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Abstract

Cutaneous wounds represent a serious economic and health burden for many developed

nations. In the U.K., around 2.2 million people a year receive wound care, absorbing

roughly 4% of total NHS annual expenditure. Chronic cutaneous wounds in particular

may possess poor prognoses. Diabetic foot ulcers, for example, carry a five-year mor-

tality rate comparable to cancer. The prevalence of chronic wounds amongst developed

nations is anticipated to rise further, with increasing incidence of conditions strongly

associated with chronic wound aetiology, such as obesity and diabetes.

A common feature among chronic wounds is the dysfunctional regulation of connexin

proteins in cutaneous tissue, which ordinarily modulates in a carefully orchestrated

manner post-injury to enable effective healing. Experimental studies targeted to the

restoration of the typical spatio-temporal expression pattern of connexins post-injury

have shown accelerated and improved healing outcomes across a range of in vitro, in

vivo animal and ex vivo human models, and now clinical trials - with various connexin-

targeted agents established as promising therapeutic candidates.

Physical properties of the extracellular environment have long been known to regulate

cellular behaviours. Cutaneous tissue presents a huge range of topographic configura-

tions that cells must navigate in order to carry out reparative function during wound

repair. Surface ‘topography’ has since been established in the experimental literature

as a major regulator of cell migration behaviour. The capacity for topography to in-

fluence migration has been shown to have significant applications in biomaterial and

bioimplant design and development, including advanced wound healing treatments like

‘skin substitutes’.
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In this thesis, we propose three new mathematical models pertaining to these applica-

tions. We derive a stochastic model for topographically influenced cell migration, based

on a biased Ornstein-Uhlenbeck cell model. We use this model to probe the influence of

linearly and randomly organised topographies on migration trajectory behaviour and

how the gradual introduction of random perturbations to linear features changes this

behaviour, with the intention to further understand how surface imperfections intro-

duced by surface fabrication impact migration.

We then derive a mathematical model for connexin 43 (Cx43) cycling dynamics and its

dynamical modulation by connexin mimetic peptide Gap27, using mass action kinetics.

We use this model to further understand how the introduction of Gap27 may function

to affect Cx43-based species dynamics.

Finally, we derive a mathematical model for Cx43-based cell-cell interaction influenced

cell migration and its dynamical modulation by Gap27 within a 2-d computational

model of a scrape wound. We use this model to investigate how Cx43 dynamics might

affect cell migration behaviour and population invasion of a scrape wound and how

Gap27 might modulate these cellular behaviours.
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Chapter 1

Introduction

1.1 Cutaneous wounds and their cost

A cutaneous wound may broadly be described as damage sustained to the skin which

results in impairment to its regular anatomical structure and function [1, 2]. Cuta-

neous wounds typically emerge from an injurious event which may result from trauma

(surgical incision, for example) or prolonged stress (such as with pressure ulceration)

[1, 2]. The regular healing process can become disrupted by the presence of local (e.g.

bacterial infection) or systemic (e.g. diabetes mellitus) conditions, making the wound

hard-to-heal and cause the wound to have different clinical presentations [1, 2]. Ex-

amples of such ‘chronic’ wounds include venous, leg, pressure and diabetic foot ulcers

[1, 2].

Wounds represent an enormous economic burden, particularly for developed countries.

In the UK, it is estimated that around 2.2 million adults receive wound care by the NHS

annually, costing about £5 billion a year or around 4% of total NHS annual expenditure

- comparable to the annual NHS expenditure on obesity [3, 4, 5, 6]. An estimated £1.9

billion of this cost is attributable to the treatment of leg ulcers. Pressure and diabetic

foot ulcers each incurring an annual cost of around £500 million [5]. The majority of

1



this huge annual healthcare cost is allocated to hospitalisation and nursing care, some

of the most valuable resources in the healthcare system [3].

In the U.S., around 6.5 million people annually undergo treatment for a chronic wound,

costing the healthcare system an estimated $25 billion [7]. In Scandinavia, wound care

incurs an average cost of around 2-4% of annual healthcare expenditures [7]. As a

whole, developed countries are conservatively estimated to spend around 1–3% of total

healthcare expenditure on the management and treatment of chronic wounds [8]. Such

figures look set to rise, with the increasing prevalence of conditions strongly associated

with chronic wound aetiology, including obesity, diabetes and age [7].

The human cost can be devastating. Diabetic foot ulcers, for example, have been shown

to have a five-year mortality rate comparable to cancer, around 30%, and carry a high

risk of severe complications including infection and limb amputation [9, 10]. Chronic

wounds can be particularly deadly for older patients. A study by Khor et al. found

pressure ulcers in hospitalised adults aged 65 and over to have a 12-week mortality rate

of 66% [11]. Living with chronic wounds can also be particularly distressing. A recent

review article by Olssen et al. reported that patients with chronic wounds typically

report low health-related quality of life (HRQoL) scores, pain and disability being par-

ticularly troubling for patients [8].

Standard wound care treatments, e.g. tissue debridement and administration of an-

timicrobial agents, are often rendered ineffective once a chronic persistent pathology

has been established within a wound [1]. Thus there is a pressing need for more ef-

fective wound treatments, in particular to resolve complex chronic cutaneous wounds

[9].

2



1.2 Biology of cutaneous wounds

1.2.1 The structure and composition of human skin

Human skin comprises two distinct layers: a densely cellular outer epidermis and, ly-

ing beneath, a vascular collagen-rich dermis with a sparse cell population [12]. The

epidermis is a specialised epithelium consisting mostly of tightly packed keratinocytes,

interspersed with an array of other cell types e.g. melanocytes, Langerhans and Merkel

cells, arranged into four well defined sub-strata: the stratum basale, a layer of cells

which attach to the dermal-epidermal junction defined by the basement membrane; the

intermediary strata spinosum and granulosum; and the stratum corneum, the surface

layer of cornified keratinocytes termed ‘corneocytes’ [13]. Corneocytes at the stratum

corneum continually exuviate, making way for keratinocytes that advance progressively

away from their moorings at the basement membrane through the intermediary strata

towards the surface, taking on strata-specific functional adaptations on their journey

[13]. Keratinocytes in the basal layer are typically replaced by resident stem cell dif-

ferentiation, thus establishing a cycle of epidermal regeneration [13]. The epidermis

also contains hair follicles, sebaceous and sweat glands, typically bedded deep within

the dermis [14]. Throughout the strata cells are compacted together, component cells

adhering to each other via adhesive desmosomes and adherens junctions, conferring

principally via gap junction channels which directly link the cytoplasms of neighbour-

ing cells [13].

Beneath the dermal-epidermal junction lies the dermis, much of which is composed of

a well vascularised collagenous connective tissue termed extracellular matrix (ECM).

ECM is made up of a dense network of interconnected fibrils (mostly collagen, but in-

cludes a range of other proteins such as laminin and fibronectin) providing mechanical

3



support to the epidermis. ECM typically accommodates a comparatively sparse cell

population, mostly fibroblast cells (though macrophage and mast cells also make up

a significant proportion) that maintain, repair and remodel matrix structures; though

ordinarily quiescent unless activated by endogenous agents [15, 16, 17]. The dermis is

also home to a comprehensive network of microvasculature providing nourishment and

aid to the epidermis and epidermal appendages [14]. Below the dermis lies subcuta-

neous adipose tissue which functions primarily as an energy cache, holds substantial

vasculature and influences regulation of growth factors [14].

A diagram to illustrate the structure and major components of human skin, particularly

the epidermis, is presented in Figure 1.1.

1.2.2 Cutaneous wound repair

A primary function of cutaneous tissue is to protect against the harsh conditions of the

external environment and so any compromise to the integrity of these tissues must see

a quick response to avoid further tissue degradation. Cutaneous wounds are typically

‘patched up’ with a haemostatic clot which begins to form immediately post-injury

and the damaged or missing tissues subsequently reconstituted and remodelled over

the days and weeks that follow [12].

Cutaneous wound repair is complex, it involves a careful orchestration of a vast network

of interactions between cells, tissues, biochemical and biomechanical factors. Healthy

repair follows a typical pattern and is generally classified into four major temporally

dependent phases: haemostasis, inflammation, proliferation and remodelling [1].

In the haemostatic phase, platelet-ECM contact, caused by spillage from cut vascu-

lature, triggers platelet aggregation into a small cellular plug. The plug provides a

surface for coalescence of coagulation complexes, this in turn initiating a coagulation
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Figure 1.1: Diagram to illustrate the structure and major components of human skin. A. Cross-sectional illustration
of human cutaneous tissue. The tissue can be grouped into two major components: epidermis and dermis; with the
hypodermis lying (subcutaneously) beneath the dermis. Extracellular matrix (ECM) composes much of dermal tissue.
The top layer of dermal tissue typically accommodates epidermal protrusions, called the papillary dermis. Beneath is a
denser layer of tissue called the reticular dermis. B. Magnified cross-sectional illustration of the epidermis and its major
cellular and structural components. The epidermis can be split into its component layers: the basement membrane,
immediately anchored above is the stratum basale, followed by the stratum spinosum, the stratum granulosum and
topped by a surface layer of corneocytes, the stratum corneum. Cells in the epidermis adhere by focal contacts (oval),
desmosomes (rectangle) and adherens junctions (parallel lines), conferring via gap junction channels (double-headed
arrow).

cascade resulting in a much larger and more robust fibrin clot. The clot stabilises the

wounded region and provides a constant source of vasoactive and chemotactic growth

factors, cytokines and chemokines, functioning later on in the healing cascade as a

mechanically stable matrix for subsequent infiltration by various cell types [1, 14].

Passive vasodilation then enables neutrophils to extravasate around, then migrate into,

the wounded region guided by attractants within the clot, followed soon thereafter by

monocytes which differentiate into macrophages, this marking the start of the inflam-

matory phase. Both neutrophils and inflammatory macrophages extract debris and
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foreign material from the wound, phagocytosing bacteria and other micro-organisms.

These cells also release various growth factors, cytokines and chemokines that activate

endothelial and fibroblast cells, stimulating angiogenesis and granulation tissue forma-

tion respectively [2].

Concurrent with (though initiating slightly after) the inflammatory phase is the growth

or proliferative phase, in which new tissue and vasculature are generated both to re-

place damaged and lost structures and to aid healing. Soon after clot formation,

wound-edge keratinocytes initiate phenotypic changes which enable their migration

into the clot. With time, and contraction of the tissue beneath, the migrating ker-

atinocytes re-establish a new epithelium which matures into a new fully stratified epi-

dermis [2, 12, 14].

In response to various biochemical signals released by platelets, neutrophils, macrophages

and wound-edge keratinocytes, activated endothelial cells are stimulated to migrate into

surrounding tissue and develop new vasculature to support healing and replace that lost

to injury. Fibroblasts are also stimulated to migrate into the clot, gradually dissolving

and reshaping it leaving a stronger more collagenous matrix in its place. The resulting

densely vascularised new matrix tissue is known as granulation tissue [2, 12, 14].

The wound is matured by persistent remodelling of the granulation tissue. Fibrob-

lasts differentiate into myofibroblasts whose local contractile pressure on matrix fibrils

globally contracts the tissue, helping to re-establish epithelial continuity, accelerating

reepithelialisation. Over time ECM takes on a more organised and collagenous form.

Eventually, once the healed tissue is sufficiently matured, any excess cells apoptose,

surplus microvasculature dissolve to protect the wider vascular system and metabolic

activity tapers back to pre-injury levels, leaving a sparsely populated scar tissue [18].
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The scar tissue resulting from a healed wound is typically only around 70% the tensile

strength of unwounded tissue, unlike in fetal tissue the repair process in adult humans

is not perfectly regenerative [1].

1.2.3 Impaired healing and the role of connexins

Cutaneous wounds sometimes fail to heal, the result typically being described as a

‘chronic wound’. Fundamental causes for impaired healing may be either or both local

(e.g. hypoxia, bacterial infection) and systemic (e.g. metabolic or vascular disease,

age), creating the kind of physiological conditions from which dysfunction in the heal-

ing cascade can arise [1]. Systemic conditions in particular can prompt a complex

and diverse set of healing dysfunctions. Diabetes mellitus, for example, is associated

with impaired and delayed cellular activity which sets up persistent inflammation, and

the wound bed prone to colonisation by particularly pathogenic hard-to-treat bacteria,

along with a host of other associations disruptive to the healing process [2, 14].

A common feature of chronic wounds with different aetiologies is the dysfunctional

regulation of connexin proteins. Connexins are a family of small conformationally sim-

ilar proteins which come together intracellularly to form functional hemichannels (or

‘connexons’) and, with subsequent adherence to other cells, gap junction channels at

the cell membrane. The spatio-temporal regulation of different connexins throughout

the repair process is thought to be critical to enable effective healing [19, 20].

The most common connexin in cutaneous tissue is connexin 43 (Cx43), expressed in

particularly high concentrations in suprabasal keratinocytes, forming many of the gap

junction channels residing in this region, but is also expressed in dermal fibroblasts

[21, 22]. In the hours post-injury, Cx43 in regions proximal to the wound is ordinar-

ily temporarily down-regulated, with other connexins up-regulated in its place. Cx43
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expression slowly swells back to pre-injury levels in the region in the coming days

[22, 23, 24].

Different connexins are thought to confer variable gating characteristics on the hemichan-

nels and gap junction channels which they jointly compose, and it is proposed that the

observable post-injury changes to connexin expression initiate a progressive spatial

partitionment of tissues around the wound which helps cells to coordinate collective

behaviours like migration and proliferation so crucial to the inflammatory and growth

phases of healing [19, 20].

Disruption to the typical expression patterns of connexins post-injury has been as-

sociated with impaired healing. For example, a study by Sutcliffe et al. found that

the marked up-regulation of dermal and epidermal Cx43 was a distinct characteris-

tic among punch biopsy samples taken from the visibly discernible edges of human

diabetic, venous and pressure ulcers [25]. The abnormal up-regulation of wound-edge

Cx43 post-injury is found to be a distinct feature among chronic wounds across a range

of human and animal studies [22, 26, 27].

Moreover, studies that have targeted Cx43 for knockdown, transient down-regulation

or disruption to channel function have typically shown accelerated and improved heal-

ing in animal models [28, 29, 30]. This has led to great interest in targeting Cx43

for therapeutic use and the development of Cx43-based wound treatment protocols.

Antisense oligonucleotides, for example, which target connexin expression, have shown

considerable efficacy in accelerating healing in animal models, and is the main active

ingredient in the drug candidate ‘Nexagon’, targeted at the treatment of corneal wounds

[21, 31]. Connexin mimetic peptides (CMPs), which interfere with channel function by

conformationally mimicking molecular connexin sequences and binding to connexins,
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have also shown promise in enhancing wound closure across a range of in vitro 2-d and

3-d skin models, in vivo animal models and ex vivo human skin [21]. CMPs have also

been useful in elucidating the potential roles of connexins in wound healing. Wright

et al., for instance, showed CMP-induced reduction in connexin-based channel activity

increased migration rates in keratinocytes and fibroblasts and significantly accelerated

2-d scrape wound closure; thus demonstrating that the transient cessation of intercellu-

lar communication may play an important role in cells adopting migratory phenotypes

during the healing process [32].

1.2.4 Directed cell migration

Cell migration, at a general level, is characterised as the translocation of individual or

multiple cells [33]. It is of critical importance to multicellular organisms, being influen-

tial in many physiological and pathophysiological processes including wound healing,

morphogenesis [34], immune response and cancer metastasis [35]. The means by which

most eukaryotic animal cells migrate is known as ‘crawling’ [33]. Crawling is the result

of complex interplay between constituent biopolymers of the cell cytoskeleton. During

motion, the biopolymer ‘actin’ undergoes polymerisation, extending the cytoskeleton

outward as ‘filopodia’. The filopodia then senses candidate areas for adhesion to the un-

derlying substrate. Adhesion triggers de-adhesion in the direction opposing the newly

adhered filopodia. Mechanical potential generated through interaction between actin

filaments and myosin motor proteins are thought to produce enough force to ratchet

the cell forward in the direction of the leading filopodia [33, 36]. Cell types which

maintain crucial function in cutaneous healing, e.g. epithelial, macrophage, fibroblast

and endothelial, migrate by means of the ‘crawling’ motility cycle.

However, the extracellular environment is complex and migrating cells must traverse a
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diverse range of microenvironments containing various stimuli and bio-cues in order to

conduct reparative functions. It remains unclear as to how cells incorporate the huge

array of guidance and directional cues from the surrounding extracellular environment

into the intrinsic motility system to produce directed migrations [37].

Cells have long been known to sense and respond to their environment, the many envi-

ronmental factors affecting migration being well-documented. Chemical and physical

components of the local microenvironment can cause migration to become oriented

– known as ‘taxis’ – or disoriented – known as ‘kinesis’ [38]. Directionally random

migration typically occurs in the absence of stimulative environmental cues (e.g. a

featureless 2-d surface) or in the uniform presence of a motogenic signal (a stimulant

of the intrinsic motility system of a cell e.g. a growth factor driving chemokinesis)

[37]. A cell’s migration can be modulated by the presence of some asymmetric cue,

described as a gradient [37]. The most well studied type of directed cell migration

is chemotaxis, in which cells respond to a local soluble chemical gradient. Types of

physically directed migration include that prompted by substrate stiffness or ‘rigidity’,

cells appearing to favour stiffer substrates when in motion - known as durotaxis [39];

substrate adhesiveness - haptotaxis [40], surface topography and matrix topology -

referred to traditionally as ‘contact guidance’ [41, 42].

1.2.5 Topographically influenced cell migration

Among the many physical cues to which cells respond in vivo is the varied topology

and topography presented by the complex 3-d fibrillar structure of the ECM. A huge

body of in vitro experimental studies show that substrate topography can direction-

ally alter the migration behaviour of individual cells. For example, studies focusing

on topographies with micron scale grooves have shown fibroblasts [43, 44], neurons
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[45], endothelial [43], epithelial [46] and smooth muscle cells [43] to migrate along the

surface grooves in clear alignment with groove orientation. Topographies with lattice

arrangement have been shown to prompt preferential cell migration along the long side

of rectangular grids [47]. On topographies with micron scale pillar features fibroblasts

have been shown to exhibit more tortuous migration paths and higher speeds [48].

The topographic regulation of cell migration has significant biomedical applications,

a substantial experimental research literature is dedicated to its exploitation for bio-

materials and bioimplant design. A major application is in tissue engineering, where

topographies can be used to influence cell positioning and population of tissue ‘scaf-

folds’ and the subsequent in vitro development and application of various tissues [49].

An example is a ‘skin substitute’, an advanced topical treatment for cutaneous wounds

designed to mimic the structure and composition of native epidermis, dermis or fully

integrated cutaneous tissue, with dual primary intentions of both providing wound cov-

erage and stimulating cellular infiltration, neovascularisation and new tissue deposition,

in effect ‘reviving’ the healing process [2]. The scaffold structure used to develop and

carry the substitute may be constructed of natural (e.g. collagen, sterilised ECM) or

synthetic biomaterial; contain cells (autologous or nonautologous), growth factors and

cytokines or be acellular or decellularised; and be produced by a variety of manufactur-

ing techniques which may influence topology, topography and material characteristics

of the scaffold [2, 14, 50]. Skin substitutes approved for clinical application, such as

‘Integra’ and ‘Apligraf ’ (decellularised and populated bovine collagen structures, re-

spectively), have shown success in the treatment of selected burn wounds [14].

Another significant application for topographies is to improve integration of implanted

medical devices (e.g. structural, dental, and cosmetic). A major reason for the failure
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of some medical implants is due to tissue encapsulation caused by migration, adhesion

and proliferation of cells around the device, so that the implant becomes completely

enveloped by cells and unintegrated with the tissue. This is a particular issue for

dental implants, leading to bacterial infection in spaces between tissue and implant,

inflammation and subsequent removal of the implant [51]. Other problems include

immune-mediated cell migration. Immune cells such as macrophages have been shown

to accumulate on surfaces with certain topographic features [52]. The presence of

macrophages upon medical implants is thought to contribute to the inflammatory re-

sponses observed in the failure of some medical implants [53]. Medical devices with

topographies specially designed and engineered to regulate or inhibit such migration

could improve clinical outcomes for implantation.
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1.3 Mathematical modelling studies

The mathematical modelling literature pertaining to cutaneous wound healing stretches

back over thirty years. Early prolific and influential authors include J.D. Murray, J.A.

Sherratt and P.K. Maini, amongst others, whose work collectively has studied most of

the main phases of cutaneous wound healing. Modelling literature in this area today

is abundant, benefiting from increased inter-disciplinary practice and improved tech-

nology, leading to large complex and realistic models.

Though mathematical models have been used to study all phases of cutaneous wound

healing, most modelling attention has been focused to specific components of re-

epithelialisation, tissue remodelling and contraction, and angiogenesis (for in-depth

reviews of re-epithelialisation, remodelling and contraction models see Murray’s Math-

ematical Biology II [54] and Maini, Olsen and Sherratt’s review of wound contraction

models [55], for a recent comprehensive review of angiogenesis models see Guerra, Be-

linha and Jorge [56]) encompassed by the inflammatory and proliferative phases of

healing [57, 58, 59]. Many early studies focused modelling to foundational elements of

re-epithelialisation and, more generally, the directed migration and proliferation of cells

around the wound space; typically favouring either an individual or continuum-based

modelling approach, single-scale and often confined to one or two spatial dimensions.

A classic early study by Sherratt and Murray characterised both the migratory and pro-

liferative elements of re-epithelialisation using a two-field PDE model, the total change

in cell population over time described by a diffusion (for migration) and a chemically

regulated logistic growth term (for proliferation), the diffusing chemical described in a

separate coupled field [60].

Another early study by Tranquillo and Murray proposes a model of fibroblast-driven
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wound contraction built upon earlier models of cell-matrix interaction in morphogen-

esis developed by Murray and co-workers. The authors define a ‘base’ three-field PDE

model (in 1-d), describing: fibroblast concentration, determined by migration, cell mi-

tosis, death and ECM deformation; ECM concentration, determined by ECM-fibroblast

deformation; and ECM/fibroblast composite concentration, determined by fibroblast

and ECM concentrations and a force balance between traction force of cells and vis-

coelastic properties assigned to ECM. This ‘base’ model is extended by incorporating a

soluble mediator of fibroblast behaviour and dynamical properties of the ECM, consid-

ering spatially-dependent modulation to traction forces, proliferation, chemotaxis and

ECM synthesis. The authors are able to parametrise all extensions to the model which

are able to reproduce the characteristic exponential decay in the wound area over time

observed experimentally [61].

In more recent modelling literature, we see a trend for larger and more complex models,

often multi-scale, three-dimensional and frequently use hybrid modelling approaches to

span composite scales [58]. These more complex characterisations enables the study of

systems more comparable in complexity to actual biological systems and can provide

valuable dynamic and mechanistic insights but can become difficult to analyse.

Due to its wide-ranging influence on various physiological and disease processes, di-

rected cell migration has received much attention by modellers. Cell-based chemo-

taxis in particular, has been studied widely using a number of different approaches

including individual-based biased random walks [62], pseudopod-based models [63],

and automata, as well as classic Keller-Segel-based models [38]. As it began to emerge

experimentally just how responsive cell can be to their physical environment, mod-

ellers also began to probe physical cell-substrate interactions. Modellers have studied
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cell-fibril interactions [64], durotaxis [65], cell-topography interactions [66], cell-matrix

interactions and most recently multi-cue environments [67].

Topographically influenced cell migration has been extensively studied in experimental-

based literature over recent years. The recent proliferation in experimental study has

been broadly motivated by the therapeutic potential presented by bioengineering and

biomaterial research. Much of the literature aims principally to elucidate the cell mech-

anisms responsible for the cell-substrata interaction in native tissues and subsidarily

for technological progress e.g. improved integrability of biocompatible scaffolds and

implants. The modelling literature pertaining to this interaction is, by comparison,

relatively sparse. Early migration models to incorporate topographic components of-

ten modelled cell-fibril contact guidance or contained within larger models of ECM

dynamics in which cell-topography interaction was dynamically interdependent.

Tranquillo and co-workers, notably Barocas, were such early authors, proposing a

model for contact guidance within larger frameworks modelling the dynamics of tissue

equivalents (T.E.s, e.g. collagen gels). The authors describe contact guidance as an

anisotropic diffusion, directed by alignment of fibrils in a fibrillar network within the

T.E. [68].

Dallon and co-workers describe cell-ECM interaction using a hybrid approach with

discrete cells on a continuous vector field representing fibril directions within an ECM.

One particular theoretical study simulates fibroblast remodelling of ECM and fibrin

clot to examine the effects of cell speed, density and flux on fibril orientation and align-

ment, with the aim of identifying factors that influence scar tissue formation [64].

More recent modelling work has begun to explore how migration is affected by classes

of topography often studied in experimental biomaterial literature e.g. grooved, spher-
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ical, curved and pitted. Such work typically features descriptive biophysical models

motivated by quantifying morphological and stress changes that occur when cells move

in relation to some of the topographical features described, for example see Heydari et

al. [66] and Winkler et al. [69]. A more in-depth review of this literature is presented

in Chapter 2 - Introduction.

The physiological ubiquity of connexin proteins, and their influence on composition and

function of inter-cellular channels, hemichannels and gap junction channels, has drawn

considerable attention from mathematical modellers. Gap junction channel properties

and functions in particular have been well-studied, many modelling works particularly

focusing on channel conductance and permeability.

An early study by Vogel and Weingart modelled gap junction channels as an electrical

circuit, describing channel gating in response to transjunctional voltage and variable

conductance states [70]. Other studies have used network-based cell population models

explore the influence of gap junction conductance on cardiac arrhythmias [71], probe

synchrony of electrical activity via gap junctions in β-cell clusters in the pancreas [72]

and describe Ca2+ wave propagation through gap junction channels in a cell neigh-

bourhood [73].

A study by Mondal et al. looked into how morphology of the channel ‘pore’, con-

ferred by different connexin types in channel composition, influenced channel flux [74].

Bressloff proposed a model of diffusing particles within a 1-d domain of gap junction

connected cells, and used it to derive effective permeability of the gap junction joining

the two cells [75].

The influence of connexins in wound repair appears to a relatively unexplored area

in the mathematical modelling literature. A significant early attempt to address this
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explicitly is presented in a study group report published online by Roberts et al. [76].

The authors propose four different models: a 2-d cellular Potts approach [77] modelling

a connexin-based switch between migratory and proliferative behaviours proximal to a

‘wound’; a cellular automata approach describing fibroblast migration around wound

edges, cells assigned with an associated connexin-based proclivity to aggregate, the

introduction of a connexin-mimetic peptide (CMP) reducing the binding effects of con-

nexin and wound width; a discrete-point wound model, based on models published by

Dallon, Sherrat and Maini [64, 78], introducing an additional connexin-based adhesive

pull from neighbouring cells and set the computational domain within a 2-d scrape

wound model; and a continuum (PDE) approach with four main components: cell den-

sity, Cx43 concentration, signalling molecule concentration and connexin mimetic pep-

tide (CMP) concentration, to model the transient down-regulation of Cx43 at wound

edges and its effect on migratory and proliferative phenotypes, and effect of CMP an

in vitro scrape wound assay.

More recently, a study by Montgomery et al. investigated how connexin mimetic pep-

tide αCT1 affects scar tissue formation using a computational scrape wound model,

looking in particular at how αCT1 influenced fibroblast migration during healing. Re-

sults suggested the peptide could diminish cell sensitivity to physical guidance cues

[79].

We present a more detailed consideration of the modelling literature pertaining to con-

nexins and connexins in wound repair in Chapter 3 - Introduction and Chapter 4 -

Introduction.
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1.4 Thesis motivations and contributions

Topographies have been shown to modulate many different cell behaviours, and can

present powerful guidance cues for cell migration. Cutaneous tissue presents a huge

range of different topographic configurations for cells to traverse. The alignment of cer-

tain regions of dermal ECM (corresponding to tension lines) could provide an important

guidance cue for fibroblast invasion into a wound site in the ensuing days post-injury

[80]. Topographies have also shown utility in wound healing treatments such as in

the effective development of skin substitutes, influencing population and positioning

of cells on tissue scaffolds, amongst other applications. Whilst cell-matrix interac-

tions, particularly fibrillar-based contact guidance, have been frequently modelled in

the literature, stretching back thirty years, topographically influenced migration mod-

els tailored to biotechnology applications has only relatively recently emerged and is

still in its infancy. Expansion of this modelling literature has the potential to stream-

line the experimental process by characterising migration responses to specific classes

of topographies, enabling experimentalists to focus on topographies featuring surface

geometries and dimensions most useful for inducing certain migration distributions,

patterns and behaviours.

Healthy cutaneous tissue contains an expansive, differential and dynamically adaptable

expression of connexin proteins. This connexin network modulates spatio-temporally in

response to cutaneous injury, the dysregulation of which is strongly associated with the

aetiology of chronic non-healing wounds. Agents targeted to correct such dysregulation,

in particular to restoring the transient down-regulation of Cx43 at the wound edge in

the hours immediately post-injury, have shown success in improving healing outcomes.

Although there exists a sizeable modelling literature exploring properties and function
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of gap junction channels, the fundamental connexin cycling dynamics which underpin

channel functions appears to have been overlooked. A small number of modelling stud-

ies look at the influence of connexins on wounds, probing specifically their influence on

migration and proliferation behaviour and how the addition of mimetic peptides could

alter this to produce the kinds of therapeutic outcomes reported. We use this small

body of literature as a basis on which to develop a new model describing connexin 43

influence on cell-cell interactions within a migrating population, and use it to test the

influence of a CMP on scrape wound closure.

In the presented thesis, we propose to make the following contributions:

(i) Derive a stochastic model for topographically influenced cell migration.

Based on a biased Ornstein-Uhlenbeck (OU) cell model, we model individual cells

as discrete-points whose velocity is determined by an OU process directionally

biased by a surface gradient field, the cell guided towards contour directions.

We parametrise the model using published metric data for in vitro fibroblast

migration on a linear surface topography with variable groove dimensions. We

test the parametrised migration model for topographies with both linear features

and linear features with random perturbations with dimensions approximating

those in the data-set. Findings suggest the introduction of random perturbations

to linear features significantly disrupts highly directional migration, particularly

for linear features with smaller dimensions. Findings could have implications

for experimentalists looking to use coarse surface fabrication methods to induce

highly directional migration in fibroblast cells. See Chapter 2.

(ii) Derive a mathematical model for Cx43 cycling dynamics and its dy-

namical modulation by connexin mimetic peptide Gap27. We formu-
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late a reaction scheme for Cx43 cycling dynamics with Gap27 binding kinetics,

from which we derive a full ODE model using mass action kinetics. We reduce

the large system by considering only distribution moments of the sub-system of

plaque states, deriving moment ODEs and introducing them into the ODE sys-

tem. We explore the dynamical behaviour of the model under variation to initial

concentrations and model parameters both without and with Gap27. Findings

suggest Gap27 has an effect on only transient behaviour of the model over time,

leaving equilibria unaffected. See Chapter 3.

(iii) Derive a mathematical model for Cx43-based cell-cell interaction in-

fluenced cell migration. Using both developed models for individual cell mi-

gration and Cx43 cycling with Gap27, we derive a coupled model for Cx43-based

cell-cell influenced cell migration. We assign discrete-point cells spatial compo-

nents which interact dependent on proximity with other cells within a popula-

tion and total gap junction plaque concentration variable from the Cx43 cycling

model. We test the model within a computational model of a scrape wound

assay in 2-d and explore how plaque concentration and Gap27 variables, p and

g27, affect migration behaviour and its subsequent closure. Findings suggest

Gap27 could induce scrape wound closure by reducing cell clustering prompted

by high gap junction plaque concentrations. Findings also suggest Gap27 works

in a concentration-dependent manner and may not improve wound closure if gap

junction plaque concentration is already low. See Chapter 4.
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1.5 Methodology

1.5.1 Individual cell migration model

We use an approach first introduced by Dunn and Brown for modelling random cell

motility [81], further developed by Stokes, Lauffenburger and Williams [62] amongst

other authors for taxis behaviours. The approach is to model a single cell’s velocity

with a stochastic differential equation, typically based around an Ornstein-Uhlenbeck

process, giving a complete model for the migration trajectory of an individual cell.

Since its introduction as a model for cell migration, the approach is typically adopted

when individual cell directionality (often under some environmental condition) is of

principal interest and the micro-components of migration (e.g. motility machinery)

are of less interest.

Origins in Brownian motion

The Ornstein-Uhlenbeck process has its origins in the first mathematical constructions

of Brownian motion, a physical phenomenon (named after botanist Robert Brown)

in which the movements of small particles suspended in a surrounding medium ap-

pear erratic, seemingly random [82]. Work by Einstein, Smoluchowski and Langevin

(amongst others) in the early 20th century helped to establish a mathematical study

of the phenomenon; the results of which helped to establish the existence of the atom

[83]. In Langevin’s interpretation, the velocity of the Brownian particle is described by

Newton’s second law of motion, the total force acting on the particle a combination of

two distinct forces: one is Stokes’ drag, to account for resistance acting on the particle

by the surrounding medium, and the other a randomly fluctuating force, thought to

be the effect of random collisions with atoms and/or molecules within the medium
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[83, 84, 85]. The scalar Langevin equation (after scaling by mass) is given by Eq. (1.1)

du(t)

dt
= −βu(t) + Fr(t), (1.1)

where u(t) is particle velocity, β > 0 is some constant and Fr(t) is a loosely charac-

terised stochastic process with zero mean and is temporally uncorrelated [86].

The first mathematically rigorous construction of Brownian motion is credited to Nor-

bert Wiener [82, 86]. Wiener’s characterisation of Brownian motion did not include a

‘drift’ like in Langevin’s ‘physical’ interpretation, and so the characterisation may be

viewed as more of a robust construction of the random term in Langevin’s interpreta-

tion.

