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A B S T R A C T

The idea that increasing physical activity directly adds to TEE in humans (additive model) has been challenged by the energy constrained
hypothesis (constrained model). This model proposes that increased physical activity decreases other components of metabolism to
constrain TEE. There is a logical evolutionary argument for trade-offs in metabolism, but, to date, evidence supporting constraint is subject
to several limitations, including cross-sectional and correlational studies with potential methodological issues from extreme differences in
body size/composition and lifestyle, potential statistical issues such as regression dilution and spurious correlations, and conclusions drawn
from deductive inference rather than direct observation of compensation. Addressing these limitations in future studies, ideally, randomized
controlled trials should improve the accuracy of models of human energy expenditure. The available evidence indicates that in many
scenarios, the effect of increasing physical activity on TEE will be mostly additive although some energy appears to “go missing” and is
currently unaccounted for. The degree of energy balance could moderate this effect even further.
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Statements of Significance

Current evidence for the constrained energy hypothesis is
subject to limitations, including methodological, statistical, and
deductive inference. Suitably powered randomized controlled
trials with measures of energy balance components are needed to
better elucidate whether physical activity is additive or
constrained.

Introduction

The constrained energy expenditure hypothesis challenges
the notion that increases in AEE add to TEE. This hypothesis was
first proposed by Herman Pontzer [1], and the overarching
Abbreviations: BEE, basal energy expenditure; CPM/d, counts per minute per da
minimal clinically important difference; NEAT, nonexercize activity thermogenesis; P
ratio; SMR, sleeping metabolic rate.
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premise is conceptualized with the following statement from his
recent book:

“The bottom line is that your daily (physical) activity level has
almost no bearing on the number of calories that you burn each
day” (p103) [2].

The potential controversy of this topic has been briefly
highlighted [3]. If this hypothesis is true, it has profound rami-
fications for scientific understanding of energy balance and
prevention and management of obesity. The potential to
manipulate energy expenditure with physical activity and/or
calculate energy requirements for the population would also be
severely challenged. The aim of this review is to provide an in-
dependent appraisal of the current evidence used to support the
y; DIT, diet-induced thermogenesis; EXEE, exercise energy expenditure; MCID,
AEE, physical AEE; RCT, randomized controlled trial; RER, respiratory exchange
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constrained energy expenditure hypothesis and to highlight
future directions for research.
Human energy expenditure is comprised of
multiple components

Human TEE is the energy cost of all metabolic processes and is
comprised of several components (Figure 1). The primarily
nonbehavioral components include:

1) sleeping metabolic rate (SMR);
2) arousal (when awake) [4];and
3) cold- and heat-induced energy expenditure (which in-

creases TEE by 3 to 7% with typical changes in ambient
temperature [5]).

Behavioral components include diet-induced thermogenesis
(DIT; a.k.a., the TEF, or specific dynamic action of food), repre-
senting increased metabolic rate due to digestion, absorption, and
metabolism of ingested energy [6]. Although this does have a
nonbehavioral component, most of the variance in diet-induced
thermogenesis is explained by the amount and type of energy
consumed and thus arises as a consequence of eating behaviors
[6]. Finally, AEE is the increase in energy expenditure with skel-
etal muscle force production [7]. Exercise energy expenditure
(EXEE) is a subcomponent of AEE that is planned or structured
and thus is defined by the person’s intention, with nonexercize
activity thermogenesis (NEAT) comprising the remaining fraction
of AEE. Again, whereas some variance in AEE is from nonbehav-
ioral factors, such as the efficiency of movement, most variance is
explained by behavioral factors, such as the magnitude and nature
of activity [8]. Because the absolute energy cost of movement
varies according to body size, the level of physical activity is often
expressed as TEE divided by RMR, known as the PAL [9].
What is the constrained energy expenditure
hypothesis?

The constrained energy expenditure model proposes that:

“The human body adapts dynamically to maintain TEE within a
narrow physiological range. Rather than increasing with physical
activity in a dose-dependent manner, experimental and ecological
evidence suggests the hypothesis that TEE is a relatively con-
strained product of our evolved physiology” [10].

In other words, in contrast to the notion of physical activity
directly adding to TEE (Figure 2A), the energy constrained hy-
pothesis proposes a compensatory decrease in other components
of energy expenditure, such that TEE remains relatively constant
(Figure 2B).

Initial support for the constrained energy expenditure hy-
pothesis came from a cross-sectional study using DLW to esti-
mate TEE in 30 Hadza (a population of hunter-gatherers) and
compared these data with measurements in “Western” and
“Farming” populations [1]. PAL was derived using TEE minus
BMR, which for the Hadza, was predicted from equations. In
contrast to the authors’ expectations, after adjusting for FFM and
age, TEE was not significantly different between Hadza
compared with Western comparators [1]. PAL was ~6%
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(women) and 25% (men) higher in the Hadza compared with
Western population, and it was deduced that the Hadza must
therefore spend a smaller proportion of TEE on BMR—with the
inference that BMR is adjusted downwards when physical ac-
tivity is high to constrain TEE. This initial report was followed up
by a larger study across 332 men and women from 5 diverse
locations and populations [11]. This study used DLW over 7 d,
measured RMR, and assessed physical activity using a
hip-mounted tri-axial accelerometer (Actical, Phillips Ltd) over 6
d (�62% of a day, and �4 d of data were used) [11]. Across the
whole sample, a positive linear relationship was reported be-
tween accelerometer counts and TEE up to a proposed threshold
of ~230 counts per minute per day (CPM/d), but above this
level, additional accelerometer counts did not predict TEE
(Figure 3). Unlike findings from the earlier study that predicted
RMR [1], there was no evidence for any effect of measured RMR
on TEE when measured under more controlled conditions [11].
However, AEE from DLW-derived estimates (TEE minus RMR)
were reported to stabilize at higher energy expenditures and—on
the basis of a proposed piecewise regression model (two
regression slopes with a threshold of 230 CPM/d)—it was
concluded that AEE not captured by the accelerometer must have
been reduced to negate the impact of AEE captured by the
accelerometer. Given the magnitude of the missing AEE (~600
kcal/d), it was proposed that this could not be due to muscular
activity overlooked by the accelerometer alone but must repre-
sent a reduction in some other form of energy expenditure (for
example, reproductive activity). Presumably, this effect must
only be manifested in the AEE component because RMR was not
related to TEE.

