annual outdoor dry bulb temperature values comparison between selected 
climate regions. In this study, simulations were generated with annual weather data. On the other 
hand, simulations can be performed with a choice of two extreme weeks or different analysis periods 
to reduce the simulations’ calculation costs. However, the simulations’ accuracy is lower with other 
analysis period selections instead of using the annual simulation period.

The selected neighborhoods are in the center of urban; for this reason, building energy simulations 
were modified according to the urban heat island effect (e.g., atmospheric heat transfer from the urban 
canopy, building density, the reflection of solar radiation from facades). In general, the meteorological 

Table 3. Thermal properties of building energy model for hypothetical units

Name Heating 
Set Point/ 
Set Back

Cooling 
Set Point* 
/SetBack

Natural 
Ventilation

Ventilation 
Limits for 
Indoor

Ventilation 
Limits for 
Outdoor

Schedule 
for office 
**

Schedule 
for 
residential 
**

Value /Type 25.0,20.0 25.0, 
100.0

Natural, 
one-sided

21.0, 24.0 17.0, 28.0 Small 
Building 
Office 
Occupancy

Midrise 
Apartment 
Occupancy

Unit oC oC - oC oC -

*Cooling SetPoint is active only for Izmir (ASHRAE 3A) and Istanbul (ASHRAE 4A)
**EnergyPlus standard schedule library

Figure 4. Weather data comparison (ASHRAE, 2009)
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stations’ location is outside the city, thus, the effects of city elements are not sufficiently included in 
the weather data. The urban heat island effect modifications were executed using an urban weather 
data generation algorithm (Unzeta, 2010). The transformation tool is Grasshopper/Ladybug plugins 
based on EnergyPlus simulation software (Roudsari & Pak, 2013; Winkelmann, 2000). Figure 5 
points out the locations of the hypothetical units in the urban regions. These locations’ environments 
were digitally modeled to implement urban features in the weather data. The chosen neighborhoods 
for Istanbul and Izmir consist of mostly residential buildings. For Ankara and Kars, mixed building 
function locations were selected.

Data Generation and Sampling
Monte Carlo simulation techniques work based on pseudo-random sampling methodology with a low 
discrepancy to visualize the multivariate global design space (Figure 6-a). In this workflow, input 
distributions and sampling strategies are first defined. Then, simulations are performed to determine 
performance outcomes. The methodology provides a global screening approach for performance 
output variance to complement the lack of comprehensive interpretation of point prediction-based 
systems or traditional non-performance-based methods. For this reason, it is prevalent in the field of 
building energy modeling (Haarhoff & Mathews, 2006).

The design variables’ ranges are set as continuous [0-1] range values and are arranged as a uniform 
distribution. The discrepancy of the variable shows the global design space, which represents the 
variation of performance outputs. Therefore, the sampling technique provides independent variable 
sampling in terms of the probability distribution. The established variable ranges were interpreted as 
central 95% confidence intervals. As a result, as quasi-random sampling strategy leads to analyze all the 

Figure 5. Urban simulation environments for each climate region

Figure 6. (a) Sampling Types; (b) Demonstration of the four-level grid, the arrows identify the eight points needed to estimate the 
elementary effects relative to factor X1
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global design space, the method provides highly dependable results on how design variables interact 
with each other, and which variable range drives the most valuable results for performance outputs.

Local and Global Sensitivity Analysis
The building energy demand comprises multiple design variables, e.g., building envelope design, 
building energy system design and efficiency, the operational building systems, occupant density 
and activities, and finally, indoor air and environment quality measurement. All the design variables 
distinguish from each other in terms of their impact on different performance criteria. Global sensitivity 
analysis has a considerable role in determining the inputs’ relative importance by analyzing the input 
variables’ total influence and individual impact. Simultaneously, they all change by a basic sampling 
rule (Ruiz Flores et al., 2012). Hence, the holistic analysis can improve the performance of the building 
by observing all variables. The sensitivity analysis of the study has been divided into two phases 
in terms of methodological attitude. Firstly, Morris sensitivity analysis has applied depends on the 
degradation of the individual factor variance. Secondly, Sobol’s sensitivity analysis was rendered to 
disaggregate the inputs’ total variance and individual change.

