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ABSTRACT Person identification is a key problem in the security domain and may be used to automatically
identify criminals or missing persons. The traditional face matching approaches adopted by the police and
security services across the world have recently been shown to produce a high rate of false positive identifi-
cation. Alternatively, gait-based person identification has shown to be a convenient method particularly as it
can be performed at a distance, without the cooperation of the subject, and is a biometric trait which cannot be
easily disguised. In this work, we propose a gait-based person identification approach which uses limb joint
motion data and deep machine learning models to identify the individuals. Distinct statistical features are
identified and extracted from limb movement using a fixed width sliding window to train a Long Short-Term
Memory model. The proposed solution outperforms the existing methods producing 98.87% accuracy when
evaluated over unseen samples. In addition, we propose a simple two-stage filtering approach to increase the
prediction accuracy up to 100% when identifying individuals from larger sequences of samples. This finding
may improve the current solutions in controlled environments such as airports. In the future, this approach
may help to overcome the problem of occlusion in gait-based identification, as unlike the existing works, it
does not require information regarding the entire body. The study also presents a primary dataset comprising
limb joint movement acquired from a diverse range of participants during casual walking captured through
two digital goniometers.

INDEX TERMS Gait identification, limb joint motion analysis, gait recognition, deep learning for person
identification, gait pattern recognition, IMU sensor data.

I. INTRODUCTION

Person identification is a key issue mainly within the security
domain. The media has highlighted several cases where the
concerned authorities (e.g. police force) have been using Face
Matching Tools (FMT) which provided false positive rates
up to 98% [1], [2], [3]. In these solutions, false positives
incorrectly identify innocent members of the public as crime
suspects. Real-time dynamic environments pose problems for
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FMT, for example, pose variation, lighting, facial expres-
sions, image resolutions, makeup, and occlusion can cause
identification failure [4]. Such reports suggest a clear need for
an improved approach to automated person identification.
An alternative approach to FMT for person identification is
provided by gait identification, whereby a person is identified
by the manner of their walking. Gait analysis is considered
to be a convenient approach to person identification as it
can be performed at a distance, without the knowledge or
cooperation of the subject, and it is a feature which cannot
be easily disguised [5]. Such factors would be advantageous
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in addressing problems such as crime suspect identification,
and missing person identification.

Furthermore, computer vision-based approaches to gait
identification provide the opportunity to obtain the aforemen-
tioned covert advantages of gait identification and have there-
fore gained significant attention. However, existing computer
vision-based gait identification solutions are often affected
by occlusion and clothing changes, this is partly due to
the whole body approach where data is required for the
entire body movement, which is not always available in real-
world dynamic environments [6], [7]. Many of the existing
sensor-based datasets encourage a whole body approach by
capturing data using networks of sensors to capture full body
movement, or via sensors attached to the trunk [8]. To the
best of the authors’ knowledge, none of the existing dataset
contain movement data for multiple individual limbs or joints.
Such a dataset would allow researchers to approach the prob-
lem of gait identification in situations where whole body
information is not available, for example, when the body is
partially occluded.

This work proposes a new gait-based person identifi-
cation approach using movement data regarding multiple
body-joints and machine/deep learning algorithms. Move-
ment data is collected for the hip and shoulder joints using an
Inertial Measurement Unit (IMU)-based digital goniometer
device. Goniometers are commonly used by physiothera-
pists to measure the range-of-motion (i.e., angle) of a body
joint [9]. Digital goniometers commonly include IMU sen-
sors containing accelerometers, gyroscopes, and magnetome-
ters to measure movement [10].

To the best of the authors’ knowledge, this is the first
use of a body joint-based approach to gait-based person
identification which may in the future offer the opportu-
nity to decrease the impact of problems such as occlusion
in computer vision-based gait identification. We present a
novel primary dataset comprising 30 diverse participants.
The dataset contains movement data from both arm and leg
joints (i.e., hip and shoulder joints) recorded during normal
walking sequences via wearable IMU-based digital goniome-
ters. Furthermore, we also present unique feature vectors
generated by time-series analysis of the limb movement
data from our acquired dataset. This helps explaining the
distinct spatial and temporal gait information which can be
used for robust person identification. Moreover, we describe
a simple two-stage approach to filtering the gait identi-
fication predictions which may be applied to alternative
solutions.

The remainder of this work is organized as follows.
Section II presents an overview of the current works related
to IMU-based gait identification. Section III presents the
proposed methodology and experimental design. Section IV
presents the detailed experimental methodology followed
by the experimental results in Section V. Further discus-
sions regardomg the results and findings are provided in
Section VI. Finally, Section VII presents the conclusions and
plans for future work.
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TABLE 1. Related wearable sensor-based works.

Sensor Type Sensor Model Gait Task
Ref
Placement
[14] Accelerometer Trunk KNN Identification
[15] MU Trunk RCE Analysis
[16] ™MU Trunk Hidden Analysis
Markov Y

[17] Accelerometer Trunk LSTM Identification
[18] MU Wrist CNN Identification
(19] MU Ankle CS%/ Identification
(20] MU Trunk %I\gk/l/[_ Identification
[21] MU Trunk CNN Identification
[22] IMU Ankle RRS Identification

Il. RELATED WORK

For decades, psychologists have been able to demonstrate that
people are able to recognise individuals based solely on the
way that they walk [11], [12]. Early attempts at technological
gait analysis included rule-based systems such as in [13],
however, very little work on technological approaches to gait
identification were reported before machine learning became
prominent, after which, significant advances have been made.

Several existing works have explored machine learning
approach to gait identification, as shown in Table 1. For
instance, [ 14] used a clustering algorithm in combination with
an accelerometer-based device to learn the users’ gait pattern
when they first begin to use the device. Then K-Nearest
Neighbour (KNN) clustering is used to classify whether
detected footsteps belong to a known and approved user of
the device or not [14]. This approach is appropriate where it
is necessary to confirm the access rights of a single person
in a one-vs-all fashion (e.g., to grant or refuse access to a
device), however, it is not appropriate in its current form
for problems where people must be identified from a known
list of individuals (i.e., multiple class classification). Despite
this, an unsupervised approach has been demonstrated for
gait analysis in [15] which makes use of Rapid Centroid
Estimation (RCE) for clustering, and also in the detection
of neurological diseases such as Parkinson’s [16]. Similarly,
a joint-based approach has shown to be useful in areas such as
medical gait analysis [23], [24]. Moreover, an unsupervised
learning approach may be inconvenient to the gait identifica-
tion problem as identities are not labelled during the cluster-
ing process. Alternatively, supervised machine learning can
conveniently label the identified classes.

