

Journal of Molluscan Studies

Journal of Molluscan Studies (2022) 88: eyab044. https://doi.org/10.1093/mollus/eyab044 Published online 19 January 2022

RESEARCH NOTE

A method of culturing and breeding slugs through several generations

K. McDonald-Howard¹, C. D. Williams¹, H. Jones² and R. Rae¹

¹School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; and ²Royal Horticultural Society, Wisley, Woking, Surrey GU23 6QB, UK

Correspondence: R. Rae; e-mail: r.g.rae@ljmu.ac.uk

There is very little published information about how to culture slugs. There are at least 36 species of slug in the UK (Anderson, 2008) and as many as 44 (Rowson *et al.*, 2014), many of which are nonnative (Cameron, 2016). They are important in terms of causing economic damage to crops (South, 1992), as well as hosts for medically important parasites such as *Angiostrongylus cantonensis* (Barratt *et al.*, 2016). The aim of our study was to discover whether three species of slug, *Deroceras invadens* Reise, Hutchinson, Schunack & Schlitt, 2011, *Arion hortensis* Férussac, 1819 and *Ambigolimax valentianus* (Férussac, 1822), could be cultured and mated to produce offspring and whether these offspring would be viable enough to produce more progeny. Ultimately, by providing information on how to maintain and breed slugs through several generations, perhaps a 'model slug' could be developed, which could benefit an array of subjects, including genetics, genomics and developmental biology.

Preliminary observations in the laboratory showed that D. invadens and A. hortensis preferred to lay eggs in peat-free compost (SylvaGrow[®], Melcourt, UK) as compared to garden bed or turf soil. Observations also demonstrated differences in egg development for the three species at different temperatures. Specifically, D. invadens at 10 °C, and A. hortensis and A. valentianus at 15 °C produced the highest level of viable eggs, presumably due to differences in the ecological niches they inhabit. The slugs were collected from a garden in Maghull, Liverpool (UK OS grid reference SD373027). They were kept in nonairtight plastic boxes $(35 \times 23 \times 22 \text{ cm}^3)$ at 5 °C with moistened paper and fed lettuce ad libitum for 1 week before use to check for any signs of ill health. Compost (10-15% moisture content) was added to a height of 3.5 cm to a total of 60 50-ml universal bottles. Two adult D. invadens, A. hortensis (all animals collected were >0.10 g in weight and >2.5 cm in total length) or A. valentianus (>0.2 g and >3.5 cm) were added to each tube, with 20 universal bottles, each with two slugs, being used for each slug species. Tap water (0.5 ml) was added to each tube, a ball of cotton wool was then added and the lid was loosely closed. The tubes with D. invadens were stored in an incubator at 10 °C and those with A. hortensis and A. valentianus were incubated at 15 °C. After 8 d, every clutch of eggs in each tube was weighed and the slug eggs were counted; these were then transferred to 10-cm Petri dishes (c. 60 eggs per dish) with pre-moistened filter paper with a small amount of compost substrate and sealed with Parafilm®. The dishes were incubated for up to 20 d at 15 °C. Egg hatching occurred generally between 14 and 20 d. After hatching, c. 60 neonate slugs were transferred to container $(30 \times 10 \times 10 \text{ cm}^3)$ of compost (previously

frozen at -80 °C overnight to kill any metazoan parasites). The container was kept at 50% humidity (monitored using a Tinytag, Gemini Data Loggers, UK) and the soil kept between 10% and 20% water content (monitored using a soil moisture tester, Xiaomi, China). The container was misted with distilled water once a week. Slugs were fed a mixture of iceberg lettuce, carrots and calcium tablets every 2 weeks. Any remaining rotten food was removed every few days. Once the slugs had reached *c*. 5 mm, they were transferred to containers containing 30 slugs of the same species and kept under the same conditions. After 4 months, most adult *D. invadens* and *A. hortensis* had reached a weight of >0.10 g and most adult *A. valentianus* were >0.20 g, and so were treated as having reached sexual maturity. They were mated using the same protocol previously mentioned. This process was repeated for the second and third generations of all three species.

