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Abstract: The biodiversity of our planet is under threat, with approximately one million species
expected to become extinct within decades. The reason: negative human actions, which include
hunting, overfishing, pollution, and the conversion of land for urbanisation and agricultural purposes.
Despite significant investment from charities and governments for activities that benefit nature,
global wildlife populations continue to decline. Local wildlife guardians have historically played a
critical role in global conservation efforts and have shown their ability to achieve sustainability at
various levels. In 2021, COP26 recognised their contributions and pledged USD 1.7 billion per year;
however this is a fraction of the global biodiversity budget available (between USD 124 billion and
USD 143 billion annually) given they protect 80% of the planets biodiversity. This paper proposes a
radical new solution based on “Interspecies Money”, where animals own their own money. Creating
a digital twin for each species allows animals to dispense funds to their guardians for the services
they provide. For example, a rhinoceros may release a payment to its guardian each time it is detected
in a camera trap as long as it remains alive and well. To test the efficacy of this approach, 27 camera
traps were deployed over a 400 km2 area in Welgevonden Game Reserve in Limpopo Province in
South Africa. The motion-triggered camera traps were operational for ten months and, using deep
learning, we managed to capture images of 12 distinct animal species. For each species, a makeshift
bank account was set up and credited with GBP 100. Each time an animal was captured in a camera
and successfully classified, 1 penny (an arbitrary amount—mechanisms still need to be developed
to determine the real value of species) was transferred from the animal account to its associated
guardian. The trial demonstrated that it is possible to achieve high animal detection accuracy across
the 12 species with a sensitivity of 96.38%, specificity of 99.62%, precision of 87.14%, F1 score of
90.33%, and an accuracy of 99.31%. The successful detections facilitated the transfer of GBP 185.20
between animals and their associated guardians.
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1. Introduction

Our planet is a diverse and complex ecosystem that is home to approximately 8.7 million
unique species [1]. The United Nations Sustainable Development Goals report revealed
that one million of these species will become extinct within decades [2]. While the situa-
tion is critical, the report emphasises that we can still make a difference if we coordinate
efforts at a local and global level. Humans have played a major role in every mammal
extinction that has occurred over the last 126,000 years [3]. This is due to hunting, over-
harvesting, the introduction of invasive species, pollution, and the conversion of land
for crop harvesting and urban construction [4]. The illegal wildlife trade, fuelled by the
promotion of medicinal myths and the desire for luxury items, has also become a signif-
icant contributor to the decline in biodiversity [5,6]. According to the United Nations
Environment Programme, the illegal wildlife trade is estimated to have an annual value
of USD 8.5 billion [7,8]. The white rhinoceros commands the highest price at USD 368,000,
with the tiger close behind at USD 350,193 [9]. Animal body parts that are highly sought
after, such as rhinoceros horns, can fetch up to USD 65,000 per kilogram, making them
more valuable than gold, heroin, or cocaine [10]. Pangolins are the most trafficked mammal
in the world, and although the value of their scales is significantly less than rhinoceros
horn (between USD 190/kg and USD 759.15/kg) they are traded by the ton [11]. In 2015,
14 tons of pangolin scales, roughly 36,000 pangolins, was seized at a Singapore port with a
black market value of USD 39 million [12].

Charities, governments, and NGOs protect wildlife and their habitats by raising
money, developing policies and laws, and lobbying the public to fund conservation projects
worldwide [13]. In 2019, the total funding for biodiversity preservation was between
USD 124 and USD 143 billion [14]. The funds were split with 1% towards nature-based
solutions and carbon markets [15], 2% for philanthropy and conservation NGOs [16], 4%
for green financial products [17], 5% for sustainable supply chains [18], 5% for official
development assistance [19], 6% for biodiversity offsets (in agriculture, infrastructure,
and extractive industries that unavoidably and negatively impact nature) [20], 20% for
natural infrastructure (such as reefs, forests, wetlands, and other natural systems that
provide habitats for wildlife and essential ecosystem services such as watersheds and
coastal protection) [21], and finally, 57% for domestic budgets and tax policy (to direct
and influence the economy in ways that increase specific revenue types and discourage
activities that harm nature) [22].

The world’s most impoverished individuals, numbering around 720 million, tend to
inhabit regions where safeguarding biodiversity is of the utmost importance [23–25]. Their
cultures, spirituality, and deep-rooted connections to the environment are intertwined
with biodiversity [26], and traditionally, conservation practices that involve local people as
wildlife guardians have been successful in preventing biodiversity and habitat loss [27,28].
Yet, they have historically received almost zero economic incentive to protect their sur-
roundings [25]. In 2021, COP26 redressed this issue and pledged USD 1.7 billion annually to
local stakeholders in recognition of the biodiversity stewardship services they provide [29].
However, the allocation falls short of the USD 124 billion—USD 143 billion annual global
biodiversity budget given that they maintain 80% of the planets biodiversity [30,31]. Most
of the global biodiversity budget is spent in industrialised countries; only a tiny fraction
actually ends up in the hands of the extreme poor. In this paper, we propose an innovative
solution based on “Interspecies Money” [25], which involves the allocation of funds to
animals which they can use to pay local wildlife guardians for the services they provide.
Each species group has a digital twin [32] that serves as its identity. Whenever an animal
is identified, it can release funds to its designated guardian. For instance, a giraffe can
provide a few dollars to its guardian each time it is photographed, while an orangutan can
give thousands of dollars to its guardian as long as it is alive and healthy.

Wildlife conservationists employ a variety of technologies, including drones [33–35],
camera traps [36], and acoustics [37], to detect and monitor animals in their natural habitats.
However, drones can pose challenges as animals are difficult to discern from high altitudes,
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and their noise can disturb and frighten many species. While audio monitoring has been
useful, its effectiveness is contingent on animals making detectable sounds. Camera traps
offer a comprehensive view of the environment and enable the identification of different
species, as well as individual animal counts. Therefore, this paper proposes a solution
that utilises deep learning and 3/4G camera traps to identify animal species and facilitate
financial transactions between wildlife accounts and local stakeholders. It differs from
the original “Interspecies Money” concept in that it does not use individual identification
but simply detections of the species. Using a region-based model, animals are detected in
images as and when they are captured in camera traps installed in Welgevonden Game
Reserve in Limpopo Province in South Africa. Each animal species group is given a
makeshift bank account with GBP 100 credit. Every time an animal is successfully classified
in an image, 1 penny is transferred from the animal account to the guardian. Note that
this is an arbitrary amount and mechanisms still need to be developed to set the value of
species. Figure 1 shows an example detection using our deep learning approach. In this
example, three pence would be transferred from the species account to the guardian.

Figure 1. An example detection of a dazzle of Equus quagga captured during the trial in Welgevonden
Game Reserve in Limpopo in South Africa. Following this detection, 3 pence was transferred from
the animal account to the guardian account.

The remainder of this paper delves deeper into the key points discussed in the intro-
duction. Section 2 provides a brief history of conservation, which serves as a foundation
for the approach taken in this paper. Section 3 outlines the Materials and Methods used in
the trial, which posits a new solution for addressing the challenges described. In Section 4,
the results are presented before they are discussed in Section 5. Finally, Section 6 concludes
the paper and provides suggestions for future work.

2. A Brief History of Conservation

Conservation is a multi-dimensional movement that involves political, environmental,
and social efforts to manage and protect animals, plants, and natural habitats [38,39].
During the “Age of Discovery” in the 15th to 17th century [40], sport hunters in the US
formed conservation groups to combat the massive loss of wildlife caused by European
settlers [41]. As local policies emerged, people living close to areas where biodiversity
was protected lost property, land, and hunting rights [42]. Settlers criminalised poaching,
which was associated with local people who often hunted and fished for their survival [43].
Widespread laws led to the creation of protected areas and national parks [44], which
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were established within the context of colonial subjugation [45], economic deprivation [46],
and systematic oppression of local communities [47].