A standard scalar Wiener process over the interval [0, T ] is a random variableW (t) that

depends continuously on t ∈ [0, T ] and satisfies the following conditions [83, 87, 88, 89]:

(i) W (0) = 0.

(ii) For 0 ≤ a < b ≤ T , the increment W (b) − W (a) has normal probability distri-

bution with mean µ = 0 and variance σ2 = b− a (equivalently, W (b)−W (a) ∼
√
b− aN(0, 1)).

(iii) For 0 ≤ a < b < c < d ≤ T , increments W (b) − W (a) and W (d) − W (c) are

independent.

We may write a standard scalar Wiener process as the solution z(t) to the stochastic

differential equation (SDE)

dz(t) = dW (t). (1.2)
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The standard diffusion equation (with fixed diffusion coefficient) describes the time

evolution of its probability density function (p.d.f.) p(z, t)

∂p(z, t)

∂t
=

1

2

∂2p(z, t)

∂z2
. (1.3)

Ornstein-Uhlenbeck (OU) process

If in the Langevin equation the random term is characterised by a Wiener process, the

solution to the resultant stochastic process is known as an Ornstein-Uhlenbeck (OU)

process, after formalising work by L. Ornstein and G.E. Uhlenbeck [90]. An OU process

in differential form,

du(t) = −βu(t)dt+
√
αdW (t), (1.4)

where β > 0 and α > 0 are constants. In integral form,

u(t) = u(0)e−βt +
√
αe−βt

∫ t

0

eβτdW (τ), (1.5)

where the integral is an Itô stochastic integral [83, 86, 89]. In differential form, we

refer to the solution u(t) since dW (t) is not differentiable.

The OU process u(t) is both a Gaussian and Markov process, with mean

E(u(t)) = u(0)e−βt, (1.6)

clearly, the first term of the solution, and variance

V ar(u(t)) =
α

2β
[1− e−2βt]. (1.7)

The forward Fokker-Planck equation for the OU process u(t) is the p.d.f. p(u, t) [89,

90, 91]

∂p(u, t)

∂t
= β

∂

∂u
(up(u, t)) +

α

2

∂2p(u, t)

∂u2
, (1.8)
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where, if β = 0 and α = 1 we recover the p.d.f. for the Wiener process. The OU

process may be loosely interpreted as a mean-reverting Wiener process, the strength

of reversion determined by β.

The Wiener process is not of bounded variation. A consequence of this is that the inte-

gral in Eq. (1.5) is stochastic, rather than the more typical Riemann-Stieltjes integral.

We use the Itô interpretation for stochastic integration since it is non-anticipative,

though in situations where the random term is additive (like, for example, in Eq.

(1.4)) both Itô and Stratonovich interpretations lead to the same equation form (this

is evident from the conversion formula) [83].

An OU model for individual cell migration

The OU process was first proposed as a model for individual cell migration by Dunn

and Brown in their 1987 paper “A unified approach to analysing cell motility” [81],

and has since been used frequently in the literature. In the model, an individual cell

is considered a point particle whose velocity changes over time according to the OU

process. The time evolution of a cell’s velocity is interpreted as the combination of both

resistance to cell motion and random cell accelerations, approximating the character

of motion observed of 2-d in vitro ‘crawling’ based cell migrations. The model enables

the description of movement to remain ‘high-level’, implicitly describing the influence

of such physical factors as cell adhesion, viscous drag, energy loss and directionally

random pseudopod growth within the model terms. The major limitation being that

without explicit model mechanisms for such processes, we cannot expect to extract

mechanistic insights from the model. Instead the model is well suited to investigat-

ing migration directionality at a ‘high-level’, in situations where mechanistic insights

are not a primary motivation. The model is particularly useful to describe taxis-type
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migration behaviour, where typically the OU process is seen as a ‘fundamental’ migra-

tion behaviour expressed by cells in an unstimulated environment and this becomes

augmented in the presence of some external cue, typically achieved in models through

biasing the OU process.

The Langevin-OU based equation used as a model of random individual cell migration

in the presented research is given in the following form:

dv(t) = −βv(t)dt+
√
αdW (t), (1.9)

where v(t) and W (t) (denoting velocity and the Wiener process respectively) are both

now vector processes (either 2 or 3 spatial dimensions) and α is a parameter which

determines the magnitude of random cell accelerations.

Cell velocity and position can be found using the relationship existent between acceler-

ation, velocity and position by subsequent integrations of Eq. (1.9). The calculations

are computationally practical using appropriate numerical methods.

Numerical approximation of the OU process

We can obtain approximations v∗(t) to the solution v(t) through stochastic Taylor

expansions, the Euler-Maruyama method providing a 1st order approximation [83, 87].

Discretising the interval [t0, t] in to n steps, each ∆t, at every step k we approximate

v∗(tk+1) = v∗(tk)− βv∗(tk)∆t+
√
α∆Wk, (1.10)

where

∆Wk = [Wk+1 −Wk] ∼
√
∆tN(0, 1), (1.11)
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and k = t0, ..., t, where ∆t = tk+1 − tk is step size.

In the case where the random noise is additive, the Euler-Maruyama has both strong

and weak order of convergence 1. If, in the stochastic Taylor expansion, we attempt to

add the next higher order terms we would obtain the Milstein method (see [83, 87, 92])

however the additional terms evaluate to zero and the Milstein scheme reduces to an

Euler-Maruyama scheme [83].

The stochastic Runge-Kutta method offers better approximations for the deterministic

term in the OU equation with strong order of convergence 1.5, but not for the stochastic

term and comes with the disadvantage of being more cumbersome to apply [83].

An exact numerical method for solving the Langevin-OU equations was derived by

D.T. Gillespie using the probabilistic and statistical properties of the equations [91].

This method utilizes the expected value, µ; variance in velocity V , σ2
V ; variance in

position X, σ2
X and covariance between V and X, kV X . See Eq. (1.12)-(1.15).

µ ≡ e−β∆t, (1.12)

σ2
V =

α

2β
(1− µ2), (1.13)

σ2
X =

α

β3
[β∆t− 2(1− µ) + 1/2(1− µ2)], (1.14)

kV X =
α

2β2
(1− µ)2, (1.15)

where α and β are parameters and ∆t is a time increment.

Updating formulas for velocity V and position X are given by Eq. (1.16)-(1.17)

(wherein n1 and n2 are statistically independent random numbers from a normal dis-

tribution):

V (t+∆t) = V (t)µ+ σV n1, (1.16)
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X(t+∆t) = X(t) + V (t)τ(1− µ) +

(
σ2
X − k2

V X

σ2
X

)1/2

n2 +
kV X

σV

n1. (1.17)

We use the exact method derived by Gillespie for computational model simulations

of the standard OU process (Eq. (1.9)). We then employ the exact Gillespie method

to set the step size suitably small for the Euler-Maruyama method, which we use for

simulations of subsequent models which feature extra drift components.

1.6 Thesis overview

The thesis which follows is divided into two distinct parts. The first part focuses on the

topography application, with the aim to determine to which extent different topogra-

phies affect fibroblast migration. The second part focuses on the connexin application,

with the aim to determine how treatment with Gap27 affects Cx43-based gap junction

and plaque species dynamics and its subsequent effect on interaction and migration

behaviour, and ultimately invasion into a scrape wound.

In the first part of the thesis, Chapter 2, we expand on the physiological and biomedical

significance of topographically influenced migration and walk through the experimen-

tal literature charting migration responses to different topographic features e.g. linear,

lattice, pillar and pit, also reviewing surface fabrication techniques employed to gen-

erate such features. We survey the modelling literature in greater detail, focusing on

cell-matrix, mechano-sensing and cell-topography models. See Chapter 2 - Introduc-

tion.

We then present the derivation for our migration model, in which a cell moves ac-

cording to an OU process but accounts for the surface gradient field of an underlying

topography. We present an overview of our chosen method of parameter estimation,

the experimental set-up used to obtain the migration data we use in the parametrisa-
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tion of the model and define migration metrics used for the fitting procedure. We also

detail numerical implementation of the model and our approach to generating numer-

ical approximations of linearly organised topographies used in the experiments. See

Chapter 2 - Methods.

In Chapter 2 - Results, we present the outcome of the parameter estimation, followed

by parametrised model output. We present migration trajectory and metric data for

the parametrised migration model across four distinct topographies and two types of

surface gradient arrangements: a flat topography and three linear topographies each

featuring a different groove width. We then introduce the migration model to the

same linear topographies but with increasing random perturbation to probe how mi-

gration might respond to surface imperfections introduced experimentally by fabrica-

tion method. See Chapter 2 - Results.

In the first sub-division of the second part of the thesis, Chapter 3, we introduce the

structure, life cycle and physiological importance of Cx43 and its dynamical modu-

lation by connexin mimetic peptides such as αCT1, Gap20, Gap26 and Gap27. We

further explore the relevant modelling literature on gap junction channel properties

and function. See Chapter 3 - Introduction.

We then detail explicitly the formulation of our reaction scheme for Cx43 cycling dy-

namics with Gap27 binding kinetics and derive by the law of mass action our full model

ODE system. We then present a derivation of moment ODEs for the system plaque

state distribution which we introduce, replacing the original system. We then set out

the numerical implementation of the model and its numerical steady-state stability

analysis. See Chapter 3 - Methods.

We present system behaviour without Gap27 and discuss the effects of initial concen-
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trations and model parameters on the system at equilibrium, culminating in the presen-

tation of a biologically realistic scenario of two neighbouring interacting cells featuring

a small concentration of large gap junction plaques at equilibrium. We then consider

the model with Gap27, exploring how initial Gap27 concentration and hemichannel-

peptide binding/dissociation rate affect system behaviour. See Chapter 3 - Results.

In the second and final sub-division of the thesis, Chapter 4, we further expand on the

role of connexins in wound repair, with a focus on Cx43. We discuss connexin function

in healthy repair, its dysregulation and implication in abnormal repair, the positive

outcomes of connexin-targeted treatments, connexin influence on migration behaviour

and the mechanical properties of Cx43. We further review the modelling literature

pertaining to connexin-influenced migration and its influence in wound healing. See

Chapter 4 - Introduction.

We then specify the derivation of our Cx43 influenced cell-cell migration model, in-

troducing spatial components to the discrete-point cell model and assigning proximity

based interaction terms, influenced by gap junction plaques. We then present a com-

putational framework describing the spatial elements of a conventional scrape wound

assay, for which we use a circle packing algorithm, within which the migration model

is tested. See Chapter 4 - Methods.

We present model output for the model without and with Gap27 and examine how the

scrape wound responds over time for different plaque concentrations. We first present

how Gap27 induces closure of the scrape wound over time when the plaque concentra-

tion (at system equilibrium) is high. We then present how the scrape wound can be

induced to close without Gap27 if plaque concentration (at equilibrium) is low. See

Chapter 4 - Results.
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Chapter 2

A stochastic model for

topographically influenced cell

migration

2.1 Introduction

2.1.1 Topographically influenced cell migration

Cells have long been known to be guided by physical structure. In 1914, zoologist

Ross G. Harrison published a series of experiments cataloguing the response of embry-

onic frog cells to solid physical structures, such as fibrillar spider web. Harrison found

an overwhelming preference for the cells not only to attach to the spider web rather

than the surface film, but also to elongate and migrate along the structure guided by

its direction [93]. The phenomenon observed by Harrison was later termed ‘contact

guidance’ by Weiss in his 1941 paper on nerve growth [94], describing the alignment,

elongation and directed migration of cells following the long axis of a fibrillar structure

[95]. Contact guidance is thought to serve as a major regulator of cell migration be-

haviour within the body, particularly within the extracellular matrix (ECM), which is

composed almost entirely of fibrillar networks to cell scale [17]. The prevalence of ECM
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within the body confers a prominent role for contact guidance in crucial physiological

processes such as dermal wound healing and immune response [80, 96], in addition to

pathophysiologies such as cancer metastasis [37, 97].

Topographically influenced cell migration describes a broader class of physical cell

guidance, in which, modulation to migration behaviour can be induced by the spatial

arrangement of physical surface gradients. These cell-substrate interactions can prompt

a whole range of migration behaviours across many different cell types, and is thus also,

like contact guidance, physiologically significant. To migrate in vivo, cells must traverse

a huge range of topographic configurations presented by various physiological struc-

tures [42, 98, 99, 100, 101]. An example is dermal tissue, which is composed of fibrillar

ridge-like structures of varying dimension scale and density (ECM) and contained by a

planar pillar-like topography (dermal-epidermal junction) and a smooth flat or curved

topography (hypodermis); see Chapter 1 - Introduction. The arrangement of dermal

ECM has also been shown to be associated with the distribution of tension or ‘Langer’

lines, with a corresponding anisotropic structure. These tissue orientations have been

favoured for surgical incision due to improved healing and reduced scarring [80, 100].

The influential role these interactions maintain within the body, and their physiological

ubiquity, has motivated considerable exploration of exploitative potential for biomedi-

cal applications, in particular biomaterials design for tissue engineering [100]. One such

application is in skin substitute development, an advanced treatment for cutaneous

wound healing [102], through topographic control of cell positioning and population of

tissue scaffolds prior to implantation [49]. Another such application is in the surface

modification of implantable medical devices, with the goal of improving integration.

Integration with the in vivo environment is a significant biomedical challenge [103],
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and the failure of medical implants can often be attributable to complications such as

inflammation [51, 53, 96] and tissue encapsulation [51], within which migration plays

a central role. Medical devices featuring surface topographies engineered to regulate

such migration could improve clinical outcomes for implantation.

The biomedical applicability of topographically influenced migration has driven ex-

tensive experimental study in recent years [101]. There is an abundance of in vitro

experimental studies charting migration responses of many cell types (including fi-

broblast [43], endothelial [43], epithelial [46], smooth muscle cells [43] and neurons

[104]) to different topographic features (e.g. groove/ridge [105, 43, 80, 106, 107], pil-

lars [108, 109, 110], pits [111]) of varied geometry (e.g. groove with triangular or

trapeze-shaped wells with various dimensions [41]), dimension (e.g. variable groove to

ridge width ratios [105]) and scale (micron and sub-micron [43]). To illustrate some

of the general trends in the experimental literature we will select results from some

pertinent studies to present. For further exploration of this area of research, see any

of the comprehensive review articles: [48, 112, 113, 114, 115].

Topographies with linear ridge/groove features have been widely reported to affect

alignment and migration in many different cell types; predominantly fibroblast, ep-

ithelial, endothelial and smooth muscle cells. Kaiser and Bruinink observed fibroblast

(NIH3T3) migration on grooved substrates (width 9.8µm and depth 1µm) was “mainly

bidirectional”, further analysis showed 61% of cells were polarised with orientations

within 10 degrees of the groove orientation [106]. Dalton et al. reported significantly

higher migration distances when cells followed rather than traversed microgrooves at

depths of both 1µm and 5µm in epithelial (bovine corneal) cells [46]. Biela et al.

found fibroblasts (HFF-1) to be much more sensitive to linear ridge/groove dimensions
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than endothelial (HCAEC) and smooth muscle cells (HCASMC), groove depths of as

little as 50nm prompting changes to morphology and orientation. The authors also

found smaller ridge/groove widths prompted greater alignment for all cell types, and

deeper grooves increased groove-oriented migration, fibroblasts exhibiting the most

pronounced behaviour of all cell types across all dimensional variations (ridge/groove

widths: 2µm-10µm, depths: 50nm-200nm)[43].

In addition to migration directionality, many studies have reported ridge/groove di-

mensions to influence migration speed. Kaiser, Reinmann and Bruinink showed fibrob-

lasts (NIH3T3) to have highest migration velocity on substrates with shallower wider

grooves and narrower ridges (depth 5µm, groove width 32µm and ridge width 5µm)

[41]. Similarly, Doyle et al. reported fibroblasts (NIH3T3) cultured on 1.5µm wide

fibril-inspired ridge patterns exhibited two to three times higher migration speeds than

on flat surfaces, highest migration speeds were observed at ridge widths of 2.5µm [107].

A study by Kim et al. reported preferential fibroblast (NIH3T3) migration towards re-

gions with intermediate ridge densities (5.6-6.9µm) on an anisotropic linear topography

with constant ridge width 1µm and depth 400nm but variable groove width 1-9.1µm.

Fastest migrations were also observed on intermediate ridge densities, the most clearly

aligned and directional cells however were found to be at higher ridge densities (smaller

groove widths) [105]. In another study, Kim et al. (different authors to the aforemen-

tioned study) found ridges parallel to the long axis of a scrape wound severely limited

migration into the wound region, whereas perpendicular ridges encouraged migration

into the wound, resulting in superior covering rates for all ridge dimensions tested.

Highest migration speeds were seen with intermediate ridge dimensions, and showed

to be the only visibly closed scrape wound over the experimental time interval of 48
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hours [80].

Topographies with lattice arrangements have also been reported to induce physical

alignment and directed migration. A study by Mai et al. showed that smooth mus-

cle cells (BASM) aligned and migrated along the long axis of rectangular grids when

cultured on a substrate with lattice arranged rectangular columns [47]. Jeon et al. ob-

served a similar effect in fibroblasts (NIH3T3), where migration predominantly followed

the long axis of rectangular grids, migration speeds increasing as this axis was length-

ened, grid ratios of 1:2 and 1:4 having significant effects, if the grid size remained below

cell size [116]. Kim et al. found that fibroblasts (NIH3T3) cultured on an anisotropic

lattice substrate with variable grid density migrated preferentially toward regions with

smaller grid sizes [117].

Pillar topographies have been shown to have different effects on migration. Fibroblasts

(NIH3T3) cultured on substrates with 1.78µm high 10.3µm diameter pillars spaced

15.76µm apart transmigrated erratically with branched cell morphology between pil-

lars, but with higher linear speeds than on flat surfaces [108]. Sochol et al. investigated

how cells would respond to an array of micropillars with variable diameters [109]. The

authors found endothelial (BAE) cells migrated toward substrate regions with larger

diameter pillars, with higher speeds. The larger diameter pillars were shown to have

higher stiffness properties and so cells were seen to respond simultaneously to both

topographic and rigidity gradients. A study conducted by Saez et al. demonstrated

epithelial (MDCK) migration to be preferential along the long axis of oval-shaped

micropillars. Similarly, the long axis of the oval-shaped pillars had higher stiffness

properties compared to the short axis and so migration was again a combined response

to different gradient cues [110].
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Holes, wells and pit topographies have been reported to have intriguing effects on mi-

gration. Fibroblasts (hTERT-BJ1) cultured on arrays of micro-scale pits (depth 4.8µm)

with variable diameters (7µm, 15µm and 20µm) and spacing (20µm and 40µm) showed

significantly higher migration speeds on surfaces featuring smaller holes (7µm) and

spacing (20µm). Cells were also observed to adapt size and morphology to pit shapes

at all diameters, whilst showing significantly higher proliferation on smaller diameter

pits [111].

Surface topography has also been shown to influence other cellular behaviours for a

range of different cell types, including adhesion (e.g. Dalby et al. observed reduced

surface adhesion and spreading in fibroblasts (hTERT-BJ1) on nanocolumns [118]),

proliferation (e.g. Choi et al. reported nanotip substrates with smaller prominences

induced higher proliferation in fibroblasts (HFF-1) compared with taller nanotips [119])

and even differentiation (e.g. Steinberg et al. showed the magnitude of interspacing

between micropillars can influence differentiation of early keratinocytes (IHGK) [120]).

Surface fabrication methods

To produce surface topographies with variable geometries, experimentalists must select

from a diverse set of surface processing methods, including lithography-based tech-

niques, electro-spinning, etching techniques (e.g. laser or acid), polishing and blasting

techniques [48]. Lithography-based methods are often favoured to fabricate precise

geometries but can be prohibitive due to factors such as cost and availability of equip-

ment and fabrication time [44, 48]. This has led experimentalists to explore the use

of other methods that may be able to produce comparable topographies without such

disadvantages. Irving et al. explored the use of laser etching and abrasive polishing

to generate uniform linear ridge/groove type topographies (µm and nm scale, respec-
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tively) comparable to those producible with lithography-based methods. Whilst both

methods could produce broadly uniform linear patterns, closer examination of the sur-

faces revealed imperfections due to coarse fabrication, exhibiting sub-patterns such as

an oscillating groove depth and randomly distributed pits [44]. The focused use of

coarser surface processing methods could be a way to accelerate the experimental pro-

cess and, if suitably refined, could ultimately lead to reductions in manufacturing time

and cost for associated biomedical applications.

2.1.2 Modelling studies

Early modelling studies to incorporate topographic cues into mathematical models of

cell migration typically focused on cell-matrix interactions, where migration and fibril

behaviour were dynamically inter-dependent. Often these interactions were treated as

a general class, targeted more specifically to the in vivo cell microenvironment, or in

vitro application to tissue equivalents (T.E.s) e.g. collagen gels. Significant early work

in this area was published by Tranquillo and co-authors, in which the authors model

cell-matrix contact guidance as an anisotropic diffusion. Notably, this modelling ap-

proach formed part of Barocas and Tranquillo’s anisotropic biphasic theory for T.E.

mechanics, describing the feedback effect of migration dynamics on the biomechanical

properties and orientation of a fibrillar network within a T.E. and the network’s sub-

sequent impact on migration orientation. Within the biphasic T.E., the cell migration

was determined only to affect the fibrillar network and have no effect on an intersti-

tial media, each ‘phase’ determined by a set of mechanical force balances. The study

showed promising comparisons to experimental studies in different simulated experi-

mental setups [68].

Dallon, Sherratt and co-workers published a series of spatial models to probe cell-matrix
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dynamics in scar tissue formation. The authors propose a hybrid discrete-continuous

modelling framework describing discrete cells which migrate according to guidance cues

given by a 2-d vector field describing fibril orientations in a fibrillar network of collagen,

and later an embedded field representing fibrin. Authors review how cell parameters

including migration speed, flux and polarisation affect the spatial arrangement of the

tissue vector field (using streamlines), before introducing additional vector fields for ad-

ditional proteins e.g. fibrin [64], diffusing growth factors and chemoattractants [121].

Painter investigated the contrasting strategies of both amoeboidal and mesenchymal

modes of cell migration within variably oriented matrix patterns defined by static 2-d

vector fields [122]. The author adapts transport equation models for cell and ma-

trix densities specifically to model the amoeboidal case, where migrating cells don’t

degrade and only transiently deform matrix, and mesenchymal, where cells actively

degrade matrix with proteolytic activity and thus reshape it. Results show cell den-

sity for the amoeboidal model could be confined on a matrix field with an embedded

2-d oriented/disoriented pattern whereas the mesenchymal model could under some

parameter conditions overcome confinement to spread over the whole field.

For other models focused on cell-matrix interactions in vivo such as those described

see also: [123, 124].

More recent modelling studies however have begun to utilise the recent experimen-

tal biotechnology literature outlined in the previous section, focusing on the effect of

various non-dynamic surface topography arrangements on cell behaviours, including

migration. Heydari et al. address the relative lack of computational tools capable of

predicting cell response to topography by proposing a computational framework for

a general 3-d ‘virtual cell model’, tailored in application to mesenchymal stem cells.
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The authors use a discrete force-based approach, creating the model with composite

interacting parts: membrane and nucleus structures, both modelled with a triangulated

network of vertices with assigned viscoelastic properties; cytoplasmic and cytoskeletal

components, modelled with an interacting network; intracellular chromatin proteins,

modelled with bead-spring models; and substrate topography, another triangulated

elastic network. The model could predict cell and nucleal elongation on a numerically

modelled ridged/grooved topography, the degree of elongation shown to increase with

groove depth, and also with increasing substrate rigidity [66].

Winkler, Aranson and Ziebert proposed an abstract lamellipodia-based individual cell

model, which migrated in continuous fields describing various substrata scenarios: con-

finement (planar and tunnel), curvature and linear ridged/grooved topographies. The

model is a 4-field 3-d PDE model, consisting of a scalar phase field for the cell do-

main and vector field for actin orientation which interact with two static phase fields

defining substratum configuration. Results displayed a range of realistic migration and

morphological behaviours, such as bullet-like morphology when the cell was confined in

tunnels and morphological/migratory alignment with parallel ridged/grooved features,

dependent on feature dimension [69].

Another predominant modelling trend is to focus on mechanosensing or mechanotrans-

ductive mechanisms of the cell responsible for generating the cell behaviours observed

over topographies. Examples of such models include: [125, 126, 127].
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2.1.3 Motivations and contributions

Cells have long been known to respond to surface topography. The structure of the na-

tive extracellular micro and nano environment presents a wide spectrum of different to-

pographies for cells to traverse. The capacity of the physical extracellular environment

to regulate cellular behaviours, including migration, has found significant application

in biomaterials and bioimplant design. Topographically influenced cell migration has

been extensively studied experimentally in an effort to characterise responses of differ-

ent cell types to specific classes of topographic features e.g. linear ridge/groove, lattice,

pillar, pit, curvature. Despite a profusion of experimental study, and clear prevalent

trends, for example the orientation of numerous cell types to migrate in alignment with

linear ridge/groove features, key questions still appear to remain about how these inter-

actions occur and exactly how the diverse set of experimental outcomes are produced

across varied topographic arrangements and cell types. Jeon, Simon and Kim sum-

marised in their 2014 review that “shapes and sizes of surface patterns needed to affect

specific cellular activities and interaction mechanisms between cells and patterned sur-

faces have not yet been determined” [115]. However, a recently published theoretical

model suggests a potential mechanism of action. The model proposes cell alignment

and topographically directed migration could result from physical focal adhesion con-

finement inducing development of oriented contractile cytoskeletal components (actin

stress fibres), elongating cell shape and thus predisposing the cell to pursue an oriented

direction [101, 128].

Modelling literature has traditionally focused on cell-matrix interactions and only re-

cently have studies begun to focus on classes of topographies reflecting the interest

in the biomaterials literature. It appears there is a general lack of mathematical and
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computational models to help experimentalists in the design and development of sur-

face topographies to influence migration behaviours. This observation was expressed

by Heydari et al. in their 2017 modelling study, stating “there are very few methods

available for robust and accurate modeling that can predict cell behavior prior to exper-

imental evaluations” [66]. An expanded modelling literature could help to streamline

the experimental process, enabling experimentalists to focus surface development to

the most effective topographic geometries, spatial arrangements and dimensions.

In this work we develop a cell migration model and apply it to determine to which

extent different topographies can induce directional movement of migrating fibroblast

cells. We will focus on movement on highly structured surfaces generated by capillary

force lithography which have parallel linear ridge/groove features [105]. Preliminary

results for another data set comprising polished metal surfaces [44] were previously pre-

sented by Conway [129]. Like Dallon and co-authors, we use a discrete-point approach

that incorporates directional cues from an underlying gradient field representing some

topography. Our modelling approach differs in that there is no dynamical reciprocation

between the cell and gradient field directions and we assume the point cell migrates

according to an Ornstein-Uhlenbeck process without environmental cues. The aim is

to explore how migration trajectories over time respond to linearly and randomly or-

ganised topographies and predict how this behaviour might evolve if linear topographic

features became gradually disordered, the intention being to model how surface imper-

fections introduced by coarse fabrication might affect migration.

The presented work contributes the following:

(i) Derive a stochastic model for topographically influenced migration.

The model is based on a biased Ornstein-Uhlenbeck process, in which individual
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cell velocity is influenced by some external condition by way of a directional bias.

Spatially, a discrete point represents cell position on a 2-d vector field representing

the physical surface gradients of a topography. See Methods 2.2.1.

(ii) Parametrise model with published metric data. Using a grid search opti-

misation method we parametrise the model using metric data derived from ex-

perimental in vitro migration on a linear anisotropic topography (variable ridge

density / groove width), see Methods 2.2.2-2.3.1. We review parametrised model

trajectory and metric output for four different topographies: flat, 9µm, 6µm and

2µm groove width. See Results 2.3.3.

(iii) Predict how migration characteristics change when uniform linear to-

pographic features become gradually more disordered. We gradually

introduce random perturbations to uniform linear topographic features for 9µm,

6µm and 2µm groove widths, and use the parametrised model to predict how mi-

gration might respond to increasing ‘disorderedness’ in surface gradients. Down-

stream, more precise predictions could help experimentalists in selecting surface

processing methods to produce desired migration characteristics. See Results

2.3.4.
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2.2 Methods

2.2.1 Model

The model is based on an Ornstein-Uhlenbeck (OU) cell model, as first introduced by

Dunn and Brown [81]. The model comprises a single stochastic differential equation

(SDE) defining the velocity-time evolution of an individual point cell by a combina-

tion of force terms, see Eq. (2.1). Cell velocity, v(t), may be found through solving

the original model equation, from which an individual migration trajectory may be

constructed.

dv(t) = −βv(t)dt+
√
αdW (t), (2.1)

where β is resistance to motion, α controls random acceleration and W (t) is the 2-d

vector Wiener process.

A prevalent characteristic in many cell types is for migration trajectories to follow linear

ridge/groove directions (see Introduction 2.1.1). To capture this important behavioural

characteristic within the model, some modification to the basic velocity behaviour is re-

quired since migration is no longer directionally random. Our approach is to introduce

a directional bias, as an additional term, into the original model equation. A similar

approach is used by Stokes, Lauffenburger and Williams in modelling the chemotaxis

of endothelial cells, in which the bias was dependent upon cell position in relation to a

chemical gradient [62].

To construct a topography-based directional bias, we assume cells avoid steep phys-

ical gradients in their migrations, confining migration to approximate contour direc-

tions (as reported in ridge/groove guided migration in vitro, e.g. [107]). Inherent

in this assumption is the notion that a cell is able to identify physical gradients and
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by some mechanism reorient its direction. This may not be unreasonable, given the

mechanosensing capabilities of cell membrane and cytoskeletal components [108, 130].

We also see cell reorientations documented in various other physically-based taxis phe-

nomena e.g. durotaxis [39].

First, we define some surface topography as the continuous scalar field T (x, y). The

vector field defining local steepest gradients on T (x, y) is defined by the gradient field

∇T (x, y), where ∇ ≡
(

∂

∂x
,
∂

∂y

)
. If the point X = (x1, y1) defines a position on the

vector field ∇T (x, y), the steepest gradient locally at X is defined as GX , Eq. (2.2).

GX = ∇T (x1, y1). (2.2)

To define opposing contour directions at the point X, orthogonal to GX , orthogonal

rotations are calculated through rotation matrices. Contours are represented by c and

−c, Eq. (2.3)-(2.4).

c =


cos(

π

2
)x1 − sin(

π

2
)y1

sin(
π

2
)x1 + cos(

π

2
)y1

 =

[
−(∇T )y

(∇T )x

]
, (2.3)

−c =


cos(−π

2
)x1 − sin(−π

2
)y1

sin(−π

2
)x1 + cos(−π

2
)y1

 =

[
(∇T )y

−(∇T )x

]
. (2.4)

To construct the topographic bias term, we specify three components: a primary di-

rectional cue γ, orthogonal to the direction of steepest gradient local to cell position

on the topography; a weighting sin(ϕ), which determines magnitude of reorientation;

and a coefficient κ, the controlling parameter within the biased OU model equation.

We assume the contour direction most likely to be selected as the primary directional
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cue γ is that most similarly aligned with the cell velocity direction. To discern between

contours, we evaluate the directional similarity between cell velocity v and contour di-

rections c and −c using angle ϕ, defined as the argument between v and c. The

directional cue γ is assigned based upon simple threshold conditions for ϕ.

If angle ϕ <
π

2
, contour direction c is favoured since v aligns with greater similarity

to c than to −c. If however, ϕ >
π

2
, contour −c is now favoured since v aligns more

towards −c than c. If in the case that ϕ =
π

2
, where v aligns exactly with GX , the

favoured contour direction is selected with random probability. γ is defined in Eq.

(2.5).

γ =



c, if ϕ <
π

2
.

−c, if ϕ >
π

2
.

c or − c, if ϕ =
π

2
.

(2.5)

Angle ϕ may be defined using the dot product, with the calculation symmetric about

the line defined by c, Eq. (2.6).

ϕ = arccos

(
v · c
|v||c|

)
. (2.6)

To calibrate the magnitude of cell reorientation, a weighting sin(ϕ) is incorporated

into the bias term. The weighting is applied primarily to reorient maximally toward

directional cue γ when v = GX , and negate the bias influence altogether if v = c or

v = −c and so the cell migrates according only to the OU process.

The bias term, whose elements are illustrated schematically in Figure 2.1, is defined

by Eq. (2.7).

φ(t) = κγ sin(ϕ). (2.7)
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Incorporating Eq. (2.7) into the standard OU cell model completes the definition for

our topographically influenced migration model, Eq. (2.8).

dv(t) =
(
φ(t)− βv(t)

)
dt+

√
αdW (t), (2.8)

where φ(t) is a vector directional bias.

Subsequent integrations of Eq. (2.8) results in displacements over time for an individual

point cell given by variable x(t), by Eq. (2.9).

dx(t) =

∫ t

0

v(t′)dt′. (2.9)

Figure 2.1: Schematic diagram to illustrate the components of the model topographic bias term. Left to right: orthogonal
direction anticlockwise from GX is the contour direction −c, GX = ∇T (x1, y1) is the steepest local gradient at the
point X = (x1, y1), v is cell velocity, c is the clockwise contour direction from GX and ϕ is angle c makes with v.
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2.2.2 Method of parameter estimation

To estimate model parameters we use a grid search optimisation method. We favour

this method for a few reasons: the size of the model parameter set is relatively small,

this limiting the overall search space (to three dimensions); we can also leverage avail-

able experimental migration data to reduce the search space still further; and, ap-

plication of the method is straightforward algorithmically (function evaluation nested

within iterative search).

