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ABSTRACT 
Machine learning and sensor devices lined up with agriculture for the development of systems can efficiently provide real-time 
knowledge on animal behavior without the need of intense human observation, which is time consuming and labor demanding. In this 
study, we propose a system to classify three important activities of sheep namely, “grazing”, “active”, and “inactive” states. We 
acquire  primary data using two types of sensors from nine Hebridean ewes resulting in source data, and target data. To address the 
problem of sensor heterogeneity in data and sensor orientation placement, we use convolutional neural networks in conjunction with 
hand-crafted features, in order to improve model generalization,  i.e., robustness to sensor orientation and position. Additionally, we 
utilise transfer learning, which indicates substantial potential in future studies concerning  animal activity recognition. More 
specifically, it supports the reusability of  pre-trained model on unseen data without investigative training and data labelling, which is 
highly time-consuming. Our method obtained an overall accuracy of  98.55% on the source data, and 96.59% on the target data. This 
study is the first of its kind to propose convolutional neural network based transfer learning for sheep activity recognition, and 
demonstrate the important benefits of such an approach in the context of data gathering, data labelling, and heterogeneity of sensor 
devices. 
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1. Introduction 

Advancements in the field of computer science and electronics engineering paved the way for renewed interest in 
the use of Internet of Things (IoT) systems in efficient and automated agriculture (Rutter, 2017). Machine intelligence 
has been deployed in this domain to provide real-time information, specifically related to animal activities. For instance, 
automation in real-time information processing has been used to identify the current position of animals, their activities 
and current state, where they mostly graze, and what their nutritional habits are during the course of a day (Anderson, 
Estell, Holechek, Ivey, & Smith, 2014). For this purpose, smart devices are essential in the collection, processing, and 
analysis of real-time behavioral data, to efficiently monitor and control animal behavior and distribution on the pasture. 
Having this vast amount of data, decisions about animal health, animal spatial distribution and land utilisation (Norton, 
Barnes, & Teague, 2013) can help prevent soil erosion and contamination, water pollution and spread of animal diseases 
(Rutter, 2017), and therefore, facilitate animal welfare. Furthermore, automated monitoring of animals allows early 
detection of illness, particularly, lameness, which is present in an estimated 80% of UK flocks (Winter, 2008). Lameness 
in sheep can be identified based on behavioral changes in animals (Al-Rubaye, Al-Sherbaz, McCormick, & Turner, 
2016; Barwick, Lamb, Dobos, Schneider, et al., 2018; Gougoulis, Kyriazakis, & Fthenakis, 2010). Additionally, 
evidence showed that reduced animal activity or food intake may be an indicator of the disease (Gougoulis et al., 2010). 
Therefore, machine intelligence-based monitoring of animals in real-time is in demand in sheep production systems. 

Grazing is of high interest in the sheep industry. This is the act of feeding on growing grasses and herbage, while 
standing or walking with the head down. The inactive state of the animals is the act of lying down or standing still. 
Animal inactivity is an indicator of their welfare as it is a sign of relaxation. Moreover, when animals are inactive (i.e., 
standing or resting), they take time for rumination, which is considered necessary and vital for animal welfare 
(Giovanetti et al., 2017). The active state in this research is defined as the behavior when the animal is walking with the 
head up, or scratching. The majority of existing studies focus on commercialization of smart devices, mainly in cattle, 
however, there is a limited number of studies in commercialization of sheep monitoring devices due to the lack of 
sufficient research concerned with sheep (Barwick et al., 2020). Some of these studies consider classification of sheep 
behavior, mostly using accelerometers, however, there are no clear recommendations on the optimal deployment of 
such devices to identify sheep behavior, which remains an open challenge (Radeski & Ilieski, 2017). Furthermore, 
sensor devices are often upgraded, however, there is no evidence that signal processing and classification algorithms 
designed and applied on data captured from one sensor, can be re-used on data from a new sensor. Therefore, 
development of a reusable technique is essential, as it can save time and effort since data gathering and labelling is the 
most time-consuming step of the supervised learning approach.   

In this study, we propose a system for monitoring sheep activity using accelerometer data with robustness to 
accelerometer specifications, position, and orientation. To solve the problem of heterogeneity of accelerometer sensors, 
we use Transfer Learning (TF) based on Convolutional Neural Networks (CNN) in animal behavior classification. The 
aim is to use the pre-trained model obtained from the source dataset (sensor 1), and test it on the target dataset (sensor 
2), using the learned features and weights. This will allow testing of the hypothesis of generalization in animal behavior 
classification, independent of the type and orientation of the accelerometer device, by leveraging the pre-trained model 
obtained on a larger dataset (sensor 1), to classify behavior on a smaller dataset (sensor 2). 

The contributions of this research are as follows: 

(1) A real time data-driven approach for animal activity recognition is proposed comprising: a) grazing, b) active, 
and c) inactive states using a composite of the CNN and hand-crafted features, which significantly improves 
classification performance.  

(2) Two primary datasets are acquired through different sensors, which are made publicly available to the research 
community. 



