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Abstract: With the widespread deployment of 5G gaining pace, there is increasing interest in de-
ploying this technology beyond traditional Mobile Network Operators (MNO) into private and
community scenarios. These deployments leverage the flexibility of 5G itself to support private
networks that sit alongside or even on top of existing public 5G. By utilizing a range of virtualisation
and slicing techniques in the 5G Core (5GC) and heterogeneous Radio Access Networks (RAN) at the
edge, a wide variety of use cases can be supported by 5G. However, these non-typical deployments
may experience different performance characteristics as they adapt to their specific scenario. In
this paper we present the results of our work to model and predict the performance of millimeter
wave (mmWave) backhaul links that were deployed as part of the Liverpool 5G network. Based
on the properties of the 802.11ad protocol and the physical characteristics of the environment, we
simulate how each link will perform with different signal-to-noise ratio (SNR) and Packet Error Rate
(PER) values and verify them against real-world deployed links. Our results show good convergence
between simulated and real results and provide a solid foundation for further network planning
and optimization.

Keywords: private 5G; mmWave RAN; modulation and coding schemes; spectral efficiency

1. Introduction

The ongoing deployment of 5G networks marks the start of next evolution wireless net-
working as technologies converge and use cases extend beyond traditional home/business
use. This has implications for a range of environments, from dense urban deployments
right through to sparse rural usage. Such deployments will necessitate end-to-end and
top-to-bottom flexibility in terms of the mix of Radio Access Network (RAN) technologies
used and how traditional back-ends are deployed (or not). In particular, 5G deployments
are now being considered by providers beyond traditional Mobile Network Operators
(MNOs) to provide connectivity and services for a wide range of uses. These include
private 5G for use in Industrial Internet of Things (IIoT) and Industry 4.0 use cases, and
community-based efforts such as those delivered by Liverpool 5G.

Due to this growth, ‘backhauling’ has become a central challenge for operators in
order to provide multi-gigabit capacity while using cost efficient technologies [1]. Backhaul
solutions can be categorized as wired (leased lines or copper/fibre) or wireless (point-to-
point, point-to-multipoint over high-capacity radio links). Wired solutions are typically an
expensive solution but offer unlimited bandwidth and ease of maintenance [1]. On the other
hand, wireless solutions have the advantage of rapid and easy deployment at relatively
low cost. In mobile networks, backhauling is expected to be filled by the 5G NR FR1 and
FR2 standards but may be limited to licensed operators and incur significant costs and
overheads. Therefore, millimetre wave (mmWave) techniques ranging from 30 to 300 GHz
have become a feasible alternative, with larger bandwidth and unprecedented peak data
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rates [2]. Examples of mmWave technologies include the V-band (60 GHz) and E-band
(70/80 GHz), and backhaul links using these bands may be well suited to supporting 5G
due to their 10 to 25 Gbps throughput and low latency.

This paper provides a solution that models the configuration and performance for a
60 GHz mmWave 5G backhaul mesh network based on IEEE 802.11ad. The network is
deployed as a service in the Liverpool 5G project to support the development of novel
eHealth use cases and applications. More specifically, the paper discusses the viability
of IEEE 802.11ad point-to-point links as a backhaul network in urban deployments. Our
experiments largely validate the expected link performance based on the simulation pa-
rameters of distance, coding scheme and link quality but show that significant variability is
introduced as a result of the real-world deployment. As such, some links match or even
exceed the simulated performance, while others under-perform. These results will provide
important feedback for other 5G deployments based on 60 GHz technology.

The remainder of the paper is structured as follows. First, a discussion related to work
on private 5G deployments is provided in Section 2, and this is followed by a detailed
description of the 5G topology deployed in the Liverpool 5G network. In Section 3, technical
background related to the particular problems studied in this work are discussed, which
includes a brief description of mmWave systems, modulation and coding schemes and
link adaption, along with the general metrics to evaluate link performance. Following
this, the process on how the scenarios have been modelled and implemented in MATLAB,
including the simulation assumptions, link parameters and traffic model are discussed in
Section 4. In Section 5, the simulation results showing the performance and efficiency of the
5G backhaul network are presented and discussed. Finally, Section 6 concludes this work.

