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A B S T R A C T   

In silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physi-
ologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects 
and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a 
growing need to ensure in silico predictive models for toxicology are available for use and that they are repro-
ducible. This paper describes how the FAIR (Findable, Accessible, Interoperable, Reusable) principles, developed 
for data sharing, have been applied to in silico predictive models. In particular, this investigation has focussed on 
how the FAIR principles could be applied to improved regulatory acceptance of predictions from such models. 
Eighteen principles have been developed that cover all aspects of FAIR. It is intended that FAIRification of in silico 
predictive models for toxicology will increase their use and acceptance.   

1. Introduction 

The FAIR (Findable, Accessible, Interoperable, Reusable) principles 
have been universally accepted for sharing data and become funda-
mental to data storage since their publication in 2016 (Wilkinson et al., 
2016). They are based around good practice for data management and 
stewardship relating to scientific data, such that data may be discovered 
and re-used for downstream investigations. The aim is to enshrine good 
practice of data capture, curation and storage such that they may be 
available for future researchers thus saving time and resources (Briggs 
et al., 2021). Regarding chemical safety assessment, access to data 
relating to the intrinsic hazards of a chemical, as well as its exposure, is 
highly desirable. As such, areas such as toxicology are increasingly 
investigating the FAIR principles to make historic and newly determined 
data available. There are numerous reasons to capture all these data, not 
only to avoid unnecessary repetition of animal tests and support the 
implementation of the 3Rs principles (Russell and Burch, 1959), but also 
due to the cost of testing and possible legal reasons for the avoidance of 

testing (e.g., including, but not limited to, EU Regulation, EC 
N◦1223/2009 (European Commission, 2009)). 

Chemical safety assessment also relies increasingly on computational 
modelling. Predictive models in computational toxicology are applied 
for a variety of purposes in approaches such as New Approach Meth-
odologies (NAMs) in Next Generation Risk Assessment (NGRA) and In-
tegrated Approaches to Testing and Assessment (IATA). The models are 
frequently used to meet information requirements, i.e., for compounds 
and endpoints where an experimental test has not been performed, as 
well as to provide lines of evidence to support an overall weight of ev-
idence for a particular decision (Mahony et al., 2020). There are a great 
variety of endpoints and properties that may be predicted, ranging from 
physico-chemical properties to the prediction of toxicological effects 
themselves (e.g., regulatory endpoints) or mechanistic information (e.g., 
binding to a receptor) as well as properties relating to internal exposure 
such as Absorption, Distribution, Metabolism and Excretion (ADME). 

There are a very broad range of predictive models that require 
consideration. These are often based around a form of quantitative 
structure-activity relationship (QSAR) models that may predict physico- 
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chemical and ADME properties or toxicological effects. More detailed 
physiologically based kinetic (PBK) and related models are available to 
describe internal exposure. Whilst QSAR was founded in transparent 
regression analysis models in the 1960s, there is now an enormous di-
versity to the modelling approaches applied (Madden et al., 2020). This 
position paper will focus on “knowledge-based” methods that may 
support chemical safety assessment. In this context, this implies that the 
methods are characterised by the fact that they start from a defined piece 
of knowledge (for example a series of chemicals of known biological 
properties) from which they derive an empirical model (a set of rules 
that describe a regularity between the properties of the objects). Such 
methods have common elements (e.g., a training set of chemicals, a 
computational algorithm, predictive quality parameters) and may be 
used in QSAR or PBK modelling. These may incorporate a variety of 
computational algorithms from regression analysis to machine learning 
approaches. Thus, for the purposes of this paper and defining the FAIR 
principles in the toxicological context, the term “in silico predictive 
model” used in this paper is assumed to be any knowledge-based 
computational algorithm that will assist with the prediction of proper-
ties relating to chemical safety assessment. Further detail on the com-
ponents of predictive models for toxicology is given in Section 1.1. 