(3) We utilize deep Transfer Learning to data gathered from two types of sensors located on the collar of sheep in 
a non-fixed orientation, in order to introduce variability in the dataset, hence evaluating the generalization 
properties of the proposed sheep activity recognition approach. To the best of our knowledge, the proposed 
Transfer Learning approach is used for the first time in animal behavior recognition. 

The reminder of this paper is organized as follows. Section 2 provides an overview of the state-of-the-art related to 
machine learning and deep learning for animal activity recognition using motion sensors. Section 3 describes the 
proposed activity recognition algorithm and presents the description of the datasets and the system methodology. Section 
4 illustrates the experimental design. Section 5 presents the results and discussion, followed by Section 6, which 
summarizes the conclusion of this research and proposes avenues for future work. 

2. Review of data-driven animal activity recognition methods  

In the agricultural industry, various studies explored identification of animal activities based on accelerometer data 
(Barwick et al., 2020; L. A. A. González, Bishop-Hurley, Handcock, & Crossman, 2015; J W Kamminga, 2017; S. Le 
Roux et al., 2017). Wearable devices using accelerometers have been commonly used with ML techniques to recognize 
the behavior of cattle (Andriamandroso et al., 2017; Dutta et al., 2015; L. A. A. González et al., 2015; Gou et al., 2019; 
Rahman et al., 2018; Riaboff et al., 2019; Robert, White, Renter, & Larson, 2009; Smith et al., 2016; Vázquez Diosdado 
et al., 2015; Werner et al., 2019). Furthermore, ML was used to identify the activities of horses (Gutierrez-Galan et al., 
2018), sharks (Hounslow et al., 2019), seals (Ladds et al., 2017), goats (Jacob W. Kamminga et al., 2018; Navon, 
Mizrach, Hetzroni, & Ungar, 2013) and other domesticated or wild animals.  

While many research studies addressed classification of animal behaviour, specifically, sheep, there is still a need 
for further investigation on the optimization of the devices and techniques used (Barwick et al., 2020). Different studies 
propose diverse models, setups and devices. For example, Umstatter et al., (Umstätter, Waterhouse, & Holland, 2008) 
used tilt sensors to distinguish between the active and inactive states of sheep using 30s windows and achieved 
predictions of over 90% using linear discriminant analysis (LDA), decision trees (DT), and threshold-based decision 
trees (Umstätter et al., 2008). On the other hand, Nadimi et al., used accelerometer data acquired from the collar of 
sheep to classify behavior and achieved accuracies of 83.8%, 83.2%, 73.8%, 71.8%, and 68.5% for grazing, lying, 
walking, standing, and others, respectively (Nadimi, Jørgensen, Blanes-Vidal, & Christensen, 2012). Both (Umstätter 
et al., 2008) and (Nadimi et al., 2012) were concerned with animal behaviour on pasture, however the focus was very 
different, i.e., from the type of sensor device used to behaviors of interest. Furthermore, similar behaviors were 
investigated by Marais et al., (Marais et al., 2014), where accelerometer data was gathered from the collar of sheep at a 
sample rate of 100Hz. The authors extracted 10 features using a 5.12s window. The study analyzed lying, standing, 
walking, running, and grazing behaviors using LDA and quadradic discriminant analysis (QDA), achieving an overall 
accuracy of 87.1% and 89.7% for LDA and QDA, respectively. LDA was also used by Solomon et al., to identify 
standing, walking, grazing, running and lying down activities of sheep using a 5.3s window, achieving an overall 
accuracy of 82.40% (S. P. le Roux, Marias, Wolhuter, & Niesler, 2017). McLennan et al., used a 25s window to identify 
low activity (i.e., lying ruminating, lying), medium activity (i.e., standing, standing ruminating, grazing), and high 
activity (i.e., walking) (McLennan et al., 2015). The authors gathered accelerometer data from the collar of sheep and 
applied statistical analysis. The overall accuracy was 59.09%, 3.37% and 74.56% for high, medium and low activity 
behaviours, respectively. Furthermore, (McLennan et al., 2015) investigated active and inactive behavior and reported 
a classification accuracy of 79.98% and 74.56%, respectively, for active and inactive states.  

Alvarenga et al., gathered accelerometer data from sheep, while placing the sensor at a fixed orientation and position 
on the halter under the jaw of the animals (Alvarenga et al., 2016). In their study, the authors examined the performance 
of DT using various setups. For example, they tested the algorithm using windows of 3, 5, and 10s. Additionally, the 
accelerometer data was gathered at three different sample rates, i.e., 5Hz, 10Hz, and 25Hz. Five mutually exclusive 
behaviors were examined including grazing, lying, running, standing and walking using 5 features. The study reported 
the best results based on a kappa score of 0.7935 and an accuracy of 85.5%.  

The same sensor placement was used by Giovaneti et al., (Giovanetti et al., 2017), where they applied stepwise 
discriminant analysis (SDA), canonical discriminant analysis (CDA) and discriminant analysis (DA) using 60s windows 
to identify grazing, ruminating, and resting, and DA obtained an overall accuracy of 93%.  Decandia et al., presented 
the evaluation of several window sizes to identify grazing, ruminating and other sheep behaviors (Decandia et al., 2018). 
CDA and DA were applied on 5, 10, 30, 60, 120, 180 and 300s windows at a sample rate of 62.5Hz. The authors 
extracted 15 parameters from accelerometer data gathered from a sensor placed under the jaw of the animals and the 
best accuracy of 89.7% was achieved using DA and a 30s window. 