2. Private and Community 5G Networks
2.1. 5G Non-Public Networks and Urban Deployments

The use of 5G technologies to support deployments beyond traditional MNO networks
opens a wide range of applications and scenarios for wireless technologies. One area that
has seen massive interest to date is in support of IoT-based deployments and particularly
around Industry 4.0. The next generation of industrial services, from manufacturing to
logistics, are being designed to heavily incorporate data networks to support a wide variety
of sensor and communication requirements, where traditional wired technologies are either
too expensive or infeasible to deploy on this scale. For example, even in a moderately
sized factory site of 1–2 km2, the sheer scale of connectivity requirements would introduce
significant problems, notwithstanding the need for flexibility in the case of reconfigurations
and the potential to deploy this in a challenging or hazardous environment. As such, the
use of 5G wireless technologies in this space provides many advantages including reduced
cost and complexity while still providing good bandwidth and responsiveness. In the 3GPP
scope, these are called private networks or non-public networks (NPNs) [3] as opposed to
the traditional Public Land Mobile Networks (PLMNs).

These NPN 5G deployments could make use of a combination of shared and private
base stations and backend infrastructure through slicing to provide network capacity solely
provisioned for the use case. This area is still under active research in academia and beyond
but an overview of some potential solutions are described here to provide context for our
work. In order to support 5G NPNs, various scenarios have been envisioned whereby the
5G Core (5GC) can be provisioned and controlled locally or remotely, or through some
combination of the above [4]. Essentially, both the Control Plane (CP), which provides
device and network control such as access control and management, session management,
mobility management and policy management, and the User Plane Functions (UPF), which
deal with data routing and forwarding, need to be provisioned for the user in order to
provide a 5G service [5]. On the one hand, an operator might choose to deploy just the gNB
locally (or virtually through slicing) to save CAPEX and OPEX overheads and handle most
of the backend functionality remotely, which greatly simplifies operation at the potential
cost of some performance overheads. Conversely, a full local deployment would certainly
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be more expensive and complex to operate but would be solely provisioned and therefore
more performant [6].

Moreover, the heterogeneous nature of available RAN technologies in 5G provides
a powerful mechanism to support a range of devices and applications, from LoRa sensor
devices, through to 4K streaming or VR-type users. In addition to 5GNR, an operator might
make use of some version of LTE in addition to Wi-Fi, mmWave and other technologies
to provide appropriate coverage [7]. Through splitting the RAN into a Central Unit (CU)
and multiple Distributed Units (DUs), different levels of control can be applied. These
functional splits dictate where in the stack the separation between the CU and DUs occurs
and potentially offer a great deal of flexibility in terms of how sessions are managed in the
RAN, from a very ‘low’ traditional split up to more innovative but complex ‘high’ splits [8].

Another interesting deployment area for 5G is in public networks deployed by and
for a community [7]. Such networks can, for example, be setup by a local government or
organization and provided to members where MNO coverage is not available or suitable
or focused around a specific use case that meets a public need. In this case, there is again
a wide range of potential deployment models that could be adopted depending on the
specific circumstances. An organization might apply for a specific portion of the available
spectrum in their area to deploy their own base stations, or adopt another unlicensed
solution. For example, a town/city with available fiber infrastructure (perhaps to support
a CCTV platform) could simply look to extend that into the necessary areas by using a
Wi-Fi mesh or use more specialized and higher capacity technologies as needed. It is in this
context that we introduce the Liverpool 5G network, which has been deployed as part of
the DCMS 5G Testbeds and Trials Programme [9].

