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ABSTRACT
Mapping and monitoring the distribution of croplands and crop types support policymakers 
and international organizations by reducing the risks to food security, notably from climate 
change and, for that purpose, remote sensing is routinely used. However, identifying specific 
crop types, cropland, and cropping patterns using space-based observations is challenging 
because different crop types and cropping patterns have similarity spectral signatures. This 
study applied a methodology to identify cropland and specific crop types, including tobacco, 
wheat, barley, and gram, as well as the following cropping patterns: wheat-tobacco, wheat- 
gram, wheat-barley, and wheat-maize, which are common in Gujranwala District, Pakistan, the 
study region. The methodology consists of combining optical remote sensing images from 
Sentinel-2 and Landsat-8 with Machine Learning (ML) methods, namely a Decision Tree 
Classifier (DTC) and a Random Forest (RF) algorithm. The best time-periods for differentiating 
cropland from other land cover types were identified, and then Sentinel-2 and Landsat 8 NDVI- 
based time-series were linked to phenological parameters to determine the different crop 
types and cropping patterns over the study region using their temporal indices and ML 
algorithms. The methodology was subsequently evaluated using Landsat images, crop statis-
tical data for 2020 and 2021, and field data on cropping patterns. The results highlight the high 
level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 
images, together with ML techniques, for mapping not only the distribution of cropland, but 
also crop types and cropping patterns when validated at the county level. These results reveal 
that this methodology has benefits for monitoring and evaluating food security in Pakistan, 
adding to the evidence base of other studies on the use of remote sensing to identify crop 
types and cropping patterns in other countries.
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1. Introduction

Food security is a key problem the world is facing due 
to a rapidly increasing population and climate change. 
According to a Report published by the Food and 
Agriculture Organization (FAO), approximately 
815 million people worldwide were undernourished 
in 2016, an 11% increase from the previous year (FAO 
2017). Moreover, the global population is projected to 
grow to over 7.9 billion, 9.7 billion, and 11.2 billion 
people by 2030, 2050, and 2100, respectively (UN 
2015). This population growth will put further pres-
sure on natural resources, notably to meet the growing 
demand for food (Lambert, Waldner, and Defourny 
2016). Technological development for mapping and 
monitoring croplands will become essential to over-
come the challenge of food security and thus to 
address the United Nations Sustainable Development 
Goal of no poverty and zero hunger, with the latter 
organization encouraging the use of available technol-
ogies to meet this purpose (UN 2015).

Monitoring crop conditions is central to agricul-
tural policies and decision-making, but this requires 
high-quality and up-to-date datasets. Remote sensing 
has been used for this purpose, notably for allocating 
farm subsidies in Europe, forecasting crop yields in 
Europe and North Africa, and developing early warn-
ing systems for food security (Bellón et al. 2017). In 
Pakistan, the agricultural production has increased 
significantly in the past three decades (Hamza et al. 
2021), and the agricultural sector is now an indispen-
sable part of the economy, employing about 40% of the 
population (Al-Qaness et al. 2022; Hussain et al. 2022). 
Several studies have previously been conducted to map 
the distribution of agricultural activities in Pakistan 
(Das, Zhang, and Ren 2022; Imran et al. 2022; Tariq 
et al. 2021), but a monitoring system is still needed, 
and remote sensing could facilitate its development.

Satellite images together with phenological infor-
mation have previously been used to retrieve infor-
mation on the extent of cropland and the type of 
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crops and cropping patterns across different regions 
(Sanyal and Lu 2004; Yang, Zhao, and Chan 2018). 
The Landsat satellite images, in particular, are widely 
used for crop mapping because they are freely avail-
able, their spatial resolution is reasonably good, and 
they have been available since 1972 (Kulkarni 2017). 
Landsat images, however, are only available every 16  
days, plus some of them cannot be used due to the 
presences of clouds; consequently, they are not the 
best remote sensing product for continuous monitor-
ing of crops during their growth period. 
Alternatively, some studies have used images from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) or a combination of Landsat and MODIS 
data given the high temporal frequency albeit low 
horizontal resolution of the latter (Kumar and 
Parikh 2001; Samboko et al. 2020; Thenkabail and 
Gamage 2004). In recent studies, Sentinel-2 makes 
the probability of relating Decision Tree 
Classification (DTC) and Random Forest (RF) to 
extract crop types from time-series data of sentinel- 
2 data. Moreover, crop classification has also been 
done using the Sentinel-2 Enhanced Vegetation 
Index (EVI) and the Normalized Difference 
Vegetation Index (NDVI) time-series data (DeFries 
and Townshend 1994; Gu et al. 2007; Han, Wang, 
and Zhao 2010) using either subpixel and pixel-based 
methods. These researches have all concentrated on 
classifying multi-temporal images at the pixel level as 
their primary objective.

Machine Learning (ML) techniques have become 
more widely used in agriculture, particularly to 
improve the productivity and quality of crops. 
Random Forest (RF), for instance, is an ensemble 
learning classifier (Chen et al. 2018) that has achieved 
excellent results in cropland mapping (Hou, Wang, 
and Murayama 2019; Novelli et al. 2017; Youssef 
et al. 2016). The latter was used by (Pelletier et al. 
2016) for land cover mapping, including the delinea-
tion of agricultural fields using pan-sharpened 
Pléiades images at a 0.5-m resolution. Additional 
information such as altitude and slope were used to 
classify the fields using reflectance and spectral indices 
calculated with Sentinel-2 (artificially constructed 
images from SPOT-5) and Landsat 8 (OLI/TIRS 
images) and DEM-based auxiliary information. In 
order to categorize greenhouse segments from 
WorldView-2 images, (Novelli et al. 2017) utilized 
single-date Sentinel-2 and Landsat 8 data. (Liu et al. 
2014; Nicolaou and Shane 2010) described a multi- 
temporal object-based technique for mapping cereal 
crops using Landsat SLC-off ETM+ images (without 
using gap-filling schemes). There were no mixed-crop 
classifications of fields due to the salt-and-pepper 
effect associated with a pixel-based technique, which 
is common when classifying fields using multiple data 
sources.

The above-mentioned studies focused on classify-
ing time-series images using RF and DTC methods. 
According to Petitjean et al. (2012), the increasing 
spatial resolution of available space-borne sensors, 
such as the Multispectral Imager sensor (MSI) on 
Sentinel-2, allows for RF analysis to derive crop types 
from many series of data. RF is a tree-based classifier, 
which means that many trees are constructed, and 
then those trees are joined based on an equally 
weighted majority vote. When training a certain tree, 
it is typical practice to leave out one-third of the 
original training dataset on a purely random basis.

This study presents a methodology using the 
Sentinel-2 and Landsat-8 data along with ML techni-
ques to first map the distribution of cropland in the 
Gujranwala region of Pakistan and second to identify 
the main crop types and cropping patterns in the 
region (i.e. the planting combinations of different 
crop types in a given area within an agricultural per-
iod): wheat-tobacco, wheat-barley, and wheat-gram. 
The accuracy of the methodological approach pre-
sented in this paper is then assessed.