The total number of published, or publicly available, QSARs, PBK 
and other computational models that could support chemical safety 
assessment is unknown; given the resources described in Table 1, e.g., C- 
QSAR, a conservative estimate would be 10,000+ models. Likewise, the 
vast majority of endpoints and chemistries for which QSARs have been 
developed are currently only sparsely and heterogeneously documented, 
and not easily searchable. This makes the task of finding a useable model 
for a particular purpose very difficult, in particular when searching for 
key required variables such as endpoint, chemistry, type of model etc. 
There has been a concomitant growth in the use of software programmes 
which are freely or commercially available. The reality is that we may be 
missing out on the opportunity to use potentially valid and useful 
models, simply due to their lack of accessibility and findability (Worth, 
2020). In addition, there is often very poor documentation of existing 
models, and the existing documentation often contains errors, such that 
even when a QSAR may be found, it may not be possible to reproduce it 
(Patel et al., 2018; Piir et al., 2018), a problem being particularly noted 
in the artificial intelligence community (Knight, 2022). 

This paper aims to set out a vision for the full diversity of in silico 
toxicology models that may be suitable for chemical risk assessment to 
be FAIR. It does this by assessing the requirements for making predictive 

Abbreviations: 

ADME Absorption, Distribution, Metabolism and Excretion 
API Application Programming Interface 
eTOX Integrating bioinformatics and chemoinformatics 

approaches for the development of expert systems 
allowing the in silico prediction of toxicity 

eTRANSAFE Enhancing TRANslational SAFEty Assessment 
through Integrative Knowledge Management 

EURL ECVAM EU Reference Laboratory for Alternatives to 
Animal Testing 

FAIR Findable, Accessible, Interoperable, Reusable 
IATA Integrated Approaches to Testing and Assessment 
log P logarithm of the octanol-water partition coefficient 
NAM New Approach Methodology 
NGRA Next Generation Risk Assessment 
PBK physiologically-based kinetic 
QMRF QSAR Model Reporting Format 
QSAR quantitative structure-activity relationship 
RDMkit Research Data Management toolkit for Life Sciences  

Table 1 
A selection of resources available to assist in the sharing of in silico models for 
toxicology.  

Resource Description Source Reference(s) 
and/or URL 

Databases and other compilations of models, with predictive capability 
C-QSAR A licensable 

collection of over 
18,000 regression- 
based QSARs for a 
large number of 
endpoints 

BioByte Corp., 
Covina CA, USA 

http://www. 
biobyte.co 
m/bb/prod/cqs 
arad.html;  
Kurup (2003) 

COSMOS NG A freely available 
knowledge hub with 
predictive 
capability and links 
to in silico models 
and profilers 

MN-AM, 
Nürnberg, 
Germany; 
Columbus OH, 
USA 

https://www. 
ng.cosmosdb. 
eu/; Yang et al. 
(2021) 

Danish QSAR 
Database 

A freely available 
on-line repository of 
QSAR model 
estimates for more 
than 600,000 
substances 
including physico- 
chemical 
properties, 
environmental fate, 
bioaccumulation, 
eco-toxicity, 
absorption, 
metabolism and 
toxicity 

Danish Technical 
University, 
National Food 
Institute, 
Copenhagen, 
Denmark 

https://qsar.foo 
d.dtu.dk/;  
Chinen et al. 
(2020) 

eTRANSAFE A collaborative 
project aiming at 
collecting and 
sharing drug safety 
related data and 
developing in silico 
predictive models 
based on them 

The eTRANSAFE 
Consortium 

https://etransa 
fe.eu/; 
https://www. 
imi.europa.eu/ 
projects-res 
ults/project 
-factsheets/etra 
nsafe 

oCHEM A freely available 
on-line resource 
that allows for the 
creation, storage, 
dissemination and 
use of QSARs 

Helmholtz 
Zentrum 
München, 
Neuherberg, 
Germany 

https://ochem. 
eu; Sushko et al. 
(2011) 

QSAR DataBase 
(DB) 

An open on-line 
platform for the 
organisation, 
storage and use of 
QSARs. Searchable 
by a number of 
criteria. Contains 
over 500 QSARs 
which each given a 
unique identifier 
(DOI). 