A variety of supervised machine learning models have
been deployed for gait identification that include Artificial
Neural Networks (ANN), Support Vector Machines (SVM),
Long Short-Term Memory (LSTM), and KNN as described
in Section III. For example, in [17] an LSTM model is used
to classify accelerometer data to identify participants, the
results are compared to a traditional approach which uses
hand-crafted features and a random forest model. The results
suggest that the LSTM model outperforms that of the alter-
native random forest approach when using the hand-crafted
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features [17]. A further example of using supervised learning
is provided in [18] where a Convolutional Neural Network
(CNN) is used to extract features from an IMU sensor net-
work which are then classified using an SVM to identify
the participant. Accuracies of 93.36% and 97.06% were
achieved, however, this was evaluated using a dataset con-
taining only 10 people [18]. Furthermore, unlike the proposed
work, this work uses 5 sensors to provide a whole-body
understanding of the motion of the body, such information
is not always available in real-world situations as explained
in Section 1.

Alternatively, [22] presents the R2-like Similarity (RRS)
metric to find the nearest neighbour amongst representative
gait templates to achieve person identification. In this work,
a smartphone based IMU was used to obtain gait data. Despite
demonstrating some success and achieving accuracies up to
89.7%, a significant portion of the errors were associated with
a small number of participants [22], suggesting that further
research is required to determine whether there is a subset of
the population that this approach is unable to identify.

Furthermore, IMUs are increasingly being used to address
gait analysis and gait identification problems due to their
affordability and ease-of-use [25]. Many of the previously
described works make use of wearable sensors, for example,
IMUs are used in several works, including in [26], where an
IMU is attached to the waist belt of participants to gather gait
information. Similarly, in [27] IMUs are attached to the limbs
of participants, however, a moving camera is also required to
obtain sufficient gait information to recover the body pose of
the participants.

Despite the variety of existing works utilising wearable
sensors such as IMUs, there is little experimentation with
the placement of the sensors. Many works such as [17]
and [26] attach the sensor to the trunk of the body or use
a network of wearable sensors attached to various parts of
the body, as in [18]. This suggests a generic whole-body
approach to gait identification which seem appropriate for
many applications, particularly when using wearable sensors.
However, in some applications, such as when using computer
vision, information regarding the whole body is not always
available, specifically, occlusion is a major unsolved prob-
lem in computer vision-based gait identification [5]. Cur-
rent sensor-based datasets are not recorded in a way that
allows problems such as occlusion to be simulated (i.e., they
do not supply independent information regarding individual
body parts), thus limiting the use of sensors as a method of
prototyping gait identification solutions that could be used
to address such problems in the future. To resolve this, the
dataset proposed in this work provides data for multiple body
joints which provides the potential to simulate real-world
problems such as occlusion (i.e., some joints can be withheld
to simulate an occluded joint or limb).

Moreover, when there is partial occlusion, other parts of
the body are likely to remain visible, therefore, using the
limbs or joints that are available at a given time to perform
gait identification may offer the opportunity to perform the
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identification task in the event of partial occlusion. To the best
of the authors’ knowledge, none of the existing works inves-
tigate movement data from individual joints for the purpose
of gait identification.

The existing literature also provides examples of alterna-
tive sensors for the purpose of gait analysis and identification.
For example, in [28] and [29] pressure sensors are attached
to foot in order to analyse the wearers’ gait pattern. Sim-
ilarly, in [30] pressure sensors are placed on the floor to
identify people walking across it. Alternatively, in [31] and
[32] information regarding footsteps is acquired from sounds,
the work presented suggests that such an approach may be
applicable to the problem of person identification. Despite
such solutions demonstrating some degree of success, they
are not practical outside of a controlled environment, nor
are they able to provide information regarding specific body
parts, unlike wearable IMU sensors. Furthermore, due to
these limitations, these sensors are not appropriate for proto-
typing solutions where the aim is to adapt them to computer
vision problems, as they do not provide information which
can currently be retrieved using existing computer vision
methods.

lll. METHODOLOGY

The proposed gait identification solution is a composite of
several tasks mainly related to the data science cycle as
shown in the Figure 1. In the first step, the IMU signal for
the body-joints is acquired from real walking sequences of
30 participants. Then the raw data is pre-processed (e.g.,
cleaned, standardised etc.) using an overlapping (50%) fixed-
width window (equivalent to the duration of the average gait
cycle). A unique feature vector is then extracted through the
overlapped windowing of the data resulting in a large number
of statistical features (442 in total). A similar approach is
taken in [17], [33], and [34] where it is expected that win-
dowing data in this manner will allow LSTM to learn tempo-
ral dependencies between windows which provide complete
information regarding a full gait cycle at a given time.

The pre-processed data is then partitioned into two subsets;
the training subset contains 80% of the data per participant
and is used to train the various machine learning models
required. The remaining 20% is reserved and not exposed to
the machine learning models until the testing phase. As this
is a person identification problem, it is necessary to provide
both training and testing data for each participant as such
models are unable to identify specific individuals if they have
not previously been trained using data associated with that
individual.

From the 442 features available, the 30 most important fea-
tures are identified using feature selection methods including
Principal Component Analysis (PCA), the Boruta algorithm,
and Recursive Feature Elimination (RFE). In the next step,
an LSTM model is trained to identify the relevant participant
using the extracted features. Finally, the model is evaluated
with varying experimental configurations using the reserved
and previously unseen test data (20% of the original data per
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FIGURE 1. Overview of the sequential process of the gait identification
methodology presented in this work.

participant is reserved for testing only), here the model is
tasked with predicting the participant associated with walking
sequences which it has not previously been exposed to. At this
stage various alternative machine learning models are also
evaluated to provide a comparison to the proposed LSTM
model approach. Detailed descriptions of each component in
the proposed approach are presented in the following sub-
sections.

