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Abstract. We determine the dark matter pair-wise relative velocity distribution in a set of
Milky Way-like halos in the Auriga and APOSTLE simulations. Focusing on the smooth halo
component, the relative velocity distribution is well-described by a Maxwell-Boltzmann dis-
tribution over nearly all radii in the halo. We explore the implications for velocity-dependent
dark matter annihilation, focusing on four models which scale as different powers of the rela-
tive velocity: Sommerfeld, s-wave, p-wave, and d-wave models. We show that the J -factors
scale as the moments of the relative velocity distribution, and that the halo-to-halo scatter is
largest for d-wave, and smallest for Sommerfeld models. The J -factor is strongly correlated
with the dark matter density in the halo, and is very weakly correlated with the velocity
dispersion. This implies that if the dark matter density in the Milky Way can be robustly
determined, one can accurately predict the dark matter annihilation signal, without the need
to identify the dark matter velocity distribution in the Galaxy.
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1 Introduction

Indirect dark matter (DM) searches aim to identify Standard Model (SM) particles that
are produced when DM particles annihilate with one another in astronomical environments.
Electrons, neutrinos, and photons are stable SM particles that experiments are able to de-
tect. The flux of SM particles from a system depends on the strength of the annihilation
cross section, and the phase-space distribution of DM within the system. The astrophysical
dependence of the annihilation rate is encapsulated in a quantity typically denoted in the
literature as the J -factor.

For DM particles with mass ∼ 10− 1000 GeV, the strongest bounds on the DM annihi-
lation cross section have been obtained through observation of dwarf galaxies by gamma-ray
observations such as the Fermi-LAT [1–3]. Combining the limits from all dwarf galaxies with
high-quality stellar kinematic data, these bounds reach the cosmologically-motivated thermal
relic cross section regime over this entire mass range. For higher values of the DM mass,
& 1 TeV, the leading bounds come from observations of dwarf galaxies by H.E.S.S. [4] and
HAWC [5]. Bounds over this entire mass range may also be obtained from the inner Milky
Way (MW) galaxy, though contamination from astrophysical sources make these bounds
more difficult to interpret (see e.g Ref. [6] for a recent review).

All these strong bounds on the DM annihilation cross section assume that the cross
section is dominated by the velocity independent, s-wave component, and is therefore inde-
pendent of velocity. If the annihilation cross section is velocity dependent, as in the cases of
p-wave, d-wave, or Sommerfeld models, the J -factor must account for this velocity depen-
dence by incorporating the full dark matter velocity distribution [7–18]. Cross section limits
from dwarf spheroidal galaxies have been extended to these velocity-dependent models for
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the aforementioned annihilation channels [12, 16]. These constitute the most stringent limits
on velocity-dependent models. In addition to these bounds from dwarf galaxies, there have
been initial explorations of the impact of velocity-dependent dark matter annihilation on the
signal from the Galactic center [11, 19], and from dark matter subhalos [20].

The above studies of velocity-dependent DM annihilation rely on simplified analytic
models for the DM phase space distribution. While convenient because of their analytic
properties, these simplified models need to be tested against the corresponding DM distri-
bution of MW-like galaxies extracted from cosmological simulations of galaxy formation. In
this paper, we perform the first analysis of the J -factor in velocity-dependent annihilation
cross section models using state-of-the-art simulations of MW-like galaxies. For our study,
we use the Auriga magneto-hydrodynamical simulations of galaxy formation [21], as well as
the APOSTLE hydrodynamical simulations [22, 23]. We focus on the expected signal from
the MW galaxy, for the first time determining the DM relative velocity distribution from cos-
mological simulations. From this distribution we determine the velocity-dependent J -factors
for p-wave, d-wave and Sommerfeld annihilation cross section models.

The paper is organized as follows. In section 2 we discuss the simulations that we
use and our criteria for selecting MW-like galaxies. In section 3 we determine the density
profiles and the relative velocity distributions from our set of simulations. In section 4 we
introduce the formalism for computing the J -factors for the different DM annihilation models
we consider. In section 5 we present the results for the J -factors of our selected MW-like
galaxies for the smooth halo component. Finally, in section 6 we discuss our results and
summarize our conclusions. In Appendices A and B we present additional material regarding
the DM velocity distributions.

2 Simulations and halo selection

In this work we use two different sets of hydrodynamical simulations of MW-mass halos from
the Auriga [21] and the APOSTLE [23, 24] projects, which we discuss in this section.

The Auriga simulations [21] include a suite of thirty magneto-hydrodynamical zoom
simulations of isolated MW mass halos, selected from a 1003 Mpc3 periodic cube (L100N1504)
from the EAGLE project [25, 26]. The simulations were performed using the moving-mesh
code Arepo [27] and a galaxy formation subgrid model which includes star formation, feedback
from supernovae and active galactic nuclei, metal-line cooling, and background UV/X-ray
photoionisation radiation [21]. The cosmological parameters used for the simulations are from
Planck-2015 [28] measurements: Ωm = 0.307, Ωb = 0.048, H0 = 67.77 km s−1 Mpc−1. In this
work we use the standard resolution level (Level 4) of the simulations with DM particle mass,
mDM = 3×105 M�, baryonic mass, mb = 5×104 M�, and Plummer equivalent gravitational
softening of ε = 370 pc [29, 30].

