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A B S T R A C T   

Human errors significantly contribute to transport accidents. Human performance measurement (HPM) is crucial 
to ensure human reliability and reduce human errors. However, how to address and reduce the subjective bias 
introduced by assessors in HPM and seafarer certification remains a key research challenge. This paper aims to 
develop a new psychophysiological data-driven machine learning method to realize the effective HPM in the 
maritime sector. It conducts experiments using a functional Near-Infrared Spectroscopy (fNIRS) technology and 
compares the performance of two groups in a maritime case (i.e. experienced and inexperienced seafarers in 
terms of different qualifications by certificates), via an Artificial Neural Network (ANN) model. The results have 
generated insightful implications and new contributions, including (1) the introduction of an objective criterion 
for assessors to monitor, assess, and support seafarer training and certification for maritime authorities; (2) the 
quantification of human response under specific missions, which serves as an index for a shipping company to 
evaluate seafarer reliability; (3) a supportive tool to evaluate human performance in complex emerging systems 
(e.g. Maritime Autonomous Surface Ship (MASS)) design for ship manufactures and shipbuilders.   

1. Introduction 

Human factors have been responsible for many transport accidents, 
across different modes of road, aviation, and maritime transport. For 
instance, human actions contribute to 60.6% of the investigated marine 
casualties [1]. Comparatively, the fatalities per accident in the rail, 
aviation and maritime sectors are higher than in road transport [2,3]. 
Recently, such low-frequent but high-consequent risky sectors have 
attracted public interest because of the high uncertainty they are asso-
ciated with from a safety science perspective. To address such chal-
lenges, reliable human performance becomes critical for ensuring safety. 
Within the context of maritime transport, the development of ship 
automation stimulates the incorporation of technical and non-technical 
skills in human performance measurement (HPM) in today’s maritime 
safety studies [4–6]. It is evident that 30.77% of maritime accidents are 
associated with “poor communication and coordination” and 32.69% 
“under ineffective supervision and support of the bridge team” [7]. 
Communication is a significant factor, and teams without effective 
communication increase the risk of committing errors. An ineffective 
supervision issue can be seen for lone watchkeeper or working isolated, 
which exposes hazards derived from workload pressure. Reducing crews 

onboard and reallocating operators onshore induce new scenarios and 
challenges for the risk assessment of modern shipping navigation [8]. 
Although reducing the crew means lower labour costs for ship com-
panies, new risks are observed with technological devices and changing 
workloads. Improper use of devices and equipment (e.g., BNWAS 
switched off, alarm system not noticed) contributes to human errors, as 
evident by the statistic that 37.98% of maritime accidents are associated 
with it [7]. On the other hand, automation development does not secure 
a lower workload for seafarers. Over-reliance on Automatic Identifica-
tion System (AIS) and GPS may result in poor lookout, and the associated 
factors may contribute to information overload in terms of seafarer 
cognition. Therefore, an effective tool to realise accurate HPM has 
become more urgent than even among all the prioritized requirements 
for maritime safety. 

Maritime education and training (MET) serve as a gatekeeper for 
seafarer recruitment. The regulation on international training standards 
for seafarers is under the Standards of Training Certification and 
Watchkeeping (STCW) [9], formed by the International Maritime Or-
ganization (IMO) and the United Nations (UN). There are growing 
concerns about the effectiveness and professionality of the current 
implemented seafarer certification regime. The STCW emphasises a 
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requirement for the qualified training and assessment of seafarers [9]. 
Simulator training has been widely utilized among industrial operators 
since the 1990s [10]. It integrates tasks and application context to 
achieve knowledge transfer [11]. Given this practice, seafarers acquire 
competencies in the required maritime operations, and assessors/exa-
miners evaluate human performance in the simulation for training 
purposes. The evaluation can also be supported by the simulator data 
and parameter calculation [12]. In the current seafarer certification 
process, an expert is required to evaluate HPM against each competence 
criterion and, in the meantime, identify all the associated human errors 
in bridge simulation [13]. However, the practice of having experts un-
dertake the conventional assessment of seafarers in simulation has been 
criticized due to the possibility of introducing subjective bias. For 
instance, serial positioning effects, which means people have a better 
memory of the first and last actions [14]; recognition-primed inferences, 
which implies that people tend to take actions that are familiar to the 
assessor and their ability is evaluated by how the assessor would 
accomplish it [15]. Such bias affects what information is retrieved and 
perceived. Due to such bias, there is a chance for unqualified trainees to 
be certified to carry out challenging tasks beyond their actual capacity, 
endangering maritime safety. It reveals a new research need to improve 
the validity and reliability of the current maritime HPM methods [16]. 
In terms of a large number of examinees, limited examination ap-
proaches, and insufficient quality of the examiners, the maritime 
administration has improved subjective training by developing 
multiple-choice computer-based assessments [16], which pioneers the 
measures in the maritime HPM domain towards a more objective 
direction. 

In light of human performance in maritime operations, there was 
evidence of a positive correlation between individual factors and be-
haviors [17–19]. Various factors, such as mental workload, emotion, 
and fatigue, affect human behaviors in daily work and decision-making 
processes [20,13]. To quantify such risk factors, novel and advanced 
methodologies should be proposed and applied to operator assessment, 
for which physiological means become a promising solution in recent 
years. The Electrocardiography (ECG), Electromyography (EMG), Elec-
troencephalography (EEG), skin electrical response, and eye-tracking 
have been applied to measure the physiological response of human 
operators [13,21]. However, their associations with human perfor-
mance and safe navigation have not been thoroughly examined. The 
relevant studies for driving behaviors were developed in road transport 
[22,23]. Scant research involves neurophysiological techniques in 
maritime human reliability analysis (HRA) [20,24]. With the fast 
development of autonomous ships, the decreasing number of crews 
onboard and the reallocated responsibility ashore will lead to a funda-
mental change in MET. Under such circumstances, an effective and 
reliable assessment method for seafarer qualification is urgently needed 
to fit and support the fundamental changes introduced by advanced and 
autonomous vessels. In summary, the demand for seafarer qualification 
assessment becomes increasingly significant given the limitations of the 
existing approaches and emerging technologies such as digitalization 
and autonomation. 