2. Materials and methods

2.1. Study area

This study focuses on the irrigated part of the Chenab 
River basin in the Gujranwala District of Punjab 
Province, Pakistan, which encompasses an area 
approximately 3654.24 km2 in size (Figure 1). The 
district is an important agricultural region in 
Pakistan; it is the fifth largest agricultural district in 
the country and one of the regions producing the most 
wheat. There are two dominant cropping seasons in 
the region, which are commonly known as the sum-
mer or rainy season, beginning in May and ending in 
October. The winter season where the sowing starts in 
November and the harvest takes place by late April. 
The land cover types vary considerably in the district 
due to variation in topography, soils, and climate 
(Imran et al. 2018), as shown in Figure 1. Mean annual 
temperature is 23.9°C and total annual precipitation is 
578 mm (Liaqut et al. 2019; Salma, Rehman, and Shah 
2012).

2.2. Data and processing of satellite images

Table 1 summarizes the datasets used in this study, 
which include satellite images, field survey, and statis-
tical data about crop types. The images from Sentinel- 
2 (Level-1C S2) were downloaded from the Sentinel 
Scientific Data Center of the European Space Agency 
(ESA) (https://scihub.copernicus.eu), and processed 
using sen2cor plugin v2.8.0 tools in SNAP v5.0 
(Muller-Wilm et al. 2013). ERDAS Imagine 2016 was 
used for classifying the Landsat images. The shapefile 
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of the corresponding areas and mask were generated 
to extract the area of interest using ArcMap 10.8. The 
Landsat 8 images were processed using ENVI 5.4 and 
ArcMap. Sample plots were located with the help of 
the Global Positioning System (GPS).

Figure 2 illustrates the research methodology from 
the acquisition of the Sentinel-2/Landsat-8 images to 
mapping cropland, crop types, and patterns. Persistent 
cloud cover throughout the rainfall season is 
a challenge to the use of optical remote sensing ima-
gery in the study region, altering the actual land sur-
face reflectivity. The pixel reliability band was used to 
detect clouds and shadows, and the affected pixels 
were removed. As Chen et al. (2018) explained, 
a temporal interpolation method was used to 

substitute the values of the cloud-contaminated pixels. 
These images (Sentinel-2/Landsat-8) were georefer-
enced into the same map projection of the World 
Geodetic System 1984 Zone 43°N (Tadesse et al. 
2017). All satellite images were sub-mapped (subset) 
for covering only the study area. All satellite images 
were composed using red, green, and blue (RGB) 
color.

In order to generate the dense spectral time series, 
we combined images from the Operational Land 
Imager (OLI) onboard Landsat-8, which were avail-
able as Level 1, Collection 1, Tier 1 datasets, with 
images from the Multi-Spectral Instrument (MSI) 
onboard Sentinel-2A and S-2B, which were available 
as Level 1C data. Both sets of datasets were available 

Figure 1. Land Use/Land Cover (LULC) types of the study areas with location of validation samples.

Table 1. Datasets used in the study.

Data Acquisition
Spatial 

Resolution
Temporal 

Resolution Time Period Source

Sentinel-2 LULC types 10 m Yearly 2020 https://scihub.copernicus.eu/
Sentinel-2 (MSI) 10 m 5 days From August 2015 to 

December 2018
https://scihub.copernicus.eu/

Landsat 8 (OLI/TIRS) 30 m 16 days August 2015 and 
December 2021

https://earthexplorer.usgs.gov/

Land cover and cropping 
pattern samples

. . . . . . . . . . . . 2020–2021 Field survey in August 2020-September 2021, 
Google Earth images

Crop type area statistics 184 samples Yearly 2020–2021 http://www.amis.pk/
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from the European Space Agency. We selected tem-
poral images with zero or close to zero (less than 10%) 
cloud coverage, taken between August 2015 and 
December 2021 for the study region, only visible 
bands 2, 3, and 4, and the near-infrared band 
(band 8) of Sentinel-2 data were used. Sentinel-2 
reflectance images were transferred from Top-Of- 
Atmosphere (TOA) Level 1C Sentinel-2 to Bottom- 
Of-Atmosphere (BOA) Level 2A.

Radiometric topographic, atmospheric correction, 
and adjacency effect correction was performed with 
the FORCE Level-2 module (Seelan et al. 2003). 
Clouds and shadows were masked based on the opti-
mized FMASK algorithm (Margono et al. 2012). In the 
study, Sentinel-2 and Landsat-8 images were used 
together with machine learning (DTC and RF) meth-
ods. We used Landsat-8 images with Sentinel-2 for the 
identification of cropland, cropping patterns, and crop 
types. Landsat-8 has a 30 m spatial resolution and 
Sentinel-2 has a 10 m spatial resolution. We converted 
spatial resolution of Landsat-8 to Sentinel-2. We need 
to fix this issue using STARFM technique. The 
Sentinel-2 bands with a 20 m spatial resolution were 
sharpened to 10 m using the spectral-only setup of the 
Spatial and Temporal Adaptive Reflectance Fusion 
Model (STARFM) technique (Belgiu, and Csillik 
2018; Gao et al. 2006). The 30 m spatial resolution 
Landsat-8 bands were matched to the 10 m Sentinel- 
2 pixel grid using nearest neighbor resampling. 
According to Gao et al. (2006), STARFM is a popular 
method for spatio-temporal image fusion. Recent stu-
dies in this field are beginning to use deep learning 
methodologies, following the trend in computer vision 
research. Three recent image fusion research that used 
deep learning were identified by Dian et al. (2018), Ma 
et al. (2019), Palsson, Sveinsson, and Ulfarsson (2017), 
and Yang, Zhao, and Chan (2018). Spatial information 

weighting is an important aspect when STARFM is 
actually implemented. The study area’s complexity 
and heterogeneity determine how the weighting func-
tion is set. There are three steps to SATRFM, including 
spectrally similar neighbor pixels, a combined weight-
ing function, and sample filtering.

(1) Neighboring pixels that have comparable spectral 
information can be used to determine the right 
spectral information. Pixels can be obtained in 
two different methods. Pixels of the same class 
can be blended together before an unsupervised 
classification is done. Each and every Landsat 
image should be subjected to the unsupervised 
classification method. In order to capture surface 
changes at fine resolution and predict changes 
across dates, these spectrally similar neighbor 
pixels may differ from one time to the next, 
making them valuable for comparing changes 
over time. Surface reflectance thresholds can be 
used directly to detect spectrally comparable pix-
els. The STARFM algorithm can be used to 
incorporate the search process.

(2) Spectrally similar pixels have their ultimate 
weights determined by three variables. They 
are based on the assumptions that: (a) the 
coarse-resolution homogeneous pixels provide 
the same temporal changes as fine-resolution 
observations from the same spectral class; (b) 
the observations with less change from the pre-
diction date provide better information for the 
prediction date; and (c) the more proximal 
neighboring pixels usually provide better infor-
mation for prediction. The last step in making 
the best weight function is to include both 
temporal and geographical information in the 
weight function.

