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Abstract 

Osteoarthritis (OA) is a degenerative bone disease that affects joints. OA is one of the 

most common diseases affecting people in old age. Between 12% and 30% of over 65s 

are affected by OA, with the knees being the most commonly affected joint. The process 

for making a diagnosis of knee osteoarthritis is time consuming and somewhat subjective. 

Clinicians assess a variety of clinical symptoms and information and establish if the patient 

meets the criteria for having the disease. The utilisation of a machine learning tool could 

potentially enhance the experience of patients in a clinical setting by reducing the amount 

of testing required to arrive at a firm diagnosis. 

In clinical settings where patient education and behaviour modification are at the 

forefront, interpretable models are key, as it is vital to be able to explain a decision that 

leads to any course of action related to an individual patient. In Chapter 3, a model that 

could be used to aid clinicians in making a diagnosis is developed, and Chapter 4 a model 

to identify risk cohorts of people who do not yet have the disease is described. Chapter 5 

takes those models and uses a different dataset to validate them and develop interactive 

web-based applications that have easy to explain results.  

These models are expanded to consider the effect of gender in presentation of knee 

osteoarthritis and how this can influence the likelihood of presenting with the disease. 

Also, the use of multitask learning aims to describe the usefulness of combining datasets 

to enhance model performance.  

Together, these models and approaches utilise both clinical and demographic features to 

help identify those with knee osteoarthritis and those who are at risk of developing the 

disease in a five-year timeframe. The models and apps have potential use in clinical 

settings both as a decision support tool and as a resource for patient education following 

UK validation of the model. 
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1.1. Introduction 
1.1.1. Disease and the burden 
Osteoarthritis (OA) is a degenerative bone disease that affects joints as a whole. OA is 

one of the most common diseases affecting people in old age. The prevalence in people 

65 years and older ranges from 12% to 30% [1]. The disease is also the most common 

form of arthritis to cause pain and mobility limitations. OA most commonly affects the 

knee, and around 10% of people over 55 years old have knee OA (KOA). This statistic 

is not surprising as weight-bearing joints, such as the knee or hip, are where disease occurs 

most [2].  The focus of this research is specifically KOA. 

Weight is just one of the factors that can play a part in developing KOA. Some of the 

other factors are genetics, past injury and overuse of a specific joint [2]. Many of the risk 

factors of OA in any joint are non-modifiable, such as gender and a person’s 

predisposition to other types of arthritis, for example rheumatoid. Despite many people 

thinking that OA is a disease that only affects the elderly, everyone is susceptible, with 

younger people more likely to develop the disease as a direct result of trauma. This type 

of OA is known as secondary OA. Most factors that cause OA are not features the patient 

can modify however there are some that, if dealt with, can slow the progression of OA, 

one such factor that can be changed is weight [2].  

There are five stages of KOA according to the Kellgren-Lawrence (KL) scale [3]. These 

are differentiated between with the use of x-rays to determine the severity of the OA. 

Stage 0 is classed as no OA and Stage 4 is severe OA present in the joint. A visual example 

of how bones change due to OA is in Figure 1-1. A clinician usually analyses and classifies 

images for diagnosis. By using both humans and computer based models there is the 

potential for more reliable diagnoses [4]. Stage 1 is the point at which disease changes are 

likely to begin but go unnoticed as they do not typically cause symptoms to the patient. 

Stage 2 is usually the point of diagnosis as this is where symptoms usually begin to bother 

the patient. The advice usually given at this stage of the disease is aimed at preventing 

progression. If behaviours can be modified prior to the onset of symptoms due to early 

interventions then the burden of OA is likely to be reduced. 
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Figure 1-1:  X-ray data from patients with knee OA (grades 1 - 4) and acute inflammatory conditions of the knee joints [5]. Notice in 
the images as the gap between the bones decreases as the KL grade is more severe. This image is from figure 2 in the article [5]. 

The costs associated with OA are more than just financial. Many people who suffer with 

the disease state that its effects severely affect their quality of life. Many people often see 

that they are in increased pain for a large portion of the time and that, along with the 

functional impairment that comes from the effects of the disease, leads to a reported 

decrease in the quality of life of sufferers [6]. Depression is four times more common 

among people who experience persistent pain compared to those without [7] and around 

20% of OA sufferers report experiencing depression [8]. Using the  quality of life 

score (EQ-5D), a standard measure for health status which asks about their health status 

using five distinct measures relating to mobility, self-care, usual activities, 

pain/discomfort and anxiety or depression, scoring between 0 and 1, people suffering 

from a long term muskoskeletal condition, including OA, had an average quality of life 

score of 0.58 compared to those without a long-term condition who had a score of 0.92 

[8]–[10]. 

Across several countries, it is clear to see that there is an increasing cost because of OA 

[11], [12]. Although there has been no real study into the UK expenditure on treating OA, 

several other countries have looked into the expense of treating the disease [13]. The cost 

of OA is not just measured as the cost of drug and treatment, direct costs, it also includes 

indirect and intangible costs [14]. Indirect costs include factors like days off work, loss of 

productivity and any benefit payments a person may receive. Intangible costs are things 

like the cost of pain and suffering and the decreased quality of life along with the added 

risk of potential to develop anxiety and depression. The intangible costs are a point of 

controversy as their value can be perceived as different for every person [12]. There is no 

clear analysis of the real costs of OA; however, any reported amounts are likely to be 
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significantly less than the actual costs. Across the UK, the 2005-2006 average for the 

overall cost of topical and oral nonsteroidal anti-inflammatory drugs (NSAIDs) was £8.5 

million and £25 million, respectively. The projected 2010 price for the drugs after 

adjusting to inflation was £19.2 million for topical and £25.65 million for oral NSAIDs 

[15]. Surgery, both arthroscopy and joint replacement, also have a substantial cost to the 

National Health Service (NHS), with hip and knee replacements estimated to cost £850 

million [14], [16]. The impact of OA on the UK economy is huge, with an estimate of the 

total cost being 1% of the gross domestic product (GDP) [17], and the social cost of OA 

in Spain has been reported between 0.25% and 0.5% of the country’s GDP [18]. In 2002 

the Department of Work and Pensions estimated that during that year 36 million working 

days were lost because of OA, resulting in £3.2 billion in losses relating to economic 

production [19], and OA is currently costing the UK economy £2.52 billion annually 

through 25 million lost working days [20]. Across the globe the costs of OA are among 

the highest in the healthcare arena. In the USA in 2013 OA was recorded as the second 

most expensive condition requiring treatments, with the hospital costs reaching $16520 

million [21]. Even without a definitive measure to the economic cost of OA, it is clear 

that the costs are significant, and they will continue to rise. The need to find out how to 

prevent the disease onset and potentially reduce spending is increasing as there are 

younger people being diagnosed with this disease so without change to implement early 

interventions spending will surely increase.  

The third largest area of NHS spending in 2013-2014 was musculoskeletal conditions, 

including OA costing £4.7 billion [22], [23]. By 2017 the total cost of osteoarthritis and 

rheumatoid arthritis in any joint on the NHS and the wider healthcare system was £10.2 

billion [8]. As more and more people develop the disease, the costs attributed are going 

to increase and put further strain on the NHS. In the UK in 2017 there were 120,581 

knee replacements and OA was the primary cause for 98% of these [8]. Therefore, there 

is a clear and definite need for diagnostic aids and models to indicate risk of disease onset 

and progression, as currently there are no predictive tools like the ones proposed and 

developed as part of this PhD.  

1.1.2. Motivation and Clinical problem  

OActive is an EU-funded research project, aiming to improve healthcare by transforming 

and accelerating the OA diagnosis and prediction based on more holistic features than 

just clinical measures. OA is not an easy disease to define, predict or treat so the OActive 
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project looks to make patient-specific OA predictions and interventions by using 

different models and big data analytics to better leverage the information in the data. 

OActive’s mission is to find innovative ways to use data with the aim of better 

understanding the onset and progression of the disease and improving patient outcomes. 

The work in this thesis does not use image analysis, but instead considers the applicability 

of predicting radiological KOA status from easier to measure factors and features from 

clinical questionnaires. The features include measures such as Age, BMI, and activity 

status. The work here would provide the base for a model that could be utilised as a 

screening tool. This would be useful as having a filter to help determine what candidates 

require further investigations, such as x-rays, would help to reduce the cost of diagnosis, 

and potentially help to speed up diagnosis, delay disease progression, improving the 

process from a patient perspective.  

The main clinical problem is two-fold. Firstly, there is a need to determine who has KOA 

at their first presentation to a clinician. Then, of those without the disease, establish who 

is likely to progress to KOA after a period. By identifying those with the disease, it 

becomes possible to indicate which subjects require interventions, such as more frequent 

follow-ups, to assess how the disease is affecting them. Similarly, by highlighting 

individuals at risk of developing the disease it would be possible to offer actions that may 

allow for a reduction in risk of early onset. This may be help to lose weight, reducing the 

BMI of an individual, taking them from a high risk to a low-risk group for developing 

KOA in a five-year timeframe.  

Although there is a clear clinical need for tools to help diagnose and predict the risk of 

KOA, the models developed and described in this thesis are a preliminary step toward a 

version that could be used within NHS clinical practice. The models developed use data 

from the US where the population demographic is different from the UK, which would 

be the target audience from these models. In order for these models to be used in the UK 

they would require validation on UK based data to ensure the features are still relevant 

given the different population demographic. From this point, the options relating to 

modelling for the UK would be to remodel entirely on the UK data or to use multitask 

learning to enrich the data sources with the aim of producing a more generalised model, 

suitable for both demographic cohorts.  
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1.1.3. Review of related research  

1.1.2.1. Interpretable Methods 
As machine learning (ML) systems become more embedded in applications throughout 

the real world, a need for regulations has become apparent. Legal regulations for the 

systems are being developed, with different levels of restrictions being placed on the 

amount of risk they pose when used. As many ML models consist of complex structures 

[24], [25], there is an urgent need for those models to be interpretable and explainable 

[26]. However, this urgency is not consistent across all domains, but is a certainty in 

medical applications, such as diagnostic decision support, where it is crucial to understand 

what the model is doing and how the predictions were calculated.  

ML models are used in a wide variety of application domains, with methods typically put 

into place for experts in the application area to interpret and understand the results in a 

way that makes sense to other people. In the real world, for areas that machine learning 

methods are being used it is critical for the successful and appropriate implementation 

and safe crossover that mathematical algorithms that are used in decision-making 

processes are capable of being integrated into human reasoning models. Importantly, the 

provision of interpretation for AI is now arguably a central pillar for the “right to 

explanation” written into the General Data Protection Regulations (GDPR) which came 

into force on 25th May 2018  [27], [28]. 

Machine learning methods may be interpretable by design, typically in the form of rules 

in induction trees such as Chi-squared Automatic Interaction Detection (CHAID) and 

Classification and Regression Trees (CART) [29]. Alternatively, rules can be derived from 

neural network models such as Orthogonal Search Rule Extraction (OSRE) [30], which 

uses the statistical properties of regularisation of non-linear statistical methods to smooth 

decision boundaries and so reduce the effect that noise in the data has on the extracted 

rules. In contrast, more parameterized and sometimes less interpretable models require 

model calibration in order to be used effectively. However, the importance of calibration 

of probabilistic models [31] often favours the use of logistic regression (LogR) and its 

non-linear extension, feedforward neural networks and typically the Multi-Layer 

Perceptron (MLP). The partial response network (PRN) is a method that has the 

performance benefits of the MLP with the interpretability of a linear model, such as 

logistic regression.  
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In this thesis, interpretability refers to the user’s ability to extract meaning from the results 

produced [32]. One definition of interpretability is broken down into three criteria [33]. 

The first criterion is to assess if the explanations are immediately understandable. The 

next criterion is whether the results are relevant and align with knowledge in the area. The 

third criterion is the predictive stability. For example, when there are similar cases stability 

would be evidenced through similar predictions for those cases.  

1.1.2.2. Applications of Machine Learning to Osteoarthritis 

Research 
There are five stages of OA according to the Kellgren-Lawrence (KL) scale [3] where 

Stage 0 is classed as no OA and Stage 4 is severe OA present in the joint. A clinician 

usually analyses and classifies images for diagnosis. More recently, studies have been 

conducted using artificial neural networks (ANN) to predict if a patient has OA based on 

blood samples [34]. Using computer aided diagnosis (CADx) would provide an objective 

tool to support clinicians. This particular approach has the diagnostic accuracy of a human 

clinician. By using both humans and machines there is the potential for more reliable 

diagnoses [4]. 

Another approach being tested is using plain radiographs and ANNs to determine if OA 

is present and how severe it is. This study aimed to make diagnosis and classification more 

stream-lined as there is some uncertainty in the stages and several clinicians may disagree 

over the classification of a patient in the KL scale [35].  

Image analysis using MRI scans and x-rays to aid in diagnosis are also key resources that 

can be used in data mining and knowledge extraction leading to more informed decisions. 

A task within the OActive project was focused on considering the segmentation of MRIs 

and extracting geometrical features. This work looked at data from the OAI project and 

the Zuse Institute Berlin and used a semi-supervised approach to implement the 

segmentation through a multi-atlas learning process. The resultant image mask can then 

be split into bone specific masks where a transformation for distance is calculated and 

clustering is performed. The results of this process are feature descriptors for each part, 

all consisting of the mean, standard deviation and a plot of distance values [36].   

Image analysis is widely used in the healthcare arena, with research related to KOA 

proving to be no different. A 2017 paper suggests that by using image extracted data along 

with questionnaire data it is possible to use machine learning to generate predictive 

models for the incidence of KOA [37]. Another example is a modified type of random 
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forest models being used to predict KOA, where feature detection from images were 

determined through the use of a 3-stage constrained local model [38]. Also, there is an 

increasing trend to consider multimodal approaches in diagnostics, using both 

convolutional neural networks to analyse images and model stacking to combine the 

neural network findings with more standard clinical measures [39]. 

When identifying the work that has been done so far in the area of KOA it is apparent 

that much of the research has gone into trying to classify plain radiographs into the 

different KL stages [35], and trying to determine if automated systems, such as neural 

networks, have a place in medical diagnosis [40], [41]. One of the papers even looks at 

trying to show that complex models can be made more interpretable for use in the medical 

domain [42]. The majority of the papers mentioned here look at the end result – a patient 

with symptomatic knee OA, and only then the attributes that could have become risk 

factors for trying to determine propensity to the disease, and possibly slow the 

progression. OA is a key research topic as the cost to the UK as a result of OA is growing 

year on year, and that trend can only be assumed to continue in the future as more and 

more people are living longer, and are at a higher risk of developing OA [14].  

The data used in machine learning studies referring to OA have been collected in two 

different ways. The Framingham Study had a sample of 1805 patients, with only 79% able 

to be studied. The origins of this data were in the Framingham Heart Study. The OA data 

consisted of x-rays and medical history of the patients. The Framingham study was the 

18th Biennial Examination of a long term study that started in 1948 and concluded in 2014 

[43], [44]. When looking at interpretability for precision healthcare the MIMIC-II data 

was used [42]. The data consisted of counts of medication, diagnoses, and lab tests for 

the 32289 subjects across two groups. For trying to determine the severity of knee OA 

using the KL scale two main datasets have been used. The Osteoarthritis Initiative (OAI) 

and the Multicentre Osteoarthritis Study (MOST) data have both been used, with OAI 

being used more than once. The OAI data contains information on 4796 subjects in the 

form of x-rays and clinical factors [35], [45]. The OAI data has information on other 

factors of interest, such as demographic and self-reported activity information, but they 

are not used in these studies. The extra quantitative data, and that the data is publicly 

available make this a good candidate for use in any initial exploratory investigation. The 

MOST is another publicly available dataset that has over 3000 subjects. One example that 

looks at diagnosing Nephritis and Heart Disease using a variety of inputs and targets, 

presented as binary data, use data collected from the UCI repository. The study into 
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nephritis had 120 patients, and the study for heart disease had 267 patients [40]. The final 

example of data that is used from an existing study if the 5th Korea National Health and 

Nutrition Examination Survey (KNHANES V-1) [41]. This data is made up x-ray data 

on various parts of the knee that are likely to show signs of the disease. The KNHANES 

V-1 is made up of 2665 participants. The other type of data, data specifically collected for 

new research was used in the 300 patients used to see if there was a way to determine OA 

from rheumatoid arthritis and both of those from ‘normal’ people without any arthritic 

disease. The data was made up of 38 inflammatory proteins present in the blood serum 

[34]. 

A method that has been used most frequently, regardless of whether image data or 

quantitative data was used is neural networks (NN). Artificial Neural Networks (ANN) 

are commonly used in conjunction with medical data. ANNs have the ability to 

distinguish between patient groups in a study [34]. This type of NN can be used in 

conjunction with logistic regression (LR). LR serves to determine what predictors are of 

clinical interest, in a type of feature selection, while the ANN is used as decision support 

[41]. When trying to automatically recognize the areas of the joint that are of interest 

Convolutional neural networks (CNNs) are used. Another example of multiple 

algorithms being used at once is support vector machines (SVMs) and CNNs. The SVM 

looks to extract the relevant information whilst the CNN focuses on the extracted details 

to try and identify areas of disease [45]. In one particular study Deep Siamese CNNs were 

used [35]. These specific NNs contain two or more identical networks and are favourable 

as there are fewer parameters to train as they have the same value in both networks. They 

also are able to handle class imbalances better than traditional NNs. Another approach 

used in different analysis is the use of decision trees and random forests (RF) [14], [42]. 

The advantage of decision trees is that they are relatively intuitive and therefore easy to 

interpret and understand. Random Forests are slightly more difficult to understand 

intuitively as they are an ensemble method. However in the study with RF there was also 

an interpretability model used (LIME locally – interpretable model – agnostic 

explanation) [42]. Looking at these approaches using LR as a baseline for determining 

risk factors for OA would be a good step, followed by the use of different machine 

learning approaches, varying in complexity and interpretability, to establish if there is a 

trade-off between the models ability to predict disease presence and how easy they are to 

extract information for use in a clinical setting.  
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Consistently, NNs performed very well at classifying knee OA, Nephritis (99%) and heart 

disease (95%). The RF/LIME approach rendered an 80% balanced accuracy and as 

importantly provided results that were consistent with the medical understanding of the 

illness. The decision tree method was determined to still require some further analysis as 

the criteria were not perfect, and giving everything an equal weight in the final decision is 

flawed for a disease that has risk factors that vary in degrees of severity. One prevailing 

result that was determined is that it is imperative to not treat the KL scale as definitive 

boundaries, but more as a continuous scale as the disease progresses in some areas faster, 

and more aggressively than other areas. ANN has been found to be a cost effective 

screening tool when used on x-rays and in conjunction with an experienced radiographer 

if the need arises. For example, one method for screening for knee OA would be to x-ray 

everybody’s knees and have the images undergo the ANN algorithm to determine if there 

are areas of concern. Should the model the flag anything up that requires further 

investigation, bring these to the attention of a radiographer and a clinician to double check 

the results and follow up with a management, or treatment plan with the patient.  

1.1.2.3. Research on Early Onset and Treatment 
Clinical papers identifying risk factors are frequently based on a literature review of 

previous studies. The majority of these works looked at determining the suitability of risk 

factors for determining OA [46]. Behaviours, habits and lifestyles are all understood to 

be involved in some way with the onset and progression of OA [47]. Another paper 

looked at what OA is and which risk factors predispose a person to the disease [48]. 

Identifying advances in imaging and biomarkers was another area that some literature 

focuses on [49]. Studies concerned with the quality of life and societal impacts caused by 

OA were also literature based [11]. The other type of study is clinical trials investigating 

risk factors. One study tried to develop a prognostic model for knee OA [50]. Studies 

using publicly available datasets can be used to determine if problems such as alignment 

are a contributing factor into OA of the knee [51].  

For literature review based studies, such as systematic reviews, a large volume of papers 

were screened, but it was common for only a small sample of these to be included. The 

three remaining studies that use data to derive conclusions about onset and early 

treatment use either study data or clinical data. The clinical data used was gathered from 

an experiment on mice, to determine the use for cathepsin B for early diagnosis of OA 

[52]. When focusing more on the risk factors a person may have population studies were 

used, namely the Rotterdam study, Chingford study, MOST and OAI [50], [51]. 
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For one of the literature review-based studies a scoring tool was devised and used to 

assess the quality of the studies being used to determine the risk factors of interest [46]. 

The other literature review-based samples also followed a score-type system to assess the 

usefulness of the features found from the highlighted papers. The practical approach 

studies used different approaches. The study using the Rotterdam and Chingford data 

developed a risk prediction model to determine risk factors for knee OA [50]. The study 

utilising MOST and OAI data used analysis of alignment measures of the knee and 

interpretation of x-rays to determine the effect of malalignment on knee OA [51].  

The majority of the papers report a similar group of risk factors; however, similar factors 

appear with different definitions, so features may be similar but not exact. In this thesis, 

there has been a need for matching of factors when using different data sources. One 

example of factor matching is in one dataset the reference is made to knee stiffness, 

whereas in another dataset the reference is knee pain in the past 30 days. These two are 

not identical but are similar and therefore can be matched for use in the modelling 

process. The literature searches brought in many of the same factors, proving to be 

consistent across what is currently used by doctors. These factors include increased BMI, 

previous knee injury, Hand OA and older age [46]–[48], [50]. Each specific study found 

additional feature that may put a person at increased risk of developing OA, for example 

one suggested that poor mental health and having had a hysterectomy were two risk 

factors for developing OA of the knee [46]. One paper suggested that features such as 

ethnicity, hormonal status, genetics and the presence of certain biomarkers may all lead 

to an increased risk of OA [48]. The conference on Osteoarthritis from 2000 also 

suggested that OA may not be a single disease, but a group that ultimately have a similar 

final common pathway, however this is unclear [48].  One suggestion for an early 

treatment would be to administer vitamins to people who may be at increased risk to 

reduce the oxidative stresses which can be responsible for inflammation in the joints, 

leading to knee OA [47].  Among early interventions, such as supplements and physical 

therapy some research suggests that the best indicator of future changes in the knee 

leading to OA developments are early radiographic changes which are commonly missed 

[50]. This is backed up in part by the study suggesting that a malalignment in the knee can 

speed the progression of OA, so early intervention to correct this would be a suitable 

approach for delaying progression, and potentially onset of OA [51]. Early detection tools 

are required to successfully intervene early enough in the disease to promote change in 

the outcome. One such method is the near-infrared fluorescence (NIRF) probe along 
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with cathepsin B, however further testing would be required before this approach could 

be applied to human cases [52]. A key finding is that is key to have treatments available 

for pre-OA conditions as a way to delay and prevent the onset of OA [49].  

It is necessary to develop a concise set of risk factors that can accurately be attributed to 

early onset of the disease so that preventative and early intervention treatment measures 

can be used to help delay the progression and potentially prevent the onset of the disease. 

Taking these early steps would help to preserve the quality of life for people that is usually 

lost once the disease takes hold [11]. By having this type of model in place the economic 

burden caused by osteoarthritis on the whole would also be reduced. In order for this to 

happen, pre-symptom interventions are required.  

1.1.2.4. Models for Risk Stratification  
Risk prediction models are key for educating the public about their risk relating to 

developing a certain illness or disease. Many models exist for diseases that can cause great 

pain and suffering to those afflicted, such as cardiovascular diseases and cancers. Even 

though osteoarthritis is not a life-threatening disease, it does cause life altering disability, 

pain and suffering to those with the disease. Risk prediction models, in a medical 

application, have the ability to use information relating to a disease to calculate a person’s 

chance of developing a disease over a given time period. Developing such a model for 

osteoarthritis would be key to helping reduce the impact this disease has, and therefore 

the costs associated with it.  

At present, the only risk prediction models that exist for osteoarthritis are research based 

and used to demonstrate that such models can be developed for this disease. Many of the 

risk prediction models that have been developed so far make use of the well-known risk 

factors that are linked with the disease. Many of these models are then also useful for 

looking at the effect of modifying the risk factors to estimate the risk reduction [53]. Some 

investigation have been able to make use of varying datasets to develop a prognostic 

model for knee OA [50]. A key factor in any risk prediction calculator is that it is easy to 

use and understand, while retaining accuracy in the model [54]. The power of other risk 

prediction models is that they can be easily used by both clinicians and patients. Having 

a calculator that can be easily used by the patient gives them the power to make small 

changes at a point far earlier than a doctors consultation, as people are increasingly likely 

to research their own symptoms and try to improve them before seeing a doctor, aiding 
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in early management of the disease [55]. A more recent risk prediction calculator has been 

developed to include radiograph and MRI data [56].  

When developing a risk prediction calculator, it is key to have enough data, without the 

chance of fitting to the noise present in the data. For full model testing, there should be 

the training data, used to develop the model, and at least one validation dataset that was 

not used in the development of the model. There are several examples of this within the 

papers mentioned. The first example is the Nottingham model that was developed on 

424 participants from a cohort gathered from a hospital in Nottingham [53]. The first 

validation data used on the developed model was from the OAI, followed by a second 

validation dataset from GOAL. The use of multiple validation datasets helps to clarify 

that the model that is being used is suitable for use on unseen data and does not fit the 

‘quirks’ present in the training data. Another example of multiple data use is the study 

from 2014 [50]. Two versions of the Rotterdam study were used along with the Chingford 

dataset to build test and validate the model. Other data that was used for the risk 

prediction models were the Fifth Korea National Health and Nutrition Examination 

Surveys (KNHANES V-1) [55], different selections of patients present in a hospital [54] 

and varying groups of the OAI dataset [56].  

Developing interpretable models for use in healthcare is vital. It is important that 

decisions are made with clarity and that the processes that go into making decisions about 

a person’s health are easily explainable to the patient and understood by doctors. For a 

long time, logistic regression models have been the models of choice in medical statistics 

for these reasons. Every variable, or individual risk factor, have a weighting that can be 

used to explain that features input into the model making the model one of the easier 

types to use in clinical circumstances. Several of these risk prediction models make use of 

logistic regression [50], [53], [56], one uses the less interpretable, but arguably more 

accurate artificial neural network [55] and one carries out probability analysis on features 

and predictors that are known to be influential in OA modelling [54].  

Risk prediction models, even when used solely for research, have the power to help with 

new insights, and show the type of models that are able to be developed and used for 

helping individuals reduce their risk to a given disease, or at a population level to help 

promote change [53]. Much of the prediction power is to do with the data used in the 

study, and on the external validation datasets, for example, GOAL performed better than 

the OAI cohort on the same model, which may give information as to the way the dataset 
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was collected or the information it contains. Many risk prediction models for OA have 

only made use of easily obtainable information, such as simple biomarkers or data from 

questionnaires along with demographic information. One model showed that these extra 

information points offer little insight into risk prediction over what simple demographics 

alone can provide [50]. The biggest predictor into progression has shown to be minor 

radiographic changes, where interventions are still able to slow progression of the disease. 

The use and availability of risk calculators can help to educate people at risk of developing 

the disease on ways that they can reduce their risk. Providing people with a calculator that 

provides insight into the effect that interventions focused on risk reduction can have on 

their susceptibility to a disease is a powerful tool in both education and successful 

management of the disease [54]. Developing a model that utilises a more complex 

technique in a risk calculator resulted in a performance improvement compared with the 

more simple logistic regression [55]. Adding unnecessary extra terms in a model results 

in a model that is harder to understand, however in some situations adding the extra term 

may reduce error and can therefore be of benefit, especially in a situation where medical 

interventions can be the result [56]. 

1.2. Research Novelty 
Within this thesis, several areas of novelty build upon existing ideas. The novel aspects 

are listed briefly below: 

• Produce a diagnostic model based on all subjects from the OAI dataset who have 

sufficient data as defined in the study, where the presence of KOA is defined as 

a baseline score of KL 2+ at first presentation.  

► At present, the models that exist for determining the presence of OA are 

not specific to the knee and only consider age, joint pain, and joint 

stiffness. This model includes additional features and relates exclusively 

to the knee.  

• Produce a prognostic model on subjects who, at baseline, do not have KOA (KL 

0/1). This follows a longitudinal study for 5 years to identify subjects who develop 

KOA at KL 2+. 

► Currently, the only prognostic models available for KOA are for 

determining time from diagnosis to intervention, such as a knee 

replacement. The model described in this thesis looks at an at-risk 

individual and calculates the risk of disease in the next 5 years.  
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• The thesis includes a cohort based external validation for the risk models for 

diagnosis and prognosis of KOA. In both cases, the models developed in the 

analysis using the OAI data have been externally validated using the MOST 

dataset. 

• Determine the suitability of the OAI and MOST data for multi-task learning with 

the use of the piling approach. 

► Existing MTL approaches consider the use of images in conjunction with 

clinical features, whereas this model solely relies on clinical features and 

data from multiple sources.  

1.3. Thesis Overview 
The work in this thesis details the modelling, both diagnostic and prognostic, applied to 

knee osteoarthritis, with the aim of developing models that can be used in clinical practice. 

The thesis chapters develop from initial modelling to validated models with app interfaces 

for easier use if implemented. The thesis also includes two chapters detailing work that 

build on the initial model but consider these in different ways. One chapter, Chapter 6, 

has the outlook to identify the influence of gender on the presence and development of 

disease. The other, Chapter 7, looks at how the use of a multitask learning approach can 

alter the model performance.  

Chapter 2 outlines the data that is used throughout the analysis described in the thesis. 

The work detailed in the thesis utilises three datasets: Osteoarthritis Initiative (OAI), 

Multicenter Osteoarthritis Study (MOST) and OActive. The OAI and MOST data are 

both longitudinal studies that allow for diagnostic and prognostic modelling to take place. 

The OAI data is the primary dataset used throughout the thesis with the MOST data 

being used later, in Chapter 5, to validate the models. The OActive data only has one 

instance of outcome recorded for each subject, and therefore can only be used for 

diagnostic modelling. Similar to the MOST data, the OActive data modelling and 

validation is detailed in Chapter 5.  

The diagnostic modelling using the OAI data from Chapter 2 is detailed in Chapter 3. 

The diagnostic modelling uses variables considered to be relevant following literature 

reviews of similar analysis [53], [56], [57]. This analysis considers the alternative use of 

different modelling approaches to assess which method has the best predictive 

performance and the most applicability to a clinical setting. In clinical practice 

interpretability and performance are both important for understanding the reasoning 
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behind model decisions being crucial when they have the potential to influence a decision 

regarding patient care. Using a pool of variables, a prediction about if a subject has KOA 

at the baseline visit is calculated and performance assessed using numerical and statistical 

methods.  

The next step following on from diagnostic modelling is prognostic modelling, which is 

detailed in Chapter 4. Once again, this approach is carried out using the OAI dataset. The 

variables used to consider the future development of the disease differ slightly from those 

to detect the disease at the point of medical intervention. The work in this chapter 

considers different follow-up windows to have the most useful clinical impact and highest 

patient satisfaction. The model developed in Chapter 4 can be used to educate patients 

about their risks to developing KOA and can help to provide tips as to how to change 

their behaviour to reduce their risk.  

The next step for this analysis is described in Chapter 5. This incorporates the diagnostic 

and prognostic modelling, and the process of externally validating them with other data, 

namely the MOST and OActive datasets. The externally validated models are then 

developed into web based applications, such as those from the NHS for BMI calculation 

[58], Diabetes UK for finding out the risk of type 2 diabetes [59] and the QRISK3 risk 

calculator to calculate a person’s risk of having a heart attack or stroke in the next ten 

years [60]. The apps would then be available for easy integration with current clinical 

practices. The apps could be used to help with clinical decision making about signposting 

of patients and for patient education about the condition.  

The final two chapters take the original models and build on them with different aims. 

Chapter 6 has the aim of identifying how gender contributed to the risk modelling or 

knee osteoarthritis. We do this in two ways, first by considering each gender separately 

with its own pool of variables, initially with the original variables, and then with variables 

that include gender specific features. In the gender specific analysis variables such 

whether a female has undergone a hysterectomy are included to establish if there is a link 

between the presence or development of KOA and the gender specific features for the 

given sample we have. Finally, Chapter 7 looks at the utilisation of the multitask learning 

piling approach in a preliminary analysis to determine if the inclusion of more data when 

modelling would have any improvement when assessing the performance of the model.   
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Chapter 2:  Data Preparation for 

Analysis  
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2.1. Introduction 
Throughout this thesis, three different datasets are used for the different analysis 

conducted. For the diagnostic modelling the OAI, MOST and OActive datasets are all 

suitable to use as they have data collected at the subjects first presentation. The prognostic 

modelling is only suitable for use with the OAI and MOST datasets because they are 

longitudinal studies, as there are repeat visits in varying frequency, allowing for multiple 

follow-ups.  

Different datasets used in analysis can render different performance, due to the data 

collection process and criteria for involvement in the study. The different datasets each 

contain data that has been collected from different centres. More granular detail relating 

to the OAI, MOST and OActive datasets are presented in the appendix on page 210. 

Having multicentre data to use when modelling, and validating a model helps to improve 

generalisation. This means that caveats due to a specific centres data collection technique 

are less likely to influence the performance of the model used. Different centres help to 

reduce the likelihood of a model overfitting to a single centres data. Here, where all of 

the data used is from different centres, the chance of overfitting is greatly reduced.  

The decision was taken to use the OAI data for both the diagnostic and prognostic 

models. The other datasets are used to validate and assess the performance of the models. 

It is vital for models that are to be used in clinical settings to have undergone validation 

with an external dataset [61].  

2.2. Osteoarthritis Initiative Data 
The data primarily used in this analysis is from the Osteoarthritis Initiative (OAI) [62]. 

The data is available for public access at https://nda.nih.gov/oai/.  

The Osteoarthritis Initiative is a multi-centre study, conducted over a 10-year period in 

America starting in 2004. The OAI dataset consists of 4796 patients at baseline, 

conducting follow-ups at 12-month intervals for 9 years, with follow-ups either in person 

at a clinical visit or via a telephone interview. The dataset is made up of subjects recruited 

based on their likelihood to develop knee OA. At the initial visit, there were a mixture of 

people who already had clinical KOA (KL2+) and those who had not yet been diagnosed. 

A list of inclusion criteria was advertised in various places for people to refer themselves 

to be part of the study, such as targeted mailings, local newspaper advertisements, and 

meetings in the community or local churches [63]. Figure 2-1 shows the advert that was 

used to recruit to the Osteoarthritis Initiative.  

https://nda.nih.gov/oai/
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Figure 2-1: The advert used to recruit people into the OAI Observational study. 

The OAI study protocol aimed to collect data on around 5000 participants, with roughly 

equal numbers of males and females. The ages of those included spans from 45-79. In 

the data collection, all ethnic groups were eligible for inclusion. The OAI study cohort is 

made up of three primary sub-cohorts: Progression, Incidence and Control. The 

progression cohort are defined as suffering from symptomatic OA at the initial 

assessment. The incidence cohort have the characteristics that would place the subject at 

increased risk of developing symptomatic OA during the study period. To be categorised 

as the incidence cohort, depending on age, other criteria need to be met, as shown in 

Figure 2-2. The control cohort will be made of a group that does not meet the 

requirements for the other cohorts. The exclusion criteria for the OAI study includes 

having rheumatoid arthritis, having had or plans in the next three years to have a total 

knee replacement, being unable to undergo MRI scans, a positive pregnancy test or any 

reason for not being able to provide blood samples [63].  
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Figure 2-2: Criteria for inclusion in each sub-cohort, as defined in the OAI Protocol for the Cohort Study. 