One study from hunter-gatherer children in (Shuar) is also
used to directly support the constrained energy expenditure
hypothesis [12]. Data for hunter-gatherer children were
compared to reference data from the UK and North America.
DLW was used to derive TEE (11 d), and fasting morning RMR
was measured [12]. Physical activity was determined using
hip-mounted accelerometry. RMR was higher in rural Shuar, and
this was attributed to the energy cost of ongoing infections and
immune burden based on the positive relationship between RMR
and circulating Ig G concentrations [12]. Shuar children dis-
played little-to-no difference in TEE but lower DLW-derived AEE
than industrial comparators, despite ~25% greater accel-
erometry counts [12]. This was interpreted as evidence for
trade-offs in childhood to constrain TEE, with the lower AEE in
Shuar children possibly explained by differences in mass, effi-
ciency, thermoregulation, or the amplitude of variation in RMR.

Other data used to support the constrained energy expendi-
ture hypothesis comes from a study that investigated energy
expenditure in 6 adults during the transcontinental Race Across
the USA, a ~5000 km event involving running 6 d/wk for 20 wk
[13]. This study incorporated measures of TEE using DLW (5 d),
with running energy cost estimated using global positioning
systems [13]. RMRwas measured in 3 participants and estimated
using predictive equations in the remaining 3. Data from the first
week of the race showed strong agreement between predicted
and observed energy expenditure, which increased to ~6000
kcal/d. However, at follow-up (14 or 20 wk into the race), there
was a discrepancy such that the observed TEE (from DLW) was
less than predicted [13]. The predicted energy expenditure used
RMR and other (nonrunning) AEE from before the race (AEE ¼



FIGURE 3. Adjusted TEE (from DLW), RMR, and AEE in relation to
increasing PALs estimated by accelerometry. Reprinted from [11].

FIGURE 4. Predicted and observed components of TEE of athletes
competing in the Race Across USA. Reprinted from [13]. Although at
week 1, the predicted and observed components of energy expenditure
appear broadly in agreement, there is a larger difference in the pre-
dicted and the observed components at week 6, primarily because of a
reduction in other physical activity. BMR, basal metabolic rate; RUN,
running expenditure.

FIGURE 1. Components of energy expenditure in 75 healthy adults.
Components in pink are primarily behavioral. Components in black
are primarily nonbehavioral. Data adapted from Chrzanowski-Smith
et al. [41]. PAL is calculated by dividing RMR (the sum of SEE and
arousal) by TEE. DIT, diet-induced thermogenesis; SEE, sleeping en-
ergy expenditure.
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TEE minus RMR, TEF, and running energy expenditure). These
calculations indicated that it was this “other” AEE component
that was less than predicted (Figure 4). There was little-to-no
change in measured RMR. Thus, it was concluded that humans
partially reduce components of TEE (manifested in the AEE
component) [13].

A final piece of recent cross-sectional evidence for the con-
strained hypothesis comes from an analysis of a large DLW
database which included paired RMR measures from indirect
calorimetry in adults (n ¼ 1754) [14]. AEE was calculated by
subtracting RMR from (0.9 � TEE). The primary observations
used to support the constrained energy hypothesis were that the
least squares regression slope for the basal energy expenditure
(BEE)-TEE relationship was <1 (Figure 5A) and that the corre-
lation between measured RMR and calculated AEE was negative
(Figure 5B). The authors inferred that these relationships pro-
vide evidence of energy compensation because a lack of
compensation (that is, an additive model) should provide a
perfect positive relationship between TEE and RMR and a zero
relationship between AEE and RMR [14]. To understand if
compensation occurs within individuals, the authors explored
within-individual relationships between residuals of RMR and of
TEE for older individuals with 2 measures each and for residuals
of AEE and RMR. Based on the same reasoning applied to the
whole sample (relationship between RMR and TEE <1 and be-
tween AEE and RMR, negative), the authors suggested that
FIGURE 2. Additive and constrained energy expenditure models as propo
PAEE, physical AEE. ADJ, adjusted for body composition and/or age.
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compensation occurred within, not between, individuals [14].
The potential components that have been suggested to be
responsible for the constraint across these studies, with sup-
porting statements, are provided in Table 1.
sed by Pontzer. Adapted from [11]. DIT, diet-induced thermogenesis;



FIGURE 5. The 2 primary analyses proposed to be indicative of energy compensation. Reprinted from Careau et al. [14]. It was proposed by the
authors of the article that a least squares regression slope between measured BEE and TEE (A) of <1 is indicative of compensation, and that a
negative slope between measured BEE and calculated AEE (B) is also indicative of compensation. BEE, basal energy expenditure.
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Critique of current evidence on constrained energy
expenditure

At the simplest level, evidence from studies on energy balance
components and body mass change can be used to critique the
constrained hypothesis. If TEE is constant when AEE increases,
then a stable body mass would require stable energy intake.
Classical data from the 1950s collected from 213 Mill workers in
Bengal indicated that energy intake increases byalmost 1000kcal/
d in individuals performing very heavywork comparedwith those
undertaking lightwork, yet bodymasswas reported as stable [15].
This is also supported by more recent studies on athletes [16] and
nonathletes [17]. A limitation of this critique, however, is the
potential inaccuracy of measuring energy intake. A more
comprehensive critique requires consideration of methods of
assessing energy expenditure, studydesign, and statistical analyses
to establish appropriate inferences regarding the relationships
between physical activity and other components of energy
expenditure.
Considerations for measurement of energy
expenditure components
TEE

DLW is considered the gold-standard method of determining
TEE during free-living conditions [18]. The primary principle is
that labeled hydrogen disappears only from water losses, whereas
labeled oxygen disappears from both water losses and exhaled
carbon dioxide. Accordingly, the difference in disappearance rates
of labeled oxygen and hydrogen in the body pool provides exhaled
carbon dioxide over the timeframe of measurement, typically 1–3
wk [19]. TEE is obtained by estimating oxygen consumption from
the measured carbon dioxide production by adjusting for the
respiratory exchange ratio (RER), which is measured, assumed, or
estimated. One way to estimate RER is to estimate the food quo-
tient (FQ). When in energy balance, FQ will typically equal RER,
and thus RER can be estimated from accurate food diaries. This is
relevant because the diet of specific populations, such as hunter
gathers, can vary substantially with regard to carbohydrate and fat
content, varying both between populations, but also seasonally
[20]. Because dietary intake is notoriously difficult to measure
[21,22], the accuracy of estimating FQ can be challenging,
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ultimately impacting the accuracy of DLW estimates of TEE.
Moreover, some extreme scenarios will mean that RER cannot be
predicted from FQ, for example, when ketone bodies are being
produced or oxidized [23]. It has been estimated that properly
accounting for RER can alter the interpretation of DLW data
drastically, cutting the effect size of an intervention on energy
expenditure by half, from 209 � 58 kcal/d to 104 � 59 kcal/d
[24]. Therefore, the measurement of TEE under free-living con-
ditions is challenging, and the extra information required to
accurately estimate energy expenditure is quite often likely to be
missing or inaccurate from studying extreme populations.