Figure 2. Flow chart representing the research methodology.
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(3) It will be necessary to perform additional filter-
ing on the candidates in order to eliminate low- 
quality observations after spectrally comparable 
pixels from high-resolution imageries have 
been picked. Second, pixels near the moving 
window are discarded if the central pixel’s spec-
tral and spatial information is superior to that 
of the nearest neighboring pixels. It is rare for 
the forecast to be improved by the presence of 
an inferior neighbor pixel.

However, the pan-sharpening method aim to 
develop the spatial resolution of a single image by 
using a high spatial resolution band known as the 
panchromatic band to achieve this goal. An image 
fusion study, (Ghamisi et al. 2019) can also be char-
acterized as a pan sharpening study in the perspective 
that they fuse low spatial resolution bands with pan-
chromatic bands to produce high spatial resolution 
bands. A move toward deep learning is evident in 
this field, just with image fusion. A total of seven 
experiments utilizing deep learning for pan- 
sharpening have been documented (Belgiu and Stein 
2019; Dian et al. 2018; Ghamisi et al. 2019; Isa et al. 
2021; Ma et al. 2019; Palsson, Sveinsson, and Ulfarsson 
2017; Yang, Zhao, and Chan 2018). In addition, we 
discovered two further deep-learning-based studies on 
pan-sharpening (Ghamisi et al. 2019). Super- 
resolution studies aim to improve an image’s spatial 
resolution in the same way as pan sharpening. 
A super-resolution model, on the other hand, does 
not make use of the panchromatic band. Super- 
resolution models in computer vision research are 
heavily affected by the Fully Convolutional Network 
(FCN) models, which are based primarily (FCN) (Ma 
et al. 2019).

The crop area derived from Sentinel-2 data was 
validated using the Landsat-8 images taken from 
August 2015 and December 2021, and because they 
have been terrain-corrected, they have excellent geo-
metric accuracy. The Landsat-8 images were calibrated 
to spectral reflectance at the top of the atmosphere 
using the methodology described in (Mishra and 
Singh 2010). Then, the land surface reflectance was 
computed (Chander, Markham, and Helder 2009; 
Owojori and Xie 2005).

2.3. Ground validation

In addition to using the Landsat images, the validation 
of the cropland areas was performed using 1150 points 
chosen by random stratified sampling for each image. 
This revealed that the methodology described above to 
identify cropland areas from the Sentinel-2 images 
resulted in maps with an overall high accuracy 
(>80%) as well as good user and producer accuracy 
(>90%). Land-cover (LC) samples were chosen with 

the help of geotagged photos from field surveys and 
were used to identify LC categories using Sentinel-2 
satellite-derived data between August 2015 and 
December 2021. An overall total of 1150 samples 
were gathered, including at least 50 samples from 
each land cover category. In August 2020 and 
September 2021, field surveys were conducted in the 
study area to gather crop-type samples. For training, 
184 cropping pattern samples were collected, with at 
least 10 samples per cropping pattern. Statistical sta-
tistics for crop types comprise Tobacco, Wheat, 
Barley, and Gram for the 2020–2021 growing season. 
This information originated based from a survey, 
including statistics at the sub-district level.

2.4. Classification methods

2.4.1. Decision Tree Classifier (DTC)
There are a variety of classification methods available, 
including Artificial Neural-Network (ANN), MLC, 
Decision-Tree-Classifier (DTC), Random Forest 
(RF), and Support-Vector-Machine (SVM) (Lu and 
Weng 2007), with DTC considered the best method 
in land-cover categorization (Pan et al. 2003). DTC is 
considerably simpler and can be constructed from 
direct examination of variables than other machine- 
learning techniques, such as SVM and ANN, which 
require a lot of time and effort in training the classifier 
to get the optimal parameters. In terms of parameter 
pre-defining, outcome voting, and sample training, RF 
is more complicated than DTC since it is an ensemble 
of decision trees (Breiman 2001). Another benefit of 
DTC is that it has a clear operating machine based on 
training samples. DTC was created in MATLAB. 
Identifying appropriate variables and associated 
thresholds for each variable is a crucial step in DTC. 
A comparative study of several phenological metrics 
and temporal indices was performed to identify 
factors.

Previous studies have found that phenology char-
acteristics are useful for land cover categorization 
(Pandya et al. 2013; Xu and Guo 2014; Zhao and 
Chen 2005). Six land cover categories were evaluated 
for each sample based on their NDVI temporal pat-
terns, and the NDVI time series and the TIMESAT 
package were used to compute six phenological 
metrics (Hentze, Thonfeld, and Menz 2016). The max-
imum value, amplitude, at the start of the season, at 
the end of the season, based-values, and growing sea-
son duration are some of these measures. The begin-
ning of the season is the point on the temporal curve 
when the distance between the left minimum and 
maximum levels is 15% of the distance between the 
left minimum and the maximum. On the other hand, 
the end of the season refers to the point on the tem-
poral curve where the distance between the right mini-
mum and the maximum value is 15% of the distance 
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between the maximum value and the right minimum. 
The time gap between the start of the season and the 
end of the season refers to the growing season length. 
The difference in NDVI between the highest NDVI 
values and the base value is known as the amplitude 
(Jönsson and Eklundh 2004).

The temporal profile of the NDVI mean value for 
each Land Cover (LC) type is shown in Figure 3. To 
distinguish one LC type from another, many measure-
ments in time need to be utilized. Although NDVI 
measurements may quickly determine land covered by 
forests from rivers and lakes during the dry season, 
this is not the case for separating agriculture from 
other land cover types or distinguishing one crop 
type from another. Like water and ISA, the crop has 
a considerably greater maximum value but is blended 
with other LCs. The crops are separated from nearly 
all other LC in terms of amplitude. As a result, ampli-
tude and NDVI-dry were chosen because they offered 
the best potential for the differentiation of land cover 
types. The DTC was then developed to extract crops 
using NDVI-dry and amplitude as parameters. NDVI- 
dry was combined using the normal NDVI of total 
period facts from August. The NDVI-dry threshold 
was set at 0.25. This chosen was chosen as it is in the 
middle of the top and lower bounds of water and 
crops. Correspondingly, the amplitude threshold was 
customary at 0.38, chosen as the value midway 
between the cropped lowest and the water higher 
bounds. Finally, the DTC was used to create the agri-
cultural zones in 2020 and 2021.

2.4.2. Random Forest classification
The RF algorithm is a classification method that is 
based on trees and involves the production of several 
trees that are then integrated using an equally 
weighted majority vote. During the process of training 
each individual tree, a third of the initial dataset that 

was used for training is omitted at random. RF is an 
ensemble learning classifier (Chuvieco, Martin, and 
Palacios 2002) that has achieved efficient classification 
results in a variety of remote sensing experiments, 
including farmland mapping. These results can be 
found in a variety of publications (Chen et al. 2018; 
Guru, Seshan, and Bera 2017; Hentze, Thonfeld, and 
Menz 2016). (Karnieli et al. 2010; Naveendrakumar 
et al. 2019), both provide a comprehensive analysis of 
RF technique as well as its usefulness in the field of 
remote sensing. In the course of our research, RF was 
executed with the help of a script based on the RF 
(v.4.6–12) R package (Millard and Richardson 2015).