As a result, local people engaged in “illegal” hunting to meet subsistence needs [48],
earn income or status [49], pursue traditional practices of cultural significance [50], or ad-
dress contemporary and historical injustices linked with conservation [49]. They viewed
settlers (including sport hunters) as unwanted interlopers who stole their lands [43]. The in-
dustrial revolution in the 19th and early 20th centuries [51], marked by larger populations
and working communities, further escalated the demand for natural resources, resulting in
increased biodiversity loss [52,53]. Today, many local communities in ecologically unique
and biodiversity-rich regions of the world still perceive conservation as a Western con-
struct created by non-indigenous peoples who continue to exploit their lands and natural
resources [54].

For decades, conservationists have debated whether it is human activity or climate
change that has driven species extinctions and whether the loss of biodiversity is a recent
phenomenon [3]. Studies have provided compelling evidence to show that it is, in fact,
humans who are responsible for the wave of extinctions that have occurred since the Late
Pleistocene, 126,000 years ago [55]. For example, toward the end of the Rancholabrean
faunal age around 11,000 years ago, a substantial number of large mammals vanished
from North America, which included woolly mammoths [56], giant armadillos [57], and
three species of camel [58]. Similar extinctions were seen in New Zealand when the
Dinornithiformes (Moa) became extinct about 600 years ago [59,60] and in Madagascar where
the Archaeoindris fontoynontii (giant lemur) disappeared between 500 and 2000 years ago [61].
Many believe that species and population extinction is a natural phenomena [62], but the
evidence suggests that human activity is accelerating species extinction and biodiversity
loss [63].

Despite the efforts to protect biodiversity and natural habitats, we are sleepwalk-
ing ourselves into a sixth mass extinction [64]. Economic systems driven by limitless
growth continue to negatively impact conservation efforts [65]. Rapid development and
industrial expansion is depleting natural resources [66] and intensifying the conversion
of large stretches of land for human use [67]. The Earth’s forests and oceans are persis-
tently exploited by major corporations who view the planet’s natural resources as capital
stock [68,69]. Economic models and financial markets treat natural systems as assets to be
used immediately, leading to the abuse of nature for short-term profits with little regard for
the long-term costs to society and the environment [70]. While The Economics of Ecosys-
tems and Biodiversity (TEEB) attempt to hold large corporations to account [71], many
believe we need nothing short of a redesign of corporations themselves if we are to success-
fully enable a transition to a ‘Green Economy’ [72]. Conservationists agree that biodiversity
and natural systems are essential for human survival and economic prosperity but criticise
the big corporations and political systems that prioritise immediate economic gains at the
expense of the prosperity and well-being of both current and future generations [73].

The importance of involving local stakeholders as essential contributors in biodi-
versity monitoring and conservation efforts is emphasized in current perspectives [74].
Recognizing their role as capable natural resource managers, equitable schemes have been
introduced to promote their engagement in locally grounded social impact assessments
that consider the diverse implications of human activities in biodiversity-rich areas [75].
These efforts are largely driven by the Durban Accord led by the International Union for
Conservation of Nature (IUCN) [76], which advocates for new governance approaches in
protected areas to promote greater equity in local systems [77,78]. This necessitates a fresh
and innovative strategy that upholds conservation objectives while inclusively integrating
the interests of all stakeholders involved. This integrated approach aims to foster synergy
between conservation, the preservation of life support systems, and sustainable develop-
ment. While this paper does not claim to comprehensively address all the issues raised, it
does offer a rudimentary tool that may help implement such a strategy by quantitatively
accounting for biodiversity protection and equitable revenue sharing.
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3. Materials and Methods

This section describes the implementation details for the digital stewardship and
reward system posited in this paper that was deployed and evaluated in Welgevonden
Game Reserve in Limpopo Province in South Africa. The section begins with a discussion
on the training data collected for a Sub-Saharan Africa deep learning model, which was
trained to detect 12 different animal species. A second dataset, which was used to evaluate
the trained model, is also presented. This is followed by a discussion on the Faster R-
CNN architecture [79] and its deployment in Conservation AI [80,81] to classify animals
and validate the revenue-sharing scheme. The section is concluded with an overview of
the performance metrics selected to evaluate the trained model and the inference tasks
conducted during the trial.

3.1. Data Collection and Pre-Processing

The Sub-Saharan Africa model was trained with camera trap images of animals
obtained from Conservation AI partners, which include Equus quagga, Giraffa camelopardalis,
Canis mesomelas, Crocuta crocuta, Tragelaphus oryx, Connochaetes taurinus, Acinonyx jubatus,
Loxodonta africana, Hystrix cristata, Papio sp., Panthera leo and Rhinocerotidae, the 12 species
considered in this study. The class distributions can be seen in Figure 2.

Figure 2. Species Distribution for the Sub-Saharan Training Dataset. The largest number of tags was
for the Rhinocerotidae (1771) and the lowest was for the Equus quagga (1099).

Following quality checks, between 1099 and 1771 tags per species were retained
(17,712 in total). Tags are labelled binding boxes that mark the location of an object of
interest (animal) within an image. Binding boxes were added to an image using the
Conservation AI tagging website, which are serialised as coordinates in an XML file using
the PASCAL VOC format [82]. The Conservation AI tagging site is shown in Figure 3 .

XML files are an intermediary representation used to generate TFRecords (a simple
format for storing a sequence of binary records). Before the TFRecords were created,
the tagged dataset was randomly split into a training set (90%—15,941 tags) and a val-
idation set (10%—1771). Using the Tensorflow Object Detection API, the training and
validation datasets were serialised into the two separate TFRecords and used to train the
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Sub-Saharan African model. The trained model was evaluated over the course of the trial
with images obtained from 27 fixed Reolink Go 3/4G cameras installed in Weldgevonden
Game Reserve in Limpopo Province in South Africa. Figure 4 shows an example of a
camera being installed.

Figure 3. Conservation AI Tagging Site. This example shows two Equus quagga tags.

Figure 4. Two of the authors of the paper fitting one of the cameras for the trial in Welgevonden
Game Reserve.

The camera resolution was configured to 1920 × 1072 pixels with a dots per inch (dpi)
of 96. This configuration closely matches the aspect ratio resizer set in the pipeline.config
used during the training of the Faster R-CNN. The Infrared (IR) trigger [83] was set at high
sensitivity, and each camera was fitted with a camouflage sleeve and fastened to a tree
once a connection to the Vodacom 3/4G network was established (an audible “Connection
Succeeded” message is given). Each camera contained a rechargeable lithium-ion battery
that was charged using a solar panel fastened to the tree and connected to the camera via a
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USB Type-B cable. The cameras had an IP65 waterproof rating, providing protection from
low-pressure rainfall. Designed for security purposes, the cameras had a much wider aspect
ratio than conventional camera traps, enabling the detection of animals at farther and wider
distances. The installation process spanned seven days and covered an area of 400 km2

(36,000 hectares). Camera sites were chosen along game paths, water sources, and grazing
lawns. The cameras and solar panels were screwed into Burkea africana trees and out of
reach of Loxodonta africana, which are known to destroy camera traps in the reserve.

The Reolink Go cameras were donated to us for the study by Reolink, and the 3/4G
SIM cards were donated to us by Vodacom. The installed camera traps captured 12 different
species over a ten-month period, which starting in May 2022 and ending in February 2023.
During the trial period, 18,520 detections were made, and 19,380 blanks were reported,
totalling 37,900 images. Figure 5 summarises the number of species identified during
the trial.

Figure 5. Species Distribution for Detections Captured during the Trial.

The 37,900 images were used to generate ten subsets of the data to make the evaluation
more achievable. A 5% margin of error and a confidence level of 95% in each dataset was
maintained using 29 images from each of the 12 animal classes and 29 randomly selected
images from the blanks (each of the 10 datasets contained 377 images). The evaluation
metrics were calculated for each of the 10 datasets and averaged to produce a final set of
metrics for the model. This is a common approach used in object detection, which provides
a more comprehensive understanding of the performance of and object detection model
because it:

• Increases diversity. Object detection models perform differently on different datasets
due to variation in object types, sizes, orientations, and backgrounds. Using multiple
datasets increases the diversity of the data, which allows the model to be evaluated
using a wide range of scenarios.