Kamminga et al., gathered accelerometer, gyroscope, and magnetometer signals from sheep and goats to classify 
stationary, foraging, walking, trotting, and running using one type of sensor (Jacob W. Kamminga, Bisby, Le, Meratnia, 
& Havinga, 2017). The authors measured the complexity in terms of memory and CPU usage between numerous ML 
algorithms and noted that the DNN classifier was the most promising in terms of complexity vs performance, reporting 
an accuracy of 94%.  



All of the above studies attempt to address open challenges such as variable sampling rate, sliding window size, 
sensor orientation and data gathering procedures. In the context of Transfer Learning, Oquab et al., (Oquab, Bottou, 
Laptev, & Sivic, 2014) proposed the use of transfer learning to extract mid-level features from the ImageNet dataset 
(“ImageNet,” n.d.) and reuse the representations on smaller datasets. Xia et al., (Xia et al., 2019) proposed ensemble 
concepts of multiple Transfer CNNs (TCNN) to improve model generalization, by introducing three ensemble TCNNs. 
The authors used several datasets and reported enhanced accuracy. They showed better generalization over CNNs and 
a single TCNN. Transfer learning has been successfully used in the fields of object recognition (Xiao et al., 2020) and 
human activity recognition (Akbari & Jafari, 2019), however, there is no study so far concerned with the application of 
TL in animal behavior.  

The latter research works demonstrate the importance of using TF in utilizing knowledge acquired from one domain 
to another, which saves time and supports the application of powerful models, specifically, in the case of limited size 
datasets. Additionally, in the field of animal activity recognition and wearable devices in general, it provides 
opportunities to explore a variety of sensor devices and to easily adapt to new sensor configurations, building upon the 
time and effort spent on the original work. In summary, transfer learning supports the adaptation of new sensors in the 
problem domain, without the need for exhaustive training, in developing new predictive models. This research is the 
first of its kind to propose CNN transfer learning for animal activity recognition, specifically in sheep, and highlight the 
benefits of such an approach in the context of sensor devices, i.e., sensor heterogeneity, variations in sensor orientation 
and data gathering. 

3. Methodology 

 Two types of accelerometer sensors (metamotionR, and SenseHat) are used in this research placed on the sheep 
collar to capture the primary data with a sample rate of 12.5Hz. Let DS represent the data captured from metamotionR, 
which  is considered as the source data, whereas DT represents the data acquired through RaspberryPi (with the SenseHat 
board attached) and will be used to validate the reusability of transfer learning, i.e., the target data. Both datasets were 
labeled manually and normalized using the z-score. CNN was used to identify the activities of animals using 
supplementary time and frequency domain features, as illustrated in Table 1. Temporal and spectral features were 
extracted using a sliding window of 2s with 50% overlap, resulting to two additional datasets from the metamotionR 
and SenseHat  sensors, which are referred to as   DS+ , DT+, respectively. It should be noted that DS+ , DT+ relate to the 
augmented datasets, which include the handcrafted features, whereas DS and DT consist only from the x, y, and z 
accelerometer values, and their magnitude. 

Extensive simulation experiments were carried out on six CNN models, which were trained using DS and DS+. The 
outcome of the simulations was the selection of the top performing CNN configuration, based on the accuracy obtained 
on the test sets. These models were then stored, and transfer learning was used on DT, and DT+. Fig.1 illustrates the 
overall procedure, including the application of transfer learning.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig.  1 System methodology 



3.1. Datasets 

In this work, we collected two primary datasets comprising the accelerometer measurements from a flock of 9 
Hebridean ewes 35±5 kg, 9±5 years old at a farm located in Cheshire Shotwick (OS location 333781,371970). Ethical 
approval was obtained from Liverpool John Moores University to collect the datasets and conduct the experiments (Ref: 
AH_NKO/2018-13). To acquire the data, two types of devices were used, mounted on the collar of the animals. The 
first device was mounted on a fixed position (at 270° degrees) and orientation; however, the second device was mounted 
in a non-fixed  manner (at 0°, 90°, or 180° degrees) to test the performance of the proposed methodology, independent 
of sensor orientation and position. MetamotionR (MBIENTLAB INC, 2018) was used to collect motion and 
environmental data, while RaspberryPi with the SenseHat board collected temperature, humidity, pressure and motion 
measurements. Both sensor outputs were logged and the data was stored with a sampling rate of 12.5Hz. In total, 
recordings of over 65 hours of activity were obtained, which resulted to a dataset of 2,925,000 samples. 