Let parameter space P = (α, β, κ) ∈ R3
+. We reduce the search space using a combi-

nation of coarse grain grid searches and average migration path length (derived from

fibroblast speed measured experimentally by Kim et al. [105]) to define parameter

boundaries above or below which simulated average migrations are unrealistic. For

each component of P , we define a lower bound P1 = (α1, β1, κ1) and an upper bound

Pn = (αn, βn, κn), giving an interval within which to search e.g. [α1, αn]. We then

discretise the interval into a finite set of m uniformly spaced points producing a ‘grid’

of m3 points over which to calculate an objective function [131].

We choose to define our objective function as a simple error function ϵ which evaluates

the difference between a set of simulated and experimentally derived average migration

metrics. The goal is to minimise ϵ within our bounded discretised parameter space.

For a given parameter set Pa,b,c = (αa, βb, κc), ϵ is calculated by Eq. (2.10).

ϵ =
N∑
i=1

(θi;sim − θi;exp)
2

θ2i;exp
, (2.10)

where θi;exp is the ith experimentally derived metric and θi;sim the ith simulated metric.

N is total number of metrics.

To illustrate algorithmically, for a given parameter set e.g. Pa,b,c = (αa, βb, κc), we
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initiate a large number of replicate model simulations and calculate a selection of

average migration metrics capturing some key characteristic about average migration

behaviour (e.g. directionality, displacement), either equivalent to or can be reasonably

compared to metric data derived from experimental analysis of in vitro migration.

We then use the simulated and experimentally derived metrics to obtain a value for

ϵ, which is stored. We then move onto a simulation with a new parameter set e.g.

Pa,c,c = (αa, βc, κc), iterating systematically in this manner through each predefined

parameter range for α, β and κ. A flow chart which illustrates this algorithmic approach

is presented in Figure 2.2.

For each of the different surface topographies, we proceed through the grid search

initially with a coarse grid to define search boundaries and establish a preliminary

range over which P is minimal. We then refine the search grid to avoid skipping over

optimal solutions in our iterations, keeping m as large as we can whilst maintaining

reasonable computation time.

Due to the stochastic nature of the model, minima positions change between model

simulations with equivalent search and migration parameters. To account for this, we

do not seek to identify individual minima, instead we look for general regions of the

search space with consistent minima for duplicate simulations. Conducting duplicate

simulations also reduces the chance that we wrongly select parameter regions which

contain non-optimal solutions due to numerical error.
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Figure 2.2: Flow chart to illustrate the algorithmic approach chosen to conduct the parameter grid search for the
model. The general approach taken is to hold two parameters constant whilst iterating through one parameter range,
simulating Nc cell paths and calculating ϵ for each individual parameter set, before incrementally adjusting the originally
held parameters and repeating. To illustrate, in the initial state of the algorithm κ1 and α1 are held constant whilst
migration paths and subsequently ϵ are simulated for β1, ..., βn. After the model simulation for βn, the value for α
changes, from α1 to α2, with κ1 held constant whilst we again repeat simulations for β1, ..., βn, and so on until κn is
reached and the algorithm ends. The result is a value for ϵ for each individual parameter combination resulting from
discretisation of the interval [P1, Pn].

2.2.3 Experimental data

Fibroblast migration with a linear variable groove width (µm-scale) topog-

raphy

To parametrise the model we use metric data extracted from a study by Kim et al.

published in the journal Biomaterials (for details see [105]). The study probed fi-

broblast (NIH3T3) migration on an anisotropic substratum with precisely fabricated
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topographic features created using capillary force lithography (CFL). The CFL method

was used specifically to generate a reproducible surface pattern of parallel alternating

ridges and grooves with uniform groove depth of 400nm and ridge width of 1µm but

variable groove widths from 1µm to 9.1µm, spaced in increasing 100nm increments

from densely to sparsely spaced ridges. Cells were seeded at relatively low density to

enable individual tracking and fluorescent microscopic images taken every 15 minutes

over 12 hours producing a time-lapse sequence.

To quantify orientation of cells compared to groove direction, at 14 hours post-culture

the authors measured the acute angle between the longest axis of the cell, the ‘po-

larised’ cell direction, and groove direction, generating a distribution of ‘polarisation

angles’ for cells across the variable groove widths on the substratum.

To ascertain whether groove width had a discernible affect on migration speed, the

authors tracked individual cells through the time-lapse sequence and calculated speed

between increments for each cell. Speeds for each cell were averaged, these average cell

speeds were then averaged by substratum position to give a single average speed for

the local population.

Kim et al. found that groove-oriented migration was more pronounced in substratum

regions with narrower grooves, shown by increased linearity in migration trajectories

and smaller standard deviations for polarisation angle distributions. Migration was

also selective, showing a discernible preference towards intermediate groove widths,

where average migration speed was highest.

The authors captured clear relationships between groove width and migration direction-

ality and displacement with polarisation angle and migration speed metric statistics.

Results showed a clear monotonic decrease in standard deviation of polarisation angle

49



distributions with decreasing groove width (cells becoming more oriented to the groove

direction). There was also an optimal groove width for average speed, which were

shown to be the intermediate widths.

We use these metric statistics, polarisation angle standard deviation θ∗σ (◦) and av-

erage migration speed s∗µ (µm/h), in the grid optimisation calculation to parametrise

our model. In lieu of explicit data values, we estimate values directly from the study

figures which display θ∗σ (◦) and s∗µ (µm/h) for flat and grooved areas of the topography

using a pixel measurement tool. We present estimated values in Table 2.1.

Table 2.1: Estimated migration metric data, θ∗σ and s∗µ, for flat and linearly
ridged/grooved (with average groove widths: 8.6µm, 6.3µm and 2.6µm) topographies
from Kim et al. [105].

Average groove width θ∗σ (◦) s∗µ (µm/h)

Flat (no gradient) 47 28
8.6µm 38 29
6.3µm 20 40
2.6µm 12 34

2.2.4 Migration metrics

The aim with the chosen optimisation method is to closely approximate key properties

of in vitro fibroblast migration with those which emerge from the proposed migration

model. To make appropriate comparison for the calculation of ϵ we base our selection

of model metrics on those used in the aforementioned study by Kim et al. [105].

(i) Orientation angle. In the study by Kim et al., the authors approximate cell

direction by measuring the acute angle between the long axis of a cell and groove

direction, taken as a single measurement for each cell at the end of a time course,

this termed the ‘polarisation angle’, θ∗. The values θ∗ for every cell in a given

locale were accumulated to give a distribution of polarisation angles for different

50



regions of the substrate, from which a distribution mean, θ∗µ, and standard devi-

ation, θ∗σ, were calculated.

We replicate this for the migration model by introducing an analogous angle met-

ric defined as the argument between cell velocity direction and groove direction,

termed ‘orientation angle’, θ. In-keeping with the computation of θ∗, we set the

calculation symmetric about directions orthogonal to groove direction L and de-

termine the position of 0◦ to be at both opposing groove directions L and −L.

We measure θ with positive angles clockwise from the groove direction, keeping

the angle range acute, −90◦ ≤ θ ≤ 90◦ (see Figure 2.3).

We compute θ between numerical time increments, j and j + 1, for every incre-

ment and each cell i in a given simulation, to give a distribution of ‘orientation

angles’ for the whole simulation, θij,j+1, where i = 1, ..., Nc and j = 1, ..., Nt − 1,

from which we then calculate the mean, θµ, and standard deviation, θσ, given by

Eq. (2.11) and Eq. (2.12) respectively.

θµ =
1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

θij,j+1, (2.11)

where i is the ith cell and j is the jth increment. Nc is total number of cells and

Nt is total number of increments.

θσ =

√√√√ 1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

(θij,j+1 − θµ)2. (2.12)

(ii) Migration speed. The authors of the Kim et al. study calculated migration

speed from point-to-point cell trajectories tracked through a time-lapse sequence,

giving a sequence of point-to-point speeds for each cell over time (9 hours at 15

minute intervals). The sequence of speeds for each cell was then averaged, and
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cells grouped by substratum position (average groove width) to give distributions

by ‘average groove width’ from which an average migration speed, s∗µ, was calcu-

lated for each.

To replicate the calculation of s∗µ, we compute migration speed s from individual

cell displacements as with orientation angles, between increments j and j +1 for

every increment for each cell i in a given simulation, to give a distribution of

migration speeds, sij,j+1, from which we calculate the mean migration speed, sµ,

Eq. (2.13).

sµ =
1

Nc(Nt − 1)

Nc∑
i=1

Nt−1∑
j=1

sij,j+1. (2.13)

(iii) Mean-squared displacement (MSD). MSD is a measure of average displace-

ment from an original starting position over a specified time increment [62]. In

terms of cell migration, we define the MSD < D2 > as the squared distance

travelled by each cell during time interval t, summed and averaged over the total

number of cells Nc to migrate during that time interval, given by Eq. (2.14).

< D2 >=
1

Nc

Nc∑
i=1

[xi(t)− xi(0)]
2, (2.14)

where xi(t) is the position of the cell i at time t and xi(0) is the position at the

start of displacement.

2.2.5 Numerical implementation

We use MathWorks MATLAB 2020a as the chosen software environment to implement

the model algorithmically and solve the model by numerical methods, enabling us to

run computational simulations of the model and from this generate figures.

We solve the model using an Euler-Maruyama scheme [87] to obtain an approximation
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Figure 2.3: Schematic diagram to illustrate the measurement of ‘orientation angle’, θ, for a sample time increment.
θ is measured as the argument between cell velocity v and groove direction L or −L, dependent on the sign of the
‘vertical’ component v. The calculation is symmetric about the directions orthogonal to groove direction L, 0◦ at both
opposing groove directions L and −L. θ is measured with positive angles clockwise from the groove direction, in the
range −90◦ ≤ θ ≤ 90◦.

for cell migration velocities, obtaining subsequent cell positions by numerical inte-

gration. To maintain reasonable approximations we use sub-increments (increments

smaller than set experimental increments over which the simulation will run) so that

numerical increments are always small. To ascertain how small these numerical in-

crements should be we compare mean-squared displacement (MSD) over time from

simulations of the (unbiased) OU process obtained using an exact numerical method

(Gillespie, [91]) and the Euler-Maruyama method. We fix numerical increment size

small enough to minimise this error without compromising on computation time for a

large number of model simulations and a fine grid search, the selection being heuristic.

We proceed with consistent sub-increments for all simulations.

To compare the model with experiments by Kim et al. [105], described in Meth-

ods 2.2.3, we approximated surface topographies using MATLAB to generate matrices

with data values corresponding to ‘depth’ values, spatially distributed to approximate
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the arrangements of topographic features in the study (uniform linear constant ridge

/ variable groove widths), details follow in Methods 2.2.5.

Once the surface topography is represented numerically, we compute an approximate

gradient field of the surface using MATLAB’s numerical gradient function ‘gradient ’.

This gradient field is then accessed during the model simulation to influence cell ori-

entation and re-orientation.

Due to the stochastic nature of the model, we run many repeat model simulations

to replicate many sample cell migration paths on the surface. We then compute the

selection of average migration metrics detailed in Methods 2.2.4.

Topography generation

To create linear topographies comparable to those featured in the study by Kim et

al. [105], we generate simulated approximations of topographies with selected groove

widths numerically using MATLAB and test how closely each topography can approx-

imate corresponding migration metrics during the fitting procedure.

The general numerical approach we take to generate the topographies is a grid-based

method. We define a ‘substrate’ matrix, tracing the topography boundaries, and assign

a ‘depth’ value to relevant indices in the matrix corresponding to groove depth. To

approximate a ‘flat’ topography (i.e. to cell-scale, no significant gradients present) we

idealise and assume there is no gradient at all present on the surface, using simply a

matrix with homogeneous depth values. To approximate linear topographies we use

the approximation for the flat topography (e.g. a matrix of zeroes), and assign depth

values for all indices in a column of the matrix at uniform intervals across all columns

in the matrix, generating linear topographic features up to the boundary; non-zero

values representing ridges and zero values representing grooves.
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We assign spatial units based on fitting the model migration trajectory metrics on trial

surfaces to metrics from Kim et al., adjusting dimensions as necessary and ensuring

boundaries are large enough to accommodate the trajectory range. Spatial units were

assigned 1 × 1µm2 to one matrix index. To approximate topography dimensions in

the experimental study, we set groove width on three separate topographies to two,

six and nine matrix indices (2µm, 6µm and 9µm), ridges to one matrix index width

(1µm), assigning a uniform depth of 0.4µm and matrix dimensions to 1000 × 1000

indices (1000× 1000µm2). The result, presented in Figure 2.4 (a)-(c), is a set of linear

topographies with varied groove widths and uniform ridge width and depth.

To probe the effect surface processing imperfections might have on migration trajec-

tories and associated directional and displacement properties, we devise a method to

progressively introduce ‘noise’ to already generated linear topographic features. Our

approach is to incrementally perturb the linear feature in the plane orthogonal to ridge

/ groove direction with additive noise. The method we use is to draw index locations

to place new depth values from a Gaussian distribution, the mean centred on the axis

of the linear feature. We vary the level of ‘randomness’ around the linear feature with

the distribution variance, ρ. When ρ = 0 the arrangement of surface gradients are

perfectly linear without noise, increasing ρ introduces higher levels of randomness to

the feature, making it more ‘noisy’ and less linear.

We do this numerically using MATLAB’s pseudo-random number generator ’randn’

and round to the nearest integer for index values to assign a depth value. We use

the same method across topographies with linear 9µm, 6µm and 2µm groove widths,

keeping the range for ρ consistent between groove widths, rather than groove width

dependent. The result, presented in Figure 2.4, is a set of topographies with 9µm, 6µm
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and 2µm groove widths (columns, left to right) ranging from linear and uniform (a)-(c)

(ρ = 0) to directionally random and disordered (m)-(o) (ρ = 10).
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(a) 9µm groove width. ρ = 0. (b) 6µm groove width. ρ = 0. (c) 2µm groove width. ρ = 0.

(d) 9µm groove width. ρ = 0.2. (e) 6µm groove width. ρ = 0.2. (f) 2µm groove width. ρ = 0.2.

(g) 9µm groove width. ρ = 0.35. (h) 6µm groove width. ρ = 0.35. (i) 2µm groove width. ρ = 0.35.

(j) 9µm groove width. ρ = 0.5. (k) 6µm groove width. ρ = 0.5. (l) 2µm groove width. ρ = 0.5.

(m) 9µm groove width. ρ = 10. (n) 6µm groove width. ρ = 10. (o) 2µm groove width. ρ = 10.

Figure 2.4: Surface topographies generated using MATLAB, featuring 9µm, 6µm and 2µm groove widths with constant
ridge width 1µm (columns, left to right), from linear and uniform (a)-(c) through increasing levels of additive feature
noise, determined by feature perturbation parameter ρ (rows), to directionally random and disordered (m)-(o), no longer
resembling ridges and grooves. Depth: 0.4µm. Grid dimensions: 1000× 1000µm2.
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2.3 Results

2.3.1 Parameter estimation

The general approach we take to establish search boundaries P1 and Pn for a given

topography is to identify non-viable regions of the parameter space using both coarse

grid searches and in vitro migration data from the previously described experimental

study by Kim et al. [105]. We start with a grid search for the flat topography which can

be conducted in terms of just model kinesis parameters, β and α (since bias parameter

κ has no effect), giving a 2-dimensional grid search. We then use search boundaries

located for the flat topography as preliminary boundaries for subsequent grid searches

on the grooved topographies, which we further refine in course.

For the flat topography, we first establish search boundaries by coarse searching over

substantial ranges for both parameters and simultaneously, identify parameter regions

where average simulated migration path length Lsim was significantly above average

experimental path length Lexp over an equal time course (i.e. where Lsim ≫ Lexp).

With search boundaries P1 and Pn established, we then conduct a more refined grid

search.

For each of the linear topographies (9µm, 6µm and 2µm groove widths, respectively)

we use boundaries P1 and Pn for the flat topography and coarse search to update P1

and Pn, this time iterating through increasing values for κ to establish approximate

search boundaries for κ. We then update the boundaries P1 and Pn for the search on

each topography and proceed to refine the discretisation for the search. We repeat this

for all the grooved topographies.

We present in Figure 2.5 contour plots which illustrate where the minima are repro-

ducibly located for (a) flat topography at κ = 0 (the choice of κ is arbitrary, since there
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are no surface gradients), (b) 9µm groove width topography at κ = 1, (c) 6µm groove

width topography at κ = 0.75 and (d) 2µm groove width topography at κ = 0.5. The

colour bar represents values for the error function ϵ, the range fixed arbitrarily small

at 0 ≤ ϵ ≤ 0.03, plotted over an axes for kinesis parameters β and α at fixed values

for κ. Minima (i.e. ϵ values closest to zero) are coloured blue. The blue asterisks

represent numerically approximated minima points (details follow). The blue line is a

polynomial function fit to β-α grid points marked by the blue asterisks.

We see clearly in Figure 2.5 (a) that multiple parametrisations are feasible for the

flat topography. We see, with the help of a polynomial fit, an approximately quar-

tic relationship between β and α at minima over the approximate parameter ranges

0.06 < β < 1.24 and 0.03 < α < 3, respectively (limited by grid resolution).

To estimate individual parameter combinations for the flat topography we fit a poly-

nomial function to an identified region of minima and use the fitted function to ap-

proximate values for β and α. The numerical approach is as follows: define a region of

minima as that which satisfies ϵ ≤ 0.03, then identify mid-point locations of the region

across β (approximate minima, blue regions in Figure 2.5 (a)) and, excluding clear

outliers, fit an appropriate polynomial function to the set of approximated minima

using a numerical fitting tool, (MATLAB’s fit function). We see in Figure 2.5 (a) (blue

line), the method captures the major β-α relationship present at the region of minima

and yields reasonable approximate parametrisations for model output. We present the

polynomial function through minima in Figure 2.5 (a), f̂ , in Eq.(2.15).

f̂(β) = −6.102β4 + 11.79β3 − 5.577β2 + 2.189β − 0.1469, (2.15)
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whose range f̂(β) gives an approximation for α at minima, over the approximate do-

main 0.06 < β < 1.24.

By contrast, in Figure 2.5 (b)-(d), we see clear identifiable parameter combinations for

β and α at given κ values for each of the grooved topographies. This persists through

ranges for κ for each of the linear topographies (results not shown). Generally, the

ranges for β and α over which these minima occur through κ for the grooved topogra-

phies are significantly smaller than those for the flat topography.

To estimate individual parameter combinations for these topographies, we constrain

ϵ ≤ 0.025 and take the median β value, βη, over the resulting region of minima, choos-

ing α at an arbitrary minimum for βη.

In Figure 2.5 (b), we see minima (for which ϵ ≤ 0.03, arbitrarily) occur over the ap-

proximate ranges 0.07 < β < 0.23 and 0.003 < α < 0.1 for the 9µm groove width

topography at κ = 1. Minima persist through an approximate range 0.02 < κ < 10

(results not shown). In Figure 2.5 (c) we see minima occur over the approximate ranges

0.03 < β < 0.079 and 7.58 × 10−4 < α < 0.01 for the 6µm groove width topography

at κ = 0.75. Minima persist through an approximate range 0.15 < κ < 5 (results

not shown). In Figure 2.5 (d), we see minima occur over the approximate ranges

0.07 < β < 0.13 and 2 × 10−3 < α < 0.01 for the 2µm groove width topography at

κ = 0.5. Minima persist through an approximate range 0.15 < κ < 5 (results not

shown).

To demonstrate closeness of metrics derived from the parametrised model, θσ and sµ,

to those derived from Kim et al. [105], θ∗σ and s∗µ, using the methods described for

choosing individual parameter combinations, we plot the metrics on the same axes in

Figure 2.6.
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Figure 2.5: Contour plots resulting from a grid search optimisation for four different structured topographies: (a)
flat, (b) 9µm groove width (c), 6µm groove width and (d) 2µm groove width, across specific ranges for model kinesis
parameters β and α at fixed values for model bias parameter κ. Colour bar represents evaluated values of error function
ϵ. Blue asterisk denotes approximate minimum values for ϵ, ϵ̂min (see text for details of approximation). Blue line is

a polynomial function f(β̂) fitted to the set of points ϵ̂min (see text for definition). Note that in (a) flat: α and β are
non-identifiable, the relationship approximately quartic, and in (b)-(d) 9µm, 6µm and 2µm: α and β are identifiable
with uncertainty for a given κ. Changes to κ do not influence ϵ for (a), however there is a range for κ for which different
and equally valid (under the condition ϵ ≤ 0.03) parameter spaces exist for (b)-(d), such that the choice of κ is arbitrary
within each range. (a) flat: κ = 0. (b) 9µm: κ = 1. (c) 6µm: κ = 0.75. (d) 2µm: κ = 0.5. Simulation parameters:
m = 100, number of cells Nc = 100, time (mins) T = 540, ranges for β and α evident in (a)-(d).
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Figure 2.6: Metric data derived from Kim et al. [105] (blue) and the parametrised model (orange) for average groove
widths 2.6µm, 6.3µm and 8.6µm and uniform groove widths 2µm, 6µm and 9µm, respectively. (a) polarisation angle θ∗

from Kim et al. (square: mean θ∗µ; error bar: θ
∗
µ ± SD θ∗σ) and orientation angle θ from the parametrised model (circle:

mean θµ; error bar: θµ ± SD θσ). (b) migration speed s∗ from Kim et al. (square: mean s∗µ; error bar: s∗µ ± SEM

s∗σM ) and s from the parametrised model (circle: mean sµ; error bar: sµ ± SD sσ). Grid dimensions: 1000× 1000µm2.
Migration parameters: β = 0.1, α = 0.013, κ = 1 (9µm groove width); β = 0.06, α = 0.004, κ = 0.75 (6µm groove
width); β = 0.11, α = 0.005, κ = 0.5 (2µm groove width). Simulation parameters: Nc = 100 cell paths, T = 540
minutes, N = 36 increments, Xinit = (500µm,500µm) is the fixed initial position.

2.3.2 Initial conditions

First, we review migration trajectory and metric output for topographies with linear

9µm, 6µm and 2µm groove widths, using parameter combinations derived from the

parameter estimation method. Then, we use estimated parameters to predict by simu-

lation how trajectory behaviour might evolve when presented with linear topographies

of equal dimensions but with graded random perturbations to linear topographic fea-

tures.

For the first stage, we use only flat and linear topographies generated as outlined in

Methods 2.2.5 and used for the parameter estimation. All four topographies have been

generated on a square matrix representing 1000× 1000µm2 and feature either no gra-

dient (the flat surface) or 1µm wide 0.4µm high linear ‘ridge’ features (parallel to the

vertical axis) spaced either 9µm, 6µm and 2µm apart. A 100 × 100µm2 plot window

of each linear topography are presented in Figure 2.4 (top row) (a)-(c).

For predictions, we introduce random perturbations to linear topographic features for
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each groove width / ridge frequency, to give a set of graded directionally linear to

random topographies to test, as outlined in Methods 2.2.5. Initially we test, for each

groove width, four topographies with gradually increasing levels of random perturba-

tion to linear features using feature perturbation parameter ρ; ρ = 0 (linear), ρ = 0.2,

ρ = 0.35 and ρ = 0.5. The result is a set of topographies with constant feature height

but ‘ridge’ and ‘groove’ width varying from uniform to spatially variable dependent on

randomised location and magnitude of perturbations. We then extend the range for ρ

to test how migration metrics evolve with uniform linear features to completely random

and disordered, where ridges and grooves become irregularly spaced / scaled pillar fea-

tures; see Figure 2.4 (bottom row) (m)-(o). To accommodate higher displacement on

more disordered topographies, we increase topography boundaries to 2000× 2000µm2.

To set migration model parameters we use the methods outlined in Results 2.3.1. For

the flat topography, we use the function f̂ and select the median β value within the

approximated domain given to generate an individual parameter combination. For the

other topographies, we use the methods already outlined in Results 2.3.1. For conti-

nuity we use κ values presented in Figure 2.5 for result output. Individual parameter

combinations with which we proceed for the topographies described are presented in

Table 2.2. We also keep these parameters constant when testing the model with the

randomly perturbed topographies.

For simulations, we fix the initial position of migration trajectories constant for each

individual simulation and between different simulations. To accommodate trajectories,

we set the initial position in the centre of each set of topographies, for simulations in Re-

sults 2.3.3, where topography domain is 1000×1000µm2, the initial position is (500µm,

500µm) and for Results 2.3.4, where topography domain is 2000× 2000µm2, (1000µm,
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1000µm). We also fix the number of cell trajectories in simulations to Nc = 100 for

clarity in trajectory plots and accompanying metrics, unless otherwise stated.

To match the time-lapse speed measurement in the study by Kim et al., we set sim-

ulation time for every cell to T = 540 minutes split into N = 36 increments each of

15 minute duration, and set Euler-Maruyama sub-increments a tenth smaller. Time

parameters are kept constant between all simulations.

Table 2.2: Migration model parameter combinations (to 3 d.p.) for flat, 9µm, 6µm and
2µm groove width topographies, determined by grid search optimisation with Kim et
al. migration data [105], and methods outlined in Results 2.3.1.

Topography β α κ
Flat (no gradient) 0.650 1.068 0.000
9µm groove width 0.100 0.013 1.000
6µm groove width 0.060 0.004 0.750
2µm groove width 0.110 0.005 0.500

2.3.3 Parametrised migration model with uniform linear to-

pographies

In Figure 2.7, we present individual cell migration trajectories for the parametrised

model on (a) flat, (b) 9µm, (c) 6µm and (d) 2µm groove width topographies. We see

in Figure 2.7 (a)-(d) a clear trend for trajectories to acquire gradually more linearity

and more closely follow the groove direction from flat, (a), through topographies with

decreasing groove widths to the narrowest groove width, (d).

In Figure 2.7 (a), we see trajectories for the flat topography show no clear directional

preference at all, appearing directionally random and particularly tortuous, exploring

only a small central radius of the surface surrounding the simulation starting position,

(500µm,500µm).
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In Figure 2.7 (b), we see trajectories for the 9µm grooved topography show some

clear alignment with the groove direction, demonstrating some preference to migrate

in a general direction approximating the groove direction, though still maintaining dis-

cernible stochasticity.

In Figure 2.7 (c), trajectories for the 6µm grooved topography display considerable di-

rectional linearity and a clear preference to follow groove direction, trajectories tending

to diverge around the starting position, (500µm,500µm), and follow groove direction

in opposing directions. Trajectory displacements are also noticeably larger for this

topography, some approaching the domain boundaries over the simulation.

Finally, in Figure 2.7 (d), we see trajectories for the 2µm grooved topography exhibit

the most prominent directional linearity of all the topographies, aligning strictly with

groove direction. Trajectories show a similar trajectory divergence around the starting

position and displace perceptibly far over the simulation, but less than for the 6µm

groove width.

The trend we see in trajectory behaviour is also reflected in orientation angle, θ◦, and

migration speed, s µm/h, distributions for each of the topographies shown in Figure

2.8 (left and right columns, respectively).

We see clearly in Figure 2.8 (left column), the spread in θ distributions with decreasing

groove widths, (a)-(g), reduces markedly; captured by θ standard deviation, θσ. This

general pattern resembles that observed by Kim et al. [105] in cell polarisation angle,

θ∗, distributions for topographies with comparable dimensions.

We see for the flat topography in Figure 2.8 (a), the distribution for θ is approximately

uniform in the range −90◦ ≤ θ ≤ 90◦, with mean θµ = −0.785◦ (heavy red dash) and

standard deviation θσ = 52.4◦ (light red dash). This supports the earlier observation
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that trajectories on the flat topography show no apparent directional preference.

In Figure 2.8 (c), the distribution for θ for the 9µm topography takes on a Gaussian

character, showing a greater proportion of angles measured around zero, consistent

with the observation that trajectories show some preference to migrate in the general

groove direction. For this topography, mean θµ = −0.631◦ and standard deviation

reduces to θσ = 37.0◦.

For the 6µm topography in Figure 2.8 (e), we see the distribution for θ maintain a

Gaussian character with an even greater proportion of angles around zero, with mean

θµ = −0.416◦ and standard deviation reducing quite significantly to θσ = 19.7◦.

For the 2µm topography in Figure 2.8 (g), the distribution for θ is also Gaussian with

clearly the smallest spread of all distributions, with mean θµ = −0.140◦ and standard

deviation reducing further to θσ = 12.6◦.

In Figure 2.8 (right column) we see a different trend in the distributions for s, which

clearly change character across decreasing groove widths (b)-(h). We also see an opti-

mal intermediate groove width for s; the highest average speed, sµ, on the 6µm grooved

topography (f). We see a similar trend in migration speed, s∗, distributions in Kim et

al. [105], where intermediate groove widths were observed to prompt optimal speeds.

We see for the flat topography in Figure 2.8 (b), the distribution for s is right-skewed

with mean and median speed sµ = 30.4µm/h and sη = 28.8µm/h respectively, with

first and third quartiles sQ1 = 18.4µm/h and sQ3 = 41.1µm/h.

In Figure 2.8 (d), for the 9µm topography, we see the distribution maintains a right-

skew with similar mean and median speeds sµ = 31.1µm/h and sη = 29.4µm/h and

wider inter-quartile range, sQ1 = 15.4µm/h and sQ3 = 44.4µm/h.

In Figure 2.8 (f), for the 6µm topography, we see the distribution becomes less dis-
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cernibly skewed and shows much higher mean and median speeds, sµ = 42.2µm/h and

sη = 42.5µm/h, and a markedly increased first quartile, sQ1 = 32.6µm/h, and third

quartile, sQ3 = 52.5µm/h. This supporting the observation that the 6µm grooved to-

pography prompts much higher speeds on average than for the other groove widths.

In Figure 2.8 (h), for the 2µm topography, the distribution assumes a clear Gaussian

character and reduced mean and median speeds, sµ = 35.0µm/h and sη = 34.7µm/h,

with first and third quartiles, sQ1 = 28.6µm/h and sQ3 = 41.0µm/h, respectively.

The trend we observe between groove width and migration speed s is also reflected in

the mean-squared displacement (MSD) of migration trajectories in Figure 2.9, for flat

(blue), 9µm (red), 6µm (yellow) and 2µm (purple) topographies. MSD is perceptibly

greater for the 6µm grooved topography (yellow) over simulation time than for any of

the other topographies; approximately an order of magnitude larger than for the flat

topography.

2.3.4 Model predictions with randomly perturbed linear to-

pographies

To investigate how migration characteristics change when topographic features become

less uniform (such as surface imperfections introduced by coarse fabrication), the model

will be tested upon different topographies with features ranging from uniform and di-

rectionally linear to non-uniform and directionally random.

The approach is to numerically generate topographies with linearly arranged ‘ridges’

and ‘grooves’, each with a groove width comparable to those in the experimental study

by Kim et al. [105] (9µm, 6µm and 2µm), and gradually perturb these linear features

with incrementally increasing magnitude; for details see Methods 2.2.5. We run model

simulations for each of these topographies and test how the migration behaviour evolves
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(a) Flat. (b) 9µm groove width.

(c) 6µm groove width. (d) 2µm groove width.

Figure 2.7: Parametrised model migration trajectories (multi-colour) over gradient fields (blue) of four different to-
pographies: (a) flat (no gradient), (b) 9µm groove width, (c) 6µm groove width and (d) 2µm groove width, (b)-(d)
with constant ridge width 1µm and depth 0.4µm. Trajectories develop a clear linearity when introduced to the linearly
grooved topographies, the extent of linearity present dependent on the groove width. We see a clear trend for trajec-
tories to show more pronounced linearity with decreasing groove width (b)-(d). Grid dimensions: 1000 × 1000µm2.
Migration parameters: (a) β = 0.65, α = 1.07, κ = 0, (b) β = 0.1, α = 0.013, κ = 1, (c) β = 0.06, α = 0.004, κ = 0.75,
(d) β = 0.11, α = 0.005, κ = 0.5. Simulation parameters: n = 100 cell paths, T = 540 minutes, N = 36 increments,
Xinit = (500µm,500µm) is the fixed initial position.
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(a) Flat. θ◦.
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(b) Flat. s µm/h.
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(c) 9µm groove width. θ◦.
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(d) 9µm groove width. s µm/h.
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(e) 6µm groove width. θ◦.
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(f) 6µm groove width. s µm/h.
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(g) 2µm groove width. θ◦.
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(h) 2µm groove width. s µm/h.

Figure 2.8: Orientation angle, θ◦, (left column) and migration speed, s (µm/h), (right column) distributions for the
four different topographies (rows): (a)-(b) flat, (c)-(d) 9µm groove width, (e)-(f) 6µm groove width and (g)-(h) 2µm
groove width. Distributions for both θ and s display total measurements taken for all cells at N = 36 increments over
T = 540 minutes simulation time (for details see Methods 2.2.4). We see θ distributions (left column) acquire a Gaussian
character for the linearly grooved topographies (b)-(d) and a groove width dependence for standard deviation, θσ , (red,
light). We see s distributions (right column) change character with groove width and exhibit an optimal average speed,
sµ, (red, heavy) for the 6µm groove width topography. Grid dimensions, migration and simulation parameters: (see
Figure 2.7).
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Figure 2.9: Mean-squared displacement (MSD) (µm) over time t for flat (blue), 9µm (red), 6µm (yellow) and 2µm
(purple) groove width topographies. We see MSD over time t is greatest for the 6µm groove width topography (yellow)
compared to the other topographies, markedly greater than for the flat topography (blue). Grid dimensions, migration
and simulation parameters: (see Figure 2.7).

in response to incrementally more randomly arranged topographic features.

We first consider the set of topographies with a 2µm groove width, first presented in

Figure 2.4 (right column). In Figure 2.4 (c) we see the uniform linear 2µm groove

width topography has the narrowest groove width of all the topographies presented

and, descending the column, sustains the clearest loss in uniform linearity over ρ com-

pared to other groove widths.