2.5. Crop pattern and crop type mapping

Three phases of cops, including sowing, growing, and 
harvesting, were used to extract cropping patterns as 
each cropping pattern has its unique cycle. Crop phe-
nology (temporal) profile is critical for crop type map-
ping. Figure 3 shows the NDVI temporal profiles in 
Gujranwala based on cropland and cropping patterns. 
While some cropping patterns have identical NDVI 
values at different times, particular distinctions may be 
utilized to identify these, such as sole cropping pattern 
classification having just a single top peak. However, 
a dual cropping pattern system has double heights. 
The highest peak values of the Wheat-Maize config-
uration through its unplanted period is significantly 
lower than the extra three dual cropping systems over 
the identical time, suggesting that the first season’s 
peak value is a possible variable to extract the peak 
value in the first season Wheat-Barley pattern. Because 
the NDVI values of Wheat-Tobacco in the dry season 
are considerably greater than that of Wheat-Maize, 
Wheat-Barley, and Wheat-Gram simultaneously, this 
value may be used to distinguish Wheat Tobacco from 
other patterns. Wheat-Barley harvest occurs earlier 

Figure 3. Temporal profiles for various cropping patterns in Gujranwala, Pakistan.
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than Wheat-Maize, Wheat-Gram, and Barley harvest, 
subsequent in lesser NDVI values of Wheat-Tobacco 
than others throughout the identical time.

In contrast, Maize reap occurs earlier than barley 
harvest in Wheat-Maize and vegetation senescence in 
Wheat-Maize in the second crop season, resulting in 
lesser NDVI values of Wheat-Maize than others dur-
ing the equal time. As a result, after the first 
and second crops season, NDVI data may be utilized 
as possible factors. It is substance mentioning that all 
edges were fine-tuned by altering their standards 
inside a positive variety defined by cropping pattern 
NDVI series.

All thresholds were fine-tuned by altering their 
values within a specific range defined by cropping 
pattern NDVI ranges. Following the implementation 
of the planned DTC, cropping pattern maps for the 
agricultural years 2020 and 2021 were created. While 
single Wheat and single barley have co-existed in 
Gujranwala in latest years, Wheat was used to define 
the single cropping system in this research. This is 
because (1) the barley and maize crops planted areas 
accounted for only 6% and 5% of total crop area, 
respectively, according to statistical data from 2020 
to 2021, that single crop maize’s planted area is smaller 
than single barley’s and first crop maize’s ones; and (2) 
there are too many tiny patches of maize to classify. As 
a result of the same reasoning, additional dual crop-
ping pattern systems, such as Wheat-Gram, were also 
eliminated from this study. These conventions are 
present in (Browning and Duniway 2011) as well. 
Section delves further into the uncertainties and biases 
arising from these assumptions.

2.6. Accuracy assessment

Image classification is challenging when working with 
images with a coarse spatial resolution because of the 
heterogeneity in LULC types, and uncertainties and 
errors inevitably arise. A matrix of error was used in 
this study, which is a common procedure to assess the 
uncertainties and biases in the results of image classi-
fication (Gumma et al. 2020). As previously men-
tioned, the assessment of the accuracy in the 
Sentinel-2 image classification to create cropland and 
crop types maps for the year 2015–2021 was per-
formed using Landsat-8 images on the one hand and 
crop statistics on the other hand. The reliability of the 
various test samples and the procedure for allocating 
certain samples is crucial to an accuracy assessment 
(Mousa et al. 2020), with the focus normally on the 
estimated accuracy percentage and permissible error 
(Landerer, and Swenson 2012).

The amount of test samples generally usually depen-
dent on the expected accuracy of the percentage usually 
depends on the expected percentage accuracy and accep-
table mistakes (Landerer, and Swenson 2012) or on the 

thumb rule, which requires at least 50 test samples per 
class. The majority in this study aggregated the non-crop 
/crop data from Landsat-8 (30 m) cell size with a 10 m 
cell size, identical to Sentinal-2 data. One thousand one 
hundred and fifty test samples were chosen in all sub- 
districts using the stratified random sampling method 
from the aggregated crop distribution from imagery. 
These test samples were used for assessing agricultural 
maps generated from Sentinel-2 and Landsat-8. A total 
of 1151 test samples (obtained from all administrative 
units viz. Gujranwala, Kamoke, Nowshervirkhan, and 
Wazirabad, respectively) were chosen from gathered 
images of crop distribution stratified random sampling 
method. The Sentinel-2 and Landsat-8 cropland maps 
were evaluated using these test samples.

The error matrix for cropland was then established, 
and the result of the crop type classification, respec-
tively. Another method for comparative evaluating the 
results extracted from Sentinel-2 was using adminis-
trative (county) level crop statistical data. For each 
county, the reference results were determined for 
crop type and cropland areas. For every county in 
Gujranwala, Sentinel-2 related crop type, cropping 
patterns and cropland areas were estimated utilizing 
a statistical zoning method. The NDAI, the adjusted 
determination coefficient (R2), and the relative root 
means square-error (RRMSE) (Hentze, Thonfeld, and 
Menz 2016) were used to determine the Sentinel-2 
outcomes explained in the following Equations (1–4): 

NDAIi ¼ Ei � Sið Þ (1) 

R
02 ¼ 1 �

Xn

i¼1
Ei � Sið Þ

2
=
Xn

i¼1
Ei � �Sð Þ

2 (2) 

R2 ¼ 1 � 1 � R
02

� � n � 1
n � p � 1

(3) 

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ei � Sið Þ

2� �q

n
�

100
5

(4) 

where Ei and Si are satellite-derived (Sentinel-2) 
approximate region and the crop-statistical region at 
county level i, respectively; where �E and �S are calcu-
lated area averages and statistical area of all counties, 
respectively, where n and p denote the total samples 
(county) and several independent variables. R2 repre-
sents the commitment coefficient. R02 is more com-
mon compared with R2;As it excludes the effect 
arising from measurements and independent vari-
ables. NDAI represents the difference scale (−1 to 1) 
of the calculated part to the reference data; that is, 
a negative value means an under-estimation and 
a positive value, an over-estimation, so the closest 
the distance is to zero, the greater the estimation 
accuracy.
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The Sentinel-2 and Landsat-8 derived data classifi-
cations’ accuracies were evaluated in terms of overall 
accuracy, producer’s accuracy, user’s accuracy metrics, 
(Landerer and Swenson 2012) and kappa coefficient 
(Cohen 1960; Congalton 1991). The differences 
between the classification results obtained by 
Sentinel-2 and Landsat-8 derived estimated cropland 
areas, cropping pattern, and different crops according 
to RF and DTC were compared using McNemar’s test 
(Bradley 1968).