The limitations in assessing TEE with DLW have implications
for the currently available evidence on the constrained energy
expenditure hypothesis. The nature of these studies often in-
volves measures in people with vastly different body sizes, life-
styles, and diets [1] or in the same people but in very different
situations, such as the phases of an ultramarathon [13]. These
extreme differences could undermine or violate some assump-
tions of DLW for estimating TEE. Furthermore, TEE measures are
normally taken without direct assessment of RER, which will
reduce measurement accuracy and precision. Given these mea-
surement uncertainties, it is risky to base interpretations on
deductive reasoning and inductive reasoning using TEE mea-
surements alone, and direct observation of the component
demonstrating constraint is needed to provide greater certainty
that deduced differences are not the product of measurement
issues and considerations.

AEE
The measurement of AEE is also challenging and has impli-

cations for the energy constrained hypothesis. In some studies,
AEE has been estimated by subtracting RMR (either measured or
estimated) from TEE. The fact that this approach relies on 2
measures (one subtracted from another) inherently increases
uncertainty compared with direct measurement (and compared
to the measure of TEE) because it relies on additional assump-
tions and amplifies variance introduced by each measure.
Moreover, without additional measurement of other compo-
nents, this measure can mistakenly assign other components of
energy expenditure to physical activity, such as energy costs of
thermoregulation and variance in RMR across a day.



TABLE 1
Summary of studies used to generate the energy constrained hypothesis, with the proposed components demonstrating constraint and supporting
evidence

Type Study Constrained component Supporting evidence/reasoning

Original data Pontzer et al. (2012) [1] BMR TEEADJ was similar between Hadza vs. other populations
a higher PAL.

Pontzer et al. (2016) [11] AEE RMRADJ not different across a wide range of physical
activity, assessed by accelerometry, but TEEADJ plateaued
at higher accelerometry counts.

Urlacher et al.(2019) [12] AEE Shuar children displayed little-to-no difference in TEE,
but lower AEE vs. industrial counterparts, despite higher
accelerometry counts.

Thurber et al. (2019) [13] AEE Little-to-no difference in BMR, TEF or EXEE between
week 1 and weeks 14/20 of an ultramarathon,
but lower TEE.

Careau et al. (2021) [14] BMR Relationship between BMR and TEE <1 and relationship
between BMR and AEE negative.

Review Pontzer (2015) [10] Non-AEE metabolic activity
(BMR/TEF/Other)

Cross-sectional evidence in humans and experimental
data from nonhuman animals.

Pontzer (2018) [49] Immune function, reproduction,
and stress response
(BMR/TEF/Other)

Reduced markers of inflammation (for example,
C-reactive protein) with chronic exercise, lower
concentrations of sex hormones in endurance athletes,
lower cortisol, and norepinephrine responses in people
with high physical fitness.

Pontzer et al. (2018) [76] Non-AEE (BMR/TEF/Other) Higher accelerometry counts but little-to-no differences
in TEE, AEE or PAL with Hadza and Tsimane populations
compared to 7 industrialized populations.

Pontzer and McGrosky
(2022) [77]

BMR Measures of TEE at multiple timepoints indicate increase
AEE is negatively associated with BMR in humans.

BMR, basal metabolic rate; EXEE, exercise energy expenditure; ADJ, adjusted for body composition and/or age.
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Some studies which report compensation and/or constraint
have used hip-mounted accelerometers to characterize “physical
activity” [11,12]. Accelerometry data (CPM/d) are used as a proxy
for physical activity, with the conclusion that because higher
CPM/d do not “add” to TEE, there must be compensation or
constraint in some other component of energy expenditure which
erodes the impact of physical activity on TEE (see Figure 3
reprinted from [11]). Although hip accelerometry is a good
measure of ambulatory physical activity [25], it is notoriously
poor for the assessment of nonambulatory physical activity. Hip
accelerometry explains only 6 to 16% of the variance in AEE
derived from DLW [26–28] and ~30% of the variance in
measured energy expenditure (by indirect calorimetry) during a
battery of physical tasks [29]. So, at least some of the observed
“constraint” could be decreases in other forms of physical activity
(not detected by hip-mounted accelerometers). Hip-mounted ac-
celerometers would not adequately capture many common forms
of physical activity, such as standing, nonambulatory physical
labor, load carrying, cycling, and swimming [29]. Capturing only
a proportion of total activity might be useful if patterns of physical
activity behavior are consistent across groups, but there is likely to
be considerable heterogeneity in these types of behaviors across
diverse populations [11,12]. Based on the regression shown in
Figure 3, a great deal of AEE (~600 kcal/d) is reported with zero
accelerometry counts [11]. It was speculated that this could reflect
other nonmuscular/movement energy expenditure allocated to
AEE from DLWmeasurements [11], but it could simply reflect the
failure of accelerometry to adequately capture the energy cost of
physical activity. Thus, hip accelerometry data should not be used
as a proxy for physical activity without evidence showing that this
method suitably captures the nature of physical activity in a
410
defined population, including variation due to the distinct types of
representative movements undertaken in that population.

Another consideration with accelerometers is the sampling
framework and recording period. Whereas DLW derives average
TEE (and AEE) over a sustained period (for example, 5 d to 3 wk
[18,19]), accelerometry data are often accepted for a given day if
a device has been worn for a given proportion of the day (for
example, 10 h or 62% [11,12]), and for a proportion of the
sampling period (for example, 4 d [11]). Given the uncertainty in
the behavior that has been missed outside the recorded period,
there is a risk in trying to reconcile (fragmented) accelerometry
records with summative average daily AEE data from DLW.
Technical innovation and development may overcome some of
these issues, for example, the integration of other physiological
data to improve estimates of energy expenditure from
body-mounted devices [30] and/or positioning of devices in
locations that support improved wear time and sampling [31].
The accuracy of physical activity measurement is crucial for
making inferences about the constrained energy hypothesis,
given that this is a commonly proposed explanation for
constraint (Table 1). This component needs to be measured and
not deduced to make rational inferences about the relationship
between physical activity and human energy expenditure.

