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Abstract—Ageing is accompanied by a steady decline in touch sensitivity and acuity. Conversely, pleasant touch,
such as experienced during a caress, is even more pleasant in old age. There are many physiological changes
that might explain these perceptual changes, but researchers have not yet identified any specific mechanisms.
Here, we review both the perceptual and structural changes to the touch system that are associated with ageing.
The structural changes include reduced elasticity of the skin in older people, as well as reduced numbers and
altered morphology of skin tactile receptors. Effects of ageing on the peripheral and central nervous systems
include demyelination, which affects the timing of neural signals, as well as reduced numbers of peripheral nerve
fibres. The ageing brain also undergoes complex changes in blood flow, metabolism, plasticity, neurotransmitter
function, and, for touch, the body map in primary somatosensory cortex. Although several studies have
attempted to find a direct link between perceptual and structural changes, this has proved surprisingly elusive.
We also highlight the need for more evidence regarding age-related changes in peripheral nerve function in
the hairy skin, as well as the social and emotional aspects of touch.
This article is part of a Special Issue entitled: The Neurobiology of Social and Affective Touch. � 2021 The Authors. Published

by Elsevier Ltd on behalf of IBRO. This is an open access article under theCCBY license (http://creativecommons.org/licenses/by/

4.0/).
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INTRODUCTION

It is well-known that ageing is associated with reduced

sensitivity in hearing, vision, taste, smell, proprioception,

vestibular function, and touch. For all these modalities

the decline in sensory functions is typically observed

above the age of 60 years. However, the sensory

decline is not general across sensory modalities and

can affect one modality whilst sparing others

(Cavazzana et al., 2018). Among the senses, ageing of

the touch system is one of the least studied, particularly

regarding the social and emotional aspects of touch. Tac-

tile impairment may have a profound impact on the quality

of life, since touch is crucial not only for handling objects

and detection of stimuli, but interpersonal touch is also

crucial for strengthening bonds and communicating emo-

tions (Hertenstein et al., 2009; McGlone et al., 2014;

McIntyre et al., 2019).
https://doi.org/10.1016/j.neuroscience.2021.02.015
0306-4522/� 2021 The Authors. Published by Elsevier Ltd on behalf of IBRO.
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CHANGING PROPERTIES OF THE SKIN

Skin ageing is characterised by wrinkles and loss of

firmness and elasticity (Zhang and Duan, 2018) which

may negatively influence the skin-neural coupling. How-

ever, the evidence is mixed as to what extent the physical

properties of the skin contribute to the decline in touch

discrimination (Skedung et al., 2018; Aimonetti et al.,

2019). Many elderly people have a good capacity to dis-

criminate between different levels of surface roughness

despite the cutaneous condition, and the more important

mechanisms for touch impairments with age are likely to

be found within the cutaneous nervous system

(Skedung et al., 2018).

THE PERIPHERAL NERVOUS SYSTEM

The functionally most crucial factors for the decline of

discriminative touch with age are likely to be found

within the peripheral nervous system including skin

receptors, mechanotransduction processes, and nerve

fibres. Tactile afferents innervating the skin are

pseudounipolar neurons with the cell body in the dorsal

root ganglia or trigeminal ganglia. The peripheral part of

the tactile afferent projects to the skin and the central

part connects to the dorsal horn of the spinal cord (or

the brainstem for the trigeminal nerve). The long

peripheral axon innervates specialised end organs
/licenses/by/4.0/).
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(Merkel, Ruffini, Meissner, and Pacinian types) or ends in

free nerve endings in the dermis and epidermis (Lumpkin

and Caterina, 2007), which either surround hair follicles or

terminate in the superficial layers of the skin. The spe-

cialised receptor endings may serve to mechanically mag-

nify or filter the forces imposed on the skin. Animal studies

have shown that the brain-derived neurotrophic factor

(BDNF) and tyrosine receptor kinase (TrkB) are important

for the development and function of mechanoreceptors

(Botchkarev et al., 1999; LeMaster et al., 1999; Cabo

et al., 2015).