We present in Figure 2.10, migration trajectory behaviour for the set of topographies

with a 2µm groove width and (a) linear features and (b)-(d) randomly perturbed fea-

tures. We see in Figure 2.10 a clear trend for trajectories to lose directional linearity

across the set of topographies (a)-(d), dependent on ρ. The degree of unpredictabil-

ity in trajectory direction appears to increase with ρ, mirroring the increasing level

of ‘disorderedness’ in the topographies, prompting visibly more tortuous trajectories.

Though trajectories appear to maintain some perceptible degree of general direction-

ality in alignment with groove direction, displacements on average clearly spanning a

much greater proportion of the vertical (groove direction) compared to the horizontal
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axis (trajectories mostly confined to the middle third of the domain boundaries, see

Figure 2.10 (a)-(d)). Notably, ρ also appears to prompt an increase in trajectory dis-

placements, clearly extending greater distances and exploring a greater proportion of

the surface over simulation time with increase to ρ.

We see in Figure 2.11, clear trends for both accompanying orientation angle, θ◦, and

migration speed, s µm/h, distributions (left and right columns, respectively) through

values for ρ (rows).

We see in Figure 2.11 (left column) distributions for θ for the more linearly organ-

ised topographies, (a) and (c), appear approximately Gaussian but, with increase to ρ,

evolve into bimodal distributions for the more disordered topographies, (e) and (g), all

distributions approximately symmetric about θ = 0◦. Standard deviations, θσ, (red,

light) broaden significantly with increase to ρ. For the linear topography (ρ = 0),

(a), θσ = 12.5◦, and for the most disorganised topography we present (ρ = 0.5), (g),

θσ = 36.8◦, supporting the earlier observation that trajectories lose directional linearity

with increase to ρ.

We see in Figure 2.11 (right column), distributions for s shift markedly in the horizon-

tal axis (s µm/h) with increase to ρ and display a clear monotonic increase in mean

migration speed, sµ, rising from sµ = 35.0µm/h for (b), where ρ = 0, to sµ = 69.2µm/h

for (h), where ρ = 0.5. The character of the distributions also change through ρ, which

we see are uni-modal and right-skewed at lower values for ρ, (b) and (d), and acquire

more symmetry with increase to ρ, (f) and (h).

For the intermediate groove width topography, 6µm, we see in Figure 2.4 (central col-

umn) ridge features are less densely packed than for the 2µm topography and maintain

some discernible linearity through all levels of perturbations we test (column, (b)-(k)).
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We present in Figure 2.12, migration trajectory behaviour for the set of topographies

with a 6µm groove width and (a) linear features and (b)-(d) randomly perturbed fea-

tures. We see in Figure 2.12 trajectories clearly lose directional linearity with increase

to ρ, in a manner similar to that observed for the 2µm topographies. Most notable

is the degree of trajectory displacement introduced with ρ, extending out to domain

boundaries when ρ = 0.5, (d). Though, as with Figure 2.10, trajectories appear to

maintain some general directionality, spanning much greater absolute distance in the

vertical versus horizontal axis.

In Figure 2.13 we see trends in distributions for θ (left column) and s (right column)

generally resemble those observed in Figure 2.11 for the 2µm topographies.

Distributions for θ (left column) clearly shift in character from Gaussian for the more

linearly organised topographies, (a) and (c), to bimodal with increase to ρ, θσ increas-

ing from θσ = 18.6◦ (a) to θσ = 34.3◦ (g).

In distributions for s (right column), we see a significant positive shift in the s axis

with increase to ρ, surging from sµ = 42.3µm/h at ρ = 0, (b), to sµ = 97.2µm/h at

ρ = 0.5, (h). We observed a similar shift in s distribution character with ρ with the

2µm topographies, uni-modal where at lower ρ the distribution is right-skewed and

becomes more symmetrical with increase to ρ.

For the widest groove width topography, 9µm, we see in Figure 2.4 (left column) ridge

features are least densely distributed of all the topographies tested. We see feature

perturbations appear relatively insignificant compared to groove width and features

clearly maintain an approximate linearity through the levels of perturbation we test

(column, (a)-(j)).

We present in Figure 2.14, migration trajectory behaviour for the set of topographies
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with a 9µm groove width and (a) linear features and (b)-(d) randomly perturbed fea-

tures. We see in Figure 2.14, as with the other topographies in Figure 2.10 and 2.12,

trajectories lose clear directional linearity with increase to ρ, becoming markedly more

tortuous. Trajectories, however, still remain confined to a central 500× 800µm2 strip

of the domain through ρ. Overall displacement appears to increase with ρ and is ob-

servably less significant than for the other groove width topographies.

In Figure 2.15 we see trends in both θ (left column) and s (right column) distributions

that are subtler than that observed for the 2µm and 6µm sets of topographies in Fig-

ure 2.11 and 2.13, respectively. We see both distributions for θ and s maintain largely

stable characteristics with increase to ρ, over the range for ρ presented.

Distributions for θ (left column) maintain a consistently Gaussian character through

ρ, θσ rising only moderately from θσ = 37.0◦ at ρ = 0, (a), to θσ = 42.2◦ at ρ = 0.5,

(g).

Distributions for s (right column), we see remain uni-modal but maintain a positive-

skew with increase to ρ, with steadily broadening quartiles and a small monotonic

increase to sµ, from sµ = 31.1µm/h, (b), to sµ = 49.5µm/h, (h).

If we increase ρ such that linear topographic features for all groove widths become

almost completely randomly organised, varying only in feature density, the resulting

topographies take on a form like those presented in Figure 2.4 bottom row (m)-(o),

where topographies comprise randomly arranged pillar like features. To see how mi-

gration behaviour evolves with ρ, we run model simulations for each groove width

topography with ρ changing at a hundred increments in the range 0 ≤ ρ ≤ 10. We

plot the resulting curves for θσ and sµ against ρ in Figure 2.16 for 2µm (blue), 6µm

(red) and 9µm (yellow) groove width topographies.
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In Figure 2.16 (a), we see curves for θσ across all topographies increase rapidly in the

interval 0 < ρ ≤ 1, all eventually stabilising in the interval 45◦ < θσ < 50◦; close to

θσ for migration simulated for the flat topography. The steepness of gradient for the

initial transients is dependent on the groove width of the topography, the curve for

2µm most rapid, followed by that of the 6µm then 9µm groove widths. Interestingly,

we see the curve for θσ for the 2µm rise and remain above that for the 6µm groove

width at around ρ = 0.35.

In Figure 2.16 (right), we see sµ is clearly ρ dependent for all topographies, the curves

also increasing rapidly over the approximate interval 0 < ρ ≤ 2, but appear to taper

down as ρ is increased, each curve exhibiting a maximum sµ. Interestingly, despite sµ

for the 9µm groove width topographies (yellow curve) prompting the slowest migration

of all topographies over small ρ, sµ steadily increases higher than the curve for the 2µm

groove width topographies (blue) with increasing ρ. We see the 6µm groove width to-

pographies always maintain the highest sµ over ρ but the 2µm and 9µm groove width

topographies dependent on ρ; 2µm higher below around ρ = 1.56 and 9µm higher

above.

2.4 Discussion

In this study, we proposed a mathematical model for topographically influenced cell

migration. We parametrised the model using experimental data derived from in vitro

fibroblast migration on linearly ridged/grooved topographies published in a study by

Kim et al. [105], in the journal Biomaterials. We used the parametrised model to

predict how migration might alter if random perturbations were introduced to linearly

organised topographic features. The aim was to capture principal behavioural charac-
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(a) 2µm groove width. ρ = 0. (b) 2µm groove width. ρ = 0.2.

(c) 2µm groove width. ρ = 0.35. (d) 2µm groove width. ρ = 0.5.

Figure 2.10: Model migration trajectories (multi-colour) over gradient fields (blue) of four topographies with linear 2µm
groove and 1µm ridge width topographic features perturbed stochastically in the direction orthogonal to the ridge/groove
plane with four different ‘noise’ levels, determined by feature perturbation parameter ρ (see Methods 2.2.5): (a) ρ = 0
(linear), (b) ρ = 0.2, (c) ρ = 0.35 and (d) ρ = 0.5. Trajectories begin to lose directional linearity with the introduction
of feature perturbation, the degree of directional unpredictability dependent on ρ (increasing with ρ). Grid dimensions:
2000× 2000µm2. Depth: 0.4µm. Migration parameters: (a)-(d) β = 0.11, α = 0.005, κ = 0.5. Simulation parameters:
(a)-(d) n = 100 cell paths, T = 540 minutes, N = 36 increments, Xinit = (1000µm,1000µm) is the fixed initial position.
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(a) 2µm groove width. ρ = 0. θ◦.
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(b) 2µm groove width. ρ = 0. s µm/h.
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(c) 2µm groove width. ρ = 0.2. θ◦.
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(d) 2µm groove width. ρ = 0.2. s µm/h.
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(e) 2µm groove width. ρ = 0.35. θ◦.
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(f) 2µm groove width. ρ = 0.35. s µm/h.
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(g) 2µm groove width. ρ = 0.5. θ◦.
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(h) 2µm groove width. ρ = 0.5. s µm/h.

Figure 2.11: Orientation angle, θ◦, and migration speed, s (µm/h), distributions (left and right column, respectively)
for the four topographies in Figure 2.10 (rows): (a)-(h) 2µm groove width; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f)
ρ = 0.35 and (g)-(h) ρ = 0.5. We see θ distributions (left column) shift from Gaussian to bimodal with increase to ρ
(a)-(g), accompanied by increase to θσ (red, light). We see s distributions (right column) become markedly right-shifting
with increase to ρ (b)-(h) and a clear monotonic increase in sµ (red, heavy) with ρ. Grid dimensions, migration and
simulation parameters: (see Figure 2.10).
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(a) 6µm groove width. ρ = 0. (b) 6µm groove width. ρ = 0.2.

(c) 6µm groove width. ρ = 0.35. (d) 6µm groove width. ρ = 0.5.

Figure 2.12: Model migration trajectories (multi-colour) over gradient fields (blue) of four topographies with linear
6µm groove and 1µm ridge width topographic features, perturbed in the manner described in Methods 2.2.5 using
four different ‘noise’ levels determined by feature perturbation parameter ρ: (a) ρ = 0, (b) ρ = 0.2, (c) ρ = 0.35
and (d) ρ = 0.5. Similar to Figure 2.10, trajectories clearly lose directional linearity with the introduction of feature
perturbation, the degree of directional unpredictability also dependent on ρ (similarly, increasing with ρ). Notably,
trajectories show much more significant dispersal as ρ is increased; see (d). Grid dimensions: 2000× 2000µm2. Depth:
0.4µm. Migration parameters: (a)-(d) β = 0.06, α = 0.004, κ = 0.75. Simulation parameters: (a)-(d) n = 100 cell
paths, T = 540 minutes, N = 36 increments, Xinit = (1000µm,1000µm) is the fixed initial position.
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(a) 6µm groove width. ρ = 0. θ◦.
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(b) 6µm groove width. ρ = 0. s µm/h.
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(c) 6µm groove width. ρ = 0.2. θ◦.
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(d) 6µm groove width. ρ = 0.2. s µm/h.
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(e) 6µm groove width. ρ = 0.35. θ◦.
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(f) 6µm groove width. ρ = 0.35. s µm/h.

-80 -60 -40 -20 0 20 40 60 80

orientation angle °

0

100

200

300

400

500

600

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(g) 6µm groove width. ρ = 0.5. θ◦.
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(h) 6µm groove width. ρ = 0.5. s µm/h.

Figure 2.13: Orientation angle, θ◦, and migration speed, s (µm/h), distributions (left and right column, respectively)
for the four topographies in Figure 2.12 (rows): (a)-(h) 6µm groove width; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f) ρ = 0.35
and (g)-(h) ρ = 0.5. For θ distributions (left column) we see a clear shift in character from Gaussian to bimodal with
increase to ρ, and only a moderate rise in θσ (red, light). In s distributions (right column) we see a clear trend for
increased distribution symmetry and a surge in sµ (red, heavy) with increase to ρ. Grid dimensions, migration and
simulation parameters: (see Figure 2.12).
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(a) 9µm groove width. ρ = 0. (b) 9µm groove width. ρ = 0.2.

(c) 9µm groove width. ρ = 0.35. (d) 9µm groove width. ρ = 0.5.

Figure 2.14: Model migration trajectories (multi-colour) over gradient fields (blue) of four topographies with linear 9µm
groove and 1µm ridge width topographic features, perturbed in the manner described using four different ‘noise’ levels
determined by feature perturbation parameter ρ: (a) ρ = 0, (b) ρ = 0.2, (c) ρ = 0.35 and (d) ρ = 0.5. Trajectories
clearly become more directionally random with the introduction of feature perturbation, the degree also dependent
on ρ (similarly, increase to ρ). Grid dimensions: 2000 × 2000µm2. Depth: 0.4µm. Migration parameters: (a)-(d)
β = 0.1, α = 0.013, κ = 1. Simulation parameters: (a)-(d) n = 100 cell paths, T = 540 minutes, N = 36 increments,
Xinit = (1000µm,1000µm) is the fixed initial position.
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(a) 9µm groove width. ρ = 0. θ◦.
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(b) 9µm groove width. ρ = 0. s µm/h.
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(c) 9µm groove width. ρ = 0.2. θ◦.

0 50 100 150

migration speed s ( m / hr)

0

50

100

150

200

250

300

350

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(d) 9µm groove width. ρ = 0.2. s µm/h.
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(e) 9µm groove width. ρ = 0.35. θ◦.
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(f) 9µm groove width. ρ = 0.35. s µm/h.

-80 -60 -40 -20 0 20 40 60 80

orientation angle °

0

50

100

150

200

250

300

350

to
ta

l m
ea

su
re

m
en

ts
 (

al
l c

el
ls

)

(g) 9µm groove width. ρ = 0.5. θ◦.
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(h) 9µm groove width. ρ = 0.5. s µm/h.

Figure 2.15: Orientation angle, θ◦, and migration speed, s (µm/h), distributions (left and right column, respectively)
for the four topographies in Figure 2.14 (rows): (a)-(h) 9µm groove width; (a)-(b) ρ = 0, (c)-(d) ρ = 0.2, (e)-(f) ρ = 0.35
and (g)-(h) ρ = 0.5. We see in θ distributions (left column) a stable Gaussian character which flattens and only a small
increase to θσ (red, light) with increase to ρ. We see s distributions (right column) maintain a consistent positive-skew
with broadening quartiles sQ1

and sQ3
(red, light) and a moderate increase in sµ (red, heavy) with increase to ρ. Grid

dimensions, migration and simulation parameters: (see Figure 2.14).
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Figure 2.16: Orientation angle standard deviation, θ◦σ , (a) and mean migration speed, sµ (µm/h), (b) against feature
perturbation parameter, ρ, for 2µm (blue), 6µm (red) and 9µm (yellow) groove width topographies. (a) curves for θ◦σ
over ρ increase rapidly in the interval 0 < ρ ≤ 1 for all topographies, the gradient dependent on groove width. (b) curves
for sµ (µm/h) also increase rapidly with ρ but, after the initial transient, decrease gradually with increasing ρ. Grid
dimensions: 2000 × 2000µm2. Migration parameters: (blue) β = 0.11, α = 0.005, κ = 0.5; (red) β = 0.06, α = 0.004,
κ = 0.75; (yellow) β = 0.1, α = 0.013, κ = 1. Simulation parameters: ρ = 0, ..., 10 in 100 increments, n = 1000 cell
paths, T = 540 minutes, N = 36 increments, Xinit = (1000µm,1000µm) is the fixed initial position.

teristics of this important interaction with a simple stochastic model and probe how

migration might be affected if linear topographies sustained surface imperfections re-

sulting from coarse surface processing methods.

The model was based on an Ornstein-Uhlenbeck (OU) process, biased to respond to

physical surface gradients determined by the arrangement of surface topographic fea-

tures. To do this we introduced to the OU cell velocity model a topographic bias term

which guided cell velocity direction away from steep gradients and along contour direc-

tions. We parametrised the model using migration metric data (‘polarisation angle’,

θ∗, and migration speed, s∗) for four different topographies (one flat and three linear

with different groove widths) derived from a study by Kim et al. [105]. We used a

grid search optimisation method to fit model simulations with MATLAB-generated

topographies to this metric data, parametrising the model by estimation methods.

We presented parametrised model output comprising sample migration trajectories,

and accompanying ‘orientation angle’, θ, and migration speed, s, metric distributions
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for four different topographies. The MATLAB-generated topographies were designed

to mimic topography dimensions in the study by Kim et al. [105] we use to parametrise

the model: one flat topography (featuring no gradient) and three topographies with

uniform linear 1× 0.4µm ridge features spaced in the intervals 9µm, 6µm and 2µm.

Migration trajectories showed markedly more directional linearity when introduced to

the linear topographies, clearly increasing with decreasing groove width. This obser-

vation was reflected in distributions for θ, which changed in character from uniform

when flat to Gaussian when linear; standard deviation, θσ, decreasing significantly with

groove width. Migration speed s showed an optimal groove width for mean migration

speed, sµ, observed for the 6µm groove width topography.

We then tested the model for the same linear topographies but with incrementally

introduced ‘noise’, the linear features randomly perturbed in the plane orthogonal to

ridge/groove direction, the ‘noise’ level determined by feature perturbation parameter

ρ. We found that trajectories lost directional linearity with increase to ρ for all groove

width topographies, mirroring the ‘disorderedness’ in the arrangement of the surface

topography. The observation was supported by distributions for θ, θσ clearly increasing

with ρ for all topographies. The distributions also changed character for the 2µm and

6µm groove width topographies with increase to ρ, shifting distinctly from Gaussian to

bimodal in the interval 0 ≤ ρ ≤ 0.5. Trajectory displacement also appeared to signif-

icantly increase with ρ, evident in distributions for s which shifted markedly positive

for all topographies, sµ increasing monotonically with ρ up to a maximum sµ for each

set of topographies and steadily tapered down with ρ, as topographies became more

and more disordered.

Results from the study demonstrate the proposed cell migration model is able to closely
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reproduce migration characteristics of fibroblasts traversing linear topographies with

comparable dimensions to those employed experimentally by Kim et al. [105]. We

present in Figure 2.5, error surfaces for the flat, 9µm, and 6µm and 2µm groove width

topographies at sample κ values chosen arbitrarily from a permissible range for κ,

which illustrate how closely simulated metrics used in the calculation for ϵ, θσ and sµ,

could approximate experimental metrics, θ∗σ and s∗µ. We also see illustrated graphically

in Figure 2.6 how close sample parametrised θσ and sµ appear compared to their ex-

perimental counterparts, θ∗σ and s∗µ.

Results also reproduce general trends in migration behaviour for topographies with

varied groove widths reported in Kim et al. [105]. We see a clear optimal groove width

for sµ, the highest observed for the 6µm groove width topography. This pattern was

reported in the study by Kim et al., the highest average migration speed, s∗µ, recorded

on intermediate groove widths (an average width of 6.3µm). We also see a monotonic

decrease in θσ with groove width which was also reported in the Kim et al. study.

We see that intermediate groove widths appear to optimise speed (highest: 6µm) and

narrower groove widths appear to optimise for directionality (most directional: 2µm).

In the study by Kim et al., this finding was probed further with more detailed analysis

of how the arrangement of focal adhesions for cells differed between different groove

widths, the difference in behaviour between groove widths proposed to be prompted

by differences in physical confinement by the ridge density of the topography acting

on focal adhesions. The findings in this study were later formalised into a general the-

oretical model for focal adhesion based cell alignment and orientation to topography

proposed by Ray et al. [128], recognised as a leading candidate mode of action for

these interactions [101].
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Model predictions suggest that when random perturbations are introduced to uniform

linear features, such as that resulting from coarse surface fabrication methods, linear di-

rectionality of migration trajectories degrades dependent on the degree of perturbation

and groove width. Predictions also suggest that more randomly arranged topographic

features could increase migration speed compared to uniform linear features, suggest-

ing that when random perturbations are introduced we see trade-off between migration

directionality and speed. This finding could potentially be exploited to enhance or di-

minish either cell characteristic, or to pursue a topographic configuration to optimise

both characteristics; if the finding was to be supported experimentally. Prediction

output also suggests there could be a level of tolerance in trajectory directionality to

surface imperfections. If this is the case, it could help to tailor the processing methods

applicable for prompting directional migration and open the door for the adoption of

carefully selected coarse processing methods that are more time and cost efficient than

lithography-based methods.

To take this work forward, we would in the first instance like to address the non-

identifiability of our model parameters. It may be possible to improve the situation

with model equation manipulations and stochastic dynamic analysis of the model. If a

comparable data set was available, we could also fit to another data set and this could

help to filter parameter regions further and enable greater confidence in model output.

We could also increase the scope of the model by fitting to data sets with different

topographic features e.g. lattice.

For model predictions we used random perturbations in only one plane (horizontal axis,

orthogonal to ridge / groove direction), we could also explore the effect of perturba-

tions in other planes (vertical axis, ridge / groove direction, and depth) and perhaps
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begin to approach patterns of topographic arrangement produced by certain surface

processing methods (e.g. abrasive polishing by variable mechanical motion).

In their Biomaterials study, Kim et al. [105] reported similar behavioural responses to

topographies in cell monolayers as individual cells. Based upon this observation, the

derived migration model could be a useful foundation from which to derive a population

(PDE) model.
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Chapter 3

A mathematical model for connexin

43 cycling and its dynamical

modulation by connexin mimetic

peptide Gap27

3.1 Introduction

3.1.1 Connexin 43 structure and life cycle

Connexins are polytopic transmembrane proteins which, upon intracellular oligomeri-

sation, trafficking and insertion into the plasma membrane, function as part of inter-

cellular communication channels [132]. There exist 21 connexin proteins, each con-

ventionally labelled according to molecular weight but also categorised by structural

similarity and order of discovery [132, 133, 134]. Connexin 43 (Cx43) is the most widely

expressed connexin, found in 34 tissues and 46 different cell types and is the primary

connexin in many cell lines [135].

Cx43 is crucial to the functioning of many vital physiological systems. For instance,

Cx43 is known to influence the spatio-temporal coordination of cellular events dur-

ing cutaneous wound repair [136], and forms the individual component units of gap
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junctions at intercalated cell junctions in cardiac tissue, functioning as ‘gatekeepers’

that enable transferral and subsequent propogation of electrical signals between cardiac

cells [137]. Cx43 dysregulation and dysfunction is associated with a number of related

pathophysiologies such as chronic nonhealing wounds (e.g. cutaneous ulcers) [24, 25],

cardiomyopathies [138], tumour progression and metastasis in various different cancer

types (including breast [139], prostate [140] and colorectal [141]), and the autoimmune

disorder psoriasis [142, 143, 144].

The structure of Cx43 is similar to that of other connexins, featuring 2 extracellular

domains (loops), 4 transmembrane domains (spanning proteins) and 3 intracellular

domains (N-terminal, loop and a C-terminal); measuring 7.5Å in the membrane plane

and 21Å in the transmembrane plane [145]. The C-terminal is the main source of

structural variation between connexin proteins and the region is subject to rapid post-

translational modifications (PTMs) which regulate protein behaviour e.g. Cx43 PTMs

coordinate switching between electrophoretic isoforms associated with different stages

in the Cx43 life cycle [132, 133, 135]. The structure and life cycle of Cx43 is illustrated

in Figure 3.1 A and B.

Connexin synthesis is associated with the endoplasmic reticulum (ER), the ER mem-

brane is thought to be where the characteristic transmembrane topology of connexins

is established [132]. Once trafficked through the Golgi apparatus, connexins undergo

oligomerisation to form hemichannels, hexameric structures composed of six connexin

subunits [133, 134]. Hemichannels (also known as connexons) may be homotypic or

heterotypic in construction, whereby channels are formed either from combinations

of the same or different connexin types respectively. It is thought subunit composi-

tion influences channel properties such as conductance and gating [134]. Once formed,
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hemichannels are trafficked in a closed state by vesicular carriers along microtubules

for insertion into the plasma membrane [132]. Trafficking is thought to be evenly

distributed across the cell since hemichannels are observed either individually or in

small groups across the entire non-junctional membrane [132]. Hemichannels at the

plasma membrane are thought to be able to laterally accrete in the membrane plane

to reach junctional membrane, where another cell is close enough to establish con-

tact [76, 132]. Facilitated by Ca2+ dependent adhesion molecules, hemichannels at the

junctional membrane are able to dock and interlock extracellular domains belonging

to those of hemichannels attached to the proximal cell to form a tight seal around a

2 − 3nm gap, establishing an intercellular communication channel, known as a gap

junction channel [132, 133, 134]. Gap junction channels represent a direct cell-cell

communication line, enabling the exchange of ions and small molecules between con-

tacting cells [134]. Gap junction channels assume a dodecameric structure consisting

of twelve connexin subunits and, like hemichannels, can be homotypic or heterotypic,

influencing channel function [134, 145]. Microtubules can attach directly to the intra-

cellular domain of Cx43-based gap junction channels, thus implicating gap junctions in

possible structural and mechanotransductive roles, in addition to their well established

role in cell-cell communication [132]. The structure and function of gap junction chan-

nels are illustrated in Figure 3.1 C. Gap junction channels are known to aggregate into

larger junctional structures known as gap junction plaques [132]. Gap junction plaques

may contain tens to hundreds of thousands of channels, forming a hub of metabolite

exchange between cells at the junctional plasma membrane [132, 146]. Gap junction

plaques are known to form through lateral accretion of gap junction channels along the

membrane, with newly formed channels joining to the periphery of the plaque whilst
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older channels are found nearer the centre of the structure [132]. Internalisation of

the channels is signalled through PTMs, e.g. phosphorylation [132] and ubiquitylation

[133], at the C-terminal of constituent connexin proteins. Typically removed from the

centre of a plaque, whole gap junction channels are drawn into the cytoplasm of one

of the contacting cells, producing internalised structures termed ‘annular gap junc-

tions’ [132]. These structures, now intracellular, are sorted into the endocytic pathway

or recognised by autophagy adaptors, both of which results in lysosomal degradation

[132, 133]. Some of these internalised proteins may be rescued from lysosomal degra-

dation through additional PTMs and redeployed as recycled hemichannels [133].

3.1.2 Connexin mimetic peptides

Connexin mimetic peptides (CMPs) have been widely used across cell and tissue types

both to study hemichannel and gap junction function, and investigated as potential

therapeutic agents [147]. CMPs are engineered to mimic amino acid sequences na-

tive to specifc intra or extracellular domains of connexin proteins. Gap20 for example

targets the intracellular loop of Cx43, αCT1 the intracellular C-terminal. Gap26 and

Gap27 mimic sequences on the extracellular domain of Cx43, Gap26 (a tridecapeptide)

is targeted to the first loop, Gap27 (a undecapeptide) is targeted to the second loop

[148]. The presence of highly conserved sequences in these particular CMPs enables

efficacy across other types of connexin, such as Cx32, Cx40 and Cx37 [146, 149].

Cx43-Gap27 binding occurs extracellularly at the plasma membrane, the primary mode

of interaction thought occur with unpaired hemichannel-based free Cx43, although it

has been suggested interaction could also occur with gap junction bound hemichan-

nels [146]. CMPs have been widely reported to affect gap junction based intercellular

communication (GJIC), able to block intercellular dye transfer and cause disruption
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to Ca2+ signalling [149]. The principal mechanism by which GJIC is interrupted is

thought to be through disruption to gap junction channel formation and / or func-

tion. Hemichannels bound by Gap27 are thought either to couple atypically or couple

regularly but exhibit disrupted channel function, both resulting in dysfunctional gap

junction channels [146, 149]. It is unclear exactly how CMPs such as Gap27 are able to

affect hemichannel function, it is proposed CMP binding could either physically block

the hemichannel ‘pore’ or induce closure by modifying channel gating behaviour [148].

Connexin-peptide binding to hemichannels also introduces the possibility of indirect ef-

fects on hemichannel coupling and gap junction gating behaviours, through disruption

to intracellular Ca2+ dynamics [146].

3.1.3 Modelling studies

The physiological importance of gap junctions (and constituent connexins) and their

influence in various pathologies (e.g. chronic non-healing wounds [24] and cardiac ar-

rythmias [150]) has prompted numerous mathematical and computational modelling

studies of their properties and function. Many modelling studies have focused in par-

ticular on channel conductance characteristics and its influence on channel gating be-

haviour, study motivation often stimulated by the role gap junctions play in electrical

impulse propagation in cardiac tissue and their implicated role in cardiac dysfunction.

Vogel and Weingart looked into conductance behaviour of gap junction channels in

response to transjunctional voltage. The model treated a gap junction as an electri-

cal circuit, composed of two identical submodels of hemichannels in series, each with

a switch between high and low conductance states describing channel gating dynam-

ics. The authors focused on the four different conductance states of the gap junction

channel conferred by each hemichannel conductance switch, presenting conductance-
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Figure 3.1: Three diagrams to illustrate A. the Cx43 cycling process, B. the structure of Cx43 and C. the structure and
function of gap junction channels. A. Flow diagram to illustrate the life cycle of Cx43. Cx43 synthesis is associated with
the endoplasmic reticulum (ER) from which the proteins are trafficked to the golgi apparatus for oligomerisation into
hemichannels. Hemichannels are then trafficked from the golgi to the cell membrane where they become functional, able
to operate as individual channels or dock with opposing hemichannels to form gap junction channels. Gap junctions can
then accrete to form gap junction plaques. Once internalised, gap junctions are known as ‘annular gap junctions’ which
follow an endocytic pathway and its component hemichannels either redeployed via a recycling mechanism or degraded
via the lysosome. B. Schematic diagram to illustrate the general structure of Cx43. Cx43 has three intracellular (IC)
domains (N terminal, loop and C terminal), four transmembrane domains and two extracellular (EC) domains (loops
i and ii). Gap27 binds to the second extracellular loop. C. Schematic diagram to illustrate the general structure and
function of gap junction channels. Gap junction channels form when two opposing hemichannels dock and interdigitate
at the cell membrane. They enable direct cytoplasmic exchange of large metabolites between the two docked cells.
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voltage relationships for both homotypic and hetertypic channels. Results were able to

characterise the conductance-voltage relationship for the experimentally hard-to-detect

low-low channel conductance state [70].

Loppini et al. investigated synchronisation of electrical activity via gap junctions in

β-cell clusters with a model based on an interacting neighbourhood, each cell assigned

membrane potential dynamics. Results found cluster synchrony of spiking behaviour

to be particularly dependent on gap junction conductance, which could also induce

transformation of bursts into spiking behaviour [72].

Casaleggio, Hines and Migliore propose a 2-d computational model of cardiac tissue

comprised of a cell network coupled with gap junction channels to explore the influ-

ence of gap junction conductance on cardiac arrhythmias. The authors found dynamic

changes to gap junction conductance around a model ‘ischemic’ region of tissue resulted

in signal motifs that qualitatively reproduced those of six different types of arrhythmia

[71].

In addition to channel conductance, many modelling studies have investigated flux

properties of gap junctions. Mondal et al. proposed a 3-d computational model of a

gap junction channel ‘pore’ to investigate whether changes in pore morphology, im-

parted by the presence of different connexin types, could induce asymmetric flux of

molecules of a certain size. The authors found asymmetric pore shapes to induce

asymmetric fluxes, but only in the presence of charged particles [74].

Bressloff probed gap junction permeability with a 1-d model of diffusing particles within

a domain of connected cells, each cell interface representing a gap junction in randomly

opening and closing states. Limiting the domain to two cells, the author could derive,

via mean steady-state concentration and flux, effective permeability of the gap junction
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joining the two cells, subsequently showing effective permeability of the gap junctions

depended on the number of cells (in the simplified system) [75].

Dougoud et al. proposed a network-based model for Ca2+ wave propagation through a

cell population via gap junction channels. The model described an interacting cell pop-

ulation using a graph coupled with Ca2+ dynamics, the nodes representing individual

cells, the vertices interaction through gap junction channels with prescribed proper-

ties. Simulation results showed spatio-temporal signal patterns were heavily dependent

on gap junction coupling strength (implying an effect on channel permeability), only

strongly coupled gap junctions induced propagating Ca2+ waves, more weakly coupled

channels showed only isolated Ca2+ bursts and non-synchronous oscillations [73].

3.1.4 Motivations and contributions

Connexins are physiologically important. They comprise the functional transmembra-

nous components of hemichannels and subsequently gap junction channels, enabling

both direct and long range metabolite exchange with other cells and the extracellular

space. Connexin 43 (Cx43) is the most ubiquitous connexin in the human body, sup-

porting critical functions fundamental to many important physiological systems, the

derangement of which is implicated in a number of serious health conditions.

Connexins are typically cycled rapidly (with a half-life of just a few hours [133]).

Synthesised intracellularly, they assemble into hemichannels which deploy at the cell

membrane where some will establish gap junction channels if close enough to another

cell, and subsequently recruited to gap junction conglomerates, ‘plaques’, from which

they are internalised and either recycled or degraded.

Connexin mimetic peptides (CMPs) are targeted to specific connexin domains and

shown in experimental studies capable of modifying different connexin-based channel
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behaviours. A number of CMPs, including ‘Gap27’, are under investigation as potential

promotive agents for wound healing. Gap27 has been shown to increase cell migration

rates and accelerate healing in a number of experimental models [32, 151, 152].

Mathematical and computational modelling work relating to the structure and be-

haviour of connexins and connexin-based species exist in abundance. Much of the

literature appears to focus on connexin-channel properties and functions e.g. conduc-

tance, permeability and flux. The fundamental connexin cycling process, gap junction

formation and aggregation underpinning channel functions however appear to have

been largely unexplored.

We aim to develop a mathematical model based on the Cx43 life cycle and include

binding kinetics for extracellularly binding CMP Gap27. The intention is to explore

the dynamical behaviour of this important physiological process and consider how the

introduction of Gap27 modulates this behaviour.