The APOSTLE simulations [23, 24] use the same code as the EAGLE project [31, 32]
with the EAGLE reference model Ref-L100N1504 calibration, applied to zoom simulations
of Local Group analogue systems, which contain two MW-mass halos. The EAGLE simula-
tions use a modified version of the P-gadget3 Tree SPH code [33], the anarchy version of
SPH [25, 34], and a galaxy formation subgrid model that includes metal-line cooling, pho-
toionisation, star formation, and feedback from star formation and active galactic nuclei.
The cosmological parameters are from WMAP-7: Ωm = 0.272, Ωb = 0.0455, h = 0.704. We
use twelve APOSTLE volumes simulated at similar resolution to EAGLE Recal-L025N0752,
which we refer to as AP-L2 (i.e. Level 2 or medium resolution). At this resolution, the DM
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particle mass, mDM ' 5.9 × 105 M�, the initial gas particle mass, mg ' 1.3 × 105 M�, and
ε = 308 pc. Notice that the resolution of the halos extracted from the Auriga Level 4 and
AP-L2 simulations used in this work are comparable.

All simulated halos have a dark-matter-only (DMO) counterpart which share the same
initial conditions as the hydrodynamical runs, but galaxy formation processes are ignored
and all the particles are treated as collisionless. In what follows we shall refer to halos in
the hydrodynamics simulations as either the Auriga or APOSTLE halos and to those in the
DMO simulations as DMO halos.

For the analysis in this work, only DM particles bound to the main halo identified by
the SUBFIND algorithm [35] are considered. At the end of section 5, we briefly discuss how
our results change if we include DM particles bound to subhalos.

2.1 Selection of Milky Way-like galaxies

Simulated MW-like galaxies are usually selected by their virial mass alone. However, to make
accurate predictions for the DM distribution throughout the galaxy it is important to apply
some additional criteria to select a MW analogue. Here, we specify the criteria we use for
selecting MW analogues in the Auriga and APOSTLE simulations.

The Auriga halos have a virial mass of M200 = [0.93 − 1.91] × 1012 M� [21], which
agrees with the observed MW halo mass estimates (see ref. [36] and references therein). We
select the MW analogues by the following criteria introduced in refs. [37, 38]: (i) the stellar
mass1 of the simulated galaxy falls within the 3σ range of the observed MW stellar mass,
4.5 × 1010 < M∗/M� < 8.3 × 1010 [39], and (ii) the rotation curves of the simulated halos
fit well the observed MW rotation curve obtained from ref. [40]. As detailed in ref. [38],
with these criteria we obtain a total of 10 MW-like Auriga halos. The virial and total stellar
masses of these 10 Auriga halos are listed in table 1.

The AP-L2 simulations include an initial set of 24 MW-mass halos. Since the stellar
masses of the halos in the APOSTLE simulations are slightly smaller than those expected for
MW-mass halos [31], we slightly relax the criterion on the stellar mass to find the APOSTLE
MW-like galaxies. In particular, we select the simulated galaxies with stellar mass in the
range of 2.4 × 1010 < M∗/M� < 8.3 × 1010, and a rotation curve which agrees with the
observed MW rotation curve [40]. With these criteria, we obtain a total of 6 MW-like AP-L2
halos. The virial and stellar masses of these halos are listed in table 1.

3 Properties of MW analogues

In this section we discuss the properties of our sample of MW analogues, with a specific focus
on the DM density profiles and the relative velocity distributions. Our determination of the
DM relative velocity distribution is the first of its kind for MW analogues in cosmological
simulations. Our analysis is also the first characterization of the DM velocity distribution
at locations inside and outside of the Solar position. All prior studies have focused on the
velocity distribution in the solar neighborhood and explored the implications for direct DM
detection experiments [37, 38, 41–43].

1The stellar masses of both the Auriga and APOSTLE halos are calculated from the stars within a spherical
radius of 30 kpc from the Galactic center.
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Halo Name M200 [×1012 M�] M? [×1010 M�]

Au2 1.91 7.65
Au4 1.41 7.54
Au5 1.19 6.88
Au7 1.12 5.27
Au9 1.05 6.20
Au12 1.09 6.29
Au19 1.21 5.72
Au21 1.45 8.02
Au22 0.93 6.10
Au24 1.49 7.07

AP-V1-1-L2 1.64 4.88
AP-V6-1-L2 2.15 4.48
AP-S4-1-L2 1.47 4.23
AP-V4-1-L2 1.26 3.60
AP-V4-2-L2 1.25 3.20
AP-S6-1-L2 0.89 2.41

Table 1. The virial and stellar masses of the Auriga and APOSTLE MW-like halos, labeled by
“Au-Halo Number” and “AP-Volume Number-Halo Number-Resolution Level”, respectively.

3.1 Dark matter density profiles

The predicted DM annihilation signal and the J -factor are sensitive to the DM density
profile, so it is important to understand the behavior of these profiles in our MW analogues.
To determine the DM density profiles, we assume the halos to be spherically symmetric.
This has been shown to be a good assumption for halos in hydrodynamic simulations [44],
since baryons make the DM distribution more spherical in the central parts compared to the
distribution obtained from DMO simulations [45–49].