A. DATASET COLLECTION

Following the receival of ethical approval from the University
Research Ethics Committee (UREC) (Ref: 21/CMP/004),
an IMU-based gait dataset has been collected from 30 diverse
participants using two synchronised MOTT digital goniome-
ters [35], one attached to the arm and one attached to the
leg. Participant recruitment aimed to recruit a diverse range
of participants in terms of gender, age, height, weight, and
ethnicity, as shown in Table 2. These devices collect move-
ment data related to specific joints depending on the location
of the device. The MOTI sensor contains an IMU con-
sisting of an accelerometer, gyroscope, and magnetometer.
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TABLE 2. Participant diversity.

Min Max Average
Age 20 65 35.83
Height (cm) 152 188 107.28
Weight (kg) 57 133 79.3

FIGURE 2. MOTI sensor placement, a) leg placement measures hip
movement, b) arm placement measures shoulder motion.

Accelerometers measure acceleration the acceleration of the
device, gyroscopes measure angular velocity of the device,
and magnetometers measure the magnetic field of the Earth
[10]. In this work, the device was attached in two positions,
as shown in Figure 2. In the first scenario (Figure 2a), the
sensor is attached to the right leg above the knee to gain
movement data regarding the hip joint while in Figure 2b, the
sensor is attached to the right arm above the elbow to obtain
movement data regarding the shoulder joint. An adjustable
strap is used to comfortably and firmly attach the sensor to
the participant, requiring less than 10 seconds to secure the
sensor to the participant using the provided clip which can be
instantly detached using a button on the clip if required. These
joints were chosen for their prominence in the gait cycle, and
to provide joints from more than one limb.

Participants were required to perform 12 walking
sequences; each was 8 metres in distance and took the partic-
ipants approximately 6 to 8 seconds on average to complete
depending on their walking speed. This provided a total of
240 walking sequences in total, providing approximately
1,680 complete gait cycles, and 120,000 labelled samples.
The raw data along with the extracted features is available in
the supplementary materials (S1).

B. FEATURE EXTRACTION

Once the dataset is acquired, the next stage is to extract
distinct features from the raw data which can be used for
the efficient identification of individuals. Firstly, windowing
is performed on the recorded data. An average complete
gait cycle is empirically selected as an optimal fixed-width
window size as shown in Table 3. The average gait cycle is
determined by sampling 10 gait cycles from each of the par-
ticipants in the dataset, the result of which is 0.965 seconds,
Table 3 suggests that the optimal window size is equal to the
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TABLE 3. A summary of results of the proposed gait identification model
with varying window and sample sizes.

TABLE 5. An overview of the statistical features calculated for each data
point in each window.

Sample Size Window Size = 0.965(s) Window Size = 0.4825(s)

Features Description / Formula

1 74.21% 77.17%
5 81.23% 97.66%
10 62.1% 85.36%

TABLE 4. An overview of the data points provided by the MOTI sensor.

Features Explanation Units Range
accX, accY, Accelerometer data for m/s? +/-9.8
accZ the X, Y, and Z axis
gyrX, gyrY, Gyroscope data for the /s +/-450
gyrZ X, Y, and Z axis
magX, magY, Magnetometer data for uT +/-
magZ the X, Y, and Z axis 2,400
Roll, Pitch, Euler angles describing ° 0-360
Yaw 3D orientation
q0,q1,92,93  Quaternions describing Quaternion ~ +/- 1

3D rotation
MotionDeg Joint rotation provided in ~ ° 0-360

degrees

average full gait cycle (approximately 0.965s in this dataset)
which comprises sufficient information in relation to unique
patterns of movement. Furthermore, Table 3 also suggests
that a sample size of 5 is optimal.

For each overlapping window segment, a feature vector is
generated by combining each of the 17 data points provided
by the sensor, as described in Table 4, with 13 statistical
features, as described in Table 5. As a result, a vector con-
taining 221 features is generated (for leg movement) using
overlapped window segmentation. Likewise, we extracted
221 features for the arm movement resulting in 442 features
in total.

Table 5 describes the statistical features calculated in each
window for each of the data points described in Table 4,
as inspired by [33] where similar features are used for an
accelerometer only in the detection of the Parkinson’s disease
symptom, Freezing of fait (FoG). Further detail regarding the
range of statistics used can be found in [36]. The features
selected in Table 5 provide a range of temporal and spatial
features when combined with the data points in Table 4. For
example, the maximum, minimum, and mean motion degree
provides information regarding the stride length, and kurtosis
and skewness provide information regarding the spread of the
data. Furthermore, Table 5 includes common time domain
features including mean and standard deviation, as well as
frequency domain features such as entropy [36].

C. FEATURE SELECTION AND DIMENSIONALITY
REDUCTION

Starting with the 442 features as described in Subsection
B, a two-stage feature selection stage is performed. Firstly,
highly correlated features are removed using PCA to return
the features with the highest variance. Secondly, the Boruta
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algorithm and RFE are performed on the reduced feature vec-
tor. Features selected by both Boruta and RFE are returned to
produce the final feature vector containing the most important
features. 30 features comprised 80% of the total variance
amongst the available feature set, therefore these 30 features
were selected as the most important, the same number of
features was found to be appropriate in [33].

1) PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) has widely been used
as a transformation method [37] as well as method of fea-
ture selection, for example, in [38] and [39]. PCA can be
used to select the features with the highest importance to
the classification task by selecting for high variance, thus
ensuring variety in the feature vector [40]. The correlation
coefficients between the statistical features extracted from
gait data and the principal components (obtained through
PCA) is represented by the component loadings in PCA. The
maximized sum of variances of the squared loadings is then
provided by the component rotations where the absolute sum
of component rotations produces importance values (as in
Figures 3 and 4 in Appendix) for the corresponding features.
In the case of the proposed feature vector, the first 30 PCs
cover most of the variance (i.e., almost 80%) and therefore
used to calculate the feature importance. The mathematical
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TABLE 6. 30 most important features identified during feature selection.