In the study, clinical examinations, questionnaires, and telephone interviews were 

conducted at varying intervals and the results were recorded. For the covariates used in 

the diagnostic analysis, only the primary recordings, taken at the baseline assessment, were 

required, but the data for follow-up visits were collected from other time intervals in the 

study period [64]. 

2.2.1. Data Pre-processing  
In this thesis, in order to be included as a participant in either the diagnostic or the 

prognostic study, the subject is required to have a KL outcome recorded in the data; 

otherwise, they are removed from the analysis. The way in which this is defined differs 

for the two approaches and is explained in sections 2.2.2 and 2.2.3 respectively. 

The process to gather the variables is consistent across both sets of analysis. The steps 

are shown in a diagram in Figure 2-3. 
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Figure 2-3: Stages to data pre-processing for the different datasets in the analysis. 

The third step described in Figure 2-3 is Consolidation. This refers to where there is more 

than one variable in the raw data that fits the feature of interest. As the models discussed 

later in this thesis have been developed with the aim of being developed into clinical 

decision support tools, it was important to understand the way questions are worded, 

before any data manipulation could occur.  

As many models used to give advice about symptoms rely on information from the 

subject’s worst presentation of that issue, it was logical to arrange the data with the most 

severe option as the choice when more than one measure is available for a single subject. 

For example, where the questions ask if the subject has ever had an injury to their right 

knee, and then separately to their left knee, this information would be consolidated to a 

new question: have you ever had a knee injury, where the options are either yes or no. 

This would later ensure that the modelling matched the wording of questions presented 

to potential users, ensuring the most optimal subset of data or the modelling was used.  

The OAI datasets provide detailed information on 4,796 subjects, with a large number of 

features considered under specific conditions for similar items and separately for left and 

right sides of the body. In cases where data is available for left and right hand sides of the 

body separately, then the most severe measure is selected and that is the measure for that 

specific feature, stored in a created variable defining the original left and right data.  

The other type of variable creations is where there are several inputs to a created variable 

then the creation of that variable is considered in context with what the variable covers. 

This type is used where a variable may consider different activities individually, like sports 

Source Data

•Based on literature searches, identify the variables of interest for the analysis. 

Extraction

•Using the information about the study, identify the necessary tables that 
contain the variables of interest.

•Extract the variables, from the original data tables and use the subject ID as 
the key for merging tables when required.

Consolidation

•In several cases the variables given are specific to different criteria, such as 
left and right, or specific activity. 

•Use rules to consolidate the features to more specific variables for the 
analysis.
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for example, or where family history is required, and this will make use of data from 

parents and siblings, consolidating it into a single measure. In this circumstance, with the 

question ‘has family member x ever had knee surgery?’  the ‘x’ can be replaced by mother, father, 

sister, or brother. In each case the answer can be ‘yes’, ‘no’ or ‘NA’. The rules to determine 

an answer to the question ‘is there a family history of knee surgery?’ are that if any single 

question is ‘yes’ then the overall is ‘yes’. If all answers are ‘no’, then the overall answer is 

‘no’. If any individual questions are ‘NA’ but others contain the yes’ or ‘no’ options, then 

the ‘NA’ is ignored and the other rules apply. However, if all answers are ‘NA’, then the 

overall answer is ‘NA’.  

As the analysis conducted uses complete case, any ‘NA’ values in the final data, once the 

outcome variables are included, will be removed.  

2.2.2. Diagnosis Cohort 
For the diagnostic modelling, the original cohort had a sample size of 4796. After 

reducing the sample by removing those who have no KL grade, there remains a sample 

of 4507 subject. Finally, removing those subjects who have missing values in any portion 

of the variable sets leaves a usable cohort of 2707 subjects in the complete case analysis, 

as shown in Figure 2-4. 

The data from each subset of variables, clinical and demographic, subjective and physical 

activity questionnaire variables, all underwent the same data pre-processing, and to merge 

the data for the pooled data, used in the analysis mentioned in Chapter 3, the subject ID 

was used. As each individual cohort has varying numbers of subject with KL scores, the 

loss of subjects between 3309 and 2707 is from missing values in the other variable 

subgroups, as not every subject has information relating to each variable of interest.   
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Figure 2-4: A visual representation of how the data required for the analysis was selected, and how it is made up of the data cohorts. 

2.2.3. Survival Cohort  
For the prognostic modelling only subjects with no baseline KOA could be included, as 

it looks to consider the time to change state from no disease to active KOA. Removing 

any subjects that had KOA at the baseline assessment left a sample of 2510 subjects. 

These subjects had no OA, in other words, a KL score of 0 or 1 at baseline.  

When considering time to onset of disease the only subjects that can be considered are 

those with at least one follow-up measurement. Using this to filter, the sample size is 

reduced to 2314 subjects. In order to see the impact of given features on the likelihood 

of developing KOA, a set of covariates are also added to the outcome data. Considering 

basic demographic features for subjects where there are no missing values, the usable 

subject cohort is comprised of 2136 subjects. Figure 2-5 shows the way that the data has 

been pre-processed for the usable cohort suitable for the survival analysis. 

The variables used in the prognostic model pool are the same as those initially considered 

for the diagnostic model cohort. The features selected for use in the model are explained 

in Chapter 4 in the results section. 
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Figure 2-5: A Sankey diagram to visually display the data pre-processing. 

2.3. Multicenter Osteoarthritis Study Data 
The Multicenter Osteoarthritis Study (MOST) is a longitudinal, prospective, 

observational study of knee OA in older Americans with OA, or those who are at 

increased risk of developing it [65]. The data gathered in the study comes from two 

separate clinical centres, one looking at data coordination and one focusing on analysis. 

The MOST dataset enrolled 3,026 study participants and conducted five follow-ups at 

months 15, 30, 60, 72 and 84. At each follow-up x-rays were collected, except at the 

follow-ups for month 72 as these were telephone interviews only.  

The community-based sample of 3026 men and women was made up of subjects aged 

50-79 drawn from the general population. The selections were made in a way so that they 

are likely to either have pre-existing OA or be at high risk of developing OA as indicated 

by weight, knee symptoms or a history of knee injury or surgery to the knee, as shown in 

Figure 2-6.  

To recruit to the MOST study, the two centres involved used a variety of methods. One 

approach used was targeted mass mailing. The centres compiled lists to send mail to who 

fell into the target age group. The lists were made from different sources including voter 

registration and health membership organisation (HMO) membership [66]. Another way 

that was used to recruit was community promotion, where the centres identified groups 

and agencies that had older clientele and targeted advertising to these. The final approach 

used was mass media. This is where the centres worked with local media in the areas to 

inform of the study and request volunteers. 
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Figure 2-6: The advert used to recruit people into the MOST study. 

2.3.1. Data Pre-processing  
Depending on the analysis, the outcome measure will change and the way the cohorts are 

created will change. The pre-processing of the data is consistent with the approach 

illustrated in Figure 2-3. In the way that the OAI data was consolidated, the same 

approach was used with the MOST data.  

2.3.2. Diagnosis Cohort 
The diagnostic cohort requires subjects to have an initial KL outcome, and complete case 

information for the variables present in the model. Of the original 3,026 subjects 2,006 

subjects have complete case information.  

Of the variables used in the diagnostic model, the variable describing knee swelling is not 

present in the OActive dataset. To get around this, for the data to validate the OAI 

models, the predictions need to be marginalised.  

To marginalise over the data, the first step is to filter the subjects through the 

combinations of binary variables in the model. Then, the OAI training data predictions 

are averaged for each variable combination that was filtered. The corresponding averaged 

prediction is then assigned to each subject that has matching covariates. Due to not all 
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combinations in the MOST data being represented in the OAI training data, after 

marginalisation the remaining MOST sample with predictions is 831 subjects.  

2.3.3. Survival Cohort  
Following the same process for the OAI data, all subjects with KOA at baseline were 

removed from the sample. Then ensuring that there was the baseline assessment measure 

and at least one additional follow up with a KL grade outcome resulted in a sample of 

1190 subjects. It can be seen in Figure 2-7 that the number of events in the whole cohort 

is 404, where there is a large (786) number of censored cases.  

The variables used in the prognostic model are different from those in the diagnostic 

model, but are consistent with the variables used from the OAI data to develop the model. 

This is further explained in Chapter 5. However, as the aim is a complete case study, then 

after removing missing values in the covariates there would be less than 100 subjects to 

test the model. To ensure that there is a sensible amount of data to validate the model, 

the OAI training data was used to calculate the mode value, which was then used to 

impute for the ‘NA’ values. The decision to use the OAI data for the imputation helps to 

prevent and limit any potential data leakage, specifically as the model was built with the 

OAI data. Imputation was only required for three variables; family history and history of 

falling imputation both assign ‘no’ to missing values and WOMAC score imputation fills 

‘NA’ values with a score of 8.  Imputation of these features happens only because the 

columns for those variables are missing. The imputation is only required as the MOST 

data is solely for the purpose of model validation, built using the OAI data. 

Once the imputation for ‘NA’ values was carried out, the resultant seven-year and five-

year cohorts contain 1,178 and 1,155 subjects respectively. 
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Figure 2-7: Kaplan-Meier curve for the whole population, with a table detailing, at yearly intervals, the cumulative number of events and 

censoring. 

2.4. OActive Data 
The final dataset used throughout this thesis is from the OActive project [1]. The OActive 

study is a multi-centre study, conducted in several centres in Europe. The data has been 

collected from three centres, in Greece, Cyprus and Spain. The centre in Spain focused 

on looking at healthy subjects who were at an increased risk of developing KOA, with 

the aim of trying to recruit over 100 subjects. The Greek centre focused solely on the 

evaluation of athletes who had suffered some level of trauma to the knee, aiming to recruit 

in excess of 90 subjects. This population was mainly younger than the age typically 

associated with the development of KOA. The final centre in Cyprus focused on elderly 

people with developing KOA, the population that is typically thought of when referring 

to KOA sufferers. This centre had the goal to recruit at least 130 subjects.  

Figure 2-8 details the individual centres contribution to the way OActive is developed. 

The aim was to have a sample of at least 300 subjects recruited to OActive, however after 

removing missing values the usable dataset contained 206 subjects, split as shown in 

Figure 2-8. The majority of the OActive sample is comprised of elderly subjects, all of 

whom have KOA. The healthy at risk population are predominantly in the no KOA 

category (n = 71 from Spain, total n = 76), with only 5 subjects from that centre and 
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population type having KOA. The final centre, from Greece, only contributes 2 cases to 

this dataset, with 1 having the disease and the other not. The difference between the 

recruitment number and the usable sample number is due to the criteria for inclusion in 

the analysis, mainly age at least 45 and a given KL grade, and data completeness, with the 

removal of individuals with missing values.  

 

Figure 2-8: A graphic to shoe how the OActive dataset is made up. The OActive dataset is made up of 357 subjects recruited based on 
them meeting inclusion criteria defined by each centre.  The centres in Greece, Spain and Cyprus recruited 112, 115 and 130 subjects 
respectively. The usable cohort sizes from Greece, Spain and Cyprus are 2, 76 and 128 subject respectively once the inclusion criteria is 

applied.  

The data contains tables with information relating to biochemical and biomechanical 

measures, demographics, pain scales, social participation, and self-reported clinical 

measurements. The information contained in the dataset has the potential to give insights 

as to how osteoarthritis affects people, both in their everyday lives and biologically. The 

insight into how the disease effects people overall and not just clinically could better 

enable clinicians to treat people with a more holistic approach, instead of the typical 

pharmacological way that has been used as standard in OA treatment [67].  

2.4.1. Data Pre-processing  
The demographic information from the people in the study include healthy subjects who 

are at a high risk of developing osteoarthritis and elderly subjects who are likely to already 

have the disease. After following the steps illustrated in Figure 2-9, the usable cohort is 

206 subjects. 

The sole purpose of the OActive data in this thesis is to validate the diagnostic model 

within the parameters of the original OAI data. For this reason, only subjects aged 45 

years and over are included within the validation data set. In addition, this helps to validate 
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any model developed using the OActive data as the other two datasets, OAI and MOST, 

exclusively look at those aged 45 and over, and 50 and over respectively.  

 

 

Figure 2-9: Diagram to show how the pre-processing of the OActive data is carried out. 

2.4.2. Diagnosis Cohort 
The diagnostic cohort requires subjects to have an initial KL outcome, and complete case 

information for the variables present in the model. Of the original 357 subjects, 206 

subjects have complete case information.  

Of the variables used in the diagnostic model developed with the OAI data, there are 

three variables not present in the OActive dataset. To get around this, for the data to 

validate the OAI models, the predictions need to be marginalised in the same way as for 

the MOST diagnostic cohort.  
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To marginalise over the data the first step is to filter the subjects through the 40 

combinations of binary variables in the model. Then, the OAI training data predictions 

are averaged for each variable combination that was filtered. The corresponding averaged 

prediction is assigned to each subject that has matching covariates. After marginalisation, 

the remaining OActive sample with predictions has 206 subjects.  

2.5. Limitations with the Data 
Data from the real world often has missing values. There are many approaches to dealing 

with missing values, each having its own merits and disadvantages. There are two primary 

ways of dealing with missing values – deletion or imputation [68]. Commonly used 

approaches include imputation with forward and backward filling, multiple imputation, 

and complete case analysis. Another approach is to use analytical methods that can deal 

with missing values [69].  

Missing data causes issues when modelling, such as making handling the data and analysis 

difficult, reducing efficiency in models and introducing bias [70]. In any method of dealing 

with missing values there is bias introduced into the data, so the type of imputation used 

in any given analysis may be chosen for what works best for the given dataset [71].  

Imputation uses the available data to fill in missing values. Although this is a commonly 

used approach, forward and backward filling are known to increase bias and potentially 

lead to false conclusions as data will artificially have repeated measures, and are not often 

recommended. Mean substitution replaces missing values with the mean of that variable, 

without altering the sample mean for the variable. However, mean imputation reduces 

the correlations involving the variables that are imputed. This approach has some good 

points for univariate analysis but poses problems if considering this approach within 

multivariate analysis [72].  

Multiple imputation, most commonly multiple imputation by chained equations (MICE), 

is designed for missing at random data but can be extended to cases where data are 

missing not at random [73]. However, MICE can encounter problems in data with a large 

amount of observations and complex features like nonlinearities and high dimensionality. 

It also poses the additional problem of being difficult to implement, where single 

imputation and complete case analysis are easier to implement [71]. In any imputation 

method there is the potential for data leakage, which can impact the way the data performs 

in models and can impact the accuracy of predictions. 
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The final approach for dealing with missing values is complete case analysis [74]. This is 

the most common way of dealing with missing values. Complete case analysis works by 

removing cases where there are missing values present; as a result, this approach reduces 

the sample size. One disadvantage of this approach is that if the data are not missing 

completely at random then removing instances with missing data will introduce bias [75]. 

Within this thesis, two main solutions to the problem of missing data are used: complete 

case analysis and, on a much smaller scale, mean imputation. By choosing to use a 

predominantly complete cases analysis, there is a systematic reduction in the type of bias 

added into the initial models, with the complete case data forming the basis of all 

modelling. As several of the modelling approaches employ this approach when missing 

data is present in the modelling set, there has been no real impact on the data that would 

be used, despite a large reduction in the size of the dataset.  

The cases where mean imputation was used is solely for the validation work. This is due 

to an inconsistency with the available variables in the dataset to those already present in 

the model. This allows the use of two datasets that would not have otherwise been 

compatible for model validation with the OAI model. The validation is further discussed 

in Chapter 5.  

2.6. Variable Selection 
The diagnostic modelling uses variables considered to be relevant following literature 

reviews of similar analysis [56], [57], [76] . We know from the literature that features such 

as gender, genetic disposition, BMI and history of injury are all factors that contribute to 

the onset of KOA [77]. The variables used to consider the future development of the 

disease differ slightly from those to detect the disease at the point of medical intervention. 

Seventeen variables fitting clinical and demographic features were identified using the 

extracted OAI data. The variables include the age, gender, and BMI of the individual, 

along with information of family history, previous injuries, and diagnoses of osteoarthritis 

in other joints and general arthritis in the body. Several variables in the OAI data are self-

reported. The self-reported data is made up from subject’s answers to questionnaires 

relating to their symptoms and how they are impacted, recorded at the first presentation 

meeting, along with data made up of answers on questions about how much they take 

exercise and how this impacts them. An initial analysis looking at only the clinical and 

demographic work was conducted, and the subsequently presented at IDEAL 2019, 

showing the idea for the diagnostic model [78]. 
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The justification for the inclusion of features in both the diagnostic and prognostic model 

revolve around a known risk to KOA. The risk of KOA increases as age increases, similar 

to BMI, both of which are present in the diagnostic model, and only BMI used in the 

prognostic model. Gender was another feature with a clear link, such that females are 

more at risk of KOA than males of the same profile, resulting in this variable being used 

in both models. Stiffness and swelling are known symptoms that can indicate the presence 

of KOA, resulting in these features being used in the diagnostic model. Mobility was 

considered in the diagnostic model in the form of difficulty getting upstairs and knee pain 

that limited activity in the prior 30 days. A reduction in mobility is an indication of 

increased risk of KOA. Family history of OA was included in the prognostic model as 

the potential to indicate a genetic link for future development of KOA. It was important 

to consider injury when considering future risk of KOA resulting in the variables for ‘ever 

injured knee’ and ‘history of falling’ as the former indicates a known risk whilst the latter 

may suggest a higher likelihood for injury, increasing the risk for developing KOA in the 

future. Finally, WOMAC was used in the prognostic model as it provides the self-

perceived view of the condition from the subject’s perspective, proving an indicator into 

how they feel at that time which may influence how that individual behaves in the future. 

For example, a high WOMAC score indicates a poor self-perceived view of the condition, 

possibly providing insight into how the person feels in areas of their life not covered by 

the other features.    

2.7. Split-Sample Modelling 
When modelling and assessing performance the goal is to determine the model 

performance in the general population. However, due to the nature of studies and data 

there is only a sample. To measure the performance of a model there needs to be separate 

training and test sets to assess if the performance is consistent for both. There are several 

approaches that allow for this comparison: bootstrap, leave-one-out and split-sample 

validation. 

As with all options, there are positive and negative points that contribute to the choice of 

a method to implement.  

Bootstrapping is a method in which a proportion of the data is held for testing while the 

data size is maintained though random duplication of samples. The training set is then 
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used to develop the model and the hold out set is used to test the model performance. 

This process is repeated with different test subsets a number of times. An illustration of 

this approach is shown in Figure 2-10. This produces a wide variety of performance 

values. This is useful as it can be used for calculating confidence intervals and standard 

errors. However, there are drawbacks to bootstrapping. One such negative is that the 

approach is not good for calculating the expected value as the predictions can often be 

inconsistent. The results may also depend heavily on the sample used to model. There 

also may be issues relating to sample size when splitting the samples when trying to ensure 

that the training sample is of a sufficient size prior to random duplications. Another 

problem is due to the duplicates present in the sample, leading the model to produce bias 

predictions [79]. Finally, bootstrapping is a computationally expensive method that 

obscures the explainability of the other approaches when applying context to the feature 

contributions to the outcomes produced by the model.  

 

Figure 2-10: An example of bootstrapping. There are five observations in the first set with two subsequent sets created using the sample 
size equivalent to the original; however, in the other two sets there are repeated observations. 

Leave-one-out is an example of an exhaustive cross-validation approach. This approach 

works by removing one sample for the test set and using the remaining samples to train 

the model. This is then repeated for each instance in the data, resulting in each data being 

the test set exactly once, shown in Figure 2-11. This approach, similar to bootstrapping, 

is useful when calculating the confidence interval and the standard error [79]. One of the 

key drawbacks is that, depending on sample size, the process may be computationally 

expensive and may still contain bias due to the modelling samples.  
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Figure 2-11: A visual representation of the leave-one-out approach to model validation. The block in pink shows the hold out set, whilst 

the blue samples are those used to train the model. This system allows each sample to be the test set exactly once.  

The final approach of validation that was considered was split sample. In split sample 

validation the dataset is split into test and train subset, where the train set is used to 

develop the model and the test set is used to assess model performance. An example of 

the data split is shown in Figure 2-12. This approach has the advantage of using a single 

model, which is vital when building a model for explainability as this can be used to show 

and explain what factors are relevant to the outcome. This approach is also advantageous 

as the data size for modelling is large and for testing will likely produce a representative 

outcome due to the large sample [79]. As the data size is not small, a resampling approach 

is not necessary here. However, the key drawback is that by chance the test set split may 

not represent the general population, therefore producing bias results.  

 

Figure 2-12: This is a visualisation of how the data is arranged when using the split sample approach for model validation.  

The work in this thesis uses the split-sample approach to model validation. This is due to 

the way in which decisions can be explained, as one of the key themes throughout the 

work in this thesis in interpretability. This split sample approach also allows for the 

assessment of the generalisability of the model whilst also avoiding overfitting the data to 

the model.  
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2.8. Discussion  
The models developed in Chapter 3 and chapter 4 are done with the OAI dataset. This 

was the publicly available data that could be acquired at the start of the project. The 

models built with the OAI data are validated using the OActive and MOST datasets. 

These are detailed in Chapter 5.  

The data are primarily used in a complete case format, with some imputation by 

marginalisation used for the validation datasets. The analysis conducted in this thesis in 

Chapters 3, 4, 6 and 7 rely on complete case data to build the models, with the work in 

Chapter 5 making use of complete case for modelling and imputation by marginalisation 

over the available variables for the validation dataset. This approach was chosen, as the 

algorithms were the point of interest, interpreting the data given to provide results. Each 

imputation method adds bias, but the complete case analysis is easy to implement and 

straightforward, giving reason why it is the most popular method when dealing with 

missing values, despite its disadvantages.  
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Chapter 3:  Diagnostic Model for 

Propensity of Presenting with 

clinical KOA at baseline assessment  
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3.1. Introduction 
This chapter describes the first step in the process of identifying disease in ‘at-risk’ 

subjects. This analysis focuses on predicting the presence of KOA at a baseline visit to a 

clinician without prior knowledge of whether the subject has KOA. 

In clinical settings where patient education and behaviour modification are at the 

forefront, interpretable models are key, as it is vital to be able to explain a decision that 

leads to any course of action related to an individual subject. This chapter will look at 

several approaches to interpretable models applied to the Osteoarthritis Initiative data, 

and compare the performance of the models.  

The aim of the work is to produce a tool that can identify presence of the disease from 

risk factors given an outcome, in this case the radiographic KL score, without the need 

for an initial x-ray. By using baseline values, the goal is to identify if it is possible to 

diagnose on first presentation without the need for anything more than questionnaire 

results, reducing the cost on the clinical practice and the anxiety of exploratory medical 

interventions for the subject. The aim is that this tool will be used as an aid to assist 

clinicians in the initial decision-making process for signposting patients to the correct 

services to best streamline their treatment in the most efficient way. This tool, however, 

would require further validation before it could be used within NHS clinical practice. The 

data for modelling is from the US, which fundamentally has a different demographic to 

that of the UK. Verifying the model is suitable for use in the UK is vital for the successful 

implementation of a model to clinical practice.  

The use of machine learning (ML) models by application domain experts requires a 

method to interpret the operation and inference made by these complex methods, in a 

language that people can understand. It is critical for successful translation and to ensure 

safety of real-world applications, that mathematical algorithms are capable of being 

integrated into human reasoning models. 

Clinical models need to be explainable, interpretable and easy to understand [80]. It is a 

crucial part of developing a model for clinical practice to ensure that there is a high level 

of understanding and interpretability within the model [81]. As with many areas, there is 

often an example that is the exception to the rule, but in healthcare there is the need for 

decisions about treatment to be transparent and explainable. In safety-critical applications 

such as clinical medicine, the combination of machine explanation and generalisation test 

comprise the steps of verification and validation that are central in software development 
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methodology. This framework is integral to regulatory frameworks which apply equally 

to the use of AI in decision making [31]. Crucially, the provision of interpretation for AI 

is now arguably a central pillar for the “right to explanation” written into the General 

Data Protection Regulations (GDPR) [82].  

Predictive modelling currently exists for different diseases. Risk prediction models are key 

for educating the public about their risk relating to developing a certain illness or disease. 

Many models exist for diseases that can cause great pain and suffering to those afflicted, 

such as cardiovascular diseases and cancers [83], [84]. Predictive models are even used to 

tackle the problem of operating room delays, administering of antibiotics to new-borns 

and for treatment plans following hip or knee replacement surgery [85]. Even though 

osteoarthritis is not a life threatening disease, it does cause life altering disability, pain and 

suffering to those with the disease [13]. Risk prediction models, in a medical application, 

have the ability to use information relating to a disease to calculate a person’s chance of 

developing a disease over a given time period. Developing such a model for osteoarthritis 

would be key to helping reduce the impact this disease has, and therefore the costs 

associated with it [14]. 

At present, the only risk prediction models that exist for osteoarthritis are research based 

and used to demonstrate that such models can be developed for this disease. Many of the 

risk prediction models that have been developed so far make use of the well-known risk 

factors that are linked with the disease. A lot of these models are then also useful for 

looking at the effect of modifying the risk factors to estimate the risk reduction [76]. Some 

investigation have been able to make use of varying datasets to develop a prognostic 

model for knee OA [50]. A key factor in any risk prediction calculator is that it is easy to 

use and understand, while retaining accuracy in the model [54]. The power of other risk 

prediction models is that they can be easily used by both clinicians and patients. Having 

a calculator that can be easily used by the patient gives them the power to make small 

changes at a point far earlier than a doctors consultation, as people are increasingly likely 

to research their own symptoms and try to improve them before seeing a doctor, aiding 

in early management of the disease [55]. A more recent risk prediction calculator has been 

developed to include radiograph and MRI data [56].  

Developing interpretable models for use in healthcare is vital. It is important that 

decisions are made with clarity and that the processes that go into making decisions about 

a person’s health are easily explainable to the patient and understood by doctors. For a 
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long time, logistic regression models have been the models of choice in medical statistics 

for these reasons. Every variable, or individual risk factor, has a weighting that can be 

used to explain that features input into the model making the model one of the easier 

types to use in clinical circumstances. Several of these risk prediction models make use of 

logistic regression [50], [53], [56], one uses the less interpretable, but arguably more 

accurate, artificial neural network [55] and one carries out probability analysis on features 

and predictors that are known to be influential in OA modelling [54]. 

Machine learning methods may be interpretable by design, typically in the form of rules 

in induction trees such as Chi-squared Automatic Interaction Detection (CHAID) and 

Classification and Regression Trees (CART) [29]. Alternatively, rules can be derived from 

neural network models such as Orthogonal Search Rule Extraction (OSRE) [30], which 

uses the statistical properties of regularisation of non-linear statistical methods to smooth 

decision boundaries and so reduce the effect that noise in the data has on the extracted 

rules. In contrast, more parameterized and sometimes less interpretable models require 

model calibration in order to be used effectively. However, the importance of calibration 

of probabilistic models [31] often favours the use of logistic regression (LogR) and its 

non-linear extension, feedforward neural networks and typically the Multi-Layer 

Perceptron (MLP). The partial response network (PRN) is a method that has the 

performance benefits of the MLP with the interpretability of a linear model, such as 

logistic regression.  

When identifying the work that has been done so far in the area of KOA it is apparent 

that a lot of research has gone into trying to classify plain radiographs into the different 

KL stages [35], and trying to determine if automated systems, such as neural networks, 

have a place in medical diagnosis [40], [41]. One of the papers even looks at trying to 

show that complex models can be made more interpretable for use in the medical domain 

[42]. The majority of the papers mentioned here look at the end result – a patient with 

symptomatic knee OA, and only then the attributes that could have become risk factors 

for trying to determine propensity to the disease, and possibly slow the progression. OA 

is a key research topic as the cost to the UK as a result of OA is growing year on year, 

and that trend can only be assumed to continue in the future as more and more people 

are living longer, and are at a higher risk of developing OA [14].  

The aim of the study in this chapter is to ultimately produce a tool that can indicate the 

likelihood of the presence of the disease from risk factors given an outcome, in this case 
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the radiographic KL score, without the need for an initial x-ray at the point of first 

presentation to a GP. The clinical relevance of this tool is to inform the screening process. 

This is explored in detail in Chapter 5. 

There are three research questions with particular clinical relevance: i) initial diagnosis of 

OA at first presentation; ii) risk of developing OA among the cohort initially diagnosed 

as disease free; iii) characterizing progression through different stages among the 

population diagnosed with OA. This analysis is focused on the first of these.  

The focus of this chapter is to model clinical OA at first clinical presentation, which could 

lead to the development of a model that could be part of a screening process. The model 

identifies modifiable factors that influence disease onset, which enables feedback to be 

provided to subjects at risk in order to change their behaviour to help prevent or delay 

onset of OA.  

This analysis in this chapter compares and contrasts the different approaches with the 

primary focus on accuracy of discrimination and explanation of model inferences. It also 

looks at taking features from a subject to develop an interpretable diagnostic model. This 

model could then potentially have clinical uses.  

Chapter aims 

• Determine the most interpretable modelling technique for predicting the 
presence of KOA at baseline.  

• Develop a model that could be used to classify KOA without an x-ray, for use as 
a screening measure.  

3.2. Specifics of the data and variable cohort 
development  

The data used in this analysis is from the Osteoarthritis Initiative (OAI) [62]. The full 

explanation of the data is in Chapter 2. A visual representation of how the variables were 

grouped for the analysis is shown in Figure 2-3. 

Seventeen variables fitting clinical and demographic features were identified using the 

extracted OAI data following a literature search. The variables include the age, gender, 

and BMI of the individual, along with information of family history, previous injuries, 

and diagnoses of osteoarthritis in other joints and general arthritis in the body. This is 
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further discussed in section 2.2.2. The features gathered after consulting the literature 

form the initial pool of variables used in the analysis. An initial analysis looking at only 

the clinical and demographic model was conducted, and the work presented at IDEAL 

2019 [78].  

Following the modelling on the individual data cohorts the inclusion of more than one 

variable subset is beneficial. This exploratory analysis suggested that the use of a wider 

variety of information gave a better determination for the presence of clinical KOA in a 

subject when compared with individual variable sets that only focus on specific criteria. 

Several variables in the OAI data are self-reported. The self-reported data is made up 

from subject’s answers to questionnaires relating to their symptoms and how they are 

impacted, recorded at the first presentation meeting. Similar to the clinical data, many of 

the variables needed to be compressed in order to be suitable for analysis. 

In a similar approach to the Self-Reported dataset, the Self-Reported Physical Activity 

data is made up of answers on questions about how much they take exercise and how this 

impacts them. This set of data on its own appears to be the most modifiable in terms of 

lifestyle changes that a person can make.  

In this analysis, the pooled data formulation has been created using all three variable sets. 

This data consists of clinical, self-reported and self-reported physical activity measures 

that need to be consolidated. 

The chosen approach is to combine the datasets with the Subject ID and utilise a feature 

selector on the, now larger, dataset. The selected variables would then be used in the 

machine learning models. Then, after running the models with the selected variables, 

measures to assess the performance would be calculated and compared with the 

individual variable sets to see if the inclusion of different variables contributed to a better 

performing model.  

This approach takes all of the variables in the data to be included in a pool and, through 

feature selection, determines which variables will add the most information to the model 

at a given step. The stepwise inclusion of the three variable sets enables the model 

performance to be monitored in terms of how the addition of new data affects the global 

model when compared to the baseline of the clinical and demographic data only.  
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Figure 3-1 shows how the OAI data, considering only subjects with a KL outcome, are 

split into variable cohorts of interest and the final variables included in the dataset applied 

to the modelling approaches detailed in section 3.3.  

To determine which variables would be selected from each of the subsets, a voting 

technique was used. The process of voting used the stepwise feature selection along with 

CART and CHAID to determine which features were to be included in the variable 

subset. If a given variable was selected at least twice over the different approaches, it 

could be included in the variable subset cohort. In CART and CHAID a variable is chosen 

when it features in the final tree when that given tree was built using all of the possible 

variables available within the data.  

 

Figure 3-1: A visual representation of how the data required for the analysis was selected, and how it is made up of the data cohorts. 
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Of the 11 variables present in the final dataset supplied to the models, less are ultimately 

selected in each model through a process of internal feature selection. However, there is 

a cross-over in the variables determined as important according to each model when 

identifying the presence of KOA at baseline, based on these initial features.  

3.3. Methods used 
The methods used in the analysis performed here are machine-learning methods. Machine 

learning is an approach that can provide the ability to automatically learn and progress 

without being programmed explicitly. The type of machine learning used in these analyses 

are supervised machine learning. This is where there are previously labelled data that can 

train a model to make predictions given a set of predefined variables. 

Throughout this analysis, four main approaches are used, and are detailed in the sections 

3.3.1 - 3.3.5, with the performance metrics used in this analysis discussed in section 3.3.6. 

3.3.1. Classification and Regression Trees  
In this thesis, the Classification and Regression Trees (CART) were calculated using the 

R package, rpart [86].  

CART is a rule induction approach that determines univariate cut points [87]. This 

machine learning approach can be classification or regression-based. In this decision-

making, the classification approach is the most suitable option for the data, as the 

categories are clinical OA and non-clinical OA. In clinical situations, this can be used to 

develop a set of questions that can aid clinicians in a decision making process before 

invasive investigative tests are undertaken.  

When trying to choose a machine learning approach to use a number of things are taken 

into consideration at each step. Many of the decisions are made regarding how easy the 

models are to use and understand. CART analysis has the advantage of being very 

interpretable and easy to understand. This is, in part, due to being able to represent the 

results in different form, such as graphically or with the tree diagram itself. Conditions to 

class membership are clearly explained meaning that the explanation about how the 

decisions are made are easily demonstrated, removing the ‘black box’ nature of machine 

learning. Another reason this approach is a favourite is due to the way the decisions made 

closely mirror those made by humans. 

For this work, the focus was on classification of KOA status. Trees used for classification 

use binary splits, calculated using the Gini index, Equation 3-1 [88]. The Gini index 
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calculates the likelihood of a specific feature that is classified incorrectly when selected 

randomly. The value of this index is between 0 and 1, with 0 meaning there is purity of 

classification, with all elements deemed to be identical, or a value of 1, where there is a 

random distribution of elements across various classes, where the number of classes 

approach infinity. A Gini index of 0.5 means that there is an equal distribution of elements 

of some classes present.  

When designing the tree, features possessing the least value of Gini would be preferred 

by the model. These features with lower Gini Index values are used for constructing the 

decision tree. The Gini index works in this instance as an in-built feature selector in the 

model. The index is a measure of total variance across the 𝐾classes. The Gini index is 

defined by: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = ∑ ∑ �̂�𝑚𝑘(1 − �̂�𝑚𝑘)

𝐾

𝑘=1

𝑀

𝑚=1

 

Equation 3-1: Formula for the Gini Index used then building CART models for classification. 

Where �̂�𝑚𝑘 denotes the proportion of training observations in the 𝑚th region that are 

from the 𝑘th class.  