• Ensures robustness. Models that perform well on a single dataset may not necessarily
generalise well to new datasets. Evaluating the model on multiple datasets and
averaging the results assesses the robustness and ability to perform consistently across
different datasets.
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• Provides a fair comparison. Comparing the performance of different object detection
models is important to evaluate them on the same datasets to ensure a fair comparison.
Using multiple datasets and averaging the results reduces the impact of dataset bias
and allows a more reliable estimate of the model’s true performance to be obtained.

• Gives more representative results. Object detection evaluation metrics, such as mAP,
can be sensitive to small variations in detection results. By averaging the results across
multiple datasets, we can obtain more representative and stable evaluation metrics
that reflect the model’s overall performance.

3.2. Faster R-CNN

The Faster R-CNN architecture was trained to detect and classify 12 animal species [79].
The architecture comprises three components: (a) a convolutional neural network (CNN)
[84] that generates feature maps [85] and performs classification, (b) a region proposal net-
work (RPN) [79] that generates regions of interest (RoI), and (c) a regressor that locates each
object in the image and assigns a class label. Figure 6 shows the Faster R-CNN architecture.

Figure 6. Faster R-CNN architecture showing the base CNN layer, RPN, RoI pooling, and final fully
connected classifier.
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The RPN is a crucial component in the Sub-Saharan Africa model, as it identifies
potential animal species in camera trap images by leveraging the features learned in the
base network (ResNet101 in this case [86]). Unlike early R-CNN networks [87], which relied
on a selective search approach [88] to generate region proposals at the pixel level, the RPN
operates at the feature map level, generating bounding boxes of different sizes and aspect
ratios throughout the image, as depicted in Figure 7.

Figure 7. Region Proposal Network showing the different size anchor boxes and the 4k Coordinates
and 2k Scores.

The RPN achieves this by employing anchors or fixed bounding boxes, represented by
9 distinct size and aspect ratio configurations, to predict object locations. It is implemented
as a CNN, with the feature map supplied by the base network. For each point in the image,
a set of anchors is generated, with the feature map dimensions remaining consistent with
those of the original image.

The RPN produces two outputs for each anchor bounding box: a probability objectness
score and a set of bounding box coordinates. The first output is a binary classification that
indicates whether the anchor box contains an object or not, while the second provides a
bounding box regression adjustment. During the training process, each anchor is classified
as belonging to either a foreground or background category. Foreground anchors are
those that have an intersection over union (IoU) greater than 0.5 with the ground-truth
object, while background anchors are those that do not. The IoU is defined as the ratio
of the intersection to the union of the anchor box and the ground-truth box. To create
mini-batches, 256 balanced foreground and background anchors are randomly sampled,
and each batch is used to calculate the classification loss using binary cross-entropy. If there
are no foreground anchors in a mini-batch, those with the highest IoU overlap with the
ground-truth objects are selected as foreground anchors to ensure that the network learns
from samples and targets. Additionally, anchors marked as foreground in the mini-batch
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are used to calculate the regression loss and transform the anchor into the object. The IoU
is defined as:

IoU =
Anchor box∩Ground Truth box
Anchor box∪Ground Truth box

(1)

Since anchors can overlap, proposals may also overlap on the same object. To address
this, non-maximum suppression (NMS) is performed to eliminate intersecting anchor boxes
with lower IoU values [89]. An IoU greater than 0.7 is indicative of positive object detection,
while values less than 0.3 describe background objects. It is important to exercise caution
while setting the IoU threshold as setting it too low may lead to missed proposals for
objects, while setting it too high may result in too many proposals for the same object.
Typically, an IoU threshold of 0.6 is sufficient. Once NMS is applied, the top N proposals
sorted by score are selected.

The loss functions for both the classifier and bounding box calculation are defined as:

Lcls(pi, p∗i ) = −(p∗i log(pi) + (1− p∗i )log(1− pi)) (2)

Lreg(ti, t∗i ) = Σi∈{x,y,w,h}smoothL1(ti − t∗i ) (3)

where

smoothL1(ti − t∗i ) =

{
0.5x2 i f |ti − t∗i | < 1
|x| − 0.5 other

(4)

where pi is the object possibility, ti is the 4k anchor coordinate, p∗i is the ground-truth label,
t∗ is the ground-truth coordinate, Lcls is the classification loss (log loss), and Lreg is the
regression loss (smooth L1 loss).

After generating object proposals in the RPN step, the next task is to classify and assign
a category to each bounding box. In the Faster R-CNN framework, this is accomplished by
cropping the convolutional feature map using each proposal and then resizing the crops to
14× 14× convdepth using interpolation. To obtain a final 7× 7× 512 feature map for each
proposal via RoI pooling, max pooling with a 2 × 2 kernel is applied after cropping. These
default dimensions are set by the Faster R-CNN [87] but can be customised depending on
the specific use case for the second stage.

The Faster R-CNN architecture takes the 7 × 7 × 512 feature map for each proposal,
flattens it into a one-dimensional vector, and passes the vector through two fully connected
layers of size 4096 with rectifier linear unit (ReLU) activation [90]. To classify the object
category, an additional fully connected layer is implemented with N + 1 units, where
N is the total number of classes and the extra unit corresponds to background objects.
Simultaneously, a second fully connected layer with 4N units is implemented for predicting
the bounding box regression parameters. These 4 parameters are ∆centerx , ∆centery , ∆width,
and ∆height for each of the N possible classes. The Faster R-CNN architecture is illustrated
in Figure 8.

Figure 8. Faster R-CNN architecture shows the RoI Pooling Layer and the two fully connected layers
with associated Softmax and Binding Box Regressor outputs.
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Targets in the Faster R-CNN are computed in a similar way to RPN targets but with
different classes taken into account. Proposals with an IoU greater than 0.5 with any
ground-truth box are assigned to that ground truth. Proposals with an IoU between 0.1
and 0.5 are designated as background, while proposals with no intersection are ignored.
Targets for bounding box regression are computed for proposals that have been assigned a
class based on the IoU threshold by determining the offset between the proposal and its
corresponding ground-truth box. The Faster R-CNN is trained using backpropagation [91]
and stochastic gradient descent [92]. The loss function in the Faster R-CNN is calculated
as follows:

L(p, u, tu, v) = Lcls(p, u) + λ. [u ≥ 1]Lreg(tu, ν) (5)

where p represents the object probability, u represents the predicted classification class, t
represents the ground-truth label, and v represents the ground-truth coordinates for class u.
Specifically, the classification loss function Lcls is given by:

Lcls(p, u) = − log(
epu

ΣK
j=1epj

) (6)

where p is the object possibility, u is the classification class, and K is the total number of
classes. Lreg for bounding box regression can be calculated using the equation described in
(3), with tu and v as input.

To refine the object detection, the Faster R-CNN applies a bounding box adjustment
step, which considers the class with the highest probability for each proposal. Proposals
assigned to the background class are ignored. Once the final set of objects have been
determined, based on the class probabilities, NMS is applied to filter out overlapping
boxes. A probability threshold is also set to ensure that only highly confident detections
are returned, thereby minimising false positives.

For the complete Faster R-CNN model, there are two losses for the RPN and two for
the R-CNN. The four losses are combined through a weighted sum, which can be adjusted
to give the classification losses more prominence than the regression losses or to give the
R-CNN losses more influence over the RPNs.

