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A B S T R A C T   

Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when 
coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches 
for their evaluation, there is no formal process to assess the confidence that may be associated with a structural 
alert. This investigation proposes twelve criteria to assess the uncertainty associated with structural alerts, 
allowing for an assessment of confidence. The criteria are based around the stated purpose, description of the 
chemistry, toxicology and mechanism, performance and coverage, as well as corroborating and supporting ev
idence of the alert. Alerts can be given a confidence assessment and score, enabling the identification of areas 
where more information may be beneficial. The scheme to evaluate structural alerts was placed in the context of 
various use cases for industrial and regulatory applications. The analysis of alerts, and consideration of the 
evaluation scheme, identifies the different characteristics an alert may have, such as being highly specific or 
generic. These characteristics may determine when an alert can be used for specific uses such as identification of 
analogues for read-across or hazard identification.   

1. Introduction 

The concept of the structure-activity relationship (SAR) is funda
mental to predictive toxicology (Cronin and Yoon, 2019). As such, SARs 
have found widespread use in toxicology, risk assessment and other 
regulatory applications with a particular resurgence of interest with the 
increasing desire to consider chemical safety without the use of animals 
(Worth, 2020). Key to enabling SARs as useable in silico tools for these 
applications is the development of structural rules which can then be 
coded computationally so that they may be applied to identify potential 
hazard in new molecules (Madden et al., 2020; Cronin et al., 2022). The 
term “structural alert” is assumed in this paper to represent a fragment 

or substructure within a molecule that is hypothesised to be responsible 
for a biological activity from a structural rule. Such a fragment is derived 
from SAR-based structural rules and may be associated with other 
structural information such as that relating to substitution patterns or 
parent structures. 

Structural alerts can represent the chemistry which is associated 
with, for instance, an interaction such as a molecular initiating event 
(MIE) or key event (KE) in an Adverse Outcome Pathway (AOP) (Allen 
et al., 2018), an adverse effect (i.e., toxicity that can be observed at an 
organism or population level) (Siramshetty et al., 2018) or related to a 
regulatory endpoint (Valsecchi et al., 2019) or indicator of significant 
toxicity (e.g., as part of the Cramer et al. (1978) Decision Tree). The 

Abbreviations: AChE, acetylcholinesterase; AOP, Adverse Outcome Pathway; EFSA, European Food Safety Authority; HPV, High Production Volume; KE, Key 
Event; MIE, Molecular Initiating Event; OECD, Organisation for Economic Cooperation and Development; QMRF, QSAR Model Reporting Format; QPRF, QSAR 
Prediction Report Format; QSAR, quantitative structure-activity relationship; RAAF, Read-Across Assessment Framework; SAR, structure-activity relationship. 
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understanding that chemical properties were responsible for toxicolog
ical events was well established at the turn of the twentieth century (e.g. 
Meyer, 1901; Overton, 1901) along with the concept that specific 
chemical structures could be associated with toxicity (Landsteiner and 
Jacobs, 1935). The first use of the term “structural alert” is accredited to 
Ashby (1985) with regard to defining the structural basis of carcinoge
nicity, a concept that went on to define a series of alerts for genotoxic 
carcinogenicity (Ashby and Tennant, 1988). Since that time, alerts have 
been developed in many areas of toxicology for human health and 
environmental endpoints. The history and use of alerts in toxicology has 
been well reviewed recently (Cronin and Yoon, 2019; Yang et al., 2020) 

and a large compilation of alerts is freely available through the OCHEM 
website (https://ochem.eu; Sushko et al., 2011, 2012). 

There are a number of ways of developing the SAR which forms the 
basis of structural alerts and these are summarised in Table 1, along with 
their characteristics and strengths and weaknesses. No method is 
exclusive and, in terms of understanding their use better, no analysis has 
been performed to determine if or when a particular method may be 
appropriate. From the outset, it is acknowledged that “expert knowl
edge” is a subjective term with no clear criteria to define it. In terms of 
the use of the term “expert knowledge” in this study, it is assumed that 
the expert would have some training or appreciation of toxicology in the 

Table 1 
Summary of approaches to derive structure-activity relationships, and ultimately structural alerts, for predictive toxicology.  

Method to derive 
the structural alert 

Description Characteristics in 
terms of data for the 
SAR, methodology 
and mechanistic 
understanding 

Strengths Weaknesses Illustrative example 

Expert Knowledge 
Based on 
Toxicological 
Data 

Derived from the knowledge 
of toxicologists who have 
experience in assessing the 
data associated with 
toxicological properties of a 
series of chemicals 

Data: small number 
of toxicological data 
on which to base a 
hypothesis 
Methodology: Expert 
judgement and 
opinion 
Mechanistic: 
Presumed high, 
through precise 
mechanistic 
definition may not be 
possible 

Derived from a knowledge 
based on experimental data, 
supported by mechanistic 
information 

Slow to develop, no 
performance statistics; may be a 
misinterpretation from flawed 
data or a subjective 
interpretation of data 

Ashby and Tennant (1988) 
who compiled knowledge on 
genotoxic carcinogens 

Expert Knowledge 
Based on 
Mechanistic 
Understanding 

Derived from expert 
knowledge following (non- 
statistical) analysis of a data 
set of chemicals using a 
mechanistic hypothesis 

Data: large number of 
mechanistic data 
Methodology: Expert 
judgement and 
opinion 
Mechanistic: Clear 
mechanistic 
hypothesis 

Based on expert knowledge 
(preferably from multiple 
sources) and potentially 
creating a broad set of alerts, 
supported by data or 
mechanistic understanding. 
Can be extended broadly 
without extensive 
toxicological data. 

