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1 Introduction 6

Fuel poverty describes members of a household that cannot afford to adequately 7

warm their home or run the necessary energy services needed for lighting, cooking, 8

hot water, and electrical appliances [1]. It is estimated that between 50 and 125 9

million households are affected in Europe (EPEE, 2009). In the UK, approximately 10

four million households are classified as being fuel poor (15% of all households)— 11

613,000 in Scotland (24.9% of the total); 291,000 in Wales (23% of the total); 12

160,000 in Northern Ireland (22% of the total); and 2.55 million in England (11% 13

of the total) [2]. The problem is complex but is typically caused by three factors: 14

low income, high energy costs, and energy-inefficient homes [1, 3–5]. 15

In the UK, financial support is provided for low-income households through the 16

Warm Home Discount Scheme, Cold Weather Payments, and Winter Fuel Payments 17

(similar support is provided in other EU member states) [6]. According to a UK 18

report written in 2018, the government provided £1.8 billion in funding annually for 19

Winter Fuel Payments, £320 million for the Warm Homes Discount Scheme, and 20

£600 million for the Energy Company Obligation Scheme [7]. Schemes like this 21

provide temporary relief, but do not tackle the underlying causes of fuel poverty [8, 22

9]. 23

Currently, fuel bills in the UK cost on average £1813 a year, a 40% increase from 24

£1289 in 2015 [10]. The Office of Gas and Electricity Markets (Ofgem) caps the 25

maximum price that consumers can pay for electricity and gas; however, the recent 26

lifting of price caps has seen a £1.7bn increase in consumer bills [11]. Subsequently, 27
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rising energy prices force more people to live in fuel poverty rather than easing the 28

financial pressures fuel-poor households already have [12]. 29

Alongside low income and rising fuel costs, a substantial share of the residential 30

housing stock in Europe is older than 50 years with many in use reportedly hundreds 31

of years old [13]. More than 40% were constructed before the 1960s when energy 32

regulations were limited [14]. The performance of buildings depends on the installed 33

heating system and building envelope, climatic conditions, indoor temperatures and 34

fuel poverty [15]. This means that largest energy savings often come from improving 35

older buildings, particularly poorly insulated properties built before the 1960s. 36

In the UK, the energy efficiency of homes is measured using the Standard 37

Assessment Procedure (SAP) rating [16]. During the winter months colder weather 38

lowers the energy efficiency of the property and increases domestic energy demand. 39

The performance of the heating system, appliances, and the number of people living 40

in the property (and how long they say in the home throughout the day) determine 41

the household fuel bill. In low-income and energy-inefficient homes the winter 42

months are particularly problematic and a source of constant worry for occupants 43

about debt, affordability, and thermal discomfort [17]. The impact this has on health 44

is significant given that fuel-poor households spend increased amounts of time in the 45

cold. Hence, poor health among this social group is prevalent [18]. In fact, evidence 46

shows us that fuel-poor occupants are more likely to experience poor health, miss 47

school [19–24], and report absences from work [17, 25]. 48

According to the E3G, the UK has the sixth-highest rate of Excessive Winter 49

Deaths (EWD) of the 28 EU member states—a large number have been directly 50

linked to cold homes [19, 26]. EWD is the surplus number of deaths that occur 51

during the winter season (in the UK this is between the 22nd of December and 52

20th of March) compared with the average number of deaths in non-winter seasons 53

[19]. The main causes of EWD are circulatory and respiratory diseases [27]. It is 54

estimated that about 40% of EWD are attributable to cardiovascular diseases, and 55

33% to respiratory diseases [22]. According to the Office of National Statistics 56

(ONS), there were 50,100 EWDs in England and Wales in the 2017–2018 winter 57

period, the highest recorded since the winter of 1975–1976 [28]. Cold homes have 58

also been linked with high blood pressure [29], heart attacks, and pneumonia, 59

particularly among vulnerable groups such as children and older people [22, 23, 60

30–33]. This often leads to inhabitants experiencing loss of sleep, increased stress, 61

and mental illness [17]. 62

Alongside serious health outcomes, cold homes are uninviting leaving inhabi- 63

tants stigmatized, isolated, and embarrassed because they are often forced to put 64

on additional clothing, wrap up in duvets or blankets, and use hot water bottles 65

to stay warm [34]. This undoubtably increases the likelihood of depressions and 66

other mental illness. Epidemiological studies show that occupants in damp homes 67

are more likely to have poorer physical and mental health [35]. According to the 68

Building Research Establishment (BRE) poor housing costs the National Health 69

Service (NHS) £1.4 billion each year [36]. The World Health Organization (WHO) 70

commissioned a comprehensive analysis of epidemiological studies and concluded 71
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that a relationship exists between humidity and mould in homes and health-related 72

problems [37]. 73

Fuel poverty is a focal point for the EU; however, as the figures show, current 74

policy has had/is having little effect on reducing the number of fuel-poor house- 75

holds. This is hardly surprising given the EU does not provide a common definition 76

of fuel poverty or a set of indicators to measure it [38]. This means that fuel poverty 77

numbers vary depending on what measurement indicator is implemented. 78

2 Measuring Fuel Poverty 79

Measurement indicators are used to identify which households are considered to be 80

in fuel poverty—in the UK, this is the responsibility of the Department for Business, 81