The value of the Gini index is small if the values of �̂�𝑚𝑘 are all close to either zero or 

one. For this reason, the Gini index is referred to as a measure of node purity where a 

small value indicates that a node contains predominantly observations from a single class. 

The algorithm for growing a decision tree is an example of recursive partitioning. Each 

node is grown using the same rule set as its parent node and the data in the parent node 

is partitioned into its child node. The recursive process stops when conditions for bin 

size and complexity are reached.  

3.3.2. Logistic Regression  
In machine learning, logistic regression (LogR) is a type of parametric classification 

model. This means that LogR models are models that have a certain fixed number of 

parameters that depend on the number of input features, which output a prediction, 

which can be categorised by selecting a threshold value as a cut-off for binary 

classification.  

In LogR the data is fit to an ‘s’ shaped curve, called a Sigmoid function, Equation 3-3. 

This function takes a minimum value of 0 and a maximum of 1, which helps when the 
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goal is to classify samples in two distinct categories. By calculating the sigmoid function 

of the data, a probability of an observation belonging to one of the categories is produced.  

Let Pr(𝑦 = 1|𝑋) = 𝑝(𝑋), 𝑋𝜖ℝ, 𝑝(𝑋)𝜖[0,1], 

logit: log (
𝑝(𝑥)

1 − 𝑝(𝑥)
) = 𝛽𝑥 

Equation 3-2: Logit function, as the log odds ratio, of the chance an event occurs over the event not occurring. 

Where 𝛽 is the expected change in log odds of having the outcome per unit 

change in 𝑥, and 

  𝑥 is the value of the independent variable. 

Sigmoid function: 𝑝(𝑥) =
1

1 + 𝑒−𝛽𝑥
 

Equation 3-3: The sigmoid function used in logistic regression. 

This is the most commonly used statistical model in medical decision support [89]. 

Although it is linear-in-the-parameters, careful discretisation of continuous variables 

creates a piecewise linear model with the capability to model highly non-linear data, which 

are typical in clinical medicine. As a result, logistic regression models are often very 

competitive in discrimination accuracy compared with neural networks and other 

machine learning methods, except when interactions between variables have a significant 

role in decision-making, in which case rule induction may be preferred. 

Logistic regression is a preferred method as it can also be translated into nomograms 

for easy clinical use and interpretation [90]. The use of a nomogram can turn otherwise 

complex mathematical models into easy to understand graphics that can show the real 

implications of changing behaviours to those seeking advice. For example, nomograms 

could be of particular use in educating a subject seeking medical advice how best to 

change their lifestyle in order to prevent developing OA or slow down their risk of 

progression. Equation 3-4 illustrates an expression where for binary covariates {𝑥𝑖} the 

exponentials show explicitly the size of the effect of the variable on the odds-ratio. 

P(class|X)

1 − P(class|X)
= ∏ eβ

i
xi

n

i=0

= eβ
1
x1 . eβ

2
x2 … . eβ

n
xn . eβ

0
x0  

Equation 3-4: Logistic regression odds ratio formula 

Where   𝑛 is the number of independent variables. 
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3.3.3. Lasso 
Lasso (least absolute shrinkage and selection operator) is a shrinkage method used in 

statistics and machine learning to perform both variable selection and regularisation to 

aid in prediction accuracy and model interpretability. The shrinkage relates to the ability 

to discard variables that are not as useful in the model. This approach is preferred over 

subset selection as they are more continuous and therefore have lower variability. When 

used in conjunction with the partial response network (PRN), the lasso is used for variable 

selection [91].  

Lasso uses 𝐿1 penalisation, as in Equation 3-5. This means that by adding a penalty equal 

to the absolute sum of the coefficients the method will shrink some parameters to zero, 

so some variables will not play any role in the model. Using Lasso in this way is one 

approach to select features in a model. The penalty performs a continuous variable 

selection process in the model. 

�̂�
𝑙𝑎𝑠𝑠𝑜

=
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
{∑ (𝑦

𝑖
− 𝛽

0
− ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑|𝛽
𝑗
|

𝑝

𝑗=1

} 

Equation 3-5: L1 penalisation term 

Where   𝑛 is the number of observations, and  

  𝑝 is the number of variables in the data. 

The 𝜆 term is the hyper parameter hat adjusts the penalty term. When 𝜆 = 0, no 

parameters are eliminated, and as 𝜆 increases more coefficients are set to zero and are 

eliminated. Lasso forces less important features to have a 𝛽 value equal to zero, removing 

the feature from the analysis.  

3.3.4. Multilayer Perceptron Automatic Relevance 

Determination (MLP-ARD) 
A multilayer perceptron (MLP) is a type of artificial feed-forward neural network [92]. 

The MLP is made up of at least three layers: an input layer, a hidden layer, and an output 

layer. The output layer in this case is a binary classifier.  

For the MLP-ARD configuration, a standard MLP is used in the first instance [93]. The 

automatic relevance determination (ARD) is useful when it is important to know what 

variables are contributing the most to the classification [94]. The ARD is to determine 
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the most relevant features in the data. The theory behind this is Occam’s razor, which is 

a principle that states a preference for simple theories [95].  

In machine learning a model that can leverage the same amount of information but 

containing fewer terms than a competing model will be preferred as there is a preference 

for a simpler model. If a model is too complex, it will fit well to the training data, fitting 

also to the noise and as a result will perform poorly on unseen test data.  

𝑃(ℋ1|𝐷)

𝑃(ℋ2|𝐷)
=

𝑃(ℋ1)

𝑃(ℋ2)

𝑃(𝐷|ℋ1)

𝑃(𝐷|ℋ2)
 

Equation 3-6: The ratio between theory 1 and theory 2. The ratio is how much the initial belief favour theory 1 over theory 2 and how 

well the given data were predicted by each theory when compared. 

One common problem with neural networks is that they can tend to overfit to the data 

they are trained on. This can be partly rectified by using Bayesian approaches, as it can 

use Occam’s razor to automatically infer how flexible a model should be given the data 

[96]. Therefore using this, for a network trained on data 𝐷 = {𝑋(𝑚), 𝑡(𝑡)} by adjusting 

the weights, 𝑤, to minimise the error function,  

𝐸𝐷(𝑤) =
1

2
∑ ∑ (𝑡𝑖

(𝑚)
− 𝑦𝑖(𝑋(𝑚); 𝑊))

2

𝑖𝑚

 

Equation 3-7: Error function between the true and predicted values calculated in the network. 

Where 𝑡𝑖 is the true value, 𝑦𝑖 is the predicted outcome based on the inputs, 𝑋(𝑚), and the 

weights in the network, 𝑊.  

The term in Equation 3-7 is based on repeated evaluation of the gradient 𝐸𝐷 using 

backpropagation. When using weight decay the objective function is modified to give 

Equation 3-8.  

𝑀(𝑤) = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 

Equation 3-8: Modified objective function, accounting for the errors caused by the data and the weights, in a linear form. 

Where 𝐸𝐷 is the error caused by the data, and 𝐸𝑊 =
1

2
∑ 𝑊𝑖

2
𝑖 , favours small values of 𝑊, 

and decreases the tendency of the model to overfit to noise in the training data. 

For the ARD approach to work, a separate hyper parameter 𝛼𝑖 is assigned to each group 

of weights spanning from the 𝑖𝑡ℎ input variable. The hyperparameter is re-estimated 

through each iteration of the tuning process. At the end of the training stage any 
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hyperparameters with large values indicate that an input has little impact on the final 

model meaning that their weights will decay to values near to zero [97]. This highlights 

what features can be dropped from the final model.  

3.3.5. Partial Response Network 
The partial response network, PRN, is a method to open the black box approach of the 

MLP [91]. The end product results in non-linear univariate and bivariate partial responses 

from the MLP. When the performance of the PRN is compared with a fully connected 

MLP, there is usually performance improvements because of the PRN implementation. 

The bivariate responses come from modelling pairwise interactions in the network. 

Interactions are modelled up to pairwise, and all others are categorised under the residual 

modelled in the network. The PRN implementation mimics models of deep learning but 

offers the advantage of being highly interpretable, in a similar way to a LogR model. The 

functional form of the PRN is given in Equation 3-9. 

Equation 3-9: Functional form of the PRN given by the statistical decomposition of the multivariate effects into components with fewer 

variables. 

logit(𝑃(𝐶|𝑥)) ≡ 𝜑(0) + ∑ 𝜑𝑖(𝑥𝑖)
𝑖

+ ∑ 𝜑𝑖𝑗(𝑥𝑖, 𝑥𝑗)
𝑖≠𝑗

+ ∑ 𝜑𝑖1,…,𝑖𝑑
(𝑥𝑖1

, … , 𝑥𝑖𝑑
)

𝑖1≠⋯≠𝑖𝑑

 

Where 𝐶 is the class member ship label, 𝐶 is the target, 𝑥 is the input, and the partial 

responses 𝜑𝑘(∙) are evaluated with all variables held fixed at zero except for one or two 

indexed as: 

1. 𝜑(0) = logit(𝑃(𝐶|0)) 

2. 𝜑𝑖(𝑥𝑖) = logit (𝑃(𝐶|(0, … , 𝑥𝑖, … ,0))) − 𝜑(0) 

3. 𝜑𝑖𝑗(𝑥𝑖, 𝑥𝑗) = logit (𝑃 (𝐶|(0, … , 𝑥𝑖 , … , 𝑥𝑗 , … ,0))) − 𝜑𝑖(𝑥𝑖) −  𝜑𝑗(𝑥𝑗) − 𝜑(0) 

The way in which the PRN works can be explained in six steps, shown in Figure 3-2. 
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Figure 3-2: The six steps used to develop the partial response network. 

 

3.3.6. Performance Metrics 
For binary classification models a probability of belonging to a given class is calculated. 

In order to determine which class an individual belongs to, a threshold is needed. The 

threshold is usually determined by the prevalence in the population. As the population in 

these datasets who suffer from KOA is between 45 and 60%, the classification threshold 

in these models are set to 0.5. Therefore, a prediction less than or equal to 0.5 will result 

in a decision of no KOA, a negative instance, and a prediction greater than 0.5 would 

result in a decision of KOA, a positive instance. 

The receiver operating characteristic curve (ROC curve) is a plot that graphically indicates 

the ability of a model to correctly classify binary outcomes as a threshold is altered. The 

area under the curve (AUC) is equal to the probability that a classifier will rank a random 

positive instance higher than a randomly chosen negative one [98]. In the AUC a value 

of 0.5 indicates a guess, with greater than this being deemed better than a guess, and lower 

than 0.5 being worse than a guess.  

Sensitivity (Equation 3-10), specificity (Equation 3-11) and positive predictive value 

(PPV) (Equation 3-12) are all statistical measures of the performance of binary 

classification tests. The sensitivity measures the proportion of actual positives that are 

correctly identified. The specificity measures the proportion of actual negatives correctly 

identified.  

At present, in the UK diagnosis of KOA typically follows an examination by a GP in 

conjunction with a consultation about symptoms to determine if the individual does have 

KOA, which is the gold-standard. There are no definitive tests for OA and x-rays are not 

always necessary, but tend to be used more when other conditions need to be ruled out, 

or for staging the progression of the disease, following an initial diagnosis. From the data 
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we have, as the subjects were part of studies related to KOA, there is no GP diagnosis, 

only a diagnosis that has been determined from examining the x-rays to establish what 

KL grade the subject has in their knee. As there are no definitive tests there can be cases 

where a diagnosis is missed, someone with the disease is told they do not have it, or 

someone without KOA advised they are a sufferer. 

Sensitivity is the true positive rate; it is an indicator of how likely a model is to correctly 

identify a patient with a disease. If a model has high sensitivity it can help to rule out a 

disease where a person is not indicated to have the disease. Specificity is another measure 

assessing the way a model performs, this time indicating the true negative rate. This is a 

way determine how effectively a model can correctly identify people without a disease. 

Models with high specificity can be used to rule in disease in a person who is indicated to 

have said disease, potentially prompting further investigation. Positive predictive value, 

(PPV), is the odds of having the disease if you have a positive result. This measure is 

useful to both the patient and clinician as it can be used in conjunction with sensitivity to 

indicate how likely a positive result is actually true.  

Equation 3-10: Sensitivity formula 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Equation 3-11: Specificity formula 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Equation 3-12: Positive predictive value formula 

Positive Predictive Value =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where:  

- TP is true positive result, 

- TN is true negative result, 

- FP is a false positive result, and  

- FN is a false negative result. 

3.4. Results from Analysis 
The variability in the model performance is, in part, due to the variables present in each 

of the models. As the models differ in complexity and variables present the model 
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performance will differ. One hypothesis is that there is a maximum possible predictive 

accuracy for any data set. This means that the preferred model is the simplest model that 

can perform at a comparable level to any other model, however complex, given the AUC. 

The results are summarised in Table 3-1. 

CART has a PPV of 0.641 meaning that of the people who test positive for KOA only 

64% will actually have the disease. The CART model will only correctly identify 60% of 

KOA sufferers. LogR has a higher sensitivity; this model would correctly identify 67.4% 

cases of KOA, and of those testing positive 61.3% will actually have the disease. The 

MLP-ARD has the lowest PPV, with only 56.7% of all positive cases actually having 

KOA. The PRN-Lasso has a PPV of 0.599 meaning that 59.9% of positive cases relate 

to a true positive result.  

CART correctly identifies 77.6% of people without disease. LogR is next best at 

identifying people without disease, correctly identifying 71.6% of non-disease. The MLP-

ARD is the worst at identifying non-disease with a specificity of 67.6%. The PRN-Lasso 

will correctly identify non-disease in 69.7% of cases. 

Table 3-1: A table of performance metrics for the different models used in the analysis, giving the area under the curve (AUC), sensitivity, 

specificity, and positive predictive value (PPV). 

 AUC Sensitivity Specificity PPV 

CART 0.719 0.600 0.776 0.641 

LogR 0.763 0.674 0.716 0.613 

MLP-ARD 0.778 0.677 0.676 0.576 

PRN-Lasso 0.793 0.698 0.697 0.599 

 

3.4.1. CART Results 
The tree diagram in Figure 3-3 show the splitting criteria in a highly interpretable way that 

could be transformed into a question set for clinicians to use as a signposting tool. In the 

diagram, the middle number is the prevalence of people in that group that have knee 

osteoarthritis by following the conditions to arrive at that node. The bottom number is 

the percentage of the population that is covered by the node criteria.  
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Figure 3-3: Tree diagram showing the stages in the process to determining the likelihood of the presence of KOA based on a set of 

questions. 

3.4.2. LogR Results 
The nomogram depicted in Figure 3-4 related to the performance of the LogR model. 

The LogR model is a baseline indicator as it is used in clinical practise, as this is the 

preferred method for binary classification for a variety of healthcare problems. The LogR 

model produces an interpretable nomogram that gives every value a point score that 
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relates to the probability of having the disease in question, in this instance, the disease is 

KOA. The nomogram also indicates a possible confidence interval where the symptom 

scores could fall, giving another reason that this type of approach is preferred in the 

medical arena. The results from the LogR analysis indicate that the data is well suited to 

this type of modelling approach. 

The point score in the nomogram is used to assign a value between 0 and 100 to each 

predictor. To calculate the points the first step is to rank the predictors in order of the 

biggest to smallest impact on the model. The variable with the highest effect is then 

converted to 100 points, with the variables minimum state assigned 0 points. The 

remaining variables are then assigned a points value proportional to the size of the effect 

on the outcome [99]. This allows each state to be given a point score that maps to the 

odds of having KOA given a certain symptom set.   

A nomogram ranks the importance of an effect in predicting the outcome only within the 

context of the other covariates in the model. It is important to also remember that the 

points do not reflect the association with the outcome but visually display the weight of 

the features considered when making a decision.   

 

Figure 3-4: A nomogram produced from the LogR model indicating the odds of having knee osteoarthritis based on a set of features at 

different values. 

3.4.3. MLP-ARD and PRN-Lasso Results 
The calibration plots, shown in Figure 3-5, show how the model fit is near the pattern 

present in the data. This shows that at each step of the model, the model is adequately 

trained to perform predictions within the applicability domain. The models are well 
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calibrated as the points are all close to the diagonal line. The PRN-Lasso is the best-

calibrated model. 

 

Figure 3-5: Calibration plots for the MLP-ARD (A) and the PRN-Lasso (B), showing how well the models are calibrated to the data. 

3.1.2.1. Features after PRN-Lasso 
After the initial MLP-ARD, the lasso model selects the most important features in the 

data. For this dataset, the main features are five univariate and six bivariate effects. The 

features still important after the PRN-lasso are the ones that are in the final model. In the 

final model, there are four univariate effects. These are: age, BMI, baseline symptoms 

(presenting with pain) and knee swelling. The effects can be shown in Figure 3-6. 

As age increases, the more the effect age has on the logit, so the contribution to the 

outcome, the presence of KOA, increases. The contribution to the logit is nearly linear 

until about the age of 70 where a similar pattern can be shown with the BMI and its 

effects to the presence of KOA. As the BMI increases, the contribution to the logit also 

A 

B 
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increases in a nearly linear pattern. The presence of pain symptoms at the investigation 

will increase the contribution to the logit. The subject experiencing knee swelling will 

increase the contribution to the logit as this symptom would indicate the presence of knee 

osteoarthritis. Both of these statements are in line with what is presented in the literature. 

The  AUC measure shows how well the models predicted the binary categories. These 

are shown in Table  The models vary in complexity, with the most complex model being 

the MLP-ARD, and the most simplistic model is in fact the PRN-Lasso, as it only uses 

four of the eleven input variables, which are age, BMI, baseline symptoms (presenting 

with pain) and knee swelling.  

The dependence of covariates explicitly is estimated using partial responses that are not 

constrained in any way. The result is that the functions are almost linear across the full 

range, as shown in Figure 3-6. This explains why LogR works so well. Namely, the 

assumption of linear dependence on covariates is met.  

A 

 

B 
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D 

 

Figure 3-6: Partial response graphs for the variables in the final model as generated by the PRN. Graph A depicts age, B is BMI, C is 
presence of pain at initial investigation and D is knee swelling. 

3.5. Discussion  
The point of this chapter was to develop a diagnostic model that could be used as a tool 

to aid clinicians, and to determine the most appropriate model, through performance and 

interpretability, for classifying the KOA presence at baseline.  

When developing a tool that will assist clinicians in performing diagnostics, it is important 

to compare to and establish the gold standard. When considering the ‘gold standard’ for 

diagnostic assessment of knee osteoarthritis radiography is widely accepted [100]. Whilst 

this under the form of x-ray and MRI are commonly used to diagnose KOA [101], the 

challenge with these methods is early recognition of the disease [102]. This is, in part, due 

to the cost of radiography and therefore individual practices trying to reduce costs by not 

sending large numbers of people for screening x-rays if they are not symptomatic. That 
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is where this model has the potential to be useful. It can help in primary care setting when 

an individual may not meet the standard symptoms of KOA and help signpost them to 

further diagnostic investigations, such as x-ray or MRI.  

This broad range of commonly used models from conventional statistics and probabilistic 

ML shows broadly consistent performance in binary classification for diagnosis of Knee 

OA. They exploit the predictive power of a small set of covariates in each model, which 

are therefore the concluding set of predictive factors for diagnosis at first presentation. 

From Table 3-1 CART analysis seems to be the worst performing model, but only slightly. 

However, the drop in performance can be traded off for simplicity and ease of 

interpretation that the model provides. The performance is important, but where 

decisions impact people it is imperative that results can be explained, and the CART 

model offers a high level of interpretability. 

It remains to address the issue of model explanation. The rule sets are transparent by 

design. While the rules provide a filter for assigning patients to diagnostic categories, they 

do not provide a clear indication of the weight that each covariate has for the diagnostic 

inference made by the model for each individual patient.  

This is provided only by logistic regression and can be conveniently expressed in the form 

of a nomogram, making the model easy to use and to interpret by clinicians. One such 

example in Figure 3-4 is generated using the LogR model. Moreover, the explicit 

weighting of covariates also provides a tool to ‘diagnose the model’, by correlating these 

weights against prior clinical expertise about the expected influence of each co-variate on 

the diagnostic outcome.  

The most complex approach, MLP-ARD, does outperform the LogR model but is not 

interpretable or easily transferrable to a way that can be converted into simple rules that 

can be applied in clinical practice. The PRN-Lasso model was the most calibrated model 

but arguably not the most interpretable. The PRN-Lasso approach considers both 

univariate and bivariate features. The final PRN-Lasso model contained only four 

univariate features, but gained only a 3% performance improvement when considering 

the AUC when compared to the LogR model. Although this is a performance 

improvement, the LogR model is still the more interpretable model and is preferred 

method within clinical practice as the model can be displayed as a nomogram.  
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The small improvement from the slightly more complex approach provided by the PRN-

Lasso would take more expertise in understanding the mechanics of the model than the 

LogR approach. The traditional method for modelling disease, LogR, has been the model 

of choice for many years as it replicates the human way of thinking. Each of the variables 

can be represented as switches that are either on or off, or contribute on a sliding scale 

to the overall outcome. This is useful for when trying to predict a disease outcome as 

these decisions are never black and white, but more often than not when based solely on 

symptoms come with a scale of how much the covariates contribute to the overall 

outcome. The nomogram for LogR is a useful way to transfer the model from a statistical 

and ML algorithm to a useable set of rules that can be followed in clinical practice.  
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Chapter 4:  Survival Modelling  
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4.1. Introduction 
The previous chapter describes a model that uses a selection of demographic and self-

reported features with the aim of diagnosing KOA at the point of initial presentation. 

The model identifies which features are indicative of the presence of KOA. A useful next 

step is modelling the KOA free survival. This is defined as time from a disease free state 

at recruitment, to progression to clinical KOA. This instance of time to event analysis 

requires the key features of a start time, the point of recruitment, an end time, follow up 

for five years, and the event, the presence of KOA. 

There are five stages of KOA according to the Kellgren-Lawrence (KL) scale [3]. These 

are differentiated between with the use of x-rays to determine the severity of the OA. 

Stage 0 is classed as no OA and Stage 4 is severe OA present in the joint. A clinician 

usually analyses and classifies images for diagnosis. By using both humans and machines 

there is the potential for more reliable diagnoses [4]. Stage 1 is the point at which disease 

changes are likely to begin but go unnoticed as they do not typically cause symptoms to 

the sufferer. Stage 2 is usually the point of diagnosis as this is where symptoms usually 

start to bother the subject. The advice often given at this stage of the disease is aimed at 

preventing progression. If behaviours can be modified prior to the onset of symptoms 

due to early interventions, then the burden of OA is likely to be reduced. 

The progression through the disease stages does not follow a linear pattern. Loss of 

cartilage is a primary factor in OA development. There are three main ways that loss of 

cartilage can occur: slow and progressive taking decades, rapid deterioration over 12-24 

months or periods of time that are fluctuating between stunted and rapid progression 

[103].   

With progression a key point of interest, survival modelling is the approach used to look 

at this. Survival analysis approaches can be used to make inferences about time to onset 

of a disease [104].  Survival analysis also has many other uses where time-to-event is 

measured, such as mechanical failure and average employee turnover [105]. It is also 

known as failure-time analysis [106]. 

The two primary methods to analyse survival curves are the Kaplan-Meier method and 

Cox proportional hazards regression [107], [108]. These methods contribute importantly 

to medical statistics, often used to define the prognostic features for disease onset or 

development [109]. These approaches have been used in many medical applications such 
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as oncology for decision support [110]. Kaplan-Meier is an observational approach that 

can only be applied to existing data, whereas Cox regression models can be applied to 

prospective data to generate predictions.  

In the medical arena, survival analysis is important and versatile as it offers the chance to 

analyse any number of event outcomes, such as recovery, time to clinical intervention, 

disease onset or death. It is also applied to a wide variety of diseases. The approach is 

intended to make a decision, usually about therapy, at the point of recruitment. This 

allows a glimpse forward to inform decision made at the point of recruitment. Here, for 

example, a possible decision could be to either prescribe possible disease modifying 

medication, or give advice based on a projected outcome for disease progression. 

Cancer is a particular disease that is modelled frequently with survival methods [111]. The 

power of using approaches related to survival is that the results can suggest one treatment 

type, or set of initial conditions that lend itself to an outcome that is more likely than 

another given a set of initial conditions. For example, a study in Japan spanning 28 years 

using 173,378 patients with hepatocellular carcinoma suggests that the five-year overall 

survival rate for someone diagnosed between 2001-2005  is 58.4% following resections, 

whereas following ablation survival is 47.6% for the same window [112]. 

Other uses of survival analysis include looking at time to failure of kidney grafts [113] and 

analysing the failure rate of dental implants in the first year in diabetes patients [114].  

When looking at the area of knee osteoarthritis, survival modelling has predominately 

focused on progression from an arthritic state to joint replacement. One example of this 

is looking at the Importance of cartilage defects in older adults in relation to progression 

to knee replacement [115]. A similar study investigated the incorporation of radiographs 

when predicting the likelihood of total knee replacement within 9 years and the final 

Kellgren-Lawrence grade [116]. 

Some studies focus on the likelihood of developing KOA following certain treatment 

courses. For example, one such study looked at the risk of requiring knee replacement 

surgery following treatment with intra-articular corticosteroid injections [117]. A similar 

study found that the use of intra-articular corticosteroid injection increases the risk of 

KOA progression [118].  

An approach using an increase in joint space narrowing as an outcome in survival 

modelling has also been investigated in subjects with known symptomatic OA [119]. This 
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study found that once radiographic changes were visible then the risk of progression in 

OA was significant. 

There has even been a study looking at the relationship between depressive symptoms 

and OA. This analysis found that in people with depressive symptoms their risk of 

developing OA increased [120]. In a similar way to the depression study, there has been 

a study looking at the perceived quality of life in different populations relating to OA, 

those with higher prevalence of pain medication and those who have previously 

undergone knee replacement [121]. This study found that those with knee OA and those 

taking pharmaceutical interventions suffer with a lower perceived health related quality 

of life.  

There is currently a gap looking at covariates in a population with no KOA, and how 

these covariates influence the risk of onset. This work looks at the same variable set used 

in the diagnostic model to determine whether they can also be useful in predicting the 

risk of progression from a disease free state to one with clinical KOA.  

Survival modelling has huge potential in relation to KOA. The survival analysis model, if 

used in clinical settings, would help to be a tool useful for patient education by clearly 

showing time to progression before behaviour modification, along with giving timelines 

for clinicians for development of estimated treatment plans to help optimise disease 

management.  

Chapter aims 

• Investigate both the 7-year and 5-year survival using Kaplan-Meier curves and 

Cox regression on the useable cohort from the OAI data. 

• Determine which features are significant in the development of KOA. 

• Establish what features contribute to an increased risk of developing KOA and 

which are attributed to a lower risk of developing KOA. 

4.2. Specifics of the data 
The data used in this analysis is from the Osteoarthritis Initiative (OAI) [62]. The full 

explanation of the data is in Chapter 2.  

As mentioned previously, certain variables have been categorised and although they lose 

some information, this approach can provide more use in a patient facing setting. For the 

survival modelling specifically BMI was categorised into three groups: BMI below 25, 
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BMI 25-29.9 and BMI 30+. When looking at how best to categorise the BMI variable 

different approaches were considered.  

The ideal BMI is in the range 18.5 to 24.9, with anything above or below this likely to 

have health implications [122].  For this dataset, there were very few cases of people with 

a BMI less than 18.5 (𝑛 = 7). The NHS define the BMI groups as: 

Below 18.5   – Underweight,  

Between 18.5 – 24.9   – Healthy weight range 

Between 25 – 29.9   – Overweight range 

Between 30 – 39.9   – Obese range 

Above 40     – Clinically Obese 

The main question was to consider if two categories, such as those used in the diagnostic 

modelling, would be most beneficial or if incorporating a third category would offer 

additional insight.  

After the analysis looking at two and three BMI splits, the survival analysis modelling will 

have BMI in 3 categories: BMI less than 25, Overweight (25-29.9) and obese (30+). The 

p-value on the three groups is 𝑝 < 0.0001, the Kaplan-Meier curve can be shown in 

Figure 4-1. When considering a p-value of 0.05 to be statistically significant anything that 

meets this or is smaller is also significant. The p-value is the probability of rejecting the 

null hypothesis, given that the null hypothesis is true. In this instance, the null hypothesis 

is that there is no difference between the BMI groups. As the p-value is less than 0.0001 

the null hypothesis is unlikely, therefore the difference is statistically significant.  

Even though both BMI 25/25+ and BMI 30/30+ are statistically significant, the 3 group 

BMI split offers the chance to be more informative, therefore offering more insight into 

the cohort. An additional benefit from having BMI in one of three categories is that the 

subject can see the impact of simply reducing their BMI from one category to another.  
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Figure 4-1: Unadjusted Kaplan-Meier with the BMI separated in the bins of below 25, between 25 & 30 and 30 & above. The 

separation of these groups is significant with a p-value smaller than 0.0001. 

4.3. Cohort Definition 
For survival analysis, the cohort of subjects needs to be defined.  

The usable cohort meeting the criteria for survival analysis is comprised of 2136 subjects. 

The cohort of data has low prevalence of cases developing to KL2+. There are 117 

subjects that go on to develop KOA during the follow up window, and there are 2019 

subjects who did not develop KOA in the follow-up period, shown in Figure 4-3. Figure 

4-3 shows the two bar charts overlapped, to illustrate the extreme difference in cases vs 

censored data. These subjects are right censored. This is where the subject either does 

not develop the disease in the follow up period, or at some point the subject is lost to 

follow up, but at the time of the last clinical visit had not yet developed the disease. The 

sample is made up of 94.5% censored data. Figure 4-2 shows the way that the data has 

been pre-processed for the usable cohort suitable for the survival analysis. 
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Figure 4-2: A Sankey diagram to visually display the data pre-processing. 

Figure 4-3 shows how cases are split, between event (developed to OA, outcome 2) and 

censorship (subjects who are either lost to follow up or do not develop OA by the end 

of  the study window, outcome 1).  Because of the low prevalence of cases in the data, 

along with the increased variability in covariates as time passed increases, different 

cohorts are considered.  

 

Figure 4-3: Bar plot showing the days since recruitment to event - either OA recorded or censorship. 

The rationale for selecting the given cohorts will be detailed in section 4.3.1. 
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4.3.1. Cohort Selection 

 

Figure 4-4: Kaplan-Meier curve for the whole population, with a table detailing, at yearly intervals, the cumulative number of events and 
censoring. 

It can be seen in Figure 4-4 that the number of events in the whole cohort is 297, where 

there is a very large (1839) number of censored cases. The vertical lines on the KM curve 

shows how the cohorts are divided for analysis in this analysis.  The following analysis 

considers the seven and five-year cohorts. The three-year cohort is not considered as the 

window from initial to follow up does not have a high amount of follow up. For the three 

year analysis to be more suitable for investigation, the subjects would have required follow 

up visits at 3 or 6 month intervals to ensure a more complete sample to model with. 

4.3.2.1. Seven-year cohort 
The seven-year cohort is made up of 2,095 subjects, shown in Figure 4-5. There are 255 

instances where a subject goes on to develop OA in the follow up window, and 1,840 

where the subject was censored. The total cohort differs by 41 subjects as they develop 

KOA after the 7-year cut off point. 
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Figure 4-5: A Sankey diagram to highlight the number of subjects excluded from the 7-year analysis, showing how the data pre-processing 
occurred and highlighting the final usable cohort of 2,095 people. 

The histogram in Figure 4-3 shows the split in cases between OA and Non-OA. This is 

a visual representation of the way the events occur in the timeframe of interest. For 

example, most events of both types occur around the four-year mark.  

The seven-year cohort is split into train/test splits. The justification for this is given in 

Chapter 2, section 2.7. The training set consists of 1047 subjects and the test sample has 

1048 subjects. Table 4-1 describes how the data is split into the training and test splits.  

Table 4-1: Description of the way that the training and test samples are made up. 

 Total Data Size Censored Disease development 

Training Set 1047 908 139 

Test Set 1048 932 116 

 

4.3.2.2. Five-year cohort 
The five-year cohort is made up of 2,005 subjects, shown in Figure 4-6. There are 166 

instances where a subject goes on to develop OA in the follow up window, and 1,839 

where the subject was censored.  

The rationale for selecting the five-year cohort will be detailed in section 4.5.2. 

The five-year cohort is split into train/test splits. The training set is made up of 1002 

samples and the test sample has 1003 subjects. Table 4-2 describes how the data is split 

in the training and test splits.  
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Figure 4-6: A Sankey diagram to highlight the number of subjects excluded from the 5-year analysis, showing how the data pre-
processing occurred and highlighting the final usable cohort of 2005 people. 

Table 4-2: Description of the way that the training and test samples are made up. 

 Total Data Size Censored Disease development 

Training Set 1002 913 89 

Test Set 1003 926 77 

 

4.4.    Methods 
4.4.1. Survival and Hazard Functions 
Two related functions are used to describe survival data: the survival probability and the 

hazard function [106].  

The survival probability, often referred to as the survivor function 𝑆(𝑡), is the probability 

that an individual survives from the time origin to a specified future time 𝑡.  

The hazard function, denoted by ℎ(𝑡), is the instantaneous rate of occurrence for an 

individual who experiences the event.  

4.4.2. Kaplan-Meier  
Kaplan-Meier (KM) is an empirical survival function that describes a patient’s survival 

over time [108]. The KM estimator is a non-parametric statistic that allows us to estimate 

the survival function [123]. This non-parametric approach is not based on the assumption 

that there is an underlying probability distribution. This is useful as survival data often 

has a skewed distribution. The Kaplan-Meier formula is shown in Equation 4-1. 

The KM statistic gives the probability that an individual patient will survive beyond a 

particular time 𝑡 [124]. At 𝑡 = 0, the KM estimator is 1 and with 𝑡 going to infinity, the 
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estimator goes to 0. In theory, with infinitely large data, and 𝑡 measured to the second, 

the function of 𝑡 versus the survival probability is smooth.  

It is further based on the theory that the likelihood of surviving past a certain time point 

𝑡 is equal to the product of the observed survival rates until time point 𝑡. More precisely, 

𝑆(𝑡), the survival probability at time 𝑡 is given by 

𝑆(𝑡) = 𝑝1 × 𝑝2 × … × 𝑝𝑡 

Equation 4-1: The survival probability formula for Kaplan-Meier calculations. 

With  𝑝1 ~ the proportion of all patients surviving past the first time, 

 𝑝2 ~ the proportion of patients surviving past the second time point 

 … ~ this is the proportion of surviving patients until the time point 𝑡 is reached.  

It is important to note that starting at 𝑝2 up to 𝑝𝑡 the only patients that are considered 

are those that survived past the previous time point when calculating the proportions for 

each next time point; therefore 𝑝2, 𝑝3, … , 𝑝𝑡 are all proportions that are conditional on 

the previous proportions.  

This can also be calculated by: 

𝑆(𝑡𝑖) = 𝑆(𝑡𝑖−1) (1 −
𝑑𝑖

𝑛𝑖
) 

Equation 4-2: The estimated probability formula of being at risk of disease at time 𝑡𝑖−1. 

