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A B S T R A C T   

This study provides an empirical analysis of the injury severity outcomes of maritime accidents by exploring the 
influential factors for two underlying injury severity states: the injury-free state and the injury-prone state. The 
former may reflect the generation mechanism of accidents with limited potential to result in injury outcomes, 
whereas, the latter may represent injury severity when the accident falls into the injury-prone category. To 
account for the possible presence of these two underlying regimes, a zero-inflated ordered probit (ZIOP) model is 
employed using injury-severity data extracted from 1,128 maritime accident investigation reports between 2000 
and 2019. The results indicate that on one hand, capsizing/sinking, hull/machinery damage and other accident 
type, adverse sea state, poor education background and short period of holding the present rank are more likely 
to be injury-prone. On the other hand, gross tonnage and water depth, distance from the coast, flag state of 
convenience, and accident type impact the likelihood of severe injuries if the accident is in the injury-prone 
category. The marginal effect analysis highlights some interesting effects caused by sea state, ship manning 
and gross tonnage, as well as accident type and location. The results of Akaike’s information criteria (AIC), 
Bayesian information criteria (BIC) and Vuong’s test show that the ZIOP model outperforms the traditional 
ordered probit model and can serve as an alternative to study the injury severity of maritime accidents.   

1. Introduction 

Considering that over 80% of global trade by volume and more than 
70% by value is handled by shipping (Huang et al., 2021; UNCTAD, 
2021), the safety of shipping activities is critical to the global economy 
(Puisa, 2018; Tian et al., 2020; Wang et al., 2022b). However, maritime 
accidents with serious consequences still occur from time to time (Fang 
et al., 2022). According to the report of Allianz Global Corporate & 
Specialty (AGCS, 2021), 49 total shipping losses of over 100 GT were 
reported in 2020. In addition to the large number of total losses, the 
number of injuries and fatalities in maritime accidents also stays at a 
high level (Callesen et al., 2021). The 2,837 maritime accidents and 
incidents reported by the EU Member States to the European Maritime 
Safety Agency (EMSA, 2021) in 2020 resulted in 38 fatalities and 675 
injuries. A total of 196 deaths or missing were also reported in 138 water 

traffic accidents that occurred in China waterways in 2020 (MOT, 2021). 
Therefore, a fully understanding of the determinants of the severity 

of maritime accidents is of great importance for the avoidance or 
reduction of maritime accident consequences. A number of studies 
(Çakır et al., 2021; Callesen et al., 2021; Puisa, 2021; Wang et al., 2021, 
2022a; Wang and Yang, 2018; Zaccone and Martelli, 2020) have been 
conducted to investigate the causal factors that influence the results of 
accident severity, based on a large data set of maritime accidents 
occurring over a specific period of time. It was found in these studies that 
accidents with no-injury outcomes were widely observed in accident 
data sets. However, the high proportion of no-injury outcomes does not 
mean an improvement in maritime traffic safety (Kimera and Nangolo, 
2022). A portion of the zero-injury observations may relate to very small 
accidents where specific conditions and contributing factors are unlikely 
to result in injury-involved outcomes. In this context, the mechanism of 

* Corresponding author. 
E-mail address: J.Wang@ljmu.ac.uk (J. Wang).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2022.111796 
Received 9 February 2022; Received in revised form 12 May 2022; Accepted 17 June 2022   

mailto:J.Wang@ljmu.ac.uk
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2022.111796
https://doi.org/10.1016/j.oceaneng.2022.111796
https://doi.org/10.1016/j.oceaneng.2022.111796
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2022.111796&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ocean Engineering 258 (2022) 111796

2

no-injury accidents and that of injury-involved accidents, should be 
considered simultaneously when identifying the determinants of the 
injury severity of maritime accidents (Christensen et al., 2022). 

Several statistical methods, such as the zero-inflated Poisson (ZIP) 
model (Wang et al., 2003), the zero-inflated negative binomial (ZINB) 
model (Weng et al., 2018) and the tobit model (Hou et al., 2020), have 
been developed to accommodate the possibility of excessive amount of 
zero injury observations in accident datasets. These models mainly 
explain the existence of injury-free and injury-prone states based on 
accident frequency and accident incidence analysis, respectively. How
ever, within the context of injury-severity study, the possibility of these 
two distinct states has not been fully explored at a sufficiently dis
aggregated level. To account for the possible presence of these two 
underlying regimes in maritime accidents, a ZIOP model is employed to 
identify the factors that influence the injury severity of maritime acci
dents by estimating both binary probit and ordered probit models 
simultaneously. To test the statistical advantages of the proposed 
approach, a traditional ordered probit model is also built and the results 
of the two models are compared. 

2. Literature review 

The severity of maritime accidents is generally expressed by a 
discrete set of categories describing property loss, casualties and envi
ronmental pollution. In terms of injury severity alone, these categories 
include no injury, minor injury, incapacitating injury and fatality. In 
recent years, a number of studies have been conducted to investigate the 
mechanism of maritime accidents, and to evaluate the influence of risk 
factors on the severity of maritime accidents. A series of statistical 
models have been developed, which can be broadly divided into 
nonparametric models (Fan et al., 2020a; Uğurlu et al., 2018) and 
regression models (Montewka et al., 2012, 2022). 