TEF
The TEF is sometimes assumed in studies on the basis that fat,

carbohydrates, protein, and ethanol have thermic effects of 0%–

3%, 5%–10%, 20%–30%, and 12%–28%, respectively [6]. The
considerable variance in TEF between macronutrients would
require accurate diet assessment to derive accurate TEF, but even
with accurate diet data, the range within each macronutrient is
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still considerable, as some variance in TEF is due to interindi-
vidual differences in the postprandial handling of nutrients, and
others can be because of food form and/or degree of processing
[32]. Therefore, measured TEF would be preferable, requiring
~4 h of postprandial measures, ideally in response to a variety of
foods, to understand the interactions between the individual and
the foods on TEF. Studies that are aimed at investigating the
constrained energy expenditure hypothesis may therefore make
erroneous conclusions if TEF is estimated rather than measured
directly or if the measurement is only performed in response to 1
type of meal rather than a representative mix of foods (differing
in type, timing, and total amount). An erroneous conclusion
could be made in either direction (that is, it is possible that
constraint in TEF could be missed or that constraint is deduced
when direct measurement would counter this). Studies providing
evidence for the energy constrained hypothesis have often
assumed TEF, which has been recognized as a limitation [11]. In
the same way as AEE, TEF needs to be measured rather than
assumed to provide robust and complete data on the relationship
between physical activity and human energy expenditure.

RMR
The measurement of the lowest rate of energy expenditure

(sleeping or BMR) requires participants to have fasted, asleep, in
thermoneutrality, and thereby is typically assessed by room
calorimetry. RMR can be assessed by either room calorimetry or
indirect calorimetry when participants are awake, thereby
measuring the sum of sleeping energy expenditure plus arousal.
Room calorimetry is nonportable and thus is essentially never
used in field studies. In these scenarios, field studies are limited
to either portable indirect calorimetry devices or estimations of
RMR based on prediction equations [13]. Limitations with
portable metabolic systems for RMR include the inability of
many devices to accurately measure ventilation rates and ac-
count for inspired gas concentrations, which can vary substan-
tially in different environments and across time [33]. Finally,
even with a single accurate estimate of RMR, there is then the
assumption that this measurement reflects the full 24-h period
and is stable day-to-day. A snapshot measurement of RMR is
unlikely to be sufficient to extrapolate across an entire day [34,
35]. Based on these limitations, evidence from a single mea-
surement should be interpreted with caution, as they may not
reflect RMR at other times of the day and/or may display some
errors compared with more rigorous methods. Accordingly,
measurement (rather than estimation) of RMR is required to
confidently determine whether RMR is responsible for any
compensation in TEE with physical activity, and multiple mea-
sures of RMR across a day are likely needed to account for
circadian rhythmicity.
Statistical issues in the interpretation of energy
constraint

Alongside study design and measurement-related consider-
ations, it is also important to consider statistical factors arising
from the mainly observational studies on the constrained energy
expenditure hypothesis. These potential issues include:

1) matching the statistical model with the proposed causal
pathway between the exposure (independent) variable(s)
and outcome (dependent) variable(s);
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2) the influence of measurement error on least squares
regression estimates of slope and intercept;

3) the risk of correlations being spurious because of mathe-
matical coupling between the variables of interest;

4) the appropriate use of null hypothesis testing compared
with equivalence analyses for “indistinguishable” or “no
difference” type hypotheses;

5) a comprehensive and robust approach to comparing the
appropriateness of nonlinear, for example, change point
associations, compared with linear statistical models.
What are the exposure and outcome variables?
Prior to the application of any statistical model, a proposed

direction of a causal pathway between the various variables of
interest should be considered, preferably aided by a directed
acyclic graph [36]. The causal pathway determines important
aspects of the proposed statistical model [37], for example,
estimates from least squares regression models can differ
considerably depending upon which variable is deemed the
exposure [or independent variable (x)] and the outcome [or
dependent variable (y)]. The energy constraint theory indicates
that increases in physical activity cause reductions in other
components of energy expenditure, for example, “Increasing
levels of activity may bring diminishing returns in energy
expenditure because of compensatory responses in non–activity
energy expenditures.” [14] (p4659). In some studies, this latter
component is deemed to be in RMR. In other words, energy
expended in physical activity—often using AEE derived from
DLW—is the exposure (independent) variable that should be
placed on the x-axis, and BEE is the outcome (dependent) var-
iable that should be placed on the y-axis. It can be seen in
Figure 5 that Careau et al. [14] selected the axes for these 2
variables in a way that is not consistent with the causal pathway
for compensation theory.

It is important to select exposure and outcome in a way that is
consistent with a causal pathway because this selection in-
fluences how much least squares regression estimates are
affected by measurement error. Researchers should consider
whether an association is “symmetric” or “asymmetric” [37].
Symmetry refers to a situation where the purpose is to estimate a
slope to ultimately identify a general pattern between 2 mutually
co-dependent variables [37]. If a research question is grounded
in such symmetry, then least squares regression may not be
appropriate for estimating a slope at all. This is because least
squares regression is asymmetric so that there are 2 different
lines and 2 different slopes, depending upon which variable is
selected for each axis. Least squares regression is more appro-
priate for a definitive causal pathway between an exposure
variable and an outcome variable. Along with the importance of
correctly identifying exposure and outcome variables, the
important issue of regression dilution is relevant to least squares
regression. This issue is, in turn, dependent on the relative
magnitudes of error variance between the exposure and outcome
variables.

Because the energy constrained hypothesis postulates that
increases in physical activity result in constrained TEE, then it
follows that physical activity should, in our opinion, be the
exposure on the x-axis when examining such correlations. But
this is not the case in many studies.
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Is evidence for constraint an artifact of regression dilution?
Regression dilution results when measurement errors in the

predictor (x) variable attenuate the least squares regression
slope [37]. The true regression slope can be 1, but measure-
ment errors in the exposure variable (AEE) lead to the least
squares regression slope being attenuated to less than one.
Importantly, neither BEE nor AEE is immune from measure-
ment errors and biological variability. Therefore, a slope of <1
as the criterion used to support the compensation hypothesis
needs to be considered carefully in the context of regression
dilution.

Guidelines for exploring regression dilution have been pub-
lished [38], where advice is to adopt multiple approaches to
diagnose and control for the effects of regression dilution,
including 1) exploration of relative measurement errors between
x and y variables, 2) appreciation of the causal nexus between x
and y variables (see above), 3) calculation and consideration of
the correlation coefficient between x and y variables (the lower
the r, the more prone a least squares regression slope is to dilu-
tion, and 4) undertaking sensitivity analyses where alternative
regression approaches are compared with least squares regres-
sion. It is unclear to what extent regression dilution influenced
the findings of Careau et al. [14].

