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ABSTRACT

We present and apply a method to infer the mass of the Milky Way (MW) by comparing
the dynamics of MW satellites to those of model satellites in the EAGLE cosmological
hydrodynamics simulations. A distribution function (DF) for galactic satellites is constructed
from EAGLE using specific angular momentum and specific energy, which are scaled so as
to be independent of host halo mass. In this two-dimensional space, the orbital properties
of satellite galaxies vary according to the host halo mass. The halo mass can be inferred
by calculating the likelihood that the observed satellite population is drawn from this DF.
Our method is robustly calibrated on mock EAGLE systems. We validate it by applying it
to the completely independent suite of 30 AURIGA high-resolution simulations of MW-like
galaxies: the method accurately recovers their true mass and associated uncertainties. We then
apply it to 10 classical satellites of the MW with six-dimensional phase-space measurements,
including updated proper motions from the Gaia satellite. The mass of the MW is estimated
to be MY = 1.177011 x 10" Mg (68 percent confidence limits). We combine our total
mass estimate with recent mass estimates in the inner regions of the Galaxy to infer an inner
dark matter (DM) mass fraction MPM(< 20 kpc)/MB! = 0.12, which is typical of ~10'> M,
lambda cold dark matter haloes in hydrodynamical galaxy formation simulations. Assuming
a Navarro, Frenk and White (NFW) profile, this is equivalent to a halo concentration of
MY =10.9738.

Key words: methods: data analysis—Galaxy: halo— galaxies: dwarfs—galaxies: haloes—
galaxies: kinematics and dynamics —.

1 INTRODUCTION

The mass of the Milky Way (MW) is a fundamental astrophysical
parameter. It not only is important for placing the MW in context
within the general galaxy population, but also plays a major role
when trying to address some of the biggest mysteries of modern
astrophysics and cosmology. The intricacies of galaxy formation
are highly dependent on feedback and star formation processes,
which undergo a crucial physical transition around the MW mass
(e.g. Bower et al. 2017). Apparent discrepancies with the standard
lambda cold dark matter (ACDM) model, such as the missing
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satellites (Klypin et al. 1999; Moore et al. 1999) and the too-big-
to-fail problems (Boylan-Kolchin, Bullock & Kaplinghat 2011),
depend strongly on the MW halo mass (e.g. Purcell & Zentner
2012; Wang et al. 2012; Vera-Ciro et al. 2013; Cautun et al. 2014a).
In addition, tests of alternative warm dark matter (DM) models
(Kennedy et al. 2014; Lovell et al. 2014) are also subject to the
total halo mass. Thus, by considering the cosmological context of
the MW and its population of dwarf galaxy satellites, important
inferences about large-scale cosmology can be made. With the
recent Gaia DR2 release (Gaia Collaboration 2018a), we now have
significantly more information than ever before about our galaxy,
and are better placed to make progress on these problems.

There have been many attempts to infer directly the MW mass
through a variety of methods. The total MW mass is dominated by its
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DM halo, which cannot be observed directly. Instead, its properties
must be inferred from the properties of luminous populations, such
as the luminosity function of MW satellites (mostly the Large and
Small Magellanic Clouds, LMC and SMC; e.g. Busha et al. 2011b;
Gonzalez, Kravtsov & Gnedin 2013; Cautun et al. 2014b) and the
kinematics of various dynamical tracers of the Galactic halo. The
dynamics of halo tracers are mostly determined by the gravitational
potential of the MW halo, and provide a key indirect probe of the
total halo mass. Examples of halo tracers used for this purpose are
satellite galaxies (e.g. Wilkinson & Evans 1999; Watkins, Evans &
An 2010), globular clusters (e.g. Eadie & Harris 2016; Binney &
Wong 2017; Sohn et al. 2018; Watkins et al. 2018), halo stars (e.g.
Xue et al. 2008; Deason et al. 2012; Kafle et al. 2012, 2014), high-
velocity stars (e.g. Smith et al. 2007; Piffl et al. 2014; Fragione &
Loeb 2017; Rossi et al. 2017; Monari et al. 2018), and stellar
streams (e.g. Koposov, Rix & Hogg 2010; Newberg et al. 2010;
Gibbons, Belokurov & Evans 2014; Bowden, Belokurov & Evans
2015; Kiipper et al. 2015).

There are a variety of methods for inferring the Galactic halo
mass using dynamical tracers. A common approach is to model
the tracers as distributions in equilibrium whose parameters are
determined by fitting the model to observational data (e.g. Evans
et al. 2003; Han et al. 2016a). Advances in the calculation of
action-angle coordinates (e.g. Vasiliev 2019) have led to a new
generation of analytical galaxy modelling, centred around distri-
bution functions (DFs) in action-angle space. Examples include
modelling the MW population of globular clusters (e.g. Posti &
Helmi 2018) or individual DFs of components such as the thick
and thin disc, bulge, stellar halo, and DM halo (Cole & Binney
2017). The recent availability of large cosmological simulation
has enabled a new class of methods based on comparing the
observed properties of MW satellites to those of substructures in
cosmological simulations (e.g. Busha et al. 2011a; Patel, Besla &
Mandel 2017).

Although over the past decades a large amount of effort has been
dedicated to inferring the Galactic halo mass, its value remains
uncertain to within a factor of 2, with most mass estimates ranging
from 0.5 x 10'% to 2.5 x 10'2 Mg, (e.g. Wang et al. 2015, and our
Fig. 7). While many studies claim uncertainties smaller than this
range, the analytical models upon which they rely require several
assumptions such as dynamical equilibrium and a given shape of the
density or the velocity anisotropy profiles. These assumptions can
lead to additional systematic errors, which are difficult to quantify
but can be the dominant source of error (e.g. see Yencho et al. 2006;
Wang et al. 2015, 2018). This is especially true for the MW halo
whose dynamics are likely to be affected by the presence of a very
massive satellite, the LMC (Gomez et al. 2015; Pefarrubia et al.
2016; Shao et al. 2018c). Furthermore, most methods typically
estimate the mass within the inner tens of kiloparsecs, since this
is the region where most tracers (such as halo stars and globular
clusters) reside, necessitating an extrapolation to the virial radius.
This extrapolation requires additional assumptions about the radial
density profile of the MW and can lead to further systematic
uncertainties.

Large-volume high-resolution cosmological simulations offer a
unique test-bed for analytical mass determination methods (e.g.
Han et al. 2016b; Pefiarrubia & Fattahi 2017; Wang et al. 2017)
and, importantly, enable new methods for inferring the Galactic
halo mass with a minimal set of assumptions. The simulations
have the advantage of self-consistently capturing the complexities
of halo and galaxy formation, as well as the effects of halo-
to-halo variation. However, with a few exceptions, the limited
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mass resolution of current simulations means that they can resolve
satellite galaxies but not halo stars or globular clusters (although
see e.g. Grand et al. 2018; Pfeffer et al. 2018). This is not a major
limitation since satellite galaxies, due to their radially extended
spatial distribution, are one of the best probes of the outer MW halo.
This is especially true now that the Gaia DR2 release has provided
a large sample of MW satellites with full six-dimensional phase
space information (Fritz et al. 2018; Gaia Collaboration 2018b;
Simon 2018).

Galactic halo mass estimates that rely on cosmological simu-
lations are relatively recent. Busha et al. (2011a) pioneered the
approach of inferring halo properties by finding the best match
between the MW satellites and satellites of simulated haloes. The
MW mass is then determined by weighting the host haloes according
to the quality of the satellite match, a technique known as importance
sampling. Busha et al. used the distance, velocity, and size of the
LMC and SMC to constrain the MW mass. The distance and velocity
of satellites can vary rapidly, especially when close to the pericentre
of their orbit, so very large simulations are needed in order to find
enough counterparts to the MW system.