Institute of 
Chemistry, 
University of 
Tartu, Estonia 

https://qsardb. 
org/;  
Ruusmann et al. 
(2015)  

Models reporting formats 
In silico protocols Guidelines on 

performing expert 
review of in silico 
models for a variety 
of toxicological 
endpoints 

Consortium led 
by Instem, 
Columbus OH, 
USA 

A large number 
of articles 
including  
Myatt et al. 
(2018), Ruiz 
et al. (2018) 

OECD Guidance 
Document on the 
characterisation, 
validation and 
reporting of PBK 
models for 
regulatory 
purposes 

A harmonised 
template to record 
all relevant 
information 
regarding a PBK 
model 

OECD https://www. 
oecd.org/che 
micalsafety/ris 
k-assessment/ 
guidance-doc 
ument-on- 
the-charac 
terisation-vali 
dation-and-re 
porting-of- 
physiologically- 
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models FAIR in in silico toxicology, current initiatives to share such 
models, and how the FAIR principles that are currently aligned for data 
sharing could be adapted for predictive models. It does not intend to 
provide an in-depth methodology of how FAIRification of models may be 
achieved, but to highlight the topic and make recommendations for the 
steps forward to be made to increase the availability and sharing of 
predictive models. 

1.1. Anatomy of an in silico predictive model for toxicology 

For the purposes of this paper, a more detailed description of what 
we understand by a “model” is provided in this sub-section. In partic-
ular, it is important to identify the model components, analyse how they 
are generated, and who may own their intellectual property. Once this is 
established, it becomes easier to determine which components of a 
model can be shared and how this may be achieved. 

Knowledge-based, predictive models result from training a certain 
“modelling engine” with a collection of objects, often called “training 
series” in the QSAR field. The training results in the identification of 
regularities between properties and annotations of the training series, 
which are captured in a collection of rules, mathematical functions, or a 
mixture of both. The outputs are analysed to interpret and understand 
the relationships between the object properties and the annotations. A 
characteristic of the models is the expectation of their ability to be 
applied to new objects so that they can predict annotations from the 
object properties. 

In this generic description of models, the modelling engine describes 
a component of a predictive workflow, including all the algorithms 
required to reduce the object properties and annotations to a collection 
of mathematical variables (descriptors), normalise and scale them 
appropriately and apply machine learning algorithms. This workflow 
should have a software implementation to be functional and thus be able 
to build a model from a training series and predict object annotations for 
new objects, starting from a previously built model. In this description, 
we therefore identify the constitutive elements of the models which 

Table 1 (continued ) 

Resource Description Source Reference(s) 
and/or URL 

based-kinetic- 
models-for-re 
gulatory-pur 
poses.pdf 

QSAR-ML An open XML 
format for the 
exchange of QSAR 
datasets  

Spjuth et al. 
(2010) 

QSAR Model 
Reporting 
Format (QMRF) 

A harmonised 
template to 
summarise and 
report the key 
information of 
QSAR models  

https://www. 
oecd.org/chem 
icalsafety/ris 
k-assessment 
/validationofqs 
armodels.htm;  
Worth (2010)  

Model repositories, without predictive capability 
GitHub Free-to-use 

provision of 
repositories for the 
distribution of 
QSARs, 
documentation etc., 
as well as R code, 
KNIME Workflows 
and similar tools 

GitHub Inc. https://github. 
com/ 

JRC QSAR Model 
Database 

An historical 
archive of some 150 
QMRFs that had 
been submitted to 
EURL ECVAM. The 
archive is no longer 
updated but may be 
downloaded free-of- 
charge. 

European 
Commission’s 
Joint Research 
Centre, EU 
Reference 
Laboratory for 
Alternatives to 
Animal Testing 
(EURL ECVAM), 
Ispra, Italy 

http://data. 
europa.eu/89h 
/e4ef8d1 
3-d743-452 
4-a6eb-80e18 
b58cba4; EC 
JRC (2020) 

PBK database A freely available 
collection of the 
details of over 7,500 
PBK models for 
1,150 chemicals 
with details of 
model, species, 
chemicals etc. 