In the presented work, we contribute the following:

(i) Derive a mass action model for Cx43 cycling with Gap27 binding. We

use the biological literature to formulate a reaction scheme for the Cx43 life

cycle and include binding kinetics for CMP Gap27. We use the reaction scheme

to derive a full ODE model for the system based on mass action kinetics. See

Methods 3.2.1.

(ii) Derive an averaged model of the original ODE system. We reduce the

ODE system by deriving moment ODEs for the large sub-system of gap junction

plaque ODEs, introducing them into the model to obtain an averaged model for

the original system. See Methods 3.2.5.

(iii) Explore model dynamics without and with Gap27. We examine time-
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course and steady-state behaviour of the model under variation to initial con-

centrations and model parameters both without and with Gap27 binding. We

find, in-keeping with the biological literature, introduction of Gap27 affects only

transient behaviour of Cx43-based cycling species. See Results.

3.2 Methods

3.2.1 Model formulation

To create the model, we formulate a set of reaction equations to define connexin cy-

cling events upon the interaction of two neighbouring cells. We assume the system

to be symmetric such that under equal initial conditions both interacting cells behave

equally. In our model, we assume connexins have already been synthesised and un-

dergone intracellular oligomerisation to form hemichannels [H], produced at a rate kp,

and in receipt of additional input from a recycling mechanism. We assume individual

hemichannels [H] from either cell, [H1] and [H2], are able to bind with each other to

form gap junction channels [G] conjoining cells for direct intercellular communication.

We then assume [G] is able to accrue to form gap junction plaque structures [Pi], which

we define to be at least two unit [G] up to a theoretical maximum unit [G], n, such that

intermediate plaque states m are defined i = 2 ≤ m ≤ n. We further assume unit [G]

is internalised from within plaque structures [Pi] and into one of the two conjoined cells

to form annular gap junction structures [E], which are subsequently sorted into either

a recycling or degradation pathway. Gap27 [G27] binding is assumed for simplicity as

an additional one-step reaction whereby [G27] attaches to binding sites harboured by

[H] on either cell to form the hemichannel-peptide complex [H · G27]. The reaction

scheme is detailed in Methods 3.2.2.
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Since the formulation does not account for connexin-specific structure or channel func-

tions, the resulting model could be viewed as a general model for connexin cycling

with homotypic and heterotypic hemichannel and gap junction composition, with ad-

ditional binding of an extracellularly acting CMP. We focus, for our application, on the

connexin ‘Cx43’ and connexin mimetic peptide ‘Gap27’, with hemichannels and gap

junctions being Cx43-homotypic.

3.2.2 Reaction scheme

(i) Hemichannel production. Under the condition that two cells are already

interacting and assuming connexin oligomerisation, [H] production is assumed

at a constant rate kp. Reaction equations for each interacting cell (denoted by

superscripts 1 and 2) are given by Eq. (3.1) and Eq. (3.2).

production → [H1], (3.1)

production → [H2]. (3.2)

(ii) Gap junction formation. Since both cells are assumed to already be interact-

ing, a junctional nexus is assumed present at the cell membranes, providing the

conditions under which gap junction channels are able to form by the docking

and interdigitation of hemichannels from both cells. We assume constant associ-

ation and dissociation rates, k1 and k−1 respectively. The reaction equation for

gap junction channels [G] is given by Eq. (3.3).

[H1] + [H2] ⇌ [G]. (3.3)

(iii) Gap junction plaque formation. Once gap junction channels form we assume
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accrual into larger gap junction plaque structures occurs, for simplicity, at con-

stant rate k2, interpreted as an average association rate across plaque states. It

is also assumed that once gap junction channels form part of a plaque structure,

they do not separate once more into individual or groups of channels and are re-

moved from the structure through internalisation. Reaction equations for initial,

intermediate and maximum gap junction plaque states [Pi], where i = 3, ..., n,

are given by Eq. (3.4) and Eq. (3.5).

[G] + [G] → [P2], (3.4)

[G] + [Pi−1] → [Pi]. (3.5)

(iv) Gap junction internalisation. In our formulation of internalisation we do not

account for any specific post-translational modifications (PTMs), only the general

process of internalisation which translates gap junction channels [G] into the

intracellular structures annular gap junctions [E] within either cell. We assume

gap junction channels are internalised at a constant rate ku. Reaction equations

for internalisation of [G] for initial, intermediate and maximum plaque states,

where i = 3, ..., n, are given by Eq. (3.6) and Eq. (3.7).

[P2] → [G] + [E1] or [P2] → [G] + [E2], (3.6)

[Pi] → [Pi−1] + [E1] or [Pi] → [Pi−1] + [E2]. (3.7)

(v) Internalised gap junction recycling and degradation. Once gap junction

channels are internalised, we assume the subsequent annular gap junction struc-

tures [E] are sorted intracellularly into recycling and degradation pathways. We
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assume individual hemichannels within these internalised structures may be res-

cued from degradation and redeployed once more as functional channels via a

recycling mechanism (see Ribeiro et al. [133]). We assume a constant recy-

cling rate kr and specify that recycled hemichannels [H] are only to originate

from annular gap junctions [E] within the same cell. Any remaining annular gap

junctions not utilised for recycling are assumed to degrade at a constant rate

kd via a lysosomal degradation pathway. Reaction equations for recycling and

degradation are given by Eq. (3.8)-(3.9) and Eq. (3.10).

[E1] → [H1], (3.8)

[E2] → [H2], (3.9)

[E] → 0. (3.10)

(vi) Hemichannel degradation. Hemichannels which are not recruited for gap

junction formation and thus remain free and unbound we assume are internalised

and degraded at a constant rate kdh, the reaction equation given by Eq. (3.11).

[H] → 0. (3.11)

(vii) Gap27 binding. We assume that Gap27 [G27] binds extracellularly to free

hemichannels [H] of both cells in a simple one-step reaction which forms hemichannel-

Gap27 complex [H ·G27]. We do not consider any additional binding behaviour

reported in the literature (e.g. Gap27 binding to hemichannels already situated

within gap junction channels). We assume constant association and dissociation

rates, kG27 and k−G27, respectively. Reaction equations are given by Eq. (3.12)
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and Eq. (3.13).

[H1] + [G27] ⇌ [H ·G271], (3.12)

[H2] + [G27] ⇌ [H ·G272]. (3.13)

3.2.3 ODE system

Assuming mass action kinetics for the reaction scheme we now define the system equa-

tions. Employing the defined notation for system variables, the full model describing

Cx43 cycling with Gap27 binding is defined by the autonomous ODE system Eq.

(3.14)-(3.24).

d[H1]

dt
= kp−k1[H

1][H2]+k−1[G]+kr[E
1]−kdh[H

1]−kG27[H
1][G27]+k−G27[H ·G271],

(3.14)

d[H2]

dt
= kp−k1[H

1][H2]+k−1[G]+kr[E
2]−kdh[H

2]−kG27[H
2][G27]+k−G27[H ·G272],

(3.15)

d[G]

dt
= k1[H

1][H2]− k−1[G]− 2k2[G]2 − [G]
n−1∑
i=2

k2[Pi], (3.16)

d[P2]

dt
= k2[G]2 − 2ku[P2]− k2[G][P2], (3.17)

for j = 3, ..., n− 1,

d[Pj]

dt
= k2[G][Pj−1]− jku[Pj]− k2[G][Pj], (3.18)

d[Pn]

dt
= k2[G][Pn−1]− nku[Pn], (3.19)

d[E1]

dt
= −kr[E

1]− kd[E
1] +

ku
2

n∑
i=2

i[Pi], (3.20)

d[E2]

dt
= −kr[E

2]− kd[E
2] +

ku
2

n∑
i=2

i[Pi], (3.21)
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d[G27]

dt
= k−G27

(
[H ·G271] + [H ·G272]

)
− kG27

(
[H1][G27] + [H2][G27]

)
, (3.22)

d[H ·G271]

dt
= kG27[H

1][G27]− k−G27[H ·G271], (3.23)

d[H ·G272]

dt
= kG27[H

2][G27]− k−G27[H ·G272]. (3.24)

Note that,

d[G27]

dt
+

d[H ·G271]

dt
+

d[H ·G272]

dt
= 0. (3.25)

We find through integration, conservation of mass for Gap27 is preserved

[G27] + [H ·G271] + [H ·G272] = S(t), (3.26)

where S(t) is a constant concentration.

The sub-system defined by Eq. (3.14)-(3.21), when [G27](0) = 0, can be thought of

as a model only for Cx43 cycling and utilisation during the interaction of two con-

tacting cells. The sub-system defined by Eq. (3.22)-(3.24), when [G27](0) is non-zero,

introduces additional Gap27 binding into the model. In the coming sections, we use

this to introduce Gap27 as a treatment and consider the model both without and with

treatment of Gap27.

3.2.4 Nondimensionalisation

We nondimensionalise the full system described by Eq. (3.14)-(3.24) using the fol-

lowing notations. We rescale system variables using the hat notation [Ĥ] to denote

some constant [Ĥ] ∈ R+. We use superscripts within square brackets to represent the

dimensionless variable [H*]. The substitutions used are summarised in Table 3.1 and

the rescalings used in Table 3.2.
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Table 3.1: Substitutions used for the nondimensionalisation of system Eq. (3.14)-(3.24)

[H] = [Ĥ][H*] [G] = [Ĝ][G*] [E] = [Ê][E*]

[P2] = [P̂2][P2
*] [Pj] = [P̂j][Pj

*] [Pn] = [P̂n][Pn
*]

[G27] = [Ĝ27][G27*] [HG27] = [ĤG27][HG27*] t = t̂t*

Table 3.2: Rescalings used for the nondimensionalisation of system Eq. (3.14)-(3.24)

t̂ =
1

kdh
[Ĥ] = [Ĝ] = [Ê] = [P̂N ] = [Ĝ27] = [ĤG27] =

kp
kdh

k̂1 =
k1kp
k2
dh

k̂2 =
k2kp
k2
dh

k̂−1 =
k−1

kdh
k̂u =

ku
kdh

k̂r =
kr
kdh

k̂d =
kd
kdh

k̂G27 =
kG27kp
k2
dh

k̂−G27 =
k−G27

kdh

To distinguish between the original and nondimensionalised systems we adopt lower

case notation for the nondimensionalised system, such that [H1] = [h1] and equivalent

for all other variables (superscripts within square brackets, [h1] and [h2], still denoting

to which cell in the system the species belongs). The full nondimensionalised system

for Cx43 cycling with Gap27 binding is given by Eq. (3.27)-(3.37).

d[h1]

dt
= 1− k̂1[h

1][h2] + k̂−1[g] + k̂r[e
1]− [h1]− k̂G27[h

1][g27] + k̂−G27[h · g271], (3.27)

d[h2]

dt
= 1− k̂1[h

1][h2] + k̂−1[g] + k̂r[e
2]− [h2]− k̂G27[h

2][g27] + k̂−G27[h · g272], (3.28)

d[g]

dt
= k̂1[h

1][h2]− k̂−1[g]− 2k̂2[g]
2 − k̂2[g]

n−1∑
i=2

[pi], (3.29)

d[p2]

dt
= k̂2[g]

2 − 2k̂u[p2]− k̂2[g][p2], (3.30)
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where 3 ≤ j ≤ n− 1,

d[pj]

dt
= k̂2[g][pj−1]− jk̂u[pj]− k̂2[g][pj], (3.31)

d[pn]

dt
= k̂2[g][pn−1]− nk̂u[pn], (3.32)

d[e1]

dt
= −k̂r[e

1]− k̂d[e
1] +

k̂u
2

n∑
i=2

i[pi], (3.33)

d[e2]

dt
= −k̂r[e

2]− k̂d[e
2] +

k̂u
2

n∑
i=2

i[pi], (3.34)

d[g27]

dt
= k̂−G27

(
[h · g271] + [h · g272]

)
− k̂G27

(
[h1][g27] + [h2][g27]

)
, (3.35)

d[h · g271]
dt

= k̂G27[h
1][g27]− k̂−G27[h · g271], (3.36)

d[h · g272]
dt

= k̂G27[h
2][g27]− k̂−G27[h · g272], (3.37)

where k̂1, k̂−1, k̂2, k̂u, k̂r, k̂d, k̂G27, k̂−G27 ≥ 0.

The system defined by Eq. (3.27)-(3.34), where [g27](0) = 0, is the nondimensionalised

system describing Cx43 cycling without Gap27. We visualise the model system without

Gap27 in Figure 3.2 for a reference parameter set, where system variables [h], [g], [e]

and log-transformed [pi], where i = 2, ..., 20, are plotted against nondimensional time

unit t. Plaque states at numerically approximated steady-state, [p∗i ] (corresponding to

plaque state trajectories [pi] in Figure 3.2 (d) when stationary) are represented as a

discrete distribution in Figure 3.3. Largest plaque state n is chosen to illustrate system

behaviour, n = 20, and otherwise arbitrarily.
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Figure 3.2: Nondimensionalised system without Gap27 ([g27](0) = 0) variables [h], [g], [e] and natural log-transformed
[pi] solved for time t with all model parameters set equal. (a) [h] over t. (b) [g] over t. (c) [e] over t. (d) natural
log-transformed [pi] over t. Each trajectory represents a plaque state i, where i = 2, ..., 20. Plaque states at equilibrium
decrease in concentration from state i = 2 (trajectory closest to zero over t) to i = 20 (thick). Initial conditions:

[h](0) = [g](0) = [e](0) = [pi](0) = 0, where i = 2, ..., n, n = 20. Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1.
Time: 100 nondimensional time steps.
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Figure 3.3: Plaque states at equilibrium [p∗i ] represented as a discrete distribution of plaque states i. The distribution
clearly shows an approximate exponential decay in [p∗i ] as states i increase. Initial conditions: [h](0) = [g](0) = [e](0) =

[pi](0) = 0, where i = 2, ..., n, n = 20. Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1. Time: 100 nondimensional
time steps.
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3.2.5 Plaque state distribution pi(t): derivation of moment

ODEs

We recall from Introduction 3.1.1 that the unit quantity of gap junction channels com-

posing large plaque structures can be enormous, perhaps hundreds of thousands of

individual channels [146]. Under current model assumptions, we place a theoretical

maximum unit [g] that cells in the model system are able to recruit to construct

plaque structures [pi], n, which we left undefined. We now update this assumption

and let n → ∞. Under the assumption that n → ∞, the dimension of the model

sub-system of plaque states [pi](t), Eq. (3.30)-(3.32), and therefore the model system

itself, now tends to infinity. To evaluate the system numerically we could fix n arbi-

trarily large to give a reasonable approximation of the system, but this could become

computationally expensive. The question is whether there is utility in calculating each

individual plaque state [pi](t) in the entire plaque state distribution. We determine it

is more useful to consider the distribution characteristics. To do this we derive mo-

ment ODEs for the sub-system defined by Eq. (3.30)-(3.32). We introduce four new

time-dependent variables for the zeroeth, first, second and third order moments and

derive three new differential equations at the zeroeth, first and second orders which

we then use to replace Eq. (3.30)-(3.32) and associated variables, updating the model

and adopting this ‘averaged’ model thereafter. We truncate the system at the third or-

der by approximation, using the associated definition for skewness from the geometric

distribution, adopted as a reasonable model for the plaque state distribution. This ap-

proach negates the need to solve the model for all plaque states [pi](t) and reduces the

overall size of the system considerably, resulting in more interpretable solution output

for gap junction plaques in the model.
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The method we use to derive our averaged model for Cx43 cycling with Gap27 binding

is described in the ecological modelling work “The effect of landscape heterogeneity

and host movement on a tick-borne pathogen” by Jones et al., which described the

accrual of parasitic ticks in grouse and deer populations and the subsequent effect of a

spreading tick-borne pathogen on the suseptible grouse population [153]. The method

also appears in an unpublished work “Modelling the Gyrodactylus salaris life cycle”

by Webb, Norman and Porter, describing the life cycle of a parasitic fluke worm and

the subsequent effect on a fish population.

For the derivation, we drop square brackets for convenience such that [pi](t) = pi(t). To

derive our averaged model, we start by summing over the interval 2 ≤ j ≤ n, obtaining

an expression for the total plaque concentration p(t),

p(t) =
n∑

j=2

pj(t). (3.38)

The derivative with respect to time t of Eq. (3.38) can be obtained through summation

of Eq. (3.30)-(3.32),

dp

dt
= k̂2g

2 − k̂u

n∑
j=2

jpj. (3.39)

If we define the average gap junction concentration per unit concentration of plaque

as variable pavg,

pavg =

∑n
j=2 jpj∑n
j=2 pj

=
1

p

n∑
j=2

jpj. (3.40)

Eq. (3.39) may be re-written as

dp

dt
= k̂2g

2 − k̂upavgp. (3.41)
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We aim now to obtain the derivative of pavg with respect to time. The derivative of

Eq. (3.40), with respect to time is given by

dpavg
dt

p+
dp

dt
pavg =

n∑
j=2

j
dpj
dt

. (3.42)

By substitution of Eq. (3.41) and Eq. (3.30)-(3.32), Eq. (3.42) becomes

dpavg
dt

p+
(
k̂2g

2 − k̂upavgp
)
pavg = 2k̂2g

2 + k̂2g

n−1∑
j=2

pj − k̂u

n∑
j=2

j2pj. (3.43)

Since n → ∞, the contribution of the highest order term pn in the summation is

insignificant, so we assume

p(t) =
n−1∑
j=2

pj(t), (3.44)

and

pavgp =
n−1∑
j=2

jpj. (3.45)

By definition, the second order moment is

pvar =
1

p

n∑
j=2

j2pj −

(
1

p

n∑
j=2

jpj

)2

, (3.46)

recalling Eq. (3.40), we get the expression

1

p

n∑
j=2

j2pj = pvar + p2avg. (3.47)

By substitution, Eq. (3.43) can be simplified further,

dpavg
dt

p+
(
k̂2g

2 − k̂upavgp
)
pavg = 2k̂2g

2 + k̂2gp− k̂u
(
pvar + p2avg

)
p, (3.48)
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rearranging gives Eq. (3.49)

dpavg
dt

= k̂2

[
g +

g2

p
(2− pavg)

]
− k̂upvar, (3.49)

the ODE with respect to time t for the first order moment, pavg.

Assuming
n−1∑
i=2

pi ≈
n∑

i=2

pi, we can now express Eq. (3.29) in terms of p

dg

dt
= k̂1h1h2 − k̂−1g − 2k̂2g

2 − k̂2gp. (3.50)

To obtain time derivative for pvar recall Eq. (3.47), differentiating with respect to time

gives
n∑

j=2

j2
dpj
dt

=
dp

dt

(
pvar + p2avg

)
+ p

(
dpvar
dt

+ 2pavg
dpavg
dt

)
. (3.51)

Again by substitution of Eq. (3.30)-(3.32), the left side of Eq. (3.51) expands to

n∑
j=2

j2
dpj
dt

= 4k̂2g
2 + k̂2g

n−1∑
j=2

(2j + 1)pj − k̂u

n∑
j=2

j3pj. (3.52)

By again recalling n → ∞, and given the definition for the third order moment pskew

in terms of the first two moments,

pskew =
1

p
3/2
var

(
1

p

n∑
j=2

j3pj − 3pavgpvar − p3avg

)
, (3.53)

by substitution, Eq. (3.52) becomes

n∑
j=2

j2
dpj
dt

= 4k̂2g
2 + k̂2g [p(2pavg + 1)]− k̂up

(
pskewp

3/2
var + 3pavgpvar + p3avg

)
.
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Recalling Eq. (3.39) and Eq. (3.49), then rearranging, Eq. (3.51) becomes

p
dpvar
dt

= 4k̂2g
2 + k̂2gp(2pavg + 1)− k̂2g

2pvar − 2k̂2gpavgp− 4k̂2g
2pavg + k̂2g

2p2avg

−k̂up
(
pskewp

3/2
var + 3pavgpvar + p3avg

)
+ k̂up

3
avgp+ 3k̂upavgpvarp,

reordering for factorisation and cancellation gives

p
dpvar
dt

= k̂2gp+ 4k̂2g
2 − 4k̂2g

2pavg + k̂2g
2p2avg − k̂2g

2pvar + 2k̂2gpavgp− 2k̂2gpavgp

−k̂upskewp
3/2
varp− k̂up

3
avgp+ k̂up

3
avgp+ 3k̂upavgpvarp− 3k̂upavgpvarp,

dividing through by p gives Eq. (3.54)

dpvar
dt

= k̂2

[
g +

g2

p

(
4− 4pavg + p2avg − pvar

)]
− k̂upskewp

3/2
var, (3.54)

which is the ODE with respect to time t for the second order moment, pvar.

The third order moment pskew, appearing in the right-hand side of Eq. (3.54), is, under

the current definition in Eq. (3.53), still defined in terms of the plaque state distribution

pj. Rather than continue to pursue further derivations to express this in terms of

higher order moments, we choose to model the distribution with an appropriate discrete

probability distribution and thereby approximate the third order central moment using

the associated model definition.

We adopt a shifted geometric distribution to model the plaque state distribution, and

thus adopt the associated definition for the third order central moment to approximate

pskew, truncating the system at the third order and removing the requirement to derive

further equations for higher order moments.

We first present a definition for the geometric distribution [154]. If we let the random
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variable X assume the values 0,1,2,... with probabilities

ρν = P{X = ν} = (1− ρ)ρν , ν = 0, 1, ..., (3.55)

where 0 < ρ < 1, X has a geometric distribution with the parameter ρ denoted by

X ∼ G(ρ). (3.56)

We shift the distribution G(ρ) in ν such that the range for ν aligns with the plaque

state distribution defined by pj. Where νs = ν − 2, if we let the random variable Y

take the values 2,3,4,... with probabilities

ρνs = P{Y = νs} = (1− ρ)ρνs , ν = 2, 3, ..., (3.57)

where 0 < ρ < 1, Y has a shifted geometric distribution which we denote by

Y ∼ Gs(ρ). (3.58)

We find parameter ρ by setting the expected value of Gs(ρ) equal to pavg, rearranging

for ρ

ρ =
1

pavg − 1
, (3.59)

where pavg > 2.

By substituting into the geometric distribution definition for the third order central

moment, we obtain in Eq. (3.60) an expression for pskew

pskew =
2− ρ√
1− ρ

, (3.60)
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enabling us to approximate the third order moment of the averaged model system for

Cx43 cycling with Gap27 binding, completing the definition by moment closure.

In Figure 3.4 we present concentration-adjusted plaque state distributions at equilib-

rium, p∗i /p, across different distribution shapes (prompted by changes to k̂1/k̂−1, k̂2

and k̂u) plotted alongside corresponding shifted geometric distributions, Gs(ρ), using

values for ρ determined by pavg. We see in Figure 3.4, the shifted geometric distribution

model, Gs(ρ), is a close approximation for the p∗i /p distribution shapes presented.
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(a) k̂1/k̂−1 = 1 × 103. ρ = 0.8292.
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(c) k̂u = 1 × 101. ρ = 0.9884.

Figure 3.4: Concentration-adjusted plaque state distributions at equilibrium, p∗i /p (blue), plotted alongside shifted

geometric distributions, Gs(ρ) (red), where ρ is determined by pavg using Eq. (3.59), for parameters (a) k̂1/k̂−1 =

1 × 103, (b) k̂2 = 1 × 104 and (c) k̂u = 1 × 101. The model distribution Gs(ρ) (red) is a reasonable approximation
for p∗i /p (blue) distribution shapes tested in (a), (b) and (c). Initial conditions: [h](0) = [g](0) = [e](0) = [pi](0) = 0.

Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1 (unless varied), n = 100. Time: 500 nondimensional time steps.
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3.2.6 Updated model system

We now present in full the derived averaged system. Since plaque states pi no longer ap-

pear in the model equations, for notation clarity we adopt subscripts in place of super-

scripts describing to which cell hemichannel, annular gap junctions and hemichannel-

peptide complex species belongs. We discard square brackets, such that [h1] = h1 and

similar for all model variables. We also rename hemichannel-peptide complex variables

so that C1 = [h·g271] and C2 = [h·g272], and refer to the hemichannel-peptide complex

species generally as C. We can now express the system in terms of derived moment

variables p(t), pavg(t), pvar(t) and pskew(t). The ODEs describing hemichannel, Gap27

and hemichannel-peptide complex concentrations remain unchanged in the updated

system but for notation. The averaged system is defined by Eq. (3.61)-(3.71).

dh1

dt
= 1− k̂1h1h2 + k̂−1g + k̂re1 − h1 − k̂G27h1g27 + k̂−G27C1, (3.61)

dh2

dt
= 1− k̂1h1h2 + k̂−1g + k̂re2 − h2 − k̂G27h2g27 + k̂−G27C2, (3.62)

dg

dt
= k̂1h1h2 − k̂−1g − 2k̂2g

2 − k̂2gp, (3.63)

dp

dt
= k̂2g

2 − k̂upavgp, (3.64)

dpavg
dt

= k̂2

[
g +

g2

p
(2− pavg)

]
− k̂upvar, (3.65)

dpvar
dt

= k̂2

[
g +

g2

p
(4− 4pavg + p2avg − pvar)

]
− k̂upskewp

3/2
var, (3.66)

where pskew is defined by Eq. (3.60).

de1
dt

= −k̂re1 − k̂de1 +
k̂u
2
pavgp, (3.67)

de2
dt

= −k̂re2 − k̂de2 +
k̂u
2
pavgp, (3.68)
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dg27
dt

= k̂−G27 (C1 + C2)− k̂G27 (h1g27 + h2g27) , (3.69)

dC1

dt
= k̂G27h1g27 − k̂−G27C1, (3.70)

dC2

dt
= k̂G27h2g27 − k̂−G27C2, (3.71)

where k̂1, k̂−1, k̂2, k̂u, k̂r, k̂d, k̂G27, k̂−G27 ≥ 0.

To compare the original nondimensionalised system defined by Eq. (3.27)-(3.37) and

the averaged nondimensionalised system defined by Eq. (3.61)-(3.71), we run numeri-

cal simulations with equivalent initial conditions through a large parameter space, and

graphically examine approximated system moments at equilibria from the averaged

nondimensionalised system, p∗avg, p
∗
var and p∗skew, with corresponding moments at equi-

libria calculated numerically from the original nondimensional system, p̂∗avg, p̂
∗
var and

p̂∗skew.

In Figure 3.5, we see that p∗avg, p
∗
var and p∗skew are close approximations for p̂∗avg, p̂

∗
var

and p̂∗skew under variation to key model parameters k̂1/k̂−1, k̂2 and k̂u across a sub-

stantive parameter space. The approximation is particularly close for the first order

moment pavg (a)-(c). We see that second order moment pvar (d)-(f) maintains a reason-

able approximation under variation of parameters k̂1/k̂−1 and k̂u, divergence becoming

apparent only when k̂2 becomes large. We see the approximation used for third order

moment pskew is reasonable under variation to parameters k̂1/k̂−1 and k̂2 (g)-(h), and

we see divergence only when k̂u becomes large (i).
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(a) p∗avg . k̂1/k̂−1 = 0, ..., 1 × 102.
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(b) p∗avg . k̂2 = 0, ..., 1 × 104.
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(c) p∗avg . k̂u = 1, ..., 2 × 101.
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(d) p∗var . k̂1/k̂−1 = 0, ..., 1 × 102.
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(e) p∗var . k̂2 = 0, ..., 1 × 104.
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(f) p∗var . k̂u = 1, ..., 2 × 101.
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(g) p∗skew . k̂1/k̂−1 = 0, ..., 1 × 102.
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(h) p∗skew . k̂2 = 0, ..., 1 × 104.
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(i) p∗skew . k̂u = 1, ..., 2 × 101.

Figure 3.5: Derived moment equilibria, p∗avg , p
∗
var and p∗skew (dotted-crossed), with p̂∗avg , p̂

∗
var and p̂∗skew (solid-circle),

rows, under variation to parameters k̂1/k̂−1, k̂2 and k̂u (columns). (a)-(c) p∗avg and p̂∗avg (blue) over (a) k̂1/k̂−1, (b)

k̂2 and (c) k̂u. (d)-(f) p∗var and p̂∗var (green) over (d) k̂1/k̂−1, (e) k̂2 and (f) k̂u. (g)-(i) p∗skew and p̂∗skew (red) over

(g) k̂1/k̂−1, (h) k̂2 and (i) k̂u. Note: line markers (circle, cross) are included only to aid in distinguishing between
trajectories. Initial conditions: h(0) = g(0) = e(0) = pi(0) = pvar(0) = 0, pavg(0) = 2 + 1 × 10−10, p(0) = 1× 10−10,

pskew(0) = 1 × 105. Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1 (unless varied), n = 100. Time: 500
nondimensional time steps.

3.2.7 Numerical implementation

We input both the non-averaged and averaged nondimensional model systems into

Mathworks MATLAB 2020a and solve numerically using in-built stiff ODE solver

ode23s (a modified Rosenbrock scheme, detailed in [155]).

We locate model equilibria using mathematical continuation software MATCONT

[156], which, given an initial point, solves the initial value problem for the system

by numerical integration. We use the integrator ode23s, set relative and absolute toler-
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ances small (1×10−7) and time to 500 numerical steps. To establish an early indication

of equilibrium stability, we construct phase portraits for a subset of model variables

by varying initial points around an equilibrium point and reviewing the resulting orbit

behaviour. We corroborate MATCONT results with solution output in MATLAB, ap-

proximating equilibria by identifying where variables remain approximately constant

over a large interval for time t.

To determine equilibria stability we use MATCONT to compute corresponding eigen-

values for an equilibrium point and search for candidate bifurcation parameters. For

a given equilibrium point, we let MATCONT compute the ‘equilibrium curve’ over a

given parameter (equilibria as a function of some model parameter) and monitor the

corresponding eigenvalue output and any accompanying bifurcations. We systemati-

cally iterate in this manner through model parameters k̂1, k̂−1, k̂2, k̂u, k̂r and k̂d for

the model without Gap27. For the model with Gap27, we approximate equilibria and

estimate their stability directly from MATLAB output in the manner described, under

variation to initial concentrations and model parameters.

3.3 Results

3.3.1 Initial conditions

To explore model behaviour through numerical simulations, we choose to maintain

consistency between initial conditions whilst we investigate the effect of varying some

parameter of the model. For this ‘base’ model we first assume all initial concentra-

tions (at t = 0) of connexin-based variables (for which it is permissable) equal to zero,

h(0) = g(0) = e(0) = pvar(0) = 0. By definition p(0) ̸= 0, so we consider only the case

in which plaques already exist between the two interacting cells, choosing p(0) arbitrar-
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ily small, p(0) = 1×10−10. Also by definition pavg(0) > 2, resulting from the minimum

defined plaque state, so we choose pavg(0) arbitrarily close to 2, pavg(0) = 2+1×10−10.

By Eq. (3.60) pavg(0) determines the initial value for pskew, thus pskew(0) = 1× 105.

To further define this ‘base’ model, we set all rates such that their associated parameter

ratios are equal to one, so any particular rate is not favoured. Rate values we choose

arbitrarily equal to one, k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = k̂G27 = k̂−G27 = 1.

We set a limit on time parameter t by choosing a value which allows for the system to

come to steady-state, identified approximately using the methods defined in Methods

3.2.7, t = 500 nondimensional time steps.

We interpret our ‘base’ model, at t = 0, as a scenario in which cells are already in-

teracting and have established small plaque structures at extremely low concentration.

We may think of these conditions as being those we might expect for cells that have

recently begun to interact.

For the subsequent sections we consider the model presented first without and later

with Gap27 treatment. In the case without Gap27, we set initial concentrations for

Gap27 and hemichannel-Gap27 complex to zero, g27(0) = C1(0) = C2(0) = 0, which

take variables g27, C1 and C2 out of model output. In the case where we introduce

Gap27 treatment, we let g27(0) take non-zero values and, since we assume there are no

other Gap27 treatments prior to t = 0, C1(0) = C2(0) = 0.

3.3.2 Cx43 cycling without Gap27

To explore Cx43 cycling dynamics, and particularly how this influences gap junction

and plaque formation and degradation, we temporarily ignore the effect of Gap27 and

focus solely on Cx43 cycling. For this section, initial values for Gap27 and hemichannel-

Gap27 complex variables are all set equal to zero (g27(0) = C1(0) = C2(0) = 0), such
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that the last two terms of Eq. (3.61) and (3.62) and Eq. (3.69), (3.70) and (3.71) all

reduce to zero. The remaining model system, defined by Eq. (3.61)-(3.68), contains

only variables for the connexin-based species hemichannels, gap junctions, plaques and

annular gap junctions.

Effect of varied initial concentrations, e.g. h(0)

First, we test the model for a range of initial concentrations (at t = 0) across model

variables for a constant parameter set defined in Results 3.3.1. We present the illus-

trative case for h(0) in Figure 3.6, for three sample nondimensional concentrations

h(0) = 0 (blue), h(0) = 1 (red) and h(0) = 10 (yellow) across all model variables.

We notice the transient behaviour of the system over t is affected by h(0), for all vari-

ables. In particular, if h(0) is large (h(0) = 10, yellow) we see an exponential decay in

h to steady-state (a), and we observe clear transient spiking in concentrations of g (b),

p (c), pavg (d), pvar (e) and e (g), before also decaying exponentially to steady-state. As

h(0) increases (blue to yellow), it is clear the transient spike in variable concentrations

grows and there is a unique equilibrium that is not affected by h(0). For the ‘base’ pa-

rameter set presented, we find only one equilibrium which appears robust to changes in

h(0), even for large orders of magnitude, suggesting the point might be globally stable.

We will further explore the stability of the system equilibrium in the next section.