2.1. Nonparametric models 

Nonparametric models are widely used in maritime accident studies 
because of their excellent ability of exploring the most significant 
influencing factors and achieving impressive goodness-of-fit. Afenyo 
et al. (2017) proposed a methodology for the analysis of Arctic shipping 
accidents using Bayesian networks and identified the most significant 
contributing factors for various consequences. Bayesian networks were 
also employed by Wang and Yang (2018) and Fan et al. (2020b) to 
develop a risk analysis method for the analysis of the severity of water 
traffic accidents and a prevention strategy for maritime accidents, 
respectively. Ung (2018, 2019) developed a logical safety structure of oil 
tanker accidents based on fault tree analysis to evaluate the contribution 
of human errors to the grounding and collision accidents of oil tankers. 
Chen et al. (2019) developed an improved entropy weight-TOPSIS 
model to identify the influencing factors of total shipping loss acci
dents. Jin et al. (2019) evaluated the probability of oil tanker accidents 
by four machine learning methods, and proposed a risk assessment 
system which is jointly measured by the probabilities and consequences 
of accidents. Uğurlu et al. (2020) estimated the occurrence of fishing 
vessel accidents under different conditions using Bayesian networks and 
chi-square methods. Cakir et al. (2021) analysed 1,468 cases of 
ship-involved accidents to predict the severity of oil spills in possible 
ship accidents by a combined model of decision tree and data-driven 
Bayesian networks. Yildiz et al. (2021) applied the modified Human 
Factor Analysis and Classification System for Passenger Vessel collisions 
(HFACS-PV) to identify human and organizational factors influencing 
contact, grounding and sinking accidents. 

2.2. Regression models 

Although nonparametric models are well known for mining de
terminants of accident severity or improving the goodness-of-fit, these 

models are difficult to account for the quantitative effects of all vari
ables. In this context, many researchers turn to the use of regression 
models to study the severity of maritime accidents. These regression 
models used can be categorised into unordered-response models and 
ordered-response models according to the ordering of response 
considered. 

2.2.1. Unordered-response models 
The first category of regression models is known as unordered- 

response models, such as a binary logit model, a multinomial logit 
model, and a probit model. The natural ordering of dependent variables 
is not considered in these models. In the study of Jin et al. (2002) and Jin 
and Thunberg (2005), the fishing vessel accident probability for fishing 
areas off the North-eastern United States was modelled using a logit 
regression method. Knapp et al. (2011) analysed a dataset of 3.2 million 
observations from 20,729 individual vessels in the North Atlantic and 
Arctic regions from 1979 to 2007, to measure the effect of significant 
wave height and wind strength on the probability of casualty by binary 
logistic regression. Heij and Knapp (2015) applied logit models to 
analyse the effect of oceanographic conditions like wind strength and 
wave height on the risk of shipping incidents. Bye and Aalberg, 2018 
conducted a statistical analysis of maritime accident data and AIS data in 
Norwegian waters, and investigated conditions that are associated with 
groundings and collisions using a multivariate logistic regression model. 
In order to find out the causes of drowning and high risk of incidents at 
sea, Pitman et al. (2019) applied a Poisson model to analyse 6 years’ 
rescue data of the Royal National Lifeboat Institution. 

In terms of injury severity analysis, Jin et al. (2001) estimated the 
total losses and crew injuries in commercial fishing vessel accidents 
using probit and negative binomial regression methods. The results 
indicated that the severity of crew injuries in fishing vessels was directly 
proportional to the loss of stability and sinking of the vessel. Talley et al. 
(2006) analysed the determinants for the total loss, injuries and 
deaths/missing in passenger vessel accidents using tobit, negative 
binomial and Poisson regression techniques. Yip (2008) applied the 
negative binomial regression technique to identify the determinants of 
the injuries and casualties caused by ship accidents in Hong Kong wa
ters. Talley (2009) used a probit regression model to investigate the 
determinants that affect the probability of non-accident injuries to 
persons onboard a ship of a given shipping line. 

2.2.2. Ordered-response models 
Another category of regression models in accident severity studies is 

known as ordered-response models, which treat accident severity as an 
ordered dependent variable. Ordered logistic models and ordered probit 
models are the mostly utilized categories of ordered-response models in 
previous studies. Chin and Debnath (2009) derived an ordered probit 
regression model to study the perceived collision risks, and calibrated 
the regression model by comparing the results with the risks perceived 
by Singapore port pilots. Wang et al. (2021) developed an ordered lo
gistic regression model to investigate the relationship between the 
influencing factors and the severity of maritime accidents based on the 
data extracted from maritime accident investigation reports in the 
period of 2010–2019. In terms of injury severity analysis, Talley et al. 
(2008) investigated determinants of the injury severities of accidents of 
three types of cruise vessels utilizing tobit regression and ordered probit 
approaches. Jin (2014) developed an ordered probit model to estimate 
the severity of crew injuries in fishing vessel accidents, and the results 
suggested that crew injury severity was positively related to the loss of 
vessel stability and sinking. Yip et al. (2015) investigated determinants 
of passenger vessel accident injuries using Poisson regression and ana
lysed the relationship between passenger injuries and crew injuries. 

However, it is worth noting that there may be no fatalities or injuries 
in many maritime accidents, and the methods mentioned above are not 
suitable to accommodate the possibility of an excessive amount of zero 
observations in accident datasets. Therefore, ordered-response models 
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have been improved by many researchers from different perspectives to 
solve this problem. Weng and Yang (2015) predicted the probability of 
fatal shipping accidents and corresponding mortalities using a 
zero-truncated binomial regression model. The results indicate that the 
zero-truncated binomial regression model was a better fit for solving the 
problem than conventional Poisson and negative binomial models. 
Weng et al. (2018) developed a ZINB model based on the maximum 
likelihood regression tree to predict the mortality of shipping accidents 
and examine the factors influencing the loss of human life in shipping 
accidents. Chang and Park (2019) estimated the impact of vessel speed 
reduction on vessel damages and casualties by ZINB regression and 
panel negative binomial regression. 

Past research (Jiang et al., 2013) in statistical modelling of accident 
data has shown that the generation mechanism underpinning the 
injury-free and injury-prone accidents may differ. However, the above 
zero-inflated models seldom consider the possibility that the zeros can 
arise from two distinct sources. A ZIOP model, developed by Harris and 
Zhao (2007), uses a mixture distribution for the non-injury category, 
where the proportion of zeros that come from different sources may be 
controlled by one group of explanatory variables and the effects of 
explanatory variables are allowed to vary across response classes. The 
model allows one set of parameter coefficients for the first category 
while all more severe categories share a common set of coefficients. The 
advantage is that the mixture form ensures that the probabilities are 
strictly positive so that the model is logically consistent. Moreover, the 
model is computationally easier to implement and simpler to interpret 
due to fewer parameters as it is improved upon the standard ordered 
probit formulation. 