It has long been known that there is an overall

decrease in the number of nerve fibres in the dermis

and epidermis with age (Verdu et al., 2000; Besne

et al., 2002; Chang et al., 2004). There is also a well-

known decrease in nerve conduction velocity and ampli-

tude of the compound action potential of sensory neurons

with age (Bouche et al., 1993; Palve and Palve, 2018). A

number of histological studies have counted touch-

sensitive peripheral neurons in humans and reported

age-related reductions in myelinated fibres in the spinal

roots (Corbin and Gardner, 1937) as well as evidence of

degeneration of both myelinated and unmyelinated fibres

in peripheral nerves (Ochoa and Mair, 1969; Tohgi et al.,

1977). Recently, a pilot study on human biopsies

described prevalence of toxic neuroproteins during age-

ing which may explain some dysfunctions (Akerman

et al., 2019). However, more detailed studies on the

mechanisms of age-related changes in individual

mechanosensitive afferent neurons and their axonal

transmission of action potentials are scarce. For example,

to our knowledge, there are no single afferent recordings

(microneurography) from aged skin in humans.
Mechanotransduction

The primary mechanotransduction process for many

touch-sensitive neurons has recently been discovered in

an animal model. Skin deformation is translated into

action potentials in the nerve via stretch-sensitive ion

channels called Piezo2 (Ranade et al., 2014; Woo et al.,

2014; Chesler et al., 2016). Piezo2 channels open in

response to mechanical forces applied to the cell, allow-

ing charged ions to enter, triggering action potentials

(Wang et al., 2019). In the mouse, Piezo2 expression is

found in the nerve endings of several types of touch-

sensitive primary afferent neurons, including those that

terminate around hair follicles, in Meissner corpuscles in

the glabrous skin, and in Merkel cells that are found in

both hairy and glabrous skin (Ranade et al., 2014).

Very little is known regarding age-related changes in

mechanotransduction. One human study measured

multiunit electrical activity in touch-sensitive primary

afferent neurons in the median nerve, comparing their

responses to mechanical stimulation of the skin and

electrical stimulation of the nerve. They reported an

age-related decline in the ratio of mechanical to

electrical response (Schmidt and Wahren, 1990;

Schmidt et al., 1990). This could be due to less reliable

transduction in the ageing touch system, or due to the

loss of receptor endings.
Receptor endings

In the glabrous skin, thickly myelinated, Ab touch-

sensitive primary afferents are associated with four

different receptor endings, as described earlier.

Mechanical stimulation of Merkel cells causes a

continuous irregular firing of action potentials, and the

Ab nerve fibres that are connected to the Merkel cells

are electrophysiologically termed slowly adapting type 1

(SA1) afferents. Expressed in other words, the SA1

afferents connected to the Merkel cells continue to fire

as long as the skin is mechanically deformed. The

irregular firing pattern of the SA1 receptor is thought to

be due to its morphological organisation with separate

branches of the stem axon supplying the individual

Merkel discs (Iggo and Muir, 1969; Lumpkin and

Caterina, 2007).

Mechanical stimulation of Ruffini corpuscles causes a

continuous regular firing of action potentials, and the

connected nerve fibres are electrophysiologically termed

slowly adapting type 2 (SA2) afferents. The regular firing

pattern of the SA2 receptor also seems consistent with

the morphology of the Ruffini ending, wherein an

undivided axon enters the capsule and bifurcates to

form an intracapsular terminal arborisation (Chambers

et al., 1972). However, the regularity of discharge disap-

pears at low firing frequencies (Wellnitz et al., 2010),

which can lend ambiguity to the differentiation between

SA1 and SA2 responses.

Mechanical stimulation of Meissner corpuscles

causes ‘on’ and ‘off’ responses in the connected axon,

and the afferents are electrophysiologically classified as

rapidly adapting type 1 (RA1). Thus, the RA1 axons

connected to the Meissner corpuscles respond with a

burst of action potentials to the onset and offset of

mechanical stimulation (Vallbo and Johansson, 1984).

Pacinian corpuscles are exquisitely sensitive to vibration

and are electrophysiologically termed rapidly adapting

type 2 (RA2) (Vallbo and Johansson, 1984).