Energy & Industrial Strategy (BEIS) [39]. A detailed report, commissioned by 82

the EU in 2014, found that 178 indicators exist: of which 58 relate to income 83

or expenditure and 51 to physical infrastructure [40]. Indicators related to energy 84

demand and demographics amount to 10 and 15, respectively. 139 are single metric 85

indicators and 39 combinatory or constructed indicators, representing 22% of the 86

total and mostly falling under the category of income/expenditure. Among the 87

identified energy poverty metrics, 10 are consensual-based, 42 expenditure-based, 88

and 11 outcome-based, while another 14 indicators comprise a combination of 89

metrics. The two main approaches used today are expenditure-/consensual-based. 90

Only the most common indicators within both approaches will be considered in this 91

chapter. For a more detailed discussion the reader is referred to [40]. 92

2.1 Expenditure-Based Indicators 93

Expenditure-based indicators focus primarily on the proportion of the household 94

budget used to pay for domestic fuel [41]. The best-known indicator is the 10% 95

rule proposed by Boardman in the early 1990s [1] which was adopted in the UK in 96

2001. A household is classed as being fuel poor if more than 10% of its income is 97

spent on fuel to maintain an acceptable heating regime [42]. The indicator uses 98

a ratio of modelled fuel costs and a Before Housing Costs (BHC) measure of 99

income [43]. Modelled fuel costs are derived from energy prices and a modelled 100

consumption figure that includes data about property size, the number of people in 101

the property, the household’s energy efficiency rating, and the types of fuel used. 102

Fuel-poor households are those with a ratio greater than 1:10 (10%). 103

The Hills report in 2011, commissioned by the Department of Energy and 104

Climate Change (DECC) (now BEIS), triggered a replacement of the 10% indicator 105

with the Low Income High Cost (LIHC) indicator [44]. LIHC is now used in the UK 106

to measure fuel poverty and has attracted considerable attention within different 107

national contexts [43, 45–47]. The LIHC indicator is calculated using a national 108
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income threshold and a fuel cost threshold [42, 44]. A household is classified as 109

fuel poor if it exceeds both thresholds. The fuel cost threshold is a weighted median 110

of the fuel costs for all households, weighted according to the number of people 111

in a property. This average fuel cost value is the assumed cost of achieving an 112

adequate level of comfort. The threshold is the same for all households of equivalent 113

size. The income threshold is calculated as 60% of the weighted national medianAQ1 114

for income After Housing Costs (AHC) are accounted for. The income figure for 115

each household is also weighted to account for the number of people living in the 116

property. This figure is combined with the weighted fuel costs of the household. The 117

income threshold is therefore higher for those that require a greater level of income 118

to meet larger fuel bills. 119

2.2 Consensual-Based Indicators 120

Consensual-based indicators on the other hand assess whether a person is in fuel 121

poverty by asking them. The approach was initially based on Townsend’s early 122

relative poverty metric [48] and later on the consensual poverty indicator proposed 123

in [49, 50]. The fundamental principle is centred on a person’s inability ‘to afford 124

items that the majority of the general public considered to be basic necessities of 125

life’ [50]. 126

Using surveys, household occupants are asked to make subjective assessments 127

about their ability to maintain and adequately warm their home and pay their utility 128

bills on time. The EU has adopted the core principles of the consensual model and 129

implemented the Survey on Income and Living Conditions (EU-SILC) [51]. EU- 130

SILC includes a set of questions that asks whether the household (a) is able to keepAQ2 131

their home warm during winter days, (b) has been in arrears with utility bills, and 132

(c) has leakages or damp walls [52]. The recommendation was launched in 2003 133

and was the first micro-level data set to provide data on income and other social and 134

economic aspects of people living in the EU [51]. 135

EU-SILC has a rotating panel that lasts 4 years; a quarter of the sample is 136

replaced each year by new subsample members [53]. During the 4 years, households 137

are contacted up to four times. The consensual approach has been acclaimed 138

for being easy to implement and less complex, in terms of collecting data, than 139

expenditure-based indicators. A key feature of the EU-SILC dataset is that it 140

provides an important basis for identifying and understanding fuel poverty and the 141

differences that exist across all EU member states [54]. 142

2.3 Limitations 143

Fuel poverty measures have several limitations, primarily because of the multidi- 144

mensional nature of the phenomenon, which makes it difficult to adequately capture 145
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or measure it using a single indicator [40]. Additionally, most indicators have been 146

disparaged for focusing solely on fuel expenditure without consideration for under- 147

consumption which has led to governments underestimating the real extent of fuel 148

poverty [44, 55]. In the case of expenditure-based approaches, the main issue is 149

the lack of available data, particularly on the contributing factors needed to assess 150

the extent of fuel poverty. This is alleviated with consensus-based approaches given 151

that micro-level data is collected. However, the approach has also been criticized for 152

being too subjective and exclusive [56]. 153

In the case of the 10% rule, it does not respond to variations in income, 154

fuel prices, or energy efficiency improvements [57] and this has led to skewed 155

results [58]. Hills suggested that ‘flaws in the 10% indicator have distorted policy 156

choices, and misrepresented the problem’. Therefore, relatively well-off households 157

in energy-inefficient properties have been identified as being fuel poor [57, 59]. 158

The LIHC indicator on the other hand excludes low-income, single-person 159

households [59, 60]. Moore argues that this indicator obscures increases in energy 160

prices, as its introduction has led to a fall in fuel-poor households, in spite of 161

significant increases in energy costs during the same period [58]. This has been 162

described by some as an attempt to move the goalposts in order to justify missing 163

targets for the eradication of fuel poverty, which was a target for all households by 164