This paper aims to develop a new psychophysiological data-driven 
machine learning method for supporting maritime HPM and facili-
tating seafarers’ qualification evaluation towards an objective perspec-
tive. fNIRS has become a popular wearable sensor, a non-invasive brain 
imaging modality for measuring cortical haemodynamic activity [25] 
and attracts great interest in risk assessment in some high 
safety-sensitive sectors [26,27]. Seafarers were divided into two levels 
of experience based on their STCW qualifications in this study. The 
experienced group is defined as those who have obtained higher ranked 
certificates (e.g. MM (master), CM (chief mate), OOW (officer of the 
watch)), while the inexperienced group consists of the AB (able seaman) 
and cadets. It develops a new ship-bridge simulator-based scenario to 
conduct experiments with fNIRS technology and compare the perfor-
mance of two groups. If the finding reveals the significant differences 

between experienced group and inexperienced group in terms of their 
performance indicated by the fNIRS data, while in the meantime, the 
fNIRS data-driven ANN result of each group is kept a high consistency, 
we gain the confidence to use fNIRS data and our proposed new meth-
odology to introduce a new objective measure to complement the cur-
rent purely subjective method in the maritime qualification process in 
MET. The generated implications and contributions can therefore help 
shift the paradigm of MET accreditation and qualification/certification 
assessment in maritime transport. Within the maritime transport 
context, the practical contributions of this research include (1) incor-
poration of an objective criterion into the monitoring, assessment, and 
support of maritime training for maritime authorities; (2) quantification 
of human response under specific missions, which serves as an index 
relating to the operator competence of a shipping company; (3) sup-
portive tool to evaluate the human performance in terms of complex 
system and Maritime Autonomous Surface Ship (MASS) design for ship 
manufacturers and shipbuilders. 

Furthermore, the theoretical contribution of this paper is to pioneer 
the use of fNIRS and simulation for HPM in the maritime transport 
context and compare the performance of seafarers to address the 
possible subjectivity in the traditional assessment. It develops a new 
assessment model using a psychophysiological data-driven machine 
learning approach. The results reveal the potential of the employment of 
fNIRS data in an assessment framework as a criterion to monitor, assess, 
and support maritime training. 

The structure of the paper is illustrated as follows. Section 2 reviews 
the literature on operators’ training and human performance assess-
ment, as well as the relative HRA research in maritime transportation. 
Section 3 explains the research methods for the experimental study in 
maritime scenarios. Then, the results are discussed in Section 4. Section 
5 describes the implications of the assessment method and its practical 
implications. Finally, it is followed by the conclusion in Section 6. 

2. Literature review 

2.1. Operators’ training and performance measurement 

Initially aiming at high-risk operations in medical and nuclear sec-
tors, operators’ training and performance measurements evaluate the 
operators’ competence so as to improve operation safety. With increased 
human factor concerns in the transportation field, the relevant literature 
reveals the significance of operators’ HPM in transport safety and un-
covers diverse methodologies to assess them. In the case of high-risk 
operations (e.g. in the nuclear sector), the operators’ training is inevi-
tably associated with training simulators that can provide safe and 
economical working situations [28,29]. The simulator was utilized to 
investigate human performance based on the parameter calculation and 
data obtained from regular practical simulator training [12]. 

The HPM covering technical skills and non-technical skills in the 
transportation field is quite diverse. It relies on traditional and novel 
techniques, such as simulators [30], physiological data [31–34], and 
visual reality (VR) [30]. Meta-analytic research validated the use of 
cognitive ability, structured interviews, and several personality factors 
as predictors of training performance [35]. Towards the end of training, 
HPM is normally introduced as an assurance of the involved trainees’ 
competence and reliability. In this process, different qualifications and 
certifications are given through examinations by assessors subjectively 
in the transport sector. It has been argued for a long time about the bias 
introduced by the assessors. However, few effective solutions have been 
developed and seen in the current literature, despite the promising di-
rection by the incorporation of psychological methods into the 
assessment. 

Specifically, in the aviation sector, a VR-based training simulator was 
relatively inexpensive and safe to provide operator training, regardless 
of the weather conditions [30]. The proposed simulator was utilized for 
various levels of the trainee and heavy equipment training simulator. To 
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replicate critical transport scenarios, a helicopter simulator was 
designed for the training purpose of preparing interdisciplinary teams of 
students for collaborative practice, research, and leadership [36]. In the 
maritime sector, Jo et al. [37] conducted a survey about maritime ca-
dets’ perceptions towards changes in shipping organizations, and the 
competence of seafarers required in the MASS era using clustering. It 
was evident that "the traditional seafarers’ centric role retainer", the 
"ship organizational structure domain achiever", and the "new technical 
competencies builder" were the new competency requirements. In 
addition, analytical hierarchy analysis (AHP) and principal performance 
shaping factors (PSFs) were utilized to identify the factors that affect the 
performance of operators for oil processing and treatment [38]. 
Regarding train operators, EEG, ECG, electrodermal activity (EDA), 
photoplethysmography (PPG) and respiration signals were measured to 
evaluate human performance during train operations [34]. It was 
evident that the intensity of the beta wave of EEG was higher before and 
after the train stop due to the increased level of mental arousal and 
tension. The visual data obtained from a railway overhead gantry 
equipped with multiple cameras was utilized to estimate safety re-
quirements that can process large imagery of trains and help train op-
erators detect possible malfunction [39]. Dhalmahapatra et al. [40] 
assessed the developed immersive VR-based safety training simulator 
that provided training for electric overhead crane (EOT) operators to 
understand and manage the potential hazards in EOT operations. 
Moreover, Brandenburger et al. [41] identified train drivers’ roles and 
personnel selection criteria for a highly automated high-speed passenger 
train. In addition, the transforming from a train driver into a train 
operator required mental persistence and sustained attention, as well as 
sharing in tasks of information integration and decision-making [41]. 