Patel et al. (2017) pointed out that approximately conserved
quantities, such as angular momentum, are better for identifying
satellite analogues in simulations. This makes it easier to find MW
counterparts; applying the criterion to a larger number of satellites
results in a more precise mass determination (Patel et al. 2018). A
further advance was achieved by Li et al. (2017), who showed that,
when scaled appropriately, the DF of satellite energy and angular
momentum becomes independent of halo mass. This scaling allows
for a more efficient use of simulation data, since any halo can be
rescaled to a different mass, and thus a better sampling of halo
formation histories and halo-to-halo variation can be achieved.
This approach represents a major improvement over importance
sampling methods, in which the statistically relevant systems are
those in a small mass range.

In this paper we improve and extend the Li et al. (2017) mass
determination method. We start by constructing the phase-space
distribution of satellite galaxies using a very large sample of host
haloes taken from the EAGLE (Evolution and Assembly of GaLax-
ies and their Environments) galaxy formation simulation (Crain
et al. 2015; Schaye et al. 2015). We then describe and calibrate
three mass inference methods based on the satellite distributions of
(i) angular momentum only, (ii) energy only, and (iii) a combination
of both angular momentum and energy. We test these methods by
applying them to an independent set of simulations, taken from the
AURIGA project (Grand et al. 2017); this is a very stringent test
because of the much higher resolution and rather different galaxy
formation model implemented in AURIGA compared to EAGLE.
Finally, we apply our methods to the latest observations of the
classical satellites to determine the MW halo mass; we are able to
estimate this mass with an uncertainty of only 20 per cent.

The structure of the paper is as follows. Section 2 describes
the construction of the phase-space DFs using the EAGLE data.
Section 3 describes our mass inference methods, their calibration,
and validation with tests on mock systems. In Section 4, we apply
this method to the observed MW system and discuss our results.
Finally, Section 5 summarizes and concludes the paper.

2 CONSTRUCTION OF THE SATELLITE
DISTRIBUTION

We now describe how to obtain a phase space distribution of
satellites that, when scaled appropriately, is independent of host halo
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mass. We then introduce the MW observations, and the simulation
data that we use for calculating the phase-space DF of satellite
galaxies.

2.1 Theoretical background

We are interested in the energy and angular momentum distribution
of Galactic satellites. This can be calculated starting from the
observed distance, r*, tangential velocity, vy, and speed, v*, of
satellite s, which we use to define the vector:

x’ = (vs, vy, rs) . (1)

The specific energy, E, and specific angular momentum, L, of a
satellite are given by

E—ll P+ @)
=5v r )

L =|r xv|l=ruv,

where ®(r) is the gravitational potential at the position of the
satellite. This cannot be measured directly in observations, and to
calculate it, we need to assume a mass profile for the host halo. Here,
we assume that the host density profile is well approximated by a
spherically symmetric Navarro, Frenk and White profile (hereafter
NFW; Navarro, Frenk & White 1996, 1997), whose gravitational
potential is given by

~ GMyy In (1 +CR;00>

roIn(1+0) - &5

Onrw (r) = , (3)
where C is the concentration of the halo and M, and R,y denotes
the halo mass and radius, respectively. The mass, M5, corresponds
to the mass enclosed within a sphere of average density 200 times
the critical density.

The NFW profile provides a good description of the radial density
profile of relaxed haloes in DM-only simulations. The addition of
baryons leads to a contraction of the inner region of haloes, and
thus to a systematic departure from an NFW profile (e.g. Gnedin
et al. 2004). However, at large enough distances (e.g. r 2 20 kpc
for a halo mass of 10'> M) the NFW profile still provides a very
good description of the mass distribution even in galaxy formation
simulations (e.g. Schaller et al. 2015; Zhu et al. 2016). In this
work, we consider only satellites relatively far from the halo centre,
where the NFW function represents a good approximation of the
mass profile.

DM haloes have several self-similar properties, such as their
density profiles (e.g. Navarro et al. 1996, 1997), the substructure
mass function (e.g. Wang et al. 2012; Cautun et al. 2014a), and the
radial number density of subhaloes (Springel et al. 2008; Hellwing
et al. 2016). Li et al. (2017) showed that the same self-similar
behaviour also holds for the energy and angular momentum DFs
of subhaloes. This implies that, when scaled accordingly, satellites
around hosts of different mass follow the same energy and angular
momentum distribution. The same self-similar behaviour also holds
to a good approximation in the EAGLE hydrodynamic simulation
(see Appendix B).

For a self-similar halo density profile, the satellites’ positions and
velocities scale with M%S (Li et al. 2017). A given host halo and
its associated satellite system can therefore be scaled to a different
host halo mass, M55, as

1
MScale 3
(r.v ) = ( - ) (r,v,v) . 4)

Mass of the MW from satellites 5455

Table 1. Properties of the classical Galactic satellites used in this work.
The last two columns give the calculated energy and angular momentum
values for each satellite. The energy has been calculated using an NFW
profile with a concentration of 8, for a mass, M%OW =1.17 x 102 Mo,
which corresponds to our best MW-halo mass estimate. The distance is
with respect to the Galactic Centre. The specific orbital angular momentum,
L, and specific energy, E, of the satellites are expressed in terms of the
angular momentum, Lo. mw, and energy, Eo. mw, of a circular orbit at the
virial radius, Rygg. For the mass and concentration assumed here, we have
Lo, mw = 3.34 x 10* kpc km s~ and Eq, qw = 2.28 x 10*km? s~2. The
errors give the 68% confidence interval based on the Monte Carlo sampling
of the observational errors (see the text for details).

Satellite Distance [kpc] L/Lo, mw E/Eo. mw
LMC 5142 0.46003 —1.33503%
SMe 64 &4 046750 —184pE
Draco T
Ursa Minor 76+ 6 0.327002 ~2.39700
Sculptor 86 + 6 0487003 —1.891007
Sextans 86 + 4 0_674:8:82 1 .21tgjig
Carina 105 4 6 0.557008 —1.867519
Fornax 147 £ 12 0.70+0% —1.52*833
Leo Il 233 + 14 0.967939 —1.20+0%

0.28 0.21
Leol 254+ 15 0.824)3¢ —0.671)34

This implies that the energy and angular momentum of satellites
also scale with halo mass through the relation E, L M%g . Thus,
we can choose characteristic Ey and L, values for each halo mass
and use them to rescale the E and L values of each satellite to obtain
mass independent quantities. For each halo, we define the scaled

specific energy, E, and scaled specific angular momentum, L, as

~ ~ E L
(EL)=(% 1) s)
Eo Lo
where the characteristic Ey and L, values correspond to the energy
and angular momentum of a circular orbit at Ry and are given by
G Maoo
Rooo (0)

Lo = /G M>p0Ra00-

This scaling relation preserves the relaxation state, concentration,
and formation history of the halo, giving scaled properties that are
independent of host mass (see Appendix B).

Eq

2.2 Observational data for the MW satellites

We aim to estimate the MW halo mass using the classical satellites
since those have the best proper motion measurements. The method
we employ is flexible enough to incorporate the ultrafaint dwarfs;
however, the EAGLE simulation, which we use for calibration does
not resolve the ultrafaint satellites. Furthermore, we discard any
satellites closer than 40 kpc (see Section 2.3), so we exclude the
Sagittarius dwarf from our observational sample. Sagittarius is
currently at a distance of 26 kpc, undergoing strong tidal disruption
by the MW disc, and is therefore unsuitable as a tracer of the DM
halo. This leaves 10 classical satellites with adequate kinematical
data (see Table 1).

We take satellite positions, distances, and radial velocities from
the McConnachie (2012) compilation. We use the observed proper
motions of the classical satellites derived from the Gaia data

MNRAS 484, 5453-5467 (2019)
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release DR2 (Gaia Collaboration 2018b), apart from the most
distant satellites, Leo I and Leo II, for which we use the Hubble
Space Telescope proper motions (Sohn et al. 2013; Piatek, Pryor &
Olszewski 2016) since these have smaller uncertainties.