3.3. Transfer Learning

The Faster R-CNN model was fine-tuned in this study using the dataset containing
12 animal classes; this is known as transfer learning [93]. This crucial technique combats
overfitting [94], which is a common problem in deep learning when training with limited
data. The base model used was ResNet101, a residual neural network [86] that was
pre-trained on the COCO dataset consisting of 330,000 images and 1.5 million object
instances [82]. Residual neural networks employ a highway network architecture [95],
which enables efficient training in deep neural networks using skip connections to mitigate
the issue of vanishing or exploding gradients.

3.4. Model Training

The model training process was performed on a 3U blade server featuring a 24 Core
AMD EPYC7352 CPU processor, 512GB RAM, and 8 Nvidia Quadro RTX8000 graphics
cards totalling 384GB of GPU memory [96]. To create the training pipeline, we leveraged
TensorFlow 2.5 [97], the TensorFlow Object Detection API [98], CUDA 10.2, and CuDNN
version 7.6. The TensorFlow configuration file was customised with several hyperparame-
ters to optimise the training process:

• Setting the minimum and maximum coefficients for the aspect ratio resizer to
1024 × 1024 pixels, respectively, to minimise the scaling effect on the data.

• Retraining the default feature extractor coefficient to provide a standard 16-pixel stride
length, which helps maintain a high-resolution aspect ratio and improve training time.

• Setting the batch size coefficient to sixty-four to ensure that the GPU memory limits
are not exceeded.
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• Setting the learning rate to 0.0004 to prevent large variations in response to the error.

In order to improve generalisation and to account for variance in the camera trap
images, the following augmentation settings were used:

• Random_adjust_hue, which adjusts the hue of an image using a random factor.
• Random_adjust_contrast, which adjusts the contrast of an image by a random factor.
• Random_adjust_saturation, which adjusts the saturation of an image by a random

factor.
• Random_square_crop_by_scale, which was set with a scale_min of 0.6 and a scale_max

of 1.3.

ResNet101 employs the Adam optimiser to minimise the loss function [99]. Unlike
optimisers that rely on a single learning rate (alpha) throughout the training process, such
as stochastic gradient descent [100], Adam uses the moving averages of the gradients mt
and squared gradients vt, along with the parameters beta1/beta2, to dynamically adjust
the learning rate. Adam is defined as:

mt = β1mt − 1 + (1− β1)gt

vt = β2vt − 1 + (1− β2)g2
t

(7)

where mt and vt are estimates of the first and second moment of the gradients. Both mt and
vt are initialised with 0 s. Biases are corrected by computing the first and second moment
estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(8)

Parameters are updated using the Adam update rule:

θt+1 = θt −
n√

v̂t + ε
m̂t· (9)

To overcome the problem of saturation changes around the mid-point of their input,
which is common with sigmoid or hyperbolic tangent (tanh) activations [101], the ReLU
activation function is adopted [102]. ReLU is defined as:

g(x) = max(0, x) (10)

3.5. Inference Pipeline

The Sub-Saharan Africa model was hosted on a Nvidia Triton Inference Server (version
22.08) on a custom-built machine with an Intel Xeon E5-1630v3 CPU, 256GB of RAM,
and an Nvidia Tesla T4 GPU [103]. The real-time cameras transmitted images over 3/4G
communications every time the IR sensor was triggered. The trigger distance was set
to “High”, which supports a 9 m (30 feet) trigger range [36]. Images were received from
cameras using the Simple Mail Transfer Protocol (SMTP) [104] and submitted to the Sub-
Saharan Africa model using a RestAPI [105]. All data were stored in a MySQL database
(images are stored in local directories; the MySQL database contains hyperlinks to all
images with detections).

3.6. BioPay

BioPay is a RestAPI service provided by Conservation AI (this is not a public facing
service but an experimental module for research purposes only; see Figure 9).
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Figure 9. BioPay RestAPI: When an animal triggers a camera trap, the images are sent to an SMTP
server where the animal species is detected. For each successful detection, payments are taken from
the species account to the guardian account. PayPay was used in this study to setup species and
guardian accounts and transfer money between them.

The service transferred funds between individual species accounts and a guardian
account each time a camera was trigged and an associated animal was detected (see
Figures 1 and 10–12 for sample detections). To ensure efficient fund management, 12 sepa-
rate makeshift bank accounts, each dedicated to a distinct species, and a central guardian
makeshift account were created using the PayPal Sandbox Developer SDKs [106]. Upon suc-
cessful classification of an animal, 0.1 GBP was securely transferred from the corresponding
species account to the guardian account. Each account was credited with GBP 100 at the
start of the trial.

Figure 10. Receiver Operator Curve for Sub-Saharan Multi-Class Model.
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Figure 11. Two Hysterix cristata: This is a particularly difficult detection given that the image was
taken at night and the quality is poor. In this instance, the model correctly detected these, but it could
just as easily have classified tuffs of grass as a Hysterix cristata.

Figure 12. A rare image of an Acinonyx jubatus in the trial, which was the least captured animal over the
ten-month period. Again, this is a very difficult visual of an animal that the model correctly detected.

3.7. Evaluation Metrics

RPNLoss/objectiveness, RPNLoss/localisation, BoxClassifierLoss/classification, Box-
ClassifierLoss/localisation, and TotalLoss are used to evaluate the model during train-
ing [97,107]. RPNLoss/objectiveness evaluates the model’s ability to generate bounding
boxes and classify background and foreground objects. RPNLoss/localisation measures
the precision of the RPN’s bounding box regressor coordinates for foreground objects,
which is to say, how closely each anchor target is to the nearest bounding box. BoxClassi-
fierLoss/classification measures the output layer/final classifier loss for prediction, and
BoxClassifierLoss/localisation measures the bounding box regressor’s performance in
terms of localisation. TotalLoss combines all the losses to provide a comprehensive measure
of the model’s performance.

The validation set during training was evaluated using mAP (mean average preci-
sion), which serves as a standard measure for assessing object detection models. mAP is
defined as:

mAP =
∑Q

q=1 AveP(q)

Q
(11)
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where Q is the number of queries in the set and AveP(q) is the average precision (AP) for a
given query a.

mAP was computed for the binding box locations using the final two checkpoints.
The calculation involves measuring the percentage IoU between the predicted bounding
box and the ground-truth bounding box and is expressed as:

IoU =
Area o f Overlap
Area o f Union

(12)

The detection accuracy and localisation accuracy were measured using two distinct
IoU thresholds, namely @.50 and @.75, respectively. The @.50 threshold evaluates the
overall detection accuracy, and the higher @.75 threshold focuses on the model’s ability to
accurately localise objects.

Accuracy, precision, sensitivity, specificity, and F1-score were used to evaluate the
performance of the trained model during inference, in other words, using the image data
collected during the trial. Accuracy is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

where TP is true positives, TN is true negatives, FP is false positives, and FN is false
negatives. The accuracy metric provides an overall assessment of the object detection
model’s ability to make inferences on unseen data. This metric is often interpreted alongside
the other metrics defined below.

Precision was used to assess the model’s ability to make true-positive detections and
is defined as:

Precision =
TP

TP + FP
(14)

It measures the fraction of true-positive detections out of all detections made by the
trained model. In object detection, a true-positive detection occurs when the model correctly
identifies an object and predicts its location in the image. A high precision indicates that
the model has a low rate of false positives, meaning that when it makes a positive detection,
it is highly likely to be correct.

Sensitivity, also known as recall, measures the proportion of true positives correctly
identified by the trained model during inference. In other words, it measures the model’s
ability to detect all positive instances in the dataset. A high sensitivity indicates that the
model has a low rate of false negatives, meaning that when an object is present in the image,
the model is highly likely to detect it. This metric is defined as:

Sensitivity =
TP

TP + FN
(15)

Specificity measures the proportion of true-negative detections that are correctly
identified by the model. In object detection, true-negative detections refer to areas of an
image where there is no object of interest. In this paper, we evaluate blank images to satisfy
this metric, as it is important to ensure that classifications are based on features extracted
from animals and not the background. Specificity is defined as:

Speci f icity =
TN

TN + FP
(16)

Finally, the F1-score combines precision and recall into a single score. A high F1-
score indicates that the model has both high precision and high recall, meaning that it can
accurately identify and localise objects in the image. F1-score is defined as:

F1Score = 2 ∗ Precision ∗ Sensitivity(Recall)
Precision + Sensivitity(Recall)

(17)
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The ground truths for the 10 subsampled datasets were provided by conservationists
and biologists who appear as co-authors in the paper. The ground truths were used to
calculate the detections generated by the in-trial model.