2.2. Overview of the Liverpool 5G Network

The infrastructure deployed in the Liverpool 5G project is illustrated in Figure 1. In the
first phase of the project (from 2018 to 2020), the network topology consisted of 34 nodes
and three gateways (POPs) installed in the Kensington area of the city. Each node in the
backhaul mesh was collocated with a Wi-Fi AP to provide WLAN connectivity, with some
nodes also supporting ZigBee low-power ad hoc networking. The network was designed
in such a way that there was a line of sight link along any of the roads between deployed
nodes and the connection was based on a mmWave link (IEEE 802.11ad). The nodes are
Blu-Wireless DN-101LC stations and are attached to street lights or other street furniture
at a consistent elevation. The nodes have 90 degree azimuth coverage, one independent
beam and a maximum capacity of 5Gbps (Mac layer). The POP nodes are connected
to the gateway through a fiber link, and backhauling is then handled via a local cloud
service provider. Furthermore, due to the widely deployed nodes and the high path and
penetration loss at 60 GHz, some links may require relays (multi-hop transmissions) to
accomplish backhauling, and nodes are clustered around the nearest POP. In the current
version of the network (2020–2022), this deployment has been extended to cover a wider
area and provide more ubiquitous coverage. Each node is also collocated with a 5G small
cell that will run in the N77 band and standalone mode. As such, any user with a compatible
handset should receive connectivity within the Kensington area of Liverpool.

The aim of this deployment is to support a range of social and healthcare applications
for the community, from simple health sensor and monitoring services through to VoIP, full
HD or 4 K streaming for remote consultations and (potentially) low latency VR tools. As
such, the network must be able to meet a challenging set of requirements. Of course, it is
very difficult to guarantee a high rate of transmission (or a small latency) in conjunction with
highly reliable packet delivery (small packet error rate), due to the random transmission
errors caused by the unpredictable behaviour of this type of wireless channel. Specifically,
when the link qualities in the network are poor, packets may be retransmitted several
times across hops in order to reach their destination. This could result in aggregation and
queueing of packets at the core relay nodes, which translates to unreasonably large average
end-to-end delay, as well as a low rate of transmission. However, in order to determine
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the optimal operating point and achievable Quality of Service offered by the network, it is
important to analyse the trade-off between the throughput, latency and reliability (PER and
PDF) to improve the overall network performance [10]. Finally, average latency, which is
defined as the average time from when the packet transmission starts at the source station
to when the packet is correctly received by the destination [11], is a particular issue for
applications which have strict real-time requirements such as video conferencing or VoIP
calls. The next section takes a more detailed look at the characteristics of communications
at 60 Ghz to provide a foundation for our analysis work.
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3. Communication in the 60 Ghz Band

The use of the 60 GHz frequency for wireless communication goes back to 2001
when the US regulator (FCC) adopted rules for unlicensed operations in the 57 to 64 GHz
band for commercial and public use. Radios operating in the 60 GHz band have some
unique characteristics that make them different to radios operating in the traditional
2.4/5 GHz bands. Using 60 Ghz leads to smaller sizes of RF components, enabling a more
compact realization of an array structure, which in turn offers larger antenna gain with
high directivity. Furthermore, oxygen absorption attenuates 60 GHz signals such that
they cannot travel far beyond their intended path. These properties can also help reduce
interference among terminals, enhance data security and, very importantly, enable the
spectrum to be re-used in dense deployment scenarios. The 60 GHz band also allows very
high data rate communication in applications such as video conferencing, media streaming
and gaming.

Zhen Gao et al. in [12] stated that mmWave is suitable for backhaul links in ultra-
dense wireless networks due to several unique properties: having a high capacity, being
inexpensive and small form factor equipment, and having an immunity to interference.
More recently, research has been conducted on the use of this technology to support
densely meshed wireless backhauls as shown in Figure 2. The work in [13] studied the
performance of a mmWave meshed backhaul deployment in a district of Barcelona. The
links between nodes in the network were based on IEEE 802.11ad technology at 60 GHz.
The work demonstrated the viability of the technology over multiple hops and showed the
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influence the number of gateways (POPs) and the number of radio channels available has
on performance.