Inspired by these advantages, the ZIOP model was adopted to study 
the effect of factors on injury severity in maritime accidents. Although 
adoption of this approach may be justified by the fact that this mixture 
model improves the resulting fit, the researchers attempt to rationalize 
this approach by claiming that the large proportion of the zeros may 
come from two distinct populations. The first population is the group of 
injury-free accidents, which are defined as accidents or incidents that 
cannot result in an injury. Although this is an artificial construction, it 
might be hypothesized that these would be oil spill accidents or me
chanical failures that may not result in any type of reportable injury. The 
second population is the group of accidents causing harm to seafarers 
which are referred to as injury-prone accidents. Factors such as accident 
type, ship size and sea state may be associated with injury severity. By 
explicitly considering both populations in the model, it will produce a 
superior model fit and less bias in the analysis of accidents and their 
influencing factors. 

3. Methodology 

3.1. ZIOP model 

The ZIOP model can be considered as a mixture of a binary probit 

regression model and an ordered probit model. Binary probit regression 
is used to determine whether the accident is injury-free or injury-prone, 
while ordered probit regression is used to determine the severity of 
injury-prone accidents through the ordered probit mechanism which is 
described by Cameron and Trivedi (1998). The overall structure of the 
ZIOP is sketched in Fig. 1. 

The parameters in these two parts are estimated simultaneously in a 
ZIOP model. Assume that s denotes a binary variable indicating injury- 
free (s = 0) and injury-prone (s = 1). s is related to a latent variable γ*, 
which represents the propensity of injury involvement. The mapping 
between s and γ* follows the following criteria: 
{

s = 0, if
s = 1, if

γ* ≤ 0
γ* > 0

(1) 

The latent variable γ* can be obtained by Eq. (2): 

γ* = xβT + ε (2)  

where x = {x1, x2,⋯, xn} represents a vector of variables identifying 
injury propensity, β = {β1, β2,⋯, βn} is the corresponding vector of pa
rameters to be estimated, and ε is the error term which follows a stan
dard normal distribution. 

The probability of a maritime accident being injury-prone is then 
given as: 

P(s= 1|x)=P(γ* > 0|x)=φ
(
xβT) (3)  

where φ( ⋅) is the cumulative probability distribution function of a 
standard normal distribution. Conditional on s = 1, the observed injury 
level ỹ = {ỹ1,⋯, ỹj,⋯, ỹJ} can be connected to a latent variable y* 

through the ordered probit regression function: 

y* = zαT + δ (4)  

where z = {z1,⋯, zi,⋯, zn} represents explanatory variables influencing 
injury level in an injury-prone accident; α = {α1,⋯, αi,⋯,αn} is a set of 
unknown coefficients for variables influencing injury level; and δ is a 
standard-normally distributed error term that is not correlated with ε. 
The mapping between ỹ and y* is obtained by Eq. (5). 

ỹ(y*)=

⎧
⎨

⎩

0 if y* ≤ 0
j if μj− 1 < y* ≤ μj

J if y* > μJ− 1

(j = 1, 2，⋯, J − 1 ) (5)  

where μj is the threshold of each injury level, which is subjected to the 
constraint μ0 < μ1 < μ2 < ⋯ < μJ− 1. J is the number of maritime acci
dent injury levels. In addition, it is assumed that μ1 = 0. 

Note that zero injury level is also allowed in the ordered probit part, 
therefore separate explanatory variables can be used in both binary 
probit and ordered probit sections. Conditional on s = 1, the probability 
of each injury level in the ordered probit section is expressed as follows: 

Fig. 1. The sketch of the ZIOP model.  
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P(ỹ)=

⎧
⎨

⎩

P(ỹ = 0) = φ
(
− zT α

)

P(ỹ = j) = φ
(
μj − zT α

)
− φ

(
μj− 1 − zT α

)
, (j = 1, 2,⋯, J − 1)

P(ỹ = J) = 1 − φ
(
μJ− 1 − zT α

)

(6) 

The modelling for injury-free accident and injury-prone accident can 
be combined using the following equation: 

y= sỹ (7) 

To observe the outcome of y = 0, it requires either that s = 0 (injury- 
free) or jointly that s = 1 and that ỹ = 0 (injury-prone but no injury 
involved). To observe a positive y, the ZIOP regression requires jointly 
that the accident is injury-prone (s = 1) and that the accident happened 
to be injury-involved (ỹ > 0). Under the assumption that ε and μ iden
tically and independently follow standard normal distributions, the full 
probabilities for observed y are given by Eq. (8). 

P(y)=
{

P(y = 0|x, z) = P(s = 0|x) + P(s = 1|x) × P(ỹ = 0|z, s = 1)
P(y = j|x, z) = P(s = 1|x) × P(ỹ = j|z, s = 1), (j = 1, 2,⋯, J) (8) 

It can be observed from Eq. (8) that the binary probit regression part 
is included to account for the excess zero observations. In other words, 
the probability of no injury in the model is the sum of the probability of 
accidents being injury-free and the probability of accidents being no- 
injury given an injury-prone accident. The parameters of the full 
model can be estimated using the maximum likelihood criteria. The log- 
likelihood function is given by Eq. (9). 

l(θ)=
∑n

i=1

∑J

j=0
hij ln[P(y= j|x, z, θ)] (9)  

where θ is the parameter to be estimated; the indicator function hij is: 

hij =

{ 1, if the observation i is level j

0, otherwise
(i = 1, 2,⋯, n; j = 1, 2,⋯, J)

(10) 

The unconditional probability of positive injury (i.e. injury severity 
levels 1 and 2) is also a combination of the probability of being injury- 
prone and the conditional probability of each injury level. 