A number of studies examined samples from the

glabrous skin of human fingers obtained during autopsy

or following amputation (Cauna, 1965; Bruce and

Sinclair, 1980; Bruce, 1980; Iwasaki et al., 2003;

Garcia-Piqueras et al., 2019). Details in age-related

degeneration of cutaneous mechanoreceptors were stud-

ied using microscopy and immunohistochemistry in

human skin from those in infancy to over 90 years old.

After an early developmental propagation, Merkel cells

decrease steadily in number with age (Cauna, 1965;

Garcia-Piqueras et al., 2019), and there is a reduction

of immunostaining for BDNF and TrkB, and a decrease

in Piezo2 ion channels (Garcia-Piqueras et al., 2019).

Pacinian corpuscles undergo dramatic morphological

changes, growing up to six times in size over most of

the life span, becoming more complex (Cauna, 1965),

and they do not appear to reduce in number (Cauna,

1965; Garcia-Piqueras et al., 2019). A histological study

on skin samples obtained from human glabrous skin dur-

ing autopsy were analysed for subjects in the age range

23–90 years (Garcia-Piqueras et al., 2019). Interestingly,

the structure of the Pacinian corpuscles, including the

arrangement of corpuscular components and concentric
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lamellae, were similar across age groups. There were

signs of loss of axonal innervation for a few Pacinian cor-

puscles from the older subjects, but overall the Pacinian

corpuscles seem resistant to age-related degeneration.

Meissner corpuscles steadily decline in number with

age (Cauna, 1965; Bruce and Sinclair, 1980; Bruce,

1980; Iwasaki et al., 2003). Compared to young people,

Meissner corpuscles in older people show altered mor-

phology (Cauna, 1965; Garcia-Piqueras et al., 2019),

many lack axons (Garcia-Piqueras et al., 2019), and con-

trastingly, nerve endings sometimes remain after the loss

of the corpuscle (Cauna, 1965). Meissner corpuscles also

show less immunostaining for BDNF and TrkB with age,

and there is a decrease in Piezo2 ion channels (Garcia-

Piqueras et al., 2019). One important study has identified

a potential role for Meissner corpuscles in age-related

declines in texture discrimination (Skedung et al., 2018).

They reported that some older individuals have relatively

well-preserved texture discrimination compared to others,

and that these high performers also had a higher density

of Meissner corpuscles in the finger pad, measured using

a microscope. Curiously, another study found that age-

related declines in touch detection thresholds for different

skin regions do not reflect the age-related reductions in

Meissner corpuscle density at a group level (Bruce and

Sinclair, 1980; Bruce, 1980).

In the hairy skin, both thickly myelinated Ab and

unmyelinated C afferent fibres are associated with

touch-sensitive primary afferents. Hairy skin lacks

Meissner corpuscles but has Field mechanoreceptors

whose axons have rapidly adapting properties (RA1)

