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ABSTRACT Person identification is a key problem in the security domain and may be used to automatically
identify criminals or missing persons. The traditional face matching approaches adopted by the police and
security services across the world have recently been shown to produce a high rate of false positive identifi-
cation. Alternatively, gait-based person identification has shown to be a convenient method particularly as it
can be performed at a distance, without the cooperation of the subject, and is a biometric trait which cannot be
easily disguised. In this work, we propose a gait-based person identification approach which uses limb joint
motion data and deep machine learning models to identify the individuals. Distinct statistical features are
identified and extracted from limb movement using a fixed width sliding window to train a Long Short-Term
Memory model. The proposed solution outperforms the existing methods producing 98.87% accuracy when
evaluated over unseen samples. In addition, we propose a simple two-stage filtering approach to increase the
prediction accuracy up to 100%when identifying individuals from larger sequences of samples. This finding
may improve the current solutions in controlled environments such as airports. In the future, this approach
may help to overcome the problem of occlusion in gait-based identification, as unlike the existing works, it
does not require information regarding the entire body. The study also presents a primary dataset comprising
limb joint movement acquired from a diverse range of participants during casual walking captured through
two digital goniometers.

17

18

INDEX TERMS Gait identification, limb joint motion analysis, gait recognition, deep learning for person
identification, gait pattern recognition, IMU sensor data.

I. INTRODUCTION19

Person identification is a key issue mainly within the security20

domain. The media has highlighted several cases where the21

concerned authorities (e.g. police force) have been using Face22

Matching Tools (FMT) which provided false positive rates23

up to 98% [1], [2], [3]. In these solutions, false positives24

incorrectly identify innocent members of the public as crime25

suspects. Real-time dynamic environments pose problems for26

The associate editor coordinating the review of this manuscript and

approving it for publication was Dost Muhammad Khan .

FMT, for example, pose variation, lighting, facial expres- 27

sions, image resolutions, makeup, and occlusion can cause 28

identification failure [4]. Such reports suggest a clear need for 29

an improved approach to automated person identification. 30

An alternative approach to FMT for person identification is 31

provided by gait identification, whereby a person is identified 32

by the manner of their walking. Gait analysis is considered 33

to be a convenient approach to person identification as it 34

can be performed at a distance, without the knowledge or 35

cooperation of the subject, and it is a feature which cannot 36

be easily disguised [5]. Such factors would be advantageous 37
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in addressing problems such as crime suspect identification,38

and missing person identification.39

Furthermore, computer vision-based approaches to gait40

identification provide the opportunity to obtain the aforemen-41

tioned covert advantages of gait identification and have there-42

fore gained significant attention. However, existing computer43

vision-based gait identification solutions are often affected44

by occlusion and clothing changes, this is partly due to45

the whole body approach where data is required for the46

entire body movement, which is not always available in real-47

world dynamic environments [6], [7]. Many of the existing48

sensor-based datasets encourage a whole body approach by49

capturing data using networks of sensors to capture full body50

movement, or via sensors attached to the trunk [8]. To the51

best of the authors’ knowledge, none of the existing dataset52

containmovement data formultiple individual limbs or joints.53

Such a dataset would allow researchers to approach the prob-54

lem of gait identification in situations where whole body55

information is not available, for example, when the body is56

partially occluded.57

This work proposes a new gait-based person identifi-58

cation approach using movement data regarding multiple59

body-joints and machine/deep learning algorithms. Move-60

ment data is collected for the hip and shoulder joints using an61

Inertial Measurement Unit (IMU)-based digital goniometer62

device. Goniometers are commonly used by physiothera-63

pists to measure the range-of-motion (i.e., angle) of a body64

joint [9]. Digital goniometers commonly include IMU sen-65

sors containing accelerometers, gyroscopes, and magnetome-66

ters to measure movement [10].67

To the best of the authors’ knowledge, this is the first68

use of a body joint-based approach to gait-based person69

identification which may in the future offer the opportu-70

nity to decrease the impact of problems such as occlusion71

in computer vision-based gait identification. We present a72

novel primary dataset comprising 30 diverse participants.73

The dataset contains movement data from both arm and leg74

joints (i.e., hip and shoulder joints) recorded during normal75

walking sequences via wearable IMU-based digital goniome-76

ters. Furthermore, we also present unique feature vectors77

generated by time-series analysis of the limb movement78

data from our acquired dataset. This helps explaining the79

distinct spatial and temporal gait information which can be80

used for robust person identification. Moreover, we describe81

a simple two-stage approach to filtering the gait identi-82

fication predictions which may be applied to alternative83

solutions.84

The remainder of this work is organized as follows.85

Section II presents an overview of the current works related86

to IMU-based gait identification. Section III presents the87

proposed methodology and experimental design. Section IV88

presents the detailed experimental methodology followed89

by the experimental results in Section V. Further discus-90

sions regardomg the results and findings are provided in91

Section VI. Finally, Section VII presents the conclusions and92

plans for future work.93

TABLE 1. Related wearable sensor-based works.