4. Evaluation

The results obtained during the training of the Sub-Saharan Africa model are presented
first. The model is then evaluated in a real-world setting to assesses its ability to classify
animal species in images captured during the trial. This section is concluded with the
results obtained for the financial transactions taken between animals and the guardian
bank account when positive detections are made.

4.1. Training Results for the Sub-Saharan Model

In the first evaluation, the training set (containing 17,712 images; see Figure 2 for
species tag distributions) was used to fit the model. The dataset was randomly split,
as previously discussed in Section 3.1, and trained over 28,000 steps (438 epochs) using a
batch size of 64.

4.1.1. RPN and Box Classification Results for the Training Dataset

The outcomes depicted in Table 1 indicate that the model is capable of detecting
candidate regions of interest with sufficient accuracy (loss = 0.0366). The RPN can effectively
model localisation (loss = 0.0112). Classification loss (loss = 0.1833) is higher than previous
losses, which shows the model is less precise at classifying objects of interest than locating
them. Box classifier localisation (loss = 0.0261) is comparable to the RPN results and
confirms that the model can sufficiently identify candidate bounding boxes. The total loss
value (0.2244) combines both the RPN and box classification losses and indicates that the
model’s predictions are relatively close to the ground-truth labels. In most cases, a total
loss = 0.2244 in object detection is considered a good outcome.

Table 1. RPN and Box Classification Results for Training.

Metric Value Steps Support

RPNLoss/Objectness 0.0366 28 k 15,941
RPNLoss/Localisation 0.0112 28 k 15,941

BoxClassifierLoss/Classification 0.1833 28 k 15,941
BoxClassifierLoss/Localisation 0.0261 28 k 15,941

Total Loss 0.2244 28 k 15,941

4.1.2. RPN and Box Classification Results for the Validation Dataset

Table 2 provides the results for the validation set, which are generally consistent
with those produced by the training set. The loss for regions of interest (loss = 0.0530)
is marginally higher but not significantly higher. The same applies to RPN localisation
(loss = 0.0384), which is also slightly higher but not significantly higher. Both the losses
for classification and box classifier localisation, 0.1533 and 0.0242, respectively, are similar
to those in Table 1. The combined losses indicate that the validation set produces good
results, as shown in total loss (loss = 0.2690) in Table 2. It is worth noting that the training
and validation metrics are close, meaning there was no evidence of overfitting during
model training.
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Table 2. RPN and Box Classification Results for Validation.

Metric Value Steps Support

RPNLoss/Objectness 0.0530 28 k 1771
RPNLoss/Localisation 0.0384 28 k 1771

BoxClassifierLoss/Classification 0.1533 28 k 1771
BoxClassifierLoss/Localisation 0.0242 28 k 1771

Total Loss 0.2690 28 k 1771

4.1.3. Precision and Recall Results for Validation Dataset

The mAP values in Table 3 provide the mean of the average precisions achieved for
all classes using IoU thresholds between 0.5 and 0.95 with 0.05 increments. The result
(mAP = 0.7542) indicates that 24.8% false positives were observed across all classes and IoU
thresholds. An mAP of 0.7542 would generally indicate that the model is able to correctly
detect objects with a high level of accuracy. According to the precision metrics for objects
of different sizes, the model appears to be more proficient at detecting larger-sized objects
(0.7815) within images, as opposed to medium and smaller objects (0.3528 and 0.1362
respectively). An mAP of 0.9449 and 0.8601 at IoU thresholds of 0.50 and 0.75, respectively,
indicate that the model is able to accurately detect objects with a high level of precision
across a wide range of IoU thresholds.

Table 3. Precision Results for Sub-Saharan Africa Model.

Metric Value Steps Support

Precision/mAP 0.7542 28 k 3134
Precision/mAP (Large) 0.7815 28 k 3134

Precision/mAP (Medium) 0.3528 28 k 3134
Precision/mAP (Small) 0.1362 28 k 3134
Precision/mAP@.50IOU 0.9449 28 k 3134
Precision/mAP@.75IOU 0.8601 28 k 3134

The recall values in Table 4 indicate that the model can retrieve 62.39% of all im-
ages among the top 1 images retrieved (Recall/AR@1). As the number of returned im-
ages increases, the number of relevant images increases (Recall/AR@10 = 0.8060 and
Recall/AR@100 = 0.8140). In object detection, these are again satisfactory results. The recall
values for AR@100 (small, medium, and large) show that the model is better at detecting
large and medium objects in images (0.8496 and 0.5079, respectively) as opposed to smaller
objects (0.3344).

Table 4. Recall Results for Sub-Saharan Africa Model.

Metric Value Steps Support

Recall/AR@1 0.6239 25 k 3134
Recall/AR@10 0.8060 25 k 3134

Recall/AR@100 0.8140 25 k 3134
Recall/AR@100 (Large) 0.8357 25 k 3134

Recall/AR@100 (Medium) 0.5079 25 k 3134
Recall/AR@100 (Small) 0.3344 25 k 3134

4.2. Trial Results Using the Sub-Saharan African Model

The trained model was deployed and used in the Welgevonden Game Reserve in
Limpopo Province in South Africa to detect 12 animal species captured in camera traps.
During the ten-month trial, 18,520 images with detections were recorded, and there were
19,380 images with no animal in them (blanks). In total, 37,800 images were collected.
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Figure 5 shows the distribution of all animal detections. Due to the size of the dataset,
10 subsets of the data were created to make the evaluation achievable.

4.2.1. Performance Metrics for Inference

The results in Table 5 show that the model achieves high accuracy scores for all
animal classes, with values between 98.70% and 100.00%. The model’s precision scores
are more varied, with scores between 60.00% and 100.00%, with the Acinonyx jubatus and
Panthera leo classes having the lowest values. Overall, the average model precision (87.14%)
is considered a good result in object detection. However, there are issues with several
classes (Hystrix cristata, Acinonyx jubatus and Panthera leo) that require further investigation.
Sensitivity is consistently high for all classes, indicating that the model correctly identifies
positive samples. Again, the overall sensitivity for the model (96.38%) is high, which
shows that a large proportion of actual positive cases are correctly identified by the model.
The classes with the lowest sensitivity values (Tragelaphus oryx and Panthera leo, with 90.90%
and 90%, respectively) may need further investigation. This seems to be because the model
is heavily reliant on the colour and shape of the Tragelaphus oryx. Specificity is consistently
high across all classes. Again, the overall specificity for the model is high (99.62%), which
indicates the model can effectively detect negative cases (i.e., distinguish between blank
images and animal classes). Finally, the F1-scores provide the harmonic mean for precision
and recall (sensitivity), and most classes are generally high. The overall model F1-score
(90.33%) is good, although addressing issues around precision for the classes mentioned
above will improve the F1-score.

Table 5. Performance Metrics for Inference.