The sphericity of the halos can be directly checked in our simulations. We compute
the inertia tensor of the DM particles within four different radii: 2, 8, 20, and 50 kpc from
the Galactic center, in Auriga and APOSTLE MW-like halos and their DMO counterparts.
The sphericity is defined as s = c/a, where c and a are respectively the smallest and largest
axes of the ellipsoid obtained from the inertia tensor. For a perfect sphere, c = a and s = 1.
We find that for the Auriga MW-like halos the sphericities at 2, 8, 20, and 50 kpc are in
the range of s(2 kpc) = [0.66 − 0.89], s(8 kpc) = [0.72 − 0.86], s(20 kpc) = [0.71 − 0.88],
and s(50 kpc) = [0.63 − 0.87], respectively. As expected, the sphericities are systematically
lower for the DMO counterparts, in which s(2 kpc) = [0.63− 0.88], s(8 kpc) = [0.58− 0.80],
s(20 kpc) = [0.56 − 0.69], and s(50 kpc) = [0.49 − 0.70]. For the APOSTLE MW-like
halos, we find s(2 kpc) = [0.80 − 0.90], s(8 kpc) = [0.69 − 0.88], s(20 kpc) = [0.73 − 0.85],
and s(50 kpc) = [0.71 − 0.91], while for their DMO counterparts, s(2 kpc) = [0.75 − 0.79],
s(8 kpc) = [0.60− 0.75], s(20 kpc) = [0.54− 0.75], and s(50 kpc) = [0.53− 0.78].

We extract the spherically-averaged DM density profiles from the mass enclosed in
consecutive spherical shells of different widths from the Galactic center, containing 2,000
DM particles within each shell. Our choice of 2,000 DM particles per shell optimizes the
calculation time of the J -factors discussed in section 4. In order to calculate accurately the
DM density profile, it is important to choose the location of the halo center carefully. We
determine the center of each halo using the shrinking sphere method [29]. This is an iterative
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technique in which we start by calculating the center of mass of the DM particles within
the virial radius, and then recursively shrink the radius of the sphere. At each step of the
iteration the center of the halo is reset to the last computed barycenter and the radius of
the sphere is reduced by 5%. This process continues until 1000 DM particles are contained
within the sphere.

A second issue which is important in determining the DM density profile is the resolution
limit. The thorough resolution study of Ref. [29] suggests a convergence radius at which the
integrated mass is converged within ∼ 10%, i.e. the so-called Power radius, RP03, based on
the two-body relaxation timescale of the DM particles. The criterion can be written as:

0.6 ≤
√

200

8

√
4πρcrit
3mDM

√
N

lnN
R

3/2
P03, (3.1)

where N is the number of particles with mass mDM enclosed within RP03, and ρcrit =
3H2/8πG is the critical density [50]. For the cosmological parameters used in the simu-
lations, we have ρcrit(z = 0) = 127.49 M� kpc−3 and 137.58 M� kpc−3 for Auriga and
APOSTLE simulations, respectively. Solving eq. (3.1) for each of the halos in the DMO
simulations, we find the Power radius to be in the range of RP03 = [1.14 − 1.29] kpc and
RP03 = [1.41− 1.59] kpc for the Auriga and APOSTLE DMO simulations, respectively. The
concept of numerical convergence is less clear in simulations containing baryons. For halos
in the hydrodynamic simulations, we calculate the Power radius using only the DM particles
and multiplying their mass by a factor of Ωm/ΩDM, which corresponds to a halo entirely
made of DM particles. We find that the Power radius is in the range of RP03 = [0.94− 1.07]
kpc and RP03 = [1.33−1.45] kpc for Auriga and APOSTLE MW-like halos, respectively. The
average Power radius is RP03 = 0.98 kpc and 1.41 kpc for the 10 Auriga and 6 APOSTLE
MW-like halos, respectively.

Using the methodology described above, figure 1 shows the DM density profiles for
our MW analogues in the Auriga (left panel) and APOSTLE (right panel) simulations. As
expected, at large radii, there is essentially complete agreement between the DM density
profiles of the DMO and the hydrodynamic simulations. At small radii, inside the expected
location of the Solar circle, the trend is for the halos in the hydrodynamic simulations to have
steeper profiles compared to the DMO. This is a result of the contraction of the DM halo as
a response to the presence of baryons in the inner parts of the halo [51, 52]. The steepening
of the hydrodynamic profiles compared to their DMO counterparts is more pronounced for
the Auriga halos compared to the APOSTLE halos. This is due to the smaller stellar masses
of the APOSTLE halos, which leads to less contraction of the halos in APOSTLE compared
to Auriga. For comparison, the best fit Navarro–Frenk–White (NFW) profile for the Auriga
halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the right panel are shown as
dashed black curves in figure 1.

3.2 Relative velocity distributions

We now determine the DM pair-wise velocity distributions, to which we refer in what follows
as the DM relative velocity distributions. We begin by establishing our notation. Define
f(x,v) such that f(x,v) d3x d3v is the mass of DM particles within a phase space volume
x + d3x and v + d3v. The position vector x and the velocity vector v are defined in the
rest frame of the galaxy. In these expressions and those below, bold-face quantities represent
vectors with components given by the three spatial and velocity components of a DM particle.
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Figure 1. DM Density profiles for the Auriga (left panel) and APOSTLE (right panel) MW-like
halos (blue) and their DMO counterparts (yellow). The dashed black curves specify the best fit NFW
profile for Auriga halo Au2 in the left panel and APOSTLE halo AP-V4-1-L2 in the right panel. The
vertical lines mark the average Power radius for the Auriga and APOSTLE MW-like halos in the left
and right panels, respectively.