The datasets collected from the ewes were loaded into the ELAN_5.7_AVFX Freeware tool (“ELAN - The Language 
Archive,” n.d.). Behaviors such as running, fighting and shaking were very limited and, therefore, were excluded from 
the datasets. Walking and scratching behaviors were merged and considered as a unified behaviour, labelled as ‘active’. 
Likewise, standing and resting were joined together and labelled as ‘inactive’. Chewing with the animal head down, 
while walking or standing was labelled as ‘grazing’. The dataset acquired with MetamotionR (DS) contains 1,048,575 
samples, whereas the dataset captured via RaspberryPi (DT) comprises 762,860 samples. We refer to these datasets as 
the source and target datasets, respectively. Let Dk represent the joint dataset, where Dk={ti, xi, yi, zi, ci}, i=1,..,n, where 
n is the number of observations, and k={S,T} . Parameter t relates to the timestamp, while x, y, z are the accelerometer 
measurements in the x, y, and z axes, respectively, and c is the label variable, where c∈{active, grazing, inactive}. Fig. 
2 presents the distribution of the three activities within our datasets. The charts clearly indicate the imbalanced 
distribution of activities within both datasets, as expected, due to the nature of the study and the activities considered. 
 
 

 

3.2. Data pre-processing 

The magnitude of the accelerometer measurements was calculated resulting in an additional feature in Dk={ ti, xi, yi, 
zi, magi, ci} , calculated as shown in Equation (1): 

mag = "𝑥! 	+ 	𝑦! 	+	𝑧!         (1) 

where, x, y and z represent the 3-dimensional accelerometer data. The dataset was normalized for zero mean (𝜇) and a 
standard deviation (𝜎) of 1. The normalized datasets were then partitioned into training, validation, and testing, with a 
ratio of 50%, 25%, and 25%, respectively. Overlapping was used to enable real-time classification with a ratio of 50%, 
which has been shown to be effective in previous activity recognition studies (Bao & Intille, 2004).  Using a larger 
window size in real-life classification could lead to mislabeling, since animals may exhibit more than one behavior in a 
short time interval. Thus, a 2s window was considered sufficient, while not compromising the device battery life. Where 
animals exhibited more than one behavior within the same time window, this was labelled with the most frequently 
occurring activity. 

3.3. Feature extraction 

We performed temporal and spectral analysis of the overlapping window data to extract meaningful information 
from the datasets, which may support behavior recognition. The features were selected based on our previous findings 
(Kleanthous, Hussain, Mason, & Sneddon, 2019; Kleanthous et al., 2018), as well as state-of-the-art research in terms 
of feature importance using gait information in human and animal activity recognition (Bouten, Westerterp, Verduin, 
& Janssen, 1994; Gneiting, Ševčíková, & Percival, 2012; S. González et al., 2015). A total of 13 features were calculated 
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Fig.  2 Duration of the activities for source and target domains. 



for each of the x, y, z accelerometer data and the magnitude of the acceleration signal for each activity, resulting in a 
52-dimensional feature set as illustrated in Table 1.  

We utilised the Boruta algorithm (Kursa, Jankowski, & Rudnicki, 2010) to explore and rank the level of importance 
for the extracted feature set and confirm that all features contribute meaningful information, as shown in Fig. 3. It can 
be deciphered that the mean of the x axis acceleration, skewness and kurtosis of the acceleration magnitude, fractal 
dimension of the z axis acceleration, and skewness of the y axis acceleration are the most significant features. On the 
contrary, energy, integrals, rms, peak frequency and squared integrals of the y axis acceleration are the features, which 
ranked as lowest. However, all features contribute to the discrimination of the three activities, which was confirmed by 
the Boruta algorithm. Thus, no feature elimination was performed.  

Table 1  List of extracted features 
# Feature name Equation  

1 Mean 
𝑎" =

1
𝑛&𝑎!

"

!#$

 

2 Standard Deviation 
𝑠	 = 	

1
𝑛&

(𝑎! −	𝑎")%
"

!#$

 

3 Skewness [53] 
𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠	 = 	

1
𝑛&

(	𝑎! − 𝑎"	)
𝑠&

&"

!#$

 

4 Kurtosis [53] 
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠	 = 	

1
𝑛&

(	𝑎! − 𝑎"	)
𝑠'

'"

!#$

 

5 RMS 

𝑟𝑚𝑠	 = 5
1
𝑛&𝑎!%

"

!#$

 

6 RMS velocity 
𝑟𝑚𝑠𝑉	 = 7$

"
∑ 𝑑𝑖𝑓𝑓𝑖𝑛𝑣(𝑎!)%"
!#$    ,    diffinv() is the inverse function of the diff() 

 

7 Sum of Changes 𝑠𝑜𝑐	 = 	∑ 𝑑𝑖𝑓𝑓(𝑎!	)"
!#$   ,  where diff() computes the consecutive differences of the 

vector 

 

8 Mean of Changes 
𝑚𝑜𝑐	 = 	

1
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|𝑑𝑖𝑓𝑓(𝑎!	)|
"
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9 Integrals 
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠	 = A |𝑎$|
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10 Squared Integrals 
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)
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11 Madogram [50] 	𝛾,(𝑡) = 	
$
%
Ε[𝑎! − 𝑎!-.] ,   where t=lag, E[.]=expectation 

 

12 Energy 
𝑒𝑛𝑒𝑟𝑔𝑦	 =&𝑎!%

"

!#$

 

13 Peak Frequency [52] 
𝑝𝑓	 = 𝑓𝑚𝑎𝑥 = arg	 O

𝑓𝑠
𝑛 𝑚𝑎𝑥!#+"/$𝑃(𝑖)Q 

fs = sampling frequency,  P(i) = power of the spectrum  

 

a=accelerometer signal x, y, and z where a1=x, a2=y, a3=z 

n is the number of rows in the signal window  



 

 
3.4. CNN and Transfer Learning 

The recorded measurements and associated features were used in the proposed Deep Learning models to classify the 
target activities and also during transfer learning.  

