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Abstract— In Binaural Sound Source Localisation there are two
representations of the signals which contain useful cues for
localisation: the time/phase frequency spectrum and the
magnitude frequency spectrum. This typically leads to two branch
CNN architectures being employed achieve localisation.

This paper compares the difference in performance between
models which employ early and later fusion of these two branches,
finding only negligible differences and thus concluding that this is
an unimportant consideration in the design of such systems.
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I. INTRODUCTION

Binaural Sound Source Localisation (BSSL) is the task of
estimating of the Direction of Arrival of Sound Source using
recordings of a sound field made with a binaural array.

This approach differs from traditional methods of Sound
Source Localisation (SSL) in that a binaural array contains only
two sensors, as opposed to the large arrays of sensors used in
other methods.

This can be achieved through means of Binaural Cues: the
Interaural Level Difference (ILD) and the Interaural Time
Difference (ITD). Only using Binaural cues, however, is not
adequate for localisation in the full azimuthal range, as there
are two solutions for a given ILD & ITD: a position in front of
the head, and the mirror position behind the head. This
ambiguity can be resolved through analysis of the frequency
response, as at different source positions the filtering of the
signal of the head is unique. This is the head related transfer
function (HRTF).

While only some works have dealt with localising in the full
azimuthal range [1], a common approach for this task is
utilising Convolutional Neural Networks (CNNs) [1-4]. CNNs
are ideal for this task as they are capable of taking frequency
domain representations of the audio signal and extracting
relevant features.

Typically this will involve some combination of
representations of the magnitude differences and phase or time

differences of the sound arriving at the ears, leading to two
branch architectures.

This work will look at the effect changing the point of fusion
of such a model has on the localisation performance, the point
of fusion being at which point the two branches are
concatenated into a single branch.

To do such, four CNN models of differing points of fusion
are trained and tested on identical datasets of magnitude and
time-delay representations of sound.

Il. TRAINING & TESTING DATASETS

A. Audio Datasets

Audio datasets for training and testing were created from
which the Time-Frequency (TF) matrices could be created. For
such, speech samples were taken from the Librispeech corpus
[5], a collection of English language spoken media. For the
training dataset, ten 100mS samples were taken from 200
different files in the corpus, making a total of 2000 unique
speech samples. For testing, one 100mS sample was taken from
100 different files.

These speech samples were then convolved with Binaural
Room Impulse Responses (BRIRs) of ten different rooms and
fifty different source directions. The source directions were all
on the azimuthal plane, being the source directions available in
the CIPIC HRTF dataset [6], from which the HRTFs of a
KEMAR mannequin were used to create the BRIRs. These
source directions can be seen in Fig. 1




BRIRs are the impulse responses at the ears for a given
source direction, but in a diffuse field rather than the anechoic
condition of measured Head Related Impulse Reponses
(HRIRs).

BRIRs were simulated using the image source method, for a
target reverb times of T = {0.5,1,1,5}seconds where Ty is the
time taken for the impulse response to attenuate by 60dB. This
was done by randomly generating room dimensions for a
rectilinear room with boundaries between 1-10m, and then
altering the absorption coefficients of the boundaries to achieve
the target reverb times according to the Sabine equation:
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where V is the room volume, S is the surface area, and « is the
absorption coefficient.

Creation of BRIRs for three rooms, however, is likely to lead
to severe overfit and so multiple room dimensions were created.
Five sets of room dimension for three target reverb times were
used for training, for a total of 15 unique rooms. Additionally,
another five room dimensions were used for the testing dataset
leading to another 15 unigque rooms.

The training and testing datasets were then convolved with
BRIRs and HRIRs, evenly distributed according to the reverb
times, as according to Table I.

R =

TABLE |
DISTRIBUTION OF FILES ACROSS REVERB TIMES

Ty 0s 0.5s 1s 1.5s

% 25 25 25 25

This leads to 25% of the files representing the anechoic
condition, and 75% of the files representing diffuse fields, with
each room being used for 5% of the total number of files.

The other acoustic condition the system is trained and tested
under is the addition of noise. This was done by creating noise
mixtures which consisted of noise sources convolved with
HRIRs and BRIRs matching the room used for the speech
sample. For the training dataset, the noise source was pink noise,
and for the testing dataset it was a recording of background
room noise. A random number of noise sources between 1-10
were used for each audio file, and for each noise source a
random azimuth was chosen. The entire noise mixture was then
normalised as to achieve target signal-to-noise (SNR) ratios of
dB(SNR) = {0,12,24,36}. This noise mixture was summed
to the speech source.