At a position x in the halo, we write the probability distribution of DM velocities as

Px(v) =
f(x,v)

ρ(x)
, (3.2)

where the DM density at x is normalized as

ρ(x) =

∫
f(x,v)d3v. (3.3)

At a position x, we are interested in the probability that a DM particle 1 has velocity
v1 in the range v1 + d3v1 times the probability that a DM particle 2 has velocity v2 in the
range v2 + d3v2,

Px(v1)d
3v1Px(v2)d

3v2. (3.4)

The individual particle velocities may be written in terms of the center-of-mass velocity, vcm,
and the relative velocity, vrel ≡ v2 − v1, as v1 = vcm + vrel/2 and v2 = vcm − vrel/2. Using
the fact that the magnitude of the jacobian of the transformation d3v1d

3v2 → d3vcmd
3vrel

is unity, and integrating over vcm, we then obtain a general expression for the distribution
of relative velocities at a position x,

Px(vrel) =

∫
Px(v1 = vcm + vrel/2)Px(v2 = vcm − vrel/2) d3vcm. (3.5)

To calibrate our expectations, it is useful to review the prediction for the relative velocity
distribution in the case of a pure Maxwellian halo. For Maxwellian halos, at any point in
the halo, the DM velocity distribution, f , is Gaussian in all three velocity components, with
a dispersion in each direction given by σ. The distribution of velocities is then given by
the Standard Halo Model (SHM) [53], which is the simplest and most commonly adopted
model to describe the DM halo. In the SHM, the DM halo is assumed to be spherical and
isothermal, and this leads to an isotropic Maxwell-Boltzmann velocity distribution with a
most probable speed of

√
2σ. In this case, the relative velocity distribution, Px(vrel), is also a

Maxwellian distribution, but with a one dimensional relative velocity dispersion of
√

2σ [10].
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The velocity vectors of the simulation particles are determined with respect to the center
of each halo. In each spherical shell, we resolve the velocity vectors into three components
then subtract the components of the velocities in this basis, being careful to avoid double
counting. We then take the modulus of the components of the pairwise relative velocities,
which provides an estimate of Px(vrel) in each radial shell.

Notice that the relative velocity modulus distribution, Px(|vrel|), is related to the relative
velocity distribution, Px(vrel), by

Px(|vrel|) = v2rel

∫
Px(vrel) dΩvrel

, (3.6)

where dΩvrel
is an infinitesimal solid angle along the direction vrel. In each radial shell,

Px(|vrel|) is normalized to unity, such that∫
Px(|vrel|) dvrel = 1 (3.7)

and therefore we have
∫
Px(vrel) d

3vrel = 1.

In figure 2 we show the DM relative velocity modulus distribution in the Galactic rest
frame for an example MW-like Auriga halo and its respective DMO counterpart. For both
halos, we show the speed distributions in radial shells near the Galactic center, near the Solar
circle, and at two radii well beyond the Solar circle (i.e. 20 and 50 kpc from the Galactic
center). The solid blue (orange) curves show the mean speed distribution for the Auriga
(DMO) halo, while the shaded bands specify the 1σ Poisson error in the speed distributions.

The method used to define the spherical shells for calculating the density profiles pro-
duces varying radial boundaries from halo to halo. In order to effectively compare the relative
velocity distributions of different halos at the same radius, we redefine the spherical shells
to have fixed radial width progressing outward from the Galactic center. Each spherical
shell has radial width of 0.1 kpc, with the number of particles in each shell in the range of
[486−3304]. The spherical shells of fixed radial width are only used in the calculations shown
in figures 2 and 4 (also see figure 10).

As we can see from figure 2, including baryons in the simulations results in an increase of
the DM relative speed distributions at all radii. This increase is more pronounced in the inner
galaxy, and is due to the deepening of the galaxy’s gravitational potential when baryons are
included in the simulations. This result is consistent with the local DM speed distributions
of MW-like galaxies extracted from other hydrodynamic simulations [37, 38, 41–43].

Next, we compare the DM relative speed distributions at each radii with a Maxwellian
distribution (dashed colored curves in figure 2). For each halo in the hydrodynamic and DMO
simulations, we find the best fit Maxwellian speed distribution, f(v) ∝ v2 exp(−v2/v20), where
v0 is the best fit peak speed. For the halos in the hydrodynamic simulations, the relative speed
distributions are very close to the Maxwellian model at all radii, with an agreement becoming
increasingly better as we move further away from the Galactic center. For the DMO halos, the
agreement with the Maxwellian model is not as good as is for the hydrodynamic case, though
again the agreement gets better at radii further away from the Galactic center. Deviations
from the Maxwellian distribution for the DMO halos at small radii are not surprising, since
the DM density profiles deviate from the isothermal r−2 profile in the central regions of the
DMO halos [54]. Additionally, the velocity anisotropy of the DMO halos at all radii leads to
further deviations from the isotropic Maxwellian distribution.
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Figure 2. Modulus of the DM relative velocity distributions in the Galactic rest frame for an example
Auriga MW-like halo (blue) and its DMO counterpart (yellow). Each panel shows the distributions
at a different Galactocentric radius. The solid curves specify the mean relative speed distributions,
while the shaded bands specify the 1σ Poisson errors. The dashed curves represent the corresponding
best fit Maxwell-Boltzmann distribution.

In all cases, the DM relative speed distribution at small radii is shifted to smaller
relative speeds as compared to the Maxwellian distributions, while at large radii there is a
shift to larger relative speeds compared to the Maxwellian. We explore the origins of the
shapes of these distributions in the following section. To understand how good the fit is to
the Maxwell-Boltzmann distribution, in Appendix A we present the χ2/dof for all halos at
several different radii.