2016 [61]. Middlemiss adds that the LIHC prioritizes energy efficiency as a solutionAQ3 165

to fuel poverty distracting from other drivers, such as the wider failure of the energy 166

market to provide an affordable and appropriate energy supply to homes [62]. 167

Finally, the EU-SILC consensus-based approach has been criticized for (a) only 168

including specific household types, (b) containing anomalies in the data collected 169

(i.e. missing data), (c) being subjective due to self-reporting, and (d) providing a 170

limited understanding of the intensity of the issue due to the binary character of the 171

metrics [56]. Participants do not view judgements like ‘adequacy of warmth’ in theAQ4 172

same way while some households may not even identify themselves as being fuel 173

poor due to pride even though they have been characterized as being fuel poor under 174

other measures [56]. It is not unusual for fuel-poor residents to deny the reality of 175

their situation and report that they are warm enough when they are in fact not. 176

3 Smart Meters 177

Residential homes consume 23% of the total energy delivered worldwide (29% in 178

the UK) [63]. Industries consume 37%, and this is closely followed by transportation 179

which is 28% [64]. Household energy consumption is considered a multidimen- 180

sional phenomenon rooted within a socio-cultural and infrastructure context, and as 181

such occupant behaviour is complex. Existing measurement indicators, as we have 182

seen, fail to capture the behavioural traits associated with individual households. 183

Yet, with the current smart meter rollout well underway in many developed countries 184

which facilitates the automatic reporting of energy usage, it is now possible to 185

capture the behavioural aspects of energy consumption through data provided by 186
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CADs paired with smart meters [65]. CADs provide data every 10 s for all energy 187

consumed within the home at the aggregated level [66]. This data combined with 188

advanced data analytics allows us to determine whether a house is occupied, what 189

electrical appliances are operated, and when they are being used [67, 68]. Such 190

insights provide the based for routine formation which we will return to later in theAQ5 191

chapter. 192

3.1 Smart Meter Infrastructure 193

Smart meters measure gas and electricity consumption and send usage information 194

to energy suppliers and other interested parties. This (a) removes the need for home 195

visits and manual meter readings and (b) allows consumption data to be used by the 196

smart grid, to balance energy load and improve efficiency [69]. According to the 197

International Energy Agency (IEA), smart grids are essential to meet future energy 198

requirements [70], given that worldwide energy demand is expected to increase 199

annually by 2.2%, eventually doubling by 2040 [71]. 200

Energy consumption data in the smart grid is received directly from smart 201

meters and stored, managed, and analysed in the Meter Data Management System 202

(MDMS) [66]. The MDMS is implemented in the data and communications layer 203

of the Advanced Metering Infrastructure (AMI) and is a scalable software platform 204

that provides data analytic services for AMI applications, i.e. data and outage 205

management, demand and response, remote connect/disconnect, smart meter events, 206

and billing [66]. Data contained in the MDMS is shared with consumers, market 207

operators, and regulators. 208

Smart meters in the UK collect and transmit energy usage data to the MDMS 209

every 30 min [72]. Higher sample rates are possible, but this increases the costs 210

for data storage and processing. Data transmitted through a smart meter consists 211

of (a) aggregated energy data in watts (W), (b) a Unix date/time stamp, and 212

(c) the meters personal identification number (PID). The energy distribution and 213

automation system collects data from sensors dispersed in the smart grid. Each 214

sensor generates up to 30 readings per second and includes (a) voltage and equip- 215

ment health monitoring and (b) outage voltage and reactive power management 216

information. External data sets by third-party providers are also used to facilitate 217

demand and response subsystems. OS/firmware software provides a communication 218

link between the MDMS and smart technologies and this allows geographically 219

aggregated load readings to be analysed to ensure-efficient grid management. The 220

OS/firmware system also manages OS/firmware version patching and updating. 221

Figure 1 shows a typical MDMS system and its common components. 222

Information stored in the MDMS is a significant data challenge that requires data 223

science tools to maintain optimal operational function [73, 74] and derive insights 224

from the information collected [75, 76]. This allows decision-making and service 225

provisioning to be implemented directly atop the smart meter infrastructure [77– 226
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Fig. 1 Meter data
management system for
processing home energy
usage and automated billing

81]. Services exploit the smart grid infrastructure to provide application support in 227

different domains, i.e. health, climate change, and energy optimization [82]. 228

3.2 Smart Meter Sampling Frequencies 229

Most studies do not use actual smart meter data for monitoring. Smart meter 230

readings are provided every 30-min in the UK (other countries have different sample 231

frequencies) [83]. With 30-min data it is possible to detect occupancy; however 232

no reliable appliance information can be noticed at this frequency [84]. Therefore, 233

electricity monitors are either paired with the smart meter using a consumer access 234

device (CAD), CT Clip, or sensor plugs attached to the actual appliance when higher 235

sample frequencies are required as shown in Fig. 2. 236

CADs are an inexpensive way to obtain whole-house measurements at higher 237

sampling rates (i.e. readings every 10 s in the UK). With a CAD you can detect 238

when high-energy appliances, such as an oven, kettle, and microwave, are being 239

operated. CT Clips are used when either a smart meter has not yet been installed 240

in a household or when sample frequencies higher than every 10 s are required. CT 241