The use of the following published guidelines for exploring
regression dilution may help to advance the understanding of
whether TEE is constrained, especially given the known mea-
surement and biological errors in components of human energy
expenditure [6,18,19,39].
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Is some evidence for constraint an artifact of spurious
correlations?

Spurious correlations are those that are not explained by
biological mechanisms but occur even in the absence of any
biological links between correlated variables [40]. One type of
spurious correlation results when a variable (x) is correlated to
another variable (y), but variable x is also present in the calcu-
lation of variable y (or vice versa). In many studies, AEE has not
been directly measured but, rather, has been deduced by sub-
tracting RMR (and sometimes other estimated or measured
components) from TEE [1,13,14].

AEE calculated by this subtraction method has then been
correlated against RMR itself, setting up mathematical coupling
and risk of spurious correlation. In Figure 6A, we present the
scatterplot for the BEE-AEE correlation, whereby data have been
obtained from simulation. Using the random number generator
in Excel, we simulated BEE and TEE to be completely indepen-
dent, uncorrelated (r¼ 0.02), and normally distributed variables
(n ¼ 100). Our simulation was based on mean and SD values
similar to those supporting the energy constrained hypothesis
[14]. Figure 6A illustrates that, in this simulation, even though
BEE and TEE are separate, independent variables, a negative
correlation between BEE and AEE (when AEE ¼ TEE minus BEE)
can be obtained simply because BEE is 1 of the variables in the
correlation but is also a negative term in the calculation of the
other variable (AEE). The correlation we present is entirely
spurious, and it is unclear to what extent prior reports of
constraint could be influenced by similar spurious correlations.
FIGURE 6. Spurious correlation between
AEE and BEE (RMR), when AEE is deduced
by subtracting BEE from TEE (A) and lack
of correlation between measured AEE and
measured BEE adjusting for covariates of
sex, age, and FFM (B). Because BEE (RMR)
is 1 variable, and a negative term in the
calculation of AEE, the correlation shown
above is entirely spurious, caused by
mathematical coupling and could be pre-
sent in data used to support the energy
constrained hypothesis. The lack of corre-
lation between directly measured AEE and
BEE raises the possibility that prior reports
of correlations between these measures
could be because of artifacts of including
the same measurement in the calculation of
the variables on both the x- and y-axes.
Data for panel B are from Chrzanowski-
Smith et al. [41]. Fat mass was not
included as a covariate in this model for 2
reasons: 1) in this dataset, FFM strongly
correlated with BEE (Pearson r ¼ 0.84) but
fat mass shows little-to-no correlation with
BEE (Pearson r ¼ �0.06); 2) because the
calculation of FFM and fat mass by DXA are
interlinked (one is calculated by subtract-
ing the other from total mass), the inclusion
of both within a statistical model in-
troduces the potential for multicollinearity
[78]. BEE, basal energy expenditure.
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To reduce the likelihood of spurious correlations between
AEE and RMR, such associations should ideally be explored with
direct measures of each variable. If there is indeed a negative
slope between these 2 measured variables, then this would
support the constrained energy expenditure hypothesis. In
Figure 6B, we present the scatterplot for the correlation between
RMR and AEE using the data reported in a previous study where
each of these variables was measured directly and independently
[41]. In a similar way to Careau et al. [14], we ran a
multivariable-adjusted general linear model to explore the rela-
tionship between measured BEE and measured AEE, adjusting
for covariates of sex, age, and FFM.

The slope on the scatterplot in Figure 6B is �0.09 (95% CI:
�0.70 to 0.52), and the correlation coefficient is 0.04. Mathe-
matical coupling is not present in the correlation presented in
Figure 6B, and the flat slope does not support the constrained
energy expenditure hypothesis. There also does not appear to be
any evidence for a “change point” association in the scatterplot.
Incidentally, if exposure (AEE) and outcome (BEE) are reversed
and remodeled (similar to Careau et al. [14]), then the slope we
obtained is still flat (�0.01, 95% CI: �0.11 to 0.08). Further-
more, because our x-y and y-x slopes are very similar, then this
indicates no meaningful influence of regression dilution on our
least squares slope estimate [37].

Although the data we have used are from a smaller, less
diverse sample, this still raises the possibility that prior corre-
lations of DLW-derived AEE compared with BMR could be the
result of including the same measurement in the calculation of
variables in both the x- and y-axes.

Accounting for body size and composition
In some studies, the differences in body size between samples

being compared are substantial, and this should be considered in
order to appropriately compare measures of energy expenditure
components between such groups. For example, mean body mass
differed between Hadza and Western samples by ~30 kg
(~60%–70%) [1]. It could be questioned whether the statistical
models employed in comparative studies have adequately
adjusted for body size and composition, especially given that: 1)
body mass and energy expenditure scale allometrically; and 2)
adjusting for body composition (FFM) is inherently problematic
because of limitations of measurement methods.

Two common methods of assessing FFM within this field
are bioelectrical impedance and dual-energy x-ray absorpti-
ometry. However, neither of these methods can determine
body cell mass, which is the most relevant measurement for
RMR because cell mass is the metabolically active component
of FFM. The gold-standard method for assessing cellular mass
is the 40K dilution method. Examples of how this is relevant
for normalizing RMR include evidence from energy deficits
and aging. The degree of metabolic adaptation seen with se-
vere energy deficits such as semistarvation (that is, the larger
than predicted decrease in RMR seen with a recent energy
deficit) can be attenuated from ~750 kcal/d when using FFM
to ~200 kcal/d when using body cell mass (Luke and Scho-
eller 1992). Moreover, the apparent decline in RMR with age
when adjusted for FFM is abolished when using body cell
mass [42].

Accordingly, adjusting measurements of energy expenditure
across populations with vastly different body size and/or
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composition is not straightforward, and even measures such as
dual-energy x-ray absorptiometry may not be optimal for
appropriate correction of body composition under extreme
conditions. Including measures of body cell mass by the potas-
sium dilution method may enhance the ability to compare TEE
and TEE components across populations with large differences in
body size and composition and within the same individuals
before and after extreme interventions.

Equivalence testing compared with null hypothesis testing
Support for the compensation hypothesis often comes from

the use of null hypothesis tests to conclude that the difference
between 2 or more sample means is, or is not, statistically sig-
nificant (p< 0.05). This approach is also often used for 2 or more
outcomes related to energy expenditure in a differential and
dichotomous fashion. For example, it has been reported that the
mean PAL was greater in a sample of Hadza foragers than in a
sample of Westerners, whereas it was also reported that the mean
daily energy expenditure of traditional Hadza foragers was “no
different” to that of Westerners [1].