TABLE 7. LSTM model configuration.

Leg Features Arm Features Layer Type Output Shape No. Of Parameters
MAD-MotionDeg Min-Pitch LSTM 100 115200
Max-Pitch Max-gyrZ Dropout 100 0
Min-Pitch Mean-accZ Dense 100 10100
STD-Yaw Max-accX Dense 30 3030
MAD-accX Max-Pitch
l\lf:;(na;fé M:ﬁ_ﬁ)‘)ﬁ%eg problems which involve long sequences of data [45]. The
Median-accZ Max-accY main difference between LSTM and RNN is the construction
I\ﬁl/ﬁ)l()_:gg;r}){( ﬁgi%ﬁ’ﬁ of the LSTM which contains three components. An LSTM
Quantile-accZ MAD-accZ cell contains a forget gate which controls how much infor-
Var-gyrX Min-AccZ mation is retained, an input gate which updates the values
ﬁi’l‘gzg M&i;az;°§2 contained in the hidden states, and an output gate which
Skewness-gyrY MAD-gyrZ updates the cells output value [45]. For the given task of per-

formulation of attribute loadings and feature ranking in PCA
can be found in [41]

2) BORUTA ALGORITHM

As used in [33], the Boruta algorithm is used for feature selec-
tion by identifying the features which are most important for
the classification task. The algorithm achieves this by imple-
menting a random forest classifier and iteratively removes
features which are deemed statistically less important [42].
The less important features are identified as those which are
statistically less relevant than random probes [42]. A detailed
explanation of the Boruta algorithm can be found in [42].

3) RECURSIVE FEATURE ELIMINATION (RFE)

As introduced in [43] RFE recursively removes less important
features until only the desired number of the most important
features remain. At each stage, a machine learning model
such as an SVM is trained, each feature is ranked by impor-
tance to the output, and finally the least important features are
removed [43].

Table 6 presents the 30 most important features (15 for the
leg, and 15 for the arm) as identified using the overlapped
feature selection methods. Each feature is in the form “sta-
tistical feature—data point”, the corresponding sensor data
points and statistical features can be found in Table 4 and
Table 5 respectively.

As shown in Table 6, the most commonly appearing sensor
data points in the list of most important features are accZ,
gyrX, and pitch, suggesting that a range of IMU-based sen-
sors (i.e., containing at least an accelerometer and gyroscope)
may be of benefit to similar solutions. Conversely, none of
the magnetometer features were selected in the list of the
most important features, suggesting that such sensors may
be less useful to the gait identification task as compared
to the remaining sensors. Furthermore, the most commonly
appearing statistical features in the list of most important
features are Max, Min, and MAD.

D. CLASSIFICATION
As introduced in [44], LSTM is a type of Recurrent Neural
Network (RNN) designed to provide improved results for
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son identification, the LSTM model is an appropriate model
because of the time-series nature of the data involved and the
ability of LSTM to learn temporal dependencies between data
samples [46].

Table 7 presents the LSTM model configuration imple-
mented in this work; the configuration was selected empir-
ically by repeating the experiment with additional layers
until the optimum configuration was found. The optimum
configuration contains four layers including an LSTM layer, a
dropout layer with a dropout rate of 50% to help prevent over-
training, and two dense layers. The final layer has an output
shape of 30 to allow for classification of the 30 participants
included in this work. The final output is provided as a single
output feature with the range of 1 to 30.

E. ALTERNATIVE APPROACHES

To provide a comparison to the LSTM model which has been
implemented in the proposed solution, a variety of popular
machine learning models have also been implemented for the
classification task. These include an ANN, KNN, and SVM.
The following subsections will describe these models and
their implementation.

1) ARTIFICIAL NEURAL NETWORK (ANN)

ANNSs superficially resemble the neural networks of the
human brain. In this work a feed forward ANN has been
implemented. In feed forward ANNSs, the connections move
in one direction only (i.e., forward), unlike RNNs there are no
loops in the model which means that inputs are considered in
isolation and not in combination with any prior or subsequent
inputs [47]. Each node in an ANN computes a function based
on its inputs, the result of this function is then passed on to
the next nodes in the model [47]. In this work a feed forward
ANN has been implemented to classify each of the windowed
samples.

2) K-NEAREST NEIGHBOURS

KNNs are a type of instance learning algorithm which per-
forms classifications based on the closest training examples
in the feature space [48]. KNNs retain the entire training set,
so classification simply involves assigning the majority label
of a data points neighbours [48]. In this work, as in [29], the
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10 nearest neighbours of the data point to be classified are
examined when performing classification. The KNN algo-
rithm is provided in [48].

3) SUPPORT VECTOR MACHINE

The SVMs perform classification tasks by providing an opti-
mal “hyperplane” which separates the members of one class
from another [49]. The hyperplane may then be used to
predict the most likely classification label for previously
unseen data points [49]. Russell and Norvig [47] explain that
SVMs provide three main advantages over other supervised
learning models. Firstly, they generalize well as a decision
boundary with the largest possible distances between points
is formed [47]. Secondly, data which cannot be separated
linearly can be separated using the kernel trick which uses
higher-dimensional space to separate the data [47]. Finally,
SVMs have the flexibility to model complex functions whilst
being resistant to overfitting, this is due to the fact that SVMs
are non-parametric and retain only the knowledge of the
points closest to the separating hyperplane [47].

This work used an SVM with a cost=1, a decision function
shape of one-vs-one (OVO), and a linear kernel. When using
the OVO strategy, the multi-class classification task is broken
up into a series of binary classification problems [50]. For this
work OVO was chosen over the alternative strategy one-vs-
all (OVA), which compares each class against all remaining
classes, as it provides improved performance and is less likely
to produce imbalanced data [50].