Clips, clamped around the power cable (live or natural), can sample the aggregated 242

energy feed thousands of times every second. However, the approach is more costly 243

than a CAD as additional hardware and software need to be installed. With a 244

CT Clip, it is possible to detect faulty appliances and overlapping use, including 245

low-energy appliances, such as lights and audio equipment. Device types will be 246

discussed in more detail later in the chapter. 247
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Fig. 2 Capabilities based on sampling frequency

3.3 Load Disaggregation 248

Load disaggregation is a broad term used to describe a range of techniques for 249

splitting a household’s energy supply into individual electrical appliance signatures, 250

for example, a kettle, microwave or oven [68]. There are a number of reasons 251

why load disaggregation is important. In the context of fuel poverty, appliance 252

detections provide the basis for habitual appliance usage patterns, which manifest as 253

routine household behaviours [68, 83]. Through an understanding of normal routine 254

behaviour it is possible to identify anomalies and assess whether they are linked to 255

fuel poverty indictors—more on this later [83]. 256

Disaggregating electrical device usage is called Appliance Load Monitoring 257

(ALM) [85]. ALM is divided into two types: Non-Intrusive Load Monitoring 258

(NILM) [86] and Intrusive Load Monitoring (ILM) [87]. NILM is a single point 259

sensor, such as a smart meter or CT clip. In contrast, ILM is a distributed sensing 260

method that uses multiple sensors—one for each electrical device being monitored 261

[87]. ILM is more accurate than NILM as energy usage is read directly from sensors 262

attached to each electrical appliance being measured. The practical disadvantages 263

however include high costs, multi-sensor configuration, and complex installation 264

[88]. More importantly, ILM sensors can be moved between different devices and 265

this can skew identification and classification results. 266

NILM on the other hand is less accurate than ILM and more challenging as 267

appliances are identified from aggregated household energy readings [89]. NILM 268

was first developed in the mid-1980s [90]. Since then academic interest in the field 269

has increased rapidly [91]. More recently there has been significant commercial 270

interest [92]. This has been primarily driven by an increased focus on energy 271

demand combined with significant reductions in the cost of sensing technology, 272

and equally, improvements in machine learning algorithms. Commercial interest is 273
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directly linked with the huge commercial potential of services that exploit the smart 274

metering infrastructure, for example, in health, energy management, and climate 275

change. 276

3.4 Electrical Device Types 277

Electrical appliances, alongside their normal on-off states, run in multiple modes. 278

Many devices have low power requirements or standby modes, while appliances 279

like ovens operate using several control functions. Understanding different device 280

categories is important in NILM, as they define different electrical usage character- 281

istics. Device categories include Type 1, Type 2, Type 3, and Type 4. The associated 282

signals for each are illustrated in Fig. 3. 283

The characteristics for each appliance type are described as: 284

• Type 1 devices are either on or off. Examples include kettles, toasters, and 285

lighting. Figure 4 illustrates a power reading for a kettle—(a) shows a series 286

of devices being used in conjunction or in close succession; while (b) presents 287

evenly distributed single device interactions. 288

• Type 2 devices, known as Multi-State Devices (MSD) or finite state appliances, 289

operate in multiple states and have more complex behaviours than Type 1 290

devices. Devices include washing machines, dryers, and dishwashers. 291

• Type 3 devices, known as Continuously Variable Devices (CVD), have no fixed 292

state. There is no repeatability in their characteristics and as such they are 293

problematic in NILM. Example devices include power tools such as a drill or 294

electric saw. 295

Fig. 3 Appliance type energy readings
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Fig. 4 Aggregated load readings highlighting unique device signatures

• Type 4 are fairly new in terms of device category. These devices are active for 296

long periods and consume electricity at a constant rate—they are always on. 297

Hence, there is no major events to detect other than small fluctuations. Such 298

devices include smoke detectors and intruder alarms. 299

Understanding device types is important in any load disaggregation system, as 300

electrical appliances are often used in combination, typically when preparing meals. 301

This can affect the performance in classification tasks due to the boundaries that 302

exist between device classes, making them difficult to identify. The boundaries 303

between classes provide guidance on what classifiers to use (i.e. linear, quadratic, or 304

polynomial) within the same feature space [93]. 305

4 BMI: A Behaviour Measurement Indicator for Fuel 306

Poverty Assessments 307

Measuring and monitoring household fuel poverty is challenging as we have seen 308

[40]. Expenditure-based approaches lack data on all the contributing factors needed 309

to sufficiently assess the extent of fuel poverty. Using this method, the data is 310

often derived from a subjective and generalized view of households, including 311

their occupants and how energy is consumed. In fact, data is often skewed or 312

contaminated given that households may not even identify themselves as being in 313

fuel poverty due to pride [94]. The remainder of this chapter proposes a different 314
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point of view that incorporates personalized household behaviour monitoring using 315

activities of daily living. By doing this it is possible to understand the unique 316

characteristics of each household in terms of what, when, and how often electrical 317

appliances are used. The hope is to derive some useful insights and provide a more 318

objective measure of fuel poverty from a socio-behavioural view point to better 319

support the occupants and their energy needs. 320

4.1 BMI Framework 321

The Behaviour Measurement Indicator (BMI) proposed was initially developedAQ6 322

and evaluated in partnership with Mersey Care NHS Foundation Trust to measure 323

