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Abstract— In Binaural Sound Source Localisation there are two 

representations of the signals which contain useful cues for 

localisation: the time/phase frequency spectrum and the 

magnitude frequency spectrum. This typically leads to two branch 

CNN architectures being employed achieve localisation.  

 

This paper compares the difference in performance between 

models which employ early and later fusion of these two branches, 

finding only negligible differences and thus concluding that this is 

an unimportant consideration in the design of such systems. 
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I. INTRODUCTION 

Binaural Sound Source Localisation (BSSL) is the task of 

estimating of the Direction of Arrival of Sound Source using 

recordings of a sound field made with a binaural array. 

This approach differs from traditional methods of Sound 

Source Localisation (SSL) in that a binaural array contains only 

two sensors, as opposed to the large arrays of sensors used in 

other methods. 

This can be achieved through means of Binaural Cues: the 

Interaural Level Difference (ILD) and the Interaural Time 

Difference (ITD). Only using Binaural cues, however, is not 

adequate for localisation in the full azimuthal range, as there 

are two solutions for a given ILD & ITD: a position in front of 

the head, and the mirror position behind the head. This 

ambiguity can be resolved through analysis of the frequency 

response, as at different source positions the filtering of the 

signal of the head is unique. This is the head related transfer 

function (HRTF). 

While only some works have dealt with localising in the full 

azimuthal range [1], a common approach for this task is 

utilising Convolutional Neural Networks (CNNs) [1-4]. CNNs 

are ideal for this task as they are capable of taking frequency 

domain representations of the audio signal and extracting 

relevant features. 

Typically this will involve some combination of 

representations of the magnitude differences and phase or time 

differences of the sound arriving at the ears, leading to two 

branch architectures. 

This work will look at the effect changing the point of fusion 

of such a model has on the localisation performance, the point 

of fusion being at which point the two branches are 

concatenated into a single branch. 

To do such, four CNN models of differing points of fusion 

are trained and tested on identical datasets of magnitude and 

time-delay representations of sound. 

 

 

II. TRAINING & TESTING DATASETS 

A. Audio Datasets 

 Audio datasets for training and testing were created from 

which the Time-Frequency (TF) matrices could be created. For 

such, speech samples were taken from the Librispeech corpus 

[5], a collection of English language spoken media. For the 

training dataset, ten 100mS samples were taken from 200 

different files in the corpus, making a total of 2000 unique 

speech samples. For testing, one 100mS sample was taken from 

100 different files. 

These speech samples were then convolved with Binaural 

Room Impulse Responses (BRIRs) of ten different rooms and 

fifty different source directions. The source directions were all 

on the azimuthal plane, being the source directions available in 

the CIPIC HRTF dataset [6], from which the HRTFs of a 

KEMAR mannequin were used to create the BRIRs. These 

source directions can be seen in Fig. 1 

 

 
Fig. 1 Source Directions on Azimuthal Plane used in datasets 



 

BRIRs are the impulse responses at the ears for a given 

source direction, but in a diffuse field rather than the anechoic 

condition of measured Head Related Impulse Reponses 

(HRIRs).  

BRIRs were simulated using the image source method, for a 

target reverb times of 𝑇𝑅 = {0.5,1,1,5}seconds where 𝑇𝑅 is the 

time taken for the impulse response to attenuate by 60dB. This 

was done by randomly generating room dimensions for a 

rectilinear room with boundaries between 1-10m, and then 

altering the absorption coefficients of the boundaries to achieve 

the target reverb times according to the Sabine equation: 

𝑇𝑅 =
0.161𝑉

𝑆𝛼
 

where V is the room volume, S is the surface area, and 𝛼 is the 

absorption coefficient. 

Creation of BRIRs for three rooms, however, is likely to lead 

to severe overfit and so multiple room dimensions were created. 

Five sets of room dimension for three target reverb times were 

used for training, for a total of 15 unique rooms. Additionally, 

another five room dimensions were used for the testing dataset 

leading to another 15 unique rooms. 

The training and testing datasets were then convolved with 

BRIRs and HRIRs, evenly distributed according to the reverb 

times, as according to Table I. 

TABLE I 

DISTRIBUTION OF FILES ACROSS REVERB TIMES 

𝑻𝑹 0s 0.5s 1s 1.5s 

% 25 25 25 25 

 

This leads to 25% of the files representing the anechoic 

condition, and 75% of the files representing diffuse fields, with 

each room being used for 5% of the total number of files. 

The other acoustic condition the system is trained and tested 

under is the addition of noise. This was done by creating noise 

mixtures which consisted of noise sources convolved with 

HRIRs and BRIRs matching the room used for the speech 

sample. For the training dataset, the noise source was pink noise, 

and for the testing dataset it was a recording of background 

room noise. A random number of noise sources between 1-10 

were used for each audio file, and for each noise source a 

random azimuth was chosen. The entire noise mixture was then 

normalised as to achieve target signal-to-noise (SNR) ratios of 

𝑑𝐵(𝑆𝑁𝑅) = {0, 12, 24, 36}. This noise mixture was summed 

to the speech source. 