To calculate the energy and angular momentum, we transform the
satellite positions and velocities from Heliocentric to Galactocentric
coordinates using the procedure described in Cautun et al. (2015).
The transformation depends on the Sun’s position and velocity for
which we adopt: d = 8.29 £ 0.16 kpc for the distance of the Sun
from the Galactic Centre; Ve = 239 £+ 5km s~! for the circular
velocity at the Sun’s position (McMillan 2011); and (U, V, W) =
(11.1 +£ 0.8, 12.2 £ 0.5, 7.3 & 0.4)km s~! for the Sun’s motion
with respect to the local standard of rest (Schonrich, Binney &
Dehnen 2010). When transforming to Galactocentric coordinates,
we account for errors in the distance, radial velocity, and proper
motion of each satellite, as well as in the Sun’s position and velocity,
which we model as normally distributed errors. To propagate the
errors, we generate a set of 1000 Monte Carlo realizations of the MW
system in heliocentric coordinates and transform each realization
to Galactocentric coordinates.

2.3 EAGLE simulation sample

We select our sample of host haloes and satellite populations from
the reference run of the EAGLE project (Crain et al. 2015; Schaye
et al. 2015). The simulation follows galaxy formation in a 100 Mpc
cubic volume with the Planck cosmological parameters (Planck
Collaboration 1 2014, see table 9) using 1504° DM particles of
mass of 9.7 x 10° Mg and 1504° gas particles of initial mass
of 1.81 x 10°Mg. EAGLE models the relevant baryonic physics
processes such as gas cooling, stochastic star formation, stellar and
AGN feedback, and the injection of metals from supernovae and
stellar winds; it was calibrated to reproduce the present-day stellar
mass function, galaxy sizes, and the galaxy mass—black hole mass
relation. The population of haloes and subhaloes was identified
using the SUBFIND algorithm (Springel, Yoshida & White 2001).
The large volume of the EAGLE simulation provides a large sample
of haloes, of a wide range of masses and assembly histories. Our
final sample consists of the following host haloes and satellites
galaxies.

Selection criteria for hosts haloes:

(i) Halo mass, Mg, in the range 10'7-10'>° M;

(ii) relaxed systems, that is haloes for which the distance between
the centre of mass and the centre of potential is less than 0.07Rz00
and the total mass in substructures is less than 10 per cent (Neto
et al. 2007).

Selection criteria of satellite galaxies:

(i) Distance from halo centre in the range 40 kpc < r < 300 kpc,
where ¥ = r(10"2 M@/Mzoo)”3 is the rescaled distance of the
satellite corresponding to a halo of mass 10'> M) (see equation 4);
this results in a similar radial distribution as the MW satellites if the
MW halo had a mass of 10'? Mg;

(ii) the satellite is luminous, i.e it contains at least one star
particle, which excludes dark subhaloes.

This gives a sample of approximately ~1, 200 host haloes
and ~14000 satellites. Our mass scaling method allows us to
choose haloes in a broad mass range. The restriction on the radial

MNRAS 484, 5453-5467 (2019)

F.(D
orKF
o

T T T T T T T T T T T
8 P R T T

T

T T T T
w 1
S ]
2 ]
() - g
C
5 ] i
- 2 1 .
3 °f ] i
s F ] i
(9] - - .
w o[ ] i
_3— - -
PR S SRR N T T S SR SN SN S ST S N S S T T |
0.0 0.5 1.0 1.5 2.00.0 0.5
Scaled Angular Momentum, L Fe(E)

Figure 1. The distribution, F (E L) of bound EAGLE satelhtes in terms
of the scaled angular momentum, L, and scaled energy, E. The energy and
angular momentum are scaled according to equation (5) to obtain quantities
that are independent of host halo mass, M. The colour gives the number
density of satellites, with dark colours corresponding to higher number
densities (see colour bar). The two side panels show the one-dimensional
distributions of the scaled energy FE(E) (right-hand panel) and scaled
angular momentum F; L(Z) (top panel) of satellites.

distribution of satellite galaxies is chosen so that the model samples
match the observed one and to ensure that the potential is dominated
by DM.

In Fig. 1 we show the distribution of EAGLE satellites in scaled
energy and angular momentum space, (E, L). For each satellite, we
calculate the energy by assuming that the host halo is well described
by an NFW profile individually fitted to each halo as described in
Schaller et al. (2015). This procedure is similar to how energy is
calculated for observational satellites, and thus allows for a proper
comparison between theory and observations. To obtain a contin-
uous DF, we applied a 2D Gaussian smoothing with dispersions
ao7 and oo for the L and E directions, respectively. The symbols
o7 = 0.36 and o; = 0.52 denote the standard deviation of the L
and E distributions, respectively. The parameter ¢ = 0.125 was
chosen as a compromise so as to obtain a locally smooth function
without significantly changing the overall shape of the DF.

The distribution in (E, L) space is not uniform and satellites
are most likely to have values around the peak of the DF, (E, L)~
(—=1.5, 0.5), which corresponds to the dark coloured region in Fig. 1.
The (E, L) distribution is bounded on the lower right-hand side by
circular orbits. Moving perpendicularly away from this boundary,
the orbits become increasingly radial. The E distribution is bounded
by the potential energy of the inner radial cut, and the L distribution
is bounded by a circular orbit at the outer radial cut. In our sample,
approximately 1 per cent of the satellites are unbound, i.e. £ > 0,
which is consistent with previous studies (Boylan-Kolchin et al.
2013). However, we note that we do not calculate the exact binding
energy of each satellite, but only an approximate value under the
assumption that the host halo is spherically symmetric and well
described by an NFW profile (see equation 3). While not shown
in Fig. 1, we do keep unbound satellites in our analysis and thus
we make no explicit assumption that MW satellites, such as Leo 1,
are bound. Instead, it is simply improbable that Leo [ is unbound,
and this is reflected in the individual satellites mass estimates we
present in Section 4.

There are several advantages to obtaining a composite DF that
is averaged over many host haloes instead of calculating individual
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distributions for each halo, as done by Li et al. (2017). In EAGLE,
the mass resolution limits the number of subhaloes that can be
identified in each system. As a result, the satellite population of each
system represents a poor sampling of their haloes unique DF. The
total composite DF contains many possible halo histories, and their
multiplicity effectively serves as a prior probability. With further
knowledge of the MW’s assembly history, it would be possible to
restrict the model sample to have similar assembly histories to the
MW. This could reduce the effective halo scatter and potentially
result in a more accurate mass estimate. However, in this work we
choose not to be too restrictive.

3 METHOD

We present three different methods for inferring the mass of the MW,
each based on the following satellite properties: (i) orbital angular
momentum, (ii) orbital energy, and (iii) both angular momentum and
energy. All three methods employ the same principles and steps. We
focus the discussion on the third method, which combines both L
and E, and which should give the best mass constraints since it uses
the largest amount of information. The methods we use are based
on the approach of Li et al. (2017), which we have modified to
work with a large sample of haloes and our mass independent DF,
F(E,L).

We are interested in determining the mass of a host halo starting
from the observed position and velocities of a set of Ng,, satellites.
Each satellite, s, has a set of observed phase-space coordinates:

x*¥ = (UX, U{Ys VS) {xs}SE[O,NSa(J > @

consisting of the speed, v, the tangential velocity component, v,
and the distance, r, from the host centre. These properties, combined
with assumptions about the mass, M, and the density profile of the
host, are sufficient to calculate the energy and angular momentum,
{E ’, Z‘T} e of each satellite. Varying My gives a path in the
200

(E , Z) plane for each satellite. As a function of My, L scales as
M{O%/ ? and so decreases asymptotically to zero for increasing value
of Mygo. The scaled energy, E, has two terms that scale differently;
the kinetic term scales as M{O%)/ ?, while the potential term scales as
leég . With increasing Mg, the potential term dominates and E
tends to —o0. o

Fig. 2 illustrates the path of the Galactic satellites in the (E, L)
plane as we vary the assumed mass of the MW halo. For example,
as we increase the value of My, the LMC dwarf moves from the
top part of the plot to the bottom-left corner. This is because both
L and E decrease with increasing M, values.