Morris sensitivity analysis is the screening method that visualizes the performance of the 
variable individual impact. It reduces the size of the model by removing the ineffective independent 
variables according to the order of the variables. Morris sensitivity analysis has been realized with 
the Elementary-Effect (EE) method (Figure 6-b), the variables’ finite distribution. The analysis 
generates a large sample values for independent variables to determine which variable is ineffective 
for the dependent variable. It is suitable to show linear relations (Waqas et al., 2017). The main idea is 
to create r different trajectories in the N-dimensional design space (Figure 6-b). The N-dimensional 
variable space was normalized to [0,1] and was divided into p-levels by distinguished p-quantiles. 
Each trajectory includes N + 1 calculations for a reason one-parameter-changes (OAT) by defined 
equal steps at a time. Thus, each variable relates to the EE by determining the model output variation 
at r different values. Input factor of EE (2) is represented with the mathematical equation as follows 
(Saltelli et al., 2007):

EE
Y X X X X X Y X X X

i

i i N N
=

+ − ( )( )



−1 2 1 1 2

, ..., , ,..., , ,..., ∆

∆
	 (1)

where ∆ ∈ −( ) − −( )



1 1 1 1 1/ , , /p p . Variable distributions were produced globally, which 

discretized the input area by the trajectories. When the value of variable changes, in the background, 
Morris sensitivity measures the absolute mean value (μ*) and standard deviation (σ2) of the 
distributions as (2,3):

m* =
=∑

1
1r
EE

j

r

i
j 	 (2)

s2
1

21
= ( )

=∑r EE
j

r

i
j� � 	 (3)

wherein both equations r represents the number of samples. The absolute mean value (μ*) points 
out the total influence of variable (Xi) on the model output (Y). If μ* of input is high, the variable 
has an essential impact on the output, which is not negligible. If σ2 has a bigger value than the mean, 
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consequently, the computation of EE is positively impacted by the sample point. It means the variable 
based on the values of other inputs or the input has a non-linear relation with the specified output. 
However, the Morris sensitivity analysis is a local sensitivity analysis method. Therefore, the technique 
has capacity to state the non-linear relations of variables, but it could be insufficient to evaluate.

The initial phase is the extension of the qualitative presentation of the analyzing values. It is 
special to quantify the total output variance for each variable. The current method supplies a valid 
scale for determining which variable or variables are inefficient to define model output variance. On 
the other hand, by identifying the most influential variables on the performance output, it is possible 
the deduce output variance with the quantized technique (Rights, 2016).

Secondly, Sobol sensitivity analysis applied in which is one of the variance-based methods. Sobol 
sensitivity analysis has been performed with Sobol sequences low discrepancy method to screen the 
global design space. Its computing cost is more than Morris sensitivity analysis. It quantifies the 
individual variable influence (i.e., first-order) on the model output, interactions between variables 
(i.e., second-order), and total impact for the model outputs. A pseudo-random sampling of 
k-dimensional points has a high discrepancy. However, there are infinite sequences of k-dimensional 
points that act much confident concerning this measure. As the dimension length N increases, it can 
reduce the optimum ratio’s inconsistency as a specification. As a result, an estimated mean for a 
function Y X X X X

k1 2 3
, , , ,( )  was evaluated on points X X

i ik i N1 1
, ,

,
{ }

=
. Such a sequence can 

bring the inconsistency closer to optimal levels by finding the predicted average faster than the 
predicted mean of randomly generated points.

The Sobol sequence sampling returns a matrix that includes model input values. The pre-defined 
Saltelli sampling was preferred, which is the basic extension of Sobol sequence (Saltelli et al., 2007). 
For each sampling strategy, concerning procedure N D× +( )2  times, rows are produced in which 
N is the number of samples to generate, and D is the number of independent variables. Besides, if 
second-order calculation is implicated in the process, which is the value defining the total influence 
of all input variables on the output, the equation is converted N D× +( )2 2 ,  and it is seen to computing 
cost increases. In this study, second-order calculations were realized in the second step of the proposed 
methodology for the interaction quantification of the variables.