We also explore how the system behaves under (non-negative) variations to other initial

concentrations g(0), p(0), pavg(0), pvar(0), pskew(0) and e(0) (results not presented). To

summarise, variation to all initial concentrations appear to only affect transient be-

haviour of the system over t, the system returning the same equilibrium point over t

under this variation, further indicating the point may be globally stable. Transient

behaviour is qualitatively similar under variation to g(0), p(0) and e(0) to that of h(0),
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Figure 3.6: Averaged system without Gap27 variables over t for three different initial (nondimensional) concentrations
of hemichannels h, h(0) = 0 (blue), h(0) = 1 (red), h(0) = 10 (yellow). Transient behaviour over t is affected by
variation to h(0) for all variables but the system equilibrium over t appears robust to these changes, even for large h(0).
Initial conditions: g(0) = e(0) = pvar(0) = 0, pavg(0) = 2+1×10−10, p(0) = 1×10−10, pskew(0) = 1×105, g27(0) = 0.

Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1. Time: 500 nondimensional time steps.

as is that of pavg(0) and pvar(0) but with minor variance to transient characteristics.
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Equilibrium curves

Upon solving the system in MATLAB for the ‘base’ parameter set detailed in Results

3.3.1, the system appeared to have only one equilibrium solution which, under var-

ied initial concentrations, also appeared to be globally stable. We corroborate these

observations using MATCONT to approximate this equilibrium point, repeat the anal-

ysis undertaken with MATLAB by varying initial concentrations and then compute

the corresponding eigenvalues for the equilibrium to determine local stability. For the

parameter set k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = 1, where g27(0) = 0, MATCONT

identifies, over t = 500 (nondimensional) time steps, only one equilibrium point ϵp,

approximated to 4 d.p. in Table 3.3. All corresponding eigenvalues for ϵp evaluate to

negative real parts, indicating the point is locally stable.

We now explore how key model parameters affect the system equilibrium, without

Gap27. With MATCONT, we select ϵp as the initial point and compute the equilib-

rium curve for a given parameter or parameter ratio, both towards zero and up to three

orders of magnitude, whilst holding other initial conditions and all other parameters

constant. We focus analysis to k̂1/k̂−1, k̂2 and k̂u and omit results for k̂r and k̂d, which

have negligible effect on the system equilibrium. We denote the approximated steady-

state of a particular variable using ∗ notation, e.g. hemichannel concentration for cell 1

at the system steady-state x′ = f(x, α) = 0, x ∈ IR11, α ∈ IR8 is denoted by h∗
1. Since

concentration trajectories over time t with equal initial conditions are identical for the

same species from different cells and come to the same concentration at steady-state,

e.g. h∗
1 = h∗

2, we present the repeated steady-state concentration for h∗
1 and h∗

2 and use

notation h∗ to represent species from both cells.

The analysis indicates that the system exhibits only simple equilibrium behaviour un-
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der parameter variation. We find only one equilibrium point which is locally stable for

non-negative parameter values (this holding for up to the three orders of magnitude

investigated), which evolves with a given parameter but remains locally stable under

this parameter variation. Thus we observe no bifurcations for the system for any of

the parameters k̂1, k̂−1, k̂2, k̂u, k̂r, k̂d.

Table 3.3: Equilibrium point ϵp for the ‘base’ model (without Gap27), approximated
using MATCONT.

Variable Value (4 d.p.)
h1 0.7740
h2 0.7740
g 0.3436
e1 0.0295
e2 0.0295
p 0.0562

pavg 2.1019
pvar 0.1295

Gap junction association/dissociation ratio k̂1/k̂−1

We first review the effect of gap junction association/dissociation parameter ratio

k̂1/k̂−1, where k̂−1 > 0, on the system equilibrium. We illustrate this in Figure 3.7

where we present the equilibrium curve in which the system equilibrium is a function

of k̂1/k̂−1. We see clearly that k̂1/k̂−1 most significantly affects the equilibrium over a

relatively small range (approximately 0 ≤ k̂1/k̂−1 ≤ 100), having a relatively insignif-

icant effect at higher orders of magnitude. Variables most affected are hemichannels

and gap junctions h and g. We see that h∗ decays exponentially as k̂1/k̂−1 increases (a),

whilst all other variable steady-state functions (other than p∗skew) grow logarithmically

and begin to stabilise as h∗ tends to zero.
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(b) g∗.
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Figure 3.7: Averaged system without Gap27 equilibria as a function of gap junction formation/dissociation parameter

ratio k̂1/k̂−1 for all model variables h∗, g∗, p∗, p∗avg , p
∗
var, p

∗
skew and e∗. As k̂1/k̂−1 increases h∗ decays exponentially

(a), whilst all other variable functions (other than p∗skew) increase logarithmically, stabilising as k̂1/k̂−1 becomes large

and h∗ approaches zero (b)-(e), (g). p∗skew decays rapidly with k̂1/k̂−1, stabilising as k̂1/k̂−1 becomes large (f). Initial
conditions: h(0) = g(0) = e(0) = pvar(0) = 0, pavg(0) = 2+1×10−10, p(0) = 1×10−10, pskew(0) = 1×105, g27(0) = 0.

Parameters: k̂1/k̂−1 = 0, ..., 1× 103, k̂2 = k̂u = k̂r = k̂d = 1. Time: 500 nondimensional time steps.

Gap junction plaque formation rate k̂2

In a similar manner we explore the effect that plaque formation rate k̂2 has on the

system equilibrium by examining the associated equilibrium curve, presented in Figure

3.8. We see the variables most affected by k̂2 are gap junction and plaque variables g,

p, pavg and pvar which, in contrast to k̂1/k̂−1, continues to significantly influence steady-

state functions g∗, p∗, p∗avg and p∗var over a large range for k̂2, up to and beyond k̂2 =

1 × 104. g∗ decays rapidly as k̂2 increases, tending to zero, gap junctions increasingly
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recruited to form plaque structures (b), p∗avg and p∗var subsequently growing (d)-(e). p∗

also decays, smaller plaque structures accruing to form larger plaque structures (c).

p∗skew decays rapidly, tending to two, reflecting increasing variability in plaque size (f).
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Figure 3.8: Averaged system without Gap27 equilibria as a function of gap junction/plaque binding parameter k̂2 for

all model variables h∗, g∗, p∗, p∗avg , p
∗
var, p

∗
skew and e∗. As k̂2 increases h∗, g∗, p∗ and e∗ decay exponentially (a)-(c),

(g), g∗ approaching zero as k̂2 gets large (b), whilst p∗avg and p∗var grow logarithmically, continuing to grow beyond four

orders of magnitude (d)-(e). p∗skew decays rapidly with k̂2 but stabilises as k̂2 gets large (f), qualitatively similar to

variation in k̂1/k̂−1. Initial conditions: h(0) = g(0) = e(0) = pvar(0) = 0, pavg(0) = 2 + 1× 10−10, p(0) = 1× 10−10,

pskew(0) = 1 × 105, g27(0) = 0. Parameters: k̂2 = 0, ..., 1 × 104, k̂1 = k̂−1 = k̂u = k̂r = k̂d = 1. Time: 500
nondimensional time steps.
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Gap junction plaque internalisation rate k̂u

We now consider the effect gap junction internalisation parameter k̂u has on the system

equilibrium, presented in Figure 3.9. We first notice how steady-state functions of

plaque variables p∗ (c), p∗avg (d) and p∗var (e) decay rapidly to approach their respective

minimum defined limits, p∗avg → 2, p∗ → 0 and p∗var → 0. p∗skew grows reflecting

the rapid reduction in p∗avg (f). For most variables (other than pskew) k̂u has the most

significant effect on concentration over a much smaller range than for either k̂1/k̂−1 and

k̂2, approximately 0 ≤ k̂u ≤ 1. If we consider what happens as k̂u decreases towards

zero, we see significant growth in the steady-state functions of plaque variables p∗, p∗avg

and p∗var, when internalisation rate k̂u reduces below plaque formation rate k̂2.

Recycling and degradation rates k̂r and k̂d

Recycling and degradation parameters, k̂r and k̂d respectively, have a negligible effect on

the system equilibrium under variation. Only the steady-state functions for internalised

gap junction variables e∗ exhibit discernible alteration from the initial equilibrium point

ϵp. To summarise, as we increase k̂d, e
∗ decays exponentially, approaching zero as k̂d

becomes large. If we increase k̂r, we see qualitatively similar behaviour for e∗, but we

also observe a small growth in h∗ due to the recycling mechanism, which also propagates

through the system to cause insubstantial growth in gap junction and plaque variable

steady-state functions.

Biological example: large gap junction plaque structures

As earlier discussed, plaque structures at the junctional nexus can become extremely

large through recruitment and aggregation of gap junction channels. Due to physical

constraints imposed by the cell membrane, such enormous plaque structures are typ-
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Figure 3.9: Averaged system without Gap27 equilibria as a function of (within plaque) gap junction internalisation

parameter k̂u for all model variables h∗, g∗, p∗, p∗avg , p
∗
var, p

∗
skew and e∗. As k̂u increases h∗, g∗, p∗skew and e∗ (a)-

(b), (f)-(g) increase logarithmically, typically stabilising for relatively small k̂u (the exception being p∗skew), whilst p∗,
p∗avg and p∗var (c)-(e) decay exponentially, p∗ and p∗var approaching zero and p∗avg approaching two. Initial conditions:

h(0) = g(0) = e(0) = pvar(0) = 0, pavg(0) = 2 + 1 × 10−10, p(0) = 1 × 10−10, pskew(0) = 1 × 105, g27(0) = 0.

Parameters: k̂u = 0, ..., 20, k̂1 = k̂−1 = k̂2 = k̂r = k̂d = 1. Time: 500 nondimensional time steps.

ically thought to occur only in small concentrations [134]. To demonstrate how the

model might reproduce this biologically observed plaque dynamic, we present output

for the model in which parameters are selected to induce the formation of a small

steady-state concentration of large plaques (small p∗ and large p∗avg).

In our model, it is important that hemichannels are not preserved as undocked channels

if large plaques are to form, thus gap junction formation must be rapid, so we set the

association/dissociation ratio k̂1/k̂−1 large. We see in Figure 3.10 (a) the effect on h,
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where h comes to a low concentration at steady-state. In addition, plaque formation

must be rapid enough for accrual to occur such that smaller plaques are preserved only

in low concentrations, so k̂2 must also be large. Finally, to enable growth and mainte-

nance of large plaques, internalisation has to be slower than plaque formation, so we

set k̂u small compared to k̂2. This dynamic keeps low and high concentrations for p,

pavg and pvar respectively at steady-state. We see this in Figure 3.10, where relatively

high p∗avg and p∗var and low p∗skew indicate the presence of large plaque structures in a

highly spread plaque state distribution at steady-state (d)-(f).
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Figure 3.10: An example scenario in which a small concentration of large plaques form over t for averaged system (with
no Gap27) variables. Note the low magnitude of hemichannels h (a), gap junctions g (b) and total plaque concentration
p (c) at steady-state compared with average plaque size pavg (d) and plaque variance pvar (e). Initial conditions:
h(0) = g(0) = e(0) = pvar(0) = 0, pavg(0) = 2 + 1 × 10−10, p(0) = 1 × 10−10, pskew(0) = 1 × 105, g27(0) = 0.

Parameters: k̂1/k̂−1 = 1× 103, k̂2 = 1× 103, k̂u = 1× 10−1, k̂r = k̂d = 1. Time: 500 nondimensional time steps.

3.3.3 Cx43 cycling with Gap27

We now consider Cx43 cycling with the addition of Gap27. For this section g27(0) will

take non-zero values, invoking non-zero solutions to Gap27 and hemichannel-Gap27

equations and introducing variables for g27, C1 and C2 into solution output.

Effect of varied initial concentration of Gap27, g27(0)

We first test the model for different initial concentrations (at t = 0) for Gap27, g27(0),

for model variables over t. We test three different initial (non-dimensional) concen-
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trations g27(0) = 0, g27(0) = 10 and g27(0) = 100, this describing the ‘base’ model

without Gap27 and then the model with Gap27 at two different initial concentrations,

each g27(0) chosen arbitrarily an order of magnitude apart. We set Gap27 binding and

dissociation rates equal and choose the value arbitrarily k̂G27 = k̂−G27 = 1 for illustra-

tion.

We can see in Figure 3.11 (a)-(g), there is a significant g27(0) dependent effect on tran-

sient behaviour over t for Cx43-based variables h, g, p, pavg, pvar, pskew and e. For all

these variables, it takes longer for concentrations to approach an equilibrium as g27(0)

increases. For h, g, p, pavg, pvar and e we observe this as slower growth in variable

concentrations and for pskew as a slower decay, over t. The equilibrium for variables

shown in (a)-(g) remain unaffected by the introduction of g27(0), for all concentrations

tested.

For Gap27-based variables g27 and C, (h) and (i), we see the equilibrium change accord-

ing to the magnitude of g27(0). The equilibrium for both g27 and C increase with g27(0),

concentrations for g27 and C decaying and growing over t to the equilibrium, respec-

tively. For the chosen ratio, k̂G27/k̂−G27, the equilibrium g∗27 is typically at two-fifths

the initial concentration g27(0).

Hemichannel-Gap27 binding/dissociation ratio k̂G27/k̂−G27

We now consider system behaviour under variation to hemichannel-Gap27 binding/dissociation

parameter ratio, k̂G27/k̂−G27. To generate the simulation output presented in Figure

3.12, we set g27(0) large enough to be able to clearly observe changes to transient

behaviour (g27(0) = 100) and choose three different ratios to present, each separated

by an order of magnitude to illustrate the range of behaviours prompted under this

variation, k̂G27/k̂−G27 = 0.1, k̂G27/k̂−G27 = 1 and k̂G27/k̂−G27 = 10. We interpret the
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Figure 3.11: Averaged system with Gap27 variables h, g, p, pavg , pvar, pskew, e, g27 and C over t for three different initial
concentrations of g27, g27(0) = 0 (blue), g27(0) = 10 (red) and g27(0) = 100 (yellow). g27(0) affects transient behaviour
for Cx43-based variables (a)-(g) and changes the location of the equilibrium for Gap27-based variables (h) and (i), in a
concentration dependent manner. Initial conditions: h(0) = g(0) = e(0) = pvar(0) = C(0) = 0, pavg(0) = 2+1×10−10,

p(0) = 1 × 10−10, pskew(0) = 1 × 105. Parameters: k̂1 = k̂−1 = k̂2 = k̂u = k̂r = k̂d = k̂G27 = k̂−G27 = 1. Time: 500
nondimensional time steps.

ratio as follows: when k̂G27/k̂−G27 = 1 the rate of association and dissociation of the

hemichannel-peptide complex is balanced, increasing k̂G27/k̂−G27 from this equilibrium

speeds up association relative to dissociation, whereas decreasing k̂G27/k̂−G27 has the

opposite effect.

We see in Figure 3.12 (a)-(g), k̂G27/k̂−G27 has significant effects on transient behaviour

over t for Cx43-based model species, h, g, p, pavg, pvar, pskew and e. As k̂G27/k̂−G27

increases we see a delay in these variables approaching equilibrium, though the equilib-

rium is clearly not affected. As k̂G27/k̂−G27 is increased to larger values, transients begin
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to assume a sigmoidal shape, approaching step function-like behaviour as k̂G27/k̂−G27

becomes very large. pskew continues to decay exponentially to equilibrium as k̂G27/k̂−G27

increases but, as with the other Cx43-based variables, causes a delay in approaching

the equilibrium.

We see in Figure 3.12 (h)-(i), k̂G27/k̂−G27 changes the equilibrium of both g27 and C.

We see that when k̂G27/k̂−G27 is small, g27 maintains a high and C a low steady-state

concentration, respectively; g27 not significantly depleting since association is compar-

atively non-rapid to dissociation. If k̂G27/k̂−G27 is increased however, we see that g27

maintains a low and C a high steady-state concentration, respectively; g27 now deplet-

ing to form the complex C since association is now rapid compared to dissociation.
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Figure 3.12: Averaged system with Gap27 variables h, g, p, pavg , pvar, pskew, e, g27 and C over t for variations to

hemichannel-Gap27 association/dissociation parameter ratio k̂G27/k̂−G27, k̂G27/k̂−G27 = 0.1 (blue), k̂G27/k̂−G27 = 1

(red) and k̂G27/k̂−G27 = 10 (yellow). g27(0) is fixed. Transient behaviour over t is affected for Cx43-based species
(a)-(g), equilibria for Gap27-based species (h) and (i) are affected. Initial conditions: h(0) = g(0) = e(0) = pvar(0) =

C(0) = 0, pavg(0) = 2 + 1× 10−10, p(0) = 1× 10−10, pskew(0) = 1× 105, g27(0) = 100. Parameters: k̂1 = k̂−1 = k̂2 =

k̂u = k̂r = k̂d = 1. Time: 500 nondimensional time steps.

3.4 Discussion

Connexins, though diminutive, are of crucial importance to normal physiological func-

tion. Their cycling generates and delivers the intercellular communication channels

they compose, hemichannels and gap junctions, both of which are critical in enabling

both direct and indirect cell-cell communication and coordination within a cell pop-

ulation. Connexin 43 (Cx43) is the most ubiquitous connexin in the human body,

and dysfunction of its cycling or channel functions is implicated in many different
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pathologies, including the impaired healing characteristic of chronic wounds. Con-

nexin mimetic peptides (CMPs), such as the extracellularly binding Gap27, have been

used extensively in the experimental literature to study channel functions, shown to

block gap junction based intercellular communication and disrupt hemichannel func-

tion. The efficacy with which CMPs have shown to influence channel functions has

led to experimental exploration for potential therapeutic applicability. One particular

CMP , αCT-1, has even been approved for Phase III clinical trials for the treatment

of diabetic foot ulcers [152].

Gap junction channel functions, conductance and flux properties in particular, have

been considered extensively in the modelling literature and is still frequently explored.

Connexin cycling dynamics underpinning channel functions appears however, to have

been comparatively overlooked by modellers. The physiological significance and ubiq-

uity of Cx43 alone makes greater understanding of cycling dynamics, and particularly

its influence on gap junction and plaque formation and degradation, deeply valuable

and carries potential implications to a range of pathophysiologies in which Cx43 dys-

function is thought to play a key role, beyond cutaneous wound healing. Exploration

of the dynamical modulation of Cx43 cycling with Gap27 has immediate applicabil-

ity to experimental wound healing research, where Gap27 is proposed as a potential

therapeutic agent. Greater understanding of the dynamics of this interaction can help

biologists to further characterise the efficacy of Gap27, and could, downstream, help

experimentalists design experiments for potential dosing regimes.

Thus, we proposed a new mathematical model for Cx43 cycling dynamics with addi-

tional Gap27 binding kinetics. The aim being to explore the dynamical behaviour of

the cycling system and its modulation by an extracellularly binding CMP, in this case
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Gap27.

To derive the model, we first formulated a reaction scheme, guided by the theoretical

and experimental biological literature, for hemichannel, gap junction, plaque, annular

gap junction, Gap27 peptide and hemichannel-Gap27 complex species. We used the

reaction scheme to derive a full ODE system for Cx43 cycling with Gap27 binding as-

suming mass action kinetics. We then derived moment ODEs for the large sub-system

of plaque states, reducing the full plaque state distribution pi(t) to three ODEs defining

its zeroeth, first and second order moments, closing the system by approximation of

the third order moment. We then explored the dynamics of the cycling model both

without and with Gap27.

Through our numerical analysis with MATLAB and MATCONT, we found the sys-

tem to exhibit overall simple steady-state behaviour, whereby for a given parameter

set there was only one equilibrium point which we determined was locally stable and

remained so under parameter variation.

When tested without Gap27, we found initial concentrations of hemichannel, gap junc-

tion, plaque and annular gap junction variables to only transiently affect the system

steady-state. We found variables most sensitive to gap junction association/dissociation

ratio k̂1/k̂−1 at steady-state were hemichannels and gap junctions h∗ and g∗, h∗ de-

caying exponentially and g∗ growing logarithmically with k̂1/k̂−1. Gap junction and

plaque moment variables at steady-state, g∗, p∗, p∗avg, p
∗
var and p∗skew, were most sen-

sitive to plaque formation rate k̂2, g
∗, p∗ and p∗skew decaying exponentially, p∗avg and

p∗var growing logarithmically with k̂2. Plaque moment variables at steady-state were

also sensitive to plaque internalisation rate k̂u, p
∗, p∗avg and p∗var decaying exponentially,

p∗skew growing logarithmically with k̂u.
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We found the model was able to qualitatively reproduce gap junction plaque dynam-

ics reported experimentally, the steady-state preservation of a small concentration of

large plaques. This was achieved by sweeping through model parameters to search for

regions that could produce small p∗ with large p∗avg and p∗var. We present output from

a sample parameter set in which k̂1/k̂−1 and k̂2 were both large and k̂u small.

When tested with Gap27, we found the initial concentration of Gap27, g27(0), affected

only the transient behaviour of hemichannels, gap junctions, plaques and annular gap

junctions and steady-state of Gap27 and the hemichannel-peptide complex (depleting

and growing with increased g27(0), respectively) over t. Both effects were found to be

concentration dependent. We also found hemichannel-peptide association/dissociation

ratio k̂G27/k̂−G27 reproduced this pattern, affecting transient behaviour of hemichan-

nels, gap junctions, plaques and annular gap junctions and steady-state of Gap27 and

the hemichannel-peptide complex, the effect amplified with increasing ratio k̂G27/k̂−G27,

the transient behaviour sigmoidal, approaching a step-function limit and Gap27 zero.

Though model results are theoretical, the dynamically modulating effect of Gap27

on model cycling behaviour is qualitatively comparable to what is typically reported

experimentally. The model suggests Gap27 has only a transient effect on hemichan-

nel, gap junction, plaque and annular gap junction species. A study by Martin, Wall

and Griffith reported that dye transfer (indicating the presence of gap junction in-

tercellular communication, GJIC) between co-cultured rat aortic endothelial and rat

aortic smooth muscle cells could be drastically reduced when incubated with Gap27

(at 600nM concentration) for 5 hours, but that washout of the peptide could recover

control levels of dye transfer within an hour [157]. A study by Wright et al. also

suggests Gap27 acts transiently on GJIC within a migrating population, the peptide

132



reapplied every 12 hours (at 100nM concentration) to maintain a therapeutic effect on

migrating populations of dermal fibroblasts and epidermal keratinocytes during scrape

wound closure [32]. Such studies indicate Gap27 likely invokes a transient disruption

to gap junction channel and plaque function.

The model also indicates the transient effect that Gap27 has on hemichannel, gap

junction, plaque and annular gap junction species is concentration-dependent. The

aforementioned study by Wright et al. showed dye transfer in clusters of both dermal

fibroblasts and Cx43-transfected HeLa cells could be significantly reduced by treatment

with Gap27 over 90 minutes in a dose-dependent manner (most significantly reduced

for fibroblasts at concentrations of 100nM and 50nM for the HeLa cells) [32]. Given the

primary mode of interaction for Gap27 is thought to occur via unpaired hemichannels,

the implication is that Gap27 prevents some proportion of gap junction channels from

either forming or functioning in the typical manner, this effect amplified when Gap27

is increased in concentration.

Martin, Wall and Griffith also studied the influence of connexin mimetic peptides, in-

cluding Gap27, on plaque integrity and formation dynamics using staining techniques,

finding no difference in treated compared to control cells [157]. This finding may re-

quire us to reinterpret the model plaque variables as describing the ‘functional’ plaque

concentration rather than ‘total’ plaque concentration in the two-cell system.
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Chapter 4

A mathematical model for connexin

43 based cell-cell interaction

influenced cell migration and its

dynamical modulation by connexin

mimetic peptide Gap27 during 2-d

scrape wound closure

4.1 Introduction

4.1.1 Connexins and cutaneous wound repair

Human skin has approximately ten different connexins expressed differentially through

its strata, typically varying across different regions of the body [21, 158]. Connexin 43

(Cx43) is the most ubiquitous connexin in human skin and typically the predominant-

ing connexin in the epidermis, with high expression amongst suprabasal keratinocytes

but with lower expression in basal layers. Cx43 is also expressed in dermal fibroblasts

[21, 158].

Connexin expression across the strata is regulated dynamically during wound repair.
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Healthy wound repair typically requires specific and highly coordinated changes to con-

nexin expression through cell layers within, proximal to and surrounding the wounded

region. Upon wounding to the epidermis and dermis, Cx43 in epidermal keratinocytes

and dermal fibroblasts at the wound edge is normally downregulated within the first

twenty-four hours of injury (the first changes typically observed within a couple of

hours), whilst in the same region Cx26 and Cx30 are upregulated [19, 23, 24, 25, 136].

Twenty-four to forty-eight hours post-injury Cx43 expression is typically reported at

very low levels around the wound edge, recovering to normal levels a few days post-

injury [19]. These events coincide with wound edge keratinocytes and fibroblasts

migrating into the wounded region, subsequent degradation of fibrin and deposition

of new granulation tissue [19, 21]. Keratinocytes in basal regions which are adja-

cent to the wound edge region upregulate Cx43 post-injury and experience localised

post-translational modifications (PTMs) associated with modulation of Cx43 chan-

nel conductance levels and therefore likely, communicative properties [20]. Connexins

Cx26 and Cx30 are functionally compatible, being able to form functional heterotypic

hemichannels and gap junctions with each other, but not with Cx43, having different

coupling properties (Cx26 and Cx30 also have different dye transfer properties to Cx43

[19]). These events, taken in addition with other associated connexin PTMs [20], is

thought to induce a dynamic compartmentalisation across the strata in response to

injury, which aid in coordinating appropriate cell responses to the appropriate regions

around and within the wounded region itself [19, 20].

Abnormal connexin expression during wound repair has been associated with poor

healing and disruption to cell processes necessary for effective healing. Brandner et al.

reported the presence of Cx43 at epidermal wound edges in chronic non-healing wounds
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of different types [22]. Sutcliffe et al. found elevated wound edge epidermal Cx43 (in

addition to normally upregulated wound edge connexins Cx30 and Cx26) and dermal

Cx43 to be a characteristic shared among three different types of chronic wound (ve-

nous leg, diabetic foot and pressure ulcers) [25]. In a separate study, Cx43 was found

to be upregulated approximately 10-fold above normal levels in fibroblasts from wound

edge regions of human diabetic foot ulcers [27]. Elevated wound edge Cx43 appears to

be a common feature among chronic non-healing wounds of different pathologies and is

proposed to interrupt the finely balanced dynamic coordination of cellular behaviours

post-injury, ultimately contributing to preservation of the pathological state [159].

Studies involving Cx43 deficiency and application of agents suppressing Cx43 expres-

sion or channel function typically report improvements in wound healing, including

increased closure rates and reduced inflammatory response. Kretz et al. reported

Cx43-deficient mice heal much more rapidly (epidermal wound closure occuring ap-

proximately twenty-four hours earlier) than mice without the deficiency and exhibit

significantly reduced dye transfer (an indication of reduced gap junctional activity)

between keratinocytes [29]. Similar results were reported by Qiu et al. using Cx43 an-

tisense oligonucleotides to induce transient knockdown of Cx43 gene expression. Cx43

knockdown significantly increased closure rates of wounds in neonatal and adult mice,

with reduced inflammation [28]. Connexin mimetic peptides (CMPs) such as Gap27

have been shown to accelerate healing in a variety of different experimental settings

(2-d and 3-d in vitro models, and ex vivo human tissue) [160]. Gap27 has also been

shown to increase keratinocyte and fibroblast migration rates in vitro and reduce dye

transfer in ex vivo tissues [160]. Such studies highlight the importance of connexin

response post-injury and particularly the influence of Cx43 levels in either enabling or
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disrupting critical early stages in wound healing.

A central process to wound repair is the migration of keratinocytes and fibroblasts into

the wounded region post-injury, and these events appear to be particularly sensitive to

changes in connexin expression and connexin functionality. Goliger and Paul showed

migrating wound edge rat keratinocytes to exhibit significantly reduced Cx43 levels

early on in the healing process, proposing this to be influential in the keratinocytes

switch to a migratory phenotype, critical in the early stages of healing [23].

Inversely, a study by Wang et al. showed upregulation of Cx43 within twenty-four

hours of injury correlated with aggregation of keratinocytes at the edges of epidermal

wounds in diabetic rats [26]. Mendoza-Naranjo et al. reported similar cellular be-

haviour in cultured fibroblasts, showing an upregulation of Cx43 can inhibit migration

in vitro [27].

Wright et al. demonstrated that in vitro migration rates in both human keratinocytes

and fibroblasts could be increased using CMPs to block gap junction channel function,

inducing a reduction in connexin mediated cell-cell communication [32]; these results

further supported by additional in vitro and ex vivo studies published by Pollok et al.

[160].

Clearly, connexins play an influential role in determining the outcome of migration

events within and around both the epidermis and dermis post-injury. Migration of

keratinocytes and fibroblasts appear particularly susceptible to disruption when Cx43

is expressed at elevated levels. Exactly how Cx43 acts to affect migration is not yet

well established, though it is typically proposed there may be different mechanisms of

action responsible, involving: alteration to direct intercellular communication via gap

junctions (subsequently affecting cell-cell signalling and coordination events between
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cells), gap junction-independent hemichannel activity and adhesive/structural prop-

erties of individual connexin proteins and those associated with gap junction plaques

[161].

In addition to channel functions, connexins possess mechanical properties which may

influence many functions important for cell motility. Some of these functions include

supporting adhesive cell-cell and cell-matrix contacts, and both direct and indirect in-

fluence of cytoskeletal organisation [162]. The intracellular carboxyl tail of Cx43 has

been shown to interact with numerous cytoskeletal and scaffolding proteins, includ-

ing F-actin and tubulin, via various binding domains [161]. Cx43-tubulin binding is

thought able to secure microtubules to the junctional nexus (region of cell-cell con-

tact at the plasma membrane) and appears to be critical in maintaining directionality

during migration [21]. This intracellular region is also central for interactions with

many signalling molecules and subject to PTMs, and is hypothesised may be involved

in the induction of intracellular signalling cascades indirectly affecting cell motility

mechanisms [161, 163]. Connexin also appears to both affect and become affected

by cell-matrix interactions, epithelial Cx43 expression becoming significantly variable

when cultured upon different ECM component proteins and gap junction activity in-

fluencing organisation of ECM fibrils. It is thought Cx43 may be able to interact

indirectly with cytoskeletal-ECM connecting integrin proteins [21].

Gap junction plaques are typically associated with adherens junctions, formed mostly

of adhesive cadherin proteins, both located proximately or even embedded together

(as in cardiomyocytes) in the junctional nexus [162, 164]. Gap junctions and cadherin

proteins have been shown to support each other’s functions, with suppression of Cx43

shown to disrupt the formation of adherens junctions and, similarly alteration to E-
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cadherin and N-cadherin expression shown to perturb gap junction function [162, 164].

The interplay between these proteins at the junctional nexus is considered critical to

support functional cell coupling.

Clearly, connexins play an integral role in cutaneous wound repair, their spatio-temporal

expression highly synchronised and intricately linked to many cellular events crucial

for repair. Connexins, and specifically Cx43, are particularly influential in the regu-

lation of cell motility and migration events, likely through multiple modes of action.

Collective and individual migration events are most likely to be regulated through

a combination of channel dependent mechanisms i.e. gap junction and hemichannel

activity, and extracellular guidance via adhesive properties of plaques and integrin-

mediated interactions with ECM, with smaller-scale motility events likely affected by

connexin interactions with the cytoskeleton. Many of the functions of connexins dis-

cussed have however only recently emerged and the corresponding systems responsible

for their modes of action are not yet well understood.

4.1.2 Modelling studies

Mathematical and computational modelling studies relating to the influence of connex-

ins in cutaneous wound repair in general appear to be quite uncommon and typically

restricted only to a distinct couple of groups of authors.

A recent interdisciplinary study by Montgomery et al. investigated how connexin

mimetic peptide αCT1 affected scar tissue formation by both histological analysis

of Phase I clinical trials and animal wound models and, subsequently, in vitro and

computational scrape wound models to further probe how αCT1 influenced fibroblast

migration during healing. The model (an agent-based approach developed by Richard-

son and Holmes [165]) could reasonably reproduce in vitro migration trajectory and
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directionality behaviour if the cell model’s sensitivity to fibril direction was blunted,

producing more directionally random migration and less organised scar tissue, implying

the peptide by some mechanism impairs a cell’s ability to respond to physical guidance

cues provided by ECM fibrils [79].

Other significant attempts to mathematically model connexin influence in wound heal-

ing events can be found within a single study group report published by Roberts et al.

[76]. The report proposes four different models of wound repair which focus on Cx43

influence on migration, proliferation and cell invasion of some ‘wounded region’ mod-

elled on either an in vitro scrape wound assay or an idealised in vivo epidermal/dermal

wound environment.

Al-Husari et al. used a 2-d cellular Potts approach to model the migration and prolifer-

ation of a cell population into a wound in vivo. The model had three main components:

a cell volume constraint, cell-cell adhesion which accounted for adhesive pull between

cells, and chemotaxis. A chemoattractant was assumed to be produced from within

the wounded region, modelled by coupling a reaction-diffusion equation to the Potts

model, to bias cell migration towards the centre of the wound. Cells were also as-

signed with free and bound connexin concentrations, and the cell behaviour favoured

depended on chemoattractant concentration and free-to-bound connexin ratio. Cells

had higher probability of proliferating when local chemoattractant concentration was

low (thus further from wound) and connexin ratio high, whilst likelier to migrate when

local chemoattractant concentration was high (i.e. closer to the wound) and connexin

ratio high. This cellular Potts model is capable of describing interactions between

cells within a small population, incorporating connexin and chemoattractant depen-

dent switches in cell behaviour (between migration and proliferation), which is a key
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characteristic of cells proximal to a wound in both in vitro models and in vivo. The

model enabled simulation of associated dynamic changes to cell morphologies under

these conditions and show the evolution of the cell population across the wounded re-

gion [76].