Labour intensive to develop and 
requires expert knowledge 
across a complete mechanism 
of action or dataset 

Enoch and Cronin (2010) and 
Enoch et al. (2011) who 
derived alerts for DNA and 
protein binding respectively 
on the basis of electrophilic 
chemistry; Bauer et al. (2018) 
who derived a decision tree 
on six classes of mechanisms 
of action, termed MechoA 

Data-Driven 
Approaches 

Use of statistical analyses to 
determine fragments 
associated with a particular 
toxicity 

Data: Large data sets 
required for analysis 
Methodology: data 
mining and machine 
learning of 
toxicological data 
Mechanistic: Not 
possible unless 
assigned after alert 
development 

A rapid method, with readily 
available performance 
statistics. The data on which 
the alerts are derived from 
are available 

Requirement for large data sets 
to achieve significant results. 
Prone to limited validation 
(usually restricted to curation). 
Difficult to assign mechanistic 
knowledge or validity to the 
alerts derived as they may be in 
an uninterpretable “black box” 
form. Often the fragments are 
overlapping and require 
rationalisation 

Wedlake et al. (2020) used a 
Bayesian approach to develop 
alerts for in vitro data related 
to MIEs; Claesson and Minidis 
(2018) to develop alerts for 
reactive metabolite 
formation; Cui et al. (2019) 
alerts from fingerprints for 
drug-induced 
rhabdomyolysis 

Chemotype 
Enrichment 

Use of statistical analysis to 
determine which structural 
fragments may be 
significantly associated with 
a toxicity or effect 

Data: Large data sets 
Methodology: Data 
mining of high 
throughput data 
Mechanistic: Driven 
by the mechanistic 
hypothesis of the 
data 

Rapid to apply. Provides a 
statistical outcome to 
demonstrate the strength of 
relationship between the 
activity and structure. Use of 
readily available alerts. 

Currently limited by the need 
for relatively large data sets and 
the fragments already available 

Wang et al. (2019, 2021) 
investigated ToxCast 
endpoints using ToxPrint 
Chemotypes 

Hybrid Approaches 
Combining 
Statistical 
Analysis and 
Expert Analysis 

The purpose here is to use 
statistical analysis (such as 
clustering approaches) to find 
groups within data to be used 
as leads for expert analysis. 
This will not produce a 
comprehensive set of alerts 
but may find SARs (which 
can be optimised) that would 
not be obtained by expert 
knowledge alone. 

Data: Many 
toxicological data 
Methodology: 
Clustering of data 
following by expert 
judgement and 
opinion 
Mechanistic: No 
mechanistic 
understanding unless 
applied after alert 
development 

A rapid approach to derive 
knowledge/hypotheses. 
Supported by data and 
mechanistic understanding 

Evaluating the hypotheses from 
data mining can be slow and 
requires expert knowledge. 

Hewitt et al. (2013) who 
applied expert knowledge to 
the results of cluster analyses 
on a database of 
hepatotoxicity data to derive 
useable alerts for liver 
toxicity. 
Wang et al. (2019) used a 
ToxPrint chemotype 
enrichment analysis to 
identify >20 distinct 
chemical substructural 
features significantly 
enriched for sodium-iodide 
symporter inhibition.  
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context of hazard identification and be familiar with relevant data for 
the chemical(s) and endpoint in question. 

As well as the description of methods to develop structural alerts in 
Table 1, other characteristics of alerts could be considered to improve 
their use including their definition, underlying data source(s), potential 
domain, mechanistic relevance, coverage and performance. Whilst these 
are likely to be crucial for the successful use of structural alerts, they are 
seldom defined, although several recent studies have demonstrated that 
careful development of alerts can improve performance and relevance 
(Amberg et al., 2019; Benigni, 2021; Kalgutkar, 2020; Kalgutkar and 
Driscoll, 2020). In addition, the different uses of structural alerts e.g., for 
hazard assessment, grouping and read-across, screening etc. have not 
been fully described. As such, a better understanding of the properties, 
specifically the strengths and weaknesses, of alerts should increase 
confidence in their application and hence improve opportunities for 
acceptance, especially for regulatory purposes. 

Despite the extensive development and use of structural alerts, their 
importance, and reliance on them in many use cases, no standardised 
agreed means of describing them and assessing their utility in terms of 
their reliability and robustness has been developed. This is in contrast 
with related approaches where assessment formats have been put in 
place, such as read-across (e.g., the Read-Across Assessment Framework 
(RAAF) (ECHA, 2017)) and quantitative structure-activity relationships 
(QSARs) (e.g. the Organisation for Economic Cooperation and Devel
opment (OECD) Principles for the Validation of QSARs (OECD, 2007), 
QSAR Model Reporting Format (QMRF), QSAR Prediction Report 
Format (QPRF) (Worth, 2010)). The lack of an agreed approach has 
potentially reduced confidence in the application of SARs. As such a 
means of evaluating structural alerts would enable confidence to be 
assigned to them, ensure their optimal usage and enhance their 
acceptability. 

One means of understanding confidence in computational toxicology 
tools has been through the characterisation and definition of uncer
tainty. For example, Schultz et al. (2019) have defined the uncertainties 
associated with read-across and Cronin et al. (2019) have detailed areas 
of uncertainty, variability and bias of QSARs for toxicity prediction. The 
purpose of these analyses was not to conclude that a particular approach 
should, or should not, be used, but to assist in the validation process, 
identify aspects of a model that may be associated with significant levels 
of uncertainty and determine the overall confidence that may be 
assigned to a model. This approach to understanding uncertainty pro
vides the opportunity to determine the type and level of confidence 
required for a predictive toxicology approach to be “fit-for-purpose” 
(Belfield et al., 2021). 