3.2. Marginal effects 

As the estimated parameters of the ZIOP model can only reflect the 
influence trend of each factor on the injury severity of maritime acci
dents, it cannot evaluate the variation of the probability of a certain 
injury severity with the change of each factor. Therefore, the marginal 
effect of each significant variable is calculated after estimating the 
model parameters. In this study, one may be interested in the marginal 
effect of each variable on the probability of not being injured (P(s = 0)), 
on the probability of a certain injury level given the accident is injury- 
prone (P(ỹ = j|s = 1)), or on the overall probability of each injury 
level (P(y = j)). 

The marginal effect value herein refers to the change in probability of 
a variable changing by one unit on the injury severity of a certain 
maritime accident when holding all other variables fixed (Harris and 
Zhao, 2007). The marginal effect value can be calculated by Eq. (11). 

MP(y)
xk

=
1
n
∑n

i=1
(P(y|xik = 1) − P(y|xik = 0)) (11)  

where xik is the value of the kth independent variable in the ith accident; 
P(y|xik = 1) is the probability that the injury severity level of the ith ac
cident is y, with xik assigned to 1 and holding other variables fixed; 
P(y|xik = 0) is the probability that the injury severity level of the ith ac
cident is y, with xik assigned to 0 and holding other variables fixed. Since 
each variable in each accident has a marginal effect value on a certain 
injury severity level, MP(y)

xk in this study represents the average marginal 

effect of the kth independent variable changing by one unit on the ac
cident injury severity level y. 

3.3. Model comparison 

As the traditional ordered probit (OP) model has often been applied 
to the analysis of injury severity data, it may be useful to compare the fit 
of the ZIOP model against the traditional OP model. Therefore, the 
traditional OP model will also be built with all factors included. AIC 
(Akaike, 1973) and BIC (Sawa, 1978) will be employed to compare these 
two models. The model with smaller AIC and BIC among all competing 
models is deemed to be the better model (Akaike, 1973; Sawa, 1978). 

Vuong’s test (Vuong, 1989) will also be employed as it can outper
form AIC in comparing models from different regression series. The 
likelihood ratio mi can be calculated by Eq. (12). 

mi = log
(

P1(yi)

P2(yi)

)

(12)  

where P1(yi) and P2(yi) are the estimated probabilities of the observed 
injury severity level i using model 1 and model 2, respectively. 

The Vuong statistic, V, is computed to test whether the two models 
are significantly different in predicting the observed injury severity level 
or not, which can be calculated by Eq. (13). 

V =

̅̅̅
n

√ (
1
n

∑n
i=1mi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(mi − m− )2

√ (13)  

where n is the sample size. The Vuong statistic V is an asymptotically 
standard normal distribution. If the absolute value of V is larger than 
1.96 (95% confidence level), the test result will support the selection of 
one model over the other (Washington et al., 2020). More specifically, if 
V > 1.96, the first model has a better model fitness than the second one. 
If V < − 1.96, the second model is preferred. Values between − 1.96 and 
1.96 would mean that the test is inconclusive. 

4. Data 

To illustrate the potential of the proposed zero-inflated approach in 
maritime accident injury severity analysis, a large amount of injury data 
is analysed, which is extracted from maritime accident investigation 
reports of various investigation agencies, including the Transportation 
Safety Board of Canada (TSB), Marine Accident Investigation Branch of 
the United Kingdom (MAIB), Australian Transport Safety Bureau 
(ATSB), National Transportation Safety Board of the United States 
(NTSB), Federal Bureau of Maritime Casualty Investigation of Germany 
(BSU), China Maritime Safety Administration (MSA) and Japan Trans
port Safety Board (JTSB). The dataset includes information on 1,128 
maritime accidents that occurred in the period of 2000–2019, which 
includes accident-specific information (date; time and location of the 
accident; accident types; injury severity), crew-specific characteristics 
(education background; sea experience; period of holding the present 
rank (PHPR); physical & mental health; communication ability), ship- 
specific characteristics (ship types; ship age; gross tonnage; flag state), 
and environment-specific information (visibility; wind; sea state; water 
depth; water width; ship traffic density). The number and sources of 
accidents of each type are shown in Table 1. It should be noted that each 
collision accident involves at least 2 ships, and the injury outcomes of 
each ship involved are counted separately for the calculation of injury 
severity. Therefore, a total of 1,294 ships were counted according to this 
principle, which will be used in empirical analysis. 

To avoid variable covariance problems, the Pearson correlation pa
rameters between different variables are calculated to examine which 
factor may covariate with other factors. Variables that are closely linked 
to other variables are combined into one group before included into the 
model. After a number of rounds of attempt, it is found that there is no 
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variable covariance problem if some changes on grouping are made. The 
definitions and descriptive statistics of the variables are shown in 
Table 2. 

The injury-severity outcomes in this study are classified into four 
categories (Fountas and Anastasopoulos, 2018): no injury, minor injury, 
incapacitating injury, and fatality. Consistent with previous studies 
(Fountas and Anastasopoulos, 2017; Jiang et al., 2013), the reported 
injury-severity outcome is defined as the injury severity level of the most 
severely injured person in the accident. The number of accidents per 
injury severity outcome is presented in Fig. 2 in the form of a histogram. 
It is clearly indicated in Fig. 2 that more than half of the accidents to be 
analysed in this study (approximately 55.8%) resulted in no injury, 
which shows significant clustering in zero injury observations. In this 
context, it supports the use of a ZIOP framework, which can address the 
excessive amount of zero observations, for identifying the determinants 
of the injury severity outcomes of maritime accidents. 