It is important to highlight that a nonsignificant p-value from
a null hypothesis test should not be used to make conclusions
about the “not different” type [43]. Ironically, all a researcher
would need to do to arrive at such a conclusion is recruit a small
sample of participants and use outcomes that are measured with
a substantial amount of random measurement error. These con-
ditions would almost guarantee a nonsignificant p-value for a
null hypothesis test on 2 sample means. For this, and other
reasons, equivalence analyses have been developed specifically
to arrive at conclusions regarding “no relevant difference” in-
ferences [44,45].

For future research, various approaches are available for
equivalence analyses; a common approach involves “2 1-sided
tests.” In this frequentist interval approach, the null and alter-
native hypotheses within each set are reversed. Equivalence is
concluded only if both 1-sided tests statistically reject the pres-
ence of effects equal to or larger than a threshold value that is
deemed to be clinically or practically relevant. This approach
places informed thresholds for minimal clinically important
differences (MCID) at the center of the inferential process.
Without such an MCID, a statistically significant difference may
be negligible, or a nonstatistically significant difference could be
important. There have been very few efforts to arrive at a
consensus regarding MCIDs in exercise science, despite the
recent publication of formal and informed methods [46].
Importantly, the difference in a study outcome might not be
statistically significant merely because it is associated with more
measurement error than another study outcome that has been
found to be statistically significantly different.

Our primary point here is that conclusions of “no statistically
significant difference” are commonly used in components of
research on energy compensation, yet informed and robust in-
dications of MCIDs seem absent in the field, raising the likeli-
hood that important differences between samples are not being
detected because of the emphasis on null hypothesis testing,
alongside issues of small samples and differential amounts of
measurement error between study outcomes. We also believe
that this field of research would benefit from careful consider-
ation of directional (one-sided) or nondirectional (two-sided)
null hypothesis tests when such testing is appropriate, for



FIGURE 7. Data extracted from Figure 3A in Pontzer et al. [11]. In
this report, a fitted 2 piecewise regression slopes to these data (below
and above 230 CPM/d). In the present figure, linear regression slopes
were fitted and demonstrate a good fit with TEEAdj and AEEAdj. AEEadj,
adjusted AEE; TEEadj, adjusted TEE.
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example, for testing whether the mean BMR of 1 sample is spe-
cifically larger than another sample.

Comparison of linear and nonlinear models
Pontzer et al. [11] proposed that TEE and AEE varied in a

nonlinear fashion when plotted against accelerometry counts.
After various explorations with different set values, they pro-
posed a cut-off or “change point” threshold of 230 CPM/d and
applied piecewise (segmented) regression to suggest that a linear
model was appropriate when physical activity was below this
threshold. For physical activity higher than this threshold, it was
suggested that the regression slope is zero, that is, the association
“stabilizes.” There was no formal model comparison in arriving
at this claim of nonlinear (stabilization at a higher physical ac-
tivity) associations between physical activity and TEE or AEE.
Ideally, information would be provided to show that the selected
piecewise nonlinear model provides a “better” fit than a single
linear model across the whole measurement range of physical
activity. Although some model comparison procedures were re-
ported to be employed by Pontzer et al. [12], other more modern
statistical criteria, such as Akaike’s information criterion, can
also be used to inform any comparison of the relative fit of 2
competing statistical models [47]. The relevant question is
whether a single linear model for the data in scatterplots pre-
sented by Pontzer et al. [11] can be ruled out in preference of a
piecewise nonlinear model. Using the Digitizeit software, we
extracted the adjusted AEE and TEE data from Figure 3 in
Pontzer et al. [11]. Using these data, it is debatable whether a
piecewise nonlinear model is a more appropriate fit to the data
than the single linear model we fitted (Figure 7). The coefficient
of determination of 0.06 (6%) for this single linear model is
higher than the 2 piecewise models reported to fit the data by
Pontzer et al. [11] and is statistically significant (P < 0.0005).
Regression model selection is crucial for the interpretation of
some key data supporting the energy constrained hypothesis. It is
unclear whether linear or nonlinear models best fit the currently
available data. Future studies should explore this choice objec-
tively, alongside other relevant considerations such as allometric
scaling [48].
FIGURE 8. Predicted and measured changes in TEE from 2 random-
ized controlled trials of increasing exercise on TEE [50,51]. Each
demonstrate some evidence for compensation because the measured
increases in TEE are less than the predicted increases. Delta values
represent the difference between predicted and measures TEE. Data
are means � SD.
Biological plausibility and potential mechanisms
underlying constraint

As discussed above, the evidence from empirical studies in
humans often used to support the constrained energy expendi-
ture hypothesis is underdeveloped, and more empirical data are
needed with additional considerations of measurement and sta-
tistical approaches to confirm or refute this hypothesis. Howev-
er, the evolutionary argument for energy expenditure
compensation and constraint under conditions of increased TEE
is persuasive [10,49]. Furthermore, nonhuman animal studies
indicate constraint of TEE with increased physical activity across
a variety of birds and mice in tightly controlled experiments
[10]. There is also some evidence supporting some degree of
compensation from 2 long-term (6–10 mo) randomized
controlled trials (RCTs) of exercise training in specific pop-
ulations of adults with DLW estimates of energy expenditure [50,
51]. These trials were not designed to determine compensation,
and whereas both show that prescribed exercise > 200 kcal/d
will lead to an increase in TEE, the effect is less than predicted
(50%–66% on average), and there appears to be some form of
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compensation (Figure 8). Although it should be noted that—at
least in 1 study—the magnitude of this difference between pre-
dicted and observed TEE was similar in the control group
compared with the exercise groups, suggesting that the obser-
vation of a mismatch between predicted and observed TEE could
be expected for several reasons other than constraint because of
increased physical activity (for example, trial effects, seasonal
effects, measurement errors, etc.). The less-than-predicted
weight loss with exercise interventions has often been attrib-
uted to dietary compensation [52,53], but these 2 RCTs with
DLW measures of TEE indicate that at least part of the explana-
tion may involve less-than-predicted changes to energy expen-
diture [50,51]. The biologically plausible mechanisms
underlying the less-than-predicted changes to energy expendi-
ture with supervised exercise from these RCTs and other relevant
studies will now be discussed.
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RMR
The mean changes in morning RMR reported in the 2 long-

term RCTs ranged between �50 to þ40 kcal/d [50,51]. This is
consistent with the wider literature, with meta-analysis
revealing the difference in RMR with aerobic exercise training
is þ82 kcal/d (95% CI: �58, 221). Therefore, evidence from
RCTs does not support a reduction in RMR with increased ex-
ercise, even in studies that indicate some form of compensation
for TEE. Thus, gross effects on RMR are unlikely to be a major
(single) mechanism underlying compensatory reductions in en-
ergy expenditure leading to constraint in TEE.