Further work in [14] addresses the challenges and the properties of mmWave com-
munications for 5G to support the re-design of protocols and architectures; specifically,
interference management and spatial re-use. For a high-level view of 5G fronthaul and
backhaul wireless transport over mmWave the reader is referred to [15]. To further pro-
mote the development of mmWave communications, many other projects are currently
evaluating this technology in the UK including the Liverpool 5G Testbed [16], the 5G Smart
Tourism project [17] and the Worcestershire 5G Consortium Overview project [18], to name
only three.
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IEEE 802.11ad, also known as WiGig, is an enhancement to the 802.11 standard that
enables multi-gigabit wireless communication in the 60 GHz unlicensed band [19]. The
current IEEE 802.11ac standard can support a maximum of 2.5 Gbps with three 160 MHz
channels and 256-QAM data rate. In contrast, the 60 GHz band could provide a maximum
throughput of up to 7 Gbps. However, utilizing this spectrum resource comes with chal-
lenging propagation characteristics such as strong attenuation from obstacles and huge
path loss. Furthermore, due to severe penetration loss and reflection due to the short
wavelength, mmWave communications are generally only feasible in line of sight (LoS)
environments. To overcome these drawbacks, IEEE 802.11ad provides a robust modulation
and coding scheme and link adaptation mechanism to optimize throughput and minimize
packet and bit error rate. In addition, the standard defines a directional communication
scheme that takes advantage of beamforming antenna gain to cope with the increased
attenuation in the 60 GHz band [20].

3.1. Modulation and Coding Scheme

The modulation and coding scheme (MCS) index value summarizes the modulation
type (e.g., BPSK, QPSK, 16QAM) and the coding rate that is used in a given physical
resource block (PRB). Typically, a higher MCS index offers a higher spectral efficiency
(which translates to a higher potential data rate) but requires a higher SNR to support
it. Depending on the link quality metrics (LQMs) a node will dynamically choose an
appropriate MCS in order to provide the best possible performance.

In the 802.11ad specification, three different PHY modes are defined based on how
they can be used. The Control PHY (MCS0) is designed for low SNR operation with low
throughput communication (27.5 Mbps) and is mainly used during the beamforming train-
ing (BF) phase. The Single Carrier (SC) PHY enables a power efficient and low complexity
transceiver implementation. It provides a good trade-off between average throughput and
energy efficiency. SC-PHY defines MCS 1–12, of which MCS 1–4 are mandatory modes to
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be implemented in all devices for interoperability [21]. MCS 13–24 provides the maximum
802.11ad data rates up to 6.76 Gbps and adopts orthogonal frequency-division multiplexing
(OFDM) technology, which is very efficient in multipath environments [21]. However, its
implementation is complex and therefore targets devices with less stringent power and
design constraints. Finally, the DMG low-power SC-PHY with MCS 25-31 is an optional
SC mode that can provide lower processing power by using Reed–Solomon instead of
low-density parity check (LDPC) codes [22,23].

In this work we consider the SC-PHY model, which ranges in value from MCS 1 to
MCS 12. Table 1 below lists the MCS values defined in the IEEE 802.11ad standard and gives
their corresponding modulation schemes, coding and data rates. In the SC-PHY model, the
lowest SC data rate is 385 Mb/s (MCS 1), which is implemented using BPSK modulation
and rate 1/2 code with a symbol repetition of two. MCS 1–5 are all based on pi/2-BPSK
modulation. MCS 2, 3, 4 and 5 use code rate 1/2, 5/8, 3/4 and 13/16, respectively. MCS 6–9
are based on pi/2-QPSK modulation, whereas MCS 10–12 are based on pi/2-QPSK [23].

Table 1. SC_PHY Modulation and Coding Schemes.