F. FILTERING OF CLASSIFICATION RESULTS
Due to the time-series nature of the dataset, filtering can
be used to improve the overall accuracy of the results as
predictions can be made using a series of samples produced
per participant. For example, given a series of data samples
provided by one person, each sample can be classified with
respect to the target class (i.e., an individual). Where the pre-
dicted classes erroneously belong to more than one class (i.e.,
multiple persons are predicted where only one is present), fil-
tering can be applied to correct the noisy predictions or make
predictions based on relatively larger number of samples (i.e.,
many consecutive samples from a single walking sequence).
In this work we propose a simple two-stage filtering
approach applied after a sequence of data samples have been
classified, the algorithm for which is presented in Algo-
rithm 1. Firstly, a moving average is applied whereby every
triplet of samples is evaluated, and where there is a mode in
the predicted classes (i.e., 2 out of 3, or 3 out of 3 match), the
minority class is overwritten with that of the majority. This
approach is likely to be affective where accuracy is already
high (i.e., >80%) as the chance of predicting the same incor-
rect class 2 out of 3 times is relatively unlikely. In the case of
there being three different classes, the process moves to the
next triplet without making changes. Secondly, as this work
provides relatively large sequences of data, a final optional
step may be taken where the mode is taken across all samples
in a sequence (i.e.,, an entire 8 metre recording sequence
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for one individual), therefore making a single classification
prediction for the entire sequence as opposed to making
predictions per sample. This is performed by replacing all
sample predictions for that sequence with that of the mode.
Both stages of the filtering algorithm are evaluated using the
aforementioned reserved test data.

IV. EXPERIMENTAL METHODOLOGY

This work contains three main experiments, the first uses the
sensor data for the leg only, the second uses the data for
the arm only, and the third uses synchronized data for both
the leg and arm. In addition, a further three experiments are
provided using the most important selected features, rather

Algorithm 1 Two-Stage Filtering

- Let C be the classifier such that
C € {ANN, LSTM, SVM} used for the
prediction for the current frame of
feature vector (f)

- Let O be the list of output from C
corresponding to each sample S in f

- Sequence (Seq) is the complete walking
data of one experiment for one person

- Let m be the mode of a sublist

- Let L be the lower limit of the modal
class

- Let h be the size of the modal class

- Let f be the frequency of the modal
class

- Let fi be the frequency of the class
preceding the modal class

- Let fo be the frequency of the class
succeeding the modal class

Inputs: Feature Array (f) from Table 5
Output: Predicted Person Identity (p)

Procedure:

For each windowed Seqg per person:

(s) from f:

- Select the optimal C (LSTM)

- Predicted class (p) =predict(s) using
C

- Store the outcomes p from C in list

0]
End Loop
(fm _fl)

m=L+h
, (fm _fl) + (fm _f2)
If isnull (m):

Skip
Else:
p=m
overwrite p in o
End If
End Loop

For each sample
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than the large feature vector acquired prior to feature selec-
tion. To achieve this, three datasets are created using the
aforementioned data, each containing a training set consisting
of 80% of the total records for that experiment and a test
set containing the remaining 20%. The test set is extracted
carefully to ensure that consecutive sequences are extracted
(i.e., not random) and remain unseen by the model during the
training process.

The aim of these experiments is to test which body joints
provide sufficient information to uniquely classify individu-
als and whether the combination of joints provides improved
identification accuracy. Moreover, the additional experiment
will demonstrate whether the subset of features deemed the
most important are able to provide the same level of identi-
fication accuracy as compared to the larger original feature
vector. Section III describes the feature extraction approach,
which is consistent for all three experiments, note that for the
third experiment consisting of the combined data, the feature
vector is double that of the feature vector provided by the
individual joints (30, as compared to the 15 for the individual
joints).

A. EXPERIMENT 1-A (EXP.1-A) LEG ONLY

In Exp.1-A, the motion data from only one of the two MOTI
sensors is used (i.e., the one attached to the leg). By calculat-
ing each of the 13 statistical features in Table 5 for each of
the 17 data points provided in Table 4, 221 potential features
are generated for the hip motion. Such an experiment may be
used to simulate gait identification under partial occlusion,
for example, if the upper body was occluded (i.e., by omitting
the arm data we may simulate occlusion of the arm).

B. EXPERIMENT 1-B (EXP.1-B) LEG ONLY - SELECTED
FEATURES

As in Exp.1-B, only the leg data is used. However, instead of
using the entire 221 feature vector, only the most important
15 features are used, as described in Section III.

C. EXPERIMENT 2-A (EXP.2-A) ARM ONLY

In Exp.2-A, the motion data from only one of the two MOTI
sensors is used (i.e., the one attached to the arm). By calcu-
lating each of the 13 statistical features in Table 5 for each of
the 17 data points provided in Table 4, 221 potential features
are generated for the shoulder motion. Such an experiment
may be used to simulate gait identification under occlusion,
for example, if the lower body was occluded (i.e., by omitting
the leg sensor data).

D. EXPERIMENT 2-B (EXP.2-B) ARM ONLY - SELECTED
FEATURES

As in Exp.2-B, only the arm data is used. However, instead of
using the entire 221 feature vector, only the most important
15 features are used, as described in Section III.
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E. EXPERIMENT 3-A (EXP.3-A) LEG AND ARM

In Exp.3-A, the motion data from both sensors is used gen-
erating 442 potential features (221 for the leg and 221 for
the arm). This experiment allows the evaluation of combined
joint movements (i.e., simulate no/less occlusion).

F. EXPERIMENT 3-B (EXP.3-B) LEG AND ARM - SELECTED
FEATURES
As in Exp.3-A, the data for both the arm and leg is used.
However, instead of using the entire 442 feature vector, only
the most important 30 features are used, as described in
Section III.

V. RESULTS

Following the experimental design (Section IV), statistical
results are retrieved from multiple experiments and evaluated
using the reserved, previously unseen test data as described
in Section III. For each experiment, results of the proposed
LSTM model are provided in addition to the alternative
models described in Section III, to provide a comparison.
Furthermore, the results of both stages of the two-stage filter-
ing algorithm (i.e., the moving average and mode columns),
as detailed in Algorithm 1, are presented. Both stages of the
filtering algorithm are evaluated using the reserved test data.
The first stage of the filtering algorithm, the moving average,
is evaluated on a per-sample basis (i.e., many samples per
walking sequence). Whereas, due to the nature of the second
stage, the mode metric, this is evaluated on a per-sequence
basis (i.e., one prediction per walking sequence).