B. Magnitude Matrices Dataset

The first branch of the CNN would interpret a magnitude
TF-matrix created from the audio dataset. This was created by
decomposing the audio into frequency bands using a
gammatone filterbank. The filterbank contained 300 filters
distributed between 100Hz and 8kHz. Upon decomposition, the
resulting band limited signals were then windowed using a
hamming window with a length of 465 samples and an overlap
of 256 samples. This lead to a 6 windows, from which the
average level of energy was taken.

Upon applying this to both left and right channels, the result
is a matrix of the size [300,6,2]. The values in this matrix were
then scaled into deciBels.

C. Time Delay Matrices Dataset

To create a matrix of values relating to time-delay, the same
bank of 300 band limited signals from gammatone
decomposition were used.

For each of these stereo signals, a cross correlation curve
was calculated using generalised cross-correlation phase
transform (GCC-Phat) algorithm [7,8]. These correlation
curves were then truncated to represent the section of the curve
relevant to the time delays which can be encountered between
the ears, being the central-most 11 samples.

Under perfect conditions, this matrix would look like one
vertical line of high values representing the correct time delay,
however under reverberant conditions this can be reduced, and
so a trained CNN is useful as it can learn to discard useless
information in the curves based on the information at other
frequency bands.

I1l. MODELS

To assess the effect fusion has on results, four CNNs were
created. Each of these had two input layers to take in magnitude
and time-delay matrices, and processed these through the same
layers but the point at which the branches were concatenated
was change in each instance.

The layers which were present in all models can be found in
Table II, and the way in which these were combined can be
found in Fig 2.

Notably Model 1 slightly differs from the other three. In
order to test the effect having concatenating after the dense
layers has, the layers are instead summed into each other, and
then another dense layer is found after the fusion.

TABLEIII
LAYERS FOUND IN ALL CNN MODELS
Layer 1
Convolution Layer ([2,2], 8)
Batch Normalisation
ReLu
Max Pooling (2,2)
Layer 2
Convolution Layer ([8,8], 16)
Batch Normalisation
ReLu
Max Pooling (2,2
Layer 3
Convolution Layer ([16,16], 32)
Batch Normalisation
RelLu
Max Pooling (2,2
Output Layer
Dense 50
Softmax
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Fig. 2 Framework for all four Models

The models were trained using an Adam optimiser, with a
learning rate of 0.001, and a mini batch size of 16. The models
were all trained for a period of 200 epochs.

IV.RESULTS

Results are presented in terms of three metrics:
Classification accuracy, which is simply the rate at which the
network correctly classifies so that predicted azimuth = true
azimuth. Root Mean Square Error (RMSE), which is calculated
from the difference between predicted azimuth and true
azimuth, and finally the Front-Back Confusion Rate, which is
the rate at which the network predicts azimuth to be in the front-
back mirror position from the true azimuth within a tolerance
of +10°, except for cases where the true azimuth is within +10°
of its mirror position.

TABLE 111l
LOCALISATION PERFORMANCE METRICS FOR ALL FOUR MODELS

Model Model Model Model
| 1] 11 (\Y

Classification | 40.4% 45.8% 46.1% 42.7%

Accuracy

RMSE 64.66° 53.96° 55.2° 54.79°

Front-Back 4.66% 1.59% 1.79% 1.92%

Confusion

Rate

Additionally, performance was recorded with respect to
changing reverb time and SNR in the testing datasets. The
RMSE of these is plotted against these two variables in Figs 3
& 4.
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Fig. 3 RMSE with respect to SNR
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Fig. 4 RMSE with respect to Reverb Time

V. CONCLUSIONS

From the results in Table 11l and Figs 3 & 4, it can be seen
that Models 11, 11l and IV perform almost identically in all
metrics. This strongly suggests that point of fusion is not a large
concern in for the task of BSSL with CNN.

The slightly differing results seen in Model I likely manifest
due to the previously mentioned differences in this model to the
others. It is likely that the flow of operations now including an
extra dense layer has altered the performance, possibly causing
a higher degree of overfit.

The level of performance seen in all models is not high, this
is likely due to the model heavily overfitting to the BRIRs
known to the training set, an idea supported by the much better
performance seen when TR =0 , as the problem of
generalization between rooms does not exist in the anechoic
condition, and so the HRIRs of the testing dataset are the same
as the training dataset’s.

Given these results, point of fusion is not deemed to be a
significant factor in the design of CNNs for this task, and
preference is given to early fusion as this can reduce the number
of operations required in training and running of the model.
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