To explore the halo-to-halo variation in the DM relative speed distributions of the Auriga
MW-like halos, we first examine their rotation curves. The circular velocities for two example
Auriga halos (Au2 and Au22) are shown in figure 3. The total circular velocity of each halo
is vc(r) =

√
GM(< r)/r, where M(< r) is the total mass (DM, stars, and gas) enclosed

in a sphere of Galactocentric radius r. In figure 4, we show the relative velocity modulus
distributions for the same two halos. These halos have the smallest and largest peak speeds
in the radial shell centered at 2 kpc. The four panels show the relative speed distributions
of the two halos at different Galactocentric radii. As we move from 2 kpc to 50 kpc from the
Galactic center, the relative speed distributions of Au22 is strongly shifted to smaller speeds,
while that of Au2 does not show a significant change. This behavior can be understood from
the rotation curves of the two halos, shown in figure 3. The circular velocity of Au2 changes
slightly with Galactocentric distance, while that of Au22 decreases significantly as we move
from 2 kpc to larger radii.
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Figure 3. Circular velocity of the two Auriga halos Au2 (blue) and Au22 (magenta) as function of
Galactocentric radius.

Figure 4. Modulus of the DM relative velocity distribution for the two Auriga MW-like halos that
have the smallest (Au2, blue) and largest (Au22, magenta) peak speeds at 2 kpc. The modulus
velocity distributions for the two halos are shown at the same radii as in figure 2.

Notice that to extract the relative DM velocity distributions, we calculate the average
distribution in each radial shell. We have verified the spherically average velocity distributions
we obtained are consistent with those obtained by splitting each radial shell into 8 sections
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divided evenly about the azimuthal direction of the halo’s principal axes. We have also
checked our results against a more local method for computing the relative DM velocity
distributions, using only the nearest neighbors of each particle. Choosing reasonable aperture
sizes to find the neighbors of each particle in each radial shell, we find that the relative velocity
distributions and J -factors are not significantly affected. The difference in all the results of
this paper when using this local nearest neighbors method compared to using all particle
pairs is at the order of ∼ 10%.

4 J factors

Having determined the DM density profiles and the relative velocity distributions for the
MW-like halos, we are now in position to determine the velocity-dependent J -factors. In
this section, we lay out the formalism for calculating the J -factors for each of the annihilation
cross section models that we consider. In the formulae presented below, our notation closely
follows that of Ref. [10].

4.1 Annihilation rate

We begin by defining σA, the DM annihilation cross section to any set of Standard Model
particles. The number density of DM particles at position x is ρ(x)/m, where m is the DM
particle mass. The flux of DM particles is given by the product of the number density and
the modulus of the relative velocity, vrel ≡ |vrel| = |v1 − v2|. Multiplying the flux by the
DM annihilation cross section and the number density of target DM particles, we obtain the
annihilation rate in a volume element dV at the position x in the halo as

dΓ

dV
=

[
ρ(x)

m

]2 ∫
d3vrelPx(vrel)(σAvrel). (4.1)

We note that the standard definition of the annihilation cross section averaged over the
relative velocity distribution is then,

〈σAvrel〉(x) =

∫
d3vrelPx(vrel)(σAvrel), (4.2)

which in general depends on spatial location x.

To determine the annihilation rate, as above we take the DM halo as spherically sym-
metric. We define a solid angle centered on the Galactic center, r as the distance from the
Galactic center to a point in the halo, R0 as the distance from the Sun to the Galactic
center, ` as the distance from the Sun to a point in the halo (i.e. line of sight), and Ψ as
the opening angle between the line of sight ` and the direction towards the Galactic center.
The radial distance from the Galactic center to a point in the halo can then be expressed
as r2 (l,Ψ) = l2 + R2

0 − 2lR0 cos Ψ. The annihilation rate along the line of sight is then
proportional to

Js(Ψ) =

∫
d`
〈σAvrel〉
(σAvrel)0

[ρ(r(`,Ψ))]2 . (4.3)

which, following Ref. [16], we define as the effective J -factor. With this definition, the quan-
tity (σAvrel)0 is defined as the component of the annihilation cross section that is independent
of the relative velocity.

– 10 –



4.2 DM annihilation models

In the often-studied case in which σAvrel does not depend on the relative velocity, eq. (4.3)
is simply proportional to the integral of the square of the density along the line-of-sight,
J ∝

∫
ρ2d`. More generally, σAvrel does depend on the relative velocity; in this case eq. (4.3)

must be evaluated for the given velocity dependence.
To account for this velocity dependence, we will make the replacement relative to the

above definition and parameterize the annihilation cross section in the general form, σAvrel →
σAvrel = (σAvrel)0 S (vrel/c), with S ≡ (vrel/c)

n. We examine the following possibilities:
n = −1 (Sommerfeld-enhanced annihilation), n = 0 (s-wave annihilation), n = 2 (p-wave
annihilation), and n = 4 (d-wave annihilation). These models may be realized for different
assumptions for the nature of DM and the new physics that mediates their annihilation [16].
Examining these possibilities in the context of eq. (4.1), we see that the different cross section
models correspond to different velocity moments of the relative velocity distribution,

〈σAvrel〉(x) ∝
∫

d3vrelPx(vrel)v
n
rel ≡ µn(x), (4.4)

where µn is the n-th moment of the relative velocity distribution, Px(vrel). Examining
eq. (4.4) we may then attach a physical meaning to the velocity-averaged annihilation cross
section for each of the models. In the case of the s-wave, the annihilation rate is simply
proportional to the DM density squared at a given position. For the case of Sommerfeld
models, eq. (4.4) is proportional to the inverse moment of the relative velocity distribution,
while for the s-wave, p-wave, and d-wave models, eq. (4.4) corresponds to the zeroth, 2nd,
and 4th moments, respectively.