II. RELATED WORK 94

For decades, psychologists have been able to demonstrate that 95

people are able to recognise individuals based solely on the 96

way that they walk [11], [12]. Early attempts at technological 97

gait analysis included rule-based systems such as in [13], 98

however, very little work on technological approaches to gait 99

identification were reported before machine learning became 100

prominent, after which, significant advances have beenmade. 101

Several existing works have explored machine learning 102

approach to gait identification, as shown in Table 1. For 103

instance, [14] used a clustering algorithm in combinationwith 104

an accelerometer-based device to learn the users’ gait pattern 105

when they first begin to use the device. Then K-Nearest 106

Neighbour (KNN) clustering is used to classify whether 107

detected footsteps belong to a known and approved user of 108

the device or not [14]. This approach is appropriate where it 109

is necessary to confirm the access rights of a single person 110

in a one-vs-all fashion (e.g., to grant or refuse access to a 111

device), however, it is not appropriate in its current form 112

for problems where people must be identified from a known 113

list of individuals (i.e., multiple class classification). Despite 114

this, an unsupervised approach has been demonstrated for 115

gait analysis in [15] which makes use of Rapid Centroid 116

Estimation (RCE) for clustering, and also in the detection 117

of neurological diseases such as Parkinson’s [16]. Similarly, 118

a joint-based approach has shown to be useful in areas such as 119

medical gait analysis [23], [24]. Moreover, an unsupervised 120

learning approach may be inconvenient to the gait identifica- 121

tion problem as identities are not labelled during the cluster- 122

ing process. Alternatively, supervised machine learning can 123

conveniently label the identified classes. 124

A variety of supervised machine learning models have 125

been deployed for gait identification that include Artificial 126

Neural Networks (ANN), Support Vector Machines (SVM), 127

Long Short-Term Memory (LSTM), and KNN as described 128

in Section III. For example, in [17] an LSTM model is used 129

to classify accelerometer data to identify participants, the 130

results are compared to a traditional approach which uses 131

hand-crafted features and a random forest model. The results 132

suggest that the LSTM model outperforms that of the alter- 133

native random forest approach when using the hand-crafted 134
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features [17]. A further example of using supervised learning135

is provided in [18] where a Convolutional Neural Network136

(CNN) is used to extract features from an IMU sensor net-137

work which are then classified using an SVM to identify138

the participant. Accuracies of 93.36% and 97.06% were139

achieved, however, this was evaluated using a dataset con-140

taining only 10 people [18]. Furthermore, unlike the proposed141

work, this work uses 5 sensors to provide a whole-body142

understanding of the motion of the body, such information143

is not always available in real-world situations as explained144

in Section I.145

Alternatively, [22] presents the R2-like Similarity (RRS)146

metric to find the nearest neighbour amongst representative147

gait templates to achieve person identification. In this work,148

a smartphone based IMUwas used to obtain gait data. Despite149

demonstrating some success and achieving accuracies up to150

89.7%, a significant portion of the errors were associated with151

a small number of participants [22], suggesting that further152

research is required to determine whether there is a subset of153

the population that this approach is unable to identify.154

Furthermore, IMUs are increasingly being used to address155

gait analysis and gait identification problems due to their156

affordability and ease-of-use [25]. Many of the previously157

described works make use of wearable sensors, for example,158

IMUs are used in several works, including in [26], where an159

IMU is attached to the waist belt of participants to gather gait160

information. Similarly, in [27] IMUs are attached to the limbs161

of participants, however, a moving camera is also required to162

obtain sufficient gait information to recover the body pose of163

the participants.164

Despite the variety of existing works utilising wearable165

sensors such as IMUs, there is little experimentation with166

the placement of the sensors. Many works such as [17]167

and [26] attach the sensor to the trunk of the body or use168

a network of wearable sensors attached to various parts of169

the body, as in [18]. This suggests a generic whole-body170

approach to gait identification which seem appropriate for171

many applications, particularly when using wearable sensors.172

However, in some applications, such as when using computer173

vision, information regarding the whole body is not always174

available, specifically, occlusion is a major unsolved prob-175

lem in computer vision-based gait identification [5]. Cur-176

rent sensor-based datasets are not recorded in a way that177

allows problems such as occlusion to be simulated (i.e., they178

do not supply independent information regarding individual179

body parts), thus limiting the use of sensors as a method of180

prototyping gait identification solutions that could be used181

to address such problems in the future. To resolve this, the182

dataset proposed in this work provides data for multiple body183

joints which provides the potential to simulate real-world184

problems such as occlusion (i.e., some joints can be withheld185

to simulate an occluded joint or limb).186

Moreover, when there is partial occlusion, other parts of187

the body are likely to remain visible, therefore, using the188

limbs or joints that are available at a given time to perform189

gait identification may offer the opportunity to perform the190

identification task in the event of partial occlusion. To the best 191

of the authors’ knowledge, none of the existing works inves- 192

tigate movement data from individual joints for the purpose 193

of gait identification. 194

The existing literature also provides examples of alterna- 195

tive sensors for the purpose of gait analysis and identification. 196

For example, in [28] and [29] pressure sensors are attached 197

to foot in order to analyse the wearers’ gait pattern. Sim- 198

ilarly, in [30] pressure sensors are placed on the floor to 199

identify people walking across it. Alternatively, in [31] and 200

[32] information regarding footsteps is acquired from sounds, 201

the work presented suggests that such an approach may be 202

applicable to the problem of person identification. Despite 203

such solutions demonstrating some degree of success, they 204

are not practical outside of a controlled environment, nor 205

are they able to provide information regarding specific body 206

parts, unlike wearable IMU sensors. Furthermore, due to 207

these limitations, these sensors are not appropriate for proto- 208

typing solutions where the aim is to adapt them to computer 209

vision problems, as they do not provide information which 210

can currently be retrieved using existing computer vision 211

methods. 212

III. METHODOLOGY 213

The proposed gait identification solution is a composite of 214

several tasks mainly related to the data science cycle as 215

shown in the Figure 1. In the first step, the IMU signal for 216

the body-joints is acquired from real walking sequences of 217

30 participants. Then the raw data is pre-processed (e.g., 218

cleaned, standardised etc.) using an overlapping (50%) fixed- 219

width window (equivalent to the duration of the average gait 220

cycle). A unique feature vector is then extracted through the 221

overlapped windowing of the data resulting in a large number 222

of statistical features (442 in total). A similar approach is 223

taken in [17], [33], and [34] where it is expected that win- 224

dowing data in this manner will allow LSTM to learn tempo- 225

ral dependencies between windows which provide complete 226

information regarding a full gait cycle at a given time. 227

The pre-processed data is then partitioned into two subsets; 228

the training subset contains 80% of the data per participant 229

and is used to train the various machine learning models 230

required. The remaining 20% is reserved and not exposed to 231

the machine learning models until the testing phase. As this 232

is a person identification problem, it is necessary to provide 233

both training and testing data for each participant as such 234

models are unable to identify specific individuals if they have 235

not previously been trained using data associated with that 236

individual. 237

From the 442 features available, the 30 most important fea- 238

tures are identified using feature selection methods including 239

Principal Component Analysis (PCA), the Boruta algorithm, 240

and Recursive Feature Elimination (RFE). In the next step, 241

an LSTM model is trained to identify the relevant participant 242

using the extracted features. Finally, the model is evaluated 243

with varying experimental configurations using the reserved 244

and previously unseen test data (20% of the original data per 245
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FIGURE 1. Overview of the sequential process of the gait identification
methodology presented in this work.