3. Results

3.1. Classification of DTC using Sentinel-2 and 
Landsat-8 data

3.1.1. Cropland
Figure 4 represent the cropland patches size derived by 
Sentinel-2 data (Left hand) and Landsat-8 at the right 
hand. The cropland distributions from Sentinel-2 data 
indicate that the cropland results are primarily dis-
tributed in the northern and south-western areas in 
Gujranwala (Figure 4). Figure 4 (A1) pinpoints that 
the croplands are mainly located in all parts except the 
central areas. Wazirabad, Nowshervirkhan, Kamoke, 
and Gujranwala sub-districts have a non-cropland 
area of 21.1%, 7.38%, 12.25%, and 12.26%, and crop-
land area of 78.9%, 92.62%, 87.75%, and 87.74%, 
respectively.

Figure 4 (B1) indicates that croplands extracted 
from Landsat-8 derived data. Figure 4 (B1) shows 
Wazirabad, Nowshervirkhan, Kamoke, and 
Gujranwala sub-districts have a non-cropland area of 
19.4%, 7.72%, 12.94%, and 18.92%, and cropland area 

of 80.6%, 92.28%, 87.06%, and 81.08%, respectively. 
Landsat-8 derived cropland data had more excellent 
reliability than the sites with irregular patches. Thus, 
cropland mapping accuracy was affected mainly by 
landscape configuration. Figure 4(A1, B1) indicated 
Landsat-8 data was matched well with cropland of 
Sentinel-2 data

The overall Sentinel-2 derived croplands’ UA and 
PA Accuracy assessment for Wazirabab was (97.71%, 
78.12%), Nowshervirkhan (99.14%, 72.29%), Kamoke 
(98.98%, 81.85%) and Gujranwala county (98.77%, 
80.62%), respectively (Figure 5). Similarly, the UA 
and PA accuracy result of LANDSAT-8 data were; 
Wazirabad (97.92%, 82.77%), Nowshervirkhan 
(98.57%, 69.68%), Kamoke (98.31%, 80.60%), and 
Gujranwala county (96.72%, 75.40%), respectively 
(Figure 5).

3.1.2. Cropping pattern
The cropping pattern mapping based on multi- 
temporal remote sensing images described the transi-
tion zone between all administrative units (sub- 
districts) of the study area due to the change of crop-
ping patterns and types. Wheat-Maize has the max-
imum accuracy with the minimum omission and 
commission errors. This is realistic because of the 
temporal profile of the wheat-maize (Figure 3). 
Single crops have the lowest UA and PA due to 
a mix of the pixel with other cropping pattern samples.

The spatial dispersal of cropping patterns in 
Gujranwala for 2021 (Figure 4(A2,B2)) indicate that 
Wheat-Maize was focused in all sub-district regions 
except the center Gujranwala district, and Wheat- 

Figure 4. Comparison of the spatial extent of cropland, crop types, and cropping pattern, using Sentinel-2 (Left hand) and Landsat- 
8 (Right hand) images with DTC.
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Gram was scattered primarily in the south and western 
parts. Wheat-Tobacco and Wheat-Gram mainly were 
grouped in the southeast and west, and Single crops 
were distributed during the Gujranwala district. More 
analysis of the cropping pattern regions shows that 
Wheat-Maize had the major area in 2021 and had 
a high PA accounting for 94.29% of the total cropland 
area. Table 2 represents the cropland area of Wheat- 
Tobacco, Wheat, Maize, Wheat-Barley, Wheat-Gram, 
and single cropping pattern derived by Sentinel-2.

Using the DTC model, single crops achieved the 
lowest UA values of 63%, while Wheat–maize had 
97%, higher PA due to identifying many cropping 
pattern pixels using Sentinel-2 data. In the Landsat-8 

data, Wheat-tobacco has higher UA, and wheat-maize 
has more petite PA using the decision tree classifica-
tion were indicated in Figure 5.

3.1.3. Crop types
The crop type mapping based on multi-temporal 
remote sensing images describes the transition zone 
between all administrative units (counties) of the 
study area due to the change of cropping patterns 
and types. DTC methods helped identify the crop 
types using Sentinel-2 and Landsat-8 data in 
Gujranwala. Sentinel-2 satellite-derived data pin-
pointed that the adopted method could successfully 
extract crops. Figure 4 (A3) displays the different 

Figure 5. User accuracy and producer accuracy of cropland, crop types and cropping pattern using DTC and RF when comparing 
the results of the land cover classification obtained using Sentinel 2 and Landsat 8 satellite images in Gujranwala, Pakistan.
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crops like tobacco, wheat, barley, gram, and ground-
nut, indicating that the proposed method can success-
fully extract crops. Landsat-8 derived data clearly 
explained in Figure 4 (B3) wheat is the most important 
crop in all counties in the study area.

Figure 5 shows the UA and PA accuracies for iden-
tifying crops using Sentinel-2 data of 2021. Tobacco, 
the most important crop in the region, has higher user 
accuracy and producer’s accuracy of 95% and 93%, 
respectively. In the Landsat-8 data indicated in 
Figure 5, tobacco has UA (95.34%), while Wheat has 
higher producer accuracy (93%).

3.2. Classification of RF using Sentinel-2 and 
Landsat-8 data

3.2.1. Cropland
Sentinel-2/Landsat-8 satellite-derived data were used 
to extract cropland areas using a random forest model. 
Sentinel-2 and Landsat-8 are presented in Figure 6(A1, 
B1). The cropland distribution derived from Sentinel- 
2 data, as shown in Figure 6 (A1), pinpoints that the 
croplands are mainly dispersed except the central 
areas. Wazirabad, Nowshervirkhan, Kamoke, and 

Gujranwala County have a non-cropland place of 
20.3%, 8.48%, 11.93%, and 13.22% and cropland area 
of 79.7%, 91.52%, 88.97%, and 86.78%, respectively.

Landsat-8 data indicates the spatial and temporal 
crop variations in the Gujranwala division. It was 
indicated that cropland distribution from Landsat-8 
data. Figure 6 (A1) pinpointed that the croplands 
were dispersed mainly in central and south-eastern 
Gujranwala, Pakistan. Figure 6 (B1) indicated 
Landsat-8 data. Wazirabad, Nowshervirkhan, 
Kamoke, and Gujranwala County have a non- 
cropland area of 20.8%, 8.80%, 11.24%, and 
29.18%, and cropland area of 71.2%, 89.20%, 
77.76%, and 70.82%, respectively. Nevertheless, mis-
classification occurred in these areas. For example, 
in test Kamoke, Wazirabad was misclassified as 
croplands, while the cropland class was misclassified 
as other classes.