One of the most recognised set of criteria in health sciences and 
toxicology to define confidence that may be associated with evidence to 
support a conclusion, i.e., causation, are the Bradford Hill criteria (Hill, 
1965). These were adapted by Meek et al. (2014), amongst others, to 
assist in a weight of evidence framework for mode of toxicological action 
which are closely aligned to the issue of evaluating structural alerts. The 
revised criteria included assessment of biological concordance, essenti
ality of KEs, concordance of empirical observations among KEs, con
sistency and analogy. Whilst these adapted Bradford Hill criteria cannot 
be mapped directly for the assessment of structural alerts, they provide a 
starting point e.g., assessment of mechanisms, underlying evidence and 
definition. Likewise, there is as yet no agreement of the level of quan
tification of uncertainty that can, or should, be applied. Schultz et al. 
(2019) reviewed this topic as regards to read-across and concluded at 
the current time a simple “high, moderate, low” scheme was the most 
practical. It is also noted that, with regard to AOPs, more quantitative 
schemes have been proposed with six (Collier et al., 2016) and seven 
levels of “evidence” respectively (Patlewicz et al., 2013; Becker et al., 
2017). Indeed, a “scientific confidence framework” has been developed 
by Patlewicz et al. (2015) to support the use of AOPs for regulatory 
purposes. This formalises a number of criteria (seven in total) that were 
developed by Patlewicz et al. (2013) based on analogous assessment 

schemes for biomarkers and QSAR. These, and other, studies demon
strate that confidence in the use of strategies for using non-animal data 
can be assessed in a meaningful manner to support their use. The 
acceptable level of uncertainty for a particular purpose, e.g. a regulatory 
decision, remains difficult to ascertain and is likely to be context 
dependent. 

Given the lack of a defined set of criteria to assess structural alerts for 
toxicity, the aim of this investigation was to develop a scheme for their 
critical evaluation. Specifically, we aimed to determine how criteria for 
describing the confidence in structural alerts for the prediction of 
toxicity could be developed based on the assessment of the uncertainties 
of the alerts. Reference was made to adapted Bradford Hill criteria (i.e., 
to assess the likelihood of causation) and other schemes for computa
tional toxicology, with the objective of assessing and numerically 
scoring the overall confidence that may be placed in an alert. Further, 
use cases for structural alerts were reviewed with the objective of 
determining the characteristics of alerts that may be required for certain 
applications in predictive toxicology. 

2. Methods 

2.1. Development of criteria to define the uncertainty associated with 
structural alerts for toxicity prediction 

A set of criteria was created to define the properties of, and uncer
tainty associated with, structural alerts for toxicity prediction. This task 
was performed by the authors using expert analysis to address particular 
aspects of structural alerts, in part with reference to the adapted Brad
ford Hill criteria, which can be summarised as follows:  

- Description and definition of the domain of the structural alert  
- Evidence of causality e.g., mechanisms of action  
- Concordance and consistency of biology e.g., supporting data  
- Performance of the structural alert 

In order to make the criteria useable for the evaluation of structural 
alerts, the broad themes stated above were defined by a larger number of 
definable criteria deemed practical for the description of the un
certainties of a structural alert. 

2.2. Provisional scheme for assigning a confidence score to a structural 
alert 

Following definition of the criteria for the uncertainty associated 
with a structural alert, each was categorised with definitions for low, 
moderate and high uncertainty to make it into a practical and workable 
scheme. Should any particular criterion be irrelevant to the alert, then 
this would be defined “not applicable”. 

In order to provide the possibility of creating an overall score, indi
vidual criteria were ranked according to their potential importance 
when using a structural alert. The ranking was performed semi- 
quantitatively and undertaken using expert opinion and interpretation. 

2.3. Assessment of use cases for structural alerts 

The use cases for structural alerts to predict toxicity were scoped, 
representing, in particular, both regulatory use and application within 
industry. Specifically, use cases were sought for different applications of 
structural alerts with the overall aim of predicting toxicity. For each use 
case the desirable characteristics of an alert were defined. The desirable 
characteristics were based around the criteria for definition of un
certainties and were defined as low, moderate or high. The aim of this 
exercise was to define and identify the types of structural alerts that are 
most suited for a particular use case, such that these properties could be 
defined by the developer/user as a means to demonstrate the applica
bility of an alert, group of alerts or in silico profiler. 
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3. Results and discussion 

This study aimed to develop a scheme to evaluate the uncertainty 
associated with structural alerts for the prediction of toxicity such that 
confidence in their use could be assigned. In order to develop such a 
scheme, cognisance was taken of a number of approaches starting with 
the definition of uncertainty as provided by European Food Safety Au
thority (EFSA) which defined uncertainty with regard to toxicological 
assessment as “all types of limitations in available knowledge that affect the 
range and probability of possible answers to an assessment question” (EFSA, 
2018). The EFSA Guidance is based around identifying, assessing, 
describing and, in some cases, quantifying uncertainty and it is this 
definition that was applied by Cronin et al. (2019) to defining the un
certainty and other properties of QSAR models. 

3.1. Uncertainty assessment criteria for structural alerts 

The assessment of criteria relating to uncertainty was performed 
with the intention of providing a scheme that would assist in the eval
uation of structural alerts and to determine the types of uncertainty that 
may be acceptable for defined scenarios. The development of criteria 
focused on the definition and domain(s) (in terms of the biology/toxi
cology predicted, chemical structure and properties, requirement for 
metabolic activation etc) of an alert, its mechanistic relevance, perfor
mance and the level of evidence supporting the alert. In total, twelve 
assessable criteria were identified that covered the main aspects of un
certainty of a structural alert, these are described in detail and with their 
relevance to uncertainty in Table 2. 