MCS Index Modulation Code Rate PHY Rate (Mbps) Notes

1 pi/2-BPSK 1/2 385 Single Carrier Phy 2 repeated frames

2 pi/2-BPSK 1/2 770 Single Carrier Phy

3 pi/2-BPSK 5/8 962.5 Single Carrier Phy

4 pi/2-BPSK 3/4 1155 Single Carrier Phy

5 pi/2-BPSK 13/16 1251.2 Single Carrier Phy

6 pi/2-QPSK 1/2 1540 Single Carrier Phy

7 pi/2-QPSK 5/8 1925 Single Carrier Phy

8 pi/2-QPSK 3/4 2310 Single Carrier Phy

9 pi/2-QPSK 13/16 2502.5 Single Carrier Phy

10 pi/2-16-QAM 1/2 3080 Single Carrier Phy

11 pi/2-16-QAM 5/8 3850 Single Carrier Phy

12 pi/2-16-QAM 3/4 4620 Single Carrier Phy

3.2. Link Adaptation

In wireless communication systems, the quality of a wireless signal received by nodes
depends on a number of factors: the distance between the nodes, path loss exponent,
log-normal shadowing, short term (Rayleigh) fading and noise. In order to improve system
capacity and peak data rate, the signal transmitted to and by a particular node is modified
to account for the signal quality variation through a process commonly referred to as link
adaptation. This is also known as adaptive modulation and coding (AMC) techniques [24].

In communication systems, the use of AMC techniques allows the system to achieve
higher spectral efficiency by dynamically changing the modulation and coding schemes
based on the channel statistics so as to improve overall spectral efficiency. In other words, it
is utilized to set the modulation and coding in order to reflect the features of the wireless link
and to maximize throughput. Moreover, AMC has been widely used to match transmission
parameters to time-varying channel conditions in order to enhance the spectral efficiency
while adhering to a target error performance over wireless channels [25,26].

A number of research works have been conducted on link adaptation, and new link
adaptation schemes have been proposed. Holland et al. [27] introduced a Receiver-Based
Auto-Rate (RBAR) protocol based on the Request-To-Send (RTS) and Clear-To-Send (CTS)
mechanism by adjusting the IEEE 802.11 standard. The basic idea of RBAR is that the
receiver estimates the wireless channel quality using a sample of the instantaneously
received signal strength at the end of the RTS reception, then selects the appropriate
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transmission rate based on this estimate, which feeds back to the transmitter, and finally
the transmitter responds to the receipt of the CTS by transmitting the data packet at the rate
chosen by the receiver [28]. Kamerman et al. [29] presented the Auto Rate Fall-back (ARF)
protocol for IEEE 802.11, which is used in Lucent’s WaveLAN devices. With ARF, the sender
selects the best rate based on information retrieved from previous data packet transmissions
and incrementally increases or decreases the rate after a number of consecutive successes
or losses.

3.3. Beamforming

Beamforming refers to a technique that dynamically shapes the beam pattern to
focus on specific directions. It is a spatial filtering technique used in smart antennas
and the main objective is to maximize the received power directed towards a certain
node while minimizing the interference power towards undesired nodes [30]. A signal
processor controls the excitation of antenna array elements to synthesize a desired radiation
pattern [31]. In other words, beamforming works by combining elements in a phased array
in such a way that signals at particular angles experience constructive interference (at the
main lobe), while others experience destructive interference (at the nulls) and at the receiver
by having gains in one direction and attenuation in others.

The beamforming technique is used in smart antennas for transmitting and receiv-
ing signals in massive multiple-input multiple-output (MIMO) systems. MIMO systems
combined with beamforming antenna array technologies are expected to play a key role
in 5G wireless communication systems [30]. Apart from a higher directive gain, these
antennas offer complex beamforming capabilities that increase the capacity of networks by
improving the signal-to-interference ratio (SIR).

Beamforming is mandatory in 802.11ad, and both transmitter-side and receiver-side
beamforming is supported. In the 802.11ad standard, beamforming training determines
the appropriate receive and transmit antenna sectors for a pair of nodes. The beamforming
is split into two phases. The sector level sweep (SLS) and beam refinement phase (BRP).
During SLS, an initial coarse-grained antenna sector configuration is determined. Thus,
in the SLS phase each of the two nodes either trains or receives the appropriate transmit
antenna sector. This information is used in a subsequent optional BRP to fine-tune the
selected sectors [20]. During this stage, antenna weight vectors that vary from predefined
sector patterns are evaluated to further optimize transmissions on phased antenna arrays.