(Vallbo et al., 1995; Löken et al., 2009; Nagi et al.,

2019). The hair follicle afferent (HFA) constitutes another

type of RA mechanoreceptor that, as the name implies, is

found exclusively in the hairy skin. Pacinian corpuscles

are located more remotely in the hairy skin such as in

the vicinity of joints and interosseous membrane (Calne

and Pallis, 1966; Iggo and Ogawa, 1977). Hairy skin is

also innervated by unmyelinated low-threshold

mechanoreceptors (C-LTMRs) which are typically called

C-tactile fibres (CTs) in the human literature (Nordin,

1990; Vallbo et al., 1993; Wiklund Fernstrom et al.,

1999; Löken et al., 2009). The authors are not aware of

any studies that have systematically examined the effects

of ageing on C-tactile afferents.
THE CENTRAL NERVOUS SYSTEM

There are very few mechanistic studies on the effects of

ageing specifically on tactile processing. Hand

representation in primary somatosensory cortex (S1) is

expanded by about 40% in 60–85-year-olds, compared

to 19–35-year-olds, and accompanies poorer spatial

acuity in the same individuals (Kalisch et al., 2009). This

is a puzzling finding that contrasts with the more typical

association in younger adults between cortical map

expansion and improved sensory performance, such as

in string musicians (Elbert et al., 1995) and braille readers

(Pascual-Leone and Torres, 1993), but may be a conse-

quence of the reduction of intra-cortical inhibition develop-

ing with age.
More generally, the effects of ageing on the human

central nervous system include weight loss of the brain,

which accelerates after age 70 and is attributed to the

loss of myelin and neurons, with a total loss of up to

15% of the peak brain weight by age 90. In addition,

changes in cerebral blood flow and metabolism have

been observed in the ageing brain (Yamaguchi et al.,

1986; Goyal et al., 2017), which increases the risk of neu-

rodegeneration. Although the specific functional conse-

quences for touch sensation are unclear, there are

cerebral vasculature and blood flow changes in the

somatosensory cortex of aged mice (Li et al., 2018). Ani-

mal studies on the effects of ageing have also shown a

brain-wide reduction in serotonin (Miguez et al., 1999),

and in the parietal cortex, a reduction in serotonergic

receptors and an increase in glutamate receptors (Wenk

et al., 1989). Karrer et al. (2019) found a reduced seroton-

ergic signal transmission in healthy ageing with evidence

of preservation of 5-HT-1A compared to 5-HT-2A recep-

tors. The authors claim this reduction may partially

explain psychological age differences such as why older

adults use more emotion-focused rather than problem-

focused coping strategies (Karrer et al., 2019).

In rodents, there is experimental evidence of reduced

synaptic functioning with age in the somatosensory

system, including the S1 and S2 cortices and thalamus

(Voglewede et al., 2019). For whisker stimulation, aged

mice show several differences in synaptic functioning

compared to younger mice. The differences include

reduced ability to remodel synaptic function (plasticity)

and reduced integrity of the synapses. Such deficiency

may be particularly detrimental when aged mice experi-

ence novel sensory stimuli, and the brain’s capacity to

incorporate them is affected. Furthermore, the degenera-

tion of the CNS with age does not seem to be due to a

loss of neurons but rather damage to the myelin of the

neurons. The demyelination affects the conduction veloc-

ity of the CNS neurons, which in turn disrupts the timing of

the nerve signals. Indeed, there is a correlation between

demyelination and cognitive decline (Moss et al., 1999).
CHANGES IN TOUCH PERCEPTION

Broadly, there are two aspects of touch sensation and

perception. One aspect is the capacity to discriminate

between different physical characteristics of a stimulus.

For discriminative touch the rapidly conducting

peripheral large myelinated afferents, the dorsal column,

and the somatosensory cortices are of paramount

importance (McGlone et al., 2014). Another aspect is

the affective responses that can be evoked by tactile stim-

uli (Morrison et al., 2010). This could be feelings of calm-

ness or joy when being touched by a loved one or feelings

of disgust from an unwanted touch. The anatomical struc-

tures critical for affective touch are less known. In addition

to large myelinated afferents, the slowly conducting

unmyelinated peripheral afferents (C-tactile or CT) have

an important role (Olausson et al., 2002; Löken et al.,

2009). Stimuli of affective importance like stroking,

squeezing or holding activate large-myelinated afferents

and C-tactile afferents in parallel. The information from
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these type of afferents is integrated at the dorsal horn

(Abraira and Ginty, 2013), and transmitted to insular, orbi-

tofrontal, superior temporal cortices, and beyond

(Olausson et al., 2002; McGlone et al., 2012; Gordon

et al., 2013; Davidovic et al., 2016). How affective touch

is signalled in the spinal cord remains a mystery. In mice

affective touch is projected in the anterolateral pathway

(Choi et al., 2020) whereas in humans lesioning of the

anterolateral tract does not alter affective touch percep-

tion (Marshall et al., 2019).