Method of Sobol is suitable when the model is non-linear, and Sobol indices can explain the 
decomposition of the output. Sobol sensitivity analysis has three indices that analyze the input 
conduction (Iooss & Lemaître, 2015). First-order (Si), the main effect of the index separately for each 
variable without interactions, the higher value of Si, the more significant the influence on the ith factor 
for the output variance. The second-order index measures the contribution of the output variance 
by the interaction of two model inputs. Total order (i.e., Total-effect) (ST), this index measures the 
contribution to Xi’s output variance, including all variance caused by its interactions, of any order, 
with any other input variables.

The variance-based model function is Y = f(X) where Y is the output and Y = (x1, x2, ...... xk) are 
k-independent points that each variable changes by their probability density as the Sobol demonstrate 
(Sobol, 2001), any square-integrable mathematical function can be solved by a unique figuration of 
the high dimensional model (4) when the input variables are independent of each other:

V V V V
y

i

k

i
i j

k

ij k
= + + +

= >
∑ ∑
1

12




	 (4)

Vy is the total variance of the performance outputs, and Vi is the residual variance produced by 
Xi and Vi1….is and is to define collaborative fractional variance induced by {Xi1......Xis}. Therefore (5):
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i

k

i
i j

k

ij k
S S S

= >
∑ ∑+ + + =
1

12
1



	 (5)

Si =Vi / Vy is the first order index about sensitivity that calculates Y-induced variance by Xi. Sij 
=Vij / Vy is the second-order index that calculates Y’s variance by the interaction of two input variables, 
i.e., Xi and Xj. For all the individual variances and interactions were scaled into [0, 1] and all equal 
to 1. While the measurements of the sensitivity indices are in the linear relation with the number of 
inputs (i.e., 2k-1), the computing cost of the calculation increases; therefore, in many cases, first-order 
(Si) and total order (ST) of the sensitivity indices are summarized in the one formula as follows (6):

S S S S
Ti i

i j

k

ij k
= + + +

≠
∑ 

12
	 (6)

The total sensitivity index includes all the Xi contributions (i.e., residual and collaborative) to 
Y’s variance; thus, when its value is close to zero, Xi can be determined as non-significant. For this 
reason, the input factor can be counted as a default value by implementing factor fixing.

Factor Mapping and Output Score Weighting
Factor Mapping (FM) determines the values of variables that lead to model most realization in 
a given range of output space (Torben Østergård, 2017). For instance, one may want to highlight 
model realizations falling above the 95th percentile. Besides, the factor mapping is the extension of 
a sensitivity analysis to support how variable and variable range can provide a valuable solution due 
to the problem’s definition. In this study, 100 best values are filtered for Parallel Coordinate Plot 
(PCP) from the vast global design cluster after Sobol’s variance-based analysis. Best performance 
values have corresponded to low energy demand in terms of two output variables for each region:

0.5 × (heating demand + cooling demand) = weighting score	
0.5 × (normalized heating demand + normalized cooling demand) = weighting score	

In this study, the best performances based on the performance outputs were sorted with the design 
variables that generate these performance results. The heating and cooling (kWh/m2-year) demand 
were outputs for Istanbul and Izmir. Performance outputs were unified with the linear calculation by 
forming the total energy demand (kWh/m2-year) as a single score function (1). The heating demand 
(kWh/m2-year) and overheating degrees were output for Ankara and Kars. Two outputs have different 
units and ranges; to calculate a weighting value, they were normalized between 0 to 1. Then, similar 
linear calculations (2) were applied for these output variables. This modification was be advantageous 
to decrease the computing-cost for process of the sensitivity analysis and give quick results, and 
the holistic score approach facilitates comparison when seizing on large numbers of design options 
(Østergård et al., 2015). Furthermore, it supports the rendition of sensitivity analysis and provides 
more salient filtering for quasi-random sampling. However, this unified linear calculation was only 
used for factor mapping.