Table 8 presents the results of Exp.1-A, which was com-
pleted using leg data only, utilizing all 221 available features.
From Table 8 the highest accuracy was achieved using the
proposed LSTM approach with an accuracy of 97.3% when
evaluated using purely unseen test data. However, the addi-
tional metrics, precision, recall, F1 score, and Cohen’s Kappa
are all highest for the SVM model, suggesting that this may
provide a more stable and balanced classification in terms of
a reduced rate of false positives.

Table 9 presents the results of Exp.1-B, which was also
completed using the leg data only, however, only the 15 most
important features were used in this experiment. As in the
results from Exp.1-A, the proposed LSTM approach provides
the best accuracy. Furthermore, when using only the top
15 as in Exp.1-B, all models report slightly increased results
compared to using all features as in Exp.1-A (see Tables
8 and 9), suggesting that an appropriate subset of the original
feature vector have been correctly selected.

Table 10 presents the results of Exp.2-A which was com-
pleted using the arm data only, using all 221 available fea-
tures. As with Exp.1-A, the proposed LSTM architecture pro-
vides the highest accuracy with 98.9%, the highest reported
across all experiments, was achieved when evaluated by
using the previously unseen test data. As with experiment 1,
the SVM model provided higher scores for the remaining
metrics.
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Tables 9, 11, and 13 provide the results for Exp.1-B,
Exp.2-B, and Exp.3-B respectively, specifically, they provide
the results when performed using the most important features
only, as described in Section III. The accuracies reported by
the LSTM models for the three experiments when using the
full feature set and a reduced feature set are very similar,
with no more than 1.2% difference. This suggests that the
features identified as important in Section III are sufficient
for the gait identification task. The novel feature vector pre-
sented in Section III may be useful to future IMU-based gait
identification works.

Table 11 presents the results of experiment Exp.2-B, which
was also completed using the arm data only, using only the
15 most important features. As in the results from Exp.2-A,
described in Table 10, LSTM provides the best accuracy,
as shown in Table 11. Furthermore, when using only the
top features for experiment 2 slightly lower accuracies were
reported for all models. However, the difference reported by
the LSTM model was only 0.5%.

Table 12 presents the results of Exp.3-A, which was com-
pleted using synchronised leg and arm movement data, using
all 442 available features. Again, the proposed LSTM archi-
tecture provides the highest accuracy with 97.5% achieved
when evaluating with previously unseen test data. As with
Exp.1-A and Exp.2-A, SVM provided increased results for
the additional metrics.

Table 13 presents the results of Exp.3-B, which was also
completed using synchronized leg and arm data, using only
the 30 most important features. As in the results of Exp.3-A
shown in Table 13, LSTM provides the highest accuracy,
as shown in Table 13. Furthermore, when using the top fea-
tures only, the LSTM model accuracy improves by 1.2%,
however, all alternative models report lower accuracies as
compared to when using the full feature set.

Similar to our proposed solution, an LSTM model is used
in [17] to identify the user of a smartphone using accelerom-
eters only. Accuracies of above 90% were achieved using
various combinations of the 21 total participants, however,
certain combinations of participants provided much lower
rates of identification, this is an unexplained issue that the
authors expect to be exacerbated with the addition of further
participants [17].

In summary of the existing works’ results, the accura-
cies presented in Table 14 shows that the proposed method
outperforms the existing similar solutions. Similarly, the
LSTM-based solution was shown to outperform the ANN,
KNN, and SVM-based alternatives provided as a benchmark
comparison for the newly proposed dataset.

Moreover, the results of Exp.1-A, Exp.2-A, and Exp.3-A
as presented in Tables 8, 10, and 12 respectively suggest that
there is an opportunity to explore joint-based gait identifica-
tion with a variety of body joints. In each of the experiments
the LSTM-based solutions provide the highest accuracies,
suggesting that LSTM is an appropriate approach for gait
identification using time-series data from individual or com-
binations of body joints. Exp.2-A, using the arm data only
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provided the highest accuracy, this is likely due to the more
varied arm movement displayed by people, as discussed in
Section IV. This suggests that there is an opportunity to fur-
ther explore arm movement and joint movement to contrast
the traditional approaches which focus on either the legs or
the trunk of the body.

VI. DISCUSSIONS

As shown in Section V, each trained model (when evaluated
over unseen instances) indicated a higher accuracy for the
arm data (Exp.2-A) as compared to the leg data (Exp.1-A).
This is likely due to the more obvious differentiations in
arm movements that can be visually observed. For example,
some people are rigid and have very little arm movement
when they walk, some people allow their arms to naturally
swing with the rhythm of their walking, and some people
use more energy and swing their arms more flamboyantly as
they walk [11].

Furthermore, it can be observed that overall, the results of
Exp.2-A, arm data only, provided higher accuracy than those
of Exp.3-A, the combination of leg and arm data. This was an
unexpected result as it was anticipated that the unique traits
of both limbs would provide more unique gait traits for each
participant.

As presented in Section V, Table 14 compares the accuracy
of proposed solution to those of similar IMU-based gait
identification works from the literature. In [19], movement
data was gathered from 24 participants via an IMU device
attached to the ankle, containing an accelerometer and gyro-
scope, but unlike in the proposed work, it does not include
a magnetometer which would provide additional features.
A CNN is used in [19] to perform feature extraction, from
which an SVM classifies participants. An accuracy of 80%
is reported when provided with data containing 5 complete
gait cycles. In contrast, we use window size equivalent to a
single complete gait cycle and a sample size of 5 windows
achieving an accuracy of up to 98.9% using a similar amount
of data, as shown in Table 10. Furthermore, the use of a CNN
for feature extraction in [19], as compared to our hand-crafted
features, will limit the explain-ability and interpretability of
the model [51].

Similarly, in [20] IMU data was gathered from 30 partici-
pants via a smartphone attached to the trunk of the body. As in
[19], magnetometer and gyroscope data was not included,
both of which may provide useful features, as demonstrated
in our proposed solution. As described in section II, attaching
the sensor to the trunk means that only generic whole-body
data is provided, and does not allow for the evaluation of indi-
vidual limbs and joints, unlike the proposed work. Further-
more, the approach described in [20] used the same number
of participants as in the proposed solution but achieved only
80.3% accuracy, considerably lower than that the 98.9% we
report in Table 14.