The effective J -factor in eq. (4.3) can then be written as

Js(Ψ) =

∫
d`

∫
d3vrelPx(vrel)

(vrel
c

)n
[ρ(r(`,Ψ))]2

=

∫
d` [ρ(r(`,Ψ))]2

(
µn(x)

cn

)
. (4.5)

Therefore, depending on the particle physics model considered, the effective J -factor depends
on different moments of the relative velocity distribution.

We can look at each moment more closely. In the case of the p-wave, the integral

µ2(x) ≡
∫
d3vrelv

2
relPx(vrel) (4.6)

is the square of the intrinsic relative velocity dispersion of the system at a given x. This
provides a measure of the disordered motion of the relative velocities about x. In the case of
the d-wave model, it is useful to first define the following quantity

κ(x) =

∫
d3vrelv

4
relPx(vrel)[∫

d3vrelv
2
relPx(vrel)

]2 =
µ4(x)

(µ2(x))2
, (4.7)

which is motivated from the general statistical definition of kurtosis. In the case of a Maxwell-
Boltzmann distribution, we have κ = 1.667. Eq. (4.7) is useful because it is strongly de-
pendent on the more extreme tails of the relative velocity distribution. For smaller κ the
components of the velocity distribution are more strongly peaked near the mean value of
the respective Gaussians, while for larger κ, the velocity components are more (symmetri-
cally) broadly distributed relative to a Gaussian. As we discuss below, this has important
implications for the determination of the J -factors in these models.
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5 Results

We now move on to determining the Js-factors for each of the MW-like halos, under the
assumptions of the different annihilation cross section models discussed above.

Figure 5 shows the Js-factors as a function of the angle Ψ for all four cross section models
for the Auriga and APOSTLE halos. Here we consider only the smooth halo component,
so that all particles that are associated with subhalos of the main halo have been excluded.
The ten Auriga MW-like halos, along with their DMO counterparts are shown in the left
panel, while in the right panel we show the six APOSTLE MW-like halos and their DMO
counterparts. At small angles, but still large enough to correspond to radii larger than the
resolution limit, the clear trend in both simulations is for the Js-factors of the halos in the
hydrodynamic simulations to be systematically larger than those of their DMO counterparts.
This behavior is primarily attributed to the contraction of the DM density profiles due to
the baryons in the inner parts of the halo, as seen in figure 1. As discussed before, in the
APOSTLE halos, the contraction of the density profiles is smaller due to their smaller stellar
masses, compared to Auriga halos. Hence, the difference between the Js-factors of the halos
in the DMO and hydrodynamic simulations are also smaller.

Though the higher density of the halos in the hydrodynamic simulations at small radii
provides a simple explanation for why the Js-factors are larger in the hydrodynamic case for
all models, it is interesting to note the relative change in the Js-factor between the halos
in the hydrodynamic simulations and their DMO counterparts for each model. Examining
figure 5, we see that the largest relative change occurs when going from the DMO to the
hydrodynamic case for the d-wave model. On the other hand, the smallest relative change
occurs for the Sommerfeld model. The larger relative increase in the Js-factor for the d-wave
is a reflection of the fact that the Js-factor in this case scales as the fourth moment of the
relative velocity dispersion. To appreciate quantitatively the effect of the various velocity
scalings, in figure 6, we show the ratios of the Js-factors of each model relative to the s-wave
value.

Figure 7 shows the relative velocity moments for the Auriga MW-like halos, for the p-
wave, d-wave and Sommerfeld models. The bottom right panel of figure 7 shows the kurtosis,
as defined in eq. (4.7). As discussed above, the fourth moment is more sensitive to the small,
but manifest differences in the tails of the relative velocity distribution as compared to a
Maxwell-Boltzmann distribution. Comparing figures 5 and 7, we see that the scatter in the
moment can be directly translated over to the scatter in the J-factor in each case.

In addition to the shift in the Js-factor itself, it is important to quantify the scatter in
this quantity amongst the ten MW-like halos. Similar to the above, we find that the largest
scatter is in the Js-factor of the d-wave model, and the smallest scatter is in the Sommerfeld
model. In the case of the d-wave, this is again a result of the sensitivity of the Js-factor to
the tails of the velocity distribution in these models. The integrand of the relative velocity
moment, which in this case scales as v4relf(vrel), exhibits a significant halo-to-halo scatter at
the highest vrel, while at the lowest vrel, this integrand is nearly identical for all halos. At
the other extreme for the Sommerfeld model there is significantly less scatter in the inverse
moments, as shown in figure 7 for the Auriga halos. In this case the integrand of the velocity
moments scales as f(vrel)/vrel, and the scatter in this integrand at the largest vrel is much
less than for the d-wave case. In addition, at low vrel, the scatter in the integrand increases,
partially compensating for the scatter at high vrel. Together, these effects combine to make
the halo-to-halo scatter for the Sommerfeld model the smallest amongst our cross section
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Figure 5. Js-factors for the different velocity-dependent models for Auriga (left panel) and APOS-
TLE (right panel) simulations. For each model, we show the Js-factors for the ten MW-like halos
in the hydrodynamic simulations (blue) and their DMO counterparts (yellow). The black vertical
lines specify the angle Ψ corresponding to the average Power radius for the Auriga and APOSTLE
MW-like halos in the left and right panels, respectively.

models.