appliance usage in dementia patients and derive routine behaviours for social care 324

support [83, 95]. Here we consider an extension to the existing framework and build 325

on the behavioural monitoring aspects of the system to provide a household BMI 326

indicator for fuel poverty assessment. 327

The BMI builds on the existing smart meter infrastructure. Smart meters in 328

households, paired with a CAD using the ZigBee Smart Energy Profile (SEP) 329

[96], provide access to aggregated power usage readings every 10 s. This sample 330

frequency allows high-powered appliances associated with ADLs to be detected 331

and used to establish household behavioural routines. Appliances such as a kettle, 332

microwave, washing machine, and oven are regarded as necessary appliances used 333

by occupants to live a normal life (ADLs). Therefore, appliances such as TVs, 334

mobile chargers, computers, and lighting are of limited interest as they do not 335

contribute to ADL assessment, for example, TVs are often left on for background 336

noise and provide no information about what an occupant in a household is doing 337

[83]. 338

The BMI operates in three specific modes in order to achieve this: device training 339

mode, behavioural training mode, and prediction model. 340

• In device training mode power readings are obtained from the CAD and 341

recorded to a data store. Readings alongside device usage annotations are used 342

to train the machine learning algorithms to classify appliances from aggregated 343

load readings. Features automatically extracted using a one-dimensional con- 344

volutional neural network (discussed in more detail later in the chapter) act 345

as input vectors to a fully connected multi-layer perceptron (MLP) for device 346

classification. 347

• In behavioural training mode features from device classifications are extracted 348

to identify normal and abnormal patterns in behaviour. The features allow the 349

system to recognize the daily routines performed by occupants in a household, 350

including their particular habits and behavioural trends. 351

• In prediction mode both normal and abnormal household behaviours are 352

detected and remediated. 353
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Fig. 5 System framework showing the end-to-end components

The framework implements web services for machine-to-machine communica- 354

tions using enterprise-ready protocols, Application Programming Interfaces (API’s) 355

and standards. The monitoring application interfaces with web services to receive 356

real-time monitoring alerts about the household’s status (i.e. green for normal 357

behaviour, amber for unusual behaviour, and red when drastic changes occur). The 358

complete end-to-end system is shown in Fig. 5. 359

4.2 Data Collection 360

The training dataset for device classification is constructed using energy monitors 361

(i.e. a CAD paired with a household smart meter). CAD payload data contains 362

the aggregated energy readings generated every 10 s. To detect ADLs, a kettle, 363

microwave, washing machine, oven, and toaster are used, although others could be 364

included if required, such as an electric shower depending on the relapse indicators 365

of interest in fuel poverty. 366

Generating device signatures is achieved using a mobile app to record when each 367

appliance is operated (annotation). Time-stamped recordings are compared with 368

mobile app recordings to extract specific appliance signatures. Each signature is 369

labelled and added to the training data and subsequently used to train the machine 370

learning algorithms for appliance classification. 371
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4.3 Data Pre-processing 372

CAD energy readings are filtered and transformed before they are used to train 373

machine learning algorithms. A high-pass filter is implemented to remove back- 374

ground noise below 300 watts (although this value needs to be personalized based 375

on individual household energy usage as each home will be different)—signals 376

below this threshold typically represent Type 4 electrical appliances which cannot 377

be detected using CAD data. 378

Device signatures are obtained by switching appliances on and off individually 379

and filtering normal background noise. Individual appliance signatures are com- 380

bined to generate new appliance usage patterns that represent composite appliance 381

usage. For example, Fig. 6 shows that when the individual energy readings for three 382

appliances (kettle, microwave, and toaster) are combined (i.e. they are operated in 383

parallel) a ‘Total Load’ signature is produced. 384

The aggregated signature (total load) describes the three appliances being used 385

in parallel. Repeating this process for all device combinations yields different 386

aggregate signatures that describe which devices are on and which are not. Hence, a 387

dataset is built containing individual and combined appliance usage signatures andAQ7 388

used to train and detect which of the ADL appliances are in use. 389

Fig. 6 Whole household aggregated power consumption and individual device power consump-
tion
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4.4 CAD NILM Machine Learning Model for Appliance 390

Disaggregation 391

In contrast to manually extracted features based on input from domain knowledge 392

experts (i.e. peak frequency and sample entropy), features can automatically learn 393

from appliance energy signatures using a one-dimensional convolutional neural 394

network (1DCNN) [97]. Appliance signatures are input directly to a convolutional 395

layer in the 1DCNN. The convolutional layer detects local features along the time- 396

series signal and maps them to feature maps using learnable kernel filters (features). 397

Local connectivity and weight sharing are adopted to minimize network parameters 398

and overfitting [98]. Pooling layers are implemented to reduce computational 399

complexity and enable hierarchical data representations [98]. A single convolutional 400

and pooling layer pair along with a fully connected MLP comprising two dense 401

layers and softmax classifier output (an output for each appliance being classified) 402

completes the 1DCNN network as the time-signals are not overly complex. The 403

proposed architecture is represented in Fig. 7. 404

The network model is trained by minimizing the cost function using feedforward 405

and backpropagation passes. The feedforward pass constructs a feature map from 406

the previous layer to the next through the current layer until an output is obtained. 407