participant is reserved for testing only), here the model is246

taskedwith predicting the participant associated with walking247

sequences which it has not previously been exposed to. At this248

stage various alternative machine learning models are also249

evaluated to provide a comparison to the proposed LSTM250

model approach. Detailed descriptions of each component in251

the proposed approach are presented in the following sub-252

sections.253

A. DATASET COLLECTION254

Following the receival of ethical approval from the University255

Research Ethics Committee (UREC) (Ref: 21/CMP/004),256

an IMU-based gait dataset has been collected from 30 diverse257

participants using two synchronised MOTI digital goniome-258

ters [35], one attached to the arm and one attached to the259

leg. Participant recruitment aimed to recruit a diverse range260

of participants in terms of gender, age, height, weight, and261

ethnicity, as shown in Table 2. These devices collect move-262

ment data related to specific joints depending on the location263

of the device. The MOTI sensor contains an IMU con-264

sisting of an accelerometer, gyroscope, and magnetometer.265

TABLE 2. Participant diversity.

FIGURE 2. MOTI sensor placement, a) leg placement measures hip
movement, b) arm placement measures shoulder motion.

Accelerometers measure acceleration the acceleration of the 266

device, gyroscopes measure angular velocity of the device, 267

and magnetometers measure the magnetic field of the Earth 268

[10]. In this work, the device was attached in two positions, 269

as shown in Figure 2. In the first scenario (Figure 2a), the 270

sensor is attached to the right leg above the knee to gain 271

movement data regarding the hip joint while in Figure 2b, the 272

sensor is attached to the right arm above the elbow to obtain 273

movement data regarding the shoulder joint. An adjustable 274

strap is used to comfortably and firmly attach the sensor to 275

the participant, requiring less than 10 seconds to secure the 276

sensor to the participant using the provided clip which can be 277

instantly detached using a button on the clip if required. These 278

joints were chosen for their prominence in the gait cycle, and 279

to provide joints from more than one limb. 280

Participants were required to perform 12 walking 281

sequences; each was 8 metres in distance and took the partic- 282

ipants approximately 6 to 8 seconds on average to complete 283

depending on their walking speed. This provided a total of 284

240 walking sequences in total, providing approximately 285

1,680 complete gait cycles, and 120,000 labelled samples. 286

The raw data along with the extracted features is available in 287

the supplementary materials (S1). 288

B. FEATURE EXTRACTION 289

Once the dataset is acquired, the next stage is to extract 290

distinct features from the raw data which can be used for 291

the efficient identification of individuals. Firstly, windowing 292

is performed on the recorded data. An average complete 293

gait cycle is empirically selected as an optimal fixed-width 294

window size as shown in Table 3. The average gait cycle is 295

determined by sampling 10 gait cycles from each of the par- 296

ticipants in the dataset, the result of which is 0.965 seconds, 297

Table 3 suggests that the optimal window size is equal to the 298
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TABLE 3. A summary of results of the proposed gait identification model
with varying window and sample sizes.

TABLE 4. An overview of the data points provided by the MOTI sensor.

average full gait cycle (approximately 0.965s in this dataset)299

which comprises sufficient information in relation to unique300

patterns of movement. Furthermore, Table 3 also suggests301

that a sample size of 5 is optimal.302

For each overlapping window segment, a feature vector is303

generated by combining each of the 17 data points provided304

by the sensor, as described in Table 4, with 13 statistical305

features, as described in Table 5. As a result, a vector con-306

taining 221 features is generated (for leg movement) using307

overlapped window segmentation. Likewise, we extracted308

221 features for the arm movement resulting in 442 features309

in total.310

Table 5 describes the statistical features calculated in each311

window for each of the data points described in Table 4,312

as inspired by [33] where similar features are used for an313

accelerometer only in the detection of the Parkinson’s disease314

symptom, Freezing of fait (FoG). Further detail regarding the315

range of statistics used can be found in [36]. The features316

selected in Table 5 provide a range of temporal and spatial317

features when combined with the data points in Table 4. For318

example, the maximum, minimum, and mean motion degree319

provides information regarding the stride length, and kurtosis320

and skewness provide information regarding the spread of the321

data. Furthermore, Table 5 includes common time domain322

features including mean and standard deviation, as well as323

frequency domain features such as entropy [36].324

C. FEATURE SELECTION AND DIMENSIONALITY325

REDUCTION326

Starting with the 442 features as described in Subsection327

B, a two-stage feature selection stage is performed. Firstly,328

highly correlated features are removed using PCA to return329

the features with the highest variance. Secondly, the Boruta330

TABLE 5. An overview of the statistical features calculated for each data
point in each window.