The trajectory of the satellites through the 2D plane depends
on the satellites’ orbital phase. The scaled angular momentum, L,
varies as a function of Mg uniformly throughout the orbit, but the
rate of change of the scaled energy, E, is dependent on the satellites’
current radius. Nearer pericentre, the satellites have higher absolute
values of kinetic and potential energy components compared to
those at larger distances. When increasing My, the scaled kinetic
energy decreases while the absolute value of the scaled potential
energy increases, causing the total scaled energy, E, to decrease
rapidly and thus results in a more vertical trajectory. The figure also
illustrates that when the assumed M5y is very high, L varies slowly
and so the paths become nearly vertical.

Fig. 2 illustrates how the energy and angular momentum of
satellites can be used to determine the host halo mass. The DF
in (E s Z) space is not uniform, and as the assumed M, of the
host is varied, satellites move between regions of high and low
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Figure 2. The path of the Galactic satellites in scaled energy — angular
momentum space, (E R Z), when varying the MW halo mass, M>py. Each
curve corresponds to a different satellite (see the legend). The filled symbols
show the location corresponding to the four values of Mgy given in the
legend. The energy has been calculated using an NFW profile with a
concentration of 8. The colour scheme is the same as in Fig. 1, with darker
colours corresponding to higher number densities.

number density in this space. For example, the LMC falls in a high-
density region for Map ~ 1.4 x 10> M, and in lower density
regions for higher or lower masses. Thus, the LMC phase space
coordinates would prefer an MW halo mass of ~1.4 x 102 Mg.In
contrast, the Leo I path is nearest to the maximum density for Mgy
~ 2.9 x 10" M, and suggests a higher MW mass.

We now describe how each satellite can be used to obtain a
likelihood for the MW halo mass, and how to combine the mass
estimates from various satellites. Our aim is to determine the
likelihood, p(Myp|x*), for the host mass, given the observed x*
properties of satellite s.

The likelihood can be calculated from the E distribution via

IE
Moo |

P(Mao|x*) = Fg(E) (8)
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where the F E(f ) term denotes the DF, while the partial derivative
arises from the Jacobian of the transformation from E to host halo
mass, M. The same procedure can be used to estimate the host
mass using only the angular momentum by replacing F, E(E ) by the
LDF, F; (L), and by changing the E derivative term to L, to obtain

p(Mago|x*) = Fi(L) ©9)

9 Mo

ieiv
This expression can be extended to the two-dimensional case, where
we use both (E, L) to constrain the halo mass, via

IL
0 M>o0 0 Moo

P(Mao|x*) = F(E, L) Magy ——— , (10)

E=ES; L=L°

where the additional Mag factor is needed to have the correct units.
Note that all the E ~and L terms in equations (8)—(10) are evaluated
at the point ES=E (x*, M) and L* = L(x*, My). For a detailed
derivation of equations (8)—(10), please see Appendix A.

In practice, we actually determine the logarithm of the mass,
logio(M>n), since the resulting probability distribution function
(PDF) in log space is closer to a Gaussian. We determine the most
likely host mass as the mass that maximizes the likelihood — the
Maximum Likelihood Estimator (MLE) mass, MME. As the un-
certainties, we take the 68 per cent confidence limits corresponding
to the interval between the 16 and 84 percentiles of the mass PDFE.
Assuming that the satellites are independent tracers, we can combine
the estimates for individual satellites to obtain an overall estimate,
given a set of observations, {x*}. The combined likelihood is given
by

Nsat
p (Mg l{x°}) = HP (Moo |x*) (11)

The potential energy of satellites has a weak dependence on the
host halo concentration, which is an unknown quantity. We have
tested that the 10 satellites used here cannot, by themselves, place
any meaningful constraints on the concentration of the MW halo.
Thus, we proceed to marginalize over the unknown concentration:

p (Mo |x*) = /p (Moo [x*, C) p(C M) dC (12)

where p(C|Mjy) denotes the distribution of concentrations for
haloes of mass, My, found in the EAGLE simulation, which
we took from Schaller et al. (2015). In practice, we evaluate
p(Myylx, C), using 15 evenly spaced values in the range C €
[5, 20]. We note that the dependence on concentration is weak,
so our results are not affected by the choice of the distribution of
concentrations (see Appendix C)

3.1 Observational errors

While we have perfect knowledge of the phase space coordinates,
{x*}, of EAGLE satellites, in order to apply the method to the MW
satellites, we must consider the effects of observational errors. To
account for errors, we perform a set of 1000 Monte Carlo realiza-
tions that sample the observational uncertainties (see Section 2.2
for a detailed description of the procedure). This produces a Monte
Carlo sample of allowed phase-space coordinates for each satellite.
We first determine the MW mass likelihood for each Monte Carlo
realization, and then we average the likelihood of all the Monte
Carlo samples. In the limit of a large number of Monte Carlo
samples, this is equivalent to marginalizing over the observational
errors.
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Figure 3. The distributions of the ratio of MLE estimate, M%'(;E, to the true
halo mass Mz&‘;e, from each of our three inference methods. The results were
obtained by applying each mass determination method to a sample of ~600
systems from the EAGLE simulation. The vertical dotted lines indicate the
median of each distribution, which represents the bias, b, of each method.
For subsequent results, we correct the mass estimates by the bias of each

method and we denote the corresponding mass by Mfgg.

3.2 Method calibration using EAGLE

To provide a robust mass estimate of the MW halo, we now
explore the accuracy of our methods using tests on mock satellite
systems. Since MLE estimates can be biased, we first calibrate the
inference methods using a large sample of EAGLE systems. Then,
in Section 3.3, we validate the methods on an independent, higher
resolution set of simulations taken from the AURIGA project.

To calibrate the three mass determination methods, we start by
applying them to the EAGLE simulations. We select the same
EAGLE haloes as in Section 2.3, that is haloes of total mass
~10" M), and keep only those that contain at least 10 luminous
satellites within the distance range quoted in Section 2.3. There
are ~600 haloes satisfying the selection criteria. We then apply
each mass determination method to each EAGLE system to obtain
the MLE mass, M)GE of that system. The results are shown in
Fig. 3, where we compare the MLE masses to the true total halo
mass, M. The performance of each method may be quantified by
the ratio, y = log,o (MMGE/M35), for each EAGLE system. The
median and scatter of the y distribution give the bias and typical
uncertainty of the method, respectively.

Fig. 3 shows that our three methods have only small biases
compared to their dispersion. The (E, L) and the E only methods
have a slight bias with the median of the y distribution being —0.01,
while the method based on L only has a bias of +0.02. A consistently
biased estimate is not a problem since it can easily be corrected to
obtain an accurate result. The bias-corrected mass estimate, M,
is given by

log) (Monsg)

The dispersion of the y distributions in Fig. 3 reflects the true
precision of the method, or,.. Mass estimates based only on the
angular momentum have the largest dispersion, oy = 0.15, while
both E and (E, L) methods have the same precision, oye = 0.09.
Thus, most of the mass information is contained in the satellites’
orbital energy. Adding angular momentum data hardly improves
the mass estimates, indicating that L does not contain significant

= log,, (M35") — b. (13)
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Figure 4. Test of the energy—angular momentum halo mass inference
method on 30 MW-mass galaxies from the AURIGA galaxy formation
simulation project. We show the ratio between the estimated, Mf&‘)i, and
the true, MQT&J)S, halo masses for each AURIGA system. Note that Mons(‘)i
includes the bias correction determined from the EAGLE mock catalogues
(see equation 13). The error bars correspond to the estimated 68 per cent
confidence limit. The AURIGA simulations have much higher resolution and
assume different galaxy formation models than EAGLE, and thus provide
a rigorous test of the mass inference method. Most mass estimates agree
with the true values within the 68 per cent confidence limit, in very good
agreement with statistical expectations.

information about the host mass beyond the information already
contained in the satellites’ energy.

Another important point to consider is the confidence interval
to be associated with each mass measurement. One possibility is
to take the dispersion of y (see Fig. 3), but this suffers from the
limitation of assigning the same error to all mass measurements.
In practice, the mass of some host haloes can be more precisely
determined than the mass of others, and the confidence limits do
not need to be symmetrical around the MLE value (e.g. see Fig. 4).
Thus, the approach of assigning a single error to all measurements
is not optimal.