The input and kernel filters of the previous layer are computed as follows: 408

zl
j

Ml−1∑

l−1

1dconv
(
xl−1
i , kl−1

ij

)
+ bl

j

where xl−1
j and Zl

j are the input and output of the convolutional layer, respectively, 409

and kl−1
ij the weight kernel filter from the ith neuron in layer l − 1 to the jth neuron 410

in layer l; 1dconv represents the convolutional operation and bl
j describes the bias 411

of the jth neuron in layer l. Ml − 1 defines the number of kernel filters in layer l − 1. 412

Fig. 7 One-dimensional
convolutional neural network
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A ReLU activation function is used for transforming the summed weights and is 413

defined as: 414

xl
j = ReLU

(
zl
j

)

where xl
j is the intermediate output at current layer l before downsampling occurs. 415

The output from current layer l is defined as: 416

yl
j = downsampling

(
xl
j

)
xl+1
j = yl

j

where downsampling() represents a max pooling function that reduces the number 417

of parameters, and yl
j is the output from layer l and the input to the next layer l + 1. 418

The output from the last pooling layer is flattened and used as the input to a fully 419

connected MLP. Figure 8 shows the overall process. 420

The error coefficient E is calculated using the predicted output y: 421

E = −
∑

n

∑

i

(Yni log (yni))

where Yni and yni are the target labels and the predicted outputs, and i the number 422

of classes in the nth training set. The learning process optimizes the network’s freeAQ8 423

parameters and minimizes E. The derivatives of the free parameters are obtained 424

and the weights and biases are updated using the learning rate (η). To prompt rapid 425

convergence, Adam is implemented as an optimization algorithm and He for weight 426

initialization. The weights and bias in the convolutional layer and fully connected 427

Fig. 8 Convolution and max
pooling process
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MLP layers are updated using: 428

kl
ij = kl

ij − η
∂E

∂kl
ij

bl
j = bl

j − η
∂E

∂bl
j

Small learning rates reduce the number of oscillations and allow lower error rates 429

to be generated. Rate annealing and rate decay are implemented to address the local 430

minima problem and control the learning rate change across all layers. 431

Momentum start and ramp coefficients are used to control momentum when 432

training starts and the amount of learning for which momentum increases— 433

momentum stable controls the final momentum value reached after momentum 434

ramp training examples. Complexity is controlled with an optimized weight decay 435

parameter, which ensures that a local optimum is found. 436

The number of neurons and hidden layers required to minimize E, including 437

activation functions and optimizers, can be determined empirically. Input and hidden 438

layers are also determined empirically depending on data and the number of softmax 439

outputs required for classification. The network’s free parameters can be obtainedAQ9 440

using the training and validation sets over a set number of epochs and evaluated with 441

a separate test set comprising unseen data. 442

The 1DCNN approach allows the unique features from single appliance and 443

composite appliance energy signatures to be automatically extracted and used in 444

subsequent machine learning modelling for classification tasks. This removes the 445

need for manual feature engineering and simplifies the data analysis pipeline. 446

4.5 Measuring Behaviour 447

Current fuel poverty measurement indicators cannot directly collect, monitor, or 448

assess fuel poverty in households in real time. ADL is a term used in healthcare to 449

assess a person’s self-care activities [99]. With smart meters, CADs and 1DCNNs, 450

the BMI platform can analyse electrical appliance interactions and detect ADLs 451

(routine behaviours) in all households connected to the smart grid using smart 452

meters [78–80, 84]. Household occupants carry out ADLs each day as part of their 453

normal routine behaviour. These include preparing breakfast, lunch, and dinner, 454

making cups of tea, switching on lights, and having a shower. While such tasks 455

are common to us all, there will be differences. For example, one household may 456

use the toaster to make toast for breakfast, while another might use the cooker to 457

make porridge. Some might boil the kettle to make tea in the evening after finishing 458

work, while others might prefer to have a glass of wine. Some households might 459

use the shower (likely at different times of the day and frequency, i.e. one or two 460

showers a day), while others might prefer to have a bath. 461

These activities can be easily detected through ongoing interactions with home 462

appliances. This is useful for deriving normal routine behaviours within households, 463
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but more importantly to detect anomalies, for the purpose of safeguarding vulnera- 464

ble homes against fuel poverty risks. How we interact and use energy in our home 465

will likely be affected by our circumstances, i.e. having a baby, children moving out 466

of the family home, gaining employment (or losing a job) as well as caring for an 467

elderly family member who has moved in. 468

Such circumstantial changes directly alter our routine use of electrical appliances. 469

For example, in the case of having a baby, the microwave, kettle, or oven hob may 470

be operated throughout the night for a period of time to heat the milk required to 471

bottle-feed babies. In the unfortunate situation where a person has lost their job, 472

household occupants may have to substitute fresh food cooked using the oven and 473

hob for more cheaper food options, such as microwave meals. These are clues that 474

household circumstances have changed. Families experiencing financial difficulties 475

may have to cut heating-based appliance usage and ration hot water—this will lead 476

to an overall dip in energy consumed by that household. 477

Significant changes in behaviour will act as key indicators and facilitate decision- 478

making strategies to support struggling households. For example, appliances oper- 479

ated during abnormal times of the day (when this is not normal behaviour for that 480

household) may indicate that occupants are experiencing difficulties (i.e. making 481

tea in the early hours of the morning could be due to sleep disturbances possibly 482

caused through financial worry; conversely occupants staying in bed for longer 483

periods of time or not cooking meals may indicate severe financial difficulty or 484