If the circadian fluctuations in RMR across the day were
attenuated with high levels of physical activity, DLW estimates of
AEE would incorrectly allocate the decrease in TEE to AEE rather
than RMR if RMR is only taken as a morning snapshot. This is
likely to only exert a modest effect because the amplitude in the
circadian variation of RMR is ~55 kcal/d [34]. Nevertheless, to
accurately quantify all components of TEE, studies are needed to
directly assess RMR at different times of the day and at low and
high levels of physical activity, ideally within individuals and at
different states of energy (im)balance.

NEAT
NEAT is a substantial and highly malleable subcomponent of

TEE. Even within the confines of a chamber respirometer, with
no scheduled physical activity, NEAT is ~400 kcal/d on average
in a large sample of adults and can be as high as 800 kcal/d [54].
These activities comprise miscellaneous and often incidental
physical activity, including a diverse range of movements such as
fidgeting, play, standing, mastication, and self-care [55]. In
free-living nonexercizers with an average PAL, NEAT could
easily be ~800–1000 kcal/d because of the energy cost associ-
ated with other tasks such as occupation, household chores, and
childcare [7,56]. From an evolutionary perspective, it might be
sensible to “cut back” on the nonessential components of NEAT
before making other metabolic and physiological changes. This
could involve some conscious decisions (for example, choosing
to drive rather than walk because of a perceived exercise
“credit”). In humans, feeding and fasting appear to influence
NEAT within just a few days [57,58]. Thus, NEAT is a large
component of energy expenditure that is biologically regulated,
and differences in NEAT could account for compensation in TEE.

In 1 of the long-term RCTs that indicates some form of
compensation [51], data from room calorimetry indicated a
reduction in spontaneous physical activity (NEAT) under
chamber conditions, suggesting compensation in physical ac-
tivity may have contributed to the lower-than-predicted TEE.
There was no evidence for this effect from hip-mounted accel-
erometry data under free-living conditions in either trial [50,51],
but this could reflect the limited ability of this technique to
capture AEE (discussed in section 2.1.2). Other
chamber-measured components of energy expenditures (SMR,
arousal, and TEF) did not account for the less-than-expected in-
crease in TEE [51]. In the ultramarathon Race Across the USA,
the reduction in observed TEE (“other” AEE) was likely
explained by reductions in NEAT (Figure 4) [13].

The idea that increases in exercise can lead to less-than-
expected increases in TEE because of compensation and substi-
tution of other physical activity is not new [59]. If the compen-
sation of NEAT accounts for the observed constraint, then this
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would have very different implications than if the constraint
occurred in a nonbehavioral component of energy expenditure
because the behavioral components can be (at least theoreti-
cally) more directly manipulated to counteract or prevent
compensation and constraint. In future studies, better measures
of NEAT are required to examine whether this explains the
apparent compensation in exercise training studies.

Physical activity efficiency
The degree of coupling between internal to external work is

often termed exercise efficiency. Changes in efficiency would not
be detected by accelerometry and would appear as reductions in
AEE if AEE is estimated by RMR minus TEE using DLW. The
mechanisms that underpin efficiency include biomechanical,
biochemical, and physiological components and could be altered
by physical activity status, providing a potential mechanism for
apparent constraint.

Differences in gait can have a profound impact on exercise
efficiency [60]. Because gait and other movement patterns could
be altered by repeatedly performing specific movement patterns,
it is possible that humans find the most efficient movement
pattern with repeated practice, resulting in a lower energy cost
for that activity. Biochemical aspects are primarily related to the
fuels oxidized during physical activity; because the oxidation of
fat requires more oxygen for the equivalent energy expended
than does the oxidation of carbohydrate [23], people on a high
carbohydrate diet display a gross efficiency during cycling of
~20.4% compared with 19.6% on a lower carbohydrate diet
[61]. Finally, there are physiological aspects, such as muscle
mitochondrial efficiency, that also contribute to exercise effi-
ciency [62]. Importantly, human muscle mitochondrial effi-
ciency has been demonstrated to increase following
high-intensity interval training [63], suggesting a possible
mechanism by which prolonged increases in physical activity
may decrease the energy cost of movement.

It is plausible that with long-term increases in physical ac-
tivity, adaptations relating to increased efficiency occur, which
uncouple measured energy expenditure from the expected in-
crease in energy expenditure, supporting a constrained model.
Without measuring efficiency of movement under differing
levels of physical activity and across a wide range of tasks
representative of daily physical activity, differences in efficiency
could cloud inferences regarding the nature of any compensation
or constraint.

Altered TEF
Changes in TEF could underlie apparent energy constraint in

several ways. First, even if the diet is similar, TEF could decrease
with high PALs. Cross-sectional evidence supporting this in-
cludes lower TEF in endurance-trained athletes compared to
controls in response to a meal providing 10 kcal/kg FFM (~56
kcal/180 min compared with 79 kcal/180 min) [64]. However,
even if TEF is reduced by high physical activity, it is questionable
whether the magnitude is meaningful for TEE, as an extrapola-
tion of this difference to 4 meals across a day equates to a dif-
ference of<100 kcal/d. It is possible, however, that constraint in
TEE exists as the sum of very small decreases in energy expen-
diture within multiple components, with the cumulative total
being meaningful. Second, in response to increases in physical
activity, people may change the amount and composition of their
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diet, which in turn, would alter TEF directly (as discussed in
section 2.1.3) and/or potentially via changes in the gut micro-
biome [65].

Is energy balance rather than energy expenditure the signal?
Energy expenditure should not be considered in isolation

because there are important interactions between components of
energy intake and energy balance which consequently affect
energy expenditure. When in an energy deficit, RMR can
decrease greater than would be predicted by the loss of FFM
[66]. This phenomenon is called metabolic adaptation (or
adaptive thermogenesis). This phenomenon is relatively
short-lived and responds in the reverse direction, where RMR
increases with energy surplus [67]. When people increase
physical activity to very high levels, it is possible that energy
intake does not match expenditure, and thus an energy deficit is
created, thereby (transiently) reducing RMR and producing
apparent constraint. For the energy constrained model to sub-
stantially change understanding, it would need to refer to
physical activity-induced changes in metabolism that occur in-
dependent of energy imbalance because energy deficit-induced
adaptive thermogenesis is already a relatively well-established
phenomenon. Although the 2 RCTs discussed in section 3 [50,
51] demonstrated no meaningful or statistically significant ef-
fects on RMR, this does not rule out the possibility that partici-
pants could have been in a brief period of energy balance prior to
the postintervention RMR measurement, and if the RMR mea-
sures had been taken at another time, perhaps when participants
were in an energy deficit, RMR might have been lower.
Accordingly, whereas recognizing the difficulty in this amount of
control in humans, the state of energy (im)balance should be
considered at each measurement point in future studies of both
cross-sectional and interventional nature.