3.4. Performance Evaluation

As part of the deployment and operation of the 5G network, an evaluation of the
mmWave link performance was undertaken to better understand the characteristics of
802.11ad when it is deployed in this manner. The outcomes of this work will then be
used to optimize the clustering and link level configuration of the network going forward.
Ultimately, our goal is to develop dynamic optimization algorithms that could be used as
part of a self-optimizing network (SON) managed by Software-Defined Wireless Network-
ing (SDWN). This algorithm could use information on link characteristics from across the
meshed backhaul, along with current monitoring statistics on traffic load, to reconfigure
links and optimize routing to perform load balancing and help enforce user QoS.

To date we have undertaken preliminary work to evaluate the optimal clustering and
channel selection based on simple Dijkstra shortest path routing algorithms and calculated
the optimal link distance based on the expected 802.11ad performance using packet error
rate in a typical ‘street canyon’ deployment such as an urban environment. This means
that we are now in a position to predict link performance for a given deployment and
alignment of nodes. Our aim for the work presented in this paper was, therefore, to model
a real node deployment as part of the latest phase of the project, which began in September
2021, and then verify our predicted performance using monitoring information once it was
operational. The modelled deployment will be explained in detail in the next section.
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4. Simulation Model

We consider a case study to simulate the deployment of the backhaul network on Sheil
Road in Liverpool, by the Fairfield Medical Centre. This deployment was developed based
on a 5G network planning tool, which provides an online copy of Kensington in Liverpool,
for the Liverpool 5G network (https://www.cgasimulation.com/network-planning-tool/,
last accessed: 15 December 2021). From this tool, we were able to build a simulated
deployment of nodes and model their performance in an urban environment [32]. Figure 3
illustrates the Fairfield Medical Centre modelled by the planning tool. Moreover, the tool
provides information for each of the nodes in the network, such as the site of the node, the
kind of installation, the direction, the latitude and the longitude, which we used to build
our simulation.
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Using these sites, we were able to obtain details on the link distances and orienta-
tions to build a MATLAB-based simulation of this end-to-end deployment that allowed
us to carry out the performance evaluation illustrated in the next section. These sites
are simulated based on IEEE 802.11ad, which defines a directional multi-gigabit (DMG)
transmission format operating in the unlicensed band around 60 GHz, using single carrier
(SC) PHY link [32]. The channels, on the other hand, are modelled as a multipath fading
channel using the model environment of ‘street canyon hotspot’ [33].

We evaluated the individual link performances in terms of their Packet Error Rate
(PER) as a function of the signal-to-noise ratio and for different modulation and coding
scheme values. Specifically, first, a set of SNR points in dB were selected based on each
simulated MCS. Second, for each SNR point, multiple packets were transmitted through a
TGay millimeter wave channel [34], then synchronized and demodulated, and the received
Physical Layer Convergence Procedure Service Data Units (PSDUs) were recovered. Third,
the received PSDUs were compared to those transmitted to determine the number of packet
errors and hence the PER. The number of packets considered to compute the PER for each
SNR point depends on the following parameters: (1) the maximum number of packet
errors simulated at each SNR point. When the packet error number reaches this limit, the
simulation at this SNR point is finalized; (2) the maximum number of packets simulated
at each SNR point, which limits the length of the simulation if the packet error limit is
not reached. In order to obtain meaningful results, we considered 100 and 1000 as the
maximum number of packet errors and maximum number of packets, respectively [34].

https://www.cgasimulation.com/network-planning-tool/
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5. Simulation Results
5.1. Evaluation in MATLAB

To evaluate the link performance of the Sheil Road deployment, we first simulate the
network layout using MATLAB as shown in Figure 4, based on the information identified in
the previous section. The MATLAB simulator is built to accurately model the properties and
parameters of IEEE 802.11ad networks and closely represents the deployment in Liverpool
5G Create in terms of node position and alignment. Specifically, in Figure 4 there are
three links used to connect three IEEE 802.11ad access points (APs), i.e., nodes 2–4, with
node 1 acting as a gateway according to the 5G Create deployment illustrated in Figure 3.
Moreover, links that are configured to work on the same channel have the same colour in
the figure, i.e., red for Channel 2 at 60.48 GHz and blue for Channel 3 at 62.64 GHz. Table 2
summarizes the main simulation parameters [32–34].
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Table 2. Simulation Parameters [32–34].