energy disconnection issues). The BMI system can detect significant changes in 485

behaviour like these as we see in the next section. 486

4.5.1 Vectors for Behavioural Analysis 487

Individual device detections classified by the CAD NILM machine learning model 488

are combined as feature vectors for behaviour analysis. Predicted classes are given 489

a unique device ID and assigned to an observation window depending on the time 490

of day the appliance is used, i.e. during breakfast or evening meal times. 491

Observation windows can be defined and adjusted to meet the unique behaviours 492

of each household. This is performed automatically following a baseline learning 493

period for each household connected to the smart grid. Observation windows 494

capture routine behaviour and act as placeholders for the fuel poverty relapse 495

indicators being measured and monitored (these will need to be defined by fuel 496

poverty experts). This allows the system to construct a personalized representation 497

of each household and assign device usage to specific observation windows common 498

to that household. Continually repeating this process allows routine behaviours 499

to be identified and anomalies in behaviour to be detected. Figure 9 describes 500

seven possible observation windows in a 24-h period. Each observation window 501

is configurable to meet the unique needs of the application or service. 502

The order of device interactions is not necessarily important unless there is a 503

clear deviation from normal behaviour. From the behaviour vectors it is possible to 504

see the degree of correlation between appliance usage and the hour-of-day (strong 505
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Fig. 9 Device assignment for identifying key activities within significant observation periods

Fig. 10 Degree of correlation between device usage and hour

routine behaviour). Figure 10 shows the correlations for different home appliances 506

used over a 6-month period [100]. 507

The figure shows quantitative information relating to flows, including relation- 508

ships and transformations. The lines between appliances and time-of-day, like ant 509

pheromone trails, show the established routine behaviour for a particular home. 510

For example, it is possible to see that the microwave is mostly used at 06:00 h 511

and 18:00 h. Alternations in either link proportionality or association may indicate 512
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Fig. 11 Sleep disturbances for an occupant using Z-score anomaly detection

the early signs of circumstantial change which could be linked to fuel poverty 513

risk factors. Anomalies are progressed through a traffic light system—red would 514

suggest a sustained change in routine behaviour over a period of time (time period 515

would be set by expert in fuel poverty) and may or may not indicate that the house 516

is experiencing financial difficulties. Conversely, green would show that normal 517

routine behaviour has been observed and that no support or intervention is required. 518

Amber would flag the house as worrisome (this does not necessarily mean the house 519

is transitioning into a fuel poverty state, simply that a change in behaviour has been 520

detected). This could be caused by circumstantial changes, i.e. people coming to 521

stay or household occupants going on holiday. Viewing Fig. 6 periodically we would 522

expect to see changes between correlations and their associated strengths for those 523

households experiencing significant changes in normal routine behaviours. 524

Anomalies in device usage can be seen with the Z-score technique to describe 525

data points in terms of their relationship to the mean and the standard deviation 526

of a group of points. Figure 7 shows the inliers in green which represent normal 527

appliance interactions for that household. Each cluster represents a specific appli- 528

ance class. The outliers are depicted in red where both the kettle and toaster classes 529

in this case reside outside the household’s normal routine behaviour. Figure 11 530

shows that in total three kettles were used on three separate occasions between 531

the hours of 00:00 and 05:00 and a single interaction with a toaster was detected 532

during the same observation period. In the context of fuel poverty such results 533

may provide interesting insights when managing fuel poverty households. As the 534

household continues to struggle financially, we would expect routine behaviour to 535

become more erratic (or even disappear for long periods) leading to an increase in 536

the number of anomalies detected. 537
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The BMI framework presents the first platform of its kind that capitalizes on 538

the smart meter infrastructure to describe a behaviour measurement indicator for 539

use in fuel poverty assessments. It has been designed to exploit the smart metering 540

infrastructure and provide foundational services to more accurately assess fuel 541

poverty in real time within individual households [77]. Obviously, future trials are 542

required to test the applicability of the BMI system and evaluate whether it has 543

any real potential in tackling fuel poverty. Based on our previous use of the system 544

in dementia, the technology is a powerful tool for assessing routing behaviour and 545

detection anomalies. We therefore think the solution will lend itself to household 546

behaviour analysis (in terms of electricity consumption) in fuel poverty assessment 547

[83]. 548

The use of association rule mining within load disaggregation is also an interest- 549

ing technique that can uncover relationships and their associated strengths using 550

transactional data. Identifying device relationships (what devices are commonly 551

used together or in sequence) and their relationship with the time of day can expose 552

strong behavioural traits within the dwelling. Reoccurring deviation from identified 553

routine patterns or the weakening of common relationships could be used to trigger 554

an intervention where fuel poverty is suspected. Figure 12 highlights the use of 555

association rule mining to determine the relationship strength between an appliance 556

and time of day. 557

Association rule mining can be used to provide a more abstracted view above and 558

beyond the aggregated load level of a dwelling. Instead, the collective behaviour of 559

entire regions could be monitored to assess the impact of shifting financial and social 560

economic changes, for example, raising fuel prices or the closure of large employers 561

(retail/manufactures) and reduction in the associated foot flow to a region. By using 562

association rule mining the impact can be objectively measured and the effectiveness 563

of any intervention/recovery passively monitored. 564

5 Discussion 565

As this chapter has highlighted, fuel poverty affects a significant number of 566

households in Europe and indeed globally. The problem is primarily caused by 567

a combination of low income, high energy costs, and energy-inefficient homes. 568