European 
Commission’s 
Joint Research 
Centre, EU 
Reference 
Laboratory for 
Alternatives to 
Animal Testing 
(EURL ECVAM), 
Ispra, Italy 

Thompson et al. 
(2021)  

Other initiatives relevant to the sharing of models for chemical safety 
assessment 

BioModels A freely available 
repository of 
mathematical 
models representing 
biological systems. 
Whilst most models 
in BioModels are 
not relevant to in 
silico toxicology, 
there are some 
examples of PBK 
models. Models 
generally do not 
have predictive 
capability 

European 
Bioinformatics 
Institute, 
European 
Molecular 
Biology 
Laboratory, UK 

https://www. 
ebi.ac.uk/b 
iomodels/;  
Glont et al. 
(2018);  
Malik-Sheriff 
et al. (2020);  
Tiwari et al. 
(2021) 

FAIRsharing A curated, 
informative and 
educational 
resource on data 
and metadata 
standards, inter- 
related to databases 
and data policies 
encompassing a 
collection of 
registries – 

FAIRsharing 
team 

https://fairsha 
ring.org/  

Table 1 (continued ) 

Resource Description Source Reference(s) 
and/or URL 

including some that 
are applicable to 
toxicology. The 
ELIXIR Toxicology 
Community is 
making use of this 
service to collate 
toxicology 
standards. 

Research Data 
Management 
toolkit for Life 
Sciences 
(RDMkit) 

An online guide 
which contains 
guidance for data 
management with a 
specific page for 
toxicology data 

ELIXIR https://rdmkit. 
elixir-europe.or 
g/toxicolo 
gy_data 

RO-crate A freely available 
resource which 
allows packaging of 
research data with 
their metadata 

The University of 
Manchester, UK 

https://w3id. 
org/ro/crate 

The FAIRcookbook An online, open and 
live resource for the 
Life Sciences to 
make and keep data 
FAIR. It contains 
recipes for 
FAIRification – 
some of which are 
directly applicable 
to toxicology or 
model inputs. 

ELIXIR https://fair 
cookbook.elixir 
-europe.org/ 
content/home. 
html  
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must be considered in this article.  

- The training series  
- The modelling engine  
- The model 

This general description is shown schematically in Fig. 1 using a 
simple illustration. In Fig. 1 a toxicity value is related by regression 
analysis to a single molecular property, namely the logarithm of the 
octanol-water partition coefficient (log P), a property that is strongly 
related to toxicity (Cronin, 2006). In reality, the types of models that 
may be created could comprise one of many different “modelling en-
gines” with potentially very high dimensionality in property space. The 
derived model can be used to predict an unknown toxicity for a new 
chemical providing the property value(s) are available. The latter 
function, i.e., use of the model, is utilised by the end-user and, as noted 
below, this is now often wrapped in a workflow for ease of application. 
Fig. 1 also confirms that the modelling engine cannot produce pre-
dictions on its own before it is applied to a training series to produce a 
model. Moreover, the same modelling engine can be used to train an 
unlimited number of models. 

As a consequence of the complexity of what comprises a model, the 
model can be shared in different ways. For example, a modelling engine 
connected to a collection of models can be made available online, thus 
allowing users to predict the annotations of new chemicals. This shared 
model does not require any access to be given to the model itself, which 
is only visible via the modelling engine. Moreover, access to the 
modelling engine can be limited to using pre-built models for prediction 
or allowing other functionalities, such as retraining existing models or 
developing new ones. Examples of this method are online modelling 
servers including oCHEM (Sushko et al., 2011) or the QSAR DB (Ruus-
mann et al., 2015). It should be noted, however, that the use of models as 
“black boxes”, i.e., without transparent description, may limit use for 
certain applications, for instance in the waiving of a requirement for a 
test to support regulatory decisions. 