Parameter Value

Network Standard IEEE 802.11ad

Radio Channels 60.48 GHz, 62.64 GHz

Pathloss Model Street Canyon Hotspot

MCSs 7–12

Maximum number of packet errors for computation of PER 100

Maximum number of packet for computation of PER 1000

We next present the performance of the longest link, i.e., Link 2 from node 2 to node 3
in Figure 4, which is 94.4 m long, and one of the shortest links, i.e., Link 3 from node 3 to
node 4, which is 18.35 m long. As introduced in the previous section, the PER of these links
was computed as a function of the SNR and for different MCS values as shown in Figure 5
for Link 2 and Figure 6 for Link 3, respectively. As can be noted in both figures, the PER
represented in log scale decreases as the SNR value increases for all MCS types. In addition,
higher MCS can be achieved for a targeted level of PER when the SNR of the considered
link increases. For instance, in the case of very low targeted levels of PER, in Link 2 MCS 11
can be achieved when the PER in percentage is 1.3% and the SNR is 20dB, while MCSs 8
and 9 can be considered in the case of targeting a PER of 1% and 0.2%, and SNR of 14 dB
and 15 dB, respectively. In Link 3, in the case of low targeted levels of PER, MCSs 11, 8 and
9 can be achieved when the PERs are 2.5%, 0.8% and 0.57%, and the SNRs are 21dB, 16 dB
and 18.5 dB, respectively.
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5.2. Validation through GRAFANA

In order to validate the link performance of the Sheil Road deployment illustrated
above, we monitored Link 2 and Link 3 through a Grafana-based interface for 7 days. The
testbed allows us to monitor and visualize in real time the link performance of the backhaul
network at Sheil Road illustrated in Figure 3. Note that each node of the deployment
is characterized by an ID defined in Grafana that will be illustrated together with the
monitored results.

Specifically, Link 2 connects the node with ID sheil-rd-003-f8627 to the node with ID
sheil-rd-004-f3080, represented as Node 2 and Node 3 in Figure 4, respectively. Figures 7–9
illustrate, among other parameters, the SNR (green line in Figure 7), the performance in
terms of PER (red line in Figure 8) and the MCSs (yellow circles in Figure 9) at the receiver
node, i.e., node sheil-rd-004-f3080. Other parameters that can be monitored through
Grafana and that we do not illustrate because they are out of the scope of this paper are:
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the Received Channel Power Indicator (RCPI) (blue line in Figure 7); the Automatic Gain
Control (AGC) (orange line in Figure 7); the MAC transmit rate (Tx Rate) (green line in
Figure 8); and the Modulation error ratio (MAR) (lilac line in Figure 8). From these figures
we can note that some parameters present a high oscillation amplitude and, therefore,
we also included the average value of each parameter at the bottom of the diagrams. In
summary, we can conclude that the average SNR is 14 dB, the PER on average is 0.18% and
the average MCS value is 9.
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Link 3 connects the node with ID sheil-rd-005-f8627 to the node with ID sheil-rd-006-
spfhc represented as Node 3 and Node 4 in Figure 4, respectively. Figures 10–12 illustrate
again, among other parameters, the SNR (green line in Figure 10), the performance in terms
of PER (red line in Figure 11) and the MCSs (yellow circles in Figure 12) at the receiver
node, i.e., node sheil-rd-006-spfhc. From these figures we can conclude that the average
SNR is 18.5 dB, the PER on average is 0.56% and the average MCS is 11.
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5.3. Discussion