In the UK, four million households are currently in fuel poverty, which, among 569

other things, contributes to poor health and premature winter deaths. Poor-quality 570

housing has also been linked with fuel poverty which is hardly surprising given that 571

a substantial share of the residential stock in Europe is older than 50 years. 572

The problem is recognized by governments; however, the EU has not yet adopted 573

a common definition of fuel poverty, nor a set of common indicators to measure it, 574

making a standardized approach difficult to implement. Many households move in 575

and out of fuel poverty but there are households that find themselves persistently 576

trapped in fuel poverty [101]. Measuring and monitoring fuel poverty is challenging 577

as we have seen [40], and while Expenditure-based approaches have been proposed, 578
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Fig. 12 Association rule mining for the identification of behavioural patterns

they lack data on all the contributing factors needed to sufficiently assess fuel 579

poverty. Consensus-based approaches on the other hand have data, but this is only 580

from snap shots in time, meaning data is often outdated, subjective, and exclusive 581

in nature. 582

Of the 178 measurement indicators reported in the literature, many do not 583

respond to variations in income, circumstantial changes, fuel prices, or energy 584

efficiency improvements. They exclude low-income and single-person households 585

[59, 60] and this has distorted policy choices, and misrepresented the problem. 586

Against this negative backdrop and an overall distrust of government bodies and 587

energy providers, fuel-poor customers feel that the intensity of the issue is not fully 588

understood by those developing policies to combat it [56]. 589

We proposed the BMI system to monitor a household’s activities of daily living 590

and understand routine behaviour in order to gain insights into how energy is 591

consumed [78–80, 84]. Households behave in different ways. While there may be 592

common tasks, such as meal preparation, there will be differences. By detecting 593

ADLs using appliance interactions, it is possible to derive routine behaviour for 594

each household. This makes BMI highly personalized and sensitive to the unique 595

characteristics of each household connected to the smart grid. 596
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Changes in behaviour can be identified and investigated and support services 597

provided if and when they are needed. Modelling ADLs in households will allow 598

the onset of fuel poverty issues to be identified much earlier. When households 599

are identified, appropriate packages can be put in place to help mitigate the 600

adverse effects fuel poverty has on fuel-poor occupants. Detecting self-disconnect 601

in households, particularly among the most vulnerable in society, such as young 602

children and the elderly, would allow appropriate support services to be put in place 603

to ensure homes are appropriately warm. 604

The identification of expected behaviour and relapse indicators aids in the 605

selection of appropriate analytical techniques. Establishing routines facilitates the 606

detection of abnormal behaviour. Combining this with unique energy signatures 607

within each household a new and foundational fuel poverty indicator is possible 608

that is adaptable and reflective of household circumstances. We believe that the 609

BMI system could contribute significantly to the fuel poverty domain. To the best 610

of our knowledge BMI is the first of its kind as currently there is no fuel poverty 611

measurement indicator that can measure household energy usage interactions and 612

derive routine behaviour in every home fitted with a smart meter. The approach 613

is highly personalized and closely aligned with the different routines households 614

exhibit despite the size of the house or the number of occupants. Once routine 615

behaviour has been established, BMI is highly sensitive to change; using a traffic 616

light system it is therefore possible to target and support households classified as 617

being fuel poor. 618

6 Conclusions 619

This chapter discussed the many aspects of fuel poverty and the government policies 620

put in place to combat it. The key message is that cold homes waste energy and harm 621

their occupants. Most fuel-poor indicators are derived from generalized estimates 622

disconnected from the unique characteristics of individual households. Houses 623

and occupants do not behave the same—they have their own socio-behavioural 624

characteristics that affect how and when energy is consumed. Therefore, coupled 625

with the household envelope and the many other factors that influence household 626

behaviours, there is a disparity between existing measurement indicators and fuel 627

poverty prevalence. 628

The only way to fully understand fuel poverty is to measure high-risk households 629

and the unique characteristics and behaviours they exhibit in terms of energy 630

consumption and ADLs. We believe that the BMI system can do this with minimalAQ10 631

installation requirements as the solution exploits the existing smart meter infras- 632

tructure to provide appropriate services. System operation requires no input from 633

household occupants as BMI is based on the assessment of ADLs (the everyday 634

things that people do in their home in order to survive) captured through normal 635

appliance interactions. 636
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The BMI has been previously evaluated in a clinical trial with Mersey Care NHS 637

Foundation Trust to model the ADLs of dementia patients [83]. However, it has been 638

possible to extend the system to include fuel poverty risk factors following minor 639

changes to observation periods and fuel poverty related relapse indicators. Future 640

work will focus on a trial to evaluate the BMI system in fuel and non-fuel poverty 641

homes. Cases will include households that find themselves in and out of fuel poverty. 642

Controls will be those households that have not previously experienced fuel poverty 643

or had difficulties with paying bills and keeping their home warm. The measurable 644

outputs will be to evaluate whether the BMI system can detect which houses are in 645

or likely to be in fuel poverty and those that are not. 646

To the best of our knowledge this is the first fuel poverty measurement indicator 647

that builds on the existing smart meter infrastructure and associated CAD tech- 648

nology to carry out NILM and personalized ADL monitoring in every household 649

connected to the smart grid that is designed to safeguard households and occupants 650

against fuel poverty. 651
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