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Avg

Canis mesomelas
Accuracy 99.40 99.69 99.68 99.68 99.69 99.67 99.38 99.69 99.73 99.70 99.63
Precision 85.71 85.71 85.71 85.71 83.33 80.00 87.50 85.71 83.33 88.89 85.16
Sensitivity 85.71 100.00 100.00 100.00 100.00 100.00 87.50 100.00 100.00 100.00 97.32
Specificity 99.69 99.68 99.67 99.68 99.68 99.67 99.68 99.69 99.72 99.69 99.69
F1-Score 85.71 92.31 92.31 92.31 90.91 88.89 87.50 92.31 90.91 94.12 90.73
Hystrix cristata
Accuracy 98.80 99.37 99.30 99.68 100.00 99.35 99.38 99.38 99.73 99.70 99.48
Precision 63.64 77.78 66.67 88.89 100.00 81.82 60.00 71.43 75.00 85.71 77.09
Sensitivity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Specificity 98.77 99.36 99.35 99.67 100.00 99.33 99.38 99.38 99.73 99.69 99.47
F1-Score 77.78 87.50 80.00 94.12 100.00 90.00 75.00 83.33 85.71 92.31 86.58
Crocuta crocuta
Accuracy 99.40 99.69 99.36 99.68 100.00 100.00 99.69 99.38 100.00 100.00 99.72
Precision 80.00 80.00 71.43 80.00 100.00 100.00 80.00 71.43 100.00 100.00 86.29
Sensitivity 80.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00
Specificity 99.69 99.68 99.35 99.68 100.00 100.00 99.69 99.38 100.00 100.00 99.75
F1-Score 80.00 88.89 83.33 88.89 100.00 100.00 88.89 83.33 100.00 100.00 91.33
Loxodonta africana
Accuracy 99.10 99.37 99.68 99.37 99.37 98.70 98.77 98.18 99.19 99.10 99.08
Precision 86.96 81.82 94.44 94.44 93.75 76.47 78.95 75.00 88.89 88.24 85.90
Sensitivity 100.00 100.00 100.00 94.44 93.75 100.00 100.00 85.71 94.12 93.75 96.18
Speciality 99.04 99.35 99.66 99.66 99.67 98.64 98.71 98.73 99.43 99.37 99.23
F1-Score 93.02 90.00 97.14 94.44 93.75 86.67 88.24 80.00 91.43 90.91 90.56
Acinonyx jubatus
Accuracy 99.10 99.69 99.68 100.00 99.69 99.35 99.08 99.38 99.46 99.70 99.51
Precision 40.00 66.67 66.67 100.00 50.00 50.00 40.00 50.00 50.00 80.00 59.33
Sensitivity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Specificity 99.09 99.68 99.68 100.00 99.68 99.34 99.07 99.38 99.45 99.70 99.51
F1-Score 57.14 80.00 80.00 100.00 66.67 66.67 57.14 66.67 66.67 88.89 72.98



Remote Sens. 2023, 15, 2730 19 of 29

Table 5. Cont.

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Avg

Papio sp.
Accuracy 100.00 99.69 99.68 100.00 99.06 99.67 99.69 97.88 99.19 99.40 99.43
Precision 100.00 100.00 100.00 100.00 93.33 100.00 100.00 75.00 90.91 95.45 95.47
Sensitivity 100.00 95.24 94.12 100.00 96.55 95.83 96.67 88.24 95.24 95.45 95.73
Specificity 100.00 100.00 100.00 100.00 99.31 100.00 100.00 98.40 99.43 99.68 99.68
F1-Score 100.00 97.56 96.97 100.00 94.92 97.87 98.31 81.08 93.02 95.45 95.52
Blank
Accuracy 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Sensitivity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Specificity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F1-Score 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Rhinocerotidae
Accuracy 98.80 98.45 99.05 99.37 99.06 99.67 99.38 99.38 98.92 99.40 99.15
Precision 100.00 97.50 93.10 97.56 90.32 100.00 100.00 97.37 89.19 94.44 95.95
Sensitivity 91.30 90.70 96.43 97.56 100.00 97.14 92.00 97.37 100.00 100.00 96.25
Specificity 100.00 99.64 99.30 99.64 98.97 100.00 100.00 99.65 98.81 99.33 99.53
F1-Score 95.45 93.98 94.74 97.56 94.92 98.55 95.83 97.37 94.29 97.14 95.98
Connochaetes taurinus
Accuracy 97.63 99.37 98.11 98.74 98.45 98.06 98.77 97.88 97.08 98.51 98.26
Precision 100.00 100.00 93.65 100.00 98.31 98.44 98.48 100.00 97.47 96.49 98.28
Sensitivity 89.47 96.08 96.72 92.98 93.55 92.65 95.59 90.67 89.53 94.83 93.21
Specificity 100.00 100.00 98.44 100.00 99.62 99.59 99.61 100.00 99.31 99.28 99.59
F1-Score 94.44 98.00 95.16 96.36 95.87 95.45 97.01 95.10 93.33 95.65 95.64
Tragelaphus oryx
Accuracy 98.80 98.14 97.50 99.05 99.37 99.02 99.38 99.38 98.65 98.51 98.78
Precision 89.19 97.50 100.00 94.74 100.00 100.00 100.00 96.88 97.22 100.00 97.55
Sensitivity 100.00 88.64 75.00 97.30 94.29 90.00 94.44 96.88 89.74 82.76 90.90
Specificity 98.67 99.64 100.00 99.28 100.00 100.00 100.00 99.66 99.70 100.00 99.69
F1-Score 94.29 92.86 85.71 96.00 97.06 94.74 97.14 96.88 93.33 90.57 93.86
Giraffa camelopardalis
Accuracy 99.70 100.00 99.68 99.68 100.00 99.67 99.69 99.69 100.00 100.00 99.81
Precision 100.00 100.00 96.55 96.00 100.00 96.00 96.67 100.00 100.00 100.00 98.52
Sensitivity 96.67 100.00 100.00 100.00 100.00 100.00 100.00 96.15 100.00 100.00 99.28
Specificity 100.00 100.00 99.65 99.66 100.00 99.64 99.66 100.00 100.00 100.00 99.86
F1-Score 98.31 100.00 98.25 97.96 100.00 97.96 98.31 98.04 100.00 100.00 98.88
Panthera leo
Accuracy 97.92 98.77 99.05 99.37 100.00 99.67 100.00 99.69 99.46 99.40 99.33
Precision 22.22 50.00 40.00 66.67 100.00 50.00 100.00 66.67 33.33 60.00 53.89
Sensitivity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.00
Specificity 97.90 98.75 99.04 99.36 100.00 99.67 100.00 99.69 99.46 99.39 99.33
F1-Score 36.36 66.67 57.14 80.00 100.00 66.67 100.00 80.00 50.00 75.00 64.52
Equus quagga
Accuracy 98.80 99.69 98.42 99.05 99.69 97.44 98.77 97.88 98.92 99.40 98.80
Precision 100.00 100.00 100.00 100.00 100.00 96.05 100.00 98.85 99.10 100.00 99.40
Sensitivity 94.94 98.80 94.90 95.95 98.85 93.59 95.24 93.48 97.35 98.00 96.11
Specificity 100.00 100.00 100.00 100.00 100.00 98.72 100.00 99.58 99.61 100.00 99.79
F1-Score 97.40 99.39 97.38 97.93 99.42 94.81 97.56 96.09 98.21 98.99 97.72
Overall Model
Accuracy 99.03 99.38 99.17 99.51 99.57 99.25 99.38 99.06 99.25 99.45 99.31
Precision 82.13 83.61 85.25 92.62 93.00 86.83 87.82 83.72 84.96 91.48 87.14
Sensitivity 95.24 89.96 96.71 98.33 98.23 97.63 97.03 96.04 97.38 97.29 96.38
Specificity 99.45 99.68 99.55 99.74 99.76 99.58 99.68 99.50 99.59 99.70 99.62
F1-Score 85.38 86.19 89.09 95.04 94.88 90.64 90.84 88.48 88.99 93.77 90.33
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4.2.2. Confusion Matrix

Examining the confusion matrix in Table 6, the results align with those in Table 5.
The model accurately predicted all samples for the Canis mesomelas, Hystrix cristata, Acinonyx
jubatus, and Panthera leo classes. Additionally, the model performed remarkably well for the
Loxodonta africana, Papio sp., and Blank classes, with only a few misclassifications. However,
the model misclassified 42 samples from the Connochaetes taurinus class as Tragelaphus oryx
and 17 samples as Loxodonta africana. Similarly, for the Tragelaphus oryx class, the model
misclassified 15 samples as Equus quagga and 11 samples as Connochaetes taurinus. This
information highlights the specific areas where future re-training is required.