An alternative is to consider the error estimates of the Bayesian
method. These should be accurate, except for the effects of an
assumption implicit in our method, that all satellites are independent
tracers. For example, satellites can fall in groups or filaments, which
might result in correlated energy and angular momentum amongst
two or more satellite galaxies. For the brightest 10 satellites, the ones
considered here, only a small fraction is expected to have fallen in
groups (e.g. Wetzel, Deason & Garrison-Kimmel 2015; Shao et al.
2018b) and, in any case, interactions with other satellites and with
the host halo and galaxy are expected to decrease any phase-space
correlations present at the time of accretion (e.g. Deason et al.
2015; Shao, Cautun & Frenk ). Thus, we would generally expect
the assumption of independent tracers to be reasonable. We have
checked how realistic the Bayesian error estimates are and found
them to be roughly the same as the uncertainties shown in Fig. 3.
The same will not hold true in future studies when the method will
be applied to much larger numbers of satellites (see discussion in
Section 4.3).

3.3 Tests with the AURIGA simulations

In this section we test our mass inference methods by applying them
to model galaxies from the AURIGA project. AURIGA is a suite
of high-resolution, hydrodynamical zoom-in simulations of MW-
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Figure 5. The MW halo mass, M%(\)"' , inferred from the energy and orbital
angular momentum of each classical satellite (except Sagittarius). The
thick line shows the inferred MW halo mass, M%OW = 1.04f8:ﬁ x 1012 Mg
(68 percent confidence limit), obtained by combining the 10 individual
estimates. The inferred M%OW values and their corresponding errors are
given in Table 2.

like systems. We consider the 30 level 4 systems, which have DM
and gas mass resolution ~30 times higher than EAGLE (see Grand
etal. 2017 for details). AURIGA makes for a perfect test suite since
it has higher resolution, uses a different hydrodynamics code, and
includes a different galaxy formation model than EAGLE. Thus, by
applying our inference methods to these completely independent
simulations, we can assess our methods’ accuracy and quantify any
systematic biases that may have been introduced by calibrating our
methods on the EAGLE simulations.

For each AURIGA galaxy, we identify the brightest 10 satellites
galaxies at a distance between 40 and 300 kpc from the halo centre.
These objects represent our mock observational sample of the MW-
like satellite systems. We then apply the (E, L) mass determination
method to each of the 30 AURIGA systems.

Fig. 4 shows the ratio of estimated to true masses, as well as
the associated uncertainties for each AURIGA galaxy. We find that
for 19 out of the 30 systems, or 63 per cent, the estimated mass
agrees with the true value to the 68 percent confidence interval,
approximately as expected from the statistics. This performance is
very good especially when taking into account that around a third of
the AURIGA systems are unrelaxed (see Section 2.3 for relaxation
criteria). We have checked that the other two methods, using only
L and only E, are similarly successful. This test demonstrates the
accuracy of our method for determining halo masses and confirms
that our error estimates are realistic and robust.

4 MILKY WAY MASS ESTIMATES

We now apply our mass estimation methods to data for the 10 MW
satellites that satisfy our selection criteria. We begin by obtaining the
Galactic halo mass likelihood from each satellite and corresponding
uncertainties (calculated with the Monte Carlo sampling technique
described in Section 3.1). The PDFs of the MW halo mass, My,
obtained from each satellite’s data using the (£, L) method are shown
in Fig. 5; the best estimates and associated 68 per cent confidence
intervals are given in Table 2.

Individually, the satellites give a wide range of total masses for the
MW. For example, Ursa Minor and Draco favour a very low mass,
Moo =~ 10'% M), which is because both of them have very low
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Table 2. The MW halo mass, M%g’ (the mass enclosed within a sphere of
average density 200 times the critical density) estimated from each classical
satellite (except Sagittarius), and the combined overall result. The table
gives mass estimates using (i) only the angular momentum, L; (ii) only the
energy, E; and (iii) both E and L. We quote 68% confidence limits.

M¥Y 11012 Mo ]

Satellite only L only E Eand L
LMC 0.987 78 1.23%043 1.35%07¢
(e 0.987% 0.93705] 1.00%053
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Figure 6. Comparison of the MW halo mass inferred using the three
methods studied here. The methods use the following satellite data: (i) only
the angular momentum, L; (ii) only the energy, E; and (iii) both E and L.
The mass estimates and their errors are given in Table 2.

total specific energies (see Table 1). At the other extreme, Leo I has
the highest total energy and favours a halo an order of magnitude
more massive, Moy ~ 10'>3 Mg . However, the mass estimate
from any one satellite has a broad distribution and does not provide
a strong constraint on the MW mass. The true power of the method
comes from combining the mass likelihoods from each satellite; the
combined result is shown as a thick line in Fig 5. The combined
estimate for the MW halo mass is My’ = 1.177031 x 102 M.
Fig. 6 compares the Galactic halo mass determination using the
three methods introduced in this study. We find very good agreement
amongst the three, with all of them having a very large overlap (see
Table 2 for the actual values and their uncertainties). Of the three,
the method based on angular momentum only is the most uncertain
and, of the remaining two, the one based on energy only gives a
slightly lower uncertainty. As we saw in Fig. 3, adding L data to E
data does not produce an improvement in the mass determination,
which is what we find here too. In fact, the (£, L) method seems to
have slightly larger uncertainties than the E-only method; however,
the difference is very small and not statistically significant. We also
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find that the estimated uncertainties in the MW mass determination
are similar to the ones shown in Fig. 3, where we tested the methods
on the EAGLE simulations. As we will see in Figs 10 and 11, the
uncertainties in the mass are dominated by the small number of
satellites, not by their proper motion errors.

Itis important to consider possible systematics that may affect our
mass determination. For example, the LMC and SMC are believed
to have fallen in recently as a pair (e.g. Kallivayalil et al. 2013), and
might not encode independent information about the MW halo. We
have checked that discarding the SMC from our analysis does not
significantly change the median estimate and leads only to a small
increase in the uncertainty range. We also know that the classical
satellites are atypical in at least two respects: they currently reside in
a thin plane, with several orbiting preferentially within it, and they
have a very low-velocity anisotropy. These two properties place the
MW satellite system in the tail of the ACDM expectations (e.g. see
Pawlowski et al. 2014; Cautun et al. 2015; Cautun & Frenk 2017).
The analysis described in Appendix D shows that the distribution of
E and L values of the Galactic satellites is, in fact, consistent with
ACDM predictions, with no evidence for any tension.

4.1 Comparison to previous MW mass estimates

In Fig. 7 we compare our total MW halo mass estimate with a
selection of results from previous studies. This figure is an update of
fig. 1 in Wang et al. (2015) and includes recent estimates, especially
those that use Gaia DR2 data. Some mass determination methods,
such as ours and those based on Local Group dynamics (e.g. Li &
White 2008; Pefiarrubia et al. 2016) and satellite dynamics (e.g.
Watkins et al. 2010; Boylan-Kolchin et al. 2013; Barber et al. 2014;
Eadie, Harris & Widrow 2015), give the total mass directly, but many
others, such as those using globular clusters (e.g. Posti & Helmi
2018; Watkins et al. 2018) or halo stars (e.g. Xue et al. 2008; Gnedin
etal. 2010; Deason et al. 2012; Huang et al. 2016), give the enclosed
mass only within an inner region of the MW halo and require an
assumption about the MW halo mass profile for extrapolation to the
total mass. Despite the wide range of values quoted in the literature,
our result is consistent within 1o with the majority of previous mass
estimates. Our errors are significantly smaller than those of most
previous estimates and, most importantly, we have rigorously and
extensively tested our method on simulated galaxies to produce an
accurate, unbiased mass estimate with realistic uncertainties.