The first criterion (as stated in Table 2) for the assessment of struc
tural alerts relates to its “Purpose” which will ensure that a proper use 
case scenario has been assigned. The following five criteria (Structural 
Description, Property Domain, Toxicity or Relationship to Adversity, 
Species Specificity, Metabolic Domain) attempt to define uncertainty 
associated with the definition of the alert and its applicability. It is 
essential that a structural alert must be adequately defined in terms of 
chemical structure or toxicophore, otherwise it will be difficult or 
impossible to use. Its description should be explicit and ideally comprise 
any confounding or influencing factors e.g., that may promote a change, 
increase or decrease in activity. It is important to note that slight dif
ferences in structure may be associated with large changes in activity 
and toxic effects, this is often termed an “activity cliff” (Maggiora, 
2006). Such minor differences in structure may affect reactivity, and 
hence endpoints such as skin sensitisation (Pestana et al., 2022) or re
ceptor binding, notable for reproductive effects (Mori et al., 2018). To be 
accurate, structural alerts must encode this information to avoid 
over-prediction. The definition of the domain of alerts is assisted by 
consideration of all data, for instance in chemico data have been utilised 
to define the domains of a number of reactive mechanisms associated 
with skin sensitisation (Richarz et al., 2014; Rodriguez-Sanchez et al. 
(2013); Nelms et al. (2013)). 

The definition of the domain associated with physico-chemical 
properties will allow for cut-offs, e.g., for solubility or volatility, to be 
incorporated which will account, in part at least, for elements of tox
icokinetics. At the current time, this aspect of the domain is seldom 
characterised. However, a broad (or no) physico-chemical property 
domain will extend the coverage of an alert, and strict cut-offs will 
restrict coverage, i.e., general or highly specific respectively. The defi
nition of domain in terms of physico-chemical properties must implicitly 
be derived from training set data and hence is likely to forge a link with 
species specificity. In most cases, physico-chemical properties are likely 
to be related to the toxicokinetics of a compound, i.e. an alert may 
indicate the toxicodynamic possibility of initiating toxicity, but this may 
be tempered by adverse toxicokinetic properties. The incorporation of a 
physico-chemical property and/or descriptor domain may ultimately 
allow for some form of quantification, as demonstrated recently with 
regard to determining groupings of potency for repeated dose toxicity 

Table 2 
Definitions and relevance to uncertainty of the properties relating to structural 
alerts.  

Criteria Definition and Relevance to Uncertainty 

Purpose The purpose, or potential use, of the structure alert 
with regard to regulatory assessment, product 
development etc. and will usually be stated by the user. 
For low uncertainty the stated use should be clear and 
unambiguous e.g., for hazard identification relating to 
toxicity prediction or to facilitate grouping and read- 
across. The characteristics of the alert should be 
appropriate for use. 

Structural Description The functional group, or other chemical substructure, 
that is defined as the structural alert is unambiguously 
described including any modulating factors and the 
local molecular environment e.g., substitution patterns 
on a ring, branching or unsaturation on an alkyl chain 
etc. Clear and unambiguous definition will enable 
transparency and documentation. 

Property Domain The domain of the alert defined in terms of relevant 
physico-chemical properties (e.g., solubility, 
volatility), molecular descriptors (e.g. 2D, 3D 
properties such as dimensions), molecular properties 
(e.g. toxicokinetics (e.g. clearance) and any other 
relevant property. It is assumed that the domain of the 
alert will be defined on the training set, if available. 

Toxicity or Relationship to 
Adversity 

The definition of the toxicological effect that is elicited, 
or the adverse effect that may be related to a MIE or KE 
in an AOP that is associated with the structural alert. 
This will provide clear indication of the use of the 
structural alert. 

Species Specificity The structural alert is associated with effects to a 
particular species, taxa or group of organisms and, if 
required, life stage. 

Metabolic Domain Consideration of whether the alert requires, or does not 
require, metabolic activation. 

Mechanistic 
Interpretation 

The structural alert is associated with a recognisable 
and/or understandable mechanism of toxic action, in 
addition to, where possible, an AOP. 

Mechanistic Causality The definition of the structural alert in terms of 
structural chemistry, physico-chemical properties etc., 
is related to the MIE or KE of the mechanism/AOP in a 
comprehensible/plausible fashion. If possible, the 
structural alert should relate to the mechanism of 
action in terms of the chemistry that underpins the 
interaction with physiological/biochemical processes. 
E.g. a structural alert for covalent DNA binding should 
be related to an organic chemistry reactive mechanism. 
It is noted that an alert may be mechanistically 
interpretable, but lack mechanistic causality. 

Coverage The coverage is the relative proportion of hits a 
structural alert would have within a defined chemical 
inventory. 

Performance The performance of a structural alert can be defined in 
terms of its predictivity, or ability to match compounds 
known to be associated with that effect. Ideally 
structural alerts will have a good prediction rate for 
positives, and low false positive prediction rate. 
However, this is dependent, in part at least, on the 
purpose of the structural alert i.e., toxicity prediction 
versus grouping or screening. 

Corroborating Evidence The availability of source toxicological, effect or other 
data that support, or were used to create, the structural 
alert, e.g., that it may be directly relevant to a 
toxicological endpoint, adverse effect, MIE etc. 