Other means of model sharing include the distribution of the pre- 
built models in computational formats that locally installed instances 
of modelling engines can use (the so-called workflow in Fig. 1). This 
method requires access to the modelling engines, ideally as open source. 
Examples of this method are models distributed as KNIME workflows 

(Steinmetz et al., 2015) or models developed using Flame (Pastor et al., 
2021). 

Regarding ownership of the model and intellectual property rights, it 
is also essential to consider the model components. Model developers 
own the resultant model, however that may be defined. When sharing 
models using an online server, the model owner can limit access to the 
prediction functionality on a per-model basis. In addition, it should be 
remembered that if a model is built with a proprietary modelling engine, 
whilst the model developer owns the model, the use of the model, for 
instance to make a prediction on a new chemical, could require access to 
the modelling engine. 

2. Need for FAIR in silico predictive models for toxicology 

In silico predictive models in toxicology are typically built on data for 
chemicals (with defined structure) adding value by creation of predic-
tive capability. The models are based on the properties, or calculated 
structural descriptors, of molecules that should, in theory at least, be 
responsible for the biological effect and, where assessed, potency 
(Madden et al., 2020; Cronin et al., 2022b). The intimate relationship 
between the effect data and descriptors allows for mechanistic clarity 
and is crucial to give evidence for causality. The relationship between 
descriptors and effects may be based on knowledge of a mechanism of 
action, or possibly derived from molecular initiating, or key, events in a 
relevant adverse outcome pathway (Cronin and Richarz, 2017). The 
effect data modelled may represent any aspect of chemical safety 
assessment, but mainly are based on the endpoints needed to make a 
safety assessment decision, e.g., the endpoint required for a regulatory 
submission. The numbers of chemicals used to train the model may vary 
from as few as 5–10, up to the 1000s or even more. As such, different 
types of modelling algorithms have been applied, with machine learning 
approaches being seen as the solution to the largest data matrices. As 
noted above, this position paper will concentrate on knowledge-based 
models. 

There are many uses for in silico models in chemical safety assess-
ment, ranging from the rapid screening of toxicity in chemical libraries 
through to acting as surrogates for tests in regulatory submissions. For 
the latter, protocols have been established to provide means to evaluate 
a model with a view to making predictions from them acceptable for a 
particular purpose, e.g., the OECD Principles for the Validation of (Q) 

Fig. 1. A schematic representation of a simple in silico predictive model for toxicity, namely a regression analysis on one descriptor (logarithm of the octanol-water 
partition coefficient (log P)), showing the interrelationship between the components of the model and the workflows for training the model and making predictions 
(the data for the new chemical may flow either into the analysis, e.g., for normalisation, or the model itself). Meta data may be associated with multiple aspects of the 
model, from all data in the training series, to the model itself. 
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SARs (OECD, 2007) and criteria for the characterisation of uncertainties 
(Belfield et al., 2021; Cronin et al., 2019, 2022a). These principles have 
enabled frameworks to capture QSAR models – notable being the QSAR 
Model Reporting Format (QMRF) (Worth, 2010). However, there are no 
standardised means or requirement to share the models. The current 
lack of model sharing policies constitutes a clear argument for 
advancing towards the definition of a FAIR models’ policy. 