The features in the relative velocity distributions explain the relative differences between
the Js-factor of the halos in the hydrodynamic simulations and their DMO counterparts for
a given annihilation cross section model. More generally, in all cases we find that the scaling
of the Js-factors with angle is essentially entirely driven by the DM density profiles, and
that this scaling depends very weakly on the characteristics of the DM relative velocity
distributions. This can be best quantified by considering different lines-of-sight through a
halo, which correspond to different values of Ψ, and averaging the DM density and the
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Figure 6. Js-factors as in figure 5, only plotted as a ratio relative to the s-wave value.

velocity dispersion along each line-of-sight. Figures 8 and 9 show the average DM density
and velocity dispersion of the ten Auriga halos, respectively, against their average Js-factor,
with each point in this plane representing a different value of Ψ. We see from figure 8 that
for each cross section model, the average density correlates with the average Js-factor, while
from figure 9, there is minimal correlation with the average velocity dispersion in each case.
This implies that, even for velocity dependent models, understanding the systematics in the
DM density is the most important factor in determining the Js-factor.

We reiterate that the analysis of this paper has focused on determining the J -factors for
the smooth halo component. The contribution from DM subhalos bound to the host galaxy is
expected to boost the J -factor for each annihilation model. For halos in the hydrodynamic
simulations and assuming s-wave annihilation, the boost factor from resolved subhalos is
expected to be small, corresponding for . 1% increase over the smooth halo contribution [55].
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Figure 7. Velocity moments of the relative velocity distribution for the ten Auriga MW-like halos
and their DMO counterparts. The panels are: Second moment (top left), Fourth moment (top right),
inverse moment (bottom left). The bottom right panel shows the fourth moment divided by the
square of the second moment, with the black horizontal line indicating this quantity for the Maxwell-
Boltzmann relative velocity distribution. The black vertical lines specify the average Power radius of
the Auriga halos.

While determining the boost factor for velocity-dependent models is beyond the scope of our
current analysis, we can roughly estimate the increase in density due to subhalos by including
the particles bound to subhalos2 in our calculations, and determining the spherically-averaged
density and velocity distributions. With the subhalos included, we find at most ∼ 20%
increase in the Js-factors, which is manifest at values of Ψ near the resolution limit of our
simulations. This justifies our approach of focusing on the smooth halo, and indicates that
the inclusion of subhalos leads to only a small increase in the J -factors over the scales that
we consider.

6 Discussion and conclusions

In this paper we have performed the first study of the dark matter relative velocity distri-
bution of Milky Way-like halos, using the Auriga and APOSTLE cosmological simulations.
We find that the dark matter pair-wise relative velocity distribution at nearly all radii in
the halos is consistent with the Maxwell-Boltzmann distribution. This agreement is partic-
ularly good for the simulations that include baryons. For the corresponding dark matter

2More precisely, DM particles bound to subhalos belonging to the same friends-of-friends [56] group as the
main halo are included, with a dimensionless linking length of 0.2 times the mean interparticle spacing.
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Figure 8. Correlation between the DM density and Js-factor for Auriga halos (green to blue colored
points) and their DMO counterparts (yellow to red colored points). Each point represents the average
of the density and Js-factors over all the halos (ρ̄ and J̄s, respectively), along a line-of-sight at a
given angle Ψ. The color bars on the right indicate the values of the angle from the galactic center.
Angles start from ' 10 degrees, as angles at lower radii are below the resolution limit (specified by
black points on the plots). Each panel shows this correlation for a different cross section model.

only-simulations, the agreement with the Maxwell-Boltzmann distribution is good, though
there are some notable deviations, particularly at small radii as the center of the halo is
approached.

We have explored the implications for velocity-dependent dark matter annihilation,
focusing on the Sommerfeld (1/v), s-wave (v0), p-wave (v2), and d-wave (v4) models. We
generally show that the J -factors scale as the moments of the relative velocity distribution,
and that the halo-to-halo scatter is largest for d-wave, and smallest for Sommerfeld models.

Our results indicate that in velocity-dependent models, the J -factor is strongly corre-
lated with the dark matter density in the halo, and is very weakly correlated with the velocity
dispersion. This implies that if the dark matter density in the Milky Way can be robustly
determined, one can accurately predict the dark matter annihilation signal, without the need
to identify the dark matter velocity distribution in the Galaxy.

In calculating the J -factors for velocity-dependent models, we have neglected the impact
of dark matter substructure within the Milky Way-like galaxies. The effect of substructure has
been explored for s-wave models in several previous studies [55, 57], which indicate that the
corrections for substructure are small, at least at the resolution limits of present simulations.
It is possible that boost factors can be significant for extrapolations down to ∼ Earth-mass
subhalos, in particular for Sommerfeld-enhanced models. Accurately calculating the boost
factors for velocity-dependent models required determining the concentration-mass relation
for subhalos [58] and their velocity distribution, and understanding how to extrapolate these
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Figure 9. Same as figure 8, except for the average velocity dispersion, σ̄, instead of the density. Note
that while figure 8 uses log-log axes, the data in this figure is presented on semi-log axes.

beyond the resolution limit of the simulations. We leave this topic as a subject for future
study.