Where  𝑆(𝑡𝑖−1) ~ the probability of being at risk at 𝑡𝑖−1,  

 𝑛𝑖  ~ the number of patients at risk just before 𝑡𝑖,  

 𝑑𝑖 ~ the number of events at time 𝑡𝑖, 

 𝑡0 = 0,     𝑆(0) = 1 

And, 
𝑑𝑖

𝑛𝑖
 is the hazard, the risk of the event of interest. 

The estimated probability 𝑆(𝑡) is a step function that changes value only at the time of 

each event, Equation 4-2.  It is also possible to compute confidence intervals for the 

survival probability. 
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The KM survival curve, a plot of the KM survival probability against time, provides a 

useful summary of the data that can be used to estimate measures such as median survival 

time [106].  

4.4.3. Cox Regression 
The purpose of the Cox model is to simultaneously evaluate the effect of several factors 

on survival [107]. It allows us to study how specified factors impact the rate of a particular 

event happening at a particular point in time. This rate is commonly referred to as the 

hazard rate. Predictor variables are referred to as covariates.  

The Cox model is expressed by the hazard function denoted by ℎ(𝑡) [125], shown in 

Equation 4-3. The hazard function can be interpreted as the risk of dying, or in this case, 

contracting KOA, at time 𝑡. It can be estimated as: 

ℎ(𝑥1, 𝑥2, … , 𝑥𝑝, 𝑡) = ℎ0(𝑡) × 𝑒𝑥𝑝(𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ +  𝑏𝑝𝑥𝑝) 

Equation 4-3: The hazard function for contracting KOA at time t. 

Where  𝑡 ~ survival time 

ℎ(𝑡) ~ the hazard function determined by a set of 𝑝 covariates (𝑥1, 𝑥2, … , 𝑥𝑝). 

The 𝑡 shows that the hazard may vary over time.  

 (𝑏1, 𝑏2, … , 𝑏𝑝) ~ coefficients that measure the impact of the covariates 

ℎ0 ~ baseline hazard. It corresponds to the value of the hazard if all the 𝑥𝑖 are 

equal to zero (𝑒0 = 1). 

The hazard function, Equation 4-3, factorises the hazards by separating the time 

dependency from the covariate dependency. The baseline hazard,ℎ0, is calculated using a 

reference population, where all risks are at the baseline state. The hazard for everyone 

else is then modelled as proportional to the baseline hazard.  

The Cox model can be written as a multiple linear regression of the logarithm of the 

hazard on the variables 𝑥𝑖 , with the baseline hazard being an ‘intercept’ term that varies 

with time [126]. The quantities 𝑒𝑥𝑝(𝑏𝑖) are called hazard ratios (HR). A value of  𝑏𝑖 

greater than zero, or equivalently a hazard ratio greater than one, indicates that as the 

value of the 𝑖th covariate increases, the event hazard increases and thus the length of 

survival decreases [127]. A hazard ratio above one indicates a covariate that is positively 
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associated with the event probability and therefore negatively associated with length of 

survival.  

Another function that is useful in the context of survival analysis is the hazard function 

ℎ(𝑡). It describes the spontaneous rate of occurrence of the event, ℎ, if the subject 

survived up to that particular time point, 𝑡 [128]. It is slightly more difficult to illustrate 

than the KM estimator because it measures the instantaneous risk of the event. 

Nevertheless, you need the hazard function to consider covariates when you compare 

survival of patient groups. Covariates, also called explanatory or independent variables in 

regression analysis, are variables that are possibly predictive of an outcome or that you 

may want to adjust for to account for interactions between variables [129].  

Whereas the log-rank test compares two KM survival curves, which might be derived 

from splitting a patient population into treatment subgroups, Cox proportional hazards 

models are derived from the underlying baseline hazard functions of the patient 

populations in question and an arbitrary number of dichotomized covariates [129]. Again, 

it does not assume an underlying probability distribution but it assumes that the hazards 

of the patient groups you compare are constant over time. That is why it is called 

‘proportional hazards model’ [130].  

The Cox proportional-hazards model is essentially a regression model commonly used 

statistical in medical research for investigating the association between the survival time 

of patients and one or more predictor variables [125]. Kaplan-Meier curves and log-rank 

tests are useful only when the predictor variable is categorical. They do not work easily 

for quantitative predictors such as gene expression, weight, or age.  

An alternative for the KM approach is the Cox proportional Hazards regression analysis 

[123]. This works for both quantitative and categorical predictor variables. Also, the Cox 

regression model extends survival analysis methods to assess simultaneously the effect of 

several risk factors on survival time.  

4.4.4. Akaike Information Criterion 
The Akaike Information Criteria (AIC) is a predictor of the relative quality of a model for 

a given dataset [131]. AIC is a concept that is founded on information theory, and is used 

in model development. In this thesis, the AIC is used in the stepwise feature selection to 

help construct the model. The formula is shown in Equation 4-4. 
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𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿) 

Equation 4-4: The Akaike Information Criterion formula. 

Where  𝑘 is the number of degrees of freedom used,  

 𝐿 is the partial likelihood 

𝐿 =  ∏ {
exp(𝛽′𝑥𝑖)

∑ exp(𝛽′𝑥𝑙)𝑙∈𝑅(𝑥𝑖)
}

𝛿𝑖
𝑛

𝑖=1

 

Where 𝑅(𝑡𝑖) is the risk set at time 𝑡𝑖, 

 𝑛 is the observed survival times from time 𝑡1, 𝑡2, … , 𝑡𝑛, 

 𝛿𝑖 is the event indicator, this will be zero when 𝑡𝑖 is censored,  

𝑥𝑖 is the vector of covariates for the individual whose events occurs at the 𝑖𝑡ℎ 

ordered time 𝑡𝑖,   

The summation is the sum of the values of the 𝑒𝑥𝑝(𝛽′𝑥)over all individuals 

who are at risk at time 𝑡𝑖. 

4.4.5. Stepwise Feature Selection  
Stepwise feature selection uses the AIC as a measure to determine which terms combine 

to form a model with a better fit to the data. A lower score can indicate a more frugal 

model, with fewer features, when compared to one with a higher AIC value. By using the 

AIC to remove terms deemed to not be beneficial to the model, only features that add 

value to the model are used. This helps to limit the number of features in the model. The 

stepwise approach uses a step-by-step iterative approach to construct a regression model. 

The act of stepwise regression will either add or remove potential explanatory variables 

in succession and testing for statistical significance after each iteration of the feature 

selection.  

As with any approach, stepwise feature selection has advantages and disadvantages that 

need to be considered before use in modelling. One advantage in using stepwise is that it 

improves the models ability to generalise. This happens as stepwise inherently reduces 

the number of predictors in the model, therefore improving the out-of-sample accuracy. 

The stepwise feature selection also offers the advantage of a simple model with easy 

interpretation due to the reduced number of variables. By utilising an automatic algorithm 
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when selecting variables helps to eliminate bias that can be present when relying solely 

on expert opinion. In the case presented in this thesis a combination of expert based 

selection followed by stepwise has been used to select variables for the final models. This 

step adds a layer of objectivity in selection of the features that are to be included within 

the models. However, as with any method there are limitations. One such limitation is 

that stepwise feature selection, both forward and backward, does not consider all 

potential combinations of predictors. This in itself can have a computational advantage 

when there are a large number of possible combinations to test but it does mean that 

there is no guarantee that the final combination of variables is in fact the best combination 

possible. Another disadvantage is that using stepwise feature selection can produce an 

unstable selection of variables. One way to counter this is to reduce the original variable 

pool through expert input or surveying existing literature. As this step was taken in this 

thesis, the variable selection is stable. 

Forward stepwise feature selection initially starts with no variables in the model and works 

by adding each new variable incrementally and at each point the AIC is calculated. This 

value is then compared with the previous model and if the AIC is lower, another variable 

is added and the process is then repeated until the AIC no longer decreases.  

The process works similarly for backward stepwise feature selection, only the model uses 

AIC calculates and removes a variable, then recalculated the AIC and compares the two. 

This is repeated whilst the AIC value is decreasing. Backward stepwise starts with a full 

model and removes features one at a time to test its importance, determining if the 

removed variables are statistically significance.  

4.4.6. Test for Proportional Hazards Assumptions - 

Schoenfeld Residuals 
There is a consistent downside to other residuals such as Cox-Snell and the Martingale 

residual. This is that they rely heavily on observed survival time and therefore require an 

estimate of the cumulative hazard function. The Schoenfeld residual developed in 1982 

overcomes these [132].  

This residual produces a value for each explanatory variable in the fitted Cox model. The 

Schoenfeld residual is described in Equation 4-5 and Equation 4-6. 

The 𝑖𝑡ℎ Schoenfeld for 𝑋𝑗 the 𝑗𝑡ℎ explanatory variable in the model is given by  
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𝑟𝑝𝑗𝑖 = 𝛿𝑖{𝑥𝑗𝑖 −  �̂�𝑗𝑖} 

Equation 4-5: The Schoenfeld Residual equation 

Where 𝑥𝑗𝑖 is the 𝑗𝑡ℎ variable 𝑗 = 1, 2, … , 𝑝 for the 𝑖𝑡ℎ individual in the study.  

�̂�𝑗𝑖 =
∑ 𝑥𝑗𝑖𝑖𝜖ℝ(𝑡𝑖) 𝑒𝑥𝑝(𝛽′̂𝑥𝑖)

∑ 𝑒𝑥𝑝 𝛽′̂𝑥𝑖𝑖𝜖ℝ(𝑡𝑖)

 

Equation 4-6: Schoenfeld residuals formula to test if the proportional hazards are independent of time. 

Where ℝ(𝑡𝑖) is the set of all individuals at risk at time 𝑡𝑖,  𝛽
′̂𝑥𝑖 =  𝛽1

′̂𝑥1𝑖 + 𝛽2
′̂𝑥𝑖2 +

⋯ + 𝛽𝑝
′̂𝑥𝑝𝑖 is the value of the fitted component, linear predictor, of the model for that 

individual.  

Hazards are said to be proportional if the ratios of hazards are independent of time. If 

one or more of the variables are time dependant or vary over time, then the assumption 

of proportional hazards is violated.  

4.4.7. Stratification of Risk Groups 
In order to create cohorts and profile the risk of an individual developing KOA the first 

step is to stratify the population. To do this, the point at which the cut is between groups 

needs to be identified.  

The Cox model produces predictions of the risk score for the training dataset. These are 

plotted into a histogram, displaying the distribution of risk scores, showing a Chi2 

distribution. The predictions are shown in bins of 0.25 from 0 to the maximum value 

calculated wising the original Cox model.  

At each bin interval for the risk score the values above the cut point are assigned to cohort 

1 and those below are assigned to cohort 2. Using the cohorts, a Cox model is fitted to 

the data and two baseline hazards are fit to the strata. The next step is to test the strata to 

see if there is a difference between the curves with a log rank test. This test produces a 

Chi2 statistic, which is used to determine the p-value relating to the cohort stratification. 

This is repeated for each bin interval of the risk score, storing the p-values at each 

iteration. To identify the risk score that relates to the optimal cut point for the cohorts 

the minimum p-value is determined and the corresponding risk score is selected. This is 

then the score used to split the population into two cohorts.  

4.5. Study Design 
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Initially, after looking at the Kaplan-Meier curve in Figure 4-4 it was decided that the 7-

year cohort would be used. This is due to the large amount of censoring that occurs after 

the seven-year point. After the seven-year point there is a high level of uncertainty in the 

data due to the level of censorship. The seven-year cohort would look for indicators to 

development of clinical KOA.  

It was only after concluding the seven-year cohort study that it was deemed necessary to 

investigate using the five-year cohort, as the predictions on the test data for the survival 

after the 5-year mark vary greatly from the training data. These fall outside of the 

confidence interval and therefore are not as reliable, and resulted in a change in dataset 

timeframe. 

4.5.1. Consideration of 7 - year cohort 
The analysis in this section of work will consider the seven-year cohort. A seven year 

follow up is a long time when considering some covariates, such as pain when walking, 

taking medication and falling, as although the methods in this report consider static 

variables and following the assumption that these variables remain constant, in practice 

this is not always the case.  

A seven-year follow-up for trying to identify if a disease occurs with the outlook to patient 

education in order to modify behaviour gives a meaningful window to the future. A seven-

year outlook is something that a person can still look to without it being a very long 

follow-up, such as the study length of nearly 9 years. 

Figure 4-3 illustrates a histogram of the total cohort, showing the event type as time 

progresses. The Kaplan-Meier curve in Figure 4-4 shows the whole cohort and the events 

in the timeline from study enrolment to the end of follow up. Table 4-3 shows the 

differences in the cohorts between the total cohort, 7-year and 5-year cohorts. Initially, 

for maximisation of information, the 7-year cohort is used. 

Table 4-3: Description of how data is split between the development of OA and censored for each cohort of interest. 

Cohort Develop OA Censored Total Data Size 

Total Cohort 297 1839 2136 

7 Year Cohort 255 1840 2095 

5 Year Cohort 166 1839 2005 
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4.5.2. Consideration of 5 year Cohort 
Following on from the stratification in the analysis for the 7-year cohort, the predictions 

on the test dataset vary greatly from the actual training values. Upon further investigation, 

the curves are only similar up to the 5-year mark, where they begin to diverge quite 

significantly.  

The total loss in information between the five and seven year cohorts is not that much, 

as shown in Table 4-3, and the five-year cohort still holds clinical purpose, which makes 

it useful for analysis. In order for an intervention to work, there needs to be some level 

of subject acceptability, referring to the suitability of the intervention to both those 

delivering and receiving the care [133]. When trying to implement change into the way a 

subject behaves based on a potential outcome then a nearer end-point can be seen as 

more advantageous. A similar approach is used when trying to encourage people to quit 

smoking, displaying relatively short time steps into the future, given with the associated 

benefit [134]. One such example is that 48 hours after quitting smoking a person’s taste 

and smell receptors begin to heal [135].  

4.5.3. Plan of work for analysis 
The work that follows will be the application of Cox regression to different variable 

subsets of the data in each case, the seven and five-year datasets.  

• Cox regression on whole variable cohort 

• Cox regression on Backward stepwise variable cohort 

• Cox regression on Forward stepwise variable cohort 

▪ If the forward and backward models are not consistent, perform a Cox 

regression on stepwise overlap cohort. This means that if the forward 

and backward features are not consistent, a model comprised of only the 

consistent features will be considered in a Cox regression model. 

• Cox regression with stratification on the feature selected model 

4.6. Results from Analysis 
The results in this chapter will be split into two sections: the results from the seven-year 

cohort, and the results from the five-year cohort.  

4.6.1. Results from seven - year cohort 
The stages from the seven-year cohort study were to use all of the available covariates, 
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and then to use a subset of these selected by stepwise feature selection, both backward 

and forward.  

4.6.2.1. Kaplan Meier Curves 
 

 

Figure 4-7: A Kaplan-Meier curve for the data of the 7-year cohort. 

Figure 4-7 is the Kaplan-Meier curve for the usable 7-year OAI cohort. The steps in this 

plot are artefacts in the data, likely due to the follow-up design in the study, in which a 

certain window of time passes between follow-up assessments. Therefore, the true 

survival curve would likely be a smooth curve between the steps, however due to the 

follow-up that is not the case; therefore, any models generated with the OAI data would 

require further tests to determine suitability for use on different data.  

An initial exploration into discrete time survival analysis is covered in section 4.7. 
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Figure 4-8: The curve developed by calculating the survival information in the life table.  

The curve shows the actual curve depicting way the overall survival probability changes over time as generated in R by using the whole 
population of the study to assess the global survival when compared to the same cohort where the measures were calculated manually in the 

life table. 

A step used to get to know the data was to plot the Kaplan-Meier curve and calculate the 

survival probability manually, shown in Figure 4-8 and Table 4-4. The reasoning behind 

this was to determine how the plots in R were generated, and the survival calculated. This 

step was necessary in confirming the plots generated in R, such as the plot in Figure 4-7, 

were correct and showed the survival probability as a true reflection of the data. 



79 
 

Table 4-4: Life table showing the calculation for the 6-month intervals of KOA survival over a seven-year period. 

Day Intervals 

№ okay at 

start of 

interval 

𝑎𝑖 

Develop 

disease during 

interval 

𝑑𝑖 

№ censored (lost 

to follow up) 

during interval 

𝑐𝑖 

№ of persons 

at risk 

𝑛𝑖 =  𝑎𝑖 −
𝑐𝑖

2
 

Risk of onset 

during interval 

𝑟𝑖 =
𝑑𝑖

𝑛𝑖

 

Chance of 

surviving time 

interval 

𝑠𝑖 = 1 − 𝑟𝑖 

Cumulative chance of 

surviving from start of 

investigation 

𝑆(𝑖) = 𝑆(𝑖 − 1) × 𝑠𝑖  

0 ≤ 𝑥 < 182.625 2095 0 0 2095 0 1 1 

182.625 ≤ 𝑥 < 365.25 2095 0 0 2095 0 1 1 

365.25 ≤ 𝑥 < 547.875 2095 6 13 2088.5 0.00287 0.99713 0.99713 

547.875 ≤ 𝑥 < 730.5 2076 7 20 2066 0.00339 0.99661 0.99375 

730.5 ≤ 𝑥 < 913.125 2049 77 298 1900 0.04053 0.95947 0.95347 

913.125 ≤ 𝑥 < 1095.75 1674 2 4 1672 0.00120 0.99880 0.95233 

1095.75 ≤ 𝑥 < 1278.375 1668 11 29 1653.5 0.00665 0.99335 0.94600 

1278.375 ≤ 𝑥 < 1461 1628 2 133 1561.5 0.00128 0.99872 0.94479 

1461 ≤ 𝑥 < 1643.625 1493 61 1183 901.5 0.06767 0.93233 0.88086 

1643.625 ≤ 𝑥 < 1826.25 249 0 3 247.5 0 1 0.88086 

1826.25 ≤ 𝑥 < 2008.875 246 0 0 246 0 1 0.88086 

2008.875 ≤ 𝑥 < 2191.5 246 21 11 240.5 0.08732 0.91268 0.80394 

2191.5 ≤ 𝑥 < 2374.125 214 67 36 196 0.34184 0.65816 0.52912 

2374.125 ≤ 𝑥 < 2556.75 111 1 1 110.5 0.00905 0.99095 0.52433 

2556.75 ≤ 𝑥 < 2739.375 109 0 109 54.5 0 1 0.52433 
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Figure 4-9 shows the KM curve for the 7-year cohort. The lines represent the full cohort, 

training, and test data. This shows that the training and test samples are a reflection of 

the whole cohort. 

 

Figure 4-9: KM curve stratified by sample. The red depicts the total sample of the 2095 subjects in the study. The green shows the 
training sample, and the blue shows the test sample. The tables below illustrate the way in which the data is split between the samples. 

4.6.2.2. Cox Regression  

4.6.2.2.1. Univariate 
The univariate model was conducted as a way to do exploratory data analysis to determine 

which, if any, are alone significant in development of KOA. This approach was used to 

identify a link between the variables and the outcome, development of KOA, and 

highlight features to consider in the multivariate models, establishing which, if any, are 

still significant when considered with others. Based on the results shown in Figure 4-10, 

the following variables are significant to development; Ever have a knee injury (EV.INJ), 

maxWOMAC, baseline symptoms at first assessment (B.LINE_SYMP), minPAIN, 

minSYMP, previous OA diagnosis (PREV.OA) and BMI. We know from the literature 

that features such as gender, genetic disposition, BMI and history of injury are all factors 

that contribute to the onset of KOA [77]. Therefore, these results make sense in practical 
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terms. 

maxWOMAC, minSYMP and minPAIN are variables based on a questionnaire given to 

the patient. maxWOMAC is the maximum score calculated using the Western Ontario 

and McMaster Universities Arthritis Index. It is used in the evaluation of hip and knee 

OA, and considers features relating to pain, stiffness, and physical function. The 

WOMAC score can have a value from 0 to 96, with WOMAC a high score relating to a 

more severe impact. minSYMP and minPAIN are self-perceived pain and symptom 

scores calculated using the KOOS score. KOOS is the knee injury and osteoarthritis 

outcome score which uses patients own opinions to evaluate how they perceive their 

condition. KOOS uses five subscales but this analysis focuses only on symptoms and 

pains. KOOS scores of 0 indicate extreme problems with higher scores indicating fewer 

problems. KOOS is mainly used where knee injury can result in post-traumatic OA.   

The reasoning for inclusion of both WOMAC and KOOS measures are that although 

WOMAC considers all KOA. KOOS is aimed at KOA following traumatic injury and by 

including both there is a better chance that a subjects symptoms will be accounted for 

and considered in the model.  

 

 

Figure 4-10: Univariate variable importance. The tables differ for BMI as this variable has three levels, and considers each level as a 

seperate component. 

Although several of the variables are determined to be significant by the univariate 

analysis, there is no consideration for confounding factors and the influence that different 

variables have on the development of KOA, so further univariate investigations will not 

be considered.  

4.6.2.2.2. Multivariate 
The multivariate Cox regression is used to assess how the covariates jointly influence the 

probability of the subject developing KOA. The significant variables, based on this, that 

have a strong association with the outcome are given with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05. In this 

analysis the significant variables are BMI, Gender, and previous knee injury.  These findings 

are shown in Figure 4-11.  
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Also shown in Figure 4-11 are the significance tests to assess the suitability of the null 

hypothesis that the beta values, labelled as ‘coef’, are equal to zero. In this case the three 

tests, Likelihood ratio, Wald and Logrank Tests all give 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 > 0.05, so therefore 

reject the null hypothesis, as 𝛽 ≠ 0.  

Another measure of model performance is the concordance, or C-statistic. A guess would 

give a C-statistic of 0.5 and a perfect model would give a C-statistic equal to 1. The model 

generated using all of the variables for the 7-year OAI cohort gives a C-statistic of 0.719. 

This is classed as a good model [136].   

 

 

Figure 4-11: The Multivariate Cox regression output and the statistical test results on the model. 

The forest plot in Figure 4-14 visually shows the information relating to the hazard ratios 

in Figure 4-11. It can be seen that variables contribute significantly to the development 

of clinical KOA. For variables that are not significant, the confidence bars on the hazard 

ratios cross the ‘1’ line, indicating the variables lack significance to the development of 

clinical KOA in this given window.  

The next step of the analysis was to test the proportional hazards assumptions.  

Figure 4-12 shows the outcome of the test assessing if each variable fits the proportional 

hazards assumption. In the case of this model, the test for each individual variable is not 

statistically significant so the assumption of proportional hazards for the covariates holds. 

However, the final item in the list, Global, has a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.024, a significant result. 

Despite the significant p-value result, this result can in part be overlooked, as the 



83 
 

significance could be related to the size of the sample, (𝑛 = 1003) where large values of 

𝑛 can make p-values less reliable. This is also not a concern that the global option is 

significant as this is not the final model being used. This model, containing all of the 

covariates, is a baseline assessment of the features in the data and will be subject to feature 

selection methods, where if a variable is still showing significance other steps will be taken 

to allow for this in the calculations.  

The survival curves in Figure 4-13 is the unstratified curve for the training and test sets. 

The test curve shows the predictions anticipate a lower survival than the actual data, but 

the actual data lies within the confidence interval for the predictions, so therefore is valid. 

The wider band of the confidence interval is toward the end of the window, from about 

5 years, where there are fewer observations within that class. 

 

Figure 4-12: The results of the tests for the model assumption of proportional hazards. 

 

Figure 4-13: The survival curves for the models using both the training and the test data for the whole covariate selection, and compared to 

the unadjusted curve, for the model considering the 7-year cohort with all variables in the model. 
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Figure 4-14: Forest plot showing the hazard ratios for the variables included in the full multivariate Cox model.
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4.6.2.2.3. Stepwise Multivariate Cox Regression 
The two types of stepwise feature selection used have different approaches. The idea 

behind using both was to establish what variables are selected in each approach, and in 

the event the variables differ, see if there is an overlap and run a model with the common 

variables. This would then be compared to the forward and backward models to see if 

there was any information lost through the removal of variables.  

In this analysis, the forward and backward models end with the same variables in the final 

models, which results in the same beta values in the Cox model. In both cases the 

proportional hazards results are consistent.  

4.6.2.2.3.1. Forward 
In using the forward stepwise feature selection, the criteria for measuring the suitability 

of the variables included in the model is the Akaike Information Criterion (AIC), with 

the aim of reducing the AIC value, as the lower score indicates a balance between the fit 

of the data and its ability to not overfit to the data present. The AIC starting value was 

1548.42 and including all 16 variables, with the final AIC value of 1499.96 including only 

5 variables.  

Figure 4-15 depicts the Cox regression output for the forward stepwise model. The 

variables included were BMI, previous history of knee injury (EV.INJ), gender, family 

history of knee issues (FAMILY_H) and previous OA diagnosis in other joints 

(PREV.OA).  

Although there are five variables selected by this model only three are significant by the 

use of 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠. The significant variables are BMI, gender and EV.INJ. Even though 

some variables are not significant the model is the correct model. There is the potential 

for an element of overfitting due to this despite the stepwise model working as it should, 

by reducing the AIC value.  

Figure 4-15 also shows the statistical tests, Likelihood ratio, Wald and Logrank tests. All 

three of the tests are significant as their p-values are less than 0.05. This means that the 

null hypothesis, that the 𝛽 = 0, can be rejected as the statistics are similar.    

When looking at Figure 4-15, it appears that a family history of KOA lowers the rate of 

onset when compared to those with no history. This may initially seem counterintuitive 

but knowing there is a disease in the family that has some modifiable risk factors may 

cause people to take more care in situations that would increase the risk of developing 
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KOA. This is seen also in people who know cancer runs in the family, so they take 

advantage of screening and genetic tests. 

 

 

Figure 4-15: The Multivariate Cox regression output and the statistical test results on the model for the model resulting from the forward 
stepwise Cox regression model. 

The data presented in Figure 4-15 is shown graphically in Figure 4-16, with the use of a 

forest plot. The variables chosen in this analysis are indicated on the left along with the 

respective significance for each variable on the right. The bars show the confidence 

intervals for the hazard ratios for each variable.  

Figure 4-16 makes it easier to see the features that contribute to the development of 

KOA. For example, having a previous knee injury can be linked to the onset of KOA. 

Being female puts a person at increased risk of developing KOA. Also, any BMI above 

the NHS ‘healthy’ limit of 25 is associated with an increased risk of developing KOA, 

with BMI 30+ showing a greater risk for developing KOA.  

Figure 4-17 is the results from the proportional hazards assumption tests. All of the 

covariates have p-values greater than 0.05, meaning that none breach the proportional 

hazards assumption. In addition, the global model is not significant, so the proportional 

hazards assumption holds on the cumulative use of the covariates in the model. 

Figure 4-18 shows the Schoenfeld test, which is the graphical test of proportional hazards. 

The graphs show what has been presented in Figure 4-17. Each covariate supports the 

assumption of the proportional hazards. 
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Figure 4-16: Forest plot showing the hazard ratios for the variables included in the forward stepwise multivariate Cox model. 

 

 

Figure 4-17: The results from the test for the proportional hazards assumptions. All covariates have 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 greater than 0.05, so 
none are significant. 

When comparing the survival curves in Figure 4-19, the one on the left shows the training 

curves and the right, the test curves. In the left diagram, the model predictions are close 

to actual values throughout the plot. In the right, the predictions for the test set are about 

25% lower than the actual test set values. When looking at the curves closer, the gap 

between actual and prediction is close up to about the 2200-day mark, when the curves 

begin to diverge. However, even with this difference the two curves still overlap slightly 

in the confidence intervals.  
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Figure 4-18: The graphs showing the Schoenfeld test on each variable to check the proportional hazards assumption. 

 

Figure 4-19: The survival curves for the models using both the training and the test data for the covariate subset selected using forward 
stepwise selection and compared to the unadjusted curve. 

 

4.6.2.2.3.2. Backward 
In using the backward stepwise feature selection, the criteria for measuring the suitability 

of the variables included in the model is the Akaike Information Criterion (AIC), with 
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the aim of reducing the AIC value, as the lower score indicates a balance between the fit 

of the data and its ability to not overfit to the data present. The AIC starting value was 

1516.12 and initialising with no variables, with the final AIC value of 1499.96 including 

only five variables. The five variables in the final backward stepwise Cox regression model 

are the same five that were selected using the forward stepwise Cox regression model.  

The variables are shown in Figure 4-20 are BMI, family history of knee issues 

(FAMILY_H), previous injury to the knee (EV.INJ), previous OA diagnosis in another 

joint in the body (PREV.OA) and gender.  

Although there are five variables selected by this model only three are significant by the 

use of 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠. The significant variables are BMI, gender and EV.INJ, which are the 

same variables in the forward stepwise model. Even though some variables are not 

significant the model is the correct model. There is the potential for an element of 

overfitting due to this despite the stepwise model working as it should, by reducing the 

AIC value.  

Figure 4-20 also shows the statistical tests, Likelihood ratio, Wald and Logrank tests. All 

three of the tests are significant as their p-values are less than 0.05. This means that the 

null hypothesis, that the 𝛽 = 0, can be rejected as the statistics are similar.  The model 

concordance is 0.699 (0.70 two d.p.) which means that this is classified as a good model. 

Looking at the concordance scores, there has not been a large drop between the model 

with all the variables and the model only considering the smaller subset. Therefore, it 

would be worth the drop in c-statistic for the increase in simplicity brought on from the 

simpler model only containing 5 variables.  

 

 

Figure 4-20: The Multivariate Cox regression output and the statistical test results on the model for the model resulting from the 
backward stepwise Cox regression model. 

Figure 4-20 shows the hazard ratios calculated from using the Backard stepwise Cox 
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regression model. The variables here are the same as the ones selected from forward 

stepwise Cox regression. As the results for the forward and backward stepwise models 

are the same, the forest plot in Figure 4-16 also applies here.  

To ensure the modelling of the variables is appropriate for the assumptions made about 

proportional hazards, a test is performed. Based on the results shown in Figure 4-21 all 

of the covariates, along with the model as a whole, follow the proportional hazards 

assumption.  

 

Figure 4-21: The results from the test for the proportional hazards assumptions on the covariates from backward stepwise Cox regression. 
All covariates have p-values greater than 0.05, so none are significant. 

4.6.2.2.4. Stepwise with Stratification 
As the forward and backward models both give the same variables in for the Cox 

regression, the model variables are consistent. The variables are BMI, family history of 

knee issues (FAMILY_H), previous injury to the knee (EV.INJ), previous OA diagnosis 

in another joint in the body (PREV.OA) and gender.  

The next step in the analysis is to see if there are groups within the cohort. For example, 

to determine if there is a high and low risk group, and to establish what the criteria is for 

inclusion in each group.  

To stratify the group into cohorts the first step is to establish a cut point that gives the 

biggest separation in the subjects. Figure 4-22 shows the histogram along with the cut 

point that is used to define the two strata that will produce a high and low risk cohort. 

The process of the stratification is discussed earlier in section 4.4.7. 

 

Figure 4-22: Histogram of the risk score for the training data when establishing where to add the cut point. In this case, the cut point falls 
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where the risk score is 2.75. 

Figure 4-23 shows the survival curves for the training data after it has been split into the 

risk stratification cohorts. The left curve shows the actual data and how it is divided. 

Note, that in cohort 2 the last recorded event occurs within the 7-year span at day 2211. 

The curve on the right shows the predictions once they have been split into the risk 

stratification cohorts. As there is no overlap of the confidence intervals, the two 

populations are different from each other. Therefore, the idea of two risk groups is valid 

for this dataset.  

 

Figure 4-23: Stratification curves on the training data showing the high and low risk cohorts. Note that in cohort 2 the last event recorded 
in cohort 2 within the 7-year span is at day 2211. 

The histogram in Figure 4-24 is showing the risk scores from the test set and the 

predetermined cut point and the way this divides the data. Figure 4-25 shows the 

stratification curves on the test data for both the raw data and the predictions produced 

on the test set. The stratification shows an overlap in the survival curves on the test data. 

The large confidence interval on Cohort 2 could be due to the smaller cohort size when 

compared to that of Cohort 1. The predictions produce curves that do not overlap.   
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Figure 4-24: Histogram of the risk score for the test data showing where the predetermined cut of the risk score falls.  

 

Figure 4-25: Stratification curves on the test data showing the high and low risk cohorts using the predetermined cut points calculated on 
the training data.  

For the model to have clinical value the findings of the two risk cohorts need to be 

translated into human terms. For example how the features influence that individual in 

relation to which risk group they will belong. The proportions of each cohort by covariate 

are shown in Figure 4-26.  

The proportion plots are useful as they can be used easier to profile the groups in each 

cohort. For example, in Cohort 2 the majority of the subjects are female with a BMI over 

25, and have likely had previous knee injuries. The majority of the people in cohort 2 

have no family history of knee problems, which could mean that those who are aware of 

the issues their families had already made changes to their behaviours to help prevent 

them from developing KOA.  
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Figure 4-26: The cohort profiles per variable for the different strata. The blue bars show cohort 1 and red show cohort 2. This 
representation of the profiles is the proportion of the group in each data category per cohort for the training set. 

The cohort profile for the test data is in Figure 4-27. The same patterns that are evident 

in the training set are also present in the test set.  

 

 

Figure 4-27: The cohort profiles per variable for the different strata. The blue bars show cohort 1 and red show cohort 2. This 
representation of the profiles is the proportion of the group in each data category per cohort for the test set. 

BMI 

Prev.OA Gender 

Family_H EV.INJ 

BMI 
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94 
 

4.6.2. Results from Five year cohort 
The stages for the five-year cohort study follow the same layout as that used in the seven-

year study.  

The five-year study is the approach that has the most potential use as when comparing 

the survival curves as the difference between the training and test sets are not too different 

and fall within 10% of each other, with the confidence intervals crossing. This is the 

model that has potential clinical use. 

4.6.2.1. Kaplan Meier Curves 
The five-year cohort theoretically has more clinical significance than the seven-year study. 

This is because the curves from the seven-year analysis, showing training and test sets are 

quite close up to the five-year mark, when they begin to differ drastically, and the KM 

curves for the 5-year cohort show a more acceptable distance of separation at about 10%.  

Figure 4-28 is the observational KM curve for the five-year cohort considering all of the 

data. The data appears to show ‘steps’ where subjects are likely to develop KOA, however 

as this data was collected as part of a study that had given windows for follow up, these 

may just be an artefact of the data. This curve, similar to those shown in Figure 4-29 show 

the overall survival to be around 85% after a five-year follow up.  

 

Figure 4-28: An observational Kaplan-Meier curve for the data of the 5-year cohort. 

Figure 4-29 shows the KM curves for the whole cohort, training, and test sets for the 
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five-year window.  The red line is the whole cohort KM curve, the green shows the 

training curve, and the blue shows the test curve. There is a difference between the 

training and test sets with the survival probability differing between the two groups by 

about 10%. However, the confidence intervals cross over each other so the divide 

between the groups is still acceptable.  

 

Figure 4-29: Observational KM curve stratified by sample. The red depicts the total sample of the 2005 subjects in the study. The green 
shows the training sample, and the blue shows the test sample. The tables below illustrate the way in which the data is split between the 

samples. 

4.6.2.2. Cox Regression  

4.6.2.2.1. Univariate 
The variables are all modelled individually to determine which, if any, are alone significant 

in development of KOA for the five-year window. The results are shown in Figure 4-30. 