Caffrey focused on fibroblast migration within wound edges using a cellular automata

approach. The model domain was restricted to the region within the wound, the lattice

defined thirty columns wide within a wound 600µm wide accommodating 20× 20µm2

grid cells, with no defined upper bound on rows. Migration across the lattice was de-

termined by a directionally biased stochastic process, to ensure the general direction of

movement was into the wound. A cell source was defined at domain boundaries (wound

edges) and, since the domain is restricted to the wound, no proliferation was permit-

ted in the model. Grid cells were assigned an associated Cx43 concentration modelled

dynamically with additional ODEs. Moderate Cx43 concentration prompted grouping

between lattice neighbours and high concentration induced extensive cell aggregation

at wound edges. The introduction of a connexin-mimetic peptide (CMP), modelled

with additional an reaction-diffusion equation, reduced the binding effects of connexin,

and aided in cell dispersal and wound closure. This approach was able to recapitulate

some defining features of chronic wound pathology and CMP application, including

cell aggregation at wound edges, reduced migration with high Cx43 concentration, and

increased migration and wound closure rates with introduction of a CMP [76].

Ward et al. used a continuum (PDE) approach to model the effect of Cx43 concentra-

tion on cell population behaviour within a 1-d model of an in vitro scrape wound assay.

The model had four main components: surface density of cells, surface Cx43 concen-

tration, signalling molecule concentration and CMP concentration. The (unspecified)
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signalling molecule reduced Cx43 concentration within the cell population, included

to model the transient downregulation of Cx43 at wound edges. The production of

this molecule was dependent on local cell density, low density inducing production and

growth in concentration of the molecule. Cell behaviour stratified dependent primarily

on local cell density and Cx43 concentration. If cell density and Cx43 concentration

were low, migration was favoured and signalling molecule production was increased,

further enhancing the stimulatory effect. If cell density and Cx43 concentration were

high, cell aggregation was favoured and signalling molecule concentration decayed. At

intermediate levels of cell density and Cx43, proliferation was favoured with some sig-

nalling molecule production maintained, prompting some migration behind the leading

edge. The introduction of a CMP was modelled to induce a global reduction in Cx43

concentration across the cell population, dependent on a diffusion rate. This approach

was able to qualitatively reproduce some of the cellular behaviours reported in exper-

imental scrape wound assays cited in the study [32]. This included a CMP-prompted

reduction in global Cx43 concentration followed by a significant population advance

into the wounded region [76].

McDougall and Watson propose a discrete-point migration model based on previous

work published by Dallon, Sherratt and Maini [64, 78]. Their work discards any chemo-

taxis term and, for preliminary simulations, collagen terms, modelling migrating cells

which interact via a ‘connexin pull’ within a 2-d domain describing a scrape wound.

Cells migrate in the model only according to a time lag velocity and an adhesive pull

from neighbouring cells such that cells move along a linear trajectory until interrupted

by interaction with another cell. The ‘connexin pull’ models Cx43-based cell-cell ad-

hesion and is proximity dependent as a net effect of an interacting neighbourhood, the
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closest neighbour having greatest influence on velocity. The full model incorporates the

effect of ECM fibrils described by Dallon, Sherratt and Maini, to investigate migration

on ECM-coated substrata. Preliminary simulations of the model without ECM com-

ponents produced clustering patterns in migrating cells due to the adhesive ‘connexin

pull’.
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4.1.3 Motivations and contributions

Connexins are known to possess an influential role in cutaneous wound repair. The

spatio-temporal regulation of Cx43 in particular appears critical to early cell response

post-injury, shown in many experimental studies to heavily influence keratinocyte and

fibroblast migration. Elevated wound edge Cx43 post-injury is strongly associated

with perturbed healing. Restoration of the typical post-injury reduction in Cx43 with

Cx43-targeted agents such as connexin mimetic peptide (CMP) Gap27, has shown to

be effective in rescuing healing in experimental models. It remains unclear exactly how

this pattern promotes migration and effective healing. It is possible the reduction in

functional cell hemichannel and gap junction concentration may limit cell-cell coupling

and coordination locally within a cell population, encouraging cells to adopt more mi-

gratory phenotypes.

Mathematical and computational models for the role of connexins and connexin-based

species (such as gap junctions) in healing appear to be quite scarce. The most detailed

modelling attempts appears in an unpublished study group report, suggesting this area

of research is inordinately under-explored considering the prominent role of connexin

regulation in healing outcomes. Much of the mathematical modelling literature relating

to wound healing tend focus on other well-known mediators of healing such as growth

factors. The relatively recent emergence of the multitude of functions connexins main-

tain in wound repair, and associated mechanisms of action not yet being well defined,

may contribute to the current deficiency of modelling work related to this area.

We aim to develop a mathematical model to describe Cx43-based gap junction influ-

enced cell-cell interactions within a migrating cell population, with the intention to

explore how these interactions affect population invasion of a wound and how the in-
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troduction of a Cx43-binding CMP, e.g. Gap27, modulates this behaviour.

We adopt an approach similar to that used by McDougall and Watson [76], based on

a discrete-point cell migration model which we extend with additional spatial compo-

nents to enable cells to interact in 2-d. We assume a similar cell-cell adhesive pull

occurs when cells interact, however we scale this pull using solution output for the

Cx43 cycling model presented in Chapter 3, which we also use to introduce Gap27. We

also introduce an OU process to model ‘intrinsic’ migration for a cell and assume cell

velocity is determined by a biased OU process, rather than assume migration velocity

follows a simple linear trajectory until disrupted by cell-cell interaction.

To summarise, the presented work contributes the following:

(i) Derive a mathematical model for Cx43-based cell-cell interaction in-

fluenced cell migration. Using a mass action model describing Cx43 cycling

dynamics and an individual point-cell migration model, we derive a coupled model

for individual cell migration influenced by within population cell-cell interactions

dependent on Cx43 cycling dynamics. Discrete-point cells are assigned spatial

components and interact according to proximity to neighbouring cells and total

gap junction plaque concentration p. See Methods 4.2.1.

(ii) Develop a computational framework for a 2-d scrape wound (within

which to test the migration model). To approximate the general experi-

mental set-up of an in vitro scrape wound assay, we initiate cell positions on a

continuous 2-d spatial domain to either side of a region unpopulated by cells. We

use an experimental data sheet for human dermal fibroblasts [166] to approximate

experimental cell density and then use a circle packing algorithm to distribute

cells within the population without overlap. See Methods 4.2.2.
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(iii) Explore how plaque concentration and Gap27 variables, p and g27, af-

fect migration and closure of the 2-d scrape wound model. We find

that when plaque concentration at steady-state, p∗, is large, cell-cell interactions

are persistent and cells begin to cluster, stunting migration and preserving the

scrape wound over time. By contrast, the introduction of Gap27 induces dis-

cernible changes to interaction and migration behaviour, reducing cell clustering

and allowing the scrape wound to close over time, in a Gap27-concentration de-

pendent manner. See Results 4.3.2-4.3.3.

4.2 Methods

4.2.1 Model

The primary focus for our model is the physical influence of gap junction plaques (both

structural and functional) on cell-cell interactions between migrating cells within a pop-

ulation, both in the absence and presence of Gap27. We aim to explore how the addition

of Gap27 affects cell-cell interactions and subsequent scrape wound closure within a

model population. To create the model, we couple two models developed in earlier

chapters: a connexin cycling model (see Chapter 3) and an OU model adopted for

individual migration trajectories (see Chapter 2). We use this approach to introduce

connexin dynamics into a migration framework for individual cells. We then generate a

model population distributed to each side of an unpopulated ‘scrape wound’ and assign

the developed migration model to each cell in the population. We then use simulations

to determine how the introduction of Gap27 influences the subsequent population in-

vasion and ‘closure’ of this computational scrape wound model.

We base the model on the general assumption that individual cells can be represented as
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discrete points and are able to migrate within a 2-dimensional (2-d) space. We also as-

sume migrations occur simultaneously across some homogeneous cell population, and

that any migrating cell is able to interact with any other migrating cell within this

population. Connexin dynamics are assumed to have an important influence on the

outcome of cell-cell interactions within this population. In our model, we determine

that total plaque concentration has a pertinent influence on the strength of cell-cell

interactions during migration. To couple the models we use a variable from the con-

nexin cycling model which defines total plaque concentration for two interacting cells,

p(τ). We introduce p(τ) into the migration model through the construction of a new

directional bias term, which determines the cumulative effect interacting cells k have

on the migration velocity of cell i.

Cell-cell interactions

To enable cells to interact spatially, we extend our discrete point representation of

individual cells by introducing additional spatial components into the model. We now

define each discrete point as the centroid of a cell’s 2-d area and attach two kernels to

each centroid, each radial from the centroid and with distinct spatial representations.

The smaller kernel, defined by radius RM , is chosen to represent a centroid-centroid

distance whereby cell membranes contact, below which we assume cells do not interact

via hemichannels (see Figure 4.1). The larger kernel, defined by radius RI , is chosen to

define a boundary which establishes an ‘interaction space’ for hemichannels, defined by

RI −RM , within which they are able to interdigitate and establish gap junctions. We

consider only direct interactions between hemichannels at the cell membrane and cur-

rently discard any indirect interactions through extracellular signalling. We stipulate

that RI/RM > 1 and, since we consider only the effect of direct interactions between
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hemichannels, assume RI/RM is never large and typically close to 1.

To model cell-cell interactions, we use RM and RI as thresholds to define different

interaction behaviours based on centroid-centroid distance between cells within the

population. We determine that if a centroid-centroid distance is greater than RI , as in

Figure 4.1 (a), cells are separated by a distance too significant to be able to directly

interact via hemichannels, so have no effect on each other and continue to migrate

as unaffected by cell-cell interaction. If however, a centroid-centroid distance is less

than or equal to RI but greater than RM , as in Figure 4.1 (b), cells are considered

close enough to be able to establish hemichannel-hemichannel interactions and exert a

mutual interaction pull on each other, thus introducing a cell-cell instigated directional

bias to respective migrations. The cell-cell interaction is influenced by total plaque

concentration p(τ), where τ is the time unit chosen for connexin cycling. If however,

centroid-centroid distance is less than or equal to RM , as in Figure 4.1 (c), we determine

for simplicity there is no effect and cells migrate as unaffected by cell-cell interaction.

To enable this we permit cell-cell overlap at RM/2 in 2-d during model simulations

(assuming actual cell membranes are physically deformable).

In the model equation for cell-cell interactions, Eq. (4.1), ck is defined such that

the influence of an interacting cell k on the migration velocity of cell i is dependent

on centroid-centroid distance between cells i and k, ∥ f i(t) − fk(t) ∥, where f i(t) is

defined as the 2-d centroid position for cell i at time t. We see in Eq. (4.1), this con-

tribution is either zero, if ∥ f i(t) − fk(t) ∥> RI or ∥ f i(t) − fk(t) ∥≤ RM , otherwise

cell k exerts p(τ) influenced unit pull on cell i along the chord connecting centroids i
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and k, determined by a coupling function F (p).

ck =



0, ∥ f i(t)− fk(t) ∥> RI .

F (p), RM <∥ f i(t)− fk(t) ∥≤ RI .

0, ∥ f i(t)− fk(t) ∥≤ RM .

(4.1)

where F (p) = γkp(τ)
f i(t)− fk(t)

∥ f i(t)− fk(t) ∥
, with γk ∈ R+ a scaling factor for each cell k.

The coupling function F (p) is based on p(τ) under the assumption that a dependency

exists between total plaque concentration and the connectedness of interacting cells.

Under this assumption, if plaque concentration is large, cells are assumed strongly

connected and engaged in extensive direct cell-cell communication (e.g. ion transfer).

Conversely, if plaque concentration is small, cells are assumed weakly connected with

direct cell-cell communication limited. To keep the model simple, we do not distin-

guish between plaques composed of large or small concentrations of gap junctions in

the coupling and choose F (p) only to depend linearly on p(τ).

Cell-cell interactions are time-dependent, thus we see cells that interact over longer time

intervals approach a steady-state total plaque concentration p∗, whereas brief interac-

tions maintain only some transient total plaque concentration. Consequently, cells that

interact uninterrupted over longer time intervals form larger plaque concentrations. We

implement this into the model by tracking numerical time increments a neighbouring

centroid k is within the interaction ‘halo’ of i (satisfying RM <∥ f i(t)− fk(t) ∥≤ RI),

and use this to determine τ and subsequently p(τ). We determine τ through a conver-

sion, ∆t/∆τ ≥ 1, since we assume connexin cycling can be more rapid than migrating

cells. We depict the influence of both cell-cell interactions and numerical time incre-

ments on p(τ) conceptually in Figure 4.2.
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We calculate p(τ) from the Cx43 cycling model presented in Chapter 3, thus the mag-

nitude of p∗ is determined by key Cx43 cycling model parameters k̂1/k̂−1 (gap junction

formation and dissociation ratio), k̂2 (gap junction / plaque formation rate) and k̂u

(internalisation rate). For example, if k̂1/k̂−1 is large and k̂u is small, producing abun-

dant gap junctions for accrual and enabling growth and preservation of a large plaque

concentration at the membrane, p∗ is large.

To further simplify coupling, we generate only a single p(τ) for a given simulation,

assumed an average p(τ) for the cell population, so that interactions are homogeneous

across the population. Thus, for a given simulation (if γk is held constant), F (p) varies

only by τ which gives a distinct p(τ) for every cell-cell interaction in the population

over time.

Cells in the surrounding population, k = 1, ..., N , k ̸= i, that are within the interact-

ing neighbourhood of i (satisfying RM <∥ f i(t) − fk(t) ∥≤ RI) contribute towards

a cumulative effect on cell i. This consists of a net pull from each cell towards their

respective centroid positions, the contribution of each cell k determined by γkp(τ).

The contribution for all other cells (not within the interacting neighbourhood) in the

population sums by Eq. (4.1) to zero. The cumulative effect of the cell population on

cell i is defined by Ci(p), Eq. (4.2).

Ci(p) =
N∑

k=1,k ̸=i

ck. (4.2)
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(a) (b) (c)

Figure 4.1: The three different cell-cell interaction scenarios considered in the model, (a), (b) and (c), between neigh-
bouring cells i and k. The top row shows radii RM (solid) and RI (dashed) around cell centroid i and in relation to
centroid k. The bottom row shows their respective cell-cell interpretations for i and k, where membrane radius is RM/2.
(a) centroid-centroid distance between i and k is greater than RI so cells do not interact. We see cell-cell interaction
boundaries for i and k do not overlap. (b) centroid-centroid distance between i and k is less than or equal to RI but
greater than RM and so interact. We see cell-cell contact/overlap between interaction boundaries. (c) centroid-centroid
distance between i and k is less than or equal to RM and so do not interact. We see cell-cell contact/overlap at mem-
brane boundaries, RM/2, for each cell.

Cell-cell influenced migration model

To model cell migration we assume, based on preceding chapters, that the Ornstein-

Uhlenbeck (OU) process is a reasonable model for 2-d in vitro migration trajectories.

In the migration equation, Eq. (4.3), vi(t) is defined as the 2-d velocity v(t) for cell i

dvi(t) =
(
Ci(p)− βvi(t)

)
dt+

√
αdW (t), (4.3)

with f i(t) being the associated position at time t. Ci(p) is defined as the directional

bias on vi(t) caused by interaction with cells from a surrounding population k =

1, ..., N , such that k ̸= i. The 2-d Wiener process is represented by the time-dependent

variable W (t). Model parameters α and β control unbiased migration.

The resulting migration model, Eq. (4.1)-(4.3), is a 2-d cell-cell biased OU process,

enabling us to describe how migration trajectories are influenced by Cx43 mediated cell-

cell interactions within a population. We now implement this model numerically and
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(c) p(τ) for interactions x and y (red).
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(d) p(τ) for interactions x, y (red) and z (green).

Figure 4.2: Diagram to illustrate the time-dependency of p(τ) in the cell-cell influenced migration model. (a) two
cell-cell interactions, x and y, occur within the migrating cell population at numerical time point T = t. (c) shows a
corresponding p(τ) for both interactions x and y, represented by the red dashed line. (b) at time point T = t + ∆t,
cell-cell interactions x and y are maintained after a time interval ∆t, after which another cell-cell interaction, z, occurs.
(d) shows corresponding p(τ) for the interactions x and y (red dashed) and z (green dashed).

set up an in silico spatio-temporal framework to approximate a typical experimental

set-up of an in vitro scrape wound assay. We then intend to use the model to investigate

how Cx43 mediated cell-cell interactions affect migration and wound closure, and how

the introduction of Gap27 via the coupled Cx43 cycling model modulates this spatial

behaviour.
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4.2.2 Numerical implementation

We implement the model using MathWorks MATLAB R2020a, and obtain solutions

by numerical methods. We first solve the model for Cx43 cycling with Gap27 binding,

a system of eleven coupled ODEs, using ODE solver ode23s, a modified Rosenbrock

scheme [155]. The solution output for this system of equations across time τ includes

total plaque concentration variable p(τ), which is coupled to migration model, Eq.

(4.3), via the cell-cell term Ci(p). Eq. (4.3) is solved iteratively for each individual

cell in the population across time t. For each cell, the influence of any interacting

neighbourhood is first established using Eq. (4.1)-(4.2), we then solve Eq. (4.3) using

an Euler-Maruyama scheme to attain the resultant cell velocity and position. As in

earlier chapters we use a sub-increment for Euler-Maruyama increments smaller than

experimental increments. The result of the simulation is an array of cell positions at

every numerical increment which, across time, defines the individual migration tra-

jectories for all cells in the population. The approach used to implement this model

numerically is outlined in Figure 4.3.

Initial cell configuration

The initial configuration for a typical in vitro scrape wound assay consists of two cell

monolayers separated by a region that is unpopulated by cells. This region may have

been either physically scraped to remove cells from an original single monolayer or

intentionally designated unpopulated with cell monolayers seeded either side [32]. To

approximate this experimental set-up in silico, we define a 2-d space on which cells

can interact and initiate cell positions separately either side of a centrally located un-

populated region. To approximate monolayers with an individual cell model, we use
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Figure 4.3: Flow chart to illustrate the algorithmic approach to numerical implementation of the model outlined in
Section 4.2.2. The general approach taken is to, at each numerical time increment j in total increments nem, for each
cell i of N , iterate through the surrounding population of cells k and calculate the distance between each individual pair
of cells. If close enough to interact, satisfying the condition RM <∥ f i(t)−fk(t) ∥≤ RI , we calculate a connexin-based
cell-cell interaction between the cells and add to a cumulative sum of interactions contributing to the calculation of
velocity for cell i. If cells are not close enough to interact, we skip to the next cell in the population and repeat the
calculation. This allows us to establish an interacting neighbourhood of cells around cell i. Once we have iterated
through all cells N − 1 that could interact with cell i, we select the next cell and repeat the calculations, repeating
through all cells N in the population at increment j. We then repeat through all increments nem through the simulation.
Once complete, we calculate simulation metrics (e.g. wound width, mean-squared displacement) for the cell population.
With the initial conditions outlined in Section 4.3.1, this algorithm would typically take 2-3 hours to run and then
terminate.
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a basic circle packing algorithm to pack cells both densely but randomly within these

two populations without 2-d overlapping between membranes.

The general approach we use for the circle packing algorithm is to populate each side of

the unpopulated region first through pseudo-random position generation and then it-

erative trial and regeneration through all positions, conditional on proximity of current

to prior positions. We first generate pseudo-random positions to produce temporarily

unpacked populations to each side of the unpopulated region, see Figure 4.5 (a), using

MATLAB’s pseudo-random number generator. We then iterate through each popula-

tion of positions separately and for each calculate all distances between current and

prior positions. If all distances are greater than RM , we move to the next position,

if not we generate a new pseudo-random position to ‘trial’. We then once again test

whether all distances between the new trial position and prior positions are greater

than RM , if not we iteratively test, regenerate and test new trial positions until all

distances are greater than RM . We then store the trial position as an updated position

and move to the next cell position and repeat until no cells overlap at RM/2 as in

Figure 4.5 (b). To avoid unnecessarily considering overlap between cells separated by

the large unpopulated region, the algorithm is executed for each unpacked population

separately. Both populations once packed are used as the initial cell configuration for

simulations.

This algorithm is relatively inefficient for packing populations that are particularly

dense, due to the iterative pseudo-random regeneration of positions. This is, for our

purposes, permissible since we do not use the algorithm frequently and keep the ini-

tial cell configuration constant across simulations. The algorithm has the additional

advantages of being simple both conceptually and to program. The algorithm used to
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pack cells into their initial configuration is outlined by the flow chart in Figure 4.4.
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TrueFalse

False
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End

Update array

End

Calculate distance
 between cell i and all

 prior cells in array

cell

i N< /2
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Figure 4.4: Flow chart to illustrate the cell packing algorithm outlined in Section 4.2.2. For efficiency, we split the
spatial domain to either side of the ‘wound’ region and pack each population of N/2 cells separately (repeating this
algorithm for two separate populations). The general approach taken is to start with randomised initial cell positions
and iterate over the population, correcting cell-cell overlap using trial and randomised regeneration of cell positions.

Numerical estimation of wound width

To more clearly quantify and visualise population invasion in our in silico scrape wound

model, we divide our 2-d domain into a coarse grained space from which we infer the

average movement of the cell population and subsequently derive metrics to estimate

wound location and width over time.

To create this coarse grained space we divide the 2-d domain at each increment into
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Figure 4.5: Unpacked (a) and packed (b) initial cell configuration for 1200 cells, across a 2-d domain 600 × 800µm.
RM = 15µm, marker diameter = 15µm. Units assigned using data on the average diameter of human dermal fibroblasts.

a grid of ‘windows’ which, for simplicity, are square. The general approach we take

to approximate a population density is to count cells in each window across the grid,

enabling us to quantitatively capture the spatial distribution of the individual cell

positions. We repeat for each increment across time, generating an array which captures

how local cell densities change over the time course of the simulation.

The size of windows used within the grid i.e. coarseness, has a critical influence on the

population estimation. If we choose larger window sizes, the cell population becomes

an unchanging homogeneous mass, offering no insight into the invasive behaviour of

the population into the wound. Conversely, smaller window sizes capture only the

behaviour of individual cells which we can extract directly from the model output. We

instead approximate an optimal window size for the problem which is small enough to

capture the wound region within the coarse grained grid (i.e. a distinct set of windows

containing no cells) but large enough to accommodate more than a couple of non-

overlapping cells to estimate local cell densities. We then use this to infer the average

movement of the cell population.

To estimate population fronts (i.e. wound boundaries) from the coarse grained space,
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we average over the coarse grained grid in the wound plane to obtain an average cell

population per square for each grid column in the wound plane. This enables us to

represent the grid space in 1-d. To illustrate, the initial configuration in this 1-d array

comprises two non-zero regions (populations) separated by a central region of zeroes

(wound). If the wound is to close over time, this central region of zeroes gradually

becomes non-zero and approaches average local densities approximately equivalent to

the surrounding population.

Our method for the approximation of population fronts is to apply a threshold to

classify average local densities as either ‘population’ or ‘wound’. We do this simply

by iterating through all average local densities at a given increment and storing which

array indices are below a predefined threshold to classify as population. The array

resulting from this iteration contains every index location classified as wound by testing

against the threshold value, providing a coarse estimate of the location of the wound

and therefore wound boundaries. We repeat for all increments across time.

The value chosen for this population threshold, like grain space coarseness, has a critical

effect on the resulting wound estimation. Thus, we choose our population threshold

value based on average local densities across the population at both the start and end

of the simulation.

To further explore average trajectory behaviour of the model population we calculate

mean-squared displacement (MSD) of cells over time, as in earlier chapters. For each

cell over time, we calculate the squared displacement from their initial position at

each increment, then average over all cells to find MSD over time for all cells in the

population. With this metric we are most interested in whether strongly interacting

cells have stunted trajectories on average compared to a non-interacting population
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and if so, whether Gap27 could restore this behaviour and if so, to what degree.

4.3 Results

4.3.1 Initial conditions

As stated in earlier sections, primarily we are interested in how Cx43-based cell-cell

interactions affect cell migration and population invasion of a 2-d wound, without

and with Gap27. To explore this with our model, we approximate an in vitro scrape

wound assay in silico and, within this computational framework, simulate our migra-

tion model, Eq. (4.1)-(4.3), without and with Gap27 treatment. We then track the

subsequent migration behaviour over time.

To create our computational scrape wound model, we define a 2-d domain 800×600µm

on which cells can migrate and interact, and distribute initial cell positions either side

of an unpopulated central region 100 × 600µm we define as the ‘wound’ (as outlined

in Methods 4.2.2). Dimensions are chosen to balance model population size with com-

putation time and resolution. Spatial units are assigned using RM , which we set using

experimental approximations for the average diameter of human neonatal fibroblasts

[167].

Within this domain we aim to approximate monolayer-like density with our model cell

population. As a guide we use MatTek’s data sheet for normal human dermal fibrob-

lasts (NHDFs) recommended seeding density and use approximately 3000 cells/cm2,

scaled down to N = 1200 cells for our domain [166]. At this relatively high density,

cells are able to interact extensively across the domain during their respective migra-

tions, encounters between cells typically frequent.

The initial cell population is configured using the circle packing algorithm described
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in Methods 4.2.2, the resulting configuration containing cells whose membranes do not

overlap in each population either side of the wound. We recall that since the local

effects of hemichannels and gap junctions are small in extension, and we discard the ef-

fects of extracellular signalling that would enable long-range interactions, RI/RM ≈ 1,

for simulations we set RI = 16µm and RM = 15µm. For figures we use a cell marker

diameter which represents the membrane defined by RM and to relative scale. To en-

able comparisons between simulations, we keep the initial cell configuration constant.

The initial cell configuration (at t = 0) for all simulations is presented in Figure 4.6.
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Figure 4.6: Initial cell configuration for the 2-d computational scrape wound model. Spatial domain is 800 × 600µm,
the ‘wound’ measures 100 × 600µm. Total number of cells on the domain is N = 1200, the resulting cell density
approximates NHDF seeding density used for in vitro assays. Cell positions are generated using a pseudo-random circle
packing algorithm to ensure no initial overlapping in the population. Cell markers represent membrane boundaries
defined by RM , cell marker diameter = 15µm.

We choose initial concentrations for the Cx43 cycling model (at t = 0) by adopting a

similar approach as used in Chapter 3. We fix all connexin-based variables (for which

we can) equal to zero, h(0) = g(0) = e(0) = pvar(0) = 0. We choose p(0) arbitrarily
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small, p(0) = 1× 10−10, since p ̸= 0. We choose pavg(0) = 2+1× 10−10, since pavg > 2.

In simulations without Gap27, we set g27(0) = 0 and hg27(0) = 0. We introduce Gap27

by letting g27(0) take non-zero values and, since we again assume no treatment with

Gap27 prior to t = 0 for simulations, C(0) = 0. We test a range of non-zero concen-

trations for g27(0), approximately 100 ≤ g27(0) ≤ 1500 unit concentration, across a

range for p∗ but present results only for g27(0) = 1500 unit concentration when p∗ is

large. We find larger g27(0) concentrations exhibit more significant effects on spatial

behaviour when p∗ is large.

To initiate the migration model computationally, we assign initial cell velocities with

MATLAB’s standard pseudo-random number generator (‘Mersenne Twister ’) and pre-

allocate a time-step adjusted array of pseudo-random numbers across time, accessed

in the velocity simulation for numerical approximations of the Wiener process.

We set initial connexin model parameters by (again) adopting a similar approach used

in Chapter 3, setting all rates so that all parameter ratios equal to one. For this ‘base’

model, rate values we choose arbitrarily equal to one, k̂1 = k̂−1 = k̂2 = k̂u = k̂r =

k̂d = k̂G27 = k̂−G27 = 1. To generate different values for p∗, which we explore for both

with and without Gap27, we adjust gap junction formation/dissociation, accrual and

internalisation rates k̂1/k̂−1, k̂2 and k̂u.

To set parameters for the migration model, we choose to fix α and β using values ob-

tained from fitting the original unbiased migration (OU) model to experimental data in

Chapter 2. The experimental data comprised angle and speed metrics extracted from

migration trajectories tracked over time-lapse of in vitro fibroblasts (NIH-3T3) across

a flat surface (undirected) published by Kim et al. [105]. As discussed in Chapter 2,

we find through the parameter estimation method multiple parametrisations are fea-
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sible, and so we fit a polynomial function through approximated minima to generate

individual parameter combinations. We use this function to determine the parameter

combination we use for Chapter 4. Arbitrarily choosing β = 1.10 gives the approxima-

tion α = 2.27, which we fix for simulations. We also fix the scaling factor for cell-cell

interaction, γk, constant for all cells, k = 1, ..., N , and across simulations. To help

illustrate the impact of p(τ) on spatial behaviour we set γk = 1.

We set time parameters for the migration model to allow for the unpopulated ‘wound’

region to become populated to a cell density approaching homogeneity with the sur-

rounding population, under simulation conditions where cell-cell interactions are in-

frequent and so migration behaviour is over time more roaming. We start migration

simulations at t = 0 and set the time limit tend = 2400 nondimensional units of time.

To maintain a reasonable degree of approximation for the Euler-Maruyama method we

use time increments of size ds = 0.06, generating a total nem = 4× 104 increments for

a simulation.

As earlier discussed, we take into account the processes that govern connexin cycling

and physical translocation during migration could occur on different time scales. We

assign the connexin model with its own time variable τ and move between t and τ

with the conversion t = nττ . For simplicity, we set nτ = 1 and assume connexin and

migration models operate on equal time scales. We initiate simulations of the connexin

model at τ = 0 and run for ncx = 4× 104 increments over τend = 2400 nondimensional

units of time. Even at the largest g27 concentration presented, g27(0) = 1500, the

system reaches equilibrium prior to τend.

As a rudimentary model for membrane deformation, cells are permitted to overlap in

2-d at RM during simulations (t > 0). To aid in comparison between simulation out-
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put, we seed MATLAB’s pseudo-random number generator (‘Mersenne Twister ’) to

make stochastic contributions to the model consistent between simulations.

4.3.2 Scrape wound model with Gap27

We now explore how connexin-mimetic peptide Gap27 affects migration behaviour and

wound closure when introduced to the computational scrape wound model. For com-

parison, we run two model simulations each with different initial Gap27 concentrations,

g27(0) = 0 and g27(0) = 1500 unit concentration, and otherwise equal initial conditions.

Gap27 appears to have greatest influence when both g27(0) and p∗ are large, and so we

focus on model simulations with these initial conditions in presenting Gap27 results.

For brevity we omit most simulation results for ranges of both g27(0) and p∗ tested and

instead select the most pertinent results to describe.

p∗ large with Gap27

For model simulations both with and without Gap27, we adjust connexin parameters

so p∗ is large, p∗ = 2.0835, attained using large gap junction association/dissociation

ratio k̂1/k̂−1 = 1× 103 and small gap junction internalisation rate k̂u = 1× 10−2. For

our ‘control’ simulation, i.e. with no Gap27, we set g27(0) = 0 unit concentration.

For our simulation with Gap27 treatment, we set g27(0) = 1500 unit concentration.

We assume rapid hemichannel-Gap27 binding and slow dissociation, thus set associa-

tion/dissociation ratio large, k̂G27/k̂−G27 = 1×102. The introduction of Gap27 into the

system has a transient effect on p(τ) and is concentration dependent on g27(0), we can

see this in Figure 4.7 for varied g27(0) and p(τ) adopted for the simulations to follow.

For simulations without Gap27 (g27(0) = 0), when p∗ is large (p∗ = 2.0835), we see in

Figure 4.8 (left column) migration trajectories across the whole domain tend rarely to
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roam and instead coalesce around distinct regions early in time T , evident in Figure

4.8 (a). This behaviour persists over T , most migration trajectories restricted to local

and largely disconnected neighbourhoods of the domain throughout the simulation, see

Figure 4.8 (e).

In Figure 4.9 (left column) we see cells in fact coalesce into well-defined clusters which

grow over T , becoming increasingly tightly packed. This behaviour was clearly ob-

servable during the simulations, in which cell-cell interactions were typically lengthy,

cells tended to gather rather than break apart and continue to roam, over time these

growing cell conglomerates might typically comprise some ten to twenty cells. The

final cell configuration is so extensively clustered that almost every cell, with few ex-

ceptions, forms part of some cell cluster. These clusters are evenly distributed across

each cell population, approximately equidistant from each other, and have rarely, if at

all, advanced into the wounded region (see Figure 4.9 (e)).

The lack of a significant population invasion into the wound is clear in Figure 4.10 (a),

in which we see the wound region (black) remain virtually unpopulated (by blue) over

T ; the ‘scrape wound’ preserved. Cell clustering observed in the final cell configuration

is also evident as regions of high average cell density which develop rapidly over initial

increments (observed as regions of light aqua, grey and white which streak across T ).

We also see in Figure 4.11 (a) that wound width is stable over T , staying approximately

constant (fluctuations being due to the classification method described in Methods

4.2.2).

Finally, we see in Figure 4.12 (blue), mean-squared displacement (MSD) over T is

clearly sub-linear when p∗ is large.