algorithm and RFE are performed on the reduced feature vec- 331

tor. Features selected by both Boruta and RFE are returned to 332

produce the final feature vector containing themost important 333

features. 30 features comprised 80% of the total variance 334

amongst the available feature set, therefore these 30 features 335

were selected as the most important, the same number of 336

features was found to be appropriate in [33]. 337

1) PRINCIPAL COMPONENT ANALYSIS 338

Principal Component Analysis (PCA) has widely been used 339

as a transformation method [37] as well as method of fea- 340

ture selection, for example, in [38] and [39]. PCA can be 341

used to select the features with the highest importance to 342

the classification task by selecting for high variance, thus 343

ensuring variety in the feature vector [40]. The correlation 344

coefficients between the statistical features extracted from 345

gait data and the principal components (obtained through 346

PCA) is represented by the component loadings in PCA. The 347

maximized sum of variances of the squared loadings is then 348

provided by the component rotations where the absolute sum 349

of component rotations produces importance values (as in 350

Figures 3 and 4 in Appendix) for the corresponding features. 351

In the case of the proposed feature vector, the first 30 PCs 352

cover most of the variance (i.e., almost 80%) and therefore 353

used to calculate the feature importance. The mathematical 354

VOLUME 10, 2022 100117



L. K. Topham et al.: Gait Identification Using Limb Joint Movement and Deep Machine Learning

TABLE 6. 30 most important features identified during feature selection.

formulation of attribute loadings and feature ranking in PCA355

can be found in [41]356

2) BORUTA ALGORITHM357

As used in [33], the Boruta algorithm is used for feature selec-358

tion by identifying the features which are most important for359

the classification task. The algorithm achieves this by imple-360

menting a random forest classifier and iteratively removes361

features which are deemed statistically less important [42].362

The less important features are identified as those which are363

statistically less relevant than random probes [42]. A detailed364

explanation of the Boruta algorithm can be found in [42].365

3) RECURSIVE FEATURE ELIMINATION (RFE)366

As introduced in [43] RFE recursively removes less important367

features until only the desired number of the most important368

features remain. At each stage, a machine learning model369

such as an SVM is trained, each feature is ranked by impor-370

tance to the output, and finally the least important features are371

removed [43].372

Table 6 presents the 30 most important features (15 for the373

leg, and 15 for the arm) as identified using the overlapped374

feature selection methods. Each feature is in the form ‘‘sta-375

tistical feature–data point’’, the corresponding sensor data376

points and statistical features can be found in Table 4 and377

Table 5 respectively.378

As shown in Table 6, the most commonly appearing sensor379

data points in the list of most important features are accZ,380

gyrX, and pitch, suggesting that a range of IMU-based sen-381

sors (i.e., containing at least an accelerometer and gyroscope)382

may be of benefit to similar solutions. Conversely, none of383

the magnetometer features were selected in the list of the384

most important features, suggesting that such sensors may385

be less useful to the gait identification task as compared386

to the remaining sensors. Furthermore, the most commonly387

appearing statistical features in the list of most important388

features are Max, Min, and MAD.389

D. CLASSIFICATION390

As introduced in [44], LSTM is a type of Recurrent Neural391

Network (RNN) designed to provide improved results for392

TABLE 7. LSTM model configuration.

problems which involve long sequences of data [45]. The 393

main difference between LSTM and RNN is the construction 394

of the LSTM which contains three components. An LSTM 395

cell contains a forget gate which controls how much infor- 396

mation is retained, an input gate which updates the values 397

contained in the hidden states, and an output gate which 398

updates the cells output value [45]. For the given task of per- 399

son identification, the LSTM model is an appropriate model 400

because of the time-series nature of the data involved and the 401

ability of LSTM to learn temporal dependencies between data 402

samples [46]. 403

Table 7 presents the LSTM model configuration imple- 404

mented in this work; the configuration was selected empir- 405

ically by repeating the experiment with additional layers 406

until the optimum configuration was found. The optimum 407

configuration contains four layers including an LSTM layer, a 408

dropout layer with a dropout rate of 50% to help prevent over- 409

training, and two dense layers. The final layer has an output 410

shape of 30 to allow for classification of the 30 participants 411

included in this work. The final output is provided as a single 412

output feature with the range of 1 to 30. 413

E. ALTERNATIVE APPROACHES 414

To provide a comparison to the LSTMmodel which has been 415

implemented in the proposed solution, a variety of popular 416

machine learning models have also been implemented for the 417

classification task. These include an ANN, KNN, and SVM. 418

The following subsections will describe these models and 419

their implementation. 420

1) ARTIFICIAL NEURAL NETWORK (ANN) 421

ANNs superficially resemble the neural networks of the 422

human brain. In this work a feed forward ANN has been 423

implemented. In feed forward ANNs, the connections move 424

in one direction only (i.e., forward), unlike RNNs there are no 425

loops in the model which means that inputs are considered in 426

isolation and not in combination with any prior or subsequent 427

inputs [47]. Each node in an ANN computes a function based 428

on its inputs, the result of this function is then passed on to 429

the next nodes in the model [47]. In this work a feed forward 430

ANN has been implemented to classify each of the windowed 431

samples. 432

2) K-NEAREST NEIGHBOURS 433

KNNs are a type of instance learning algorithm which per- 434

forms classifications based on the closest training examples 435

in the feature space [48]. KNNs retain the entire training set, 436

so classification simply involves assigning the majority label 437

of a data points neighbours [48]. In this work, as in [29], the 438
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10 nearest neighbours of the data point to be classified are439