Unlike the other works described in Table 14 and our pro-
posed solution, [18] gathers movement data using a network
of 5 IMU sensors. Despite only containing 10 participants,
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TABLE 8. Results of experiment 1A, using leg data only (Exp.1-A).

Model Accuracy Precision Recall F1 Score Kappa Moving Average Mode
ANN 86% 59.7% 59% 58.5% 55.4% 86.67% 100%
KNN 72.9% 75.3% 73.8% 72.1% 71.9% 74.21% 83.33%
SVM 94.4% 94.9% 94.3% 94.4% 94.3% 94.46% 100%
LSTM 97.3% 85.7% 69.4% 70.4% 71.3% 97.34% 100%

TABLE 9. Results of experiment 1B, using leg data only (top 15 features only) (Exp.1-B).

Model Accuracy Precision Recall F1 Score Kappa Moving Average Mode
ANN 85.36% 54.31% 52.72% 52.44% 51.8% 87.3% 93.3%%
KNN 66.89% 70.46% 66.28% 66.44% 65.61% 67.5% 83.33%
SVM 74.44% 76.55% 74.36% 74.15% 73.5% 75.27% 100%
LSTM 98.23% 86.94% 71.46% 71.31% 71.91 98.64% 100%
TABLE 10. Results of Experiment 2A, using arm data only (Exp.2-A).
Model Accuracy Precision Recall Fl1 Kappa Moving Average Mode
ANN 86.1% 62.6% 62.3% 61.7% 57.1% 87.13% 100%
KNN 81% 82% 81.8% 80.1% 80.2% 81.37% 93.3%
SVM 95.7% 95% 95% 94.8% 95.5% 95.77% 100%
LSTM 98.9% 93.4% 84.3% 78.8% 81.2% 98.9% 100%

TABLE 11. Results of Experiment 2B, using arm data only (top 15 features only) (exp.2-b).

Model Accuracy Precision Recall Fl1 Kappa Moving Average Mode
ANN 78.4% 69.24% 69.05% 67.62 % 67.29% 78.76% 93.3%
KNN 77.61% 80.1% 77.97% 77.12% 76.77% 78.3% 93.3%
SVM 79.39% 81.62% 80.75% 80.21% 78.59% 80.16% 100%
LSTM 98.33% 93.33% 83.2% 77.96% 81.78% 98.37% 100%

TABLE 12. Results of experiment 3A, using synchronised leg and arm data (Exp.3-A).

Model Accuracy Precision Recall F1 Kappa Moving Average Mode
ANN 86.1% 61.9% 62.3% 61.9% 57.8% 87.21% 100%
KNN 88.4% 89.9% 88.3% 88.2% 88% 90.02% 100%
SVM 96.2% 98.4% 98.2% 98.3% 98.2% 97.1% 100%
LSTM 97.5% 89% 79.8% 77.6% 80.7% 97.52% 100%

TABLE 13. Results of experiment 3B, using synchronised leg and arm (top 30 features only) (Exp.3-B).

Model Accuracy Precision Recall Fl1 Kappa Moving Average Mode
ANN 77.8% 79.09% 79.93% 78.47% 76.96% 79.1% 100%
KNN 89.78% 90.36% 89.1% 88.86% 89.41% 89.81% 100%
SVM 92.44% 93.06% 92.7% 92.57% 92.16% 92.65% 100%
LSTM 98.68% 90.38% 82.27% 79.76% 80.72% 98.73% 100%

an accuracy of 91% is reported, which is substantially lower
than the 98.9% achieved by the proposed work which con-
tains 30 participants and requires fewer sensors.

In [21] motion data was collected using a smartphone and
3 IMU sensors attached to the waist for a total of 744 partic-
ipants [21]. Using this dataset [21] reports 97.16% accuracy,
slightly lower than that reported in our work. However, simi-
lar to [19], this solution relies on a CNN for feature extraction.
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Again, unlike the statistical features used in the proposed
work, CNN-based feature extraction would likely make the
model less explainable. Furthermore, only the preprocessed
dataset is available, not the original raw data, thus limiting the
ability to reuse or experiment the original data. Furthermore,
similar to [20], the sensor used in [21] was attached to the
trunk. Again, this provides motion data for the body as a
whole and does not allow for limb or joint-based approaches
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TABLE 14. A comparison of IMU-based gait identification works.

No. Sensor Model Accuracy
Ref ..
Participants  Placement
[19] 24 Ankle CNN/ o
SVM 80%
[20] 30 Trunk GMM- N
UBM 80.3%
[18] 10 Network CNN 91%
[21] 744 Trunk CNN 97.16%
[17] 21 Trunk LST™M 90%
Ours LSTM N
(Exp.1-B) 30 Leg 97.3%
Ours LST™M o
(Exp.2-B) 30 Arm 98.9%
Ours LSTM o
(Exp.3-B) 30 Leg & Arm 97.5%

to be implemented or evaluated. A further limitation with
the dataset used is the fact that only 2.5 seconds of data is
recorded per participant, thus limiting the number of com-
plete gait cycles [52]. In comparison, we provide approx-
imately 60 seconds of data per participant in our primary
dataset.

Overall, in all experiments, the proposed LSTM model
outperformed the alternatives, achieving classification accu-
racy of up to 98.9%. In addition, reducing the feature vector
by more than 93% did not reduce the performance, and
in 2 out of three experiments, the feature vector reduc-
tion lead to improved classification accuracy. The results of
the two-stage filtering approach described in Algorithm 1,
as shown in Tables 8, 9, 10, 11, 12, and 13, suggest that it
leads to improved results where longer walking sequences
(e.g., 8 metres in this case). The success of the mode met-
ric is in part due to the high accuracies achieved during
the initial prediction. As accuracies of up to 98.9% were
achieved when evaluating the predicted samples, the mode
(per sequence) must be correct as most of the samples within
each sequence are correctly predicted, thus leading to the
100% accuracy achieved in some experiments by the mode
metric. However, further work and more data is required to
further validate the mode metric as each walking sequence
provides only a single prediction to validate when using this
approach.