Our estimated value of ~10'> M for the MW halo mass
has important implications for the interpretation of the satellite
population of our galaxy, which is often used as a testbed for the
ACDM model. For example, the ‘too-big-to-fail’ problem (Boylan-
Kolchin et al. 2011), which refers to the number of massive, dense
satellites in the MW halo, is significantly alleviated. Indeed, Wang
et al. (2012) showed that approximately 40 per cent of haloes with
mass Mpao ~ 10> M in ACDM only simulations have three
or fewer subhaloes with Vi, > 30kms™' (the threshold used by
Boylan-Kolchin et al. 2011 to define massive failures). For the MW
halo mass that we infer, the ‘too-big-to-fail problem’ is not a failure
of ACDM.

An accurate estimate of the MW halo mass is also crucial to
address properly the missing satellites problem. The total number
of subhaloes depends strongly on the halo mass (doubling the
halo mass, roughly doubles the number of subhaloes). Thus, when
appealling to baryonic physics solutions to this problem, such as the
influence of reionization and stellar feedback, an accurate estimate
of the halo mass is a pre-requisite for a realistic model. Moreover,
when the halo mass is known, the number of subhaloes may even

€202 |Udy 61 uo Jasn AlsieAlun s8100|\ uyor joodsaAl Aq 001 L0ES/ESHS/v/y8T/aIode/seuw/woo dno olwapeae//:sdiy Woll papeojumMoc]



Mass of the MW from satellites 5461

0.3 0.5 0.7 1 2 3 5
LG dyn —a B Penarrubial6
Vv Gonzalez14
Mag Cl 4 . ——¥ @ Patell7
e A Boylan-Kolchin13
Barberl4
Leo | R
Cautunléd
| £ Gibbons14
(l)JrT, 52 i Kupperl5
o A Piffl14
X V¥ Fragionel6
Vimax dist. 1 W Rossil7
@ Monaril8
stream - A LiO8
Nesti&Saluccil3
HVS 1 = 1A McMilan17
v A Xue08
timing A ¥ Gnedinl0
@ Watkins10
halostar 4 ® Kafle12
Maser 1 @ Kafle14
TermiV 1 < Huang16
X Sohnl8
tracers 1 . * Watkins18
—_——— A Deasonl2
] e
eans
) - ¥V Eadiel5
B Eadiel6
* Patell8
tracers —_—h— ¥
—E— @ Postil8
DF —— A Callingham18

0.3 0.5 0.7

1
M300[102M]

2 3 5

Figure 7. Comparison of our inferred MW halo mass with a selection of previous estimates. The vertical line and the shaded region show our M»go estimate
and its 68 per cent confidence limit. The remaining symbols show previous estimates (see the legend), with the horizontal lines corresponding to the quoted
68 per cent confidence limits. The results are grouped according to the methodology employed (see the vertical axis). We give the mass, Moo, contained within
Ry00 (the radius enclosing a mean density equal to 200 times the critical density). Some of the previous estimates were converted to My by assuming an NFW

profile and the mean concentration predicted for that mass.

inform us about these critical processes, such as when the epoch of
reionization occured (see e.g. fig. 1 in Bose, Deason & Frenk 2018),
or indeed about the identity of the DM (Kennedy et al. 2014; Lovell
et al. 2014).

4.2 The concentration of the MW halo

Alongside mass, the other fundamental property of DM haloes is
their concentration. Besides being one of the key parameters of the
NFW profile, the concentration encodes crucial information about
the halo’s formation history (e.g. Wechsler et al. 2002; Lu et al.
2006; Ludlow et al. 2014) and, after halo mass, is the most important
property for determining how galaxies populate haloes (e.g. Matthee
et al. 2017). Our MW halo mass estimate does not depend on, or
constrain, the MW halo concentration. However, when combined
with mass estimates for the inner regions of the Galaxy, we can use
our mass estimate to infer the concentration of the MW halo. For
this, we use inner mass determinations based on the dynamics of the
globular cluster population. This population is much more radially
concentrated than the satellite galaxy population, and there are a
large number of globular clusters with precise Gaia DR2 proper
motion measurements (Gaia Collaboration 2018a). This enabled

Posti & Helmi (2018) and Watkins et al. (2018) to estimate the total
mass enclosed within ~20 kpc from the Galactic Centre with high
precision.

To determine the concentration, we assume that the DM distri-
bution follows the NFW profile, which provides a very good fit
to the DM density profiles in both DM-only and hydrodynamic
simulations. To determine the enclosed DM mass, we subtract the
MW baryonic mass, M;’,}‘{g""s, from the total mass measurements
within both 20 kpc and Ry. We use the McMillan (2017) estimates:
a stellar mass of 5.4 x 10'® M and a gas mass of 1.2 x 10" M,
which corresponds to Mf,f\;,yons =6.6 x 10" Mg,

Fig. 8 shows the fraction of DM mass enclosed within 20 kpc
of the centre as a function of the halo concentration; the solid
lines and shaded regions indicate the inferred concentrations and
their 68 percent confidence ranges. The Posti & Helmi (2018)
estimate gives a mass ratio, MPM(< 20 kpc)/ M2 ~ 0.12, which
corresponds to a concentration of C = 10.9735 (68 per cent con-
fidence limits), where the errors were calculated by Monte Carlo
sampling of the uncertainties associated with the inner and total
mass estimates. The same analysis for the Watkins et al. (2018)
inner mass estimate gives MPM(< 21.1 kpc)/ MM ~ 0.20, and a
concentration, C = 11.8734. To include the Watkins et al. result
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Figure 8. The concentration of the MW halo inferred by combining our
total mass estimate with previous inner mass estimates. The solid thick curve
shows the DM mass fraction, MPM(< 20 kpc)/MzD(%[, contained within
20 kpc of the halo centre as a function of concentration, C, for our best
estimate of a total halo mass of M2M = 1.11 x 10'2 M. The two horizontal
lines correspond to the Posti & Helmi (2018) and Watkins et al. (2018) inner
mass estimates. The inferred concentrations are shown by the two vertical
lines, with the shaded regions corresponding to the 68 per cent confidence
ranges. We find C = 10.93:8 and C = 11.82:% for the Posti & Helmi and
Watkins et al. inner mass estimates, respectively.

in Fig. 8, we rescaled their mass estimate to a fiducial distance of
20 kpc.

We find that the MW halo has a high concentration for its mass,
with a most likely value of C ~ 10.9, which could suggest that
the MW halo assembled early. The high MW halo concentration
is supported by other studies; for example, the best-fitting Galaxy
model of McMillan (2017) gives C = 16 £+ 3. In the EAGLE
simulations, the median concentration of an ~10'? Mg halo is
~8.2 and only ~23 per cent of haloes have a concentration higher
than 10.9, which suggests that the MW halo is an outlier.

However, the presence of central baryonic components causes
a contraction of the very inner region of ~10'> M mass haloes,
increasing the total mass in the inner region. As a result, the inner
region is not well described by an NFW profile, and the inferred
concentration is biased high (e.g. Schaller et al. 2015). To overcome
this limitation, in Fig. 9 we compare the inner DM mass fraction
of the MW to that of similar mass haloes in the EAGLE and
AURIGA simulations and find that the MW is typical of haloes
in both simulations. The systematic difference between the EAGLE
and AURIGA distribution reflects the stellar mass content of those
objects: compared to abundance matching results, galactic mass
haloes in EAGLE have stellar masses that are too low, while equal
mass haloes in AURIGA have stellar masses that are too high.

4.3 Improving the mass estimate

In this section we discuss the limitations of our method and ways
of improving the MW mass estimate. There are two main sources
of uncertainty: statistical, from the finite number of satellites, and
systematic, from halo-to-halo variation. The former can be reduced
by increasing the number of dynamical tracers and/or reducing
observational errors, but the latter cannot be reduced.