It is clear that making models FAIR will assist in the capture, dis-
covery and sharing of QSAR and PBK models and numerous other ap-
proaches. It also provides an opportunity to develop and standardise the 
documentation of models. In addition, making models FAIR will support 
the independent verification of models which will, in turn, improve trust 
in models. This will allow for greater use of models to make predictions 
and encourage global harmonisation of models and modelling ap-
proaches. Harmonisation of the terminology used to describe and record 
models will be a key factor in their standardisation and sharing, since 
not harmonising the description of models will decrease the possibilities 
of easy searching and retrieval of models from repositories. FAIR will 
also ensure greater reproducibility of models, the lack of which has been 
highlighted as a fundamental issue (Patel et al., 2018; Piir et al., 2018), 
enabling the replication or re-use of models. Progress in toxicology is 
already underway with efforts to standardise approaches and improve 
collaboration (Martens et al., 2021). Likewise, there has been recent 
progress in the FAIR Principles for Research Software, the so-called 
FAIR4RS principles (Chue Hong et al., 2022). There will be several 
mutual benefits in aligning the FAIR principles for in silico models for 
toxicology with the FAIR4RS principles. Specifically, these mutual 
benefits will be the possibility of international agreement and harmo-
nisation on this topic (where currently none exists), identification of 
needs and priorities of the FAIR approach for such models, and the 
establishment of a set of practical, bespoke, principles to enable model 
sharing, amongst other benefits. 

It is not only essential that researchers can find models easily and 
efficiently, but also to support regulatory submissions from modellers. 
With regard to regulatory submission, the IMI2 eTRANSAFE (Enhancing 
TRANslational SAFEty Assessment through Integrative Knowledge 
Management) project, building on the foundations of the IMI1 eTOX 
(Integrating bioinformatics and chemoinformatics approaches for the 
development of expert systems allowing the in silico prediction of 
toxicity) project, is developing a variety of in silico models to support the 
safety assessment of pharmaceuticals (Pognan et al., 2021), including a 
framework for a cooperative development of predictive models and their 
usage (Pastor et al., 2021). Previous work in these projects has devel-
oped a scheme to demonstrate verification of models and reproducibility 
of predictions (Hewitt et al., 2015). Such a scheme provides evidence 
that a model is FAIR, subsequently increasing confidence in the models 
and their predictions, in particular regarding the use of predictions in 
regulatory submissions. 

3. Current initiatives to share in silico toxicology models 

There continues to be attempts to support the sharing of in silico 
models for toxicology. A non-exhaustive selection of these resources is 
summarised in Table 1. It is noted that not all the resources listed in 
Table 1 are for sharing models directly – it also includes protocols and 
general information resources. The resources offered in Table 1 repre-
sent a wide variety of approaches ranging from commercial to publicly 
available, those offering a predictive capability (i.e., a chemical struc-
ture can be entered to obtain a prediction) and those without this 
capability, as well as formats and approaches to capture models and 
other resources. Of the resources identified in Table 1, it is arguable that 
the QSAR DB goes the furthest to achieving FAIR principles for the 
sharing of models, with reference to making QSAR FAIR made on their 
website. There also exists a huge number of databases containing in-
formation that may support the generation of in silico models (Pawar 
et al., 2019), with these acknowledged but not summarised in this 

section. 

4. Development of FAIR principles for in silico models 

The FAIR principles, originally devised for data sharing, are herein 
adapted to the needs of in silico modelling. It is important to understand 
the context of the FAIR principles related to data sharing, which aimed 
to “define characteristics that contemporary data resources, tools, vocabu-
laries and infrastructures should exhibit to assist discovery and reuse by third- 
parties” (Wilkinson et al., 2016). With regards to sharing in silico models, 
all of these concepts are valid, especially with the overall concept of 
facilitating “discovery and reuse” in addition to the other benefits, such as 
verification and trust, noted above, which will improve the utility and 
acceptance of models. Whilst the FAIR principles for data sharing do not 
specifically include verification and trust, they do indeed go further in 
other areas, emphasising the requirement “to improve knowledge discov-
ery through assisting both humans, and their computational agents, in the 
discovery of, access to, and integration and analysis of, task-appropriate 
scientific data and other scholarly digital objects” (Wilkinson et al., 
2016). Within the context of in silico predictive models, we take this to 
mean that the model itself should be shared, in a useable form, either 
directly (by sharing an accessible prediction service) or indirectly (by 
sharing the components and precise instructions to reproduce the 
model). 