CNN is a hierarchical feed-forward neural network, widely used in image classification tasks, because of its ability 
to perform well on very large and complex datasets (Gu et al., 2018; Wu, 2017). In recent years, CNN has also became 
popular in activity recognition problems (Bo Yang, Nhut Nguyen, Phyo San, Li Li, & Krishnaswamy, n.d.; San et al., 
2017). Further details about CNN can be found in (Aloysius & Geetha, 2017; Wu, 2017). 

The main idea behind transfer learning is to gain knowledge from a dataset (source domain DS), and then transfer 
knowledge to a new dataset (target domain DT) in order to improve learning in the target domain (Weiss, Khoshgoftaar, 
& Wang, 2016). Thus, we define a source domain DS:XS ® YS, with feature space XS, and a label set YS, such that 
DS={(xi, yi)…,( xn, yn)}, for i=1,…,n, where n is the number of observations in the dataset, and xi∈ XS, yi∈ YS. 
Additionally, we have a target domain DT: XT ® YT, with feature space XT, and a label space YT, such that DT={(xj, 
yj),…,(xm, ym)}, where xj∈ XT, and yj ∈ YT, for j=1,…,m, where m is the number of observations in DT. Furthermore, a 
“task” (T) consists of the label Y and the predictive function 𝑓(∙), and is denoted as T = {Y, 𝑓(∙)), which can be learned 
from the training data, and used to predict the labels of unseen vectors. 

In the case, where XS ≠XT, i.e., source and target datasets may come from different domains, including different 
marginal/predictive distributions and feature/label spaces, transfer learning is described as heterogeneous. Alternatively, 
when XS =XT,  transfer learning is defined as homogeneous. In the current study, homogeneous transfer learning is used 
because the feature space and domain characteristics from both source and target domains are the same. The difference 
between the source and target datasets in this study is the accelerometer sensors used, and the orientation and position 
of the sensor. Additionally, the motion measurements of the second device exhibit some noise and the size of the second 
dataset is smaller. 

4. Experimental Design  

To set the baseline for our experiments, a number of classification trials were conducted to investigate the 
performance of the proposed methodology and to configure the deep learning models. For the CNN, we used datasets 
DS and DS+, which include the original measurements and the hand-crafted features, with 50%, 25%, and 25% ratios for 
training, validation, and testing, respectively for both datasets.  

Six CNN configurations (model A to F) were utilized, where we varied the number of convolutional layers and the 
dropout rate (in the range of [0.1, 0.5]). The common configuration for all models includes: a) for each layer, the ReLu 
activation function was applied b) smaller dropouts were applied in the convolution layers, whereas larger dropouts 
were applied in the fully connected layers (i.e., 0.5); c) for all six CNN models, we applied early stopping, modified to 
monitor the minimum validation loss with patience of 20; d) for model optimization, the Adam optimizer was applied 
with a learning rate lr=0.001, while the loss function was set to categorical cross-entropy (Wu, 2017); e) a SoftMax 

Fig.  3 Feature Importance illustration from the Boruta Algorithm for DS+. Note that features shadowMin, shadowMean, shadowMax 
are created by the Boruta algorithm in order to rank the original features. More information can be found in (Kursa et al., 2010). 

 



layer was used for the classification of target activities. During training, we used weight regularization with a L2 vector 
norm of [0.1, 0.01, 0.001, 0.0001, 0.00001] to identify the best configuration. The vector norm was only applied to the 
fully connected layers of the models.  

The performance of the models for each configuration is shown in Table 2. The graphical representation of the 
accuracy obtained from all models is illustrated in Fig. 4. Model A which has the highest accuracy was selected with 
L2=0.00001 to be further used for transfer learning and the results and procedure are presented in section 5. Model A 
consists of two convolutional layers, one fully connected layer, and an output layer. The first convolutional layer uses 
16x16 convolutional filters followed by a 10% dropout layer, and the second convolutional layer uses 32x32 
convolutional filters followed by a 20% dropout. The fully connected layer has 64 filters, followed by a 50% dropout, 
and the output layer uses SoftMax (refer to fig. 5) 

Table 2 CNN Performance on DS and DS+ for each model using weight decay with the  l2 norm 
   Accuracy 
  DS DS+ 

Model L2 Training set  Test set  Training set Test set 
A 1.00E-01 0.9600 0.9574 0.9564 0.9576 
A 1.00E-02 0.9701 0.9652 0.9622 0.9624 
A 1.00E-03 0.9753 0.9700 0.9716 0.9690 
A 1.00E-04 0.9776 0.9700 0.9787 0.9768 
A 1.00E-05 0.9759 0.9746 0.9892 0.9855 