Based on this, the following variables are significant to development; Ever have a knee 

injury (EV.INJ), maxWOMAC, history of falling (HIST.FALL), the subjects pain score 

on the KOOS scoring system (minPAIN), the subjects symptom score on the KOOS 

scoring system (minSYMP), the subjects gender and their BMI.  
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However despite there being several variables that are significant in the univariate analysis, 

there is no consideration for confounding factors and the influence that different 

variables have on the development of KOA, so further univariate investigations will not 

be considered.  

 

 

Figure 4-30: Univariate variable importance. The tables differ for BMI as this variable has three levels, and considers each level as a 

seperate component. 

4.6.2.2.2. Multivariate 
The multivariate Cox regression is used to assess how the covariates jointly influences the 

probability of the subject developing KOA. The significant variables, based on this, that 

have a strong association with the outcome are given with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05. In this 

analysis the significant variables are BMI, Gender, and previous knee injury.  These variables 

are the same as those found to be of significance in the 7-year study.  These findings are 

shown in Figure 4-31.  

Also shown in Figure 4-31 are the significance tests to assess the suitability of the null 

hypothesis that the beta values, labelled as ‘coef’, are equal to zero. In this case the three 

tests, Likelihood ratio, Wald and Logrank Tests all give 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 > 0.05, so therefore 

reject the null hypothesis as 𝛽 ≠ 0.  

Another measure of model performance is the concordance, or C-statistic. A guess would 

give a C-statistic of 0.5 and a perfect model would give a C-statistic equal to 1. The model 

generated using all of the variables for the 5-year OAI cohort gives a C-statistic of 0.754, 

an increase on this measure for the 7-year study. This is classed as a good model [136].   
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Figure 4-31: The Multivariate Cox regression output and the statistical test results on the model. 

Figure 4-32 shows the information found in Figure 4-31 in a graphical way. The forest 

plot clearly shows which variables are significant to the development of clinical KOA. 

For variables that are not significant, the confidence bars on the hazard ratios cross the 

‘1’ line, indicating the variables lack of significance to the development of clinical KOA. 

The proportional hazards assumption needs to be tested in order to use the standard 

survival analysis approaches. The results of the proportional hazards tests are in Figure 

4-33. In order to say that the assumptions are valid all of the variables need to have a 𝑝 −

𝑣𝑎𝑙𝑢𝑒 greater than 0.05. In this case, shown in Figure 4-33, minPAIN has a p-value of 

0.048. In this situation, this is okay for two reasons. The first being the sample size may 

slightly skew the effectiveness of the p-value and the second being that this is the model 

that uses all variables, before any feature selection, which follows in the section ‘4.6.2.2.3’. 
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Figure 4-32: Forest plot showing the hazard ratios for the variables included in the full multivariate Cox model.
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Figure 4-33: The results of the tests for the model assumption of proportional hazards. 

The survival curves, shown in Figure 4-34, show the actual and predicted curves for both 

the training and test sets in the five-year cohort. The confidence intervals on the test 

graph for the test predictions and the actual test data have an overlap of the confidence 

intervals, so therefore is a valid result. Again, as for the 7-year cohort, where there are 

fewer observations within that group, the time between four and five years, the 

confidence intervals are wider. 

 

Figure 4-34: The survival curves for the models using both the training and the test data for the whole covariate selection, and compared to 
the unadjusted curve. 

4.6.2.2.3. Stepwise 
In the same approach used for the seven-year analysis, two types of stepwise feature 
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selection have been used. Similar to the seven-year, the forward and backward models 

end with the same variables in the final models, which results in the same beta values in 

the Cox model. In both cases the proportional hazards results are consistent.  

4.6.2.2.3.1. Forward 
The AIC starting value was 1123.65 and including all 16 variables, with the final AIC 

value of 1079.13 including 6 variables.  

Figure 4-35 depicts the Cox regression output for the forward stepwise model. The 

variables included were BMI, previous history of knee injury (EV.INJ), gender, family 

history of knee issues (FAMILY_H), a history of falling (HIST.FALL) and the maximum 

WOMAC score recorded (maxWOMAC).  

Although there are six variables selected by this model only four are significant by the use 

of 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠. The significant variables are BMI, gender, EV.INJ and maxWOMAC. 

Even though some variables chosen for the model are not significant, the AIC is at its 

lowest value as a result of including non-significant features, family history of knee issues 

and history of falling. There is the potential for an element of overfitting due to this 

despite the stepwise model working as it should, by reducing the AIC value.  

Figure 4-35 also shows the statistical tests, Likelihood ratio, Wald and Logrank tests. All 

three of the tests are significant as their p-values are less than 0.05. This means that the 

null hypothesis, that the 𝛽 = 0, can be rejected as the statistics are similar. The 

concordance statistic is 0.749 (3 d.p.). Looking at the C-statistic for the feature selected 

model and the model containing all of the variables there is no difference when 

considering to two decimal places. This means that there has not been a large loss of 

information by reducing the model size. 

 

Figure 4-35: The Multivariate Cox regression output and the statistical test results on the model for the model resulting from the forward 
stepwise Cox regression model. 

The data presented in Figure 4-35 is shown graphically in Figure 4-36. The variables 

chosen in this analysis are indicated on the left along with the respective significance for 
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each variable on the right. The bars show the confidence intervals for the hazard ratios 

for each variable.  

Figure 4-36 makes it easier to see the features that contribute to the development of 

KOA. The same features in the five-year analysis are those that contributed to the 

development of KOA. 

 

Figure 4-36: Forest plot showing the hazard ratios for the variables included in the forward stepwise multivariate Cox model. 

Figure 4-37 is the results from the proportional hazards assumption tests. All of the 

covariates have p-values greater than 0.05, meaning that none breach the proportional 

hazards assumption. In addition, the global model is not significant, so the proportional 

hazards assumption holds on the cumulative use of the covariates in the model. Figure 

4-38 show visually the Schoenfeld test for the proportional hazards assumption.  

 

Figure 4-37: The results from the test for the proportional hazards assumptions. All covariates have p-values greater than 0.05, so none 
are significant. 
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Figure 4-38: The graphs showing the Schoenfeld test on each variable to check the proportional hazards assumption. 

 

Figure 4-39: The survival curves for the models using both the training and the test data for the covariate subset selected using forward 
stepwise selection and compared to the unadjusted curve. 

When comparing the survival curves in Figure 4-39, the one on the left shows the training 

curves and the right, the test curves. In the left diagram, the model predictions are close 

to actual values throughout the plot. In the right, the predictions for the test set are less 

than 10% lower than the actual test set values. When looking at the curves closer, the gap 

between actual and prediction is close throughout the time that is being analysed. Even 



103 
 

with this difference, the two curves still overlap in the confidence intervals.  

4.6.2.2.3.2. Backward 
The AIC starting value was 1095.9 and initialising with all variables, with the final AIC 

value of 1079.13 including only six variables. The six variables in the final backward 

stepwise Cox regression model are the same five that were selected using the forward 

stepwise Cox regression model.  

Although there are six variables selected by this model, shown in  Figure 4-40, with only 

four are significant by the use of 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠. The significant variables are BMI, gender, 

maxWOMAC and EV.INJ, which are the same variables in the forward stepwise model. 

Even though some variables are not significant the model is the correct model. There is 

the potential for an element of overfitting due to this despite the stepwise model working 

as it should, by reducing the AIC value.  

Figure 4-40 also shows the statistical tests, Likelihood ratio, Wald and Logrank tests. All 

three of the tests are significant as their p-values are less than 0.05. This means that the 

null hypothesis, that the 𝛽 = 0, can be rejected as the statistics are similar.  The model 

concordance is 0.749 (0.75 two d.p.) which means that this is classified as a good model. 

Looking at the concordance scores to two decimal places, there has not been any drop 

between the model with all the variables and the model only considering the smaller 

subset. Therefore, for the increase in simplicity and retention of information, it makes 

more sense to use the simpler model only containing six variables.  

 

Figure 4-40: The Multivariate Cox regression output and the statistical test results on the model for the model resulting from the 
backward stepwise Cox regression model. 

Figure 4-41 shows the hazard ratios calculated from using the Backard stepwise Cox 

regression model. The variables here are the same as the ones selected from forward 

stepwise Cox regression.  
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Figure 4-41: Forest plot showing the hazard ratios for the variables included in the backward stepwise Cox model. 

To ensure the modelling of the variables is appropriate for the assumptions made about 

proportional hazards, a test is performed. Based on the results shown in Figure 4-42 all 

of the covariates, along with the model as a whole, follow the proportional hazards 

assumption. As the forward and backward stepwise models are the same, the proportional 

hazards calculated are also the same. Therefore, Figure 4-38 shows the corresponding 

Schoenfeld test plots. 

 

Figure 4-42: The results from the test for the proportional hazards assumptions on the covariates from backward stepwise Cox regression. 

All covariates have p-values greater than 0.05, so none are significant. 

The survival curves for the backward stepwise model is the same as those for the forward 

stepwise model, in Figure 4-39. 

4.6.2.2.4. Stepwise with Stratification 
As the forward and backward models both give the same variables in for the Cox 

regression, the model variables are consistent. The variables here are BMI, previous 

history of knee injury (EV.INJ), gender, family history of knee issues (FAMILY_H), a 

history of falling (HIST.FALL) and the maximum WOMAC score recorded 

(maxWOMAC).  

The next step is to see if there are groups within the cohort. For example, to determine 
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if there is a high and low risk group, and to establish what the criteria is for inclusion in 

each group.  

To stratify the group into cohorts the first step is to establish a cut point that gives the 

biggest separation in the subjects. Figure 4-43 shows the histogram along with the cut 

point that is used to define the two strata that will produce a high and low risk cohort.  

 

Figure 4-43: Histogram of the risk score for the training data when establishing where to add the cut point. In this case, the cut point falls 

where the risk score is 2.75. 

Figure 4-44 shows the survival curves for the training data after it has been split into the 

risk stratification cohorts. The left curve shows the actual data and how it is divided. 

Note, that in cohort 2 the last recorded event occurs within the 5-year span at day 1642. 

The curve on the right shows the predictions once they have been split into the risk 

stratification cohorts. As there is no real overlap of the confidence intervals, the two 

populations are different from each other. Therefore, the idea of two risk groups is valid 

for this dataset.  
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Figure 4-44: Stratification curves on the training data showing the high and low risk cohorts. Note the last even recorded in cohort 2 
within the 5-year span is at day 1642. Stratification curves on the training data showing the high and low risk 

 

Figure 4-45: Histogram of the risk score for the test data showing where the predetermined cut of the risk score falls. 

The histogram in Figure 4-45 is showing the risk scores from the test set and the 

predetermined cut point and the way this divides the data. Figure 4-46 shows the 

stratification curves on the test data for both the raw data and the predictions produced 

on the test set. Once again, like the training data, the stratification curves produced are 

well separated with no crossover on the confidence intervals.  
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Figure 4-46: Stratification curves on the test data showing the high and low risk cohorts using the predetermined cut points calculated on 

the training data. 

For the model to have clinical value the findings of the two risk cohorts need to be 

translated into human terms. For example how the features influence that individual in 

relation to which risk group they will belong. The proportions are shown in Figure 4-47.  

The proportion plots are useful as they can be used easier to profile the groups in each 

cohort. For example, in Cohort 2 all of the subjects are female with a BMI over 25, and 

they have all had previous knee injuries. The majority of the people in cohort 2 have no 

family history of knee problems, which could mean that those who are aware of the issues 

their families had already made changes to their behaviours to help prevent them from 

developing KOA.  
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Figure 4-47: The cohort profiles per variable for the different strata. The blue bars show cohort 1 and red show cohort 2. This 

representation of the profiles is the proportion of the group in each data category per cohort for the training set. 

The same plot for the test data is in Figure 4-48. The same patterns that are evident in 

the training set are also present in the test set.  

 

Figure 4-48: The cohort profiles per variable for the different strata. The blue bars show cohort 1 and red show cohort 2. This 
representation of the profiles is the proportion of the group in each data category per cohort for the test set. 
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4.7. Exploration of Discrete Time Survival Analysis  
4.7.1. Motivation and Justification 
Based on the results and the Kaplan-Meier curves shown in this chapter it is evident that 

there is some periodicity in the study protocol, therefore an analysis using discrete time 

is presented as the exact time of the onset of OA is unknown so a window of time is 

considered as the onset period. 

It is apparent from the 5 and 7-year analysis that there are steps in the follow-up. These 

steps mainly occur at two-year intervals with steps naturally occurring at roughly 2.5, 4.5 

and 6.5 years after the start of the study. In order to maximise the window for events to 

be captured, the data used in the discrete time analysis is the 7-year cohort. Following 

from the natural steps in the data, there are three time division in the 7-year follow up, 

the start of the trial to 3 years, 3-5 years and 5-7 years. A summary of the events for the 

data when categorised into three time intervals is shown in Table 4-5. 

Table 4-5: Summary of the number of subjects that developed KOA in each time window in the discrete time study. 

 No Disease Developed 

KOA 

Developed since Previous 

Interval  

End of Interval 1 2003 92 92 

End of Interval 2 1929 166 74 

End of Interval 3 1839 256 90 

 

The data now has time as a category, either 1, 2 or 3 referring to the time point in the trial 

the clinical assessment visits took place, 0-3 years, 3-5 years, or 5-7 years. Each data ID 

referring to a different individual, has three instances within the data, one falling in each 

time period. This is to model each of the discrete intervals as a logistic regression, using 

the relationship in the Equation 4-7 to calculate the hazards. The formulas given in 

Equation 4-10 (1-3) are used to determine the survival at time intervals one, two and 

three. 

Onset of KOA(Ti) =  ℎ(𝑥, 𝑡 = 𝑖)

= Family History + BMI + Previous Injury to Knee

+ OA in Any Joint + Gender + time1(Ti) + time2(Ti) 

Equation 4-7: The logistic regression formula that is used to allow the discrete time implementation of the analysis. 
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As for previous modelling, stratification and cohort profiles are also presented for the 

two strata created from the model to demonstrate the profiles of those at high and low 

risk for developing KOA within the timeframe.   

4.7.2. Theory 
The discrete time Cox model for ℎ𝑘 is given in Equation 4-8. It is calculated as: 

log (
ℎ𝑘

1 − ℎ𝑘
) = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝛽𝑡𝑖𝑚𝑒1𝑡𝑖𝑚𝑒1 + 𝛽𝑡𝑖𝑚𝑒2𝑡𝑖𝑚𝑒2 + 𝛽0  

Equation 4-8: The formula for the discrete time Cox model. 

Where  ℎ𝑘 ~ the hazard in time interval 𝑘, 

 𝑥1, 𝑥2, … , 𝑥𝑛 ~ The set of 𝑛 covariates, 

 𝛽1, 𝛽2, … , 𝛽𝑛 ~ The coefficients that measure the impact of the covariates, 

 𝑡𝑖𝑚𝑒1, 𝑡𝑖𝑚𝑒2 ~ The covariates for time1 and time2, 

𝛽𝑡𝑖𝑚𝑒1, 𝛽𝑡𝑖𝑚𝑒2 ~ The coefficients that measure the impact of the time1 and 

time2 covariates 

The time intervals T1, T2 and T3 are coded in the data as shown in Table 4-6. The 

changing of the time code from binary indicators to two columns was to ensure that time 

is not artificially correlated with other variables, or any such combination. The format for 

coding, shown in Table 4-6, removes this problem and can be later used when splitting 

the predictions to calculate the survival. 

Table 4-6: An index table showing the way that the time intervals were coded for use in the model. 

 Time 1 Time 2 

T1 0 0 

T2 1 0 

T3 0 1 

𝑇1, 𝑇2 and 𝑇3 are time intervals. The information presented in Equation 4-9 is used to 

separate the predicted probabilities that will be used to calculate the survival at each time 

point, as given in Equation 4-10. 
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1.     ℎ(𝑥, 𝑡 = 1)           when           𝑃1 = 1 

2.     ℎ(𝑥, 𝑡 = 2)           when           𝑃2 = 1 

3.     ℎ(𝑥, 𝑡 = 3)           when           𝑃3 = 1 

Equation 4-9: The hazard functions, 1, 2 and 3, calculated at each time point, t, as defined by categorising the time intervals. 

1.     𝑆(𝑥, 𝑡 = 1) = 1 − ℎ(𝑥, 𝑡 = 1) 

2.     𝑆(𝑥, 𝑡 = 2) = (1 − ℎ(𝑥, 𝑡 = 1)) × (1 − ℎ(𝑥, 𝑡 = 2)) 

3.     𝑆(𝑥, 𝑡 = 3) = (1 − ℎ(𝑥, 𝑡 = 1)) × (1 − ℎ(𝑥, 𝑡 = 2)) × (1 − ℎ(𝑥, 𝑡 = 3)) 

Equation 4-10: The survival equations that are used, using the relationship with the hazard function for survival at time intervals t = 

one (1), two (2)  and three (3). 

Modelling the hazard as a logistic regression, as given by Equation 4-7, then means that 

the predicted probabilities can be used to calculate the survival probability for each time 

interval. Equation 4-10 shows the relationship with the survival and hazard functions for 

the different time intervals and how they are used to calculate the survival for that given 

time-period. For example, for the survival of the third time interval, the hazard function 

values for time intervals one, two and three are all used, as the final survival value is the 

cumulative effect of the survival in the other intervals. 

For the implementation of the discrete time analysis, the split sample validation that has 

been used throughout the thesis is used. Initially the logistic regression model produced 

the beta values that were then used to determine the stratification cut-off points. This 

step allowed a high and low risk cohort to be developed such as with the Cox Regression 

analysis. Following from the stratification, the cohort profiles describe the populations 

that make up the high and low risk groups for developing KOA within the 7 year, 3-

window time frame. 

4.7.3. Results 
A multivariate logistic regression model is used to implement the discrete time survival 

analysis modelling described in this section of the thesis. This model is used to calculate 

the hazard odds which is then used to calculate the survival. The multivariate 

implementation is used to assess how the covariates jointly influence the probability of 

the subject developing KOA. The significant variables, based on this, that have a strong 

association with the outcome are given with a 𝑝 –  𝑣𝑎𝑙𝑢𝑒 >  0.05. In this analysis, the 

significant variables are BMI, Previous knee injury and previous OA in another joint. As with the 
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studies detailed earlier in this chapter, BMI and Previous knee injury are among the 

variables found to be significant. These results are illustrated in Figure 4-49. 

 

Figure 4-49: The logistic regression implementation of the model used to calculate the hazard. 

The next step in the analysis is to determine if there are groups within the cohort. This is 

the process in establishing if the data can be split into high and low risk groups and what 

features are likely to contribute to each. 

To identify the groups, the data must first be stratified. Using the stratification technique, 

discussed in Section 4.4.7, a cut point is identified. This cut point provides the point 

within the data that gives the biggest separation of the subjects. Figure 4-50 shows the 

histogram along with the cut point that is used to define the two strata that will produce 

a high and low risk cohort. 
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Figure 4-50: The histogram of the risk score for the training data when establishing where to add the cut point. In this case, the cut point 
falls where the risk score is 0.319. 

Figure 4-51 shows the survival curves for the training data after it has been split into the 

risk stratification cohorts. The thicker lines show the Kaplan-Meier curves whilst the 

thinner lies and points show the predictions calculated using the discrete time 

implementation. The prediction curves show separation, and only overlapping with the 

KM curve meaning that the cohorts are distinct. Figure 4-52 shows the stratification 

curves on the test data for both the raw data and the predictions produced on the test set. 

Once again, like the training data, the stratification curves produced are well separated. 

 

  

Figure 4-51: The stratification curves on the training data showing the high and low risk cohorts. The plot on the left shows the Kaplan-
Meier curves whilst the plot on the right shows the predictions calculated using the discrete time implementation. 
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Figure 4-52: The stratification curves on the test data showing the high and low risk cohorts. The plot on the left shows the Kaplan-Meier 
curves whilst the plot on the right shows the predictions calculated using the discrete time implementation. 

For these finding to have meaning the risk cohorts need to be explained in human terms, 

in relation to the variables in the model. For example how the features influence that 

individual in relation to which risk group they will belong. The proportions for the 

training and test sets are shown in Figure 4-53 and Figure 4-54 respectively.  

The proportion plots are useful as they can be used easier to profile the groups in each 

cohort. From the training data cohorts shown in Figure 4-53, the factors that make up 

the majority of Cohort 1 are a lower BMI, no family history of KOA, no previous knee 

injuries, no previous diagnosis of OA in any joint in the body and there is a mix of 

males and females. The features likely to indicate class membership into Cohort 2 are 

high BMI scores above 30, Previous knee injury, previous diagnosis of OA in another 

joint in the body and being female. No family history of KOA seems to have a 

protective effect on the development of KOA but in the group with a family history of 

the disease, there are slightly more in Cohort 2.  

Many of the traits from the training data are also true in the test data, shown in Figure 4 

54, with one notable exception. Having no family history of KOA is now a factor more 

likely to indicate membership to Cohort 2. However, the same patterns that are evident 

in the training set are also present in the test set.  
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Figure 4-53: The cohort profiles per variable for the different strata. The green bars show cohort 1 and red show cohort 2. This of the 

profiles is the proportion of the group in each data category per cohort for the training set. 

 

 

Figure 4-54: The cohort profiles per variable for the different strata. The green bars show cohort 1 and red show cohort 2. This of the 
profiles is the proportion of the group in each data category per cohort for the test set. 
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4.8. Discussion  
The main point of this chapter was to establish if KOA could be modelled using survival 

modelling and if this was the case, to see if there was any way to establish risk groups 

within the population. Both of these things were possible. 

Firstly, when considering a follow-up timespan both a seven-year and a five-year window 

were tracked. Although there are merits to the longer follow-up time, given how the data 

differed between the training and test sets the slightly smaller observational window was 

preferred. This was due to the differing in observed survival between the training and test 

sets in the 7-year analysis, which was still present but at a more acceptable level in the 5-

year study. Based on this, any further analysis, such as model validation, will be carried 

out using the 5-year cohort.  

When considering the variables used in each model the five-year had six covariates, 

whereas the seven-year had five. The variables were selected from the same pool and 

contained four, which were consistent: BMI, Gender, Family history of knee problems 

and surgery, and previous knee injury. The extra variable in the seven-year study is does 

the subject have any previous OA diagnosis in other joints in the body, and the extras in 

the five-year study are history of falling and WOMAC score.  

When looking at the stratification curves generated on the model using risk scores, we 

see that BMI is useful in defining risk cohorts. BMI is also helpful in the stratification as 

it gives the option to show how a persons risk of developing KOA may change if the 

subject can change their weight. This type of tool may be useful in clinical settings such 

as at the GP level. It could be used for patient education in people who do not currently 

have KOA but fall into the age bracket where the disease begins to manifest.    

An interesting finding is that the age variable is not present when using feature selection 

in either the five or the seven-year cohorts. This may be due to the other features 

contributing in a more significant way to the onset of KOA. Similarly, other OA diagnosis 

only becomes important in the seven-year cohort suggesting that the longer a person 

suffers with OA in any joint the more at risk they are of developing this is another joint 

elsewhere in the body.  

For the discrete time analysis of the data, the separation of the survival curves due to 

stratification, for both the training and test data is clear. The better smoothness of the 

discrete time fits in Figure 4-51 and Figure 4-52, and the differences with the predictions 
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for continuous time are likely caused by the interval censoring which is better taken into 

account by the use of discrete time intervals.     

The next thing following this will be to validate any of the existing models devised using 

the OAI data with the MOST data. The MOST data is from a similar study to the OAI 

study. Similarly, the OActive data is available to use to validate the existing models, where 

appropriate.  

Following on from this step, I will investigate the way risk is different for males and 

females. To do this I will split the data into male and female, include gender specific 

variables, where applicable, and repeat the process of variable selection and stratification. 

By making use of the variable selection, it will be possible to identify which, if any 

variables that relate to one gender or another are significant to the development of KOA. 

The aim is that stratification will give a high and low risk group for each gender. If this 

was the case, there is the potential to find a more clinically useful way to treat male and 

female subjects, instead of the current blanket approach.   
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Chapter 5: External Model 

Validation for Diagnostic and 

Prognostic Models  
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5.1. Introduction 
In Chapter 3 and Chapter 4, different models have been developed for use in clinical 

settings to assist in clinical decision-making processes. An important step that is required 

before a model is deployed for clinical use is model validation. 

Model validation usually refers to the process in which hyper parameters in a model are 

tuned to improve the model performance, and ensure the best possible results. The 

validation of a model is a process that is also used to verify outputs are as expected and 

therefore confirm the model is robust [137] and it is a vital step in showing that the model 

is less likely to overfit to new data.  

When developing any kind of model with the aim of it being used in industry there is a 

necessity in ensuring that the model is capable of performing well on the data provided, 

not only the data used in the modelling process. Validation confirms that the model can 

be applied to datasets outside of the data scope used in modelling [138]. Having 

undergone validation, the results and analysis are viewed to be more reliable [139].  

Having a validation set to use when developing a model also offers the chance to be able 

to analyse the model performance during development, and where required, make 

improvements to the models ability to generalise [137]. Continuing with this point, using 

a validation set also depicts whether a model has been sufficiently trained so that it can 

accurately and adequately represent the behaviour of the system, disease or mechanism 

being modelled and studied [140], [141].  

In this instance, and throughout this chapter, validation refers to an independent test set 

gathered from an external source. The criteria for an external test set is that the data is 

similar in subject matter but unique from the modelling data. A visual representation of 

this is shown in Figure 5-1.  
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Figure 5-1: Visualisations of different ways to partition a dataset for use in modelling. Configuration A shows the validation set as part 
of the single dataset used for training, validation, and testing. This validation is used to test the model after it has been trained and the test 
set would be for final model evaluation. Configuration B shows only a training and test set, where the test set would be used to evaluate the 
trained model. Configuration C is similar to that of B but makes use of an external validation set. In this instance, validation set refers to 

independent test set from an external data source. The criteria for an external test set is that it is similar but unique from the modelling 
data.  

When selecting an appropriate data cohort for external validation there are certain 

perquisites that must first be checked. The independent dataset must come from a 

population that is comparable to that used for modelling. Comparable data would have 

the same or similar inclusion and exclusion criteria, and include data with the same 

predictor and outcome measures [89]. In the case of the MOST data, used as the external 

validation data in this analysis, the criteria is extremely similar, with the main difference 

being in the age – OAI has subjects aged between 45-79 whereas MOST has subjects 

aged 50-79. There are small differences with the predictor variables but appropriate steps 

to deal with that are discussed in sections 5.2 and 5.3.  

The use of an external validation set is extremely important when considering whether to 

accept a prediction model for widespread use [142]. Generally, a prediction model will 

have good performance when tested on data from the same population that was used to 

train the model, but suffer worse performance when applied to new cases [143]. External 

data can be gathered from either a retrospective study that has already been done, or 

prospectively, by creating a new study and enrolling subjects for validating the model that 

requires assessment [61], [144].  

In this chapter, the retrospective approach was used, with MOST used as the external 

data and OAI being used for model training. The advantage of this is both datasets are 

of a considerable size, but they are also both from the same geographical location [61]. 

To undergo a geographical validation in this instance a UK based dataset would be 

required. This would verify if the US demographic could be applied to the UK for the 

purposes of KOA prediction modelling. Even though the data is from the same location, 
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the USA, there is still debate around how well data from a different place will fit a model 

developed on data from somewhere else, given that the hospitals in this case are different 

for the OAI and the MOST studies [145].  

One study produced a 4 year risk model for predicting the risk of symptomatic KOA 

using logistic regression, but lacked external validation [146]. In many cases related to 

KOA, finding a suitable external validation dataset is not possible [34], [41], [43], [45], 

[54], [56], [57], [147], [148]. However, depending on the research question, the opposite 

can be true [50], [55], [76], [149]–[151].  

One of the aims throughout this work was to make a model that was interpretable and 

easy to use in a clinical environment. In order to do this, interpretable approaches were 

used in the modelling of the data and web based applications were developed for 

accessible use. These user interfaces offer the potential for the tool to double as a clinical 

aid and a resource for patient education. Having the risk model displayed in this way 

allows the patient to easily see and understand the way in which the factors relating to 

their life impacts on their individual risk of having or developing KOA. If the tools were 

to be used as a clinical aid they may help to improve patient flow from query to diagnosis 

and better allow for more in depth investigations, such as targeted x-rays for those who 

are on the borderline of having KOA or those at high risk. Another way that the interfaces 

could serve with clinical use is for patient signposting. Currently, the NHS offer lung 

screening visits to people aged between 55 and 74 who smoke or have previously smoked 

[152]. This initiative helps to detect lung conditions, such as cancer, earlier than they 

would have been picked up, allowing for better disease outcomes and more targeted 

treatments. Having a similar tool in place for KOA may help identify  those at high risk 

of developing the disease in the next five years and allow for more targeted advice to 

those individuals, potentially having a positive outcome in relation to delaying the onset 

of KOA. 

The work in this chapter builds on that from Chapter 3 and Chapter 4 by extending the 

approach to ensure the model can stand up to an external dataset that is independent 

from the training data. The models in this chapter are very similar to those in the previous 

chapters, but may have been subject to minor modifications to be able to validate the 

models with the use of the MOST and OActive datasets.  

The objective in this chapter is to develop and validate a diagnostic and prognostic model 

to determine the presence of KOA at baseline or to calculate if a subject is at high or low 
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risk of developing KOA in the next five years. This work extends the interpretability of 

the models, which can then be converted into web apps that have the potential to be used 

in clinical settings, such as GP surgeries to help streamline both diagnosis and patient 

education, leading to better clinical management and self-perceived quality of life for 

those with KOA.  

Chapter aims 

• Demonstrate the model performance for both the diagnostic and survival models on 

suitable external datasets. 

• Develop web applications for the usability of the validated models in clinical practice. 

5.2. Specifics of the data used in chapter  
In this chapter, data from OAI is used for training and testing, whilst data from MOST 

and OActive are used for the external validation.  

5.2.1. Class Definition 
Clinical KOA in this analysis, as throughout the thesis, is a binary outcome defined by 

the KL score. Scores zero and one are classified as no clinical KOA, and therefore zero. 

A KL score of two or above determines the positive class, clinical KOA, therefore 

classified as one as the binary indicator. These KL grades have been determined by a 

clinician from analysing the X-rays taken as part of the study. This definition is consistent 

across the OAI, MOST and OActive datasets.   

5.2.2. OAI 
For the diagnostic modelling cohort, the sample, including all of the missing values had 

a size of 4796. After removing the subject who have no KL grade leaves a sample size of 

4507. Finally, removing those subjects who have missing values in any portion of the 

variable sets leaves a usable cohort of 2707 subjects in the complete case analysis. The 

OAI data training and test sets have a prevalence of KOA at 40% and 39% respectively. 

The rationale behind a split sample approach was discussed in section 2.7. The summary 

statistics for the diagnostic modelling data are shown in Table 5-1. 

Table 5-1: Diagnostic model summary information of the Osteoarthritis Initiative (OAI). The OAI training data was used to develop the 
models. The variables are listed with the different options each can take. 

Diagnostic Model Data 

Variable 
OAI 

Total Training Set Test Set 
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N = 2707 n = 1353 n = 1354 

BMI 
Less than or equal to 25 754 383 371 

More than 25 1953 970 983 

Baseline 

Symptoms 

No 2042 1028 1014 

Yes 665 325 340 

KPACT30 
No 2068 1031 1037 

Yes 639 322 317 

Knee 

swelling 

No 1970 993 977 

Yes 737 360 377 

Gender 
Male 1250 622 628 

Female 1457 731 726 

Difficulty 

Upstairs 

No 1352 660 692 

Yes 1355 693 662 

Age 

45 – 50 years 373 184 189 

50 – 55 years 572 281 291 

55 – 60 years 457 232 225 

60 – 65 years 402 195 207 

65 years or over 903 461 442 

Knee 

Stiffness in 

the past 30 

days 

0 days 2069 1032 1037 

1 – 7 days 289 152 137 

8 – 14 days 118 59 59 

15 – 21 days 114 58 56 

22 days or more 117 52 65 

KL status 
KL < 2 1627 806 821 

KL 2+ 1080 547 533 

 

For the prognostic modelling, only subjects with no baseline KOA and at least one follow 

up measurement could be included, as this approach considers the time to change state 

from no disease to active KOA. Removing any subjects that had KOA at the baseline 
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assessment and did not meet the follow-up filter leaves a sample of 2314 subjects. These 

subjects had no OA, in other words, a KL score of 0 or 1 at baseline. Considering basic 

demographic features for subjects where there are no missing values, the usable subject 

cohort is comprised of 2136 subjects. Filtering out any subjects with the event of interest 

outside of the 5 year cut off results in a sample size of 2005 subjects. The variables for 

the prognostic model, along with the summary statistics are shown in Table 5-2. 

Table 5-2: Prognostic model summary information of the Osteoarthritis Initiative (OAI). The OAI training data was used to develop the 
models, while the test set provided a level of internal performance evaluation. The number in round brackets on the WOMAC row is the 

median value for that variable. 

PROGNOSTIC MODEL DATA 

VARIABLE 

OAI 

Total 

N = 2005 

Training 

Set 

n = 1002 

Test Set 

n = 

1003 

BMI 

Less than 25 644 329 315 

25 – 29.9 814 409 405 

30+ 547 264 283 

FAMILY 

HISTORY 

No 1601 800 801 

Yes 404 202 202 

EVER INJURED 

KNEE 

No 1239 621 618 

Yes 766 381 385 

HISTORY OF 

FALLING 

No 1341 624 717 

Yes 664 378 286 

GENDER 
Male 895 373 522 

Female 1110 629 481 

WOMAC 0-82 (6.8) 0-71 (8) 0-82 (5) 

KOA  
Censored 1839 913 926 

Develop KOA 166 89 77 

 

5.2.3. MOST  
The data from MOST for the diagnostic model validation was prepared in the same way 

as for the OAI data. All subjects were required to have no missing values for the variables 

present and an initial KL grade from the baseline assessment. The only difference for the 

MOST data is that one variable, knee_swell, was not present in the dataset. Therefore, to 

establish predictions from this data including this covariate, we marginalised over the 

other variable combinations and produced predictions. The MOST validation set 

prevalence is at 60%, which is higher than that used to train the model. The summary 

statistics for the diagnostic model validation data are shown in Table 5-3.   
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Table 5-3: Diagnostic model summary information of the Multicentre Osteoarthritis Study (MOST) datasets. The MOST data was used 
as external validation. The variables are listed with the different options each can take. As the knee swelling data is missing in the 

MOST dataset, the predictions are marginalised over the OAI data to find outcomes that match the cases for the other variable 
combinations. The number in brackets represents the number per variable after marginalisation has taken place. 