5. Results and discussions 

5.1. Parameter estimates 

In this section, the OP procedure and ZIOP procedure in the Statis
tical software for data science (STATA, 15.0; Texas: Stata Corp LLC) are 
applied to estimate the parameters of the variables for the OP model and 
ZIOP model, respectively. A series of OP models and ZIOP models are 
established and the parameters are estimated using Eqs. (1)–(10). The 
variables for the ZIOP model are selected by the following steps. In the 
first step, the ZIOP model is fitted for the first time. Variables that are 
significant at the 90% confidence level in the traditional OP model are 
selected as candidate variables for the first process of the ZIOP model. 
All the individual variables considered in this study are selected as the 
candidates in the second process. In the second step, the variables that 
are not significant in both processes of the first fitting of the ZIOP model 
are removed and the ZIOP model is fitted again. Finally, the variables in 
the final ZIOP model are significant in either or both processes of the 
second fitting of the ZIOP model, which include accident type, location, 
gross tonnage, flag state, ship manning, water depth, visibility, sea state, 
PHPR, and education background. 

In the analysis of each ZIOP model, for categorical variables, grade 
“1” (i.e. collision and cargo ship) is chosen as the reference, for binary 
variables, grade “0” (i.e. otherwise) is chosen as the reference. Holding 
all other explanatory variables constant, parameter estimates provide 
the change in the level of injury severity compared to a reference 
attribute. Parameter estimates larger than 0 indicate that a particular 
cluster of a variable results in a higher injury severity level, and vice 
versa. 

As shown in Table 3, the ZIOP model shows significant effects of 
accident type on injury severity in maritime accidents. This study only 
shows the influencing factors whose influence is statistically significant 
(p < 0.1) in first or second process. In the first process, the coefficients 
for capsizing/sinking, hull/machinery damage and other accident types 
are significantly positive while that for stranding/grounding is negative, 
indicating that, in comparison to collision, the former accident types are 

more likely to be injury-prone and the latter one is less likely to be 
injury-prone. The finding of injury propensity is to some extent consis
tent with some previous studies (Wang et al., 2021; Yip et al., 2015), 
which indicate that a large number of crew injuries are expected if a 
vessel is involved in a capsizing/sinking accident. In the second process, 
the coefficients for contact, hull/machinery damage and other accident 
types are positive, which instead indicate that conditional on being 
injury-prone, these accident types are more likely to be associated with a 
higher level of injury severity in comparison to collision. The effect of 
hull/machinery damage, however, is not consistent with the result re
ported by Jin (2014). This discrepancy may be caused by the fact that 
the research of Jin (2014) only focused on fishing vessel accident 
severity. It should also be noted that stranding/grounding is only sig
nificant in the injury propensity process, and the negative coefficient 
indicates that stranding/grounding is less likely to lead to injury-prone 
consequences, but made no difference on the conditional injury 
severity as compared to collision (p = 0.957). Similar situations appear 
for contact and capsizing/sinking. 

Among other variables, gross tonnage, water depth and PHPR are 
significant in both the injury propensity and injury severity processes. 
Ships larger than 500 t and with water depth larger than 1.5 draught are 
associated with a significantly lower probability of injury-prone acci
dents, but lead to more severe injuries conditional on being in the injury- 
prone category. The less injury-prone finding is to some extent consis
tent with the result reported by Talley (2009), but contrary to the 
finding of Chang and Park (2019)and Talley et al. (2006). Seafarers 
holding the present rank for less than 3 years are associated with a 
significantly higher probability of injury-prone accidents, but make no 
difference on the injury severity conditional on being in the injury-prone 
category. The finding of injury propensity is to some extent consistent 
with the result reported by Wang et al. (2021), which indicates that 
seafarers with less sea experience are more likely to be involved in ac
cidents of serious consequences. 

Ship manning that meets the requirements is associated with a 
significantly lower probability of injury-prone accidents, but make no 
difference on the conditional injury severity as compared to one that 
does not meet the requirements. It is quite understandable that the 
crew’s workloads will increase if the ship is undermanned, which may 
lead to more fatigue for the crew and more injury-prone accidents. Poor 
visibility is also found to be associated with a significantly lower prob
ability of injury-prone accidents, but made no difference on the condi
tional injury severity as compared to good visibility. The lower 
probability of being injury-prone can be explained by the fact that the 
seafarers are usually more cautious in poor visibility. Adverse sea state, 
however, is associated with a significantly higher probability of injury- 
prone accidents, but made no difference on the conditional injury 
severity as compared to good sea state. The finding on the conditional 
injury severity is not consistent with some previous studies (Weng and 
Yang, 2015; Weng et al., 2018). The reason may be that the latter only 
focused on mortalities, which are just modelled in terms of an injury 
severity level in this study. Seafarers with a poor education background 
are associated with a higher likelihood of injury-prone accidents as 
compared to those with a good education background, but do not show 

Table 1 
The number and sources of each type accident.  

Accident types Investigation Agencies Total 

TSB MAIB ATSB NTSB BSU MSA JTSB 

Collision 37 65 70 41 52 29 32 326 
Grounding 23 44 62 21 24 21 12 207 
Fire/explosion 11 23 43 18 10 20 8 133 
Contact 15 25 50 13 20 12 7 142 
Sinking 12 27 47 21 15 25 10 157 
Equipment failure 26 34 28 23 26 24 15 176 
Other 13 42 33 17 17 18 13 153 
Total 137 260 333 154 164 149 97 1294  
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any significant difference on the conditional injury severity. Usually, 
seafarers with a poor education background are more likely to cause 
some injury accidents as they are not familiar with some operations, but 
they do not cause very serious accidents as they may be more careful in 
their work. 