B 1.00E-01 0.975 0.9670 0.9799 0.9792 
B 1.00E-02 0.9807 0.9715 0.9850 0.9821 
B 1.00E-03 0.9813 0.9684 0.9853 0.9816 
B 1.00E-04 0.9800 0.9685 0.9832 0.9809 
B 1.00E-05 0.9778 0.9677 0.9847 0.9806 

C 1.00E-01 0.9403 0.9365 0.8696 0.8697 
C 1.00E-02 0.9606 0.9566 0.9578 0.9608 
C 1.00E-03 0.9641 0.9607 0.9691 0.9700 
C 1.00E-04 0.9713 0.9659 0.9689 0.9702 
C 1.00E-05 0.9744 0.9658 0.9796 0.9796 

D 1.00E-01 0.9535 0.9548 0.9622 0.9605 
D 1.00E-02 0.9498 0.9479 0.9752 0.9733 
D 1.00E-03 0.9576 0.9545 0.9804 0.9781 
D 1.00E-04 0.9552 0.9501 0.9863 0.9824 
D 1.00E-05 0.9664 0.9580 0.9897 0.9841 

E 1.00E-01 0.7904 0.7932 0.9493 0.9485 
E 1.00E-02 0.9193 0.9210 0.9683 0.9675 
E 1.00E-03 0.9449 0.9453 0.9774 0.9743 
E 1.00E-04 0.9183 0.9187 0.9830 0.9798 
E 1.00E-05 0.9584 0.9532 0.9873 0.9821 

F 1.00E-01 0.9739 0.9710 0.9826 0.9789 
F 1.00E-02 0.9790 0.9716 0.9877 0.9822 
F 1.00E-03 0.9795 0.9726 0.9871 0.9815 
F 1.00E-04 0.9734 0.9721 0.9833 0.9810 
F 1.00E-05 0.9753 0.9730 0.9851 0.9829 

 
 



 

 

5. Results and Discussions 

We conducted two experiments using CNN model A since it achieved the best results, while partitioning the datasets 
into 50%, 25%, and 25% for the training, validation, and testing purposes, respectively. The first experiment used the 
original source and target datasets, while the second experiment followed the same procedure as the first, but this time 
we used the datasets, which included the hand-crafted features. The purpose is to investigate whether the addition of the 
time and frequency domain features has an effect on the performance of the model and the generalization of the 
algorithm, since the direction and placement of the accelerometers differ between the two sensor setups. For each 
experiment, a number of statistical metrics, including precision, recall, F1 score, and accuracy, were used to evaluate 
the performance of deep learning and transfer learning over different combinations of training and testing datasets. 
Figure 5 illustrates the architecture of the proposed model and transfer learning procedure. 

Fig.  4 Graphical representation of accuracy obtained from the CNN models trained on 𝐷𝑆𝑡𝑟, 𝐷𝑆+𝑡𝑟 , and tested 𝐷𝑆𝑡𝑠, 𝐷𝑆+𝑡𝑠 . 



 

5.1. Experiment A: Transfer learning from DS  to DT   

Model A was trained on the training set 𝐷"#$, validated on 𝐷"%&', and then tested on 𝐷"#(. For transfer learning, the 
trained model was stored so that it can be later reused on the target domain, i.e., DT. The only trainable layers during 
transfer learning on 𝐷)#$were the fully connected layers, which are responsible for the classification of the target 
activities. The results obtained from both experiments are shown in Table 3. Figures 6 and 7 illustrate the accuracy and 
loss of the model per epoch, respectively. 

Table 3 CNN model A classification results on 𝐷!"#, and using Transfer Learning on 𝐷$"# 
  𝑫𝑺𝒕𝒔 𝑫𝑻𝒕𝒔 
Activities Accuracy: 0.9746 Accuracy: 0.9479 
  Precision Recall F1 score Precision Recall F1 score 
Active 0.9505 0.8942 0.9215 0.9322 0.8898 0.9105 
Grazing 0.9332 0.9745 0.9534 0.8986 0.9417 0.9196 
Inactive 0.9963 0.9935 0.9949 0.9982 0.9943 0.9963 
Average 0.9600 0.9541 0.9566 0.9430 0.9419 0.9421 

 

 
 

 

Fig.  6 Experiment A: CNN model A training on source domain 𝑫𝑺
𝒕𝒓. 

 

Fig.  5  CNN Architecture for the proposed model 



 

Table 3 indicates the overall accuracy obtained is 97.46% on 𝐷"#(and 94.79% on 𝐷)#(. The highest precision, recall, 
and F1 score on both test sets is noticed on the ‘inactive’ behavior, having scores above 99.35%. The lowest recall was 
obtained in 𝐷)#(having 88.98% on the ‘active’ behavior, which is similar for 𝐷"#(, indicating that recall is 89.42%. On 
the other hand, the precision of active behavior on both test sets is higher from that of the grazing behavior with 95.05% 
on 𝐷"#(and 93.22% on 𝐷)#(. Recall results for grazing behavior are 97.45% on 𝐷"#( and 94.17% on 𝐷)#(, respectively. The 
best predictive rate was achieved in ‘inactive’ behavior. The F1 scores for 𝐷"#( are 92.15%, 95.34%, and 99.49% for 
active, grazing, and inactive behavior, respectively. For 𝐷)#(, the F1 scores for active and grazing behavior are at 91.05, 
and 91.96%, respectively, which is lower than the associated scores on 𝐷"#(. However, inactive behavior on 𝐷)#( has an 
F1 score of 99.63%. Overall, it can be observed that the model performed better on the source dataset in all cases and 
the accuracy decreased, when the model was transferred to the target dataset. A reason for this decrease may be that the 
orientation of the sensor on the second device was not fixed showing different patterns.  