We begin by investigating the effect of observational errors on
the MW halo mass determination. The main source of observational
uncertainties is the proper motion measurements. As such, we
consider the effect of varying the errors, o, and o, , associated with
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Figure 10. The estimated MW halo mass, M%XV, as a function of the size of
proper motion errors, o .. Results are shown only for the inference method
based on both E and L values. The solid line gives the mass estimate, while
the shaded region shows the 68 per cent confidence interval. Larger values
of o, result in more uncertain mass estimates and also in a systematic bias
with respect to the true mass. The red arrow shows the median error for our
sample of classical satellites.

the two components of the proper motion. For the MW observations
these errors vary from satellite to satellite, from 0.005 mas yr~!
for Sculptor to 0.039 mas yr~! for Leo II, with a median of
~0.018 mas yr~!. For simplicity, here we assume the same error
for all satellites, that is o, = o, = o0y, and study the effect of
observational errors by varying o ,. For each o, value, we proceed
by taking the current proper motions of each MW satellite and
resetting their errors to the target value of o . Then, we generate a
sample of Monte Carlo realizations, using the procedure described
in Section 2.2 and apply the mass estimation method.

Fig. 10 shows the MW halo mass estimate inferred from the (E,
L) method as a function of the size of the proper motion errors, o ,.
As we increase o, we find, as expected, that the uncertainty in the
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Figure 11. The 1o uncertainty, oiog,, &1, With which we can determine the
logarithm of the halo mass as a function of the number of satellite galaxy
tracers, Nircers, included in the sample. We show the mean uncertainty for
a large number of EAGLE haloes whose mass was determined using the E
and L values of their most massive Nyqacers satellites. The right-hand axis
shows the percentage errors in Mpgp corresponding to the ojog,, p values.
The blue line gives the results using the satellites of EAGLE galaxies. The
red line gives the results from idealized cases of independent satellite tracers
(see the main text) and represents the statistical limit of our method. The
two grey lines show the best-fitting curves using equation (14).

mass determination increases. However, the current proper motion
errors for the classical satellites are so small that they fall in the
region where there is hardly any dependence of the mass estimate
on o ,. Improving the current observational errors will provide little
improvement on the mass estimate.

More importantly, we also find a systematic shift in the estimated
halo mass, which increases rapidly with the size of the proper motion
errors. For example, for o, &~ 0.35 mas yr~!, the estimated mass
is a factor of 2 too high. This comes about because large proper
motion errors bias the observed velocities high, thus leading to
higher energy and angular momentum values, which, in turn, lead
to higher mass estimates. This is not a problem for our current
estimate since all the classical satellites have proper motions errors
well below 0.1 mas yr—!, and thus lie in the region where the mass
estimate is flat. However, were we to include in the sample ultrafaint
dwarf satellites, many of which have large proper motion errors (e.g.
Fritz et al. 2018), then we would need to account for the additional
bias introduced by the observational errors.

The MW is predicted to have approximately 125 satellites
brighter than My = 0, of which just over 50 have already been
discovered (Newton et al. 2018). This means that, in principle,
many more satellites can be used to determine the MW halo mass,
potentially with a smaller uncertainty. Fig. 11 quantifies how the
uncertainty in halo mass is reduced as the number of satellite
galaxies in the sample increases. Here, we consider the simplified
case where there are no observational errors and focus only on the
variation arising from the number of tracers, Nrcers-

Using the same sample of EAGLE main haloes as in Section 2.3,
we determine the host halo mass using the most massive Nrpcers
subhaloes. To obtain large enough tracer counts in EAGLE, we
relax the criteria and consider not only luminous satellites, but also
dark subhaloes. Many of these would be the hosts of the ultrafaint
dwarfs, but EAGLE lacks the resolution to populate them with
stars. However, these dark substructures are well resolved and their
orbital properties are reliable. To estimate an average error for each
value of Nrpacers, We calculate the dispersion in the distribution of
log,o(MEs / M35e): the logarithm of the ratio of estimated to true
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mass. To ensure accurate measures of the average error, we require
at least 100 systems that have Nrycers Or more tracers; this limits
our analysis to Nygeers < 72.

The blue line in Fig. 11 shows that the expected error in our
mass estimate, 0jog,, v, decreases as the number of tracers increases.
We would expect that above a certain number of tracers, the mass
determination does not improve any more because the error becomes
dominated by halo-to-halo variation and systematic effects such as
correlations between the kinematics of different satellites (see e.g.
Wang et al. 2017, 2018).

To investigate these effects, we construct idealized systems
by selecting Nrreers Satellites from our samples’ DF, F (E s Z),
and then scale them to the mass of random host haloes selected
from our sample. This gives us a population of systems whose
satellites are perfectly described as being independently drawn from
our distribution. As an additional advantage, we are not limited
t0 Ntracers < 72, and can continue increasing Nracers @S Ologyy M
asymptotes to zero (Fig. 11, red line). The difference between the
errors in the two samples is the error due to halo-to-halo scatter,
Oscater- The dependence of the total error, ojog,, > ON NTracers €an be
modelled as (cf. Li et al. 2017):

2
2 — _Osu

2
Gloglo M — + OScatter - (14)

NTracers

The mass error for the true EAGLE satellite systems is best fitted
by o5t = 0.29 and ogeqer = 0.03, while the error for the idealized
systems of independent tracers is best described by o, = 0.24 and
Oscaer = 0.01. We note that a scatter error, oscaer = 0.03, equates
to an accuracy limit of around 5 per cent and would represent the
best mass measurement of the method in the limit of a very large
number of tracers. For 10 satellite tracers we obtain an ~20 per cent
uncertainty, similar to our MW mass estimate, while the idealized
mass estimates give a slightly smaller uncertainty of ~16 per cent.
The fits suggest that an ~10 per cent determination of the MW
mass is achievable by applying our method to around Nyeers & 60
tracers. The accuracy of our halo mass measurement could be
further improved by considering the dependence of the satellite
dynamics on the properties and assembly history of the host halo. It
is conceivable that by restricting the analysis to a subset of haloes
that more closely resembles the MW, such as haloes with a similar
assembly history, the halo-to-halo variation could be reduced,
leading to an even more precise halo mass determination. However,
at present, the largest benefit would accrue from increasing the
number of tracers.

5 CONCLUSIONS

We have developed a method to determine the total mass of the
MW DM halo by comparing the energy and angular momentum
of MW satellites with the respective distributions predicted in the
EAGLE galaxy formation cosmological simulations. When scaled
appropriately by host halo mass, the energy and angular momentum
of the satellites become independent of the host halo mass (see
Fig. B1). Thus, we can use a large sample of EAGLE haloes, and
associated satellites, in our estimate of the MW halo mass. For this,
we constructed the satellite DF in (£, L) space from the simulations
and carried out a maximum likelihood analysis to infer the halo
mass from the phase-space properties of the 10 brightest satellite
galaxies (excluding the disrupting Sagittarius galaxy). Using mock
samples from EAGLE, we analysed the performance of the method
and quantified its statistical and systematic uncertainties.
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A key test of our method was to apply it to estimate the masses
of the DM haloes of 30 MW analogues simulated in the AURIGA
project. These simulations have much higher resolution and employ
different baryonic physics models than EAGLE. They produce
realistic MW-like galaxies (Grand et al. 2017, 2018) and thus
provide a rigorous and completely independent external test of our
method. We find that our method provides an unbiased estimate of
the total halo masses of the AURIGA galaxies, with a precision of
~16 per cent, in very good agreement with the expectations from
the EAGLE simulations.

Our main conclusions are as follows:

(i) Applying our method to 10 classical MW satellites gives an
estimate for the total mass of the MW halo of My = 1.177031 x
10'2 My, This result agrees well with most previous estimates in
the literature but with a rigorously tested accuracy (~15 per cent),
which is better than most other estimates.

(i) Combining our total DM halo mass estimate with recent
estimates of the halo mass within 20 kpc gives an inner DM
mass fraction, MPM(< 20 kpc)/MEM ~ 0.12. Assuming that the
MW halo follows an NFW profile, we have inferred a Galactic
concentration, C = 10.9328. This is higher than typical EAGLE
haloes with masses of 10'2 My, which have a median concentration
of 8.2, with only ~23 per cent of them having concentrations of
10.9 or higher. The discrepancy likely reflects that an NFW profile
is not a good description of the inner region since the Galactic
halo has contracted due to the baryonic components. In fact, when
comparing the inner DM mass fraction of the MW against the
EAGLE and AURIGA simulations, our galaxy is typical of similar
mass haloes.