Previous studies illustrated the associated criteria for individual 
competence (i.e., technical skills, non-technical skills, perceived 
awareness, and psychophysiological response) are yet well defined, 
especially in the transportation field. There is a significant research gap 
in integrating objective measurement with subjective remarking (such 
as expert knowledge and questionnaires) to support HPM. Wrongly 
certifying an unqualified operator could lead to the occurrence of 
catastrophic accidents. Additional assurance beyond the current best 
practice in HPM in maritime transportation is therefore strongly needed 
with urgency. One realistic way is to integrate objective HPM using 
psychophysiological data into the current purely subjective assessment 
in the maritime sector to generate a hybrid assessment model. 

2.2. Human performance in maritime transportation using 
neurophysiological methods 

The assessment of human performance using neurophysiological 
methods helps recognize task difficulties and evaluate the qualifications 
of operators under different circumstances. It has been widely applied to 
evaluate operators’ performance on a newly designed system in terms of 
practical capability [42,43]. As shown in Table 1, there are an increasing 
number of methods for neurophysiological measurements, such as 
wearable eye-tracking devices, EEG, and fNIRS, which were integrated 

with simulators, motion capture devices, heart rate measurement, and 
augmented reality, to understand operators’ behavior and 
decision-making patterns in various scenarios [20,44–46]. Compared to 
the other means, the fNIRS has the advantages of higher spatial reso-
lution, flexible restriction on body movement, and relatively low cost. 
However, such advantages are much more benefited in road transport 
safety [47,48] and aviation transportation [49,50] than maritime 
transport. It means that scarce studies are investigated in the maritime 
domain [51], revealing an applied research gap to fulfil. It is particularly 
worrisome when the two facts are taken into account, (1) 60.6% of 
maritime casualties are related to human actions; and (2) MASS de-
velops fast, involving human performance and reliability in a new and 
largely unknown working environment such as mixed manned and 
autonomous ships at sea and remote centers onshore [52]. 

HPM in maritime transportation is associated with mental workload, 
fatigue, and situation awareness (SA). Among them, various methods 
such as the National Aeronautics and Space Administration’s Task Load 
Index (NASA-TLX) [55,56], eye response [45,57], ECG [58], EEG [44, 
46], and fNIRS [20] were utilized for the workload assessment. The 
objective analysis benefited the training and evaluation of seafarers’ 
performance under maritime simulators [44]. Also, time pressure was 
proved to be significant in affecting operation accuracy and eye move-
ments [59]. In addition, mental fatigue was measured by the inventory 
or checklist [19,60], EEG [61], and survey [62]. However, fatigue 
self-assessment was unreliable, so it needed complementation by phys-
iological measurement [63]. Moreover, the SA in the maritime industry 
was interpreted based on the information obtained from the surrounding 
environment, including ship, equipment, route, and weather. The SA of 
operators was proved to be associated with the willingness to take risks 
[64], which illustrated that the operator performance was influenced by 
the perceived and comprehended SA. Different from relevant research 
developed in the aviation and road transport [26,65–69], the seafarers’ 
neurophysiological study reveals more restrains on the experimental 
design. The seafarers’ decision making does not immediately lead to 
timely results due to ship manoeuvring characteristics. The analysis of 
their response under routine work is of equal significance as the one in 
an emergency situation. 

Even with the development of MASS, there is increasing attention on 
the operator assessment and training requirements given new challenges 
introduced by the remote-control mechanism. Evidence showed that 
maintaining psycho- and physiological conditions is significant for 
remote operators [70]. It further proved the critical role of psychological 
assessment for operators of MASS. In light of emerging complicated 
situations and visibility constraints of MASS, operators’ mental work-
load has changed, which further influenced the operators’ overload 
threshold [56]. Additionally, a MASS regulatory framework on the 
competence of remote operators was proposed to redefine the SA by 
integrating the STCW and Goal-Based Gap Analysis [71]. 

There are increasing studies utilizing machine learning techniques to 
propose data-driven methodologies in transportation and reliability 
fields [7,72,73]. Such methodologies can provide objective risk assess-
ments and decision-making insights in maritime transportation. 
Regarding ship automation systems, the operational data was measured 
to investigate ship energy performance and examine the decision to 
equip vessels with hybrid propulsion [74]. To support the decision 
support systems, potential ship grounding scenarios and risks were 
identified and evaluated through a data-driven model using AIS data, 
nowcast data, and seafloor depth data [75]. Such data-driven methods 
quantify the performance measurements with minimized subjective 
bias, which provides a new perspective on maritime safety. 

Currently, the best practice of HPM in the marine industry is to use 
subjective judgements, which is probably biased for the performance 
evaluation of seafarers. Previous research in maritime transportation 
has yet to incorporate any neurophysiological methodology into sea-
farers’ performance assessment. Furthermore, there is not a well- 
established methodology for psychological measurement in HPM; 

Table 1 
Neurophysiological method.  