RESULTS AND DISCUSSION

In this chapter, two process sensitivity analyses and performance filtering processes results were 
explained. 21000 simulations for Morris sensitivity analysis and 42000 simulations for the Sobol 
sensitivity analysis have been generated. Simulations include 18 different design variables (Table 
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1). Lastly, PCP were prepared to present all design variables and outputs in one chart and provide 
opportunity detail analyzes with brushing techniques. It is the visual explanation of the proposed 
methodology, which could help the designers during the early architectural design process.

Factor Prioritization and Factor Fixing
In the first phase of the proposed methodology, the Morris was applied to quantify the individual 
impact of 18 design variables on the performance outputs; then, the ineffective design variables 
were fixed. All design variables were calculated and presented on the horizontal bar and polar plot 
regarding their influence (mu*) on the output (Figure 7, Figure 8). Eight variables for Istanbul and 
Izmir, nine for Ankara, and ten design variables were influential for two performance outputs. In this 
step, sensitivity analyzes were calculated separately for each output. If a design variable similarly has 
significant influence for two outputs, it was defined as effective and was transferred to the second 
step for global sensitivity analysis.

Sensitivity analysis for Istanbul and Izmir has resulted in analogous design variables (Figure 7). 
x2, x3, x4, x5, x6, x9, x14, x15 were effective for the variance of the model’s two outputs. Their influence 
values were also close to each other, and the small number of differences resulted from the climate 
differences. The climatic types of the two regions differ from each other in terms of humidity and 
outdoor temperature. Izmir region has higher values for both rates. x2, x3, x4 are window-to-wall ratio 
(wwr) variables, x15 is the solar heat gain coefficient of the window construction, and x9 is the height 
of the contextual buildings. These variables are directly related to the sunlight, which affects the daily 

Figure 7. (a) Design variable influence on the horizontal bar chart for Istanbul and Izmir; (b) Comparison of most effective design 
variables between Istanbul and Izmir on Polar Chart

Figure 8. (a) Design variable influence on the horizontal bar chart for Ankara and Kars; (b) Comparison of most effective design 
variables between Ankara and Kars on Polar Chart
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indoor temperature by sunlight radiation. x5, x6 are envelope-related design variables, and they are 
responsible for maintaining indoor heat temperature at a constant level. x14 is also in this category.

Respectively, x1, x7, x8, x10, x11, x13, x16, x17, x18 were the least essential variables that were fixed. 
Horizontal and inner shading and north wwr variables were also related to sunlight. However, these 
variables did not cause any significance for the performance outputs. The internal gain variables are 
essential for the residential units’ energy demand because of the indirect interaction with daily occupant 
activities, yet these variables were not as influential as other design variables. Envelope-related 
construction variables u-value floor and u-value wall were not similarly effective for both outputs. x7 
was influential for cooling demand; however, not the equivalent influence ratio for heating demand.

On the contrary, x8 was effective for heating demand and ineffective for cooling demand. The 
natural ventilation-related design variables x16, which is the glazing opening fraction, strongly relate 
to heating demand and, it has resulted in ineffective cooling demand. Hence, these design variables 
could not transfer to the second step.

Ankara and Kars’ sensitivity analysis resulted in similar design variables, i.e., nine design variables 
for Ankara and ten design variables for Kars. x2, x3, x4, x5, x6, x8, x9, x14, x15 were effective for the 
variance of the model’s two dependent variables, i.e., heating and overheating degrees. Additionally, 
x7 was effective for the Kars region, unlike Ankara. Kars has a colder climate comparing to Ankara. 
Figure 8 shows that Ankara’s effect values result in higher heating demand and overheating degrees. 
x2, x3, x4, x9, x15 design variables interact with sunlight and have a similar impact on two outputs. 
However, envelope-related construction design variables were more effective for heating demand as 
two regions are heating dominant cities, i.e., x5, x6, x8, x14 for Ankara, and x5, x6, x7, x8, x14 for Kars. 
In general, the indoor comfort temperature has a direct relationship with the envelope quality, and 
as the u-values of the construction decreases, the overheating degrees are increasing. Even, Ankara 
and Kars have very cold climates (e.g., ASHRAE 5B and ASHRAE 7), the overheating degrees were 
not much as expected. In parallel, internal gain-related design variables also were evaluated as 
ineffective for both overheating degrees and heating demand, i.e., x17, x18. All shading variables, x10, 
x11, x12, and x13, resulted in ineffective due to the low level of sunlight hours for two regions. Lastly, 
the glazing opening fraction design variable (x16) could not be effective as expected because of the 
outdoor temperature constraint and lower outdoor temperature values (Table 2).