Supporting Evidence The availability of additional information that may 
support a weight of evidence approach e.g. data from 
omics or in vitro assays, or data from other endpoints or 
non-standard tests, that support the structural alert and 
provide evidence for the mechanism of action or 
related to an AOP, but which may not have been 
considered in the development of the alert. Direct 
mechanistic relevance may be difficult for many 
endpoints.  
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(Yang et al., 2021), increasing reactivity or bioavailability that may be 
associated with skin sensitisation (Natsch et al., 2015) or the Cramer 
Classes for systemic toxicity (Cramer et al., 1978).). Alternatively, 
structural alerts without physico-chemical properties can be used in 
combination with QSAR models, where the structural alert guides the 
user to select the appropriate QSAR model that relates to the mechanism 
predicted by the structural alert (e.g. a QSAR model for non-polar nar
cosis), while the QSAR itself incorporates the physico-chemical prop
erties allowing for quantitative prediction. The toxicity, endpoint or 
adverse effect predicted should be defined, along with the species to 
which it is relevant. With regard to definition of species, this will be 
dependent on the training set and endpoint. There are also examples, e. 
g., alerts for the inhibition of acetylcholinesterase, where the alert will 
be very broadly applicable, and even a statement such as “any species 
with acetylcholinesterase” may be seen as appropriate. The species 
applicability of some alerts may also be defined by extrapolation, using 
for instance protein orthology databases (LaLone et al., 2016), which is, 
of course, leading to higher uncertainty, but at the same time greatly 
enhancing the species applicability domain of the alert. In terms of 
metabolism, it is acknowledged that some alerts implicitly imply 
metabolism and this is captured in the description of the alert. An 
example being for the DNA reactivity of an aromatic amine, which 
implicitly includes a metabolic step to the nitrenium ion or nitroso de
rivative (Bauer et al., 2018; Enoch and Cronin, 2010). However, not all 
metabolic transformations are captured implicitly in alerts, with some 
requiring knowledge of metabolism or use of a metabolic simulator with 
the alert only being observed in the metabolite e.g. some phenols can be 
oxidised to the corresponding quinone which may be a skin sensitiser, 
whilst the alert is often associated with the quinone alone (Bajot et al., 
2011). There are also many direct acting, non-metabolically activated, 
alerts for toxicity. The purpose of this criterion is that the requirement 
(or not) for metabolism should be stated, or if this knowledge is not 
known it should be acknowledged as an uncertainty. The uncertainty is 
not in the requirement for metabolism, but whether it is known and 
stated unambiguously. 

The evidence of causality of an alert i.e., that it is plausible, is 
captured partially by mechanistic relevance with two criteria (Mecha
nistic Interpretation and Mechanistic Causality) and related to the 
criteria describing the availability of corroborating or supporting evi
dence. Mechanistic relevance is important to provide evidence of cau
sality, i.e., that it is toxicologically meaningful, and hence the 
transparency of an alert. In this case Mechanistic Interpretation ascer
tains the confidence in there being a recognisable mechanism of action 
that can be associated to the SAR and, ultimately, structural alert. 
Mechanistic Causality is whether the description of the structural alert, 
in terms of chemistry or properties, is related to the mechanism of ac
tion. Reference to AOPs is highly useful in this context (OECD, 2017), 
particularly with regard to MIEs which may drive structural alerts 
(Cronin and Richarz, 2017). The two criteria are not independent and 
assessing Mechanistic Causality is not possible without knowledge of 
Mechanistic Interpretation, or at very least knowledge of a potential 
mechanism and/or MIE. This is important to demonstrate the veracity of 
an alert, although it is acknowledged that full mechanistic interpretation 
may not be possible for all alerts i.e., when the mechanisms are unknown 
or debated. Supporting evidence is addressed with two criteria. 
Corroborating Evidence relates to relevant biological data, e.g., in vivo 
assays, or in vitro data relating and confirming a mechanism or adverse 
outcome directly, that support the structural alert. Corroborating Evi
dence can also relate to high-throughput or high content data, for 
instance to explore alerts associated with MIEs and KEs (Wang et al., 
2019, 2021). Supporting Evidence is other evidence or data streams, 
which may have lower levels of biological complexity, e.g., other in vitro 
data, high content screening, omics outputs etc., that support weight of 
evidence to provide the mechanistic relevance of the structural alert. 
Supporting Evidence can, however, also include other information such 
as data from related endpoints, non-standard data etc., for instance the 

use of mutagenicity data to support the assessment of skin sensitisation 
(Mekenyan et al., 2010). 

The final two criteria to consider (Coverage, Performance) are 
objective and will assist in understanding how an alert can be used. 
Coverage can be defined as the number of hits the alert has in a chem
ically diverse database featuring the alert; this is, of course, reliant on 
the nature of a database and is relative only to that and for a specific 
alert. It will give information on whether an alert is general in nature i. 
e., high coverage, or specific, i.e. low coverage. Performance can be 
assessed with a number of statistical criteria, e.g. Cooper statistics 
(Cooper et al., 1979), Fisher’s exact test (as exemplified in Wang et al., 
2019); it is noted that there are few alerts associated with the absence of 
a given mechanism of toxicity – although they could, for instance, be 
derived from machine learning – and the “negatives” in Cooper statistics 
should only be considered when there is a negative alert, but should not 
be considered for positive alerts with the absence of an alert analogous 
to a negative outcome, hence prediction of “negatives”, i.e. non-toxic 
molecules, should be ignored in this situation. Dependent on the use 
of the alert, some scenarios, e.g., low false negative rate, may be 
preferred. With particular reference to data-driven methods of deter
mining structural alerts, there may be a need to consider the use of test 
and training sets to assess the performance and significance of an alert if 
there is no underlying expert knowledge at the outset, similar to the 
development of other types of in silico models. It is obvious that such 
statistics are dependent on the quality and extent of any underlying data 
set as well as how strictly the alert is defined both in terms of chemical 
structure and physico-chemical properties. As such, these criteria should 
not be considered to exclude alerts, but will provide an estimate of the 
confidence provided by associated data i.e. if there are few data to 
support and alert, it may indicate that further data should be sought. 

3.2. Scheme to assign a confidence score to a structural alert 

A key component of the scheme to define uncertainty was the pos
sibility of investigating the (semi-) quantitative assignment of confi
dence to an alert. To achieve this, the twelve assessable criteria were 
defined in terms of low, moderate or high confidence, as reported in 
Table 3. From the outset, it is important to state that low confidence in 
one or more criteria may be acceptable under certain circumstances. The 
purpose, in line with the ethos applied by EFSA (2018) with regard to 
uncertainty, is to highlight areas where improvement in confidence may 
be achievable to improve the acceptability of a prediction involving a 
structural alert for a specific purpose. The scheme will also allow for the 
comparison of the reliability of alerts within, for instance, weight of 
evidence approaches. Whilst the current scheme assigns confidence into 
one of three classes i.e., low, moderate and high, it is acknowledged that 
more classifications could be assigned. An analysis of the advantages 
and disadvantages of including more classifications of uncertainty is 
provided by Cronin et al. (2019) with regard to the assessment of the 
uncertainty of QSARs. 