Diagnostic Model Data 

Variable 

MOST 

N = 2006  

After Marginalisation n = 831 

BMI 

Less than or equal to 

25 

792 (68) 

More than 25 1214 (763) 

Baseline 

Symptoms 

No 439 (139) 

Yes 1567 (692) 

KPACT30 
No 167 (142) 

Yes 1839 (689) 

Knee swelling 
No NA 

Yes NA 

Gender 
Male 742 (298) 

Female 1264 (533) 

Difficulty 

Upstairs 

No 136 (30) 

Yes 1870 (801) 

Age 

45 – 50 years 108 (45) 

50 – 55 years 416 (198) 

55 – 60 years 350 (151) 

60 – 65 years 390 (166) 

65 years or over 742 (271) 

Knee Stiffness in 

the past 30 days 

0 days 1242 (144) 

1 – 7 days 266 (251) 

8 – 14 days 76 (55) 

15 – 21 days  104 (91) 
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22 days or more 318 (290) 

KL status 
KL < 2 792 (272) 

KL 2+ 1214 (559) 

 

In the same way as for diagnostic model, the prognostic model was validated using the 

MOST dataset. Similarly, to the data for the diagnostic cohort, the prognostic variable 

subset contained missing values. The missing values were only present in three variables. 

Therefore to work with the MOST data, and retain a cohort of a meaningful size, 

imputation was required. To impute the data, filling in the missing values to ensure a 

sufficiently sized dataset mean imputation based on the training data was used. For the 

imputation in the MOST data, the family history imputation is ‘No’, along with the history 

of falling, and the imputation for the WOMAC score given as a value of 8, the mean of 

the group. The rationale behind the imputation approach is discussed in Chapter 2, 

section 2.5, and later in this chapter, in section 5.3. The summary of the prognostic data, 

along with the effect of the imputation are shown in Table 5-4. The amounts of NA 

values are shown in square brackets next to the value they are imputed to. The family 

history imputation is ‘No’, along with the history of falling. For family history, there are 

352 cases where the imputed value is recorded and history of falling has 1003 cases 

imputed. The imputation for the WOMAC score is shown in italics, with a value of 8 and 

this was used in four cases. The number in round brackets on the WOMAC row is the 

median value for that variable, which is 10. 

Table 5-4: Prognostic model summary information of the Multicentre Osteoarthritis Study (MOST) dataset. The MOST data was used 
as external validation. The variables are listed with the different options each can take. To ensure a usable sized dataset NA values are 

present in the MOST cohort. The amounts of NA values are shown in square brackets next to the value they are imputed to. The family 
history imputation is ‘No’, along with the history of falling. The imputation for the WOMAC score is shown in italics, with a value of 8. 

The number in round brackets on the WOMAC row is the median value for that variable. 

Prognostic Model Data 

Variable 
MOST 

N = 1155 

BMI 

Less than 25 234 

25 – 29.9 478 

30+ 443 

Family History No 328 [352] 
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Yes 475 

Ever Injured Knee 
No 671 

Yes 484 

History of Falling 
No 130 [1003] 

Yes 22 

Gender 
Male 693 

Female 462 

WOMAC 
0-82 [4 8] 

Median:(10)  

KOA  
Censored 1004 

Develop KOA 151 

 

5.2.4. OActive  
The data from OActive can only be used on the diagnostic model validation as there are 

no follow-ups after the initial visit. All subjects were required to have no missing values 

for the variables present and an initial KL grade from the baseline assessment. As the 

model was built using data from the OAI dataset, it includes variables that are not present 

in the OActive data. To use the data for predictions, we marginalised over the other 

variable combinations and produced predictions based on these. The common variables 

are shown in bold in Table 5-5.  

Table 5-5: Variables in the OAI risk model for Propensity of Presenting, with those in bold highlighting the variables that are not 
present in the OActive dataset.  

Diagnostic Model Data 

Variable 

OActive 

N = 233 

Useable cohort n = 206 

BMI 
Less than or equal to 25 40 

More than 25 166 

Baseline 

Symptoms 

No NA 

Yes NA 
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KPACT30 
No NA 

Yes NA 

Knee swelling 
No 135 

Yes 71 

Gender 
Male 60 

Female 146 

Difficulty Upstairs 
No NA 

Yes NA 

Age 

45 – 50 years 30 

50 – 55 years 29 

55 – 60 years 29 

60 – 65 years 27 

65 years or over 31 

Knee Stiffness in 

the past 30 days 

0 days NA 

1 – 7 days NA 

8 – 14 days NA 

15 – 21 days  NA 

22 days or more NA 

KL status 
KL < 2 72 

KL 2+ 134 

 

The variables missing were marginalised. To do this, each subject in the OActive data set 

was categorised into one of the 8 combinations of the binary variables in the model 

(Knee_swell, Gender, and BMI overweight) and 5 Age bands, 40 possibilities in all, and 

the predictions of the OAI model were averaged over the training data filtered into the 

same combination. 

The mean model predictions for the specific values of the four variables present in each 

row in the data were then used to calculate the AUROC for the OActive data (n=206). 

The OActive data cohort is created as described in Figure 5-2. 
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Figure 5-2: Visualisation of data cohort creation. 

5.2.5. Pre-Processing 
The type of data used in this analysis combines clinical factors, demographic features, 

self-reported symptoms, and self-reported physical activity data. The clinical and 

demographic variables include the age, gender, and BMI of the individual, along with 

information of family history and previous injuries to the knee. The self-reported data set 

comprises subject’s answers to questionnaires relating to their symptoms and how they 

are impacted, recorded at the first presentation meeting. In a similar approach to the self-

reported features, the self-reported physical activity data set consists of answers on 

questions about how much exercise they take and how this impacts them.  

For several features in the original data, more than one column is relevant. To streamline 

the analysis, and future usability in a clinical setting, we have taken the approach of 

defining new variables that incorporate the existing ones in a single feature. One such 

example is for the created variable knee_stiff_day_limit. This looks at how many days in 

the past 30 a subject has experienced knee stiffness severe enough to limit activity. Several 

original variables looked at various activities individually, so this approach removes 

repetition by taking the most severe measure for a subject across all variants of activity. 

In this situation, if a single variant contains a missing value, the present values are the 

only ones considered. If all are missing, the consolidated variable is also recorded as 

missing. 

The cohort considered in this analysis was only subjects without any missing values for 

the selected variable set. This is a complete case analysis [153]. In the preliminary steps 

of the analysis, not detailed in this chapter, a complete case and imputed analysis were 

used and compared. 

5.3. Study Design 
To validate and ensure that these models were not overfitting to the OAI data used to 

train them, we used the MOST and OActive data to validate the results.  

The MOST data was collected from different centres than those used in the OAI study 

so this helps to determine if the model is able to avoid institutional bias. This helps to 

Total data:      
n = 357

Subject with 
KL outcomes: 

n = 269

Remove 
younger than 
45 Remaining   

n = 233 

Remove NA Left 
with useable 

cohort: n = 206
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assess if the model can be used outside of the bounds from which the data was collected, 

and also contributes to showing that a prediction model is more suitable for use in clinical 

practice [29]. The validation set for the diagnostic model before marginalisation is 2006 

subjects, whilst the validation set for the prognostic model is 1155 subjects.   

The OActive data was collected from three centres across Europe. Each centre focused 

on a different subject group. This information is detailed in Chapter 2, section 2.4. The 

OActive data is only suitable for diagnostic validation, and has a useable cohort size of 

233 subjects for model validation.  

For the diagnostic model, the variable knee_swell was missing from the MOST dataset, 

and knee_stiff_day_limit, Diff_upstr, P01KPACT30 and B.Line_Symp were missing 

from OActive. To combat this we marginalised over the existing variable combinations 

and produced predictions based on those from the OAI training data. After doing this, 

some samples were lost due to incomplete matching where the variable combinations in 

the MOST and OActive data did not have a corresponding combination in the OAI data 

that was used in the marginalisation. As a result, the sample size is reduced from 2006 to 

831 subjects in the MOST data and from 233 to 206 subjects in the OActive data. A large 

sample size helps to decrease uncertainty and increase precision. Sample size is crucial in 

ensuring quality research. Large sample sizes allow for better averaging of values and 

helps to avoid errors that come with small samples. A standard sample size in many 

domains is less than 100, so data larger than this there are higher levels of replicability, 

therefore although the sample size has been reduced it is still big enough to have the 

benefits of a large sample size. This process is described in Algorithm 1. 

ALGORITHM 1: USING MARGINALISATION TO RETAIN SAMPLE SIZE FOR THE 

MOST AND OACTIVE VALIDATION COHORT 

1 Preliminary Step: Train the model using the OAI complete case training data and store 

the predictions 

2 Input: OAI Training data predictions  

3 Output: A usable marginalised dataset with corresponding predictions  

4 For each categorical variable combination 

5  Filter corresponding predictions from the OAI training predictions 

6  Calculate the mean value for the filtered predictions, train_mean 

7  In all rows that meet the conditions input train_mean as the corresponding prediction 
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8 End 

9 Remove any instance with no predicted value due to not meeting the criteria for 

marginalisation, as they had no corresponding cases. 

Algorithm 1: The pseudocode describing how the marginalisation of the MOST and OActive data took place using the OAI data to 

calculate predictions. 

Marginalisation is a good method to use to deal with missing values in this case as it allows 

us to make use of data that would otherwise not have been suitable due to missing 

variables from the whole cohort in the data. The approach works by imputing the missing 

values for cases where a matching set of features is available with a prediction from the 

training data that is then identified by case matching corresponding variable 

combinations. This method assumes that the population of both the data used for 

imputing, in this case the OAI training data, and the data being imputed, either the MOST 

or the OActive data, have the same population structure, which could introduce bias into 

the model. However, as complete case analysis has been used throughout this thesis, 

marginalisation is good as this approach only imputed for values in which the whole 

variable contains missing information, for example knee_swell in the MOST dataset. This 

allows the use of an otherwise unusable dataset for model validation.  

For the prognostic model validation, again those with KOA at baseline were removed 

from the analysis. Date filtering also removed subjects whose event fell outside of the 5-

year cut-off. Imputation of missing values with mean predictions calculated from the 

training set resulted in a sample size of 1155 subjects. 

Validating the models with the use of an external dataset further helps to verify that the 

results have the potential to be adapted for use in clinical decision making processes, as 

the models are not biased to the training data [142]. 

5.3.1. Diagnostic Model  
The model used in the diagnostic analysis was logistic regression. The logistic regression 

approach was chosen after considering alternative analysis methods [78]. This method is 

preferred by clinicians as it mimics their own decision making process.  

The goal for the logistic model is to determine, based on eight features relating to a 

subject, whether they are likely to have KOA and therefore require further investigations 

into their symptoms. The presence of clinical KOA, KL grade 2 or above is the outcome. 

The model was trained and tested using the OAI data with 1353 and 1354 subjects 

respectively.  
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5.3.2. Prognostic Model 
The prognostic analysis uses Cox regression to model how the covariates jointly 

influences the probability of the subject developing KOA. After modelling with Cox, we 

created cohorts by risk stratification, to highlight the criteria for being at low and high 

risk for developing KOA in 5 years from the baseline assessment. To stratify the group 

into cohorts the first step is to establish a cut-point that provides the largest separation 

between subjects. The stratification method is explained in Chapter 4, section 4.4.7. This 

is done with a model containing five variables from the subjects’ initial assessment.  

The groups used to model this analysis are taken from the original OAI data but removing 

subjects with KOA at their initial assessment. The model was then trained and tested on 

1002 and 1003 subjects from the OAI dataset respectively. 

5.3.3. Experimental Set-Up 
Logistic regression and Cox regression were optimised with AIC calculated from the test 

data. All data pre-processing, analysis and subsequent app construction were 

implemented in R. The logistic regression model uses the built in functions for the 

analysis in base R. For the prognostic modelling the packages used are survival [154], 

survAUC [155] and survminer [156]. The example web-based application was 

implemented with the shiny [157] package, a Web application framework for R.  

5.3.4. Measure of Performance  
The receiver operating characteristic curve (ROC curve) is a plot that graphically indicates 

the ability of a model to correctly classify binary outcomes as a threshold is altered. The 

area under the curve (AUC) is equal to the probability that a classifier will rank a random 

positive instance higher than a randomly chosen negative one [98]. In the AUC a value 

of 0.5 indicates a guess, with greater than this being deemed better than a guess, and lower 

than 0.5 being worse than a guess. The AUC and confidence intervals are calculated using 

the package pROC [158]. The AUC is calculated using the trapezoidal rule and the 95% 

confidence interval using 2000 stratified bootstrap replicates.  

Sensitivity, specificity, and positive predictive value (PPV) are all statistical measures of 

the performance of binary classification tests. The sensitivity measures the proportion of 

actual positives that are correctly identified. The specificity measures the proportion of 

actual negatives correctly identified. The PPV measure looks at the amount of correctly 

classified subjects out of the whole group of disease class predictions. In this analysis, 

these measures are calculated with the caret package [159]. 
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5.4. Results from Analysis 
5.4.1. OActive Validation on OAI Model 
For the OActive validation, summary statistics for the diagnostic model are listed in Table 

5-6, and the ROC curves are in Figure 5-3. The table also includes the information from 

the OAI training and test results. The results from the OAI data, both training and test, 

are consistent with the model from Chapter 3. The OActive validation data suggests that 

the model performs well using this data, with a high AUC and specificity. The low 

sensitivity indicates that for the OActive data a large amount of positive cases are missed. 

The validation results have high AUC due to the high level of missingness and the use of 

marginalisation from the OAI predictions, there is likely bias in the data resulting in such 

a high AUC.  

Table 5-6: Summary statistics for the diagnostic model. 

Measure OAI – Training OAI – Test OActive 

Validation 

Sensitivity 0.4790 0.5197 0.4925 

Specificity 0.8511 0.8490 1.0000 

PPV 0.7629 0.7748 1.0000 

AUC 

(CI) 

0.7415 

(0.7146-0.7683) 

0.7475 

(0.7209-0.7742) 

0.9273 

(0.8938-0.9608) 
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Figure 5-3: ROC curves for the OAI training and test models, and the OActive validation model. The AUC for each curve is listed on 
the curve. 

The results from the OActive validation suggest that this data is a good fit for the model. 

However, it is important to consider that only 4 of the model variables are present in the 

OActive dataset, leading to the need for marginalisation over the OAI predictions in 

order to be able to fit the OActive data to the model. This could lead to bias being fed 

into the data, due to the small number of predictors in the model because the OActive 

data only has four of the original variables, resulting in such a high AUC.  

In the OActive data, there is a high number of subjects who have been misclassified, as 

there are 68 cases when a subject with KOA is predicted to not have the disease out of 

the sample of 206 subjects. There is a level of misclassification in the OAI data also, with 

388 subjects of the 1354 receiving a prediction that does not match with the diagnosis. 

Of the 388 misclassified cases, 261 are deemed to have no KOA when they do, in fact, 

have KOA. Looking closer at the OAI test data gives an insight at the way the model 

predicts, and using the test data, it is possible to consider how all covariates, even those 

not present in the OActive data contribute to the final prediction. The information shown 

in Table 5-7 considers only the cohort that have been misclassified as no KOA when 

there is evidence via x-ray that the subject has KOA. 
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Table 5-7: A table detailing the way the 261 OAI  subjects were misclassified and the overall impact this had on the model when applied 
to the OActive data. 

Cohort Insight 

143/261 No issue getting upstairs 

212/261 No reported knee swelling in last 7 days 

257/261 No pain/swelling/stiffness on the day of the baseline assessment 

(baseline symptoms) 

222/261 Made no changes to their activity in the last 30 days as a result of knee 

pain 

222/261 Not had to limit their daily activity due to knee stiffness 

192/261 Have a BMI 25+ 

140/261 Are women. 

 

Based on this finding, it is possible that the discrepancy between diagnosis and prediction 

when using the OActive data falls in the group of symptomatic vs radiographic knee 

osteoarthritis. Symptomatic OA is when a person experiences symptoms, such as joint 

pain, aching and stiffness. Radiographic OA is found by observing features on an x-ray 

that suggest OA development. It is possible to have symptomatic OA without 

radiographic OA and vice versa. Up to 60% of people with radiographic KOA may not 

complain of symptoms [160]. Sometimes, the lack of symptoms are backed up with less 

severe radiographic OA. 

As the OActive data does not contain all of the same variables as the OAI data, several 

assumptions relating to the predictions are made. By only considering gender, BMI, age 

and the presence of knee swelling, other symptoms can be left out entirely from the 

prediction model.  

The only symptomatic variable present in the subset of the OActive data is knee_swell. 

This is self-reported and asks if the subject has experienced knee swelling in the last 7 

days. Of the 68 subjects that have been misclassified from the OActive data, 63 subjects 

presented with no knee swelling in the previous 7 days. This may be an influential factor 

in the model determining between KOA and no KOA. It is worth noting that the 

variables that are not present in the OActive subset might make the difference in changing 

cases that were misclassified to class 1, as they hold predictive information about the 

subjects. Because of this, one limitation using the OActive data is that the model can 

identify symptomatic KOA, but not radiographic KOA.  
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5.4.2. MOST Validation on OAI Model  
Summary statistics for the diagnostic model, for training, test and validation are listed in 

Table 5-8, and the ROC curves are in Figure 5-4. The interesting results are that the 

MOST data performs quite well on a model developed using the OAI data. The MOST 

results have a high sensitivity, meaning that the model identifies about 90% of all KOA 

cases.  

Table 5-8: Summary statistics for the diagnostic model. 

Measure OAI – Training OAI – Test MOST 

Validation 

Sensitivity 0.4790 0.5197 0.9052 

Specificity 0.8511 0.8490 0.2353 

PPV 0.7629 0.7748 0.5421 

AUC 

(CI) 

0.7415 

(0.7146-0.7683) 

0.7475 

(0.7209-0.7742) 

0.6697 

(0.6311-0.7082) 

 

 

Figure 5-4: ROC curves for the OAI training and test models, and the MOST validation model. The AUC for each curve is listed on 
the curve. 

The odds ratios, modelled on the OAI data, described in Table 5-9, are against the 

reference category for each variable. These are namely B.Line_SYMP (no knee pain 

exhibited on the day of the baseline assessment), AGE_bins (participants aged 45 – 50), 
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BMI_bins (any subject whose BMI was 25 and over), Gender (male participants), 

Diff_Upstr (no difficulty in getting up stairs), KPACT30 (not modifying activity from 

knee pain in the past 30 days) and Knee_Stiff (0 days of stiffness in the past 30). Within 

Table 5-9 the odds ratios for knee_stiff are close to zero, meaning that the variable does 

not contribute significantly to the outcome. The large confidence intervals show that the 

variable is not a significant contributing factor to the likelihood of having KOA at the 

point of first presentation. This could be, in part, due to the loss of data following 

marginalisation and the removal of cases without matching covariates from the OAI 

training data. The variable missing from the MOST data was diff_upstr but due to 

incomplete case matching the removal of subjects resulted in a loss of information from 

the Knee_stiff variable. 

Table 5-9: Coefficients of Logistic Regression 

 
Odds Ratio 

95% CI 

Lower Bound 

95% CI 

upper Bound 

Intercept 0.259484 -0.14104 0.66001 

Age 50 – 55  1.108447 0.670269 1.546625 

Age 55 – 60 1.628192 1.181567 2.074817 

Age 60 – 65 2.011177 1.550577 2.471777 

Age 65+ 2.206814 1.80766 2.605968 

BMI BMI less than 25 0.505044 0.220021 0.790067 

B.line_symp Yes 4.796757 4.493741 5.099773 

Gender female 1.317505 1.069937 1.565073 

kpact30 yes > 100 > 100 > 100 

diff_upstr yes 1.097473 0.838753 1.356193 

Knee_stiff 1 – 7 days of stiffness  ~0.00a -636.498 636.4978 

Knee_stiff 8 – 14 days of stiffness ~0.00a -636.498 636.498 

Knee_stiff 15 – 21 days of stiffness ~0.00a -636.498 636.498 

Knee_stiff 21+  days of stiffness ~0.00b -636.498 636.498 
a The values for are 0.000001, therefore approximate to 0.00 to 2 decimal places 

b The values for are 0.000002, therefore approximate to 0.00 to 2 decimal places 

As the data for the prognostic model differs from that in the diagnostic model, the 

training and test sets are also different. The training set and test set comprise of 1002 and 

1003 subjects respectively. The external validation set contains n = 1155 subjects. The 

Kaplan-Meier curve in Figure 5-5 shows lines that represent the full cohort, training, test, 

and MOST validation data. This shows that the training and test samples are a reflection 

of the whole cohort, including that used for the validation as when shown with 
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confidence intervals, they overlap, meaning that the difference between the OAI and 

MOST datasets are not statistically significantly different. 

 

Figure 5-5: Observational KM curve stratified by sample. The red depicts the OAI training sample and the green shows the OAI test 
sample. The blue curve is the MOST validation data. The tables below illustrate the way in which the data is split between the samples. 

To ensure the modelling of the variables is appropriate for the assumptions made about 

proportional hazards, testing is carried out. The results from these investigations show 

that all of the covariates, along with the model as a whole, follow the proportional hazards 

assumption. 

The next step in the analysis is to see if there are groups within the cohort, displaying 

different risk profiles. For example, to determine if there is a high and low risk group, 

and to establish what the criteria is for inclusion in each group. To stratify the group into 

cohorts the first step is to establish a cut point that gives the biggest separation in the 

subjects.  

Figure 5-6 shows the stratification curves on the OAI training data for the raw data and 

the predictions produced on the MOST validation. The last event recorded in cohort 2 

on the training data within the 5-year span is at day 1642. The stratification curves 

produced are well separated with no crossover on the confidence intervals, which 

indicates that on unseen data the well-separated groups hold true.  
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Figure 5-6: Stratification curves on the left showing OAI training data showing the high and low risk cohorts. Note the last event recorded 
in cohort 2 within the 5-year span is at day 1642. The stratification curves on the right are the validation data showing the high and low 

risk cohorts fitted to the models developed using the OAI data. 

For the model to have clinical value, the findings of the two risk cohorts need to be 

translated into human terms. For example, how the features influence that individual in 

relation to which risk group they will belong. The proportions are shown in Figure 5-7. 

The proportion plots are useful as they can be used easier to profile the groups in each 

cohort. For example, in Cohort 2 the majority of the subjects are female, all with a BMI 

over 25, and the majority have had previous knee injuries and a history of falling. The 

majority of the people in Cohort 2 have no family history of knee problems, which could 

mean that those who were aware of the issues with their family history of OA had already 

made changes to their behaviours and this helped with prevention or delay in developing 

KOA. When calculated, the AUC for the survival analysis for the OAI test set is 0.74 

(0.7325 – 0.7439) and that of the MOST data is 0.72 (0.7190 – 0.7373). 
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Figure 5-7: The cohort profiles per variable for the different strata. The red bars show cohort 1 and green show cohort 2. This representation 
of the profiles is the proportion of the group in each data category per cohort, graphs A-F are for the training set, and G-L are for the 

validation data. 

For the prognostic and diagnostic OA prediction models to be useful in a clinical setting 

they need to be user friendly, and implemented in a digital format such as a web based 

app. Both the diagnostic and prognostic apps are shown in Figure 5-8 and Figure 5-9 

respectively.  
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Figure 5-8: Diagnostic web app interface built in R Shiny. The app has multiple-choice options to allow the user to input variables that 

provide a probability of the participant having KOA based on the provided symptoms. 
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Figure 5-9: Prognostic app interface built in R Shiny. The app has multiple-choice options that relate to symptoms linked to the 
progression from a disease free state to KOA onset. The app also includes the option to link to the WOMAC questionnaire, should the 

participant not know their score. 

5.5. Discussion  
Both the prognostic and diagnostic models stood up to external validation with the 

MOST data. The OActive external validation on the diagnostic model did not produce a 

meaningful result due to the amount of missing variables in the data.  

The success with validating on an external dataset, such as MOST, helps to ensure that 

the model has not overfit to the training data. By having data in the OAI study come 

from different centres and using validation data that was collected from different sources, 

we have greatly reduced any chance of the model overfitting to the noise in the data. The 

approach of using observational features to determine the probability of presence and 

likelihood of onset of KOA has not been considered before in this way, as this approach 

uses a selection of variables from different domains about an individual.  
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The OActive data is collected across three centres where recruitment criteria differed 

greatly. This had an implication on the number of cases present in each centre. In the 

cases for the centre UNIC, 62 subjects should be predicted to have KOA, and the model 

has predicted no KOA. Similarly, HULAFE had five cases that should be KOA and the 

model has predicted no KOA. Those subjects who were misclassified are likely to not 

suffer with symptoms, based on the small amount of data available, and therefore would 

not have symptomatic KOA, only radiographic KOA.  

The use of decision support tools in clinical situations has filtered into many different 

areas. A 2012 review showed that the implementation of decision support systems were 

greatly effective at improving the processing for which they were create [161]. Decision 

support tools are used frequently when related to cancer. For example, Adjuvant! is a 

computer program developed in 2001 to allow health professionals and patients to make 

informed decisions about treatment [162]. This application was for use once a patient had 

a cancer diagnosis but helped to provide useful insight for the patient into the steps 

involved in decision making related to their care. A similar application was produced by 

the International Ovarian Tumour Analysis. This app is for clinician use, helping to 

determine if a tumour is benign or malignant. There have been two versions of this app 

with different rules created. One version was created in 2008 and uses six predictors in 

the model [163]. The later version of the app, from 2016, calculates a risk of malignancy 

in tumours, using the original model as a base that was modified [164]. Apps such as 

those, including the one  developed for KOA in this work, (see Figure 5-8 and Figure 

5-9) can be used in GP practices when a subject has symptoms or as part of screening to 

help educate the subject about their risk. 

When looking at the area of knee osteoarthritis, survival modelling has predominantly 

focused on progression from an arthritic state to joint replacement. One example of this 

examined the importance of cartilage defects in older adults in relation to progression to 

knee replacement [115]. A similar study investigated the incorporation of radiographs 

when predicting the likelihood of total knee replacement within 9 years and the final 

Kellgren-Lawrence grade [116]. Some studies focus on the likelihood of developing KOA 

following certain treatment courses. For example, one such study examined the risk of 

requiring knee replacement surgery following treatment with intra-articular corticosteroid 

injections [117]. A similar study found that the use of intra-articular corticosteroid 

injection increases the risk of KOA progression [118]. Joint space narrowing was also 
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studied as an outcome in survival modelling in patients with known symptomatic OA 

[119] showing that once radiographic changes were visible then the risk of progression in 

OA was significant. This is where the prognostic modelling approach in this chapter 

differs, as it takes the subjects with no initial KOA and tries to identify those at a higher 

risk of developing the disease in a five-year follow-up window. This offers the chance to 

target healthy, at risk, individuals before the onset of KOA, and delay the onset of disease 

and also having the potential to reduce costs to the healthcare providers as treatment 

interventions may not be required as frequently as a result of educating the individual 

about their risks. 

When considering the OAI models with OActive validation, we have developed two 

models: one for diagnosis of radiographic KOA and the other for progression from a 

disease free state to radiographic KOA in a five-year time span. The models were 

developed specifically for radiological KOA, assigned by a clinician with a KL grade. 

When modelling we have removed the potential for repeated measures as our model 

considers only the worst case for symptoms and outcomes. We also removed the risk of 

bias by imputation through having a complete cases analysis. The reasoning for this is 

discussed earlier in Chapter 2, section 2.5. The progression model defines a high and low 

risk cohort for developing KOA over a five-year window. While we considered KOA as 

a binary variable, future modelling could consider more granular changes in KL grade. 

Finally, when looking at the model performance, the 2016 model from [165] uses ANN 

and LogR, and on the externally validated data their ANN AUC is the same as our LogR 

AUC, which outperforms the AUC of their externally validated LogR model [165]. Also 

worth noting is that both their model and our models’ internal AUC scores were roughly 

equivalent for our model and the PLOS One model [165]. 

One approach to consider for further expanding the model would be to use UK-based 

data and validate the model built on the OAI data [61]. This would be a useful way to 

check that models built with different demographics do translate to different populations. 

This would also externally validate the model for the UK population. 
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Chapter 6: The influence of 

gender when considering 

diagnostic modelling of knee 

osteoarthritis.  
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6.1. Introduction 
About 50% of the global population is female yet in many areas, including medicine; 

women are often considered as inferior versions of men [166]. This idea dates back as 

early as Greek times, when Aristotle made reference to a female being a mutilated male 

[166], and in many ways this in western medical culture this view had remained. Published 

studies from the 1970’s and 1980’s on the use of aspirin to prevent heart attacks are 

examples of clinical trials that exclusively recruited men, where the conclusions did not 

hold true for women [167]–[169]. Despite many publications since that have urged the 

inclusion of females in clinical trials and for analysis to be conducted on populations by 

sex, this is still not always the case [170], [171]. Prior to 1993, when the Women’s Health 

Equity Act was passed which gave women the opportunity to participate in medical 

studies, there was no research into conditions that are prevalent to women’s health [172], 

[173]. 

In medical diagnosis there is a known phenomenon wherein there is a discrepancy in the 

way male and female pain is treated [174]. There are many cases where females are 

dismissed or told that they are imagining the problem, because not all illness and disease 

manifest identically in males and females [175]. Where diseases have physical symptoms 

many also have psychogenic symptoms, and many of these symptoms such as depression 

and anxiety, are conditions themselves [175]. Given that females are more likely to suffer 

from these conditions it is not shocking that in America they are twice as likely as males 

to have a diagnosis of depression or anxiety [176]. The societal idea that males are stoic 

and can handle situations whilst females are at the mercy of their emotions may have fed 

into the over diagnosis of depression in females and an under diagnosis in males [177]. 

Therefore, prevalence rates may have been partially influenced by this idea. Studies from 

the 1990’s have shown that of the females diagnosed with depression as many as 30-50% 

were misdiagnosed [178].  

Many females also experience a delay in receiving a diagnosis when compared to males. 

On average, it takes longer to diagnose females with the same condition as a male for 

many reasons including the disease manifesting differently [179]. One example is that it 

takes an average of 12 months for males to be diagnosed with Crohn’s disease and 20 

months for females [175]. 

 Differences by sex can be and are significant. Researchers have found differences due to 

gender in every tissue and organ system in the human body [180], as well as differences 
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in the way diseases affect people of different genders [181]. There are differences in the 

mechanical workings of the heart that are due to gender [182]. This may help to explain 

why heart attacks in women are different from those in men [183]. 8% of the population 

have autoimmune diseases [184]but about 80% of those affected are female [185]. 

Researchers have a theory that the immune system in women is ‘heightened’ to protect a 

developing foetus [186], meaning that at times it can overreact and attack the body [187]. 

It may be because of this that women typically have higher antibody responses to vaccines 

and suffer more frequent and adverse reactions than males [188]. A 2014 study suggested 

a need for developing gender specific versions of the influenza vaccine [188]. Gender-

neutral doses for the majority of medication including anaesthetic and chemotherapy 

continues to put women at risk of overdose [169], [189]. 

There is a known issue with treating every subject, male or female, as a generic subject. 

Examples of this type of gender bias are not only prevalent in medicine but reach out to 

other areas, with things such as how PPE is made and the average office temperature, 

with females ‘suffering’ in both of these scenarios. In many cases, the models that are 

used in medical settings have been trained in unevenly represented populations, with the 

demographics of the data leaning toward male dominance.   

It is known that the prevalence, incidence and severity of osteoarthritis differ in women 

and men [190], with women more likely to suffer than men [191]. Women aged 50-60 

may be 3.5 times more likely to develop osteoarthritis than men in the same group [192].  

In addition to this, women are 40% more likely to develop KOA than men [193], and are 

also more likely to experience more severe knee osteoarthritis [191], [194]. Typically, 

when women present to a clinician with OA they are in the advanced stages of disease 

and are suffering from more debilitating pain [195]. It has been noted for many years that 

there are significantly higher number of women with symptomatic disease than their male 

counterparts [196]. However knowing that there is a higher incidence in women than men 

has not triggered a study to investigate the cause for the difference in presentation and 

development of the disease [195].  

Despite no definitive reason for these differences, there has been some speculation 

around the causes [197]. Hanna et al. [198] suggests that the differences in male and 

female anatomy may contribute to the differences in disease manifestation. Bone density 

and size differences may contribute to the way in which men and women develop KOA. 

It has been found that at baseline, women are more likely to have higher numbers of 
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cartilage defects and then go on to suffer increased loss of cartilage than men, resulting 

in women being more likely to have an increased risk of developing defects of the 

cartilage; a risk factor and sign of KOA [199].   

Kinematic difference between males and females may also contribute to the development 

in women [195], [200]–[204]. Female athletes load their joints with additional stress which 

can increase the risk and likelihood of developing KOA [195]. Women’s knees have 

muskoskeletal differences which can also affect loading and wear [205], [206]. In addition 

to this, the way that injuries are managed and followed up can also contribute to the 

development of KOA [207]. Damage to the anterior cruciate ligament (ACL) and 

subsequent injuries that follow from this can lead to OA in both men and women [208], 

[209]. However, it is also known that women are more likely to damage the ACL [195]. 

Based on a study by Chu at al deploying early arthritis interventions following ACL 

damage may have the potential to positively impact the health of both men and women 

and their knees, further reducing disease burden on women who are at a greater risk [207].  

Among the other factors that contribute to the onset of KOA, hormone levels have a 

role in disease development. A woman’s susceptibility to OA may be related, in part, to 

hormone levels [210]. After the menopause, women are at an increased risk of developing 

OA. This has been linked to a drop in oestrogen, as there are oestrogen receptors present 

in cartilage [211].   

The work in this chapter build on the existing models from Chapter 3 and the models 

that have been successfully validated by the MOST data, described in Chapter 5. The aim 

of this adaptation in the modelling process will consider the role that gender plays in the 

diagnosis of subjects with KOA by trying to expand on the existing knowledge relating 

to the disease diagnosis in males and females. By considering the model without gender 

as a variable we can establish whether a global model, with and without gender, is suitable 

for the whole population, or if there is a benefit for considering male and female subjects 

separately, with gender specific  variables available for inclusion into the model.  

Chapter aims 

• Establish whether the global model performs equally as well for males and 

females when considered separately, as well as when gender is excluded from 

the model. 

• Determine whether the introduction of gender specific variables alters the 

model for both the male and female cohorts. 
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6.2. Study Design 
When looking at how best to implement the models to consider gender three approaches 

became apparent. 

The first approach is to split the original data pool by gender. Take the original pool of 

variables and build a model for each gender. Use the respective data test sets to assess the 

performance of the model. Finally, develop a ‘comparative’ model with all subjects, not 

including gender as a variable, to assess the global model performance. The model 

performance between the global model and the separated models can be compared to 

determine whether gender is influential when predicting the presence of KOA.   

The second approach starts the same as the first, by splitting the data pool by gender. 

Then, for the male and female cohorts add the gender specific variables to the respective 

set. On each of the expanded variable sets, do feature selection to determine the most 

influential variables. For each gender then build a model using the selected features. 

Assess the individual model performances and compare these to the original model. This 

will also highlight if the inclusion of gender specific variables is beneficial when 

considering males and females separately for predicting the presence or risk of onset of 

KOA.  

The final approach is to consider only the variables that were determined to be 

consistently significant in the modelling. To select those variables, a comparison across 

the male and female features highlighted which variables were present in both male and 

female models. This limited set of variables was then used to build three models; one for 

all subjects, one for males and one for females. For each model, the performance was 

assessed and a comparison made to determine if there is any value in having separate 

criteria for diagnosis of KOA in males and females.  