Compared with those that occurred far away from the coast, acci
dents that occurred near the coast are found not significant in injury 
propensity prediction, but are associated with the higher injury severity 
level conditional on being in the injury-prone group. The result is to 
some extent consistent with some previous studies (Weng and Yang, 
2015; Weng et al., 2018) which indicate that the probability of fatal 
accidents is likely to increase for accidents occurring far away from the 
coast. It is undeniable that it is much more difficult to carry out search 
and rescue if the accident occurs far away from the coast. Ships of flag of 
convenience are also found not significant in injury propensity predic
tion, but are significantly associated with the higher injury severity level 
conditional on being in the injury-prone group. The reason may be that 
some open registry countries do not enforce regulations and policy re
quirements strictly. It also revealed in the study of (Li and Wonham, 
1999) that flag of convenience ships were often associated with a high 
total loss rate due to accidents. 

For comparisons, the parameters of the OP model with the same 
variables are also estimated but will not be illustrated in detail due to the 
space limitations. The comparison results of the OP model and ZIOP 
model are presented in Table 4. The AIC value of the ZIOP model is 
approximately 36 units less than that of the OP model, indicating that 
the ZIOP model outperformed the OP model. The superiority of the ZIOP 
model is also confirmed by the result of Vuong’s test, which is 3.93, far 
larger than the critical value 1.96. In conclusion, the ZIOP model has a 
significant improvement in the overall prediction of injury severity in 
comparison with the traditional OP model, from the results of AIC, BIC 
and Vuong’s test. 

Table 2 
Variable definitions and descriptive statistics.  

Variable description Mean Std. 
Dev. 

Min Max 

Injury severity 0 for no injury 
1 for minor injury 
2 for incapacitating injury 
3 for fatality 

1.073 1.321 0 3  

Accident-specific characteristics 
Season 1 if Spring 

2 if Summer 
3 if Autumn 
4 if Winter 

2.436 1.131 1 4 

Time 1 if the accident occurred 
during daytime (the 
period from the local time 
of sunrise to the time of 
sunset) 
0 otherwise 

0.582 0.493 0 1 

Location 1 if the accident occurred 
near the coast (less than 
12 nm), 
0 otherwise 

0.912 0.284 0 1 

Accident type 1: collision 
2: stranding/grounding 
3: fire/explosion 
4: contact 
5: capsizing/sinking 
6: hull/machinery damage 
7. other 

3.576 2.131 1 7 

Ship-specific characteristics 
Ship type 1: cargo ship 

2: passenger ship 
3: fishing vessel 
4: tug and port traffic boat 

2.371 0.941 1 4 

Ship age 1 if the ship age is less than 
10 years, 0 otherwise 

0.381 0.486 0 1 

Gross tonnage 1 if the gross tonnage is 
larger than 500 t, 
0 otherwise 

0.641 0.48 0 1 

Flag state 1 if the ship’s flag state is 
country of flag of 
conveniencea, 
0 otherwise 

0.258 0.438 0 1 

Ship manning 1 if the ship manning 
meets requirements, 
0 otherwise 

0.94 0.237 0 1 

Environment-specific characteristics 
Water depth 1 if the depth-draught 

ratio is larger than 1.5, 
0 otherwise 

0.6 0.49 0 1 

Water width 1 if the ratio of water 
width and ship length is 
larger than 2, 
0 otherwise 

0.664 0.473 0 1 

Visibility 1 if the visibility is poor 
(visibility <2 nm), 
0 otherwise 

0.368 0.482 0 1 

Wind 1 if the wind force is larger 
than Beaufort wind scale 
7, 
0 otherwise 

0.105 0.307 0 1 

Sea state 1 if the sea state is larger 
than Beaufort wave scale 
5, 
0 otherwise 

0.067 0.251 0 1 

Traffic density 1 if the traffic density is 
low, 0 otherwise 

0.471 0.499 0 1 

Seafarer-specific characteristics 
Sea experience 1 if the sea experience is 

less than 5 years, 
0 otherwise 

0.162 0.368 0 1 

PHPR 1 if PHPR is less than 3 
years, 0 otherwise 

0.838 0.368 0 1 

physical and 
mental health 

1 if the seafarer is not 
physically or mentally 

0.141 0.349 0 1  

Table 2 (continued ) 

Variable description Mean Std. 
Dev. 

Min Max 

healthy, 
0 otherwise 

Education 
background 

1 if seafarer’s education 
background is not good, 
0 otherwise 

0.114 0.318 0 1 

Communication 
ability 

1 if there is 
communication problem 
with others, 
0 otherwise 

0.025 0.155 0 1  

a The list of countries of flag of convenience (FOC) refers to those who have 
declared FOCs by the ITF (International Transport Workers’ Federation)’s fair 
practices committee, https://www.itfglobal.org/en/sector/seafarers/flags-of-co 
nvenience. 

Fig. 2. Number of accidents per injury-severity outcome.  
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5.2. Marginal effects 

In order to interpret the impact of various variables on injury severity 
of maritime accidents, marginal effects are calculated, which are de
rivatives evaluated at a particular point of the covariate space. In this 
study, the marginal effects are obtained through evaluating the marginal 
effects individually for each observation and report the average of all 
observations. According to Eq. (11), the marginal effects of each variable 
on the injury severity probabilities computed from ZIOP model are 
estimated, and the results are listed in Table 5 and Table 6. For com
parison, the marginal effects computed from the traditional OP model 
are also included. 