The criteria for assessment of structural alerts have different levels of 
relevance for a given purpose. Table 4 provides a putative evaluation 
and ranking of the criteria with regard to their use, for instance, for 
hazard assessment where a point of departure may, or may not, be 
required. Some criteria, e.g., the definition of the alert, are essential to 
the use of an alert. Others could have lower confidence, especially with 
regard to evidence for causality i.e., mechanistic and metabolic under
standing. Whilst mechanistic understanding is desirable, the absence of 
complete mechanistic understanding should not preclude the use of an 
established and plausible structural alert. A similar argument can be 
made of metabolic understanding – i.e., in many cases this may be 
obvious or can be implied, but lack of complete knowledge of how 
metabolism may affect an alert should not preclude its use. In addition, 
metabolic competency may be species dependent and may activate or 
inactivate a MIE. A further set of criteria, mainly related to the prop
erties and supporting information of the alert, are considered less critical 
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Table 3 
Definitions of the properties relating to structural alerts and their relevance to confidence.  

Criterion Confidence Relevance to the Structural Alert in Terms of Possible Uncertainty Affecting Confidence 

Purpose High The purpose of the structural alert is clearly and unambiguously stated, e.g., toxicity prediction or grouping. 
Moderate The purpose of the structural alert is broad or ambiguous. 
Low The purpose of the structural alert is not stated. 

Structural Description High Unambiguous description of the functional group and/or molecular fragment including modulating factors. 
Moderate Structural alert is loosely defined with regard to its chemical structure with little or no information regarding modulating factors. 
Low Poor, or no, description of the structural alert with regard to its chemical structure or modulating factors. 

Property Domain High A well-defined domain in terms of the complete molecular environment and ranges of physico-chemical and/or structural properties. 
Moderate Some, but incomplete, definition of the domain for the complete molecular environment. No, or incomplete, definition of the ranges 

of physico-chemical and/or structural properties. 
Low No, or very ambiguous, definition of the domain for the complete molecular environment and the ranges of physico-chemical and/or 

structural properties. 
Toxicity or Relationship to 

Adversity 
High The endpoint, toxicity or adverse effect(s) is clearly and unambiguously stated. 
Moderate The endpoint, toxicity or adverse effect(s) is general and lacks specificity e.g. in terms of organ or species. 
Low The endpoint, toxicity or adverse effect(s) is not known or stated. 

Species Specificity High The species, taxa or groups of organisms, in addition to relevant life stage if important, to which the structural alert is relevant, are 
identified and clearly stated. 

Moderate There is some evidence and documentation that the structural alert is associated with the species to which it pertains. 
Low No evidence is presented for a species-specific response to the structural alert. 

Metabolic Domain High The metabolic domain is clearly and unambiguously stated e.g., the alert defines whether a chemical does or does not require 
metabolic activation. 

Moderate The metabolic domain is ambiguous or poorly defined. 
Low The metabolic domain is not known or stated. 

Mechanistic Interpretation High The structural alert is strongly associated with a well-recognised and documented mechanism of action, e.g., a well-developed or 
OECD endorsed AOP. 

Moderate The structural alert is possibly associated with a mechanism of action. 
Low There is no mechanism of action or no documentation associated with the structural alert. 

Mechanistic Causality High The chemistry captured by the structural alert is strongly associated with the MIE and/or a KE of the mechanism of action. 
Moderate There is possible, but unsubstantiated, evidence that the chemistry of the structure may be associated with the mechanism of action, 

for instance evidence of correlation but not causality. 
Low The chemistry captured by the structure alert has no documented association with the mechanism of action. 

Coverage High The structural alert has relatively low coverage of alert-specific chemical space which could imply a limited and well-defined domain. 
Moderate The structural alert has general coverage of alert-specific chemical space with a moderately broad domain. 
Low The structural alert has high, or undefined, coverage of alert-specific chemical space indicating a broad, unspecific alert. 

Performance High A statement relating to the predictive performance of the structural alert to assist in understanding the purpose of the alert, i.e., good 
performance measured by few false positives/negatives for hazard identification, or biased to ensure few false negatives for screening 
in a tiered approach. 

Moderate The structural alert has modest (i.e. greater than random but is not 100% accurate) predictive performance. 
Low The structural alert is not able to distinguish between active and inactive chemicals. 

Corroborating Evidence High Multiple and confirmatory toxicological data to support the structural alert. 
Moderate Few toxicological data exist to support the structural alert. 
Low No toxicological data are available to support the structural alert e.g. for a statistical approach or one derived on hypothetic 

mechanisms. 
Supporting Evidence High Multiple and confirmatory evidence from mechanistic information to confirm the mechanistic hypothesis. 

Moderate Few data exist to support the mechanistic interpretation of the structural alert. 
Low No mechanistic information is available to support the structural alert.  

Table 4 
Proposed relative importance of the confidence criteria in the scheme for the assessment of structural alerts relating to acceptable levels of confidence. In this case, the 
attributes are for hazard identification supporting risk assessment.  