6.3. Gender specific factors used in the analysis  
In both the diagnostic and prognostic models, Gender has been a variable selected due 

to its importance to the model. In the prognostic model, the majority of the high-risk 

cohort were female. If the two genders were considered separately with the addition of 

gender specific information, then the final model and the subsequent variables calculated 

to be significant for each gender may be different from those of the global model. 
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Using the OAI data, Chapter 2, several gender specific variables were identified and 

extracted. The original cohort was then split by gender and the additional variables added 

to each cohort respectively.  

The female specific variables cover if the subject has ever had a hysterectomy, if they have 

had ovaries removed, if they have ever been pregnant or if they have ever had hormonal 

treatment for either menopause or bone density issues. The male variables consider the 

use of testosterone in the six months prior to data collection, or if the subject experienced 

prostate cancer.  The variables added to the models for male and female subjects are 

described in Table 6-1. 

Table 6-1: A table describing the gender specific variables included in the models, the data label, and the definition of each variable. Each 
variable mentioned in the table has a binary outcome, either yes or no. 

Gender Variable Definition 
Male P02CNC13 Has the subject got or previously had prostate cancer? 

V00TEST Has the subject used male hormones in the previous 6 months 
(prior to initial visit)? 

Female P02HYS Has the subject had a hysterectomy? 
P01OVREM Has the subject ever had an ovary removed? 

P01PREGEV Has the subject ever been pregnant? 
V00ESTR Has the subject ever used a combination of oestrogen and 

testosterone as either treatment for menopause or to 
increase bone density? 

 

The OAI data contained other variables that could be of interest when considering their 

impact in relation to gender and the onset of KOA. These additional variables include 

whether the subject had ever had breast cancer and then female specific variables that 

were not included are whether the subject had cervical cancer, whether the subject had 

uterine cancer and how many ovaries were removed.  

The first variable that could have been of interest was whether the subject had ever been 

diagnosed with breast cancer. Breast cancer is not a gender specific cancer as it can affect 

anyone in the population. However, the limited information present in the data meant 

that this variable was unsuitable for inclusion in the analysis. There were 19 subjects out 

of the total 2707 who had received a breast cancer diagnosis, and all of these were female. 

The only other state present for the variable was ‘NA’ which cannot be categorised as 

either yes or no. Therefore this variable was rendered unusable for this analysis.  

The next variable that proved unusable was whether the subject had a diagnosis of cervical 

cancer. Cervical cancer is a type of cancer that can only affect people with a cervix and 
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therefore, if included, would be considered in the female modelling only. The problem 

with this variable in the OAI data is that for the cohort with the original variables that are 

used, all subjects have ‘NA’ values, rendering this variable unusable.  

There was a variable that considered a diagnosis of ‘colon, uterine or other’ cancer. The 

problem with this is that these options are grouped, leaving no scope to differentiate 

between the specific cancer type, meaning that the presence of ‘yes’ could potentially be 

such for uterine cancer, a female specific disease, or colon cancer, which could affect 

anyone. For this reason, this variable was not considered for the analysis.  

The final variable that could be of interest in the gender specific analysis is how many 

ovaries have been removed. As this chapter details the preliminary investigation, its 

purpose was to identify if disease prediction can be improved by considering gender 

specific factors. For this reason the binary version of this variable ‘Have you had ovaries 

removed?’ was used instead of ‘How many ovaries have you had removed?’. The latter 

option could provide an initial step for future investigation into what, if any, difference 

to disease presence occurs as a result of removing one, both or no ovaries. A subsequent 

step could be to explore the impact of the type of hysterectomy a person has in relation 

to KOA, as there are three types, with only one resulting in the removal of the ovaries.  

The data in this chapter is specifically grouped by gender for the analysis, resulting in two 

cohorts: male and female. In each of these cohorts there are training and test splits to 

allow the model performance to be assessed. The male cohort consists of 1250 subjects, 

with the prevalence of disease at 0.4. The female cohort varies by study approach, due to 

some subject having missing values for the variables of interest. The original variable 

approach gives a female cohort size of 1457, and the inclusion of gender specific variables 

reduces the cohort to 1442 subjects. The way the in which the data is split for modelling 

and testing is detailed in Figure 6-1.  
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Male Cohort 

Original and Gender 
Specific variables

n = 1250

No KOA at baseline 
n = 756

KOA at baseline 
n = 494

Training Set

n = 622

No KOA at baseline 
n = 371

KOA at baseline 
n = 251

Test Set

n = 628

No KOA at baseline 
n = 385

KOA at baseline 
n = 243

Female Cohort 

Original variables

n = 1457

No KOA at baseline 
n = 871

KOA at baseline 
n = 586

Training Set

n = 731

No KOA at baseline 
n = 435

KOA at baseline 
n = 296

Test Set

n = 726

No KOA at baseline 
n = 436

KOA at baseline 
n = 290

B 

A 
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Figure 6-1: Data breakdown of the cohorts detailing the prevalence of KOA in each population and the training and test set sizes. (A) 
shows the data breakdown for the male cohort for both the original and gender specific variable approaches, (B) shows the female cohort 

breakdown for the original variable approach and (C) shows the female cohort for the gender specific variable approach.  

 

6.4. Diagnostic Modelling Results at Baseline 

The data in Table 6-2 show a results summary of the models used and their performance 

values to assess what is the most beneficial way to incorporate gender into diagnostic 

modelling. Rows 1, 2 and 7 show the results for the models considering all variables. The 

three AUC values are all comparable with overlapping confidence intervals. The same can 

be said for the male and female specific models. They are all consistent in having high 

specificity values. The models therefore would be good at identifying cases where KOA 

is not present. In each case where there are male and female specific models, the female 

model outperforms that for the male. This is a good indication that there is a need for 

sex-disaggregated modelling within medical applications.  

Table 6-2: A table of performance metrics for the different variable sets used for the analysis, giving the area under the curve (AUROC), 
sensitivity, specificity, and positive predictive value (PPV). 

  AUROC  
(CI) 

Sensitivity Specificity PPV 

1 
All subjects with 

gender 
0.7481 

(0.7214 – 0.7748) 
0.5197 0.8477 0.7734 

2 
All subjects 

without gender 
0.7483 

(0.7217 – 0.775) 
0.5084 0.8502 0.7724 

Female Cohort 

Gender Specific 
variables

n = 1442

No KOA at baseline 
n = 863

KOA at baseline 
n = 579

Training Set

n = 726

No KOA at baseline 
n = 433

KOA at baseline 
n = 293

Test Set

n = 716

No KOA at baseline 
n = 430

KOA at baseline 
n = 286

C 
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3 
Female model 

original data 
0.7595 

(0.7237 – 0.7953) 
0.4966 0.8899 0.8185 

4 
Male model 
original data 

0.7272 
(0.6867 – 0.7677) 

0.4979 0.8130 0.7270 

5 
Female model 

original + gender 
variables 

0.7669 
(0.7313 – 0.8026) 

0.4895 0.8977 0.8271 

6 
Male model 

original + gender 
variables 

0.7248 
(0.6842 – 0.7654) 

0.4815 0.8208 0.7287 

7 
All Subjects 

Significant 
Variables 

0.7516 
(0.7252 – 0.7779) 

0.5197 0.8404 0.7651 

8 
Male Significant 

Variables 
0.7285 

(0.6882 – 0.7688) 
0.4979 0.8130 0.7270 

9 
Female Significant 

Variables 
0.7648 

(0.7294 – 0.8001) 
0.4931 0.8945 0.8238 

 

Looking at the results in Table 6-2 it is clear that there is a small amount of variation in 

model performance. Consistently, the best performing models are those trained and 

tested on only the female cohort. It is understood that there is likely a link between gender 

and risk of onset of KOA. Although the differences between the male and female only 

models are not significant, the small differences that are present highlight a potential need 

for a dedicated analysis with a larger sample size and more variables to consider if gender 

does play a significant role in the likelihood to develop KOA.  

The variables considered in the model from row 1 in Table 6-2 is the same as the model 

described in Chapter 3. Rows 2-4 consider the variables Age, BMI, baseline symptoms, 

knee pain impacting activity in the previous 30 days, knee swelling, difficulty getting 

upstairs and limiting knee stiffness. The data was modelled with the whole cohort, results 

in row 2, and then split by gender, rows 3 and 4. The ROC curves for these models are 

shown in Figure 6-2. 

Rows 5 and 6 detail the results for the curves shown in Figure 6-3. These models consider 

the original pool of variables plus the gender specific variables, and only those chosen by 

feature selection are included in the model.  

The female model uses age, BMI, baseline symptoms, knee swelling, limiting knee 

stiffness, history of pregnancy and history of hysterectomy. Two of the four ‘female’ 

variables were chosen by feature selection to be included in the model. Although neither 
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of these were calculated to be significant in the model, they still contributed to the 

prediction.  

The variables in the male model were age, BMI, baseline symptoms, knee swelling, 

limiting knee stiffness, difficulty getting upstairs and history of prostate cancer. One of 

the ‘male’ variables was chosen by feature selection and therefore included in the model 

for male subjects.  

Figure 6-4 shows the ROC curve for rows 7-9. This model considered only the variables 

calculated to be significant in the previous analysis. The variables are age, BMI, baseline 

symptoms and knee swelling. Just considering these variables gave an improved 

performance over the original model, described in Chapter 3. However, the inclusion of 

the other variables can help provide more insight into the general wellbeing of the subject. 

In this analysis, the use of only the significant variables was only improved for females 

when considering the genders as cohorts. 

 

Figure 6-2: ROC curves for the original data split into male and female groups. The ROC curve for the whole cohort, with and without 

gender considered in the model is also present. 
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Figure 6-3: ROC curves for the original and the gender specific variables split into male and female groups. The ROC curve for the whole 

cohort, with gender considered in the model is also present as a baseline. 

 

Figure 6-4: ROC curves for the analysis considering the significant variables only, split into male and female groups. The ROC curve for 

the whole cohort is also present as a baseline. 

It is clear from the gender specific nomograms, female in Figure 6-5 and male in Figure 

6-6, that the variables contribute to the likelihood of having KOA differently when 

considered solely for males or females compared to the whole sample.  
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Considering Figure 6-5 and Figure 6-6, it is clear that BMI has a greater influence on a 

males likelihood to develop KOA that for a woman. Similarly, knee swelling in males 

increases a male’s chance of contributing to having KOA nearly double that for a female. 

Up to the age of 50, age contributes to female disease likelihood more than for males, but 

from age 55 years age contributes more to males, with 65 year old males having an equal 

age related contribution to the overall KOA likelihood as a 75 year old female. 

Considering the model without gender, displayed in Figure 6-7, and with gender, 

displayed in Figure 6-8, there appears to be little-to-no difference between the variable 

contributions to likelihood for disease presence. This is supported by the AUC for these 

models, all being 0.748 to three decimal places.  

 

Figure 6-5: A nomogram showing the Female specific model for diagnosing KOA at first presentation. 
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Figure 6-6: A nomogram showing the model calculated using the male specific variables to diagnose KOA at first presentation. 

 

Figure 6-7: The diagnosis model for KOA calculated after removing the gender variable. 
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Figure 6-8: A nomogram displaying the variable contribution of the original diagnosis model, described in Chapter 3, to the chance of 

having KOA at first presentation. 

6.5. Discussion  
The work in this chapter only highlights the current understanding that more research 

into the effect of hormones on the development of knee osteoarthritis is required [195]. 

There are already established disparities in knee osteoarthritis due to gender and the 

differences this can cause both biologically and behaviourally [212].  Despite a growing 

pool of evidence that supports this finding there is a lack of translation from this into 

practical implementations. This is leading to an unconscious bias from healthcare 

professionals when diagnosing and identifying those at risk from KOA. 

As far back as the 1980’s there have been more women affected by symptomatic KOA 

but this has not influenced how disease in men and women is considered. A risk factor 

for KOA is being female, but when roughly half of the global population is female that 

offers no comfort or insight into understanding the condition.  

The studies carried out into the effect of gender on the overall benefits of surgical 

intervention show varying results, with no clear difference between males and females 

[213]–[215]. There is, however, evidence to show that after total knee arthroplasty female 

patients are significantly less likely to be satisfied with the pain relief they experience [213].  
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The analysis in this chapter shows that there is scope for further investigation into the 

differences from a diagnostic point when considering the way KOA affects females and 

males. Although there were slight differences in the performance of the models when 

considering male and female separately, the overlap of the confidence intervals suggests 

that there is no real significance in the differences between the models. However, the 

additional information leveraged by using gender specific variables also indicates the 

importance of interpretability as it may have helped to find underlying reasons for 

predictions instead of picking up surrogate factors that perform comparably, but without 

the added explanation provided by the specific variables.   

Considering the female specific factors in the model, history of hysterectomy and history 

of pregnancy highlight a potential link to hormone involvement, specifically oestrogen. 

During pregnancy, the level of oestrogen in the body increases in comparison to the 

relative concentration in a person who is not pregnant. After a hysterectomy the level of 

oestrogen in the body falls, a pattern that is mirrored in women who have gone through 

menopause. The studies focusing on whether oestrogen therapy has a protective effect 

for development of OA have conflicting findings, with some suggesting protective 

effects, and others suggesting the likelihood to increase risk to develop OA [216]–[218]. 

One study identified that hormonal and reproductive factors have an effect of risk of 

knee replacement [217], suggesting that consideration into these features should be 

accounted for when determining if someone is at risk of developing KOA.  

Even though the models containing gender specific variables do not outperform the 

generic model. The factors in the gender specific models are more specialised, so 

therefore could arguably describe the difference in performance. Although the gender 

specific models are not significantly different from the others, they are more specific, 

which in a screening scenario could be argued is more useful to both the clinician and the 

subject. One of the key ideas throughout this thesis is that of interpretability, and this 

additional information adds a layer of interpretability to the model that can help the 

subject better understand what is happening to them in a more specific way. The added 

insight can be provided visually by using nomograms, in this case, can also justify the 

advantage for using gender specific models as part of screening and patient education 

programmes. 

Until further research is carried out into the effect of hormones, both male and female, 

into the likelihood of developing KOA there is likely to be an unconscious bias. Studies 
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have shown that there are genetic differences between males and females in every tissue 

in the body and until the effect of this is understood there needs to be a focus on 

engineering a ‘best-fit’ model for groups of the population, without overfitting to the 

trend highlighted in the data available at the time.  
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Chapter 7: The application of 

multi-task learning to diagnostic 

models for knee osteoarthritis. 
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7.1. Introduction 
Multi-task learning (MTL) looks to solve multiple tasks at once by exploiting and making 

use of commonalities and differences in the data. In the early days of the field, MTL was 

known as hints [219], [220]. There are several different types of MTL; assistant task, piling, 

transfer of knowledge and group online adaptive learning. In one form or another, all of 

the approaches look to optimise the use of the available data to maximise the machine-

learning model performance. When compared to single task analysis, where datasets are 

trained separately, MTL often produces improved efficiency and predictive accuracy. 

7.1.1. Types of multi-task learning 

7.1.2.1. Assistant Task 
This method is also known as task grouping and overlap. The way in which this method 

works is that information is selectively shared across the different tasks based on a 

measure of similarity. The underlying theory is that the similarity indicates relatedness in 

the data. Relatedness in the data can either be determined from existing knowledge or can 

be learned newly from the data [221], [222].  

In some research, this method has produced experimental results that outperform other, 

standard methods. When an improvement is not produced, and the performance has 

worsened, the experiment conducted is said to have had ‘negative transfer’ [223]. 

For this particular branch of MTL, there are two different approaches for sharing to occur 

[224]. The first approach is sharing in an explicit manner. This approach assumes that the 

models share common structures or parameters [225]. The only issue with this approach 

is that it can sometimes cause the model to overfit. The second approach is sharing 

implicitly. This approach can reveal hidden relationships among learners [223].  There 

does not seem to be a method that is proven best in all circumstances.  

7.1.2.2. Piling 
Another approach to MTL, and the one used in this analysis, is piling. The piling 

technique looks to exploit unrelated tasks. With this method, the job of learning new 

tasks is carried out with the use of a group of tasks unrelated to the principal task. These 

unrelated tasks are sometimes referred to as auxiliary tasks. The learning of the principal 

and auxiliary tasks is better when the same data is used with both, as idiosyncrasies in the 

distribution of the data are removed, giving rise to cleaner and more informative data 

representations.  When this method has been used on both real and dummy data the 
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results have indicated that exploiting unrelated tasks can also cause significant 

performance improvements over standard methods of learning [226].  

This approach builds on findings by Argyriou, [227], but adds a regularisation term to 

penalise the product between the predictors of any two tasks originating from different 

groups. As a result, this type of MTL has the power to distinguish what features are 

important for each task, resulting in an improvement in the statistical performance [226]. 

The piling technique is merely an extended version of the assistant task method.  

7.1.2.3. Transfer of Knowledge 
Transfer of knowledge is related in part to the concept of knowledge transfer. The shared 

representation that is present in the transfer of knowledge is sequential, whereas the 

representations developed by MTL in its purest forms are typically concurrent. A well-

known method for machine-learning, deep convolutional neural networks develops 

strong representations which are then useful to other algorithms that are learning related 

tasks [228]. One example is where a pre-trained model is used as a feature extractor to 

pre-process for another algorithm [229].  

The transfer of knowledge approach addresses three main challenges faced when 

conducting MTL [230]. The first challenge is making the model learning process 

incorporate the task selection. The next challenge is to make the model learn the shared 

information at the pace of the system. The final challenge is to ensure that the model can 

be generalised to fit a wider group of MTL problems.  

7.1.2.4. Group Online Adaptive Learning 
When the data in the analysis is stationary,  meaning that it does not change over time, 

typical MTL approaches work, but if the data is non-stationary, where there are changes 

to variances and means over time, then group online adaptive learning is used [231], [232]. 

In this way, it has been useful to share information if the learners operate in environments 

that change over time. This is because the learner would be able to benefit from the 

previous experience of another learner to be able to adapt rapidly to the new 

environment. One well-known use is predicting financial time series data trends based on 

what has happened previously, and the micro trends, like a small crash in the market 

before a major one, that also have an impact on the overall trend of the data [233]. 

7.1.2. Transfer Learning 
Transfer learning has been developed to assist in the transferability of different data 

problems. Transfer learning can be defined as the ability of a system to be able to 
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recognise and apply previously acquired knowledge to new problems [234]. By applying 

existing knowledge, it is possible to solve problems quicker than with standard 

approaches and is often the case also that the solutions are better with the use of transfer 

learning. Like the assistant task branch of MTL, the premise for transfer learning is that 

the tasks used to gain the knowledge and the area where the knowledge will be applied 

must be in some way related because without a relationship there will be no 

improvements in performance.   

Similarly to MTL, transfer learning has different types. The four categories and the use of 

each are dependent upon which aspect of knowledge will be transferred. Instance-based 

transfer learning works by assigning different weights to samples based on their perceived 

importance to the problem [235]. Feature representation uses numerical coding to represent 

structural information relating to the problem [236]. Transfer learning techniques using 

parameters share parameter-held information to add knowledge required in the problem 

[237]. The final type of transfer learning is known as relational knowledge transfer. The final 

type maps data from the original source to the final destination in order to improve the 

performance of the machine-learning method being used [238]. 

7.1.3. Why Multi-task Learning Works 
MTL was proposed by Caruana in 1998 [225]. The initial premise was laid out such that 

two tasks, 𝐴 and 𝐵, share a common hidden layer representation, 𝐹. MTL increases the 

size of the sample of data being used to train the model. When the model trains on task 

𝐴 the goal is to be able to train a model to learn a dataset without the noise typically 

present in that given data. As different tasks and their affiliated data have different noise 

patterns the use of MTL promotes the learning of a more general representation of noise 

[239]. 𝐴 may be the only task to overfit but tasks 𝐴 and 𝐵 mutually assist the model to 

get better representations, 𝐹, by averaging the noise present in the model.  

MTL is sometimes used as a way to highlight features of interest. Many noisy or high 

dimensional datasets pose problems when trying to determine the features that are 

relevant, but MTL can be used to highlight the ones of particular interest. MTL used in 

this way is known as attention focusing, and it is used to help provide evidence as to the 

most relevant or irrelevant features in the data.  

Another approach that works for aiding in learning multiple tasks is eavesdropping. Some 

features are easy for some tasks to learn and problematic for others. The MTL allows the 
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model to ‘listen’ to the other tasks being learnt in the model. The easiest way for this to 

take place is by making use of ‘hints’ [220]. These hints are then used to directly train the 

model to predict which features are the most important.  

One of the features that make the MTL method work is the allocation of weight. MTL 

assigns weight to the more favourable tasks. Doing this helps the model to generalise in 

the future to new tasks. This is because the new tasks are using the same the hypothesis 

space used for the original tasks, provided that they are also from the same data 

environment. The introduction of a bias reduces the risk of overfitting as well as the 

ability of the data to fit the random noise.  

7.1.4. When MTL can help 
In situations where the data does not have a large number of cases MTL can help to 

leverage the information contained in the dataset by using related data in the model to 

help with the learning process. This was an early motivation for the use of MTL, to 

alleviate data sparsity as a result of limited suitable data points [240].  

In smaller sized datasets, there is always the risk that the model will overfit to the noise 

present in the training data, resulting in poor performance in the test set. By using more 

data MTL approaches allow the model to learn more general representations of the tasks, 

leading to more powerful models, better performance and a lower risk of the model 

overfitting to the data [241]. 

Missing values leading to incomplete data also pose a problem when training a model as 

this can cause the performance to suffer. However, the use of MTL in chemoinformatics 

has found that the differences in model performance when comparing complete data with 

a model trained on data containing missing information was very small [242]. This could 

potentially challenge the viewpoint of ‘more data is better’ from the perspective of 

collecting more data when similar compatible data exists and is available. 

Appropriately leveraging the information contained in datasets, even with state-of-the-art 

methods can often reach a ceiling in performance. In order to exceed this maximum, one 

option is to utilise additional data. This can be done using MTL approaches. By enriching 

the pool of data, there is a chance that model performance will be improved.  

7.1.5. Where MTL has been used  
MTL has been used and shown improvements in many other domains. Its use in cancer 

drug research has been affiliated with improved prediction in the use of precision 
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oncology [243]. It also has many applications outside of biological science and drug 

discovery. One such example is spam filtering. The model would have key things such as 

language an e-mail has been written in and the language of the recipient’s geographical 

location, but on its own that could exclude Spanish e-mails from people on holiday. So 

this, along with the language of the emails they usually receive and key phrases are used 

as filters to block unwanted and possible spam e-mails [244].  

Another example of MTL being used is in web searching. MTL used with boosted trees 

has been used on web-search ranking data. This is especially useful when using data from 

different geographical locations. Using MTL here is especially helpful as data sizes can 

vary quite significantly due to cost. Learning tasks in this way has produced significant 

improvements in performance whilst retaining reliability [245].  

In healthcare, a field with a vast amount of data, MTL has the potential to unlock more 

information in the data and boost model performances. This extra insight can highlight 

relations in the data that may have otherwise not been apparent. One example is by using 

a widespread collection of electronic health records there is an opportunity to utilise MTL 

approaches to develop more accurate personalised risk models [246].  

Other application domains that benefit from the use of MTL include speech recognition, 

bioinformatics, computer vision and natural language processing [239], [240].   

7.1.6. Scope for MTL use 
The use of MTL in this thesis builds on the model from Chapter 3 with the aim of 

determining whether the use of MTL will have a positive impact on information transfer 

and therefore model performance. By utilising multiple data sources, the OAI and the 

MOST datasets, there is potential in the capability to improve model performance by 

solely using available data. This work takes a speculative look at the application of MTL 

to KOA diagnostic models. 

In this way, for this preliminary work into the application of MTL to the KOA diagnostic 

model, the simplest MTL approach, piling, is used. By using the piling approach for MTL, 

it will be possible to establish if there is worth in the application of MTL for the purpose 

of enriching a data pool to improve the models performance. However, as the two 

datasets in use are very similar there is no underlying expectation that the MTL approach 

will produce a performance improvement. This is, in part, due to the data having similar 

strengths and weaknesses as both datasets were collected in a similar way despite the 
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studies beginning conducted in separate regions of America, beginning around 12 months 

apart.  

Chapter aim 

• Determine if it is possible to improve model performance on the OAI/MOST 

data by utilising an MTL approach 

7.2. Specifics of the data used in chapter  
When considering the application and use of MTL in the diagnostic modelling of KOA 

a suitable pool of data was required. For this chapter, both the OAI and MOST data were 

used to build and test models for disease diagnosis. Initially, the same cohort that was 

used in Chapter 3 was analysed, and this was followed up with an extended variable set.  

As the analysis used the same initial cohort, a complete case approach was also used in 

this set of experiments. This involved removing any individual subject that had at least 

one missing value in the data.  

The rationale for using the original cohort was to determine if an improvement to 

performance was likely caused by the additional use of MTL. This approach, along with 

the work in Chapter 3, provides a baseline to compare any performance improvement.  

The original OAI dataset used in this analysis is summarised in Table 7-1. The data 

consists of 4,433 subjects with information on eight features, including the outcome, the 

presence of KOA. The original MOST dataset is also summarised in Table 7-1. This 

dataset is comprised of 2,006 subjects with the same features present in the OAI data. 

Table 7-1: The summary of the MOST and OAI datasets. 

 MOST 
(N=2006) 

OAI (N=4433) Total (N=6439) 

AGE    

- Mean (SD) 62.336 (8.139) 61.081 (9.173) 61.472 (8.882) 

- Median  

(Q1, Q3) 

62.000  

(55.000, 69.000) 

61.000  

(53.000, 69.000) 

61.000  

(54.000, 69.000) 

- Min - Max 50.000 - 79.000 45.000 - 79.000 45.000 - 79.000 

BMI    

- Mean (SD) 31.105 (6.338) 28.574 (4.821) 29.362 (5.466) 

- Median  

(Q1, Q3) 

30.260  

(26.642, 34.515) 

28.200  

(25.000, 31.700) 

28.800  

(25.400, 32.500) 

- Min - Max 16.720 - 71.910 16.900 - 48.700 16.720 - 71.910 

B.line_symp 1567 (78.1%) 1256 (28.3%) 2823 (43.8%) 
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KPACT30 1839 (91.7%) 1188 (26.8%) 3027 (47.0%) 

knee_stiff_day_limit    

- Mean (SD) 6.461 (10.949) 3.520 (7.961) 4.436 (9.100) 

- Median  

(Q1, Q3) 

0.000  

(0.000, 7.000) 

0.000  

(0.000, 2.000) 

0.000  

(0.000, 3.000) 

- Min - Max 0.000 - 30.000 0.000 - 30.000 0.000 - 30.000 

Gender 1264 (63.0%) 2574 (58.1%) 3838 (59.6%) 

diff_upstr 1870 (93.2%) 2454 (55.4%) 4324 (67.2%) 

KL_score 1214 (60.5%) 1982 (44.7%) 3196 (49.6%) 

In addition to the original cohort, an extended cohort was also considered. The extended 

cohort considers variables relating to the presence of other conditions a subject may have. 

These conditions, such as presence of diabetes, are not known to be linked with the 

presence of KOA but have the potential to offer additional scope for screening subjects 

if there is found to be a relationship with these conditions and the likelihood of KOA.  

The extended datasets have information on 19 different features of interest, including the 

original set. From the OAI dataset there is data on 4,004 subjects, shown in Table 7-2, 

and the MOST has 2,427 subjects fitting these constraints, as shown in Table 7-2 also. 

Table 7-2: The summary table for the extended variable sets for both OAI and MOST. 

 MOST (N=2427) OAI (N=4004) Total (N=6431) 

AGE    

- Mean (SD) 62.276 (8.047) 60.947 (9.116) 61.449 (8.751) 

- Median  

(Q1, Q3) 

62.000  

(55.000, 69.000) 

60.000  

(53.000, 69.000) 

61.000  

(54.000, 69.000) 

- Min - Max 50.000 - 79.000 45.000 - 79.000 45.000 - 79.000 

BMI    

- Mean (SD) 30.805 (6.060) 28.449 (4.760) 29.339 (5.410) 

- Median  

(Q1, Q3) 

30.000  

(26.690, 33.780) 

28.100  

(25.000, 31.500) 

28.800  

(25.500, 32.395) 

- Min - Max 16.720 - 71.910 16.900 - 48.700 16.720 - 71.910 

Gender 1476 (60.8%) 2331 (58.2%) 3807 (59.2%) 

knee_stiff_day_limit    

- Mean (SD) 4.693 (9.692) 3.327 (7.724) 3.842 (8.545) 

- Median  

(Q1, Q3) 

0.000  

(0.000, 2.000) 

0.000  

(0.000, 1.250) 

0.000  

(0.000, 2.000) 

- Min - Max 0.000 - 30.000 0.000 - 30.000 0.000 - 30.000 

diff_upstr 2058 (84.8%) 2161 (54.0%) 4219 (65.6%) 
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KPACT30 2152 (88.7%) 1031 (25.7%) 3183 (49.5%) 

Hist_surg 536 (22.1%) 898 (22.4%) 1434 (22.3%) 

back_pain 1856 (76.5%) 2278 (56.9%) 4134 (64.3%) 

BP_freq_30    

- 0 571 (23.5%) 1726 (43.1%) 2297 (35.7%) 

- 1 116 (4.8%) 548 (13.7%) 664 (10.3%) 

- 2 361 (14.9%) 1104 (27.6%) 1465 (22.8%) 

- 3 1080 (44.5%) 399 (10.0%) 1479 (23.0%) 

- 4 295 (12.2%) 227 (5.7%) 522 (8.1%) 

- 5 4 (0.2%) 0 (0.0%) 4 (0.1%) 

Lim_act_bp_30 420 (17.3%) 574 (14.3%) 994 (15.5%) 

HRT_PROB 145 (6.0%) 128 (3.2%) 273 (4.2%) 

DIABETES    

- 0 2129 (87.7%) 3718 (92.9%) 5847 (90.9%) 

- 1 257 (10.6%) 286 (7.1%) 543 (8.4%) 

- 8 41 (1.7%) 0 (0.0%) 41 (0.6%) 

COPD    

- 0 2287 (94.2%) 3924 (98.0%) 6211 (96.6%) 

- 1 98 (4.0%) 80 (2.0%) 178 (2.8%) 

- 8 42 (1.7%) 0 (0.0%) 42 (0.7%) 

ULCER 136 (5.6%) 94 (2.3%) 230 (3.6%) 

STROKE 97 (4.0%) 111 (2.8%) 208 (3.2%) 

ASTHMA 201 (8.3%) 335 (8.4%) 536 (8.3%) 

DEPRESSION    

- Mean (SD) 7.740 (7.768) 6.165 (6.506) 6.759 (7.050) 

- Median  

(Q1, Q3) 

6.000  

(2.000, 11.000) 

4.000  

(2.000, 9.000) 

5.000  

(2.000, 9.000) 

- Min - Max 0.000 - 58.000 0.000 - 57.000 0.000 - 58.000 

WOMAC    

- Mean (SD) 22.785 (18.191) 14.859 (15.911) 17.851 (17.240) 

- Median  

(Q1, Q3) 

20.000  

(7.000, 35.000) 

9.000  

(2.000, 23.000) 

13.000  

(3.000, 28.400) 

- Min - Max 0.000 - 96.000 0.000 - 96.000 0.000 - 96.000 

KL_score 1288 (53.1%) 1773 (44.3%) 3061 (47.6%) 

 

There is a discrepancy in the number of subjects for the original and extended analysis in 

both cases. This is due to the level of missingness present in the data. For the extended 

dataset, the data sizes are those for which missing values have been removed. Some 
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variables were excluded from the analysis due to the high levels of missingness present in 

the data. These included the original variable of whether baseline symptoms were present, 

and the potential variables of interest - the presence of kidney disease and the smoker 

status. Removing these allowed a large enough dataset to remain that could be used in the 

modelling and subsequent analysis.  

For this study, the best method for dealing with the missing values was to use a complete 

case analysis. There has been two approaches used to accomplish this. First is to remove 

variables that contain a large amount of missing values. By removing variables, it is 

possible to preserve the size of the remaining data. The other approach is to remove 

subjects with at least one missing value. By first removing the variables with a high level 

of missingness and then removing the individuals with missing information, it was 

possible to maximise the available data.  

7.3. Study Design 
7.3.1.  Specifics of the MTL method used 
Multi-task learning is a subfield of machine learning. There are four primary methods: 

Assistant Task, Piling, Transfer of Knowledge, and Group Online Adaptive Learning. All 

four of these approaches take multiple learning tasks at once while exploiting the 

commonalities and differences across the different tasks [247]. In other domains when 

this approach has been used, the use of combined datasets on standard machine-learning 

models has improved learning efficiency in the models and prediction accuracy. As this 

method makes use of sharing information, it is particularly useful in areas where the tasks 

are undersampled [248]. The most commonly used methods for this sort of data are the 

Assistant Task and Piling approaches. 

MTL makes use of datasets that are similar to add additional available information to the 

model with the aim of improving model performance. This type of model trains multiple 

datasets at once, helping the model learn from multiple sources. This type of learning is 

useful as many clinical datasets are small, which typically makes them not suitable for 

machine learning. By doing this, the data is then made suitable for applying machine 

learning models. This is only the case if the datasets are in some way related and the newly 

added datasets add information to the problem. Figure 7-1 shows crudely how data from 

each dataset can be used when training the models. 



172 
 

 

Figure 7-1: This is a graphic showing how a model can take information from multiple sources. This process is known as Multi-Task 
Learning. 

The type of MTL used in this analysis is the Piling approach, shown in Figure 7-2. The 

piling approach takes all of the datasets to be investigated and ‘piles’ them up, making 

one large dataset. The resultant dataset is then used to train the model so that the model 

is not trained to overfit to the original training data. 

  

Figure 7-2: The diagram shows how Piling MTL works. The datasets to be used in the analysis are all stacked on top of one another, 

with only the primary dataset being used for testing purposes. 

To better understand the piling approach for this given problem Figure 7-3 builds on 

the foundations of the idea shown in Figure 7-2.  
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Figure 7-3: Diagram to represent how the data is split for MTL and where each data split is used. 

In Figure 7-3 we can see the way the data is taken from a single dataset and transformed 

into a useable format for MTL. Step one is to take the original datasets, in this analysis 

OAI and MOST, and split those into training, validation and test splits. As this approach 

of MTL is piling, the next step is to pile the two training samples. This new training set is 

used to train the models. This is where the learning from multiple sources takes place. 

The next step is to consider only one of the datasets for assessing model performance, 

either dataset 1 or dataset 2. This step involves using the validation and test set from the 

chosen data to assess the performance for predicting on that chosen dataset only. This 

ensures that the model is focusing on either dataset 1 or dataset 2 when considering 

performance. This is key, as the aim is to optimise the models performance.  

7.3.2.  Specifics of the Neural Networks Applied in Analysis 
In Chapter 3, different approaches were utilised when trying to diagnose KOA from the 

data. That analysis found logistic regression to be the optimal approach, in terms of 

performance and interpretability. In applying MTL to the problem logistic regression is 

used as a baseline comparison and neural networks were the main focus. Neural networks 

can take any number of architectures and to determine if the improvement was because 

of the neural network or the MTL implementation different architectures have been 

tested.  

The networks used in the analysis in this chapter consist of fully connected networks 

made up of a single layer with either four, five or ten nodes, or two layers with the first 

containing twelve nodes and the second containing seven nodes. The architecture for the 

two-layer network and the single layer with five nodes is shown in Figure 7-4. By taking 
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this approach, the complexity is varied to determine what, if any improvement can be 

attributed to the MTL implementation.  