The overall Sentinel-2 derived croplands’ UA and 
PA Accuracy assessment for Wazirabab was 98.34% 
and 80.09%, Nowshervirkhan 99.43% and 79.72%, 
Kamoke, 99.32% and 85.37%, and Gujranwala 
98.57%, and 80.34%, respectively (Figure 5). While 
for the Landsat-8 derived data, the UA and PA 
Accuracy assessment was Wazirabad (96.88% and 

Table 2. Area statistics of Sentinel-2 and Landsat-8 derived cropping area using DTC in Gujranwala, Pakistan, in 2021.
Sentinel-2 Landsat-8

Item Wheat- 
Tobacco

Wheat- 
Maize

Wheat- 
Barley

Wheat- 
Gram

Single 
crop

Total Wheat- 
Tobacco

Wheat- 
Maize

Wheat- 
Barley

Wheat- 
Gram

Single 
crop

Total

Area (km2) 413.22 1699.22 510.28 98.23 96.06 2817.01 423.55 1730.25 480.22 90.33 92.66 2817.01
Area ratio 

(%)
14.67 60.32 18.11 3.49 3.41 100 15.04 61.42 17.05 3.21 3.29 100

Figure 6. Comparison of the spatial extent of cropland, cropping pattern, and crop types using RF method with Sentinel-2 (Left 
side) and Landsat-8 (Right side) images.
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75.97%), Nowshervirkhan (99.14% and 79.56%), 
Kamoke (98.31% and 81.88%), and Gujranwala 
(97.54% and 79.33%), respectively (Figure 5).

3.2.2. Cropping pattern
Each type of cropping pattern has particular traits that 
manifest itself during the planting, growing, and har-
vesting stages. This opens up the prospect of utilizing 
remote sensing time-series data to derive different 
types of cropping patterns. In point of fact, temporal 
profile study of crop phenology is crucial when it 
comes to mapping out crop types. We got maximum 
accuracy from Wheat-Maize with fewer omission and 
commission errors. Many spatial dispersals of crop-
ping patterns in Gujranwala in 2021 (Figure 6(A2, 
B2)) show that Wheat-Maize was mainly focused in 
all sub-district regions except the center Gujranwala 
district, and Wheat-Gram was scattered primarily in 
the south and western parts. Wheat-Tobacco and 
Wheat-Gram mainly were grouped in the southeast 
and west, and Single crops were distributed during the 
Gujranwala district. Moreover, Sentinel-2 and 
Landsat-8 derived data Wheat-Tobacco, Wheat, 
Maize, Wheat-Barley, Wheat-Gram, and single crop-
ping pattern have cropland area indicated in Table 3.

In Sentinel-2 data, all cropping patterns, except 
wheat-maize, have PA of 75% or higher and UA of 
69% or higher. Wheat-Gram has the lowest accuracy 
with a minuscule commission and omission errors. 
This is reasonable because the temporal profile of the 
Wheat-Gram (Figure 3) is considerably different from 
that of other cropping patterns (Figure 5).

3.2.3. Crop types
In this section, the individual RF algorithms use 
Sentinel-2 and Landsat-8 data. Then, the traditional 
and the proposed stacking methods were also imple-
mented. RF method helped identify crop types using 
Sentinel-2 and Landsat-8 data in Gujranwala. Optical 
remote sensing data pinpointed that the adopted 
method could successfully extract crops. Figure 6 
(A3) displays the different crops like tobacco, wheat, 
barley, gram, and single crops, indicating that the 
proposed method can successfully extract crops 
using Sentinel-2. Landsat-8 derived data clearly 
explained in Figure 6(B3) wheat is the most important 
crop in all counties in the study area.

Figure 6 (A3) shows high UA and PA of 88% and 
938%, respectively, of wheat cropland derived from 
Sentinel-2 imagery. Whereas tobacco shows 87% UA, 
the single crop has UA and PA of 69%, 74% (Figure 5). 
Figure 5 shows the UA and PA accuracies for identify-
ing crops using Sentinel-2 data of 2021. Wheat, the 
most important crop in the region, shows the best 
accuracy with UA of 88% and PA of 93%, higher 
accuracy than tobacco. Figure 5 represents the 
Landsat-8 data. Tobacco has higher UA (95%), while 
Wheat has better PA (93%) than tobacco. Landsat-8 
derived crops include wheat, barley, tobacco, gram, 
and single crop. Tobacco had 95% UA, and 76% PA, 
respectively, for Landsat-8 derived cropland area 
(Figure 6 (B3)). UA and PA for Gram achieved the 
lowest UA of 59%. Most fields’ samples collected from 
Wheat crops indicated that Wheat is a significant crop 
and covered a larger area than other crops, as shown in 
Figure 5.

3.3. Accuracy assessment

Overall accuracy (OA) and kappa coefficient (Kc) 
Sentinel-2 and Landsat-8 data using DTC and RF 
classifications were computed and reported according 
to cropland, cropping pattern, and crop types.

3.3.1. Overall classification
The overall cropland accuracy (OA) evaluation and 
Kappa (Kc) coefficient result of Sentinel-2 data of 
Wazirabad were 87.50% and 88.72% of 
Nowshervirkhan were 63.64% and 93.08%, of 
Kamoke were 87.50% and 88.72%, and of Gujranwala 
county are 83.64% and 93.08%, respectively (Table 4). 
The OA assessment and Kc result of Landsat-8 data of 
Wazirabad were 82.08% and 78.39%, of 
Nowshervirkhan are 75.53% and 75.14%, of Kamoke 
are 82.08% and 75.22%, and of Gujranwala county 
were 75.53% and 77.84%, respectively (Table 4).

Sentinel-2 derived cropland OA assessment, and Kc 
of Wazirabad was 80.09%, and 79.94%, of 
Nowshervirkhan, were 79.72% and 75.23% of 
Kamoke are 98.31% and 96.14%, and of Gujranwala 
county were 97.54% and 88.23%, respectively 
(Table 4). Landsat-8 derived cropland OA assessment, 
and Kc of Wazirabad was 88.72%, and 75.97%, of 
Nowshervirkhan, were 93.08% and 82.56% of 

Table 3. Area statistics of Sentinel-2 and Landsat-8 derived cropping area using RF in Gujranwala, Pakistan, in 2021.
Sentinel-2 Landsat-8

Item
Wheat- 

Tobacco
Wheat- 
Maize

Wheat- 
Barley

Wheat- 
Gram

Single 
crop Total

Wheat- 
Tobacco

Wheat- 
Maize

Wheat- 
Barley

Wheat- 
Gram

Single 
crop Total

Area (km2) 413.22 1699.22 510.28 98.23 96.06 2817.01 423.55 1730.25 480.22 90.33 92.66 2817.01
Area ratio 

(%)
14.67 60.32 18.11 3.49 3.41 100 15.04 61.42 17.05 3.21 3.29 100

GEO-SPATIAL INFORMATION SCIENCE 11



Kamoke were 85.37% and 81.88%, and of Gujranwala 
county were 80.34% and 79.33%, respectively 
(Table 4).