Following the spirit of the FAIR principles for data sharing, we have 
adapted the FAIR requirements to the context of the in silico predictive 
models. Specifically, these requirements intend to ensure that a model 
can be located, i.e., it is Findable; that once located, the model and 
appropriate meta-data are retrievable, i.e., it is Accessible; the model is 
defined in a manner that it can be integrated with other software, i.e., it 
is Interoperable; and that predictions can be made by a robust, well- 
annotated version of the model, that will make the same predictions 
regardless of the platform and software used, i.e., it is Reusable. 

The FAIR principles for the sharing of in silico predictive models are 
summarised below (principles marked with an asterisk are the same, or 
adapted from, those for data sharing). At this time, these principles 
apply to the sharing of models rather than quality of the underlying data 
or the validity of predictions from the models. They extend and clarify 
the original FAIR principles for data sharing to specifically allow for and 
promote the sharing of in silico models for toxicology. The principles for 
the FAIR sharing of in silico models for toxicology are: 

To be Findable. 

F1 *Each model is assigned a globally unique and persistent identi-
fier and different versions are assigned distinct identifiers  

F2 Models are described with rich meta data covering all aspects of 
the model, for example:  
F2.1 Models are associated with searchable meta data for the 

property or endpoint to be predicted 
F2.2 Models are associated with searchable meta data or de-

scriptions of the chemicals (e.g. InCHI or SMILES), or 
chemical class(es), within the model, or a description of its 
applicability domain  

F3 *Models’ (meta)data clearly and explicitly include the identifier 
of the model they describe and are registered or indexed in a 
searchable resource  

F4 Models are registered or indexed in a searchable resource  
F4.1 Models’ identifiers should be optimised to allow for use in 

multiple search engines 

To be Accessible.  

A1 *Models are retrievable by their identifier using a standardised 
communications protocol  
A1.1 The model (and any associated protocol represented by the 

model meta data) is openly accessible or reimplementable 
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A1.2 The model (and any associated protocol) allows for an 
authentication and authorisation procedure, where 
necessary  

A2 Model (meta)data are accessible even when the model is no 
longer available, unless restricted for commercial, ethical or data 
protection reasons (e.g., blinding of confidential chemical 
structures) 

To be Interoperable.  

I1 The models and their (meta)data are described in a standardised 
manner, i.e., standards to define chemical structures, endpoints, 
molecular descriptors and modelling algorithms  

I2 The model reads, writes and exchanges data in a way that meets 
domain-relevant community standards  

I3 The model must be interoperable with other software, e.g., with a 
clearly defined input/output i.e., with an appropriate Application 
Programming Interface (API) for shared web services  

I4 *(Meta)data use a formal, accessible, shared, and broadly applicable 
language for knowledge representation  

I5 *(Meta)data use vocabularies that follow FAIR principles  
I6 The model includes qualified references to other objects, such as 

molecular descriptors 

To be Reusable.  

R1 The model is available for its use in some format (e.g., source 
code, executable, library or service)  

R2 The usage license of the model should be clearly defined and 
appropriate to encourage its use  

R3 The storage of the model and (meta)data should be done on a 
sustainable and future-proofed platform, anticipating the impact 
on the availability of software changes over time  

R4 Software includes qualified references to other software, e.g., so 
that the correct molecular descriptors can be obtained, either as 
part of the model or storage of the molecular descriptors software 
or experimental protocol  

R5 *(Meta)data are richly described with a plurality of accurate and 
relevant attributes  
R5.1 * The model and its (meta)data are associated with detailed 

provenance  
R6 *The model and its (meta)data meet domain-relevant community 

standards for documentation 

5. Priorities to make models FAIR 

To make models for toxicology FAIR, there is an urgent need for an 
internationally agreed vision and an associated roadmap to achieve this 
goal. Only when stakeholders, including potential funders, agree will 
progress be achieved. 