(iii) Our halo mass estimate can be improved by increasing
the number of halo tracers and/or reducing the observational
uncertainties. We found that the observed proper motions of the 10
classical satellites are already so precise that further improvement
will make little difference to the halo mass estimate. Increasing the
number of satellites, on the other hand, for example by including the
~50 currently known satellites in the MW, would reduce the mass
errors to ~11 per cent. Further improvements would be possible by
analysing all ~125 satellites that are predicted to reside in the MW
(Newton et al. 2018), which would result in an ~8 per cent mass
uncertainty, a factor of 2 improvement over our current estimate.

In summary, our MW halo mass estimate is precise and accurate
and has been thoroughly tested on realistic model galaxies and
their satellite populations. Mass estimates that rely on cosmological
simulations are relatively new, but the use of simulations enables
a robust and testable methodology. Indeed, the accuracy we are
now able to achieve (~15 — 20 per cent; see also Patel et al. 2018)
is a significant step forward from the factor of 2 uncertainty that
has plagued MW mass estimates for years. This theoretical boost,
coupled with the exquisite six-dimensional data that Gaia and
complementary facilities are now providing, brings us closer to
what may be called the era of ‘precision’ near-field cosmology —
when we can go beyond rough estimates of the MW halo mass and,
instead, remove this important degree of freedom when making use
of the properties of the MW to inform cosmological models and
DM theories.
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APPENDIX A: PROBABILITY DISTRIBUTIONS

Here we give a short summary on how to calculate the PDF of one
variable that is a function of one or more variables with known
PDFs. In our case, we want to know the PDF of M, given the
distributions of either scaled angular momentum, scaled energy, or
both scaled angular momentum and energy.

The PDF, p(u), of a variable u, which is a function of x, is given
by

p(u) = p(x)

dx (AD)
dul’

where p(x) is the probability of variable x and where the derivative
corresponds to the Jacobian of the transformation. In our case,
the variable u corresponds to the host halo mass, My, while x
corresponds to either the scaled angular momentum, L, or the scaled
energy, E. Replacing these variables into equation (A1), we obtain
equations (8) and (9), that is

-~ JE
(Mao|x*) = Fe(E) ; (A2)
P (Moo E Mo |5z
Moo|x*) = Fi(L . A3
P(Mag|x*) (L) Mg |11 (A3)

To constrain Mpyy using both E and Z, we can extend equa-
tion (Al) to the two-dimensional case. However, doing so entails
some very involved calculations. We bypassed this step by com-
bining the two one-dimensional cases to infer the two-dimensional
expression. If the E and L variables would be independent, then
we could just multiply the right-hand side terms of equations (A2)
and (A3). However, that is not the case, so we need to take the
joint probability, F (E , Z). Furthermore, we also need to obtain the
correct units, which we achieve by adding an extra Myy, factor.
Putting everything together, we obtain equation (10), that is
p(Maolx’) = F(E. L) Moy 22 LA

Moo OMa00 | Gfs . T—i
We performed extensive tests of the three likelihoods, equa-
tions (A2)—(A4), to find that they give very robust estimates of
the total mass of haloes.
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APPENDIX B: MASS DEPENDENCE OF
SCALED ENERGY AND ANGULAR
MOMENTUM

Here we test the host halo mass independence of the scaled energy
and angular momentum of satellites. We take all the luminous
satellites in the EAGLE simulation and scale their orbital energy
and orbital angular momentum according to equation (5), that is
x M%g , where My is the host mass. The resulting distributions
are shown in Fig. B1.

We find that, to a very good approximation, the distributions of
E and L are indeed the same over at least two orders of magnitude
in host mass. There are a few small departures from universality,
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Figure B1. The dependence on host halo mass, Mo, of the scaled
energy, E (top panel), and scaled angular momentum, L (bottom panel),
of EAGLE satellites. The colour scale shows the density of points, with
darker colours corresponding to higher density regions. The distribution is
column normalized to each mass bin to allow easy comparison. The solid
lines show the median values as a function of M5y, while the dotted lines
show the 16 and 84 percentiles of the distribution. The two vertical lines
delineate the mass range used in our analysis. The plots show that scaling
the energy and angular momentum by M;O%)/ 3 leads to quantities that are
independent of M»g to a very good approximation.
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especially for low halo masses. This could be a manifestation of the
limited resolution of EAGLE, which resolves only a small fraction
of the brightest satellites of 10'!> M haloes. However, this small
departure from universality does not affect our results since this
work is based on hosts with masses in the range 10''7-10'3 M),
which corresponds to the region between the two vertical lines
in Fig. B1.

APPENDIX C: DEPENDENCE ON
CONCENTRATION

In Fig. C1 we show how the MW halo concentration affects our
mass estimate. Note that in our method (described in Section 3)
we marginalize over the concentration parameter. The coloured
lines show the mass estimates from individual satellites and the
thick black line the combined mass estimate as a function of the
assumed halo concentration. In general, the concentration makes
little difference to our estimated masses — this is especially true
for the combined mass estimate, which remains flat over a wide
range in halo concentration. While not shown, we also find that the
maximum likelihood values are largely independent of the assumed
concentration. Thus, the 10 classical satellites studied here cannot,
on their own, constrain the MW halo concentration. However,
as we show in Section 4.2, we can estimate the concentration
of the MW halo by combining our total halo mass estimate
with determinations of the halo mass in the inner regions of the
Galaxy.
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Figure C1. The MW total mass estimate, M%OW, as a function of the
assumed concentration of the MW halo. The coloured lines show the
mass estimates from individual satellites and the black solid line shows the
combined mass estimate. There is a very weak dependence on concentration
— this is especially true for the combined mass estimate, which remains flat
over a wide range of halo concentration.
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APPENDIX D: DISTRIBUTION OF MAXIMUM
LIKELIHOODS

The MW classical satellites have at least two atypical proper-
ties: (i) they are distributed on a thin plane with many of the
satellites rotating within this plane and (ii) the satellites have
a very low velocity anisotropy indicative of circularly biased
orbits. These two characteristics place the MW satellite system
in the 5 per cent and 2 per cent tails of the ACDM predictions
(Cautun et al. 2015; Cautun & Frenk 2017). This raises the
concern that the satellites may also be atypical in terms of
their energy or angular momentum distributions. If so, this could
lead to biases or untrustworthy MW mass estimates using our
method.

A straightforward way to test for this is to compare the maximum
likelihood value for the MW with the corresponding values for a
large sample of ACDM haloes. This is shown in Fig. D1, where we
plot the distribution of maximum likelihood values for the EAGLE
and AURIGA mock satellite systems. We find very good agreement
between the EAGLE and AURIGA mocks and, more importantly,
the value for the MW lies in the central region of the ACDM
expectation. This indicates that we can find a range of Mg, values
for the Galactic halo for which the classical satellites have energy
and angular momentum values that are fully consistent with the
ACDM predictions.
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Figure D1. The distribution of maximum likelihood values for the mass
determination method based on the energy and angular momentum of
satellites. We show results for a sample of ~2500 EAGLE systems and for
the 30 AURIGA haloes that have a higher resolution and different galaxy
formation models than EAGLE. The downward pointing arrow shows the
maximum likelihood corresponding to the MW mass determination, which is
fully consistent with the EAGLE and AURIGA distributions. This indicates
that the MW is not an atypical system in terms of its satellites’ energy and
angular momentum, and thus we can trust our MW mass determination.

This paper has been typeset from a TX/IATgX file prepared by the author.

MNRAS 484, 5453-5467 (2019)

€202 |Udy 61 uo Jasn AlsieAlun s8100|\ uyor joodsaAl Aq 001 L0ES/ESHS/v/y8T/aIode/seuw/woo dno olwapeae//:sdiy Woll papeojumMoc]