The Variance-Based Sobol Global Sensitivity Analysis
The Sobol sensitivity analysis provides variance-based global observation by decomposing the output 
variance. The analysis accounts for the individual impact (S1) and total impact (ST) variables for the 
model’s output. The total effect index represents the first-order effect and all higher-order effects 
due to the total effect of design variables. In the first phase of Morris sensitivity analysis, ten design 
variables were eliminated for Istanbul and Izmir. Then, eight independent variables were introduced to 
GSA. The analogous design variables were resulted as the most effective for the second phase because 
of the similar climate properties, e.g., warm-humid. For each analysis, 21999 simulations have been 
executed based on 1000 iterations. Figure 9 is the vertical bar chart for the first-order and total effect 
results of the most effective design variables for Istanbul (a) and Izmir (b). Two performance outputs 
were presented in the chart for S1 and ST indices, i.e., red color tones for heating (kWh/m2-year) and 
blue color tones for cooling demand (kWh/m2-year).

x5, x6, x9, x14, x15 variables were more effective than other variables in S1 and ST indices. Except for 
the impact value of x3, all these variables were highly effective for the first step of Morris’s analysis. 
Between these variables, x5, x6, x14 were helpful in heating demand. x9 and x15 were effective for the 
cooling demand. Despite x5, x6, x15 are envelope-related variables, and they influence the heating 
demand, x9 controls the height of the context buildings, and x14 is the solar heat gain coefficient of 
the window construction. Both are directly related to indoor heating by solar radiation. Therefore, 
these variables had an impact on cooling demand.
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Figure 10 represents the office units’ Sobol results for Ankara and Kars. The performance 
outputs for the office unit were different from the residential unit. The cooling demand is unnecessary 
for Ankara (ASHRAE climate zone 5B) and Erzurum (ASHRAE climate zone 7). Hence, the heating 
demand and annual overheating degrees calculation were selected as two outputs of these models. For 
Ankara, nine variables were influential for the output variance. For Kars, the number of influential 
design variables was ten. The climate of the Kars is much colder than in Ankara. Therefore, the 
heating demand is more critical for the region. Even though heating demand-related variables were 
more dominantly from other variables for Kars, the number of the most influential design variables 
was identical, i.e., x5, x6, x8, x9, x14, x15. Like the Izmir and Istanbul analyzes, x5, x6, x8, x14 had more 
influence on the heating demand than envelope-related variables. x9 and x15 had more impact on 
overheating degrees for both regions. These are solar radiation-related variables for indoor temperature.

The Variance-Based Second-Order Interaction
The Sobol sensitivity analysis is a global sensitivity analysis that can quantify first-order and 
higher-order calculations for input variables. The design variables’ individual and total effect were 
demonstrated for four different climate regions in previous chapters. In this chapter, the second-order 
effect of the design variables was explained with a correlation matrix for only the Izmir region as 
an example representation of the methodology (Figure 11). Second-order is an index that presents 
the quantified value of the interactions between design variables. It is different from the total effect 
because the total effect is the combination of individual impact and the higher-order factors.