Criteria Comment 

Essential Attributes of a Structural Alert – Must be Associated with High Confidence (where possible) 
Structural Description The alert must be explicitly defined in terms of its chemical structure, structural domain and which species it is relevant to. 
Property Domain 
Toxicity or Relationship to Adversity 
Species Specificity 
Corroborating Evidence 
Desirable Attributes of a Structural Alert – Preferably Associated with High Confidence (where possible) 
Metabolic Domain The mechanistic and metabolic relevance of an alert increases its transparency and potential acceptance. 
Mechanistic Interpretation 
Mechanistic Causality 
Optional Attributes of a Structural Alerts – Where Possible Associated with High/Moderate Confidence 
Purpose Statistical analysis and source data increase the credibility, or otherwise, of a structural alert. 
Coverage 
Performance 
Supporting Evidence  
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for the evaluation of confidence. 
The application of the criteria and relative assessment of confidence 

is provided for three different types of alerts in the Supplementary In
formation Tables S1–S3 respectively. The structural alerts considered 
are for aliphatic alcohols with reference to acute toxicity across multiple 
environmental species (taken from Sapounidou et al., 2021 and analo
gous to that from Verhaar et al., 1992), the ability of aromatic amines to 
bind to DNA (Enoch and Cronin, 2010) and the inhibition of acetyl
cholinesterase (AChE) by 1-indanone (Figure 2 in Wedlake et al. 
(2020)). There are significant differences between these alerts in that 
those for the aliphatic alcohol and aromatic amine moieties are based on 
considerable expert knowledge and are well-supported by experimental 
data. The alert for AChE inhibition is data-driven being derived from 
data from in vitro assays. The differences are reflected in the scores. For 
instance, Tables S1 and S2 indicate both the alcohol and amine alerts are 
well defined with a strong mechanistic background. However, low 
confidence was apparent in the lack of information on coverage and 
performance. As both alerts are intended for grouping, rather than direct 
toxicity prediction, this may be deemed acceptable if used appropri
ately. Table S3 indicates the alert for AChE inhibition has less direct 
toxicological relevance but is well characterised in terms of coverage 
and performance. 

The relative confidence that can be associated with the three struc
tural alerts is demonstrated graphically as “radar plots” in Fig. 1. The 
two alerts based on expert knowledge (from Sapounidou et al. (2021) 
and Enoch et al. (2011)) have the same “confidence profile” as defined 
by the criteria, with low confidence associated with the lack of docu
mented coverage and performance of these alerts. The data-driven alert 
from Wedlake et al. has a different confidence profile, with lower con
fidence associated with the lack of primary data anchored to the alert. 

Given the possibility of ranking the relative criteria for the assess
ment of the confidence for structural alerts according to their relevance 
and importance as shown in Table 4, it may also be possible to allocate 
some type of weighting to create a score for a particular alert that takes 
account of the particular levels of confidence. This can be converted to 

give a “confidence score” for a particular alert. A proposed scheme to 
add a weighting to each of the criteria is given in Supplementary In
formation Tables S1–S3 and has been applied to the three alerts. For 
clarity, the weightings in Tables S1–S3 correspond to Table 4 i.e. 
essential criteria are given a weighting of 10, desirable criteria a 
weighting of 5 and optional criteria a weighting of 2. At this time the 
weightings are arbitrary and any uptake of such weighting will require 
consideration with regard to their use and purpose. For instance, it is 
anticipated that alerts could be aligned with different characteristics for 
hazard identification (where a highly specific, data rich alert may be 
required) as opposed to prioritisation and screening (where a broader 
alert, not necessarily mechanistically-based, may be acceptable). As 
such, not only different weightings, but different (semi-quantitative) 
weights could be applied. Where a rapid screening tool is required, for 
instance for the evaluation of a chemical inventory, then the most 
relevant characteristics of alerts will be coverage and an understanding 
of the false prediction rate (particularly the possibility of not identifying 
particular effects). To assign compounds to a particular QSAR, as in the 
Sapounidou et al. (2021) scheme, then much greater emphasis will be 
placed on the mechanistic understanding, or the relevance to the known 
molecular initiating events. 

The weightings in the scheme are on a scale up to 10 with the higher 
weighting being associated with those criteria deemed more essential in 
Table 4. Such an analysis has the effect of emphasising the important 
uncertainties associated with an alert. The weighting has had the effect 
of emphasising the relatively low confidence (or high uncertainty) that 
is associated with the alert from Wedlake with regard to its structural 
description and the lack of primary (in vivo) supporting evidence. This, 
of course, does not preclude the use of this alert, but demonstrates where 
further information and/or knowledge could be provided to increase 
confidence in its use. In addition, there may be possibilities for using 
alerts not supported by in vivo data for specific purposes, such as to 
confirm an MIE. The essentiality of some criteria will depend on the use 
case, as noted above, and it is unlikely that a single list covering all use 
cases can be developed. 

Fig. 1. Radar plot representing the “confi
dence profile” associated with knowledge 
driven alerts (from Sapounidou and Enoch) 
in blue as compared to the data-driven alert 
(from Wedlake) in orange (dashed line). The 
confidence criteria are ordered according to 
the relative importance as stated in Table 4, 
with the essential criteria at the top of the 
radar plot in blue boxes (double line), 
moderately importantly in green boxes 
(single line) at the centre of the plot and 
lower importance at the base of the plot in 
red boxes (dashed line). The criteria have 
been scored from 3 (low uncertainty/high 
confidence) to 1 (high uncertainty/low 
confidence). (For interpretation of the ref
erences to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   

M.T.D. Cronin et al.                                                                                                                                                                                                                            



Regulatory Toxicology and Pharmacology 135 (2022) 105249

8

The Mean Confidence Score and a “Weighted Confidence Score” are 
also provided for the three alerts in Tables S1–S3. The Weighted Con
fidence Score is calculated as:   

The resulting scores are on a scale from 3 (greatest confidence) to 1 
(lowest confidence). Having a single number for a Confidence Score is in 
some ways appealing i.e., a number can provide information on confi
dence, but runs a very high risk of being misleading if misinterpreted. It 
is not intended that a higher score implies any alert to be “better” than 
any other alert, but that it may be better defined in certain character
istics which could make it more amenable for various use cases. The 
Confidence Scores for the knowledge-based alerts (Sapounidou and 
Enoch) are higher than for the data-driven alert, however this does not 
take account of other factors such as speed of development. It should 
also be emphasised that a single score for confidence may mask an un
acceptable uncertainty in one, or a small number, of areas. Thus, close 
examination of radar plots, such as Fig. 1, is helpful and inevitably leads 
to the question of what the desirable characteristics of an alert for a 
specific purpose are, which is considered in the next section. Since 
weightings in any scheme are defined by the user, they can be adjusted 
to emphasise any particular aspect of the evaluation. 