On the other hand, multiple factors may contribute towards the biased performance of the model in the case of 
inactive behavior (i.e., higher precision, recall and F1 score than other classes). Firstly, grazing behavior can be easily 
misclassified as walking or scratching, since these behaviors exhibit similar movements in some cases. Likewise, 
inactive behavior can be easily classified, contrary to active and grazing, since the pattern does not exhibit changes and 
remains stable due to motionless behavior. Finally, the distribution of data samples for inactive behavior is 
comparatively larger than the other two classes. Thus, class imbalance may be one of the major causes that the model 
performs better in identification of inactive behavior. 

5.2. Experiment B: Transfer learning from DS+ to DT+   

Experiment B is identical to experiment A, except for the datasets, which include the hand-crafted features (i.e., DS+, 
DT+) . Model A was trained on 𝐷"/#$ ,validated on 𝐷"/%&', and then transfer learning was performed on the target data, i.e., 
𝐷)/#$ . The final model was then tested on the unseen data from 𝐷"/#(   and 𝐷)/#$ . Similar to experiment A, only the fully 
connected layer was allowed to be trained. Results obtained from both tests are presented in Table 4. Figures 8 and 9 
illustrate the accuracy and loss of the model per epoch. 

Table 4  CNN model A classification results on 𝐷!%"# , and using Transfer Learning on 𝐷$%"#  
  𝑫𝑺/𝒕𝒔  𝑫𝑻/𝒕𝒔  
Activities Accuracy: 0.9855 Accuracy: 0.9659 
  Precision Recall F1 score Precision Recall F1 score 
Active 0.9498 0.9422 0.9460 0.9309  0.8712 0.9000 
Grazing 0.9646 0.9669 0.9657 0.9248  0.9551 0.9397 
Inactive 0.9987 0.9994 0.9991 0.9917 0.9949 0.9933 
Average 0.9710 0.9695 0.9703 0.9491 0.9404 0.9443 

 

Fig.  7 Experiment A: CNN model A transfer learning on target domain 𝑫𝑻
𝒕𝒓. 

Fig.  8 Experiment B: CNN model A training on source domain 𝑫𝑺/
𝒕𝒓  

 



 

 
Table 4 presents the model performance over the datasets with the hand-crafted features, which indicate overall 

accuracies of 98.55% and 96.59% for 𝐷𝑺/𝒕𝒔  and 𝐷𝑻/𝒕𝒔 , respectively. These outcomes also align with the results from 
experiment A, where accuracy decreases when the model was transferred to the target domain. Likewise, the 
classification accuracy of inactive behavior is comparatively better with precision and recall of 99.87% and 99.94%, 
respectively, on 𝐷𝑺/𝒕𝒔 , and 99.17% and 99.49% on 𝐷𝑻/𝒕𝒔 , respectively. Precision and recall for the active behavior on the 
source domain achieved rates of 94.98% and 94.22%, respectively. There is a noticeable increase of 4.8% in the recall 
result on active behavior in experiment B, in comparison with experiment A, which achieved a recall of 89.42% on the 
source domain. The results from all behaviors for experiment B on the source domain are comparatively balanced. On 
the other hand, recall on active behavior in the target domain is 87.12%, which is slightly decreased (i.e., by 1.8%), 
compared to the recall on the target domain from experiment A. The F1 scores obtained on the source domain are 
94.60%, 96.57%, and 99.91% for active, grazing, and inactive behavior, respectively, which is also slightly higher, 
when compared to the F1 scores obtained in experiment A over the source domain. On the other hand, testing the model 
on the target domain shows a slight decrease in the F1 score (i.e., 1.05%) on active behavior, but an increase of 2.01% 
on the grazing behavior. In both experiments, the F1 scores for inactive behavior are above 99.33% on the target domain. 
Regarding the grazing behavior, precision and recall on the source domain is 96.46% and 96.69%, respectively. Grazing 
behavior precision on the target dataset is 92.48%, while recall is 95.51%.  