Technique Application Advantage Disadvantage 

Eye 
tracking 

Operators’ gaze patterns 
in aviation [53] 

Wearable Limited robust 

EEG Monitor emotion, 
mental workload and 
stress in maritime 
operations [21] 

Greater time 
resolution 

Sensitive to body 
motion and noisy 

fNIRS Applied in real-world 
scenarios [54] Working 
memory and cognitive 
load [25] 

Greater spatial 
resolution, less 
crosstalk between 
sites 

Sensitive to the 
light  
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moreover, the question as to how to quantify and convert the psycho-
logical criterion for seafarer qualification remains unanswered in the 
maritime sector. Therefore, the development of a hybrid approach to 
predict seafarers’ qualifications will open a new direction for improving 
HPM in the sector. An fNIRS-based HPM during routine work can 
significantly improve the current practice in MET. Within this context, it 
can not only fulfil the research gap that is largely left open in the existing 
literature but also tackle new human-related risks due to the growth of 
the use of digitalised technologies (e.g. MASS) in maritime operations. 

2.3. New contributions 

Based on a new data-driven machine learning approach, this study 
uses an fNIRS technology to collect seafarers’ psychological data and an 
artificial neural network (ANN) to realize the prediction and classifica-
tion of seafarers with different levels of qualifications. More specifically, 
the theoretical contributions include:  

(1) Holistic use of fNIRS and maritime simulation to derive objective 
data that can be used to model HPM.  

(2) Development of a hybrid assessment model using haemoglobin 
data and ANN.  

(3) Pioneering the use of machine learning methods (e.g. ANN) to 
deal with psychophysiological data and predict seafarers’ expe-
rience in the maritime area. 

(4) Real case analysis through a hybrid approach to classifying sea-
farers of different qualifications. 

From a managerial perspective, maritime administrative/authorities 
can use the findings of this work to define an objective criterion/value 
that can be used to supplement subjective assessment methods and 
evaluate a seafarer’s competence more rationally. It will aid in avoid-
ing/reducing errors in the certification process of seafarer qualification. 
When the result of the traditional subjective assessment is different from 
it of the new method, an in-depth assessment should be launched to re- 
assure the qualification is well reflected by the actual competence of the 
tested seafarer. 

3. Methods 

In this section, the study conducted experiments and compared the 
performance of two groups (i.e., experienced and inexperienced sea-
farers with different levels of qualifications). Two groups of seafarers (e. 
g., experienced and inexperienced) of 40 participants (20 in each group) 
were invited to undertake an assessment of ship anti-collision in a ship 
bridge simulation. This study collected the psychophysiological data of 
maritime operators under two different levels of workloads, i.e. 
distraction and no distraction situations. The “no distraction” situation 
was developed in several different timeframes, including a 5 min base-
line, a 20 min watchkeeping period with observation and attention 
maintained till the target vessel was spotted, a 10 min decision-making 
phase till the evasive manoeuvre was performed. On the other hand, the 
“distraction” situation was developed based on the same timeframes, 
where an additional task was required to report the position of the own 
ship. 

The objective HPM was conducted using a psychophysiological data- 
driven machine learning method. Specifically, the analysis consisted of 
fNIRS data and ship distance data. Among them, raw fNIRS data was pre- 
processed and trained using ANN model. The results of the model pre-
sented the predicted participant’s experience. The results revealed the 
possibility of using psychophysiological data to predict the experience. 
Then the distance between ships was compared and analyzed to explain 
human behaviors within the two distinguished groups. 

3.1. Participants 

The participants were recruited from the Nautical Institute UK, as 
shown in Table 2. There were 20 experienced seafarers, with an average 
age of 44.6 years old. Their average employment time was 213.4 
months. The 20 inexperienced participants were, on average, 25 years 
old, with 27.2 months of service time as seafarers. Regarding the criteria 
of participant selection, all participants require not to have a history of 
head injury or currently taking medication for anxiety and high blood 
pressure [20]. 

3.2. Experiment protocol 

There were two levels of workload situations developed for the 
experiment. The experiment protocol is illustrated in Fig. 1. After a 5 
min baseline period, the participants were requested to keep a lookout in 
the bridge simulator. Such a watchkeeping period ended when partici-
pants spotted the target vessel (they pressed the button to inform 
investigator). On average, the duration of the watchkeeping period was 
about 20 min. With reference to the baseline time, the watchkeeping was 
divided into four sections (w1, w2, w3, w4), with each section for about 
5 min. Then, it came into a decision-making period. The participants 
needed to observe the position and action of target vessels and then 
evaluate whether and when to make a manoeuvre. When they altered 
the course of the own ship (it was recorded in the simulator), the ex-
ercise ended. However, to reflect the features at the early (after spotting 
the vessel) and later (before manoeuvring) stages, the decision-making 
process was divided into two sections (d1, d2), with each for about 5 
min. The fNIRS data were collected through the above procedures (w1- 
d2). 

The fNIRS data were measured by Nirsport 88 continuous wave 
fNIRS device that consists of 8 sources and 8 detectors that emit near- 
infrared light. It was collected to reveal the brain activities of partici-
pants in different sections of the experiment, which reveals objective 
HPM using psychophysiological data. The deoxygenated haemoglobin 
(HbR) and HbO levels were obtained from the montage designed by 
NIRSite, as shown in Fig. 2. This montage covered the prefrontal cortex 
area that explained brain functions of working memories and decision- 
making. There were 7 sources and 7 detectors, resulting in a total of 
15 channels of HbO and HbR. The specific montage was divided into 
three sub-areas: left dorsolateral prefrontal cortex (DLPFC) (channel 
1–5); central DLPFC (channel 6–10); right DLPFC (channel 11–15). 