In Figure 11, interaction values between design variables were demonstrated with color-coding 
and scalar values. The first graph shows the interactions between design variables according to the 
heating requirement. The highest interaction between design variables occurred between x5 - x3, x5 - x4, 
and x15 - x2. Although there was an interaction between the rest of the design variables, it remained 

Figure 9. (a) Sobol, Vertical Bar Plot for Istanbul; (b) Sobol, Vertical Bar Plot for Izmir

Figure 10. (a) Sobol, Vertical Bar Plot for Ankara; (b) Sobol, Vertical Bar Plot for Kars
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at meager rates. The second graph is a correlation matrix showing the interaction between design 
variables according to the cooling demand. According to the results, there is a strong interaction 
between x15 - x7, x9 - x4, x15 - x3, x15 - x2, x15 - x5. Design variables have been in a more active interaction 
in design cooling demand compared to heating. In particular, the x15 design variable is the variable 
that interacts the most with other design variables.

Design Variable Range Filtering With Factor Mapping
In this chapter, the effective range values were presented for the yearly weighted sum of heating and 
cooling demand for Istanbul and Izmir and the annual normalized weighted sum of heating demand 
and overheating degrees for Ankara and Kars. The filtering process was applied to drive the valuable 
ranges of influential design variables by extracting the 100 most effective results.

Figure 12 points out the distribution results of factor mapping in Istanbul and Izmir. Eight 
uniformly distributed design variables got some valuable ranges based on the lowest energy demand 
for two regions. The heating demand values are between 67.50 to 112.80 for Istanbul, and the cooling 
demand values are 29.04 to 71.03 for Istanbul. Heating energy demand values are between 53.40 
to 95.40 (kWh/m2-year) and 44.81 to 82.29 for cooling demand in Izmir. As Izmir higher outdoor 
temperature and humidity values, the heating demand range is lower, but the cooling demand range 
is higher than Istanbul simulation results. The x5 and x14 design variables were valued in a narrower 

Figure 11. Correlation Matrices for the Interaction of Most Effective Design Variable, (a) Based on Heating Demand, (b) Based 
on Cooling Demand

Figure 12. (a) Design Variables Distribution of Istanbul for Range Filtering; (b) Izmir
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range compared to other variables. Besides, x2, x3, x4, x9, and x15 obtained the best heating need results 
by taking values in more comprehensive ranges.

Figure 13 presents the most effective design variable distributions of Ankara and Erzurum for the 
first 100 best results. Nine for Ankara and ten for Kars uniformly distributed design variables got some 
valuable range based on the lowest energy demand. The heating demand values are between 34.10 
to 61.70 (kWh/m2-year), and the overheating degrees are 2854.40 to 18081.80 for Ankara. Heating 
demand values are between 88.70 to 135.70 (kWh/m2-year) and 454.90 to 10408.00 for overheating 
degrees in Kars. The range of heating demand is higher for Kars because of the annual lower outdoor 
temperature values. The range of overheating degrees is lower than in Ankara simulations. For both 
regions, x5, x6, and x14 were valued in a narrower range, while other variables’ variance was higher 
in a scalar comparison.

Depicting the results of energy analysis with multiple variables is crucial to the more 
straightforward interpretation of the complicated relations among design variables and performance 
outputs. For instance, designers have the possibility to sort performance results according to the units’ 
energy performance and which variable corresponds to the selected output value. It is effective for 
evaluating the design alternatives. Hence, a PCP was used to demonstrate global design space. Each 
data dimension corresponds to a vertical axis on the plot, and each data element is displayed as a 
series of connected polylines along the dimensions. The vertical axes classify the values from worse 
to best. As the PCP’s shortcoming is when design alternatives are concentrated in very data density, 
the plot space can become extremely cluttered. Thus, the interactive brushing technique can be used 
to edit values that are important to the designer at the specified point of the design, and the complexity 
can be reduced. The result of the brushing highlights a selected line or collection of lines to isolate 
parts of the drawing that the designer is interested in when filtering out noise or a dense data set.