examined when performing classification. The KNN algo-440

rithm is provided in [48].441

3) SUPPORT VECTOR MACHINE442

The SVMs perform classification tasks by providing an opti-443

mal ‘‘hyperplane’’ which separates the members of one class444

from another [49]. The hyperplane may then be used to445

predict the most likely classification label for previously446

unseen data points [49]. Russell and Norvig [47] explain that447

SVMs provide three main advantages over other supervised448

learning models. Firstly, they generalize well as a decision449

boundary with the largest possible distances between points450

is formed [47]. Secondly, data which cannot be separated451

linearly can be separated using the kernel trick which uses452

higher-dimensional space to separate the data [47]. Finally,453

SVMs have the flexibility to model complex functions whilst454

being resistant to overfitting, this is due to the fact that SVMs455

are non-parametric and retain only the knowledge of the456

points closest to the separating hyperplane [47].457

This work used an SVMwith a cost=1, a decision function458

shape of one-vs-one (OVO), and a linear kernel. When using459

the OVO strategy, the multi-class classification task is broken460

up into a series of binary classification problems [50]. For this461

work OVO was chosen over the alternative strategy one-vs-462

all (OVA), which compares each class against all remaining463

classes, as it provides improved performance and is less likely464

to produce imbalanced data [50].465

F. FILTERING OF CLASSIFICATION RESULTS466

Due to the time-series nature of the dataset, filtering can467

be used to improve the overall accuracy of the results as468

predictions can be made using a series of samples produced469

per participant. For example, given a series of data samples470

provided by one person, each sample can be classified with471

respect to the target class (i.e., an individual). Where the pre-472

dicted classes erroneously belong to more than one class (i.e.,473

multiple persons are predicted where only one is present), fil-474

tering can be applied to correct the noisy predictions or make475

predictions based on relatively larger number of samples (i.e.,476

many consecutive samples from a single walking sequence).477

In this work we propose a simple two-stage filtering478

approach applied after a sequence of data samples have been479

classified, the algorithm for which is presented in Algo-480

rithm 1. Firstly, a moving average is applied whereby every481

triplet of samples is evaluated, and where there is a mode in482

the predicted classes (i.e., 2 out of 3, or 3 out of 3 match), the483

minority class is overwritten with that of the majority. This484

approach is likely to be affective where accuracy is already485

high (i.e.,>80%) as the chance of predicting the same incor-486

rect class 2 out of 3 times is relatively unlikely. In the case of487

there being three different classes, the process moves to the488

next triplet without making changes. Secondly, as this work489

provides relatively large sequences of data, a final optional490

step may be taken where the mode is taken across all samples491

in a sequence (i.e., an entire 8 metre recording sequence492

for one individual), therefore making a single classification 493

prediction for the entire sequence as opposed to making 494

predictions per sample. This is performed by replacing all 495

sample predictions for that sequence with that of the mode. 496

Both stages of the filtering algorithm are evaluated using the 497

aforementioned reserved test data. 498

IV. EXPERIMENTAL METHODOLOGY 499

This work contains three main experiments, the first uses the 500

sensor data for the leg only, the second uses the data for 501

the arm only, and the third uses synchronized data for both 502

the leg and arm. In addition, a further three experiments are 503

provided using the most important selected features, rather 504

Algorithm 1 Two-Stage Filtering
- Let C be the classifier such that
C ∈ {ANN, LSTM, SVM} used for the
prediction for the current frame of
feature vector (f )

- Let O be the list of output from C
corresponding to each sample S in f

- Sequence (Seq) is the complete walking
data of one experiment for one person

- Let m be the mode of a sublist
- Let L be the lower limit of the modal
class

- Let h be the size of the modal class
- Let fm be the frequency of the modal
class

- Let f1 be the frequency of the class
preceding the modal class

- Let f2 be the frequency of the class
succeeding the modal class

Inputs: Feature Array (f ) from Table 5
Output: Predicted Person Identity (p)

Procedure:

For each windowed Seq per person:

For each sample (s) from f :
- Select the optimal C (LSTM)
- Predicted class (p) =predict(s) using
C

- Store the outcomes p from C in list
O

End Loop

m = L + h
(fm − f1)