In addition, care was taken to avoid hair from the eyebrows or side of 
the head interfering with detectors and sources. The staff in the control 
room next to the simulator recorded the target spotted time with the 
corresponding distance (distance 1), and the course changed time with 
the corresponding distance (distance 2). 

3.3. Data analysis 

3.3.1. fNIRS raw data analysis 
Raw fNIRS data (15 channels) was pre-processed. The Interpolate 

function was used to fill the data in each channel where there was de-
tector saturation. Then the data quality function was applied to check 
and identify any “poor quality” channels in which the signal was too 
weak. After removing discontinuities and spike artefacts, a low-pass 
filter was applied to reduce high-frequency instrument noise and 

Table 2 
Two groups of participants.  

Group Age 
(year) 

Employment 
(month) 

Gender STCW 
qualification 

Experienced 44.6 213.4 20 males MM, CM, OOW 
Inexperienced 25 27.2 18 males, 2 

females 
AB, cadet  
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physiological noise such as fast cardiac oscillations. The pre-processed 
data was imported for haemodynamic state calculation using the 
modified Beer-Lambert law [76]. It reveals changes in HbO, HbR and 
total haemoglobin (Hb). All fNIRS results were reported in micromoles 
(μM). 

The analysis was conducted to investigate how onboard tasks influ-
enced the neurophysiological activation of experienced and inexperi-
enced seafarers concerning collision avoidance. Moreover, it determined 
differences between left, central, and right DLPFC activities. As far as the 
data analysis is concerned, there was a transformation of the data called 
Correlation-Based Signal Improvement (CBSI) that forces HbO and HbR 
to be negatively correlated and controls for head movement, which was 
developed by Cui et al. [77]. As HbR is transformed into the inverse of 
HbO after this point, only HbO data were used in the subsequent 
analyzes. 

The results of fNIRS data analysis demonstrated significant brain 
activities in different sections for different groups. This statistical anal-
ysis helps extract elements as input data for the experience prediction 
model. 

3.3.2. Artificial neural network modelling 
In the current literature, basic statistical methods have been used for 

the fNIRS data analysis. Few studies utilize machine learning methods to 
facilitate data analysis and processing. ANN is derived from biological 
neural networks with multiple neurons. It has a single input and output 
but may also have none, one or many hidden layers. Among an orien-
tated network, the layers of parallel processing elements are neurons. 
Each layer is connected to the backward layer by interconnection 
strengths or weights. A perceptron network with one or more hidden 
layers is called a multilayer perceptron network, which is widely 
implemented in the ANN [78]. The ANN has the advantage of offering 
numerical models on relationships between complex nonlinear data but 

does not require any prior assumption [79]. Also, it can naturally reduce 
the effect of the data noise. Compared with other machine learning 
methods such as Support Vector Machine (SVM), ANN has the disad-
vantage of overfitting [80]. However, it can be mitigated by integrating 
with other optimization approaches such as the genetic algorithm (GA) 
[81]. The SVM often outperforms ANN in terms of small data due to an 
improved parameter selection [79]. 

This study uses the multilayer perceptron network model of ANN to 
predict seafarers’ experience. The ratio of training data to testing data 
was selected as 7:3, which aided in yielding the highest prediction ac-
curacy in the literature [82]. The filtered channels of fNIRS which 
revealed a significant main effect on the experience were selected as 
neurons to conduct the ANN modelling. The participants’ experience 
was the dependant variable, and a multilayer perception network 
method was utilized. The ANN results will reveal the predicted partici-
pant’s experience, so as to enable the objective HPM using psycho-
physiological data-driven approach. 

4. Results 

This study conducts objective HPM using a psychophysiological 
data-driven machine learning method, supported by human behavior 
analysis. The HPM analysis consists of two parts: (1) ANN prediction 
model using fNIRS data; (2) human behavior comparison using ship 
distance data. On the one hand, the raw fNIRS data is pre-processed, 
followed by ANOVA analysis. The significant ROI during the signifi-
cant period is selected as the input of the ANN prediction model to 
predict seafarer experience. On the other hand, the ship distance data 
extracted from the simulator is used as a support to analyze human 
behaviors, revealing the manoeuvre differences between the two groups. 
The data analysis flow is shown in Fig. 3. 

4.1. Neuron definition using fNIRS data 

There are 40 participants’ fNIRS data for the analysis. The fNIRS data 
are divided into three Regions of Interest (ROI) corresponding to the left- 
lateral, medial and right-lateral areas of prefrontal cortex. After data 
pre-processing, HbO data are averaged for each task period, i.e. four 
periods of watchkeeping and two periods of decision-making. HbO data 
for each ROI are subjected to a 2 (experienced/inexperienced) x 2 

Fig. 1. Experiment protocol.  

Fig. 2. fNIRS montage - where redpoint refers to ‘Source’, blue one refers to 
‘Detector’, and purple lines refer to channels (source: Authors). 

Fig. 3. Data analysis flow.  
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(distraction/no-distraction) x 6 (task period) ANOVA. This statistical 
analysis helps define neurons as the input of the ANN model. 

Analysis of left-lateral and medial ROI fails to reveal any statistically 
significant main effects or interactions. However, analysis of HbO data 
from the right-lateral ROI reveals a significant main effect for task period 
[F(5,30) = 3.76, p=.02, ηp

2=0.4], as well as significant interactions be-
tween experience x task period [F(5,30) = 2.30, p=.05, ηp

2=0.27]. Post- 
hoc testing indicates that average HbO at the right-lateral ROI is 
significantly lower during W3 and W4 than all other periods (p < .05); 
this effect is illustrated in Fig. 4 [20]. At the beginning of wathkeeping 
phase (w1), the right-lateral ROI’s HbO levels reflect the normal state of 
seafarers with wahckeeping task. At the later phase of watchkeeping (w3 
and w4), it shows a decline of HbO, which indicates the boredom of 
seafarers in these periods. From d1 (decision 1) period, seafarers’ HbO 
levels have increased after they spot the target ship. Then, they are 
supposed to think about whether to take actions for collision avoidance 
while observing the target ship and making the decision, which makes 
the HbO level continuously increase at d2 (decision 2) period. 