Figure 14 demonstrates the most valuable ranges of the most effective eight design variables for 
Izmir, i.e., heating (Y1) and cooling energy demand (Y2) in Izmir. The hundred best design alternatives 
are the result of the factor mapping. In this representation, the brushing was applied for the lowest 
heating demand performances. All the design variables data distribution could be presented with 
the horizontal bar charts on the vertical axes. Therefore, while the users can interactively select the 
design variable alterations with respect to performance outputs, they can comprehend where the 
data-dense or short. This representation contributes extra knowledge to the decision-making process.

Figure 15 shows the brushing implication on the heating demand from the hundred best design 
results representation for Istanbul (a) and Izmir (b). The brushing technique can be applied to multiple 
design alternatives and outputs simultaneously with PCP. In this step, the brushing method was used 
for the lowest heating demand for two regions to observe the climate effect. With this technique, a 
minimum of 3 values was reached. Despite the high rate of differentiation in output performance 

Figure 13. (a) Design Variables Distribution of Ankara for Range Filtering; (b) Kars
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between Istanbul and Izmir, there is a high similarity in design alternatives’ values. These comparison 
values are shown below the PCP plots. As a result, the heating demand results were higher, and the 
cooling demand results lower for Istanbul.

Figure 16 shows PCP representation for the hundred best design alternative results for Ankara 
(a) and Kars (b). Similarly, the brushing technique was applied to the heating demand by achieving 
a minimum of three values. There is a high rate of differentiations for performance output results 
and the design variables’ assigned values for Ankara and Kars. According to the values under the 
PCP charts, Ankara’s minimum value has resulted in 34.1 (kWh/m2) and 18081 overheating degrees, 
88.70 (kWh/m2) and 10408 for Kars.

CONCLUSION

Early architectural design involves an intense decision-making process for determining the design 
variables, and the decisions significantly affect the building performance. Thus, it is necessary to 
analyze the effect of design variables on performance outputs. This article proposes a technique 
for analyzing the individual and total impacts of design variables, which are determined in early 
architectural design, on building performance outputs using statistical sensitivity analysis with two 

Figure 14. PCP representation of Factor Mapping Results of Izmir

Figure 15. (a) Brushing on PCP for Izmir; (b) Istanbul
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different types of building functions in two different climates. The proposed methodology combines 
the two-phase sensitivity analysis and three stages involving statistical filtering and visualization. In 
the first stage, the local sensitivity analysis Morris and ineffective design variables were fixed, and 
in the second stage, the total effect of the design variables on the performance output was measured 
with the global sensitivity analysis Sobol. Four different groups of design variables are used, i.e., 
heat transfer by conduction, solar gain, ventilation rate, and internal gains.

The number of design variables and their impact rates were different for each case type. The 
building function was different for two sets of simulations and the sensitivity analysis process. It is 
not possible to compare two building functions properly. The occupant schedules, the daily activities, 
equipment load, differs between the two building functions. However, the physical and thermal 
building parameters and design variables were identical for the two case studies. Therefore, a limited 
comparison is possible. The residential building simulations were realized in warmer climates, and 
results presented that design variables have a lower impact on the heating demand than the model’s 
output. Fewer variables were effective for both Istanbul and Izmir, x2, x3, x4, x5, x6, x9, x14, and x15. On 
the other hand, this number was nine for Ankara (including x8, u-value of the wall) and ten for Kars 
(including x8: u-value of the wall, and x7: u-value of the floor). Similarly, x5, x6, and x14 were effective 
for heating demand and, x9, x15 influenced the cooling demand for residential units and overheating 
degrees for office units. The most effective design variables’ individual effect was shown using factor 
mapping and the Parallel Coordinate Graph. According to the results of the analysis, the effects of 
design variables occurred in a similar way in the examinations of the residential unit. On the other 
hand, both the number of design alternatives and their effect on performance output differed for office 
units. The proposed methodology measured the design variables’ individual and interaction impact 
and showed them interactively for different alternative choices. In line with the proposed methodology, 
designers can directly observe design variables’ effects and determine design combinations in the 
early architectural design process. In this way, they can apply the performance-based design approach 
more effectively in the early architectural design process.

Figure 16. (a) Brushing on PCP for Ankara; (b) Kars
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