B. Magnitude Matrices Dataset 

The first branch of the CNN would interpret a magnitude 

TF-matrix created from the audio dataset. This was created by 

decomposing the audio into frequency bands using a 

gammatone filterbank. The filterbank contained 300 filters 

distributed between 100Hz and 8kHz. Upon decomposition, the 

resulting band limited signals were then windowed using a 

hamming window with a length of 465 samples and an overlap 

of 256 samples. This lead to a 6 windows, from which the 

average level of energy was taken. 

Upon applying this to both left and right channels, the result 

is a matrix of the size [300,6,2]. The values in this matrix were 

then scaled into deciBels. 

C. Time Delay Matrices Dataset 

To create a matrix of values relating to time-delay, the same 

bank of 300 band limited signals from gammatone 

decomposition were used. 

For each of these stereo signals, a cross correlation curve 

was calculated using generalised cross-correlation phase 

transform (GCC-Phat) algorithm [7,8]. These correlation 

curves were then truncated to represent the section of the curve 

relevant to the time delays which can be encountered between 

the ears, being the central-most 11 samples. 

Under perfect conditions, this matrix would look like one 

vertical line of high values representing the correct time delay, 

however under reverberant conditions this can be reduced, and 

so a trained CNN is useful as it can learn to discard useless 

information in the curves based on the information at other 

frequency bands. 

III. MODELS 

To assess the effect fusion has on results, four CNNs were 

created. Each of these had two input layers to take in magnitude 

and time-delay matrices, and processed these through the same 

layers but the point at which the branches were concatenated 

was change in each instance. 

The layers which were present in all models can be found in 

Table II, and the way in which these were combined can be 

found in Fig 2. 

Notably Model I slightly differs from the other three. In 

order to test the effect having concatenating after the dense 

layers has, the layers are instead summed into each other, and 

then another dense layer is found after the fusion. 

TABLE III 

LAYERS FOUND IN ALL CNN MODELS 

Layer 1 

Convolution Layer ([2,2], 8) 

Batch Normalisation  

ReLu  

Max Pooling (2,2) 

Layer 2 

Convolution Layer ([8,8], 16) 

Batch Normalisation  

ReLu  

Max Pooling (2,2) 

Layer 3 

Convolution Layer ([16,16], 32) 

Batch Normalisation  

ReLu  

Max Pooling (2,2) 

Output Layer 

Dense 50 

Softmax  



 

Fig. 2 Framework for all four Models 

The models were trained using an Adam optimiser, with a 

learning rate of 0.001, and a mini batch size of 16. The models 

were all trained for a period of 200 epochs.  

IV. RESULTS 

Results are presented in terms of three metrics: 

Classification accuracy, which is simply the rate at which the 

network correctly classifies so that predicted azimuth = true 

azimuth. Root Mean Square Error (RMSE), which is calculated 

from the difference between predicted azimuth and true 

azimuth, and finally the Front-Back Confusion Rate, which is 

the rate at which the network predicts azimuth to be in the front-

back mirror position from the true azimuth within a tolerance 

of ±10°, except for cases where the true azimuth is within ±10° 

of its mirror position. 

TABLE IIIII 

LOCALISATION PERFORMANCE METRICS FOR ALL FOUR MODELS 

 Model  

I 

Model 

II 

Model 

III 

Model 

IV 

Classification 

Accuracy 

40.4% 45.8% 46.1% 42.7% 

RMSE 64.66° 53.96° 55.2° 54.79° 

Front-Back 

Confusion 

Rate 

4.66% 1.59% 1.79% 1.92% 

 

Additionally, performance was recorded with respect to 

changing reverb time and SNR in the testing datasets. The 

RMSE of these is plotted against these two variables in Figs 3 

& 4. 

 

Fig. 3 RMSE with respect to SNR 

 

Fig. 4 RMSE with respect to Reverb Time 

 

V. CONCLUSIONS 

From the results in Table III and Figs 3 & 4, it can be seen 

that Models II, III and IV perform almost identically in all 

metrics. This strongly suggests that point of fusion is not a large 

concern in for the task of BSSL with CNN. 

The slightly differing results seen in Model I likely manifest 

due to the previously mentioned differences in this model to the 

others. It is likely that the flow of operations now including an 

extra dense layer has altered the performance, possibly causing 

a higher degree of overfit. 

The level of performance seen in all models is not high, this 

is likely due to the model heavily overfitting to the BRIRs 

known to the training set, an idea supported by the much better 

performance seen when 𝑇𝑅 = 0 , as the problem of 

generalization between rooms does not exist in the anechoic 

condition, and so the HRIRs of the testing dataset are the same 

as the training dataset’s. 

Given these results, point of fusion is not deemed to be a 

significant factor in the design of CNNs for this task, and 

preference is given to early fusion as this can reduce the number 

of operations required in training and running of the model.  
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