(fm − f1)+ (fm − f2)
If isnull(m):
Skip

Else:
p = m
overwrite p in o

End If
End Loop

VOLUME 10, 2022 100119



L. K. Topham et al.: Gait Identification Using Limb Joint Movement and Deep Machine Learning

than the large feature vector acquired prior to feature selec-505

tion. To achieve this, three datasets are created using the506

aforementioned data, each containing a training set consisting507

of 80% of the total records for that experiment and a test508

set containing the remaining 20%. The test set is extracted509

carefully to ensure that consecutive sequences are extracted510

(i.e., not random) and remain unseen by the model during the511

training process.512

The aim of these experiments is to test which body joints513

provide sufficient information to uniquely classify individu-514

als and whether the combination of joints provides improved515

identification accuracy. Moreover, the additional experiment516

will demonstrate whether the subset of features deemed the517

most important are able to provide the same level of identi-518

fication accuracy as compared to the larger original feature519

vector. Section III describes the feature extraction approach,520

which is consistent for all three experiments, note that for the521

third experiment consisting of the combined data, the feature522

vector is double that of the feature vector provided by the523

individual joints (30, as compared to the 15 for the individual524

joints).525

A. EXPERIMENT 1-A (EXP.1-A) LEG ONLY526

In Exp.1-A, the motion data from only one of the two MOTI527

sensors is used (i.e., the one attached to the leg). By calculat-528

ing each of the 13 statistical features in Table 5 for each of529

the 17 data points provided in Table 4, 221 potential features530

are generated for the hip motion. Such an experiment may be531

used to simulate gait identification under partial occlusion,532

for example, if the upper body was occluded (i.e., by omitting533

the arm data we may simulate occlusion of the arm).534

B. EXPERIMENT 1-B (EXP.1-B) LEG ONLY – SELECTED535

FEATURES536

As in Exp.1-B, only the leg data is used. However, instead of537

using the entire 221 feature vector, only the most important538

15 features are used, as described in Section III.539

C. EXPERIMENT 2-A (EXP.2-A) ARM ONLY540

In Exp.2-A, the motion data from only one of the two MOTI541

sensors is used (i.e., the one attached to the arm). By calcu-542

lating each of the 13 statistical features in Table 5 for each of543

the 17 data points provided in Table 4, 221 potential features544

are generated for the shoulder motion. Such an experiment545

may be used to simulate gait identification under occlusion,546

for example, if the lower body was occluded (i.e., by omitting547

the leg sensor data).548

D. EXPERIMENT 2-B (EXP.2-B) ARM ONLY – SELECTED549

FEATURES550

As in Exp.2-B, only the arm data is used. However, instead of551

using the entire 221 feature vector, only the most important552

15 features are used, as described in Section III.553

E. EXPERIMENT 3-A (EXP.3-A) LEG AND ARM 554

In Exp.3-A, the motion data from both sensors is used gen- 555

erating 442 potential features (221 for the leg and 221 for 556

the arm). This experiment allows the evaluation of combined 557

joint movements (i.e., simulate no/less occlusion). 558

F. EXPERIMENT 3-B (EXP.3-B) LEG AND ARM – SELECTED 559

FEATURES 560

As in Exp.3-A, the data for both the arm and leg is used. 561

However, instead of using the entire 442 feature vector, only 562

the most important 30 features are used, as described in 563

Section III. 564

V. RESULTS 565

Following the experimental design (Section IV), statistical 566

results are retrieved from multiple experiments and evaluated 567

using the reserved, previously unseen test data as described 568

in Section III. For each experiment, results of the proposed 569

LSTM model are provided in addition to the alternative 570

models described in Section III, to provide a comparison. 571

Furthermore, the results of both stages of the two-stage filter- 572

ing algorithm (i.e., the moving average and mode columns), 573

as detailed in Algorithm 1, are presented. Both stages of the 574

filtering algorithm are evaluated using the reserved test data. 575

The first stage of the filtering algorithm, the moving average, 576

is evaluated on a per-sample basis (i.e., many samples per 577

walking sequence). Whereas, due to the nature of the second 578

stage, the mode metric, this is evaluated on a per-sequence 579

basis (i.e., one prediction per walking sequence). 580

Table 8 presents the results of Exp.1-A, which was com- 581

pleted using leg data only, utilizing all 221 available features. 582

From Table 8 the highest accuracy was achieved using the 583

proposed LSTM approach with an accuracy of 97.3% when 584

evaluated using purely unseen test data. However, the addi- 585

tional metrics, precision, recall, F1 score, and Cohen’s Kappa 586

are all highest for the SVM model, suggesting that this may 587

provide a more stable and balanced classification in terms of 588

a reduced rate of false positives. 589

Table 9 presents the results of Exp.1-B, which was also 590

completed using the leg data only, however, only the 15 most 591

important features were used in this experiment. As in the 592

results from Exp.1-A, the proposed LSTM approach provides 593

the best accuracy. Furthermore, when using only the top 594

15 as in Exp.1-B, all models report slightly increased results 595

compared to using all features as in Exp.1-A (see Tables 596

8 and 9), suggesting that an appropriate subset of the original 597

feature vector have been correctly selected. 598

Table 10 presents the results of Exp.2-A which was com- 599

pleted using the arm data only, using all 221 available fea- 600

tures. As with Exp.1-A, the proposed LSTM architecture pro- 601

vides the highest accuracy with 98.9%, the highest reported 602

across all experiments, was achieved when evaluated by 603

using the previously unseen test data. As with experiment 1, 604

the SVM model provided higher scores for the remaining 605

metrics. 606
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Tables 9, 11, and 13 provide the results for Exp.1-B,607