For simulations with g27(0) = 1500 unit concentration, we see in Figure 4.8 (right col-
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umn) trajectories typically roam much more randomly across the domain over T and

tend not to coalesce, exploring much of the domain including the initially unpopulated

‘wound’ region. We see in Figure 4.9 (right column) some cell clustering is present from

early in the simulation, though many cells roam freely and clusters typically remain

small and sparse over T . We also see that the wound region becomes gradually popu-

lated by cells over T , the cell population approaching spatial homogeneity at T = 2400,

Figure 4.9 (f). In Figure 4.10 (b) we see the population advance into the wound re-

gion in greater temporal resolution, the wound region (black) clearly being gradually

populated (by blue) over T . Cell population fronts appear to have begun to merge at

T = 2400 and the ‘scrape wound’ closed, though there is some spatial heterogeneity

present within the population. The wound width metric in Figure 4.11 (b) corrobo-

rates, showing a distinct and consistent reduction in wound width over T (apparent

even with fluctuations owing to the classification method). We see a marked difference

in displacement behaviour in Figure 4.12 (red), where MSD appears approximately

linear over T when Gap27 is introduced at g27(0) = 1500 unit concentration, meaning

on average migrations are much more roaming and consequently cells are moving much

greater distances away from their starting positions over the simulation.

For the simulation scenarios presented in Figures 4.8 - 4.11 we observe that introduction

of Gap27 at a high initial concentration can effectively ‘rescue’ healing of the scrape

wound when p∗ is large. In the simulation, introduction of Gap27 appeared to reduce

both overall levels and density of cell clustering, enabling cells to migrate more freely

on the domain. This effect is dependent on g27(0). Increasing g27(0) leads to more sub-

stantial effects on transient behaviour of p(τ). When p∗ is large, the effect of increasing

g27(0) on p(τ) is evident in the spatial behaviour, where we see a reduction in cluster-
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ing, more unbound cells and greater, more rapid population of the wound region. As

p∗ is reduced the effect of g27(0) becomes less apparent in the spatial behaviour. When

p∗ approaches zero, there is no significant effect on cell behaviour with the addition of

Gap27 and does not change dependent on g27(0). This was clear in migration trajec-

tories, cell configurations and population fronts for simulations without compared to

with g27(0), where trajectories, cell groupings and population front advances all appear

indistinguishable, for all g27(0) concentrations tested. This suggesting that migration

behaviour when p∗ is small is not significantly altered by the introduction of g27.
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Figure 4.7: p(τ), where p∗ = 2.0835, with varied initial concentrations for Gap27, g27(0): g27(0) = 0 (blue), g27(0) = 375
(orange), g27(0) = 750 (yellow), g27(0) = 1125 (purple) and g27(0) = 1500 (green) unit concentration. g27(0) has a clear
transient effect on p(τ) that is concentration dependent, the effect magnifying as g27(0) increases. Connexin parameters:

k̂1 = 1× 103, k̂u = 1× 10−2, k̂−1 = k̂2 = k̂r = k̂d = 1, k̂G27/k̂−G27 = 1× 102.
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(a) T = 300. g27(0) = 0. (b) T = 300. g27(0) = 1500.

(c) T = 1350. g27(0) = 0. (d) T = 1350. g27(0) = 1500.

(e) T = 2400. g27(0) = 0. (f) T = 2400. g27(0) = 1500.

Figure 4.8: Migration trajectories across the domain at time points T = 300, T = 1350 and T = 2400 (rows) with
no Gap27, g27(0) = 0 (left), and with Gap27, g27(0) = 1500 (right), when p∗ is large (p∗ = 2.0835). Without Gap27
(left column), trajectories tend to coalesce across time T , the wound region of the domain being largely unexplored at
T = 2400 (e). With the introduction of Gap27 (right column), trajectories tend not to coalesce and explore greater
territory over time T , enabling extensive exploration of the wound region at T = 2400 (f). Connexin parameters:

k̂1/k̂−1 = 1 × 103, k̂u = 1 × 10−2, k̂2 = k̂r = k̂d = 1, k̂G27/k̂−G27 = 1 × 102. Migration parameters: α = 2.27, β =
1.1, γk = 1, RI = 16, RM = 15, dt = 0.3, ds = 0.06.
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(b) T = 300. g27(0) = 1500.
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(c) T = 1350. g27(0) = 0.
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(d) T = 1350. g27(0) = 1500.
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(e) T = 2400. g27(0) = 0.
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(f) T = 2400. g27(0) = 1500.

Figure 4.9: Cell configurations across the domain at time points T = 300, T = 1350 and T = 2400 (rows) with no
Gap27, g27(0) = 0 (left), and with Gap27, g27(0) = 1500 (right), when p∗ is large (p∗ = 2.0835). Without Gap27 (left
column), cells barely populate the wound region over T , instead grouping into tight clusters that aggregate over T .
With the introduction of Gap27 (right column), notice how cells populate the wound over T , forming only small sparse

clusters with many cells free and unbound. Connexin parameters: k̂1/k̂−1 = 1× 103, k̂u = 1× 10−2, k̂2 = k̂r = k̂d = 1,

k̂G27/k̂−G27 = 1 × 102. Migration parameters: α = 2.27, β = 1.1, γk = 1, RI = 16, RM = 15, dt = 0.3, ds = 0.06. Cell
marker diameter = 15µm
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(a) Coarse grained domain over T. g27(0) = 0.

(b) Coarse grained domain over T. g27(0) = 1500.

Figure 4.10: Coarse grained space of the spatial domain over T with no Gap27, g27(0) = 0 (top), and with Gap27,
g27(0) = 1500 (bottom) when p∗ is large (p∗ = 2.0835), where colour bar represents an average cell quantity per
25× 25µm on the domain. The coarse grained space is generated by the methods described in Methods 4.2.2. Briefly,
at each time increment the spatial domain is segmented into 32 × 15 windows each 25 × 25µm and cell quantity in
each determined, each of the 32 columns are then averaged over reducing to 1-d, which is plotted over T . (a) without
Gap27, we see the wound remains unpopulated over T , preserved by stationary population fronts. (b) introduction of
Gap27 sees the wound become gradually populated over T with clearly invasive population fronts. Connexin parameters:
k̂1/k̂−1 = 1 × 103, k̂u = 1 × 10−2, k̂2 = k̂r = k̂d = 1, k̂G27/k̂−G27 = 1 × 102. Migration parameters: α = 2.27, β =
1.1, γk = 1, RI = 16, RM = 15, dt = 0.3, ds = 0.06.
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(a) Wound width over T. g27(0) = 0.
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(b) Wound width over T. g27(0) = 1500.

Figure 4.11: Wound width (computed from coarse grained space) over T with (a) no Gap27, g27(0) = 0, and (b)
with Gap27, g27(0) = 1500, and p∗ large (p∗ = 2.0835). (a) when g27(0) = 0, wound width is typically stable over
T . (b) when g27(0) = 1500, a decreasing trend in wound width over T is clearly observable. Connexin parameters:

k̂1/k̂−1 = 1 × 103, k̂u = 1 × 10−2, k̂2 = k̂r = k̂d = 1, k̂G27/k̂−G27 = 1 × 102. Migration parameters: α = 2.27, β =
1.1, γk = 1, RI = 16, RM = 15, dt = 0.3, ds = 0.06.
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Figure 4.12: Mean squared displacement (MSD, µm) over T with no Gap27, g27(0) = 0 (blue), and Gap27, g27(0) = 1500
(red), and p∗ large (p∗ = 2.0835). When g27(0) = 0, MSD over T is sub-linear. When g27(0) = 1500, MSD over T is

approximately linear. Connexin parameters: k̂1/k̂−1 = 1×103, k̂u = 1×10−2, k̂2 = k̂r = k̂d = 1, k̂G27/k̂−G27 = 1×102.
Migration parameters: α = 2.27, β = 1.1, γk = 1, RI = 16, RM = 15, dt = 0.3, ds = 0.06.

4.3.3 Scrape wound model without Gap27

We further explore the computational scrape wound model without Gap27. We be-

gin by exploring how coupling variable p(τ) affects the behaviour of model migration

trajectories and wound closure. To do this we vary connexin model parameters as de-

scribed to obtain a small and large p∗, p∗ = 4.9974×10−8 and p∗ = 2.0838 respectively,
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which we use in separate simulations with the initial conditions outlined.

In Results 4.3.2, we considered migration behaviour of the model when p∗ is large

(p∗ = 2.0838). Cells tend to cluster into aggregates over T , restricting migration to

domain regions local to each aggregate and stunting any significant population invasion

into the wound. To enable comparison with when p∗ is small, we present migration

trajectories and cell configurations over T once more in Figures 4.13 and 4.14 (right

column).

When p∗ is small, p∗ = 4.9974× 10−8, we see in Figure 4.13 (left column) that migra-

tion trajectories are, on average, long and tortuous, extensively exploring the whole

domain over T , including the wound region, absent of the kind of coalescing behaviour

we observed with simulations for large p∗.

We see in Figure 4.14 (left column) cell clustering is significantly reduced compared

to when p∗ large, we instead typically see many cells migrating freely without contact

from other cells and form only small cell aggregates. Again, this behaviour was ob-

servable during simulations, where cells tended to interact weakly, interactions usually

being brief, often breaking loose within short time spans and not typically contacting

for long enough to aggregate more than a few cells at any given time point. We see

the cells observably advance into the wound over T , extensively populating the scrape

wound at T = 2400 units of time, see Figure 4.14 (e).

The qualitative similarity in migration behaviour between the scenarios when p∗ is

small and when p∗ is large but with Gap27 is notable. Both scenarios appear to dimin-

ish the effects of cell-cell interactions on individual migration, encouraging migration

as the dominant cell behaviour. In the simulations this appears critical in enabling the

cell population to advance into the wound.
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(a) T = 300. p∗ = 4.9974 × 10−8. (b) T = 300. p∗ = 2.0838.

(c) T = 1350. p∗ = 4.9974 × 10−8. (d) T = 1350. p∗ = 2.0838.

(e) T = 2400. p∗ = 4.9974 × 10−8. (f) T = 2400. p∗ = 2.0838.

Figure 4.13: Migration trajectories across the domain at time points T = 300, T = 1350 and T = 2400 (rows)
for small and large p∗ (columns). Notice how the wounded region is gradually explored over time when p∗ is small
(p∗ = 4.9974 × 10−8, left column) such that the wound begins to close at T = 2400 (e). However, when p∗ is large
(p∗ = 2.0838, right column) the wound region is largely unexplored by migration trajectories across time which instead

appear to coalesce, signifying extensive cell grouping. Connexin parameters: k̂1 = 1×10−4, k̂u = 1×10−1 (left column),

k̂1 = 1 × 103, k̂u = 1 × 10−2 (right column), k̂−1 = k̂2 = k̂r = k̂d = 1, k̂G27 = k̂−G27 = 0. Migration parameters:
α = 2.27, β = 1.1, γk = 1, RI = 16, Rm = 15, dt = 0.3, ds = 0.06.
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(a) T = 300. p∗ = 4.9974 × 10−8.

0 100 200 300 400 500 600 700 800

m

0

100

200

300

400

500

600

m

(b) T = 300. p∗ = 2.0838.
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(c) T = 1350. p∗ = 4.9974 × 10−8.
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(d) T = 1350. p∗ = 2.0838.
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(e) T = 2400. p∗ = 4.9974 × 10−8.
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(f) T = 2400. p∗ = 2.0838.

Figure 4.14: Cell configurations across the domain at time points T = 300, T = 1350 and T = 2400 (rows) for small
and large p∗ (columns). Notice how when p∗ is small (p∗ = 4.9974 × 10−8, left column) cells populate the wound
region over time and tend only to weakly interact with each other, typically forming only small groups. When p∗

is large (p∗ = 2.0838, right column) cells barely populate the wounded region at all over time and group into tight

clusters, appearing to grow larger over time. Connexin parameters: k̂1 = 1 × 10−4, k̂u = 1 × 10−1 (left column),

k̂1 = 1 × 103, k̂u = 1 × 10−2 (right column), k̂−1 = k̂2 = k̂r = k̂d = 1, k̂G27 = k̂−G27 = 0. Migration parameters:
α = 2.27, β = 1.1, γk = 1, RI = 16, Rm = 15, dt = 0.3, ds = 0.06. Cell marker diameter = 15µm.
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4.4 Discussion

In our study, we presented a model for Cx43-based gap junction influenced cell-cell

interactions between individual migrating cells to investigate how connexin mimetic

peptide Gap27 and Cx43 cycling can affect population advance into a computational

model of a 2-d scrape wound. The principle aim was to understand more about how

Cx43 cycling and Gap27 can affect wound healing, there currently existing open mech-

anistic questions regarding connexin influence in cutaneous wound repair. For example,

how disruption to connexin regulation can lead to chronic non-healing wounds and why

CMPs like Gap27 can accelerate healing under certain conditions (e.g. healthy tissue)

but be ineffective under other conditions (e.g. diabetic tissue) [160].

The model we created is based on an Ornstein-Uhlenbeck (OU) process for individ-

ual cell migration velocity over time, this modified to incorporate a directional bias

for when cells encounter and interact with each other. The cell-cell interaction term

utilises solution output from Chapter 3’s Cx43 cycling model, specifically the total gap

junction plaque concentration, p(τ), to determine the magnitude of interaction. The

Cx43 cycling model also incorporated Gap27 binding via a simple one-step associa-

tion/dissociation reaction, enabling us to introduce Gap27 indirectly into the spatial

model through its transient effect on p(τ).

To test this model, we defined a computational scrape wound where all individual cells

within two wound-separated populations migrate over time according to the developed

migration-interaction model. We then ran simulations focusing on varied initial con-

centrations for Gap27, g27(0), across varied p∗ and without Gap27 (g27(0) = 0) and

varied p∗, keeping all other conditions constant.

We found that introduction of Gap27, g27, into the model (g27(0) is non-zero) prompts
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closure of the computational scrape wound over time when p∗ is large, compared to

control simulations where there is no Gap27 (g27(0) = 0), and all other conditions are

equal. We found the rate of wound closure is dependent on g27(0), increasing with

g27(0) up to concentrations where the transient effect on p(τ) is so substantial the

closure rate approximates model simulations where p∗ approaches zero and cell-cell

interactions have an insignificant effect on migration behaviour. We found the effect

g27 has on spatial behaviour decreases with p∗, g27 having little observable effect as p∗

approaches zero. We also found that spatial behaviour is similar when p∗ is small with-

out Gap27 as when p∗ and g27(0) is large, g27, in effect, appearing to transiently mimic

what happens when p∗ is small, weakening interactions and creating the conditions for

cells to become more migratory.

In model terms, the introduction of Gap27 (where g27(0) ̸= 0) means that cells can

come into close contact without exerting an immediate interaction pull on each other.

There is a ‘window of opportunity’ for cells to co-exist closely with neighbours without

interacting. The size of this temporal window is determined by g27(0), extending with

increasing g27(0), via Gap27’s transient effect on p(τ). When p∗ is large we found g27

would reduce both intensity and instance of interactions and free cells to migrate across

the domain, less encumbered by other cells, to gradually populate the wound over time.

Though effective in disrupting spatial behaviour when p∗ is large, g27 had little effect

spatially as p∗ became small. As p∗ decreases, the g27 transient effect on p(τ) becomes

less and less discernible in the spatial behaviour because cell-cell interactions become

weaker (and scarcer), so we see the effect of g27 gradually dampen with reduction to

p∗. As p∗ approaches zero, there is no observable effect on spatial behaviour, where

effectively there are no interactions in the population to disrupt. This also helps to
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explain why we see similar spatial behaviour when p∗ is small without g27 and with

p∗ and g27 large. In effect, g27 transiently approximates what happens spatially when

p∗ approaches zero, both reducing intensity and instance of interactions, only with g27

the effect ‘wears off’ with time and p(τ) returns to p∗ pre-determined by Cx43 model

parameters. If g27(0) is large enough, the transient effect on p(τ) can be significant

enough to see little difference between simulations when p∗ is small without g27 and

when both p∗ and g27 are large.

Results from the modelling study suggest Gap27 ought to prompt an effective migra-

tory response for closely interacting cells if applied in a large enough concentration,

and aid scrape wound closure under these conditions. This concentration-dependence

of Gap27 has been reported in a number of experimental studies. For instance, Faniku

et al. observed a dose-dependent effect of Gap27 on scrape wound closure in adult ker-

atinocytes in vitro. The authors found Gap27 at 1nM and 10nM moderately reduced

the wound area compared the control over 24 hours, but concentrations of 100nM and

100µM were enough to completely close the wound [168].

In dysfunctional scrape wound repair, if cells are closely interacting and Gap27 doesn’t

prompt a migratory response, it is possible there may be other factors preventing this

e.g. poor gap junction turnover, which could potentially block the primary route to

disrupting this type of interaction.

When p∗ is small, cells migrate more freely and interact less. Qualitatively, this spatial

behaviour is akin to cells within the wound front (within a 2-d in vitro scrape wound

assay) in the hours immediately post-injury where Cx43 is down-regulated and cells

adopt something like a more migratory phenotype. It might be expected that cells

which have little propensity for gap junction based interaction not to exhibit signifi-
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cant changes with the introduction of a CMP like Gap27, unless hemichannel activity

plays a more significant role in cell-cell interactions than anticipated, which has been

a focus in more recent experimental literature [133].

As p∗ becomes larger cells cluster ever more densely, migrations being constrained by

constant interactions with other cells. Again, qualitatively this may be akin to the cell

population adjacent to the wound front immediately post-injury, where cells jointly

coordinate to generate a forthcoming proliferative response. We might expect cells en-

gaged in extensive gap junction based interaction to be significantly affected by Gap27,

preventing new gap junctions from forming and adjoining established plaques.

Results could suggest that Gap27 may operate (on a population level) to enlist the

more stationary cells adjacent to the migrating front to the migratory effort into the

wound, rather than necessarily speeding up the already existing wound front of migrat-

ing cells, thus speeding up the population invasion instead by expanding the migrating

front and increasing the number of migratory cells present around the wound. It would

seem reasonable already migratory cells may not be too affected by the introduction

of Gap27 unless affecting an indirect (e.g. hemichannel-based) mode of cell-cell inter-

action.

This effect may be expected since, if p∗ is small i.e. close to zero, the transient effect of

g27(0) (whilst still present on p(τ)) is not likely to be registered in the spatial behaviour

since the effect of p∗ being small is itself relatively insignificant.

In putting forth potential biological interpretations of the model, it is necessary to

reconsider and perhaps fully recognise the limitations of the model brought about by

the formulation and modelling assumptions. The assumption that cell-cell interactions

between migrating cells are dependent on plaque concentration would not appear to
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be unreasonable given the structural role gap junction plaques hold in maintaining

direct cell-cell communication. Cx43 at the plasma membrane can anchor directly

to the cytoskeleton and adhesion proteins are known to gather around plaque struc-

tures for stabilisation, forming the junctional nexus (see Introduction). Defranco et al.

found that migrating cells could interact directly via gap junction plaques and retained

plaques even upon physical separation to other cells [169].

The coupling function, F (p), used to couple the Cx43 cycling and migration models ac-

counts only for plaque concentration through p(τ), and is indiscriminate of plaque size.

It is possible in the Cx43 cycling model for similar total plaque concentrations to exist

for both all large and all small plaque structures which, biologically, one might expect

to exhibit different adhesive properties. We might expect, for example, a small concen-

tration of large plaques to impose a greater adhesive influence on cell-cell interactions

than a small concentration of small plaques. We chose for simplicity to limit terms

in the coupling function, though we could consider introducing more solution output

from the Cx43 model to account for plaque size e.g. average gap junction concentra-

tion per plaque concentration, pavg, the coupling function then becoming multivariate,

F (p, pavg).

We recall that in healthy wound repair, the regulation of Cx43 is temporarily modu-

lated in a localised manner to enable the healing cascade to progress. In future work, it

might be possible to incorporate this dynamic into the model by introducing a spatio-

temporal variation in the coupling function F (p) across the cell population.
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Chapter 5

Discussion

Cutaneous wounds incur a huge economic and human cost for many developed nations.

Chronic cutaneous wounds in particular consume a substantial share of annual health-

care expenditures, as high as 4-5% in the U.K. [4], and often come with serious health

complications and stark mortality rates. Already prevalent, about 1-2% of people in

developed nations likely to develop a chronic wound in their lifetime [7], chronic wounds

are predicted to rise further in prevalence with increasing rates of obesity, diabetes and

ageing populations [7].

Cutaneous wound repair is a complex and finely balanced process. It relies on a spe-

cific sequence of carefully regulated spatio-temporally dependent healing phases, within

which a highly organised network of cell and tissue interactions operates to prevent

further tissue degradation and infection, then subsequently reconstitute lost tissue;

returning mechanical structure and anatomical function to the injured region. The

normal healing process can sometimes become deranged, particularly under local or

systemic conditions which cause disruption to the healing cascade, leading to impaired

healing.

Connexin proteins, the sub-components of cellular communication channels ‘hemichan-
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nels’ and ‘gap junctions’, are proposed to hold a crucial role in cutaneous wound repair.

It is thought that the dynamic regulation of the different connexins expressed in hu-

man skin aids in dynamic compartmentalisation of tissue around an injured region

post-injury, enabling effective local cellular responses [19, 20]. Connexin-based dys-

function has been strongly associated with impaired healing. The abnormal wound

edge up-regulation of connexin 43 (Cx43) in particular has been shown to be a com-

mon feature among different types of chronic wound in humans (diabetic, venous and

pressure ulcers) [25]. Experimental studies probing the use of connexin-targeted agents

(e.g. antisense oligonucleotides and connexin mimetic peptides) as potential treatments

show considerable promise in restoring repair. Unmodified oligonucleotide is the main

active ingredient in the candidate corneal wound treatment, ‘Nexagon’ [21, 31], and the

connexin mimetic peptide (CMP), αCT-1, has successfully completed Phase II clinical

trials for the treatment of diabetic foot ulcers [152]. The CMP, Gap27, is another

promising wound healing therapeutic. Gap27 has been shown to accelerate healing in

a number of 2-d and 3-d in vitro models and ex vivo human tissue, increase migration

rates of keratinocytes and fibroblasts in vitro and disrupt intercellular communication

with reduction to cell-cell dye transfer reported in ex vivo tissue models [160].

Many cell types must migrate to carry out their various restorative functions during

wound repair. To migrate within the extracellular environment cells must traverse a

diverse range of topographic configurations presented by different physiological struc-

tures. Such topographies have been shown to influence a number of cellular behaviours,

including adhesion, migration, proliferation and even differentiation. The capacity for

topography to influence different cellular behaviours has motivated extensive study in

the biotechnology and bioengineering literature, with significant applications to bio-
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material and bioimplant design, including further development of skin substitutes as

advanced wound healing treatments.

Mathematical and computational modelling for both connexin-based influence in wound

repair and topographically regulated cellular behaviours would be advantageous to ex-

perimentalists in helping to reduce experimental hypotheses and focus wet-lab exper-

iments, streamlining research and accelerating the design process for such connexin-

based and topographically influenced treatments already described. There does how-

ever, appear to exist a relative paucity in the modelling literature for both applications.

Connexin-based mathematical and computational models tend to focus heavily on the

properties and functions of gap junction channels, rarely paying attention to the cy-

cling of connexin proteins underpinning such channel functions, nor the influential role

connexins have on cell migration and wound repair. Mathematical migration models

to incorporate directional cues from some underlying topography have traditionally

focused on a cell-matrix based mesenchymal mode of migration in which cells and fib-

rils interact in a reciprocative manner. Only recently have models begun to explore

migration influenced by the specific classes of highly organised topographic configura-

tion studied in the experimental literature, e.g. linear ridge/groove, lattice, pillar, pit

and curvature, in an effort to understand exactly how these topographic features affect

migration and how they could be used to control and regulate cell behaviour.

In this thesis, we proposed three new mathematical models to further explore topo-

graphically influenced cell migration, Cx43 cycling dynamics and its modulation by

CMP Gap27, the influence of Cx43 cycling dynamics on cell migration via gap junc-

tion based cell-cell interactions and how the introduction of Gap27 may function to

prompt scrape wound closure. To do this, we use two well-established modelling ap-
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proaches familiar in the mathematical biology literature to develop an individual-based

model for topographically influenced cell migration and a mass action model for Cx43

cycling with Gap27 binding kinetics. We then couple the two models to construct a

cell-cell influenced migration model based on Cx43 dynamics. We then test the migra-

tion model within a computational model of a 2-d scrape wound assay, using the Cx43

cycling model to introduce Gap27 dynamics.

In the first part of the thesis, Chapter 2, we develop the individual-based model for

topographically influenced cell migration using an Ornstein-Uhlenbeck (OU) process,

directionally biased based on the gradient field of an underlying topography, to describe

the time evolution of cell velocity for a discrete-point cell. We use this model to probe

the influence of linearly and randomly organised topographies on migration trajectory

behaviour and how the gradual introduction of random perturbations to linear features

changes this behaviour, with the intention to further understand how surface imper-

fections introduced by coarse methods of surface fabrication might impact migration.

We parametrise the model using experimental data for in vitro fibroblast migration on

a precisely fabricated linearly ridged/grooved topography with constant ridge (1µm)

and varied groove widths (1-9.1µm) and with numerically generated topographies fea-

turing comparable dimensions (constant ridge width, 1µm, and 9µm, 6µm and 2µm

groove widths). We use the parametrised model to predict how random perturbations

in the plane orthogonal to ridge/groove direction modulate spatial behaviour over time.

We found that the parametrised model was able to closely reproduce migration metric

statistic data derived from the experimental study by Kim et al. [105], as well as gen-

eral trends in migration behaviour reported. Results showed that standard deviation

for orientation angle distributions, θσ, decreased monotonically with decrease to groove
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width, smallest θσ observed for the 2µm groove width which prompted the most direc-

tionally aligned migration trajectories. We also saw evident an optimal groove width

for mean migration speed, sµ, observed for the 6µm groove width which prompted

trajectories to exhibit the highest displacements of the groove widths tested.

We also found that introducing graded random perturbations to the linear features dis-

persed migration, and increasing the perturbation level reduced trajectory alignment

and increased speed for all groove widths, 9µm, 6µm and 2µm. This finding could po-

tentially be explored by experimentalists as an approach to either enhance or diminish

cell directionality, displacement or dispersal.

In the first section of the second part of the thesis, Chapter 3, we derive a model

for Cx43 cycling dynamics with Gap27 binding. Based on the established biology, we

formulated a reaction scheme for hemichannel, gap junction, plaque and annular gap

junction species in the Cx43 life cycle and, by mass action kinetics, derive the asso-

ciated ODE system. We circumvent consideration of all individual plaque states, pi,

where i = 2, ..., n, in the model by deriving ODEs for the zeroeth, first and second

order moments of the plaque state distribution, closing by approximation of the third

order moment, reducing the infinite-dimensional sub-system of plaque states by con-

sidering only its time-dependent moment variables and adopting the ‘averaged’ model

thereafter.

We considered cycling model dynamics both without and with Gap27, to investigate

how the introduction of Gap27 affected Cx43-based species dynamics. We found the

model exhibited simple steady-state behaviour, identifying only stable one equilibrium

point which shifted monotonically under parameter variation. Without Gap27, we

found the model could qualitatively reproduce gap junction plaque dynamics reported
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in the experimental literature, in which large plaques were able to form in small con-

centration [133].

Results showed the introduction of Gap27 modulated only transient behaviour of

Cx43-based species, hemichannels, gap junctions, plaques and annular gap junctions,

over time. This effect was found to be dependent on both Gap27 concentration and

hemichannel-Gap27 association/dissociation ratio. The modulating effect of Gap27 in-

creased with concentration and with the association/dissociation ratio, but approached

a step-function-like limit for the latter.

The transiently modulating, concentration-dependent efficacy of Gap27 observed in the

model is typical of what is reported in experimental studies. Gap27 has been shown to

reduce dye transfer in fibroblast and HeLa cell clusters in a concentration-dependent

manner in a study by Wright et al. [32] and is typically reapplied intervallically in ex-

periments to maintain its therapeutic effect (see [20, 32]). Further work on this model,

including parametrisation, could provide further insight into how Gap27 could be used

experimentally to optimally disrupt functional plaque formation and subsequent cell-

cell metabolite exchange.

In the last section of the second part of the thesis, Chapter 4, we develop a Cx43-based

cell-cell interaction influenced migration model based on earlier introduced models

for Cx43 cycling with Gap27 binding and individual cell migration. We assign each

discrete-point cell in the model 2-d spatial dimensions within which they can interact

with neighbouring cells within a cell population, the interaction determined to depend

on Cx43 dynamics. We develop a computational framework to approximate the 2-d

spatial configuration of a ‘scrape wound’ assay, in which two cell populations are ini-

tially separated by an unpopulated ‘wound’, attaching spatial units and assigning a
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population density using experimental data. We use this model to investigate how

Cx43 dynamics could affect cell migration and subsequent population invasion into a

scrape wound and how the introduction of a CMP like Gap27 might function to mod-

ulate these cellular behaviours.

We consider how model dynamics affect migration behaviour and scrape wound clo-

sure both without and with Gap27. We found that if steady-state concentration for

gap junction plaque species, p∗, was large, migrating cells clustered into isolated neigh-

bourhoods in each separated population over the domain and rarely entered the wound

region, which remained virtually unpopulated over time. The introduction of Gap27

however, reduced clustering in migrating cells and restored typical migration behaviour,

which, over time, collectively invaded the wound region; closing the ‘scrape wound’.

The rate of wound closure was dependent on initial concentration of Gap27, g27(0), the

spatial effect of which reduced discernibly with p∗. Results also showed that when p∗

is small, migration behaviour is qualitatively similar to when p∗ and g27(0) are both

large, significantly reducing clustering and promoting population of the wound region

over time.

These results suggest a potential mechanism for delayed cellular response and stunted

migration in non-healing wounds. It is possible that Cx43-influenced local cell clus-

tering could disrupt typical migration patterns into the wounded region post-injury,

encouraging cells to adopt interactive and communicative rather than necessary mi-

gratory behaviours. Results also suggest that Gap27 may function to rescue cells from

clustering and restore typical post-injury migratory behaviour to induce wound clo-

sure, potentially offering insight into why Gap27 might be less effective in treating

some types of chronic wound, e.g. diabetic [160].
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An interesting question raised by the work presented in this thesis is whether to-

pographies and CMPs like Gap27 could work synergistically to improve scrape wound

closure. Both the experimental study by Kim et al. [105] and topographically in-

fluenced cell migration model in Chapter 2 suggested topographic configurations able

to prompt optimal linear directionality and migration speed in fibroblasts (e.g. lin-

early ridged/grooved with approximately 2µm and 6µm groove widths, respectively),

and predicted migration speed and dispersal might be enhanced by the introduction

of random feature perturbations. Kim et al. probed experimentally how linearly

ridged/grooved topographies affected fibroblast invasion of a scrape wound in vitro.

The authors found that linear topographic features arranged parallel to the wound

region restricted migration into the wound, whereas if arranged perpendicularly migra-

tion into the wound could be enhanced, even speeding up wound closure dependent on

groove width [80].

It could be interesting, using the models developed in this thesis, to compare how rate

of scrape wound closure differed when modulated topographically rather than with a

connexin mimetic peptide. Further still, it could be possible to integrate both topo-

graphically and Cx43 influenced migration models to investigate how these powerful

regulators of cellular behaviour could interact to affect healing. Could the introduction

of an underlying topography provide enough of a directional stimulus to guide cells into

the wound, or would clustering prevail? Combining treatments would raise many more

interesting propositions. Could the introduction of a topography, as experimental stud-

ies might suggest [80], accelerate or perturb wound closure? Could this be dependent

on spatial pattern, orientation and dimension of the topography? Future studies to

investigate such questions could help to generate potential new treatment regimen for
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experimental testing.
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[22] J. M. Brandner, P. Houdek, B. Hüsing, C. Kaiser, and I. Moll, “Connexins 26, 30,

and 43: differences among spontaneous, chronic, and accelerated human wound

190



healing,” Journal of investigative dermatology, vol. 122, no. 5, pp. 1310–1320,

2004.

[23] J. A. Goliger and D. L. Paul, “Wounding alters epidermal connexin expression

and gap junction-mediated intercellular communication,” Molecular biology of

the cell, vol. 6, no. 11, pp. 1491–1501, 1995.

[24] P. Coutinho, C. Qiu, S. Frank, K. Tamber, and D. Becker, “Dynamic changes

in connexin expression correlate with key events in the wound healing process,”

Cell biology international, vol. 27, no. 7, pp. 525–541, 2003.

[25] J. Sutcliffe, K. Chin, C. Thrasivoulou, T. Serena, S. O’neil, R. Hu, A. White,

L. Madden, T. Richards, A. Phillips, et al., “Abnormal connexin expression in hu-

man chronic wounds,” British Journal of Dermatology, vol. 173, no. 5, pp. 1205–

1215, 2015.

[26] C. M. Wang, J. Lincoln, J. E. Cook, and D. L. Becker, “Abnormal connexin

expression underlies delayed wound healing in diabetic skin,” Diabetes, vol. 56,

no. 11, pp. 2809–2817, 2007.

[27] A. Mendoza-Naranjo, P. Cormie, A. E. Serrano, C. M. Wang, C. Thrasivoulou,

J. E. Sutcliffe, D. J. Gilmartin, J. Tsui, T. E. Serena, A. R. Phillips, et al.,

“Overexpression of the gap junction protein cx43 as found in diabetic foot ul-

cers can retard fibroblast migration,” Cell biology international, vol. 36, no. 7,

pp. 661–667, 2012.

[28] C. Qiu, P. Coutinho, S. Frank, S. Franke, L.-y. Law, P. Martin, C. R. Green, and

D. L. Becker, “Targeting connexin43 expression accelerates the rate of wound

repair,” Current Biology, vol. 13, no. 19, pp. 1697–1703, 2003.

191



[29] M. Kretz, C. Euwens, S. Hombach, D. Eckardt, B. Teubner, O. Traub, K. Wil-

lecke, and T. Ott, “Altered connexin expression and wound healing in the epider-

mis of connexin-deficient mice,” Journal of cell science, vol. 116, no. 16, pp. 3443–

3452, 2003.

[30] B. Cogliati, M. Vinken, T. C. Silva, C. M. Araújo, T. P. Aloia, L. M. Chaible,
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