The results illustrate the value of investigating seafarers’ specific 
areas of brain activities in a task. In the ANN model, the HbO level of 
particular brain areas with significant differences can be extracted as 
data input to predict the model. Therefore, the right-lateral ROI is 
selected for the subsequent step modelling. Regarding MET assessments, 
the changes in HbO show the possibility of utilising psychophysiological 
data to predict the professional levels of trainees. It predicts seafarers’ 
qualification levels under different scenarios, complementing the sub-
jective evaluation by assessors. In addition, when the traditional HPM by 
assessors is inconsistent with the result predicted by fNIRS, extra mea-
sures should be taken to ensure seafarers reach the proper level of 
competence. 

The interaction effect between experience x task period is also 
explored using t-tests, as seen in Fig. 5. These tests reveal that the 
average HbO is higher for the experienced participants at the right- 
lateral ROI, but only during the fourth period of watchkeeping (w4) 
when the ship is spotted [t(36)=2.78, p < .01]. It means that HbO of 
experienced group is significantly different from the HbO of inexperi-
enced group at the right-lateral ROI during w4. Such fNIRS data in 
channels 11–15 can be used to distinguish experienced and inexperi-
enced groups. 

The results demonstrate the significant differences among two 
groups of seafarers in HbO levels during the fourth period of watch-
keeping (w4). In the ANN model, the HbO level during w4 can be 
extracted as the input data to predict the model. It shows that different 

tasks or stages of a task are related to varying levels of HbO of humans. 
With the development of MASS, the new workspace will introduce new 
duties and new competence requirements. However, current knowledge 
and assessment criteria for assessors to evaluate MASS operators are 
limited at the early stage of MASS. Given challenges in a remote-control 
mechanism, psychological assessment for operators of MASS plays a 
critical role. The results of fNIRS data analysis provide a perspective to 
observe and evaluate human performance in designed scenarios for 
advanced ships. It remedies the insufficient expert knowledge in judging 
operator qualifications in MASS environments. In this way, utilising 
fNIRS data in a specific period to predict the experience of operators can 
serve as a reliable validation and evaluation method for HPM in 
everyday working scenes onboard or onshore. 

Therefore, the HbO at the right-lateral ROI is extracted for neurons 
used as the input of the proposed ANN prediction model. In other words, 
the fNIRS data of channels 11–15 during w4 period are utilized as 
neurons for further analysis. A detailed statistical analysis of significant 
differences in results can be found in Fan et al. [20]. 

4.2. Human performance measurement 

HPM in this paper consists of two parts. The first part classifies the 
seafarer experience using fNIRS data through the ANN model, and the 
second part analyzes the human behavior among two groups using ship 
distance data. The study utilizes a multilayer perceptron network with 
one hidden layer to generate the ANN model. The input of the ANN 
model is 36,529 pieces of fNIRS data, each with 5 columns (channels 
11–15) reflecting the HbO of the right-lateral ROI; the output is the 
predicted “experience”. This numerical model reveals relationships be-
tween fNIRS data of 5 channels and the participant’s experience. The 
results of the first part (ANN model) show that it is possible to extract the 
fNIRS data to predict the seafarer experience, so as to judge whether the 
seafarer is qualified to be an experienced professional. The second part 
shows the differences in the distance when ship was spotted and the 
distance when the manoeuvre was made. The results of two parts show 
that using fNIRS and distance data helps objectively predict the expe-
rience level of a seafarer and evaluate human behaviors. 

4.2.1. Model prediction and human performance for a non-distraction 
situation 

A non-distraction situation is with the timeframe of baseline, 
watchkeeping, and decision making. The fNIRS data of the right ROI are 
extracted as neurons because they are significantly higher during the 

Fig. 4. Mean HbO and standard error during all Task Periods for Right-Lateral ROI [20].  
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Fig. 5. Mean HbO and standard error in Right-Lateral ROI for Task Period x Experience Interaction. ** = significant difference at p < .01.  

Fig. 6. Network diagram for the non-distraction situation.  
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fourth period of watchkeeping (w4) when the ship was spotted. In the 
ANN model, 70% of data is randomly selected as training data, while 
30% is used as testing data. As a result, the network diagram for the non- 
distraction situation is illustrated in Fig. 6. There is one hidden layer for 
the ANN. 

The ANN model prediction error for the training dataset is 4.8%, 
while for the testing dataset, it is 5%. The area under the ROC curve 
(AUC) is widely used to represent the effectiveness of ANN’s accuracy in 
prediction and classification [83]. The higher AUC, the better the test is. 
From the curve in Fig. 7, the AUC is 0.991, indicating the validity of the 
model and its satisfactory prediction results. In the light of all 5 channels 
of fNIRS data, channel 15 is the most important independent variable 
(with an importance of 0.309) for the operator’s qualification predic-
tion. It proves that the fNIRS data is distinguished between the experi-
enced and inexperienced groups, in the non-distraction situation. The 
results show that the proposed ANN model effectively predicts the 
seafarer experience using fNIRS data, with an accuracy of 95%, in the 
non-distraction situation. As this study is the first to use psychological 
data and a machine learning approach to predict seafarers’ qualifica-
tions, it will be difficult to undertake a like-to-like benchmark. Never-
theless, the accuracy of ANN model prediction reflects the reliability of 
results compared to the realistic seafarer experience. Therefore, the new 
method can help, as an additional assurance, detect and reduce sub-
jective bias in maritime HPM. 