The overall cropping pattern accuracy (OA) and 
Kappa coefficient (Kc) were determined using the 
Sentinel-2 and Landsat-8 data DTC model. Sentinel- 
2 has 85.06% and 76.38%, and Landsat-8 has 90.79% 
and 79.02%. Moreover, we identified OA and Kc from 
the RF model. Sentinel-2 has 92.06% and 83.05%, and 
Landsat-8 has 92.27% and 88.78%, respectively 
(Table 5).

The overall crop type’s accuracy and Kc were deter-
mined using the DTC model in the Sentinel-2 and 
Landsat-8 data. Sentinel-2 has 97% and 78%, and 
Landsat-8 has 98% and 81%, respectively. Moreover, 
we identified OA and Kc from the RF model. Sentinel- 
2 has 97% and 82%, and Landsat-8 has 98% and 80%, 
respectively (Table 5).

3.4. RF and DTC comparisons using McNemar’s 
test

We used McNemar’s Chi-squared test to check how 
the Sentinel-2/Landsat-8 and crop statistical data 
derived crops at the county level. The differences 
between the classification outcomes achieved by 
DTC and RF were assessed using McNemar’s Chi- 
squared test. The McNemar’s chi-square test results 

showed that the distribution of crops data, measured 
through Sentinel-2 derived and Landsat-8 data, is pre-
sented in Table 6. It was observed that crops data, 
measured through different approaches and data, was 
the same. McNemar’s chi-square test value was sig-
nificant in each county and crops group. Most of the 
county’s Sentinel-2 and Landsat-8, and crops- 
statistical data had two-tailed P values near 1.0%. It 
means a high correlation between two factors.

3.5. Comparison of Sentinel-2, Landsat-8, and 
statistical-based cropland and crop types data

A total of 184 crop samples were used to compare 
Sentinel-2 and statistical-based cropland of maps. 
The sites with bigger patch sizes of cropland had 
higher reliability than the sites with irregular patch 
sizes, thus, showing that the landscape configuration 
had a substantial effect on the accuracy of cropland 
mapping. The adjusted coefficient of determination 
(R2) at the sub-district level scale in 2021 between 
crop-statistical and Sentinel-2 derived cropland data 
was more than 0.86, 0.95, 0.89, and 0.85 as shown in 
Figure 7(a–d), illustrating this approach’s promise in 
the progress of Sentinel-2 croplands. Notice that the 
cropland regression line nearly overlapped at the 1:1 
diagonal, further reinforcing the strong arrangement 
between the estimate of the croplands region and 
crop-statistical results.

Correlating the Sentinel-2 derived and crop areas 
with 2021 statistical data (Table 7) showed high R2 

values for barley, tobacco, and wheat while low R2 for 
the gram and other crops. It showed that the Sentinel- 
2 zones for altered categories of crops agreed with 
corresponding crops-statistical data. The total assessed 
cropland area encompassed 2817.01 km2, which was 
approximately 118.19 km2 higher than the cropland 

Table 4. Overall accuracy (OA) and kappa coefficient of Sentinel-2 and Landsat-8 data.
Method Sensor Parameter Wazirabad Nowshervirkhan Kamoke Gujranwala

DTC Sentinel-2 OA 87.50 63.64 87.50 83.64
Kc 88.72 93.08 88.72 93.08

Landsat-8 OA 82.08 75.53 82.08 75.53
Kc 78.39 75.14 75.22 77.84

RF Sentinel-2 OA 80.09 79.72 98.31 97.54
Kc 79.94 75.23 96.14 88.23

Landsat-8 OA 88.72 93.08 85.37 80.34
Kc 75.97 82.56 81.88 79.33

Table 5. Overall Accuracy (OA) and Kappa coefficient (Kc) of 
crop types and cropping pattern using Sentinel-2 and Landsat- 
8 images.

Methods Sensor
Crop types Cropping pattern

OA (%) Kc (%) OA (%) Kc (%)

DTC Sentinel-2 97.71 78.12 85.06 76.38
Landsat-8 98.98 81.85 90.79 79.02

RF Sentinel-2 97.92 82.77 92.06 83.05
Landsat-8 98.31 80.60 92.27 88.78

Table 6. An overview of the categorization comparisons using McNemar’s Chi-squared test.

Methods Sensor

Wazirabad Nowshervirkhan Kamoke Gujranwala

x2 p x2 p x2 p x2 p

DTC Sentinel-2 0.50 0.48 1.15 0.40 0.11 0.63 0.10 0.35
Landsat-8 0.68 0.41 0.73 0.40 0.26 0.63 0.74 0.40

Crop-statistical 0.03 0.96 0.04 0.85 0.03 0.97 0.02 0.89
RF Sentinel-2 0.05 0.82 0.01 0.91 0.01 1.00 0.03 0.87

Landsat-8 0.01 0.91 0.04 0.84 0.03 0.89 0.39 0.55
Crop-statistical 0.03 0.88 0.10 0.77 0.05 0.97 0.12 0.74
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area in national statistics. A great R2 value (0.93) and 
small RRMSE value (0.59) further confirmed that the 
proposed method could successfully extract cropland 
area at a large-scale using Sentinel-2 derived data.

The relationship between corresponding statistical 
data and Sentinel-2 derived crop type area (Figure 8 
(a–d)) shows a conclusion similar to Table 8; tobacco 
has the most excellent estimation results. The spatial 
dispersal of crop types in Gujranwala in 2021 
(Figure 8(a)) shows that tobacco dispersal is signifi-
cantly related to cropland dispersal (Figure 7). Wheat 
seems in the Wheat-Tobacco arrangement, and 
Wheat-Gram arises at Wheat-Barley and Wheat- 
Maize forms (Figure 7 (c1)). Analysis of each crop 
types zone (Table 8) shows that Wheat has the major 
established zone in Gujranwala, accounting for 85% of 
the total crop type area, and barley has the least, 
accounting for only 0.07% total crop-type area.

4. Discussion

This paper presents the application of a method to map 
cropland, cropping patterns, and crop types using 
Sentinel-2 and Landsat 8 time-series data for the period 
August 2015–December 2021. The different cropping 
patterns and crop types over the study area were iden-
tified using a decision tree classification and Random 
Forest classification, built based on differences in phe-
nological variables. The Sentinel-2 derived images pro-
duced excellent accuracy compared with LANDSAT-8 
imagery and official crop statistics for 2020–2021. The 
wheat-maize cropping pattern is the prevailing crop-
ping pattern in Gujranwala District, Pakistan. This 
study focused on two cropping patterns that have not 
been examined in previous studies employing a similar 
methodology using Sentinel-2 images (Grobler et al. 
2012; Ok, Akar, and Gungor 2012).

Croplands and crop patterns have been extracted 
from typical sample plots using thresholds. However, 
the thresholds have been subjectively determined, and 
thus the estimated areas may differ when the criteria are 
modified. According to the research, the tiny farmland 
patch sizes (mixed pixels in Sentinel-2 data) led to sub-
stantial uncertainty in cropland and crop type area esti-
mates in municipalities with small agricultural areas. 
Croplands and crop patterns have been extracted from 
typical sample plots using thresholds. However, the 

Figure 7. Comparisons of crop-statistical and Sentinel-2 derived data estimation cropland areas for (a) Wazirabad (b) 
Nowshervirkhan (c) Kamoke (d) Gujranwala.