Exp.2-B, and Exp.3-B respectively, specifically, they provide608

the results when performed using the most important features609

only, as described in Section III. The accuracies reported by610

the LSTM models for the three experiments when using the611

full feature set and a reduced feature set are very similar,612

with no more than 1.2% difference. This suggests that the613

features identified as important in Section III are sufficient614

for the gait identification task. The novel feature vector pre-615

sented in Section III may be useful to future IMU-based gait616

identification works.617

Table 11 presents the results of experiment Exp.2-B, which618

was also completed using the arm data only, using only the619

15 most important features. As in the results from Exp.2-A,620

described in Table 10, LSTM provides the best accuracy,621

as shown in Table 11. Furthermore, when using only the622

top features for experiment 2 slightly lower accuracies were623

reported for all models. However, the difference reported by624

the LSTM model was only 0.5%.625

Table 12 presents the results of Exp.3-A, which was com-626

pleted using synchronised leg and arm movement data, using627

all 442 available features. Again, the proposed LSTM archi-628

tecture provides the highest accuracy with 97.5% achieved629

when evaluating with previously unseen test data. As with630

Exp.1-A and Exp.2-A, SVM provided increased results for631

the additional metrics.632

Table 13 presents the results of Exp.3-B, which was also633

completed using synchronized leg and arm data, using only634

the 30 most important features. As in the results of Exp.3-A635

shown in Table 13, LSTM provides the highest accuracy,636

as shown in Table 13. Furthermore, when using the top fea-637

tures only, the LSTM model accuracy improves by 1.2%,638

however, all alternative models report lower accuracies as639

compared to when using the full feature set.640

Similar to our proposed solution, an LSTM model is used641

in [17] to identify the user of a smartphone using accelerom-642

eters only. Accuracies of above 90% were achieved using643

various combinations of the 21 total participants, however,644

certain combinations of participants provided much lower645

rates of identification, this is an unexplained issue that the646

authors expect to be exacerbated with the addition of further647

participants [17].648

In summary of the existing works’ results, the accura-649

cies presented in Table 14 shows that the proposed method650

outperforms the existing similar solutions. Similarly, the651

LSTM-based solution was shown to outperform the ANN,652

KNN, and SVM-based alternatives provided as a benchmark653

comparison for the newly proposed dataset.654

Moreover, the results of Exp.1-A, Exp.2-A, and Exp.3-A655

as presented in Tables 8, 10, and 12 respectively suggest that656

there is an opportunity to explore joint-based gait identifica-657

tion with a variety of body joints. In each of the experiments658

the LSTM-based solutions provide the highest accuracies,659

suggesting that LSTM is an appropriate approach for gait660

identification using time-series data from individual or com-661

binations of body joints. Exp.2-A, using the arm data only662

provided the highest accuracy, this is likely due to the more 663

varied arm movement displayed by people, as discussed in 664

Section IV. This suggests that there is an opportunity to fur- 665

ther explore arm movement and joint movement to contrast 666

the traditional approaches which focus on either the legs or 667

the trunk of the body. 668

VI. DISCUSSIONS 669

As shown in Section V, each trained model (when evaluated 670

over unseen instances) indicated a higher accuracy for the 671

arm data (Exp.2-A) as compared to the leg data (Exp.1-A). 672

This is likely due to the more obvious differentiations in 673

arm movements that can be visually observed. For example, 674

some people are rigid and have very little arm movement 675

when they walk, some people allow their arms to naturally 676

swing with the rhythm of their walking, and some people 677

use more energy and swing their arms more flamboyantly as 678

they walk [11]. 679

Furthermore, it can be observed that overall, the results of 680

Exp.2-A, arm data only, provided higher accuracy than those 681

of Exp.3-A, the combination of leg and arm data. This was an 682

unexpected result as it was anticipated that the unique traits 683

of both limbs would provide more unique gait traits for each 684

participant. 685

As presented in Section V, Table 14 compares the accuracy 686

of proposed solution to those of similar IMU-based gait 687

identification works from the literature. In [19], movement 688

data was gathered from 24 participants via an IMU device 689

attached to the ankle, containing an accelerometer and gyro- 690

scope, but unlike in the proposed work, it does not include 691

a magnetometer which would provide additional features. 692

A CNN is used in [19] to perform feature extraction, from 693

which an SVM classifies participants. An accuracy of 80% 694

is reported when provided with data containing 5 complete 695

gait cycles. In contrast, we use window size equivalent to a 696

single complete gait cycle and a sample size of 5 windows 697

achieving an accuracy of up to 98.9% using a similar amount 698

of data, as shown in Table 10. Furthermore, the use of a CNN 699

for feature extraction in [19], as compared to our hand-crafted 700

features, will limit the explain-ability and interpretability of 701

the model [51]. 702

Similarly, in [20] IMU data was gathered from 30 partici- 703

pants via a smartphone attached to the trunk of the body. As in 704

[19], magnetometer and gyroscope data was not included, 705

both of which may provide useful features, as demonstrated 706

in our proposed solution. As described in section II, attaching 707

the sensor to the trunk means that only generic whole-body 708

data is provided, and does not allow for the evaluation of indi- 709

vidual limbs and joints, unlike the proposed work. Further- 710

more, the approach described in [20] used the same number 711

of participants as in the proposed solution but achieved only 712

80.3% accuracy, considerably lower than that the 98.9% we 713

report in Table 14. 714

Unlike the other works described in Table 14 and our pro- 715

posed solution, [18] gathers movement data using a network 716

of 5 IMU sensors. Despite only containing 10 participants, 717
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TABLE 8. Results of experiment 1A, using leg data only (Exp.1-A).

TABLE 9. Results of experiment 1B, using leg data only (top 15 features only) (Exp.1-B).

TABLE 10. Results of Experiment 2A, using arm data only (Exp.2-A).

TABLE 11. Results of Experiment 2B, using arm data only (top 15 features only) (exp.2-b).

TABLE 12. Results of experiment 3A, using synchronised leg and arm data (Exp.3-A).

TABLE 13. Results of experiment 3B, using synchronised leg and arm (top 30 features only) (Exp.3-B).

an accuracy of 91% is reported, which is substantially lower718

than the 98.9% achieved by the proposed work which con-719

tains 30 participants and requires fewer sensors.720

In [21] motion data was collected using a smartphone and721

3 IMU sensors attached to the waist for a total of 744 partic-722

ipants [21]. Using this dataset [21] reports 97.16% accuracy,723

slightly lower than that reported in our work. However, simi-724

lar to [19], this solution relies on a CNN for feature extraction.725

Again, unlike the statistical features used in the proposed 726

work, CNN-based feature extraction would likely make the 727

model less explainable. Furthermore, only the preprocessed 728

dataset is available, not the original raw data, thus limiting the 729

ability to reuse or experiment the original data. Furthermore, 730

similar to [20], the sensor used in [21] was attached to the 731

trunk. Again, this provides motion data for the body as a 732

whole and does not allow for limb or joint-based approaches 733
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TABLE 14. A comparison of IMU-based gait identification works.