On the other hand, human behavior analysis is conducted using ship 
distance data. With regards to “Distance 1′′, where the own ship spotted 
the target ship, the experienced seafarers performed with a distance of 
4.94 nm while inexperienced seafarers at 4.57 nm. In the light of “Dis-
tance 2′′, where the own ship altered the course to avoid the collision, 
experienced seafarers (3.41 nm) outperformed the inexperienced group 
(1.90 nm) by manoeuvring at a greater distance, as seen in Fig. 8. It can 
be seen that, in the non-distraction situation, experienced seafarers 
spotted the vessel and made manoeuvres earlier than inexperienced 
seafarers did. 

4.2.2. Model prediction and human performance for a distraction situation 
A distraction situation is within the same timeframe as the non- 

distraction situation but with reporting missions at specific intervals. 
The fNIRS data of the right ROI during the fourth period of watch-
keeping (w4) is distracted as neurons for the model. As a result, the 
network diagram for the distraction situation is illustrated in Fig. 9. 
There is one hidden layer for the ANN. 

The model prediction error for the training data set is 3.9%, while the 

prediction error for the testing dataset is 4.3%. From the ROC curve in 
Fig. 10, the area under the curve is 0.989, which indicates a satisfactory 
prediction result. Among all 5 channels of fNIRS data, channel 14 is the 
most important independent variable (with an importance of 0.293) for 
the operator’s qualification prediction. In addition, it proved that the 
fNIRS data is distinguished between the experienced and inexperienced 
groups, in the distraction situation. The results show that the proposed 
ANN model effectively predicts the seafarer experience using fNIRS 
data, with an accuracy of 95.7% in the distraction situation. 

Similarly, human behavior analysis is conducted using ship distance 
data. Regarding “Distance 1′′, where the own ship spotted the target 
ship, experienced seafarers performed with 4.60 nm while inexperi-
enced seafarers performed with 4.45 nm. In the light of “Distance 2′′, 
where the own ship altered the course to avoid the collision, experienced 
seafarers, on average, manoeuvred at 2.10 nm while the inexperienced 
group did at 1.80 nm, as seen in Fig. 11. In a distraction situation, 
experienced seafarers spotted the vessel and altered the course earlier 
than the inexperienced seafarers. Due to the distracting tasks, the dif-
ference between the experienced and inexperienced group is not as 
significant as the results in Section 4.2.1 (the non-distraction situation). 

5. Discussions and implications 

The findings from the ANN model prove the acceptable prediction 
accuracy for the seafarer experience guidance, as shown in Figs. 6 and 9. 
Given such circumstances, human performance can be assessed based on 
the newly proposed approach with the support of the use of fNIRS. It is 
obvious that based on this new approach, seafarers’ performance in 
daily work (e.g., watchkeeping) and even their qualifications can be 
quantified and evaluated objectively to supplement the currently used 
subjective assessment. 

The results from fNIRS can help examiners to avoid their subjective 
bias in seafarers’ qualification examinations. Collecting fNIRS seafarers’ 
data during daily duty onboard makes it possible to predict seafarers’ 
qualification levels under different scenarios. If the traditional HPM by 
experts in one exam is inconsistent with the one predicted by fNIRS, 
extra measures should be taken to ensure they reach the proper level of 
competence. It will shift the paradigm of the current seafarer qualifi-
cation and certification mechanism. With the support of fNIRS, the 
seafarer’s qualification can be predicted from their training process, 
which will significantly complement the current subjective evaluation of 
operator performance using expert knowledge and self-assessment 
questionnaires. Furthermore, the conventional assessment of seafarers 
against the data influcing their behavior such as time and distance when 
seafarers take actions reveals limited statistical characteristics for 
various qualification levels of seafarers. This objective behavior data 
could not be proved to be scientifically robust to indicate seafarers’ 
qualifications in both non-distraction and distraction situations. How-
ever, the new approach by the hybrid of an ANN model and an fNIRS 
technology proves the applicability of such HPM and shows a satisfac-
tory prediction accuracy rate. Therefore, based on the new findings from 
this experiment, HPM using psychophysiological aid in a maritime case 
opens a new paradigm for MET. 

In light of the seafarer/operator training in the maritime domain, the 
proposed objective assessment method serves as a criterion for expert 
judgement and supports maritime training. Specifically, HPM using 
psychophysiological data records the brain signals during seafarer 
training. The proposed ANN model using such psychophysiological data 
can then be used to predict seafarer experience with an accuracy of 95%. 
Based on records and analysis results from fNIRS data, it provides a 
promising new solution towards a more rational assessment of whether a 
seafarer meets the criteria of a standard qualification through psycho-
physiological measurement. One significant challenge for onboard 
training (OBT) is the deficiency of administration efforts to monitor OBT 
activities [84]. It was evident that the issue of certificates of competence 
for seafarers is based on the OBT Record Book verified by maritime Fig. 7. ROC curve for non-distraction group.  
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authorities’ officials. However, the effectiveness of the method through 
the OBT Record Book is arguable, possibly causing the misclassification 
of a seafarer with the competence at the board line of two neighboring 
classes/ranks. Using the proposed approach, it serves as a new reference 
to aid the currently established OBT to classify a seafarer with the 
required competence more rationally. It will be beneficial when the 
results from the newly proposed fNIRS-ANN approach and OBT conflict. 
Therefore, it has many insights to further explore the proposed method 
and see how it can complement the operator experience assessment in 
practice. Psychophysiological evaluation technologies, such as EEG [44] 
and fNIRS, can support the HPM given objective data collection. In this 
way, the results indicate recommendations on the “qualified” or 

“unqualified” responses of seafarers in maritime training. The approach 
can be tailored to make it applicable in other areas of similarity, such as 
offshore and other transport modes. Instead of using the established 
HRA models [85,38], this assessment conquers data limitation and 
expert knowledge bias research gaps. In this regard, maritime author-
ities can take it as an alternative way to supervise, monitor, and assess 
the operator training process. 