The aforementioned statistical performance clearly vali-
dates the proposed proof-of-concept that can be a baseline
to further explore it for a computer vision-based imple-
mentation. This paper demonstrates that when provided
with accurate joint angles, a high accuracy of gait-based
identification is achievable. Therefore, it is likely that a
high accuracy of identification can be expected from future
vision-based implementations if the joint-angle can be accu-
rately estimated using computer vision methods. Computer
vision provides the potential for more practical implemen-
tations, for example, for security and policing it can be
performed covertly, without the cooperation of the subjects.
Such an implementation may also help to address the prob-
lem of occlusion that affects many of the current computer
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vision-based approaches to gait identification, this is possible
as except for in cases of total occlusion, there is likely to
be at least one or more body joints visually available for
the purpose of gait-based identification. As demonstrated in
this work, a single joint may provide enough information to
accurately identify an individual.

It is also important to note that the related problem of gait
identification when unknown people have been detected (i.e.,
those not in the training set or those that we do not seek
to identify) should be addressed to improve the real-world
implication of the proposed solution. For example, when
searching for missing people, the solution should exclude
people who are not on the missing persons list (i.e., do
not attempt to identify them). To the best of the authors’
knowledge, this is an important area of research which has
gained little attention and therefore a robust solution is not
currently available. One potential solution, OpenMax [53],
is an alternative final layer for machine learning models
which aims to estimate the probability of a sample belonging
to an unknown class. It achieves this by adapting SoftMax and
removes the requirement for probabilities over all classes to
sum to 1 and includes a category for the unknown classes [53].
However, the implementation and evaluation of this would
require the collection of gait data from additional participants
to act as the unknown classes, as to the best of the authors’
knowledge, such an open set gait dataset is not currently
available.

Furthermore, the authors are not aware of any existing
works exploring how person identification can be performed
using pathological gait (i.e., gait abnormalities caused by
pain, reduced range-of-motion, or weakness, for example) or
where the person has aged significantly since their gait sam-
ple was collected. As current works utilize datasets captured
over a relatively brief period, the data provides information
regarding the person’s gait at the time of recording, and there-
fore does not account for future, ageing, injury, or illness.
Matovski et al. [54] report that the effect of time between
recording session has less impact on identification accuracy
than other factors such as clothing. However, the dataset
collected contains only a single six-month gap between
recordings, and the authors are not aware of any alternative
gait datasets with time gaps between recordings. An initial
approach to further explore this problem would require the
collection of a gait dataset recorded at significant intervals
(i.e., years) containing instances of pathological gait. It may
then be possible to identify unaffected gait features which
may aid in person identification from pathological gait data.
Solving this problem would potentially create an identifica-
tion system capable of identifying individuals long after their
gait samples have been collected, without the requirement of
updating the gait data for each participant.

VIi. CONCLUSION AND FUTURE WORK

This work has demonstrated that both the hip and shoulder
joint movements on their own as well as in combination
possess sufficient information to provide accurate gait-based

100123



L. K. Topham et al.: Gait Identification Using Limb Joint Movement and Deep Machine Learning

IEEE Access

Top-ranked Attributes (based on PCs loadings)

(sBuipeo) sod) @oueyodw aNaUY

Attribute names
Least-ranked Attributes (based on PCs loadings)

(sBuipeo] o) soueLodwl Sy

FIGURE 3. Top Quartile (25% most important features) based on their importance.
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developments in joint-based gait identification which could

identification. To the best of the authors’ knowledge, a single

potentially help to overcome the problem of occlusion in

joint has not been used for gait identification in previous

computer vision-based gait identification and therefore, help

works. These findings present the opportunity for future
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reduce false positive identifications. Future work is required
to implement this approach in computer vision, and also to
develop the necessary algorithms to make predictions based
on the subset of available joints in the event of occlusion
occurring.

Using the feature selection approach described in
Section III, the 30 most important features from the available
442 are presented in Table 6. Moreover, the most important
features contain features from two of the IMU sensors (gyro-
scope and accelerometer). Therefore, including a variety of
sensors will likely be beneficial for future works, as this is
not always applied in the literature, for example, [19] does
not use a gyroscope.

The simple filtering method based on the moving-average
and mode as described in Algorithm 1 (Section III) has
improved the accuracies in almost all cases as shown in
Tables 8, 9, 10, 11, 12, and 13. Often, accuracies of 100%
are reported by a variety of models when presented with a
full walking sequence (8 metres) per person. Furthermore,
it should be noted that 8 metres is a relatively large walking
distance to obtain, and it is therefore likely that this amount
of data would not be available in many circumstances, for
instance, security camera footage in a small shop with limited
walking space, therefore, the mode metric may be deemed an
optional additional step.

Future work is planned to extend the gait dataset to
include additional participants, the aim is to collect data for
100 diverse (in terms of gender, age, height, weight, eth-
nicity etc.) participants. Such a dataset would increase the
generalisation of our proposed models and would increase the
confidence in the identification results and filtering approach.
When the dataset is complete, we plan to upload it and to
share it with the wider research community. The expanded
dataset will provide the opportunity to address questions
such as whether anthropometric and demographic parame-
ters influence the ability to identify participants using the
proposed and alternative solutions. For example, by com-
paring the success of gait identification models on the pro-
posed diverse dataset to that of less diverse datasets currently
available.

Furthermore, in addition to the leg and arm data, we also
collected the head movements during the walk. Future work
is planned to investigate whether the movement of the head
provides relevant information for the task of person iden-
tification. This experiment was inspired by the observation
that in many busy and heavily crowded areas it is some-
times only possible to see people’s heads when their bodies
are occluded by people in front of them. Such a solution
would provide the opportunity for gait-based identification
in crowded and heavily occluded environments such as city
centers. Finally, the proposed approach sets the baseline
for computer vision-based gait identification which is more
practical to overcome the challenges of limited cooperation
from the subjects and the problem of occlusion affecting
many of the current computer vision-based approaches to gait
identification.
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APPENDIX (A1)-PCA
See Figures 3 and 4.
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