Table 3 summarizes all the results illustrated in the previous subsections. Specifically,
based on the monitoring carried out through Grafana, in the table we can observe that the
longest link achieves an SNR of 14 dB and can use MCS 9 guaranteeing a PER of approxi-
mately 0.2%. On the other hand, based on the simulations, the link is characterized by the
same PER and MCS when it can achieve 15 dB SNR. Note that radio-to-radio variations
of 1–2dB on the SNRs monitored through Grafana are expected due to manufacturing
tolerances and, therefore, the longest link modelled through MATLAB can be considered
validated. Moreover, in the table we can observe that the short link, based on the moni-
tored information, achieves an SNR of 18.5 dB and can use MCS 11 guaranteeing a PER of
approximately 0.6%. On the other hand, based on the simulations, this link in the case of
18.5 dB SNR can use MCS 9 in order to guarantee the same value of PER. Note that, again
considering a possible radio-to-radio variation of 1–2 dB on the monitored values, the short
link could reach MCS 10 guaranteeing the same value of PER computed through Grafana.
Therefore, even taking into account monitoring errors due to manufacturing tolerances,
there is still a reduction in terms of maximum available throughput of 20% in the short link,
which can provide 3080 Mbps in the simulator and 3850 Mbps in Grafana (see Table 1).

Table 3. Results Comparison.

MATLAB Grafana

SNR (dB) PER (%) MCS SNR (dB) PER (%) MCS

Long Link
2–3

20 1.3 11

14 0.18 915 0.2 9

14 1 8

Short Link
3–4

21 2.5 11

18.5 0.56 1118.5 0.57 9

16 0.8 8

In summary, our simulation results, therefore, provide a variable picture in terms
of corroborating the performance for the short link. One explanation of this could be
that the actual nodes are performing better under certain circumstances and this needs
to be programmed into our simulator. Other explanations include minor differences in
the physical deployment of the equipment (e.g., alignment) or environmental factors that
affect link performance. These results, therefore, generally validate our simulations but
highlight the issues in predicting link performance in such a dynamic environment and
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with a limited set of links to evaluate. Our immediate next steps are, therefore, to gather
more data on the configuration and performance of the nodes as the deployment continues
and monitor them further to refine our models over time.

6. Conclusions and Further Work

The popularity of wireless communications for a wide range of use cases means that
5G technologies are likely to become increasingly ubiquitous over time, both in traditional
MNO deployments but also in a range of other scenarios, from 5G NPN for supporting IIoT
to community-owned networks. However, the vast range of technologies and techniques
that represent 5G, both in the core and at the edge, make it very complicated to define
exactly what 5G ‘looks like’ and how it performs in every situation.

In Liverpool, a 5G network has been deployed by a consortium including the local
council and healthcare providers, technology firms and academic institutions to support
healthcare and community care services. This network leverages the existing CCTV fibre
network and extends it using mmWave backhaul links into areas of the city where connec-
tivity is required. These backhauls are built using 802.11ad point-to-point links that offer up
to multi-gigabit services but are susceptible to the restrictions of 60 Ghz communications.

In an effort to understand this better, we built a simulator in MATLAB to model the
behaviour of these links under a range of conditions, and compared our results to the
real-world deployments to validate our findings. Our results show that some links conform
to our model very well, while others are somewhat unpredictable. This difference could be
due to manufacturing tolerances or variations in link quality over short distances. This is
a valuable contribution to ongoing 5G deployment efforts that utilize this technology, as
real-world characteristics for 60 GHz link performance will help to refine node placement
and configuration. It also provides useful insights to the research community on the
effectiveness of novel private and community 5G-utilizing heterogeneous technologies.

Over time, we aim to continually improve our models through further validation
to generalize our model such that it can be used as a general-purpose tool for network
planning or as a basis for further work to examine network optimization. We would also
be interested in evaluating the potential impact of 802.11ay-based links in this environment
and conducting a comparative analysis of their performance.
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