Table 6. Confusion Matrix for Sub-Saharan Model Inference.
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Canis mesomelas 59 0 0 0 2 0 0 0 0 0 0 0 0
Hystrix cristata 0 56 0 0 0 0 0 0 0 0 0 0 0
Crocuta crocuta 0 0 42 0 1 0 0 0 0 0 0 0 0
Loxodonta africana 0 0 0 149 0 0 0 3 0 0 0 3 0
Acinonyx jubatus 0 0 0 0 22 0 0 0 0 0 0 0 0
Papio sp. 0 0 1 0 8 202 0 0 0 0 0 0 0
Blank 0 0 0 0 0 0 289 0 0 0 0 0 0
Rhinocerotidae 0 2 0 5 0 0 0 337 0 0 0 7 0
Connochaetes taurinus 0 0 4 17 0 9 0 3 615 9 0 2 3
Tragelaphus oryx 2 0 3 1 0 0 0 8 11 316 2 7 1
Giraffa camelopardalis 0 0 0 0 1 0 0 0 0 0 275 0 1
Panthera leo 0 0 0 0 0 0 0 0 0 0 0 22 0
Equus quagga 8 15 0 1 4 1 0 0 0 0 2 3 854

4.2.3. ROC and AUC for Sub-Saharan Classification Model

The ROC in Figure 9 provides a visual assessment of the model’s inference results,
which indicates the model performed remarkably well for all animal classes, as the AUC
values are high. It can be concluded that the trained model in this trial achieved excellent
results for each class. The plot and AUC values align with the outcomes presented in
Tables 5 and 6, which validates the deep learning aspects presented in this paper.

4.2.4. BioPay

The evaluation is concluded with the outcomes obtained from the BioPay service.
Table 7 shows the ordered species detection counts collected during the ten-month trial.
The Canis mesomelas species had the lowest count with only 34 detections, whereas the
Equus quagga had the highest at 7158. During the trial, each detected animal initiated the
transfer of GBP 0.1 from the respective species account to the guardian account. Following
the trial’s completion, the guardian earned GBP 0.34 for the Canis mesomelas, GBP 0.37 for
the Hystrix cristata, GBP 0.58 for the Crocuta crocuta, GBP 1.48 for the Loxodonta africana,
GBP 2.22 for the Acinonyx jubatus, GBP 7.48 for the Papio sp., GBP 9.98 for the Rhinocerotidae,
GBP 10.22 for the Connochaetes taurinus, GBP 10.58 for the Tragelaphus oryx, GBP 26.46 for
the Giraffa camelopardalis, GBP 43.91 for the Panthera leo, and GBP 71.58 for the Equus quagga.
The guardian’s total earnings for the ten-month trial was GBP 185.20.
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Table 7. Confusion Matrix for Sub-Saharan Model Inference.

Detections Guardian Payment (GBP)

Canis mesomelas 34 0.34
Hystrix cristata 37 0.37
Crocuta crocuta 58 0.58
Loxodonta africana 148 1.48
Acinonyx jubatus 222 2.22
Papio sp. 748 7.48
Rhinocerotidae 998 9.98
Connochaetes taurinus 1022 10.22
Tragelaphus oryx 1058 10.58
Giraffa camelopardalis 2646 26.46
Panthera leo 4391 43.91
Equus quagga 7158 71.58

Total 18,520 185.20

5. Discussion

Using deep learning for species identification and 3/4G camera traps for capturing
images of animals, we successfully deployed a Sub-Saharan Africa model capable of
detecting 12 distinct animal species. The deep learning model was trained with 1099
and 1771 tags per animal, which enabled us to effectively monitor a 400 km2 region in
Welgevonden Game Reserve in Limpopo Province in South Africa using 27 real-time
3/4G camera traps for a period of 10 months. During the model training phase, it was
possible to obtain good results for the RPN (objectness loss = 0.0366 and localisation
loss = 0.0112 for the training set; objectness loss = 0.0530 and localisation loss = 0.0384
for the validation set). The box classifier losses for classification and localisation were
also good (classification loss = 0.1833 and localisation loss = 0.0261 for the training set;
classification loss = 0.1533 and localisation loss = 0.0242 for the validation set). Combining
the evaluation metrics, it was possible to obtain a total loss = 0.2244 for the training
set and a total loss = 0.2690 for the validation set. Again, these are good results for
an object detection model. The precision and recall results obtained for the validation
set were also good, with mAP = 0.7542, mAP@.50IOU = 0.9449, mAP@.75IOU = 0.8601,
AR@1 = 0.6239, AR@100 = 0.8140, and AR@100(Large) = 0.8357. The results show that
the model can accurately identify objects in images with high precision and recall while
maintaining a high level of localisation accuracy.

Throughout the ten-month trial, the sensitivity (96.38%), specificity (99.6%), precision
(87.14%), F1-score (90.33%), and sccuracy (99.31%) metrics were consistently high for most
species, thereby confirming the training results. However, the precision scores for Hystrix
cristata and Acinonyx jubatus were lower, with 77.09% and 59.33%, respectively. Figure 10
shows a sample image of a Hystrix cristata and indicates that they appear as small objects in
the image, which aligns with the model’s limited ability to detect small objects, as evidenced
in Tables 3 and 4. Similarly, Figure 11 shows a sample image of Acinonyx jubatus, which
is also small, thereby making their detection more challenging, especially at night when
the quality of images is lower. It is also worth noting that the model was trained using
traditional camera trap data. Historically, conservationists have fixed camera traps much
lower down (closer to the ground) so the animal appears larger in the image. As can be seen
in Figure 4, our camera trap deployments are much higher. This was done to prevent the
cameras and solar panels being damaged by passing wildlife. Obviously, having cameras
lower down removes issues where far-away animals are misclassified, as they would not
be in the image. Camera deployment needs some further consideration.

The Canis mesomelas, Crocuta crocuta, and Loxodonta africana were also found to be
misclassified as Acinonyx jubatus, Rhinocerotidae, and either Rhinocerotidae or Panthera leo,
respectively, as evidenced in the confusion matrix in Table 6. Hystrix cristata was never
misclassified, but Equus quagga and Rhinocerotidae were mistakenly classified as Hystrix
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cristata. Papio sp. was misclassified as either Crocuta crocuta or Acinonyx jubatus. Al-
though Rhinocerotidae performed well, it was also mistakenly classified as Loxodonta africana
or Panthera leo, along with Hystrix cristata. Tragelaphus oryx and Connochaetes taurinus were
occasionally misclassified as each other. Giraffa camelopardalis was identified correctly,
and Panthera leo was always correctly identified. Equus quagga also performed well, but low-
quality images captured at night sometimes resulted in them being misclassified as another
species. To address this issue, the Sub-Saharan Africa model was continuously trained,
and many of the incorrect classifications encountered during the trial were identified and
incorporated back into the training dataset to improve model performance. The version of
the model used during the trial was version 18, while the current version is 22.

Distance was also a problem in the study [108]. Animals closest to the camera, as one
would expect, classify much better than those farther away. In the trial, the camera trigger
distance was set to “High”, which allows objects to be detected up to 30 feet away (9 m).
Again, this configuration is not typical in traditional camera trap deployments. Obviously,
detections farther away depend on the size of the animal. Detecting large animals, such as
a Loxodonta africana or a Giraffa camelopardalis, is mostly successful, while detecting smaller
animals, such as a Papio sp., is less so, or at least the confidence scores are significantly
lower. This can be seen in Figure 13, where the Panthera leo has a lower confidence score
than animals captured up close, as shown in Figure 1, where Equus quaggas captured
close up have a higher confidence score than those in the distance. Not having a distance
protocol in the study impacted the inclusion criteria for evaluation. We evaluated farther
detections that would not normally trigger the camera trap (animals closer to the camera
were responsible for the trigger), and this likely impacted the results in some instances.
Further investigation is needed to define a protocol to map distance and detection success
and incorporate it into the ground-truth object selection criteria for evaluation.