Discriminative aspects of tactile function are known to

decline with age, including the ability to detect light touch

(Newman, 1979; Bruce and Sinclair, 1980; Bruce, 1980;

Thornbury and Mistretta, 1981), or vibration at different

frequencies (Kenshalo, 1986; Thomson et al., 1993;

Gescheider et al., 1994; Goble et al., 1996), to discrimi-

nate between different levels of surface roughness

(Norman et al., 2016), or the distance between spatial

features (Stevens, 1992; Stevens and Patterson, 1995;

Stevens and Choo, 1996; Stevens et al., 1998;

Desrosiers et al., 1999; Dinse et al., 2006), or to discrim-

inate the direction of movement (Olausson et al., 1997;

Lundblad et al., 2020). These capacities decline after

around 60 years of age and this may be due to changing

properties of the skin as well as neural degeneration of

the peripheral and central nervous systems

(Wickremaratchi and Llewelyn, 2006; Skedung et al.,

2018). However, studies directly investigating these rela-

tionships have not yet established clear mechanisms for

the functional decline (Bruce and Sinclair, 1980; Bruce,

1980; Escoffier et al., 1989; Cua et al., 1990; Schmidt

and Wahren, 1990; Schmidt et al., 1990; Ishikawa et al.,

1995; Skedung et al., 2018). Given that this functional

decline is well-established, the lack of a known mecha-

nism is a clear gap in our knowledge.

Interestingly the pleasantness of being touched has

been found to increase with age above 60 years in

sharp contrast to the decrease in perceived intensity of

touch, and the decline in discriminative tactile functions

(Newman, 1979; Bruce and Sinclair, 1980; Bruce, 1980;

Verrillo et al., 2002; Guest et al., 2014; Sehlstedt et al.,

2016). In 120 healthy subjects of both sexes aged 13–

82 years (Sehlstedt et al., 2016), the relationship between

age and psychophysical ratings of intensity and pleasant-

ness in response to gentle stroking touch was studied

(Sehlstedt et al., 2016). The results show that touch inten-

sity ratings are negatively correlated with age consistent

with age-related decline of peripheral afferent function.

Perhaps surprisingly there is a positive correlation

between pleasantness ratings of touch and age. Further-

more, the number of emotional words used to describe

gentle touch increases with age (Guest et al., 2014). How-

ever, May et al. (2014) found no effect of age on pleasant-

ness ratings in a narrower age range (15–55 years).

The increase in touch pleasantness in later adulthood

suggests that the peripheral unmyelinated (C) tactile

afferents surmised to underpin touch pleasantness are

somewhat resistant to age-related degeneration, akin to

the Pacinian corpuscles. Since discriminative touch

mediated by large myelinated afferents declines with

age (cf. above), the relative contribution of C-tactile
afferents to the tactile-evoked afferent barrage will be

stronger. It is possible that a relatively stronger C-tactile

contribution may explain the higher pleasantness ratings

with age. However another, perhaps more likely

explanation is that the age-related increase in touch

pleasantness is explained in psychological terms as a

consequence of ‘‘longing for interpersonal touch”

(Bessler et al., 2019) or ‘‘touch hunger” (Field, 2010). In

other words, a reduction in the amount of interpersonal

touch, which probably is more common in the elderly,

may lead to increased enjoyment of touch (Sehlstedt

et al., 2016). However, any explanation for the increase

in touch pleasantness with ageing remains speculative

and mechanistic studies are required for further under-

standing of the phenomenon.

The age-related decline in tactile function is well-

established, but precise neural mechanisms that link

physiological and perceptual changes remain elusive.

There exist multiple physical and neurophysiological

changes throughout the lifespan that are candidates for

explaining the functional decline. The skin loses

elasticity and firmness with age. In the glabrous skin of

the hands, a variety of receptor endings for

mechanosensitive primary afferents undergo

morphological changes and decline in number.

Furthermore, demyelination in both the central and

peripheral nervous system occur with ageing. Despite

these many observed changes, attempts to find a strong

link between their progression and the decline in

functional performance on tactile tasks have failed. A

satisfactory explanation of the mechanism needs to

consider all these changes and how their effects

combine. In addition, there is remarkably little data on

the effects of ageing on hairy skin receptors, and on the

social and emotional aspects of touch.
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