As shown in Table 5, the marginal effects of the ZIOP model and OP 

model on P(y = 0) are presented. It should be noted that the overall 
marginal effects for the ZIOP model are decomposed into two parts: the 
effect on injury-free accidents (P(s = 0)), and the effect on no injury 
conditional on being injury-prone accidents (P(y = 0|s = 1)). Some 
interesting differences from alternative models for some of the variables 
are found. For example, the ZIOP model shows that large gross tonnage 
brought about a 16.4% decrease in the probability of injury-free acci
dents, but a 20% increase in the probability of no injury accidents 
conditional on being injury-prone. The former marginal effect indicates 
that ships of large gross tonnage are less likely to be involved in injury- 
free accidents as compared to those of smaller gross tonnage. However, 
the latter marginal effect shows that ships of large gross tonnage are 
associated with accidents of a relatively higher likelihood of no injury 
compared with smaller ones, conditional on being injury-prone. As 
mentioned above, the ZIOP model is based on the assumption that zero 
observations come from two distinct sources. Therefore, it allows flex
ibility in assigning the overall probability of non-injury outcomes. A 
small increase (3.6%) on the overall probability of no injury for large 
gross tonnage is obtained after the offset of the opposite effects of the 
results. This is smaller than the parameter estimated from the OP model 
(8.5%). Similar situations are found for the variables of location, flag 
state, water depth, visibility, sea state and accident types such as 
stranding/grounding and contact. 

However, some opposite conclusions are found for variables of 
PHPR, education background, and capsizing/sinking. Taking PHPR as 
an example, a short period of holding the present rank brought about a 
9.8% increase in the probability of injury-free accidents, but a 18.2% 
decrease in the probability of no injury conditional on being injury- 
prone. The former marginal effect indicates that seafarers with a short 
period of holding the present rank are more likely to be involved in 
injury-free accidents as compared to those with a longer period of 
holding the present rank, while the latter marginal effect shows that 
seafarers with a short period of holding the present rank are associated 
with accidents of a relatively lower likelihood of no injury compared 
with those with a longer period of holding the present rank, conditional 
on being injury-prone. It is quite understandable that seafarers with a 
short period of holding the present rank usually tend to be more cautious 
as they are not very familiar with the present rank, which leads to a low 
probability of injure prone accidents. It is also because they may be less 
unfamiliar with the present rank, once injury-prone accidents occur, the 
probability of injury is often high. In addition, ship manning is found to 
bring an increase in the probability of both injury-free and injury-prone 
accidents conditional on being injury-prone, while hull/machinery 
damage and other accident type bring a decrease in both probabilities. 

Table 3 
Parameter estimates of the ZIOP model.   

Binary probit process Ordered probit process 

Coef. Std. Err. P Coef. Std. Err. P 

Location 0.068 0.167 0.683 1.409 0.754 0.062 
Gross tonnage − 0.543 0.097 0.000 2.365 0.629 0.000 
Flag state 0.051 0.097 0.598 4.065 0.836 0.000 
Ship manning − 0.488 0.174 0.005 − 0.666 0.505 0.187 
Water depth − 0.300 0.099 0.002 2.284 0.525 0.000 
Visibility − 0.183 0.092 0.047 0.153 0.317 0.630 
Sea state 0.285 0.168 0.089 6.034 139.351 0.965 
PHPR 0.568 0.119 0.000 − 1.417 0.772 0.066 
Education background 0.235 0.131 0.074 − 0.662 0.447 0.139 
Accident type 2: stranding/grounding − 0.848 0.154 0.000 7.500 137.971 0.957 

4: contact − 0.181 0.145 0.210 2.124 0.888 0.017 
5: capsizing/sinking 1.250 0.186 0.000 − 0.054 0.338 0.873 
6: hull/machinery damage 0.950 0.130 0.000 3.014 0.799 0.000 
7. other 1.375 0.146 0.000 2.253 0.868 0.009 

_cons − 1.509 1.010 − 1.490 0.135 − 3.490 0.471 
/cut1    − 0.170 0.290 − 0.739 
/cut2    0.190 0.289 − 0.376 
/cut3    0.491 0.288 − 0.075  

Table 4 
The performance of OP model and ZIOP model.   

ZIOP model OP model 

No. of observations 1,294 1,294 
Log-likelihood − 1135.595 − 1169.609 
AIC 2339.191 2375.217 
BIC 2514.818 2468.196 
Vuong’s test (ZIOP/OP) 3.93  

Table 5 
Marginal effects for no injury category.   

OP ZIOP 

P(y =
0) 

P(s = 0) P(y = 0|s 
= 1) 

P(y =
0) 

Location − 0.072 − 0.098 0.019 − 0.079 
Gross tonnage 0.085 − 0.164 0.200 0.036 
Flag state − 0.065 − 0.282 0.091 − 0.191 
Ship manning 0.144 0.046 0.108 0.154 
Water depth 0.043 − 0.158 0.135 − 0.023 
Visibility 0.046 − 0.011 0.051 0.040 
Sea state − 0.200 − 0.419 0.081 − 0.337 
PHPR − 0.138 0.098 − 0.182 − 0.084 
Education background − 0.067 0.046 − 0.077 − 0.031 
Accident 

type 
2: stranding/ 
grounding 

0.155 − 0.220 0.360 0.140 

4: contact − 0.012 − 0.193 0.163 − 0.030 
5: capsizing/ 
sinking 

− 0.284 0.009 − 0.332 − 0.323 

6: hull/machinery 
damage 

− 0.413 − 0.210 − 0.221 − 0.431 

7. other − 0.523 − 0.196 − 0.334 − 0.531  
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The marginal effects on the unconditional probabilities of all three 
positive injury levels are shown in Table 6. The resulting marginal ef
fects on the unconditional probabilities of each injury level also come 
from two sources. The ZIOP model in Table 6 reveals that accidents that 
occurred near the coast, as opposed to those that occurred far away from 
the coast, are associated with increases of 1.2%, 1.0% and 5.7% in the 
probability of minor injury, incapacitating injury and fatality, respec
tively. As a contrast, the conventional OP model shows a monotonically 
increasing positive effect on the probabilities of three types of injury- 
prone accidents. Similar marginal effects are found in the ZIOP model 
for variables of flag state, water depth, sea state and some accident 
types. 