Further support for the idea of energy deficit driving re-
ductions in TEE comes from evidence that metabolic signals such
as 3,5,30-triiodothyronine and testosterone decrease with energy
deficit, but not with energy surplus, even in the face of sustained
high energy expenditure equating to 4000–4250 kcal/d [68].
Indeed, recent data provide further support for this, demon-
strating that people in energy balance or energy surplus display
TEE-activity responses consistent with the additive model,
whereas individuals in an energy deficit display TEE-activity
responses consistent with the constrained model [28].

This energy deficit hypothesis fits well with evolutionary and
physiological viewpoints. Increased physical activity threatens
energy balance, and energy deficits threaten survival in resource-
limited environments. Therefore, from an evolutionary
perspective, it is likely that energy deficit is the causal link rather
than physical activity per se. Physiologically, hormonal changes
with energy deficits, such as reductions in leptin concentrations,
can cause conservation of energy-consuming physiological pro-
cesses such as menstruation. Correction of hypoleptinemia with
recombinant leptin can improve reproductive function in women
with low body weight or high physical activity and hypothalamic
amenorrhea [69]. Furthermore, decreases in leptin correlate
with metabolic adaptation [70], and leptin replacement can
prevent the decline in RMR following an energy deficit [71].
Therefore, energy deficit and consequent changes in hormonal
concentrations could result in constrained TEE via reductions in
RMR.
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Energy (im)balance has also been shown to influence NEAT
[55], whereby NEAT decreases during energy deficit by as much
as ~300 kcal/d and increases during energy surplus by a mean of
~300 kcal/d [72,73]. Substantial interindividual variability in
this response is also observed, whereby increases in NEAT with a
surplus of 1000 kcal/d ranged from negligible to >700 kcal/d.
This variation is clearly meaningful for energy balance because it
explained the majority of variance (r ¼ 0.77) in fat gain during a
1000 kcal/d surplus [73]. This highlights the importance of
direct measurement of NEAT to capture the full potential for
compensation and constraint in energy expenditure under
differing degrees of energy (im)balance.

It could be expected that the largest effect of adaptive ther-
mogenesis would be in the most extreme energy deficits over the
longest periods of time. As an indication of the degree of energy
deficit to which the constrained model is plausible, the Minne-
sota starvation experiment restricted energy intake to ~50% of
baseline intake for 6 mo. The reduction in RMR adjusted for FFM
was ~400 kcal/d [74]. Therefore, it is conceivable that this
reduction might represent the maximum effect of adaptive
thermogenesis, and it would take extreme reductions in RMR
(greater than those with 6 mo of semistarvation) to offset in-
creases in AEE of >400 kcal/d.

Solutions and Future Directions
Based on current evidence, there is insufficient evidence to

fully support either the additive or the constrained model of
human energy expenditure. Most data to date are from cross-
sectional observations and statistical models comparing pop-
ulations with extreme differences in a variety of characteristics,
which may negatively impact measurements. Some are based on
deductive inferences rather than direct measurement or studies
lacking a suitable control group. In addition, the only RCTs of
exercise training with DLW measures of TEE were not directly
designed to measure compensation, and many outcomes are still
deduced rather than measured or measured as snapshots and
under specific conditions, potentially missing variation across a
day or within different conditions. The compensatory reduction
has not yet been directly demonstrated and thus is derived from
deductive inference. There is, therefore, a need for adequately
powered, long-term, RCTs with gold-standard methods that
directly quantify the major components of energy expenditure to
assess if human energy expenditure is constrained or additive
and to identify the source and nature of the compensation and
constraint.

There is little evidence to support the extreme constrained
model proposed as:

“The bottom line is that your daily (physical) activity level has
almost no bearing on the number of calories that you burn each
day” (p103) [2].

An upper limit of TEE probably exists [75], but this is likely
irrelevant for most people, and large changes in physical activity
will alter TEE. Indeed, ultramarathon studies such as the Race
Across the USA study supports the additive model more than the
constrained model, as there was a huge increase in TEE (þ2500
kcal/d) even after 20 wk [13]. Therefore, even if some constraint
exists, it is unlikely to fully offset physical activity, such that
further increases in physical activity will result in a net increase
in energy expenditure, just not in a linear manner.
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Measurements of energy expenditure components are
imperfect, and variation can never be eliminated, which means
that deduction cannot be used to establish where constraint may
exist in energy expenditure. To overcome these limitations,
triangulation of methods could be employed, with measurements
repeated at multiple time points and under varying dietary and
environmental conditions to capture the full circadian, energy
balance, and lifestyle conditions that could modulate any
compensation and constraint.

These controlled trials could be combined with statistical
models to account properly for changes in body size and
composition. The appropriate statistical approach might include
a noninferiority analysis with a justifiable margin of non-
inferiority between expected (based on the increase in AEE) and
observed TEE defined a priori. Direct measurement of the
component that is expected to demonstrate constraint is
required. This is important for several reasons, including the
simple notion that we may not fully appreciate all components of
energy expenditure that could demonstrate constraint, although
it could be that constraint manifests in small changes in each
component, summing across multiple components to produce a
meaningful reduction in the expected TEE.

Although there is a key need to collect more data to establish
which model of energy expenditure is closer to truth, currently
available data indicate that neither the simple additive nor the
extreme constrained models (that is, where physical activity
adds nothing to TEE) are likely to be correct, and the true
response likely resides somewhere in between. In energy bal-
ance, large increases in physical activity will add to and increase
TEE, but the effect appears to be less than predicted. The less-
than-expected increase in TEE when energy balance is main-
tained could be due to increased mitochondrial efficiency,
increased efficiency of force transfer across the muscle-tendon
unit, more efficient movement patterns, or other factors such
as compensatory behaviors and reductions in nonexercize ac-
tivity thermogenesis. RCTs are needed to address these ques-
tions, with multiple designs to test the different contexts, such as
energy balance and energy deficit.
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