Moreover, fNIRS-based HPM supports the measurement and quan-
tification of human response under specific missions, serving as an in-
dicator of qualified seafarers. It shows the possibility for the shipping 
company to evaluate employees given specific scenarios, integrated with 
the simulator training. Specifically, the training dataset can be collected 

Fig. 8. Means of distances for seafarers in non-distraction situation.  

Fig. 9. Network diagram for the distraction situation.  
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from the qualified employees given specific scenarios or tasks, and the 
test data is from employees to be evaluated. The proposed ANN model 
distinguishes skilled employees by analyzing their brain activity signals. 
The experienced and qualified seafarers will be selected to commence 
the nautical tasks. In contrast, unqualified and inexperienced seafarers 
are expected to have additional training courses or transfer to other 
tasks. In summary, the criteria for “qualified” employees can be pro-
duced based on previous traditional checklists and the fNIRS index for 
qualified seafarers. Further, the efficient evaluation of employees re-
lieves the pressure on ship companies to reduce the crew size as far as 
ship automation is concerned. It provides the guideline to optimise 
human resource allocation. In this way, qualified employees are elected 
to ensure safe shipping, which will compensate for the above deficiency 
of maritime training. 

The proposed fNIRS-based measurement illustrates the possibility of 

predicting operators’ qualification from daily maritime duty (watch-
keeping) rather than emergency responses. It explains the brain activity 
differences between experienced and inexperienced operators in the 
face of common working scenarios. Therefore, the assessment method-
ology could act as a predictor of operators’ reliability levels under 
various circumstances. The development of MASS requires new per-
spectives on human factors and seafarers’ qualifications, given advanced 
technologies and new scenarios in shipping [37,86]. Besides the emer-
gency response, human performance under typical working scenarios 
requires more attention for the MASS. There are various assumptions 
and plans for the autonomous ship design within remote operators, 
which urgently need a reliable validation and evaluation method for 
mental workload in such everyday working scenes. Given the new 
design of autonomous ships, the proposed methodology will serve as a 
tool to test human performance onboard or onshore. Under the new 
deployment for autonomous ships, ship manufactures and shipbuilders 
could utilize this supportive tool to evaluate human performance in 
designing complex systems so the design can be assured as safe and 
human-centric as possible. The results are expected to establish the 
guideline for the ergonomic design of both traditional ships and the 
MASS. In addition, the proposed methodology shows insights into HPM 
in other high-risk sectors, such as the autonomous industry [87]. The 
automation development in other transport sectors can also improve 
human training and education accreditation, which is beyond the 
maritime case. Subjective assessment of human performance in trans-
port will be significantly enhanced by introducing novel methodology 
and technology using the new approach in this study as a foundation. It 
will help evaluate the operator’s qualification and predict the human 
performance failures in a wide range of different transport sectors and 
applications. 

6. Conclusion 

This study proposes an fNIRS-based HPM method to quantify the 

Fig. 10. ROC curve for distraction group.  

Fig. 11. Means of distances for seafarers in distraction situation.  
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psychophysiological activities and predict the operators’ qualifications. 
40 participants were recruited to conduct a new experimental maritime 
transport study, measured by the fNIRS technology. Two situations, 
distraction and non-distraction, were deployed for 20 participants. In 
each situation, there were 10 experienced seafarers and 10 inexperi-
enced ones. Then, the statistical method was used to identify significant 
brain areas (right prefrontal cortex) and task period (late watchkeeping 
period) for the operators based on the fNIRS data. The right prefrontal 
cortex of operators in the w4 task period was selected as neurons for the 
ANN modelling. The machine learning algorithm was applied to the 
classification of seafarers’ experiences. Lastly, the prediction rates of 
operators’ experience for the distraction and non-distraction groups 
were 95.7% and 95.0%, respectively. It proves the applicability of fNIRS 
for operator experience assessment under daily work scenarios. 

To conclude, the contributions of this paper lie in the use of fNIRS 
and maritime simulation in a holistic way to predict seafarers’ qualifi-
cations and hence reduce the subjective bias introduced by the assessors 
in the certification process. The proposed objective assessment model 
utilizes an ANN algorithm to classify the seafarers’ experience using 
haemoglobin data. The result obtained from the performance of 40 
participants in ship bridge simulation reveals insights into the HPM 
framework using psychophysiological data, which benefits and supports 
MET. Nevertheless, there are limitations to this study. Developing the 
training dataset requires a sufficient sample size in each scenario. It will 
be costly when other researchers and industries utilize the proposed 
method and fNIRS technology to conduct HPM. Participants were con-
strained in their seats and not allowed to walk in the bridge simulation 
room. Although reducing movement artefacts of data collection, this 
constraint is inconsistent with seafarers’ daily work scenes. Future 
studies will be undertaken to address the limitation by applying wireless 
equipment and exploring algorithms to reduce relevant artefacts 
induced by the walking and movement of seafarers. In addition, the ship 
bridge team consist of a group of seafarers instead of a sole worker. 
There are interactions between team members and the hierarchy in the 
existing bridge team. This study only considered individual perception 
and decision-making. In future work, teamwork should be addressed in 
human performance measurement. 
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