Table 5 Overall Results on DS and DS+ for CNN 
Activity Experiment A Experiment B  

𝑫𝑺𝒕𝒔 𝑫𝑺/𝒕𝒔  
Active F1 score 92.15% 94.60% 
Grazing F1 score 95.34% 96.57% 
Inactive F1 score 99.49% 99.91% 
Accuracy 97.46% 98.55% 

 
Table 6 Results from Transfer Learning on DT and DT+ for CNN 
Activity Experiment A Experiment B  

𝑫𝑻𝒕𝒔 𝑫𝑻/𝒕𝒔  
Active F1 score 91.05% 90.00% 
Grazing F1 score 91.96% 93.97% 
Inactive F1 score 99.63% 99.33% 
Accuracy 94.79% 96.59% 

 
A summary of the obtained results is presented in Tables 5 and 6. From the overall results, it is observed that the 

CNN achieved the best accuracy on both source and target domains, when using the datasets with the hand-crafted 
features. The experiments also indicate high F1 scores for the inactive behavior, in the range of 99.33%-99.91%. The 
lowest F1 score (90.00%) is achieved on the grazing behavior, when the TF is applied to 𝐷𝑻/𝒕𝒔 . However, when conducting 
experiment B on 𝐷𝑺/𝒕𝒔 , F1 scores of 96.57% on grazing and 94.60% for active behaviors are obtained. These outcomes 
indicate the superiority of the proposed model, when compared to previously published studies. For instance, (Fogarty, 
Swain, Cronin, Moraes, & Trotter, 2020) indicated 69.8% and 45.2% precision performance for the lying and standing 
behaviors, respectively, as compared to 99.87%  and 99.17% in the proposed study for the source and target domain to 
classify inactivity (lying, standing). Likewise, (Vázquez-Diosdado et al., 2019) and (Decandia et al., 2018) reported 
85.18% and 89.7% overall accuracy, which is significantly lower than the proposed model, which achieved accuracies 
in the range of 96.59%-98.55%. However, it is important to note that the number of activities were different in these 
studies as compared to the current work. 

As mentioned, active behavior is comparatively complex, comprising overlapping behaviors, such as running, 
shaking, scratching and walking, which exhibit more complex movements. For instance, Barwick reported poor 

Fig.  9 Experiment B: CNN model A transfer learning on target domain 𝑫𝑻/
𝒕𝒓 . 

 



classification (54%) for the standing activity, using collar data (Barwick, Lamb, Dobos, Welch, & Trotter, 2018). 
Likewise, [66] indicated limited performance with accuracies of 69.8%, 45.2%, and 25.1% for lying, standing and 
walking behaviors, respectively. Based on these findings and expert recommendations, the proposed model integrated 
the lying and standing activities into a single behavior (i.e., inactive), which significantly improved accuracy (over 
99%). A similar work proposed by Umstater et al., (Umstätter et al., 2008) also indicated that there are instances, where 
walking and grazing show overlapping patterns, because sheep may graze while walking, which makes it more difficult 
for ML models to distinguish between these two behaviors. 

Studies also indicated performance variations with respect to sensor attachments for data collection. For instance, 
(Barwick et al., 2020) reported accuracies of 67%-88% for collar-based data, as compared to 86%–95% for ear-tag 
sensors. Indeed, Barwick (Barwick, Lamb, Dobos, Welch, et al., 2018) obtained better results, when the sensor was 
attached to the ear-tag of the animal with prediction accuracies of 94%, 96% and 99% for the grazing, standing and 
walking behaviors, respectively.  

The statistical results indicate the robustness of CNN in terms of generalization on unseen data, which support its 
use in real-life applications. In relation to real-life applications and real-time decision making, the CNN model is very 
useful, specifically, because it has the ability to automatically extract features from the raw sensor data, while producing 
robust results, as demonstrated in our experiments. When using CNN with the hand-crafted features in experiment B, 
we achieve higher results and we show that the transfer learning application is more robust, when compared to 
experiment A. In other words, the use of CNN with the hand-crafted features supports real-time operation in real-life 
scenarios of animal monitoring and warning generation. 

In addition to the reliable and efficient performance, the use of the transfer learning is advantageous also because of 
the reusability and generalization of pre-trained models from other applications within similar domains, on unseen 
datasets.  Furthermore, as the CNN performs better with larger datasets, transfer learning can be leveraged so as to 
provide a cost-effective solution (in regards to time and resources), while reusing it for limited size datasets. In this way, 
the new dataset can be used in transfer learning, while using the knowledge acquired from model trained in relevant 
larger datasets. 

6. Conclusion and future directions 

In this work, the problem of sheep recognition activity was considered in the context of two sensor types and 
configurations. The first sensor (MetamotionR) was placed at a fixed orientation and was characterized by lower noise 
density, while the second sensor had varying orientation and higher noise density. Our research investigated the use of 
CNN and transfer learning on two problem settings. Firstly, we applied CNN and transfer learning on the original 
datasets. Next, we extracted a large number of temporal and spectral features, which resulted to two augmented datasets. 
The simulation studies and associated analysis indicated that CNN and transfer learning can generate high accuracy in 
terms of classifying three sets of activities, including active, grazing and inactive behaviors. High quality classification 
results were achieved in terms of accuracy, F1 score, precision and recall quality measures, when benchmarked with 
other results in the literature. It was observed that the inclusion of hand-crafted features improved the performance of 
both the employed CNN and transfer learning solutions. Furthermore, the simulation results showed the advantage of 
using deep learning in terms of generalization, indicating its reusability when datasets are limited in animal behavior 
recognition. 

Future research will consider the development of a multi-functional virtual fencing system to control the spatial 
distribution of the animals among the land they graze using acoustic intermittent cues for the manipulation of their 
location. In this case, real time monitoring and smart border fencing is proposed to automatically monitor the wellbeing 
and welfare of animals.   
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