However, the ZIOP model shows opposite effects on ship manning 
and visibility, which are associated with various extents of decrease in 
the probability of minor injury, incapacitating injury and fatality, 
respectively. In addition, compared with small gross tonnage, large 
gross tonnage is associated with increases of 1.10% and 0.5% in the 
probability of minor injury and incapacitating injury respectively, but a 
decrease of 5.20% in the probability of fatality. In contrast, variables of 
PHPR, education background and capsizing/sinking are associated with 
various extents of decrease in the probability of minor injury, and an 
increase in the probability of incapacitating injury and fatality respec
tively. Due to the space limitations, the marginal effects of other cova
riates in the ZIOP model, as well as the covariates in the OP model, will 
not be illustrated in detail. 

6. Conclusions 

This study aims to investigate the impacts of the contributing factors 
on the injury severity of maritime accidents. On the basis of maritime 
accident data collected from 1,128 maritime accident investigation re
ports, a ZIOP regression model and an OP model, are developed to es
timate the effects of influencing factors on the injury severity of 
maritime accidents. 

The results indicate that the injury severity of maritime accidents 
should be analysed by separating it into two states, namely injury-free 
state that determines whether a maritime accident will lead to injury, 
and injury-prone state that determines the injury severity levels. The 
effects of the variables exhibiting statistically significant influence on 
injury severity are concluded as follows:  

• Large gross tonnage and water depth significantly decrease the 
likelihood of injury-free accidents, but also notably increase the 
probability of severe injury conditional on being injury-prone.  

• Adverse sea state, poor education background and short period of 
holding the present rank significantly increase the likelihood of 
injury prone accidents, but make no difference on the injury severity 
conditional on being in the injury-prone category.  

• Adequate ship manning and poor visibility are associated with a 
significantly lower probability of injury-free accidents, but make no 
difference on the injury severity conditional on being in the injury- 
prone category.  

• Being near the coast and flag state of convenience do not bring about 
significant changes to the probability of being injury-free, but result 
in more severe injuries conditional on being injury-prone.  

• In comparison to collision, stranding/grounding and capsizing/ 
sinking make no changes on the chances to be severely injured 
conditional on being injury-prone, but the former significantly de
creases and the latter increases the likelihood of being injury-prone. 
However, both make no changes on the likelihood of being injury- 
prone and increase chances to be severely injured conditional on 
being injury-prone; the hull/machinery damage and other accident 
type increase both the likelihood of injury-prone accidents and being 
severely injured conditional on being injury-prone. 

This study provides several contributions to the literature on mari
time accident analysis. Firstly, it provides a comprehensive review and 
analysis related to maritime accidents by focusing on injury severity and 
its influencing factors. Secondly, it is the first time that the zero-inflated 
ordered probit model is applied to the study of the injury severity of 
maritime accidents, which provides a rational way of solving the prob
lem associated with an excessive amount of zero injury observations in 
maritime accident datasets. The significantly superior statistical fit of 
the ZIOP model in comparison to that of the conventional OP model is 
illustrated by the results of AIC, BIC and Vuong’s test. Finally, the results 
of this study provide an insight into the injury severity of maritime ac
cidents, which can be used to assist relevant maritime safety authorities 
in taking effective measures to reduce the consequences of maritime 
accidents. 

In terms of the limitations and constraints of this study, the following 
two aspects can be further investigated. Firstly, additional research is 
needed to improve the flexibility of the ZIOP model by allowing random 
coefficients or variable thresholds as the model does not allow change in 
the directionality of effects within the injury-prone accidents. Secondly, 
due to the incompleteness of the database, a few typical variables, such 
as organization management and occupational health management, 
were not accounted for in this study. The analysis of the impacts of 
management factors on injury severity should be considered in future 
studies after collecting relevant data. 
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Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J., 2018. Modified human factor analysis and 
classification system for passenger vessel accidents (HFACS-PV). Ocean Eng. 161, 
47–61. 

UNCTAD, 2021. Review of Maritime Transport 2021. United Nations Conference on 
Trade and Development, Geneva.  

Ung, S.-T., 2018. Human error assessment of oil tanker grounding. Saf. Sci. 104, 16–28. 
Ung, S.-T., 2019. Evaluation of human error contribution to oil tanker collision using 

fault tree analysis and modified fuzzy Bayesian Network based CREAM. Ocean Eng. 
179, 159–172. 

Vuong, Q., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. 
Econometrica 57, 307–333. 

Wang, H., Liu, Z., Liu, Z., Wang, X., Wang, J., 2022a. GIS-based analysis on the spatial 
patterns of global maritime accidents. Ocean Eng. 245, 110569. 

Wang, H., Liu, Z., Wang, X., Graham, T., Wang, J., 2021. An analysis of factors affecting 
the severity of marine accidents. Reliab. Eng. Syst. Saf. 210, 107513. 

Wang, K., Lee, A.H., Yau, K.K.W., Carrivick, P.J.W., 2003. A bivariate zero-inflated 
Poisson regression model to analyze occupational injuries. Accid. Anal. Prev. 35 (4), 
625–629. 

Wang, L., Yang, Z., 2018. Bayesian network modelling and analysis of accident severity 
in waterborne transportation: a case study in China. Reliab. Eng. Syst. Saf. 180, 
277–289. 

Wang, X., Liu, Z., Loughney, S., Yang, Z., Wang, Y., Wang, J., 2022b. Numerical analysis 
and staircase layout optimisation for a Ro-Ro passenger ship during emergency 
evacuation. Reliab. Eng. Syst. Saf. 217, 108056. 

Washington, S., Karlaftis, M., Mannering, F., Anastasopoulos, P., 2020. Statistical and 
Econometric Methods for Transportation Data Analysis. 

Weng, J., Yang, D., 2015. Investigation of shipping accident injury severity and 
mortality. Accid. Anal. Prev. 76, 92–101. 

Weng, J., Yang, D., Qian, T., Huang, Z., 2018. Combining zero-inflated negative binomial 
regression with MLRT techniques: an approach to evaluating shipping accident 
casualties. Ocean Eng. 166, 135–144. 
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