The results we have presented will be important in guiding searches for velocity-dependent
dark matter annihilation, for example with Fermi-LAT data or with future data from higher-
energy gamma-ray instruments. Though p-wave and d-wave annihilation may be realized in
simple models [59–61], due to the sensitivity of these instruments, for the simplest models
bounds on p-wave [16, 62] and d-wave [16] cross sections are much larger than those for
thermal relic dark matter. Bounds may be improved upon by considering more unique as-
trophysical environments, for example the supermassive black hole at the center of the Milky
Way [19]. The phenomenology becomes richer for multi-state dark matter, such that Sommer-
feld boosts can enhance the p-wave component and suppress the s-wave component [63]. The
results we have presented provide the most realistic approach available to providing robust
constraints on these velocity-dependent models with astrophysical systematics incorporated.
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A Best fit parameters for relative velocity distributions

In table 2 we present the best fit peak speeds and reduced χ2 values for the Maxwellian
functional form to fit the DM relative velocity modulus distributions of the Auriga and
APOSTLE MW-like halos. The best fit parameters are given for the DM particles in spherical
shells at different radii from the center of the halo.

r = 2 kpc r = 8 kpc r = 20 kpc r = 50 kpc

Halo Name v0 [km s−1] χ2
red v0 [km s−1] χ2

red v0 [km s−1] χ2
red v0 [km s−1] χ2

red

Au2 315.93 1.05 321.03 1.99 307.43 0.91 263.53 1.33
Au4 337.43 0.98 335.43 0.86 297.53 1.05 245.12 2.09
Au5 379.34 0.46 338.43 0.63 293.63 0.96 236.62 1.14
Au7 308.93 0.68 298.33 0.72 268.13 0.80 225.42 1.24
Au9 384.14 0.51 328.33 0.71 274.93 0.72 226.62 2.12
Au12 341.83 0.56 314.93 0.81 273.53 1.01 235.42 2.12
Au19 326.23 0.62 299.83 0.63 280.13 0.86 233.02 1.88
Au21 331.93 0.21 330.73 0.63 303.73 1.28 246.92 1.67
Au22 401.64 0.61 316.73 1.64 270.53 2.48 220.92 1.47
Au24 363.04 0.40 329.03 0.53 302.13 1.13 249.42 1.63

AP-V1-1-L2 309.58 0.89 312.75 0.49 299.72 0.73 267.15 1.55
AP-V6-1-L2 368.60 0.62 331.61 0.53 308.73 0.52 273.38 1.07
AP-S4-1-L2 297.77 0.62 295.07 0.42 271.10 0.64 243.93 0.92
AP-V4-1-L2 296.83 0.68 296.91 0.55 269.67 0.61 238.93 1.84
AP-V4-2-L2 298.68 0.92 244.91 0.90 229.59 0.66 198.06 1.17
AP-S6-1-L2 313.43 0.91 267.60 0.97 241.73 1.24 201.78 1.19

Table 2. Best fit peak speed, v0, and the reduced χ2 values for the goodness of fit of the Maxwellian
velocity distributions to the DM speed distributions of the Auriga and APOSTLE MW-like halos at
different radii from the center of the halo.

B Components of the relative velocity distributions

In figure 10 we show the radial (vrel,r), polar (vrel,θ), and azimuthal (vrel,φ) components of the
DM relative velocity distributions for halos Au2 and Au22 at four different Galactocentric
radii. The origin of our reference frame is at the Galactic center, and the z-axis is perpen-
dicular to the stellar disk. The three components of the relative velocity distribution are
individually normalized to unity, such that

∫
dvrel,if(vrel,i) = 1 for i = r, θ, φ.

The three components of the relative velocity distribution are different at each radius,
and there is a clear velocity anisotropy at all radii. The solid colored curves in each panel
specify the best fit Gaussian distribution to each relative velocity component for the two
halos.

To better understand the degree of anisotropy in the relative velocities, we compute the
anisotropy parameter,

β = 1−
σ2θ + σ2φ

2σ2r
, (B.1)

where σr, σθ, and σφ are the radial, polar, and azimuthal velocity dispersions, respectively.
Notice that for an isotropic velocity distribution, β = 0. In figure 11 we show the anisotropy
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Figure 10. The histograms show the radial (left panels), polar (middle panels) and azimuthal (right
panels) components of the DM relative velocity distributions for halos Au2 (magenta) and Au22
(blue). From top to bottom the rows show the distributions in radial shells at 2 kpc, 8 kpc, 20 kpc,
and 50 kpc from the Galactic center. The solid lines specify the best fit Gaussian distribution for
each velocity component and each halo.

parameter as a function of Galactocentric radius for the Auriga MW-like halos. We can
see that at small radii, relative velocity distributions of all halos are close to isotropic, but
become more anisotropic as we move further from the Galactic center.

To better compare halos Au2 and Au22, we can also study the shape of their halos.
In section 3 we define the range of sphericities of all the Auriga MW-like halos at four
different radii. For Au2 we have s(2 kpc) = 0.66, s(8 kpc) = 0.72, s(20 kpc) = 0.71, and
s(50 kpc) = 0.63. For Au22 we have s(2 kpc) = 0.82, s(8 kpc) = 0.86, s(20 kpc) = 0.88, and
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Figure 11. Anisotropy parameter, β, as a function of Galactocentric radius for the 10 Auriga MW-
like halos. The cyan and magenta curves specify the anisotropy parameter for halos Au2 and Au22,
respectively.

s(50 kpc) = 0.86. Deviations from sphericity can be described by the triaxiality parameter,

T =
a2 − b2

a2 − c2
, (B.2)

where a ≥ b ≥ c are the three axes of the ellipsoid obtained from the inertia tensor. For
very oblate systems, T ≈ 0, whereas for very prolate systems, T ≈ 1. For Au2 we have
T (2 kpc) = 0.72, T (8 kpc) = 0.46, T (20 kpc) = 0.17, and T (50 kpc) = 0.12. For Au22 we
have T (2 kpc) = 0.56, T (8 kpc) = 0.30, T (20 kpc) = 0.31, and T (50 kpc) = 0.44. Hence,
Au2 has a larger deviation from sphericity and is more triaxial compared to Au22.
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