Table 7. A real comparison of crop types from Sentinel-2 and 
crop-statistical data, Gujranwala, in 2021.

Crop 
type

Sentinel-2-derived 
estimation (km2)

Statistical data 
(km2) R2 RRMSE

Tobacco 408.74 367.95 0.93 56.59
Wheat 2403.42 2326.94 0.90 81.06
Barley 1.99 1.86 0.86 0.26
Gram 2.13 1.42 0.81 1.42
Single 

crop
0.73 0.65 0.59 0.70

Total 2817.01 2698.82

GEO-SPATIAL INFORMATION SCIENCE 13



thresholds have been subjectively measured, and thus the 
estimated areas may differ when the criteria are modified. 
According to the research, the tiny farmland patch sizes 
(mixed pixels in Sentinel-2 data) led to substantial uncer-
tainty in cropland and crop type area estimates in muni-
cipalities with small agricultural areas. Earlier review 
(Chen et al. 2016) showed that the pixels’ homogeneity 
is essential for crop mapping. The impact of mixed pixels 
may be disregarded in municipalities with huge agricul-
tural fields, but small croplands cannot be ignored in 
cities with small croplands. The study cannot consider 
the difficulties in identifying small agricultural areas and 
the small percentage of maize, single crop, and Wheat in 
this research. This may lead to an overestimation of 
Wheat and other double cultivation methods and a bias 
in assessing crops based on statistics. More research 
should be done to improve the estimate’s accuracy in 
regions with small patch sizes.

Several studies have shown how mixed pixels reduce 
the impact on the mapping accuracy of land covers 
(Lobell, Cassman, and Field 2009). Spectral mixture 

analyses have been extensively used in satellite images 
with medium spatial resolution, such as those from 
Landsat (Waqas et al. 2021). They have shown to be 
a productive method for breaking down mixed pixels 
into fractional objects (Das and Mishra 2017; Kumar and 
Parikh 2001; Mandal et al. 2020) the difficulty of identi-
fying enough end members using medium spatial reso-
lution images, such as Landsat data. Data fusion 
techniques may be used to integrate Sentinel-2 and 
Landsat-8 data to improve the geographical resolution 
of datasets. However, the enormous amount of data 
needed across a large area will become an issue. 
Another approach is to map fractions of agricultural 
distributions based on Sentinel-2, and Landsat-8 derived 
cropland data using estimate models (Stroppiana et al. 
2012). A regression-based approach to estimating the 
distribution of fractional croplands is used (Wu et al. 
2014).

However, research in the future should focus on 
developing an approach to estimating fractional areas 
of different crop types and crop patterns, which would 
include notable places of small crop patches. It is hard to 
gather ground-truth data on cropping patterns through-
out the state. Most of our crop pattern data were col-
lected in the sub-district of Novshervirkhan during the 
field research. Because of the importance of crop varia-
bility, crop patterns, and crop types may be less precise 
than in Noshervirkhan in minor crop areas. The 

Figure 8. Areal comparison of crop types from the Sentinel-2 and statistical data of (a) Tobacco; (b) Wheat; (c) Barley: (d) Gram.

Table 8. A real statistical results of Sentinel-2 derived crop 
types in 2021 in Gujranwala.

Item Tobacco Wheat Barley Gram
Single 
Crop Total

Area (km2) 408.74 2403.42 1.99 2.13 0.73 2817.01
Total area of 

crop type (%)
14.51 85.31 0.07 0.07 0.03 100
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established sample-based and Sentinel-2 derived datasets 
for 2021 were transferred to the 2020 data for cropping 
pattern maps in Gujranwala when the evaluation was 
carried out based on statistical information. The results 
indicated a good match. However, caution should be 
taken while using the developed technique in different 
areas of study because of the differences in terrestrial 
shape and composition of LC. The DTC criteria may 
need to be adjusted according to the cropping pattern 
samples in each study (Stroppiana et al. 2012).

The effect of mixed pixels for counties with a large 
cropland region may be neglected. Still, it can be 
problematic for counties with smaller cropland areas 
and have difficulties finding tiny cropland areas and 
a low areal percentage. Therefore, for those small 
counties, it is difficult to identify the maize-cotton, 
cotton-sugarcane, sugarcane-tobacco dual cropping. 
It can trigger overestimation based on crop statistical 
data for maize region and other double-cropping sys-
tems and distortion in crop form evaluation. A great 
deal of work has examined strategies for raising the 
effect of mixed pixels on the quality of land-cover 
mapping (Lobell, Cassman, and Field 2009; Zhu et al. 
2016). Analysis of spectral mixture is proved to be an 
efficient method for decomposing mixed pixels into 
fractional artifacts. It is commonly utilized for low 
spatial resolution image analyses, such as satellite 
images from Landsat-8 (Liu et al. 2003).

5. Conclusions

Cropland, cropping patterns, and crop type identification 
and mapping are extremely important for numerous 
environmental planning and research applications. The 
collection and creation of data can be made more efficient 
and dependable through the use of remote sensing. 
Information gathered from satellites about agriculture 
can help farmers prepare for the future while also protect-
ing natural resources. Large-scale agricultural operational 
mapping with great spatiotemporal resolution is now 
possible.

In this study, Sentinel-2 and Landsat-8 time series 
served as data input for cropland, cropping-patterns, 
and crop types mapping using the DTC and RF method. 
The analysis was applied to optical data in the study area 
with the same agricultural calendars, parcel morphology, 
and climatic conditions. Optical remote sensing NDVI 
time series data were used as input for cropland mapping 
in this study, with the DTC and RF method used to 
classify cropland, crop types, and cropping patterns. 
The research was performed in sub-districts of 
Gujranwala with the same agricultural calendars, parcel 
morphology, and climatic conditions. Wheat shows the 
best accuracy using DTC and Random forest areas as the 
most important crop. Analysis of each crop type shows 
that Wheat has the major established zone in 

Gujranwala, accounting for 85% of the total crop type 
area, and barley has the least, accounting for only 0.07% 
total crop-type area.

Our results highlight the Sentinel-2 and Landsat-8 
time series value, with crop-statistical data for annual 
mapping distribution of cropland, cropping-patterns, 
and crop types with great spatial and thematic detail on 
a county level. The identification of crop sequence pat-
terns demonstrates the potential of the annual maps in 
complete crop sequence and future crop rotation analyses 
on the national scale. Our work identified the temporal 
changes in cropping patterns and types and 
a comparative study of the spatial and temporal resolu-
tion of medium resolution imagery of the same area. In 
addition, we show that large-area studies that cover broad 
environmental gradients are not only important for 
national reporting but also for illuminating the benefits 
and drawbacks of using optical and radar data for crop 
type mapping in a variety of ecological conditions and 
with a variety of data sources available. This is because the 
large-area studies are required to reveal the advantages 
and disadvantages of using optical and radar data.
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