The BioPay service performed as expected, and the results show the successful trans-
fer of funds between animals and the associated guardian. The detection results during
inference show that overall detection success was high, with a small number of misclas-
sifications. This means that money would be transferred from a species account when in
fact that animal was not actually seen. This will always be a difficult challenge to address,
but a small margin of error in this case is negligible. Obviously, this may not be the case
when species are appropriately valued where highly prized animals could transfer large
amounts of money when they are misclassified. This will need to be considered in future
studies. Any BioPay system would need to be highly regulated, and guardians would have
the right to raise concerns and appeal any decisions made. For example, a guardian might
claim they have seen an animal, but it was not classified by the system. In this instance, the
guardian would have the chance to present their evidence and dispute the outcome, much
as individuals do in any other type of financial system. Depending on the outcome, the
guardian would be paid or the claim would be dismissed.

Another important point to raise is the incentive surrounding the monetary gain
guardians would receive for caring for animals compared to the amount obtained for
poaching. Obviously, the former would have to be much higher if something such as
BioPay is to be given a chance of success. In other words, receiving £100 pounds a month
to ensure the safety of a Rhinocerotidae compared to the few thousand pounds they would
receive for its horn (poachers lower down the IWT chain receive significantly less than
those close to the source of the sale [109]) would unlikely be attractive to those involved in
poaching. Another factor to be considered is land opportunity costs [110]. If alternatives to
conservation are very profitable (e.g., oil palm), then payment for species’ presence would
also need to be much higher to be effective.
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Figure 13. A rare image of a Panthera leo in the trial, which is also a very difficult detection that the
model correctly detects.

Despite these issues, the results were encouraging. To the best of our knowledge, this
is the first extensive evaluation we know of that combines deep learning and 3/4G camera
traps to monitor animal populations in real-time with the provision of a monetary reward
scheme for guardians. We acknowledge that the trial was limited in scope and that we
would need to significantly increase the number of camera traps used in the study, as well
as increase the number species in the Sub-Saharan Africa model to include, for example,
Potamochoerus larvatus and Panthera pardus, which were captured during the trial. However,
poor 3/4G signal and the ongoing destruction of camera traps by Loxodonta africana will
likely affect the ability to scale this system up. Cases to protect camera traps from animals
may help, and in other sites, they will need to be protected from being stolen (by humans).

We also recognise that a much longer study period is needed to fully evaluate the
approach and connect BioPay to real monetary systems. However, an independent
study would have to be conducted to value species before BioPay could be fully imple-
mented [111]. Some of the factors to consider would be: (1) conservation status and rarity,
especially if animals are endangered and threatened [112]; (2) economic value in terms of
ecotourism potential and medicinal value could influence their perceived value [113]; (3)
ecological value, such as their role in maintaining ecosystem health or providing ecosystem
services. For example, white rhinoceros, in addition to being of high tourism value, are also
facilitators, providing other grazing herbivores with improved grazing conditions [114];
(4) cultural significance can impact perceived value, for example, by being considered
sacred or having an important role in traditional cultural practices [115]; and (5) local
knowledge about mammal behaviour, ecology, and uses could influence their perceived
value [116].

Finally, any credible study would need to include guardians, and there would need to
be associated stewardship and biodiversity measurement protocols to fully evaluate the
utility and impact of the system; this will require some serious thinking. Nonetheless, we
believe that this work, inspired by “Interspecies Money”, provides a working blueprint
and the necessary evidence to support a much bigger study.

6. Conclusions

This paper introduced an equitable digital stewardship and reward system for wildlife
guardians that utilises deep learning and 3/4G camera traps to detect animal species in
real time. This provides a blueprint that allows local stakeholders to be rewarded for the
welfare services they provide. The findings are encouraging and show that distinct species
in images can be detected with high accuracy [117]. Several similar species detection studies
have been reported in the literature [118–124]. However, the central focus differs to that
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presented in this paper. By combining deep learning and 3/4G camera traps, analysis
occurs as a single unified process that records and raises alerts. This allows services to be
superimposed on top of this technology to derive insights in real time and promote new
innovations in conservation.

We proposed a BioPay service in this paper that builds on this idea. It is a disruptive
but necessary service that aims to include and reward local stakeholders for the stewardship
services they provide. As the literature in this paper indicates, local guardians are seen as
crucial components in successful conservation [26]. However, the barrier to their success
has been that they continue to face challenges with full participation in the crafting and
implementation of biodiversity policies at local, regional, and global levels, and as such, are
poorly compensated for the services they provide [125]. Many initiatives have excluded
local stakeholders through management regimes that outlaw local practices and customary
institutions [27]. Yet, the findings have shown that attempts to separate biodiversity
and local livelihoods have yielded limited success: biodiversity often declines at the
same time as the well-being of those who inhabit areas targeted for interventions [126].
BioPay includes and rewards local people, particularly the poorest among them, for the
services they provide as and when animal species are detected within regions requiring
biodiversity support.

This solution is rudimentary, and we acknowledge that implementing BioPay at scale
will be difficult as it is not clear who actually receives payment. For example, should it go
to the community or only people who take an active interest in the care and provision of
services for animals that live in the locale? It may be best to let communities themselves
decide who should be rewarded and how funds are spent [25]. Whatever the approach,
payments will be conditional on the continued presence of species. Payments to guardians
responsible for monitoring their presence would make such a system scalable. Guardians
could redistribute the funds to those people that are in a position to ensure that species or
its habitat prevail. BioPay will not fully address the complex nature of conservation and
biodiversity management, but it may provide a tool to help redress the disproportionate al-
location of global conservation funding by providing an equitable revenue-sharing scheme
that includes and rewards local stakeholders for the services they provide.

Having a service such as BioPay may help forge much closer relationships between
guardians of animal welfare, governments, and NGOs and improve conservation outcomes.
An alternative view, however, might be to bypass governments and NGOs altogether and
use automated blockchain [127] to directly pay guardians, which would make their roles
less relevant and less in need of financing. This may certainly increase the 1% allocation
towards nature-based solutions we refer to earlier in the paper. COP26 recognised the need
to reward local stakeholders. However, as we pointed out in this paper, the USD 1.7 billion
allocated is a fraction of the USD 124–143 billion allocated annually to organisations
working in conservation. These funds rarely reach the poorest in local communities, who
are in most need of support [128]. We believe that the findings in this paper provide a
viable blueprint based on the “Interspecies Money” principal that will facilitate the transfer
of funds between animals and their associated guardian groups.

Despite the encouraging results, however, there is a great deal of future work needed.
The size of the study was insufficient to fully understand the complete set of requirements
needed to implement the BioPay revenue-sharing scheme. A much larger representation
of animals in the model is required to ensure equal representation for all animals in the
environment being monitored. There also needs to be a detailed assessment to understand
what each species is worth. There were no recipients for the BioPay funds transferred in the
study, and a model for including local stakeholders would need to be defined; additionally,
a clear understanding of who receives what money and under what circumstances this
happens would be necessary.

Conservation AI is a growing platform that already has 28 active studies worldwide.
At the time of writing, it has processed more than 5 million images in just over 12 months
from 75 real-time cameras and historical datasets uploaded by partners. In the next
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12 months, we anticipate significant growth, and this will allow us to run increasingly
larger studies to help us address the limitations highlighted in this paper.

Overall, the results show potential, which we think warrants further investigation.
This work is multidisciplinary and contributes to the machine learning and conservation
fields. We hope that this study provides new insights on how deep learning algorithms
combined with 3/4G camera traps can be used to measure and monitor biodiversity
health and provide revenue-sharing schemes that benefit guardians for the wildlife and
biodiversity services they provide.
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