3.3. Use cases and the desired properties for structural alerts 

Five use case scenarios for structural alerts are described below, with 
attributes noted in Table 5. These do not encompass all uses, but are 
representative of the types of applications for which structural alerts 
may be used. These include those for regulatory use and industry spe
cific uses, namely:  

• Hazard identification through direct prediction of toxicity to support 
risk assessment, e.g., giving weight to a particular adverse outcome.  

• Mechanism-based analogue identification, e.g., to select similar 
compounds or analogues as part of a read-across to enable mecha
nistic justification, assignment of a particular chemical to a QSAR, 
such as a reactive or specific mechanism.  

• Category identification e.g., assigning a compound as a chemical 
class-based analogue for High Production Volume (HPV) chemicals. 

• Predictions of effects, or identification of hazard, leading to classi
fication and labelling in a regulatory context. 

• Screening and/or prioritisation e.g., to identify or highlight poten

tially hazardous compounds in a regulatory context or as part of 
product development. 

Table 5 provides an estimate of the ideal minimum levels of confi
dence that might be required for each of the twelve uncertainty criteria. 
From the outset, it is clear that different levels of confidence are 
acceptable for different use case scenarios. Those associated with 
providing input into hazard identification, i.e., direct prediction of 
toxicity and read-across, ideally have higher confidence. Lower confi
dence may be acceptable for screening and prioritisation. 

Some characteristics of structural alerts should be definitive regard
less of use case and hence be associated with high confidence. Examples of 
these include the structural description of the fragment, the endpoints to 
which it relates and the species relevance. In addition, the definition and 
understanding of confidence in structural alerts suggests that different 
use case scenarios could potentially utilise different characteristics of 
structural alerts. The identification of analogues, for instance as a primary 
categorisation tool for read-across, requires highly defined structural 
alerts with good mechanistic understanding. The purpose here is to 
identify very closely related chemicals as defined by their structural alerts 
that would support a robust argument for similarity. The use of structural 
alerts for assignment of compounds to chemical classes could have lower 
confidence in terms of structural definition. This would allow for a larger 
number of compounds to be grouped together, and associated with this 
could be lower mechanistic understanding with the possible expectation 
of sub-categorisation later on to allow for efficient analogue selection. 
However, for uses such as hazard identification or prioritisation, lower 
confidence may be acceptable to allow for the identification of potential 
toxicants, with the possibility of false positives being ameliorated by 
further evidence or testing. 

Knowledge from the scheme for the evaluation of confidence of 
structural alerts can also help indicate how to use alerts. For instance, 
the aliphatic alcohol and aromatic amine alerts (assessed in Tables S1 

Table 5 
Ideal levels of confidence and characteristics of structural alerts in different use case scenarios. The ideal levels of confidence are defined in Table 3.  

Criteria Hazard Identification 
Supporting Risk 
Assessment 

Mechanism-Based 
Analogue Identification 

Category Identification e.g., Chemical 
Class-Based Analogue for HPV 
Chemicals 

Predictions Leading to 
Classification and Labelling 

Screening and/or 
Prioritisation 

Structural Description High High High High High 
Property Domain High High High Moderate Moderate 
Toxicity or 

Relationship to 
Adversity 

High High High High High 

Species Specificity High High High High Moderate 
Metabolic Domain High/Moderate High/Moderate High/Moderate Moderate Moderate 
Purpose High High Moderate Moderate Moderate 
Mechanistic 

Interpretation 
High High High High High 

Mechanistic Causality High High Moderate/High Moderate/High Moderate/High 
Coverage High High Low Low Low 
Performance High High Moderate Moderate Moderate 
Corroborating 

Evidence 
High High Moderate Moderate Moderate 

Supporting Evidence Moderate Moderate Moderate/Low Low Low  

Weighted ​ Confidence ​ Score ​ =
∑

weighted ​ confidence ​ scores ​ for ​ each ​ criterion
∑

weightings ​ for ​ each ​ criterion
(1)   
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and S2 respectively) are associated with low confidence for their 
coverage and performance, as these statistics are not known. In addition, 
they can be considered as quite broadly defined, thus likely to capture or 
identify many analogues in a read-across scenario. In such a situation 
sub-categorisation is recommended, for instance using similarity indices 
(Mellor et al., 2019). Thus, the evaluation of confidence through the 
scheme presented does not preclude the use of any structural alert but 
will assist in the identification of how and where they can be used 
optimally and justifiably. Other aspects to be considered are the defi
nition of the various domains i.e., structural, mechanistic and metabolic. 
As noted above and in Table 4, high confidence in the structural defi
nition is a pre-requisite for use, whilst mechanistic and, in particular, 
metabolic definition may be more aspirational. 

4. Conclusions 

A scheme is proposed that characterises the uncertainty associated 
with structural alerts in an attempt to understand the confidence that 
may be associated with them. Twelve criteria have been considered that 
account for the quality and usability of an alert for a specific purpose. 
These criteria have been ranked according to how essential they are for a 
particular use case. Assessment of existing alerts suggests that those 
derived directly from expert knowledge have different uncertainties to 
those from data-driven analyses. This does not discount any particular 
method of alert creation, rather these findings can be used to reduce 
uncertainty through finding further data and information to increase 
confidence in the use of these predictive approaches as well as allowing 
for increased confidence on decisions made on the alerts and for 
benchmarking existing alerts. 
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