In order to stimulate progress, it must be recognised that the benefits 
to the FAIRification of in silico predictive models go beyond the simple 
advantages of being able to share models successfully. The benefits 
include making a useable resource that can assist chemical safety 
assessment, as well as being interrogated to understand the applicability 
domain of models, and where data gaps exist in the domain. There is also 
a societal responsibility to enable access to models created and to record 
the outputs of research efforts. The modelling community must be 
challenged to make harmonised and useable models. This will reinforce 
the credibility of models and demonstrate responsible, ethical, trans-
parent and efficient science. We therefore start with the premise of the 
acceptance, understanding and promotion of the FAIR principles for 
modelling globally, even if fine details need to be resolved. 

There will inevitably be a number of issues that require further 
development and acceptance, beyond the current state of the art, to 
achieve the goal of FAIR in silico models. From the outset it must be 

appreciated that key to the development of any data resource to be used 
in predictive modelling is the harmonisation of the terminology for 
reporting models. This could start with harmonised ontologies for end-
points, for which much work has already been undertaken, for instance 
Boyles et al. (2019) and Ravagli et al. (2017), but for which a single 
authoritative standard is still lacking. It will also require harmonised 
ontologies to describe the models e.g., for statistical and machine 
learning methods, definitions of molecular descriptors and chemical 
identifiers. In addition, harmonisation will be required in the definition 
of the methods for analysis of model performance, such as provided by 
Walsh et al. (2021). Much of this could be adapted from that already 
used for QMRF and elsewhere for ontologies for statistics (Zheng et al., 
2016). Whilst progress has been made, it is clear that harmonisation of 
terminology for endpoints and models is still one of the greatest chal-
lenges to be undertaken. 

It is also clear that the widescale sharing of models will need 
appropriate investment in the repository(ies) and resources to maintain 
the platform on which any repository is based. Whilst some progress has 
been made, there is still a need for a sustainable means to share models. 
Comparable efforts to store models do exist e.g., BioModels, and remain 
active and on-line due to the creation of an appropriate business model. 
Relying on free storage resources is one way forward, but will be 
extremely limited in terms of the search capabilities and practical use. 

The FAIR principles on accessibility do not preclude restrictions on 
access but they do require metadata longevity and for the access pro-
tocols and access authorisation used to adhere to open standards and be 
clearly defined (Wise et al., 2019). However, in the case of training and 
test datasets used to build and validate the model there may be legal (e. 
g., IPR protection) and ethical (e.g., patient confidentiality) reasons, as 
well as commercial ones, that would preclude open access. The conse-
quence of restricting access to data must be appreciated and a means to 
provide adequate access to the data is required. In addition to re-
strictions on data, there needs to be provision for understanding and 
sharing of models either created in proprietary software, or where the 
models themselves are restricted (for instance for commercial reasons). 
A means to respect the intellectual property of models needs to be 
created such that these models remain FAIR, thus increasing the possi-
bilities for their use and acceptance. 

6. Conclusions 

There is an undoubted, and urgent, need to make in silico predictive 
models for toxicology FAIR. We believe this is an achievable goal and, 
given appropriate resources, much progress could be made in the short 
to medium term. There are numerous reasons and benefits to the 
FAIRification of in silico models, the most fundamental is to make models 
available and accessible to all enabling and supporting the 3Rs. It is 
highly probable that chemical risk assessors are missing out on oppor-
tunities to use in silico models simply as they may not know of their 
existence. Similarly, due to poor documentation, in silico models may be 
used inappropriately, e.g., out of applicability domain or for the incor-
rect endpoint. The ultimate sustainability of in silico models is also a key 
advantage. It is unacceptable that research efforts should be placed into 
modelling, often from public funding, that are unfindable or unusable. 
Finally, having open and transparent models, easily accessible, will in-
crease trust for all users. This will be especially important for regulatory 
submissions where governmental agencies can re-run models to check 
predictions for the target and similar chemicals. 

In order to achieve the goal of making in silico models in toxicology 
FAIR, the priorities and an overall strategy should be devised. This will 
need agreement at multiple levels, across industrial sectors, stakeholders 
and geographical regions. The intention is that the FAIR principles 
described in this paper will act as a template for FAIR principles to be 
applied to all models of biology. 
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