The networks were also tested using no control measures, a hidden dropout layer and a 

visible dropout layer, with the dropout rate set at intervals of 0.1 from 0.2 to 0.5. The 

dropout layers were implemented to help control for overfitting [249]. The values for the 

dropout were set as such to provide some effect on the network, as a probability too low 

would have had minimal effect, and a value greater than 0.5 would result in under-learning 

of the network.  

 

Figure 7-4: A visual representation of two of the four architectures used in this analysis. The network on the top panel is the two-layer 
network with 12 nodes on the first layer and 7 on the second, and the network on the bottom panek is the single layer network with 5 

nodes on the hidden layer. This is varied by having either 4 or 12 nodes in the other models.  

The neural networks all used the binary cross-entropy loss function and the Adam 

optimizer. The binary cross-entropy loss function will produce high values for poor 

predictions and low values when a prediction is of good quality. A poor prediction would 

be where the data suggests the probability of belonging to the positive class is low, and 

this would require a loss to penalize this value. The loss function is defined in Equation 
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7-1. The optimizer, Adam, used in these networks is an extension to stochastic gradient 

descent methods used to update network weights iteratively on the training data. This 

optimiser is both computationally efficient and easy to implement which is a requirement 

for networks dealing with vast amounts of data.  

𝐻𝑝(𝑞) =  −
1

𝑁
∑ 𝑦𝑖 ∙ log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)  ∙ log(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

 

Equation 7-1: The formula for Binary Cross-Entropy. 

Where:  𝑦 ~ the label in the data, in this case it is the knee osteoarthritis status,  

 𝑝(𝑦) ~ The predicted probability if KOA for all N subjects. 

In the neural network implementation used in this analysis there are two different 

activation functions used. The hidden layers contain the ReLU activation function, whilst 

the output layer uses the sigmoid activation function.  

The ReLU, or rectified linear unit, function is the most used activation function in the 

world as of 2017 [250]. ReLU enables better training of deeper network models [251] 

meaning that it often achieves better model performance. It belongs to the family of ridge 

activation functions that are multivariate functions acting on linear combinations of the 

input variables, shown in Equation 7-2. The ReLU function is a piecewise linear function 

that will output the input directly if it is positive, otherwise the output will be zero, shown 

in Equation 7-3. Because ReLU are nearly linear, they preserve properties that make linear 

models easy to optimise. They also preserve many of the properties that make linear 

models generalise well.  

𝜙(𝒗) = max(0, 𝑎 + 𝒗′𝒃) 

Equation 7-2: The standard presentation of the ReLU activation function. 

𝑓(𝑥) =  {
0 for 𝑥 < 0
𝑥 for 𝑥 ≥ 0

 

Equation 7-3: Piecewise representation of the ReLU function. 

The sigmoid activation function is used on the output layer. This function is typically used 

for models where predicting an output as a probability. Sigmoid activation functions are 

especially useful when the predictions are of a binary class, such as that in this analysis. 

The outcome will always only exist between zero and one. The formula is shown in 

Equation 7-4.  
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𝜎(𝒛) =
1

1 + 𝑒−𝑧
 

Equation 7-4: The equation of the sigmoid activation function. 

The neural networks in this analysis, as will all, have three types of layers: input, hidden 

and output. The input layer contains the same number of neurons as the number of 

features present in the data. Next are the hidden layers. One hidden layer is sufficient for 

the vast majority of problems. There are many rules to advise on the configuration of the 

hidden layers, such as to have a single hidden layer and to have the number of nodes in 

the hidden layer as the mean of the neurons in the input and output layers. Although 

these are common guides, there is some speculation about the relevance of the calculation 

to determine number of neurons in the hidden layer. One thing is certain however, is that 

if the hidden layer contains too many neurons the model is likely to overfit to the noise 

in the data. The final layer is the output layer. Every network has exactly one output layer. 

The network used in this analysis is for binary classification so the output has a single 

node. If the network were for multi-class classification, the output layer would contain a 

single node per class label in the model.  

7.3.3.  Partial Dependency Plots 
Explainability is a priority, more so as more responsibility is put on machine learning in 

everyday situations. Models decide if emails are classified as spam, or if a loan application 

is approved so understanding and being able to explain the model making these decisions 

is ever more important. This is also true for medical applications of machine learning 

approaches.  

By being able to explain a model and provide insight, there is more chance of trust and 

usability in the models created. Models like logistic regression are easily interpreted and 

explainable. This is one of the reasons they are used in many application domains. At the 

other end of the scale there are black box models such as neural networks which have 

difficult to comprehend steps between the inputs and the outputs in the model. A scale 

of accuracy vs explainability is shown in Figure 7-5. 
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Figure 7-5: A visual representation of the trade-off between model performance and explainability. Traditionally, the more explainable the 

model, the less accurate the results.  

Partial dependence shows how a certain feature can influence a prediction. By fixing all 

bar one feature, it is possible to see how that given feature influences the outcome [252]. 

These kind of insights allow the predictions to be thought of intuitively and can enable 

the users to make sense of the models, which likely leads to more trust in the models 

predictions.  

Let 𝑋𝑆 be the set of input features of interest, and 𝑋𝐶 be the complement. The partial 

dependence of the response 𝑓 at a point 𝑥𝑆 is: 

𝑝𝑑𝑋𝑆
(𝑥𝑆) ≝ 𝔼𝑋𝐶

[𝑓(𝑥𝑆, 𝑋𝐶)] 

=  ∫ 𝑓(𝑥𝑆, 𝑥𝐶)𝑝(𝑥𝐶) 𝑑𝑥𝐶 , 

Where 𝑓(𝑥𝑆, 𝑥𝐶) is the response function for a given sample whose values are defined by 

𝑥𝑆 for the features in 𝑋𝑆 and 𝑥𝐶 for the features in 𝑋𝐶. 

The model will change the value of a given variable each time a prediction is made. By 

keeping a record of the predictions, it is possible to see how this variable affects the 

overall prediction. This is repeated and average predictions for each point are calculated. 

These averages are then used for the partial dependency plots. The partial dependence 

method also allows consideration for feature interactions.  

The plot allows visualisation of this interaction, further increasing the interpretability in 

the model. The visual representations provided by use of the partial dependency plots 

helps to deliver insight and simple interpretations to more complex concepts. This 

distilling of information from complex abstract ideas to logical insights helps to make 

more complex machine-learning methods, such as neural networks, easier for a non-
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technical audience to understand. This is one way to help increase the chance for models 

to be utilised in areas where human understanding and explainability are paramount.  

The partial dependence applies prescriptive analytics to conventional machine learning 

approaches. This helps to ensure that the information in the data is deeply understood, 

and allows this information to be turned into actionable insights. Doing this adds value 

to the analysis by making it accessible to those without expert insight into the methods 

used.  

7.3.4.  Justification for Analysis Approach 
Using different data from both the OAI and MOST studies allows the incorporation of 

the MTL modelling to not only answer the question of what features best predict the 

incidence of KOA but is MTL useful in this instance for improving model performance. 

By using an extended pool of data features there is the potential for the MTL approach 

to uncover different relationships in a subjects profile and their likelihood of having 

KOA.  

If the MTL model resulted in higher model performance this would have the potential to 

be used by clinicians as the model could be optimised by increasing the pool of data used 

train the model on. This could also open the door to examining other features that could 

be early indicators of disease presence.  

The other justification for using this modelling approach to the analysis is to also 

incorporate the key ideas of interpretability and explainability into an approach that is 

typically viewed as a black box. By incorporating the partial dependency plots and the 

neural networks alongside the MTL implementation there is real potential to develop high 

performing diagnostic models that are easily explainable. This would provide the 

necessary first step in developing guidelines for implementation into a clinical 

environment.  

Having several different network architectures used in the analysis ensures that different 

combinations are considered when looking for the optimal model, and that the true 

optimal for a set of conditions is found and the resulting findings are not chance results. 

The architectures considered look at two different data combinations, using four different 

networks with three configurations for controlling overfitting, with two subject to a 

further four possible drop-out rates, shown in Figure 7-6.  
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Figure 7-6: Depiction of choices for the model architecture process. 

 

7.4. Results from Analysis 
Running the models for the different configurations of neural network produced a total 

of 864 model performances. To determine the best performing models the test AUC for 

each dataset and strategy has been put into descending order and the top one for each 

selected. This is important, as the best performing model for each configuration will have 

partial dependencies applied to them in order to visualise how each feature contributes 

to the overall chance of having KOA at the baseline visit with a clinician. In this section, 

only the partial dependence plots for selected interactions in a variety of the datasets will 

be considered. 

Table 7-3: A table showing the highest performing single and multi-task learning model for each configuration of the neural network. 

Data Set 
used 

Learning Type Network 
Configuration 

Test AUC 
(95% CI) 

OAI Single Task 
Learning 

1 layer, 10 nodes, hidden 
dropout 0.3, batch 50 

0.7662 
(0.7384 – 0.7941) 

Multi-task Learning 1 layer, 5 nodes, hidden 
dropout 0.2, batch 100 

0.7611 
(0.7329 – 0.7893) 

MOST Single Task 
Learning 

1 layer, 5 nodes, batch 75 0.7598 
(0.7145 – 0.8051) 

Multi-task Learning 1 layer, 5 nodes, batch 75 0.7533 
(0.7070 – 0.7996) 

OAI 
Extended 

Single Task 
Learning 

1 layer, 5 nodes, visible 
dropout 0.2, batch 50 

0.7316 
(0.7003 – 0.7630) 

Multi-task Learning 2 layers, 12/7 nodes, hidden 
dropout 0.3, batch 50 

0.7399 
(0.7090 – 0.7708) 

MOST 
Extended 

Single Task 
Learning 

1 layer, 5 nodes, batch 50 0.8069 
(0.7728 – 0.8410) 

Multi-task Learning 1 layer, 10  nodes, hidden 
dropout 0.2, batch 100 

0.8167 
(0.7837 – 0.8497) 

 

Data Cohort

Original

Extended

Network 
Configuration

2 Layers

1 Layer, 4 
Nodes

1 Layer, 5 
Nodes

1 Layer, 10 
Nodes

Control 
Measures

No Control 
Measures

Dropout 
Layer

Dropout 
Position

Hidden

Visible

Dropout Rate

0.2

0.3

0.4

0.5
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From looking at the information in Table 7-3 the test AUC for both OAI and MOST 

when considering the original cohort only, single task learning (STL) performs marginally 

better then when MTL is used on the same data. This is not a surprising result, as for the 

OAI model performance with logistic regression from Chapter 3 the test AUC was 0.763, 

which is comparable to the neural network performance here. The model appears to have 

reached the ‘ceiling’ of the data in terms of performance. A similar conclusion can be 

reached when considering the MOST data for single and multi-task learning. The 

phenomenon where a model suffers after using multi-task learning, negative transfer, 

cannot be deemed the cause with certainty as the difference in performance is roughly 

0.5% in both cases.  

However when considering the extended data, both for OAI and MOST the models 

perform marginally better on the MTL approach. As this slight performance 

improvement has been noted in both the OAI and MOST extended data, the MTL 

application has positively influenced the model. Despite this slight improvement of 

roughly 1%, this is not significant enough to state this has been caused by the use of 

MTL. 

In each of the bivariate graphs, there are three bars in the plots. The bars on the left side 

and top of each plot show the range of variable options for each variable. The bar on the 

right side of the plots give the range of values relating to the outcome, in this case, the 

presence of KOA in the subject.  

The features such as age and BMI change the risk of having KOA at first presentation, 

with advanced age and high BMI both risk factors for disease. The partial dependency 

plots showing the interaction between age and BMI for the OAI data with both single 

and multi-task learning are displayed in Figure 7-7. In both instances, it is clear to see that 

high BMI above 30 has a more important role in the likelihood that someone will have 

KOA as the plots have more of a vertical element. Below 30 the BMI and age are nearly 

equally influential for indicators for disease presence.  

Age and BMI are known risk factors for KOA. The variables in the analysis also consider 

some anecdotal risk factors, such as the number of days in the past month knee stiffness 

has limited activity. In Figure 7-8 BMI and limiting knee stiffness (knee_stiff_day_limit) 

are plotted to see the interaction and where the variables have influence in determining if 

someone has KOA.  
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In the single task plot knee stiffness is relatively important up to the point a persons BMI 

goes above 30, and then BMI has increasing influence over the KOA status until a BMI 

of above 34 where BMI is the only feature influencing the KOA status. In the MTL plot, 

knee stiffness is less influential when the BMI reaches about 25. A similar pattern from 

the single task learning for BMI being the sole driver in indicator for KOA is seen with a 

BMI beyond about 30.  The training pool for the MTL model was greater as it 

incorporated both the OAI and MOST data which could have caused this shift to more 

sever outcomes at lower BMI ranges. 

The results for the models tested on the original MOST data are consistent with those 

from the OAI test results. However, Figure 7-9 shows the PDP for BMI and limiting 

knee stiffness, similar to that in Figure 7-8, with obvious differences. As can be expected, 

in STL the main driver behind KOA status is the BMI. Conversely, in the MTL analysis 

the main influence switches to limiting knee stiffness. This is likely due to the majority of 

subjects in the MOST dataset suffering with KOA, therefore influencing the link between 

limiting knee stiffness and presence of KOA.  

The use of an extended dataset offered the chance to consider features that are of clinical 

relevance but not commonly associated with KOA, such as depression and heart 

problems. Plots produced using partial dependencies, however, show that no conclusions 

about the clinical significance of the variables can be drawn based on this analysis. This 

is due to the PDP showing that presence of KOA remains nearly constant as the 

individual features vary. This is shown in Figure 7-10.  

Figure 7-11 shows the interaction between the WOMAC score and the number of days 

the subject has experienced limiting knee stiffness. In both cases the WOMAC score is 

more influential in the overall determination of the presence of KOA. (A) however shows 

that days experiencing knee stiffness has equal influence in a linear relationship with 

WOMAC up to a WOMAC score of about 35, at which point the sole influencing feature 

becomes the WOMAC score. In the MTL plot, (B), a much lower WOMAC score of 

about 12 becomes the point where sole influence is passed to WOMAC, although in the 

MTL plot the influence was always lead by WOMAC.  

Considering the extended data cohorts from MOST with both STL and MTL Figure 7-12 

shows the PDP interactions for BMI and WOMAC. Both STL and MTL appear to have 

equal contribution from both features up to a BMI of between 32 and 35, when BMI is 

the main influence. For the STL plot, (A), lower WOMAC scores are more in control for 
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BMI up to about 30 when the shift begins to take place. In the MTL plot, (B), the 

relationship appears mainly linear until the higher BMI values are reached.  

A 

 

B 

 

Figure 7-7: Partial dependency plots for Age and BMI.  (A) shows the PDP for the single task learning approach on the OAI test data. 
(B) shows the plot for the MTL approach on the OAI test data after training on both MOST and OAI data. 
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A 

 

  

B 

 

Figure 7-8: Partial dependency plots for Days of knee stiffness limiting activity and BMI.  (A) shows the PDP for the single task 
learning approach on the OAI test data. (B) shows the plot for the MTL approach on the OAI test data after training on both MOST 

and OAI data. 
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A 

 

  

B 

 

Figure 7-9: Partial dependency plots for Days of knee stiffness limiting activity and BMI.  (A) shows the PDP for the single task 
learning approach on the MOST test data. (B) shows the plot for the MTL approach on the MOST test data after training on both 

MOST and OAI data. 
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A 

 

B 

 

Figure 7-10: Partial dependency plots for Depression and Heart Problems. (A) shows the PDP for depression in relation to the presence 
of KOA. (B) shows the PDP for the relation to KOA and heart problems. Both of these are generated using the extended OAI data with 

STL. 
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A 

 

  

B  

 

Figure 7-11: Partial dependency plots for WOMAC and Days of knee stiffness limiting activity.  (A) shows the PDP for the single task 
learning approach on the extended OAI test data. (B) shows the plot for the MTL approach on the extended OAI test data after training 

on both MOST and OAI data. 
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A 

 

 

B 

 

Figure 7-12: Partial dependency plots for WOMAC and BMI.  (A) shows the PDP for the single task learning approach on the 
extended MOST test data. (B) shows the plot for the MTL approach on the extended MOST test data after training on both MOST 

and OAI data. 
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7.5. Discussion  
By having the two analyses, one with the original pool of variables and one with the 

extended variable cohort, there can be comparison between which set of data was more 

suited to the MTL implementation. As a lot of the variables for the extended cohort were 

binary ‘yes/no’ answers the information that could be garnered was limited. Therefore, 

for this data the standard variables provided more insight into the decision boundaries, 

with the exception of the WOMAC scores, which as a continuous variable provided a 

glimpse of how the boundary varies in a more gradual way than the severe binary options.  

The partial dependence plots provide an easily interpretable visualisation of the way the 

neural network is making decisions and therefore classifications. This level of insight is 

required for models that have the potential to be implemented in clinical settings, where 

explainability is paramount.   

As this study was a first step into applying MTL to the problem of diagnosing KOA, 

there is some evidence to suggest that further tuning of the models, such as hyper-

parameter tuning, and implementation of different MTL methods may prove more 

beneficial to the overall model performance.  

The results show, and further make certain, the role that BMI has in the presence of 

KOA, with majority of the results containing BMI being heavily influenced in that 

direction. This cements that a higher BMI is an indication that KOA should be in the 

clinicians mind when discussing any potential KOA related issues. Similarly, age is a 

known risk factor for the onset of KOA, and this was shown to hold true with the use of 

the PDP for the OAI test data, specifically illustrated using the original cohort.  

The model performance for all four data cohorts used in this chapter in MTL and STL 

are similar to one another, and contain no significant differences. However, the difference 

in model performance using the original and extended cohorts for the OAI test set 

demonstrate a drop in performance, whereas for the MOST test data there is a 

performance increase. This illustrates that the model, with consistent data, will perform 

differently depending on the cohort of data used to test. In terms of producing a model 

with clinical benefit, the focus would be to remove this variability, where the model would 

perform with relative consistency for the given test case. 
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Chapter 8: Discussion  
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8.1. Conclusions 
Knee osteoarthritis is a huge cost on the NHS and worldwide [13], [16], [133]. This cost 

is only going to get worse due to the global ageing population. As the majority of those 

who suffer from KOA are older, the ageing population will mean that there are more 

people suffering from KOA [253], [254]. As many of those affected are of advanced age, 

they may also suffer from other conditions. This compound nature of disease and a 

battery of symptoms is an indicator for a lower quality of life [111], [121]. 

Current diagnosis of knee osteoarthritis is subjective, and based on subjects presenting 

with a certain set of features that fit the criteria, as there is no test for knee osteoarthritis. 

Known risk factors may influence clinicians to a KOA diagnosis for people presenting 

with typical clinical presentation, but can result in lengthy waits for those who are atypical 

in their disease presentation.  

Those at risk are often unaware they are at risk until they become symptomatic. Within 

this thesis, we develop tools for clinical implementation for screening, signposting and 

education for subjects who fit the demographic of sufferers and those at risk.  

Chapter 3 describes and develops the modelling for a system that could be adapted for a 

clinical screening tool. The features in this model are based on the known features of 

clinical importance when determining if KOA is present, such as age and BMI, along with 

novel features, such as limiting knee pain and difficulty getting upstairs, as these help 

gather more insight from the subject. This produced several models with different 

implementations to allow for a choice that gives the most interpretable model to carry 

forward. The result of this was the logistic regression model as it is a commonly used 

implementation in current clinical practice for different modelling of treatments and 

diseases [255]. This work formed the basis of the framework used for model validation 

in Chapter 5 and the look at how gender influences KOA in Chapter 6.  

Although Joseph at al. [56] produced a model that is an app, the inputs require 

information from MRI images and focused on those with none or mild KOA determined 

from an x-ray. Our study used features that can be gathered solely from the subject in any 

person aged 45 or over to determine their individual risk of having KOA. This could then 

be used to determine if the person required further interventions, such as x-rays or MRI 

scans to definitely confirm this determination.  
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Current advice to those who are likely to develop KOA is to lose weight and move more, 

which many people find unhelpful as this fails to acknowledge other features that a person 

may have in their life that may influence the chance of having KOA. The work in Chapter 

4 uses time-to-event analysis to calculate if a person is at high or low risk for developing 

KOA in the next 5 years. This can be used as a tool for patient education to show the 

influence each feature has on the overall likelihood of developing KOA in the next 5 

years based on information gathered at a clinical visit, helping to not only educate, but 

also improve the advice that is being given out.  

For the discrete time analysis of the data presented in Chapter 4, the separation of high 

and low risk cohorts due to stratification, for both the training and test data is clear. The 

smoothness of the discrete time fits and the differences with the predictions for 

continuous time are likely caused by the interval censoring which is better taken into 

account by the use of discrete time intervals. However, for the work presented in Chapter 

4 due to the cluster-time-to-event outcomes, continuous survival analysis is as appropriate 

as discrete time analysis and the results are equivalent. 

The data gathered as part of the Horizon 2020 project, OActive, had limited use in the 

scope of the diagnostic and predictive modelling due to issues relating to variable 

agreement with different datasets. However, in Chapter 5 some limited model validation 

was carried out on the diagnostic model using the OActive data. The work in Chapter 5 

also provided external validation from MOST on the OAI developed models for 

diagnosis and time to development of KOA in a 5-year window.  

Chapter 5 used the work from both Chapters 3 and 4 and validates these and builds web 

apps that could be easily deployed for use in clinical settings as both a clinical decision 

support and patient education resource. The diagnostic model gives a probability of a 

person with a given set of features having KOA, whilst the predictive model indicates, 

based on a set of features, if a person is at high or low risk for developing KOA in the 

next 5 years.  

The extended models produced in Chapters 6 and 7 build on the work from Chapter 3 

and look with different clinical questions. Chapter 6 looks to determine if there is any 

benefit from modelling KOA differently in male and female subjects, including gender 

specific features. Although there is not a statistically significant difference between the 

original model proposed in Chapter 3, the inclusion of gender specific features offers a 

different way to explain what is happening in the model as some generic variables may 
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have masked the effect of specific features within the output to achieve a nearly equal 

model performance. By allowing a more granular model to be used, and including 

additional features relating to gender, there is the potential for a deeper understanding 

behind the relationship between gender and KOA to be developed. This development 

could also have far reaching impacts, such as a more personalised evaluation of the patient 

from step one in the diagnosis process [256].  

In Chapter 7, we aimed to utilise MTL as a way of boosting model performance. The 

results, as expected, did not garner much if any improvement. This may have been as a 

result of the datasets used, OAI and MOST, being different to allow for information from 

one to enhance the models capability. In this work, there was also a preliminary look at 

the effect of including more features gathered from conditions that are unrelated to KOA. 

The extended modelling produced models with better performance however, these would 

require further analysis to determine if they were of clinical significance.  

In summary, this thesis aims to develop models that can be used to diagnose and predict 

the likelihood a person has KOA based on demographic information. We provide two 

externally validated models that are optimised for explainability. This is the key novelty 

in this study. The resulting models can easily be used and interpreted by a clinician.  

8.2. Future Work 
While the results of this research are promising, with additional time and resources, the 

utility of the model predictions could clearly be improved. Work in Chapter 3 could be 

extended by considering different combinations of variables to be used in the analysis. 

There is also the potential to incorporate multiclass classification into the problem to 

determine the probability of having a certain KL grade based on clinical features.  

For the OActive data to be included, further experiments and optimisation of the MTL 

framework are required. An example could be to develop a neural network that has task 

specific variables built in to be able to provide the data available to the user and produce 

a result with better suitability to the task in question.  

In order to adapt these models to the UK demographic a dataset from the UK would 

need to be used. This would then allow for validation of the models on data from the 

UK, helping to cement the usability for these models in Britain. This is because the 

demographics of the population vary between the US, where this data was gathered, and 
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the UK where the model would be used. This optimisation could be conducted with the 

use of MTL to also incorporate the data from the OAI and MOST datasets.  

Although the work in this thesis solely relied on clinical data, a next step could be to utilise 

the information held in images such as x-ray and MRI information to use a multifaceted 

approach to a prediction model. By using more than one type of data, the multi-task 

learning approach discussed in Chapter 7 could be further expanded to also include 

multisource data. This addition to the modelling could help improve model performance 

by incorporating features contained within images and the clinical data to provide new 

insight into the connection between medical imaging and symptoms that may have 

otherwise gone unnoticed.  

By creating a screening system for people at risk of developing KOA there is the potential 

to not only save money but to enhance the quality of life for those who have developed 

and are likely to develop KOA in the future.  
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Glossary 

Abbreviation Definition 

ACL Anterior cruciate ligament 

AIC Akaike information criterion 

ANN Artificial neural network 

ARD Automatic relevance determination 

AUC Area under the curve 

AUROC Area under the receiver operating characteristic curve 

CADx Computer aided diagnosis 

CART Classification and regression trees 

CHAID Chi-squared automatic interaction detection 

CI Confidence interval 

CNN Convolutional neural network 

GDP Gross domestic product 

GDPR General data protection regulations 

HMO Health membership organisation 

HR Hazard ratio 

KL Kellgren-Lawrence 

KM Kaplan-Meier 

KNHANES Korean National Health and Nutrition Examination Survey 

KOA Knee osteoarthritis 

Lasso Least absolute shrinkage and selection operator 

LIME Locally interpretable model agnostic explanation 

LogR/LR Logistic regression 

MICE Multiple imputation by chained equations 

ML Machine learning 

MLP Multilayer perceptron 

MLP-ARD Multilayer perceptron Automatic relevance determination 

MOST Multicentre Osteoarthritis Study 

MTL Multitask learning 

NHS National Health Service 

NIRF Near infrared fluorescence 

NN Neural Network 

NSAIDs Nonsteroidal anti-inflammatory drugs 

OA Osteoarthritis 

OAI Osteoarthritis Initiative 

OSRE Orthogonal search rule extraction 

PPV Positive predictive value 

PRN Partial response network 

ReLu Rectified linear unit 

RF Random forest 
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ROC Receiver operating characteristic 

STL Single task learning 

SVM Support vector machine 
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Appendices 

In Chapter 2, there is a summary of the datasets used throughout this thesis. Provided 

here are tables showing the data characteristics for the OAI, MOST and OActive data 

used for any diagnostic modelling mentioned in the thesis. 

OAI 

The OAI data consists of 1187 variables collecting information relating to family history, 

medical history, medication, physical activity, pain and symptoms, along with 

demographic information. Table 0-1 contains a summary of information relating to 

variable subset used for the diagnostic modelling. 

Table 0-1: Summary table for the OAI data detailing the variables used within the thesis. 

 0 (N=2473) 1 (N=1997) Total 
(N=4470) 

AGE    

   Mean (SD) 59.850 (9.130) 62.647 (8.983) 61.100 (9.170) 

   Median (Q1, Q3) 59.000  

(52.000, 67.000) 

63.000  

(56.000, 70.000) 

61.000  

(53.000, 69.000) 

   Min - Max 45.000 - 79.000 45.000 - 79.000 45.000 - 79.000 

   Missing 0 0 0 

BMI    

   Mean (SD) 27.555 (4.496) 29.761 (5.215) 28.540 (4.953) 

   Median (Q1, Q3) 27.000  

(24.200, 30.500) 

29.400  

(26.200, 33.000) 

28.200  

(25.000, 31.700) 

   Min - Max 16.900 - 45.400 -10.000 - 
48.700 

-10.000 - 
48.700 

   Missing 0 0 0 

GENDER 1397 (56.5%) 1200 (60.1%) 2597 (58.1%) 

B.LINE_SYMP    

Missing 1 (0.0%) 0 (0.0%) 1 (0.0%) 

   0 2138 (86.5%) 1060 (53.1%) 3198 (71.5%) 

   1 334 (13.5%) 937 (46.9%) 1271 (28.4%) 

Knee Pain 
(P01KPACT30) 

530 (21.5%) 679 (34.1%) 1209 (27.1%) 

knee_swell 508 (20.8%) 820 (42.0%) 1328 (30.2%) 

diff_upstr 1186 (48.1%) 1290 (64.7%) 2476 (55.5%) 

knee_stiff_day_limit    

   1 1938 (78.8%) 1317 (66.2%) 3255 (73.2%) 
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   2 263 (10.7%) 273 (13.7%) 536 (12.1%) 

   3 73 (3.0%) 103 (5.2%) 176 (4.0%) 

   4 75 (3.1%) 120 (6.0%) 195 (4.4%) 

   5 109 (4.4%) 177 (8.9%) 286 (6.4%) 

 

A table showing the data completeness is presented in Table 0-2. This is for the complete 

dataset, of which the analysis in this thesis uses a small subset of features. The times 

throughout the study where the participants were given the PA view radiographs were at 

12, 24, 36, 48, 72 and 96 months after their initial baseline assessment. These subsequent 

measures of the KL score are then used in the survival analysis work, detailed in Chapter 

4.
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Table 0-2: Follow Up Visit Summary for the OAI study protocol. 

Visit 12m 24m 36m 48m 60m 72m 84m 96m 108m 

Clinic Visit 
4,293 
(90%) 

4,082 
(85%) 

3,925 
(82%) 

3,831 
(80%) 

 3,239 
(68%) 

 3,117 
(65%) 

 

Telephone Interview 
200 
(4%) 

260 
(5%) 

349 
(7%) 

425 
(9%) 

3,935 
(82%) 

584 
(12%) 

3,787 
(79%) 

531 
(11%) 

3,204 
(67%) 

Did not consent to 
extension 

    724 
(15%) 

724 
(15%) 

724 
(15%) 

724 
(15%) 

724 
(15%) 

Contacted no data  201 
(4%) 

 126 
(3%) 

39 
(1%) 

81 
(2%) 

48 
(1%) 

83 
(2%) 

88 
(2%) 

Withdrew 
44 

(1%) 
97 

(2%) 
148 
(3%) 

207 
(4%) 

NA 
50 

(1%) 
87 

(2%) 
137 
(3%) 

332 
(9%) 

Unable to contact  145 
(3%) 

 137 
(3%) 

13 
(<1%) 

6 
(<1%) 

12 
(<1%) 

13 
(<1%) 

31 
(<1%) 

Deceased 
12 

(0.2%) 
29 

(0.6%) 
52 

(1%) 
70 

(1%) 
85 

(2%) 
112 
(2%) 

138 
(3%) 

172 
(4%) 

208 
(4%) 
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MOST 

The MOST data has 204 variables, containing information on a variety of factors 

including medication history and questions relating to pain and symptoms, along with 

demographic information. The information in Table 0-3 shows the retention success in 

the MOST data collection process during the course of the study. The protocol for the 

type of data that was collected is also shown in Table 0-3. The clinical data collections 

comprised of both telephone interviews and clinical visits. 

Table 0-3: Follow Up Visit Summary for the MOST study protocol. 

Time 

point 
Enrolled1 

Data 

collected2 

Clinical 

Data 

Radiograph 

Images 

Baseline 3026 3026 (100%) 3026 3015 / 3011* 

15-Months 3018 3007 (100%) 3007 293 

30-Months 2993 2969 (99%) 2969 2651 

60-Months 2882 2768 (96%) 2768 2114 / 2100* 

72-Months 2778 2715 (98%) 2715 - 

80-Months 2721 2638 (97%) 2638 1961 

1 "Enrolled" means enrolled at baseline and continuing participation (not deceased 
and not withdrawn). 
 
2 "Data collected" means all or some data collected (measurements and exams 
completed or partially completed). 

Where * denotes the use of full limb radiographs, and the remaining are PA and Lateral 

View radiographs of the joints.  

The variables contained in Table 0-4 are a summary of information relating to the variable 

subset used for the diagnostic modelling validation in Chapter 5 of this thesis. 

Table 0-4: Summary table for the MOST data detailing the variables used within the thesis. 

 0 (N=1418) 1 (N=1571) Total 
(N=2989) 

BMI    

   Mean (SD) 29.184 (4.944) 32.147 (6.474) 30.741 (5.983) 

   Median (Q1, Q3) 28.720  

(25.633, 32.098) 

31.090  

(27.660, 35.405) 

29.875  

(26.657, 33.740) 
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   Min - Max 16.720 - 52.390 18.250 - 71.910 16.720 - 71.910 

   Missing 0 1 1 

AGE    

   Mean (SD) 60.783 (7.933) 63.945 (7.972) 62.445 (8.107) 

   Median (Q1, Q3) 60.000  

(54.000, 67.000) 

64.000  

(57.500, 70.000) 

62.000  

(55.000, 69.000) 

   Min - Max 50.000 - 79.000 50.000 - 79.000 50.000 - 79.000 

   Missing 0 0 0 

knee_stiff_day_limit    

   1 1165 (82.2%) 999 (63.6%) 2164 (72.4%) 

   2 104 (7.3%) 192 (12.2%) 296 (9.9%) 

   3 25 (1.8%) 60 (3.8%) 85 (2.8%) 

   4 36 (2.5%) 72 (4.6%) 108 (3.6%) 

   5 88 (6.2%) 247 (15.7%) 335 (11.2%) 

diff_upstr 1044 (73.7%) 1402 (89.2%) 2446 (81.9%) 

Knee Pain 
(KPACT30) 

1077 (85.3%) 1362 (93.2%) 2439 (89.5%) 

Gender 827 (58.3%) 969 (61.7%) 1796 (60.1%) 

B.LINE_SYMP 615 (71.9%) 1025 (80.3%) 1640 (77.0%) 

 

OActive 

The OActive data was used for validating the diagnostic model, described in Chapter 5. 

The information in Table 0-5 is a summary of the features used in the model validation 

in this thesis.  

Table 0-5: Summary table for the OActive data detailing the variables used within the thesis. 

 0 (N=66) 1 (N=131) Total (N=197) 

Data provider    

   ANIMUS 0 (0.0%) 0 (0.0%) 0 (0.0%) 

   HULAFE 66 (100.0%) 2 (1.5%) 68 (34.5%) 

   UNIC 0 (0.0%) 129 (98.5%) 129 (65.5%) 

Gender 22 (33.3%) 34 (26.0%) 56 (28.4%) 

Age    

   Mean (SD) 51.970 (6.031) 70.061 (8.444) 64.000 (11.517) 

   Median (Q1, Q3) 52.500 (47.000, 
57.000) 

71.000 (64.000, 
76.500) 

64.000 (55.000, 
73.000) 

   Min - Max 41.000 - 65.000 50.000 - 85.000 41.000 - 85.000 

   Missing 0 0 0 
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BMI    

   Mean (SD) 27.364 (3.627) 29.925 (4.710) 29.067 (4.533) 

   Median (Q1, Q3) 26.913 (25.101, 
29.124) 

29.380 (26.950, 
32.455) 

28.520 (25.970, 
31.398) 

   Min - Max 18.620 - 38.830 20.780 - 46.880 18.620 - 46.880 

   Missing 0 0 0 

Knee_Swell    

   No 66 (100.0%) 59 (45.0%) 125 (63.5%) 

   Unspecified 0 (0.0%) 1 (0.8%) 1 (0.5%) 

   Yes 0 (0.0%) 71 (54.2%) 71 (36.0%) 

kneepain 0 129 (100.0%) 129 (100.0%) 

 