to be implemented or evaluated. A further limitation with734

the dataset used is the fact that only 2.5 seconds of data is735

recorded per participant, thus limiting the number of com-736

plete gait cycles [52]. In comparison, we provide approx-737

imately 60 seconds of data per participant in our primary738

dataset.739

Overall, in all experiments, the proposed LSTM model740

outperformed the alternatives, achieving classification accu-741

racy of up to 98.9%. In addition, reducing the feature vector742

by more than 93% did not reduce the performance, and743

in 2 out of three experiments, the feature vector reduc-744

tion lead to improved classification accuracy. The results of745

the two-stage filtering approach described in Algorithm 1,746

as shown in Tables 8, 9, 10, 11, 12, and 13, suggest that it747

leads to improved results where longer walking sequences748

(e.g., 8 metres in this case). The success of the mode met-749

ric is in part due to the high accuracies achieved during750

the initial prediction. As accuracies of up to 98.9% were751

achieved when evaluating the predicted samples, the mode752

(per sequence) must be correct as most of the samples within753

each sequence are correctly predicted, thus leading to the754

100% accuracy achieved in some experiments by the mode755

metric. However, further work and more data is required to756

further validate the mode metric as each walking sequence757

provides only a single prediction to validate when using this758

approach.759

The aforementioned statistical performance clearly vali-760

dates the proposed proof-of-concept that can be a baseline761

to further explore it for a computer vision-based imple-762

mentation. This paper demonstrates that when provided763

with accurate joint angles, a high accuracy of gait-based764

identification is achievable. Therefore, it is likely that a765

high accuracy of identification can be expected from future766

vision-based implementations if the joint-angle can be accu-767

rately estimated using computer vision methods. Computer768

vision provides the potential for more practical implemen-769

tations, for example, for security and policing it can be770

performed covertly, without the cooperation of the subjects.771

Such an implementation may also help to address the prob-772

lem of occlusion that affects many of the current computer773

vision-based approaches to gait identification, this is possible 774

as except for in cases of total occlusion, there is likely to 775

be at least one or more body joints visually available for 776

the purpose of gait-based identification. As demonstrated in 777

this work, a single joint may provide enough information to 778

accurately identify an individual. 779

It is also important to note that the related problem of gait 780

identification when unknown people have been detected (i.e., 781

those not in the training set or those that we do not seek 782

to identify) should be addressed to improve the real-world 783

implication of the proposed solution. For example, when 784

searching for missing people, the solution should exclude 785

people who are not on the missing persons list (i.e., do 786

not attempt to identify them). To the best of the authors’ 787

knowledge, this is an important area of research which has 788

gained little attention and therefore a robust solution is not 789

currently available. One potential solution, OpenMax [53], 790

is an alternative final layer for machine learning models 791

which aims to estimate the probability of a sample belonging 792

to an unknown class. It achieves this by adapting SoftMax and 793

removes the requirement for probabilities over all classes to 794

sum to 1 and includes a category for the unknown classes [53]. 795

However, the implementation and evaluation of this would 796

require the collection of gait data from additional participants 797

to act as the unknown classes, as to the best of the authors’ 798

knowledge, such an open set gait dataset is not currently 799

available. 800

Furthermore, the authors are not aware of any existing 801

works exploring how person identification can be performed 802

using pathological gait (i.e., gait abnormalities caused by 803

pain, reduced range-of-motion, or weakness, for example) or 804

where the person has aged significantly since their gait sam- 805

ple was collected. As current works utilize datasets captured 806

over a relatively brief period, the data provides information 807

regarding the person’s gait at the time of recording, and there- 808

fore does not account for future, ageing, injury, or illness. 809

Matovski et al. [54] report that the effect of time between 810

recording session has less impact on identification accuracy 811

than other factors such as clothing. However, the dataset 812

collected contains only a single six-month gap between 813

recordings, and the authors are not aware of any alternative 814

gait datasets with time gaps between recordings. An initial 815

approach to further explore this problem would require the 816

collection of a gait dataset recorded at significant intervals 817

(i.e., years) containing instances of pathological gait. It may 818

then be possible to identify unaffected gait features which 819

may aid in person identification from pathological gait data. 820

Solving this problem would potentially create an identifica- 821

tion system capable of identifying individuals long after their 822

gait samples have been collected, without the requirement of 823

updating the gait data for each participant. 824

VII. CONCLUSION AND FUTURE WORK 825

This work has demonstrated that both the hip and shoulder 826

joint movements on their own as well as in combination 827

possess sufficient information to provide accurate gait-based 828
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FIGURE 3. Top Quartile (25% most important features) based on their importance.

FIGURE 4. 1st Quartile (25% least-important features) based on their importance.

identification. To the best of the authors’ knowledge, a single829

joint has not been used for gait identification in previous830

works. These findings present the opportunity for future831

developments in joint-based gait identification which could 832

potentially help to overcome the problem of occlusion in 833

computer vision-based gait identification and therefore, help 834
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reduce false positive identifications. Future work is required835

to implement this approach in computer vision, and also to836

develop the necessary algorithms to make predictions based837

on the subset of available joints in the event of occlusion838

occurring.839

Using the feature selection approach described in840

Section III, the 30 most important features from the available841

442 are presented in Table 6. Moreover, the most important842

features contain features from two of the IMU sensors (gyro-843

scope and accelerometer). Therefore, including a variety of844

sensors will likely be beneficial for future works, as this is845

not always applied in the literature, for example, [19] does846

not use a gyroscope.847

The simple filtering method based on the moving-average848

and mode as described in Algorithm 1 (Section III) has849

improved the accuracies in almost all cases as shown in850

Tables 8, 9, 10, 11, 12, and 13. Often, accuracies of 100%851

are reported by a variety of models when presented with a852

full walking sequence (8 metres) per person. Furthermore,853

it should be noted that 8 metres is a relatively large walking854

distance to obtain, and it is therefore likely that this amount855

of data would not be available in many circumstances, for856

instance, security camera footage in a small shop with limited857

walking space, therefore, the mode metric may be deemed an858

optional additional step.859

Future work is planned to extend the gait dataset to860

include additional participants, the aim is to collect data for861

100 diverse (in terms of gender, age, height, weight, eth-862

nicity etc.) participants. Such a dataset would increase the863

generalisation of our proposedmodels and would increase the864

confidence in the identification results and filtering approach.865

When the dataset is complete, we plan to upload it and to866

share it with the wider research community. The expanded867

dataset will provide the opportunity to address questions868

such as whether anthropometric and demographic parame-869

ters influence the ability to identify participants using the870

proposed and alternative solutions. For example, by com-871

paring the success of gait identification models on the pro-872

posed diverse dataset to that of less diverse datasets currently873

available.874

Furthermore, in addition to the leg and arm data, we also875

collected the head movements during the walk. Future work876

is planned to investigate whether the movement of the head877

provides relevant information for the task of person iden-878

tification. This experiment was inspired by the observation879

that in many busy and heavily crowded areas it is some-880

times only possible to see people’s heads when their bodies881

are occluded by people in front of them. Such a solution882

would provide the opportunity for gait-based identification883

in crowded and heavily occluded environments such as city884

centers. Finally, the proposed approach sets the baseline885

for computer vision-based gait identification which is more886

practical to overcome the challenges of limited cooperation887

from the subjects and the problem of occlusion affecting888

many of the current computer vision-based approaches to gait889

identification.890

APPENDIX (A1)—PCA 891

See Figures 3 and 4. 892
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