The Malacological Society of London

A one-way ANOVA was used to analyse whether there were significant differences between the numbers of eggs and the weight of eggs laid in generations 1, 2 and 3 for each of the three slug species and between the numbers of eggs laid by the three different slug species in generations 1, 2 and 3.

There was no significant difference between the numbers of eggs or the weight of eggs produced by generations 1, 2 and 3 of *D. in*vadens, *A. hortensis* and *A. valentianus* (P > 0.05; Table 1). All three slug species produced similar numbers of eggs and there was no significant difference in the numbers of eggs produced by *D. invadens*, *A. hortensis* and *A. valentianus* in generation 1 (P = 0.80), 2 (P = 0.70) or 3 (P = 0.447) (Table 1).

Using three different species from three genera, we have here demonstrated that slugs can be routinely mated under laboratory conditions to produce similar clutches of eggs over several generations. An important question to consider is whether continuous culturing may affect the health of the slugs due to several generations of potential inbreeding. However, we observed no reduction in egg number or health of the slugs over the three generations. Specifically, the numbers of eggs did not vary over the three generations, with D. invadens producing between 25 and 28 eggs, A. hortensis between 21 and 24, and A. valentianus between 18 and 20. Although it has been reported that the number of eggs may vary with species (South, 1992), we did not observe any differences between the three species used. The number of eggs laid in our study by each species is similar to other studies. For example, Carrick (1938) found D. reticulatum could lay up to 500 eggs a year with a mean of 22 eggs per batch (range: 9-49 eggs). However, that estimation is based on field

Table 1. Reproductive output of slugs Deroceras invadens, Arion hortensis and Ambigolimax valentianus over three generations, parental (P), F1 and F2.

Generation	No. of pairs	No. of clutches	Mean no. of eggs per pair	SE	Range	Mean clutch weight (g)	SE	Mean egg weight (g)
D. invadens								
Р	20	19	26.5	2.7	5–50	0.10	0.01	0.004
F1	20	18	28.6	2.8	10–54	0.16	0.05	0.006
F2	20	18	25.4	2.4	11–50	0.09	0.01	0.004
A. hortensis								
Р	20	17	21.1	2.4	4–36	0.14	0.02	0.007
F1	20	17	24.3	2.9	3–56	0.14	0.02	0.006
F2	20	16	21.7	2.7	3–40	0.14	0.02	0.006
A. valentianu	IS							
Р	20	18	18.4	2.1	2–33	0.19	0.02	0.01
F1	20	18	19.7	2.2	5–38	0.21	0.02	0.01
F2	20	18	20.9	2.9	2–55	0.19	0.02	0.01

studies. In contrast, in captivity, Davies (1977) found the number of eggs laid by *A. hortensis* ranged from 10 to 30 per batch.

Other studies that have attempted to rear slugs focused on using an array of different substrates. For example, Sivik (1954) used wooden trays with gauze and soil; Stephenson (1962) used a combination of loam soil, peat and sand in screw capped jars; and Kingston (1966) used fine gravel or moistened filter paper (with blackboard chalk as a source of calcium). Vermiculite has also been used (Gray, Kralka & Samuel, 1985) as a substrate. Our slugs were housed in nonairtight plastic boxes with ample moisture and a thin layer of compost. When used for mating, they were placed in 50-ml universal bottles with compost, which consistently yielded similar numbers of eggs with no reduction in viability.

Maintaining consistent and correct moisture content is an important factor in slug rearing. Arias & Crowell (1963) found that *D. reticulatum* produced a maximum number of eggs in soils at 75% saturation and no eggs in soils at 10% saturation. However, Willis *et al.* (2008) showed that *D. reticulatum* produced the greatest number of eggs in soils at 53% saturation. The compost used in our study initially had moisture content of 10-15%; a further 0.5 ml of water was applied later through spraying directly into tubes, increasing the compost moisture saturation to between 15% and 20%.

Another important factor to take into account when rearing slugs is diet. There are many diets that have been used to rear slugs, including breakfast cereal, leaf litter and fungi (Cook & Radford, 1988), oat bran (Howlett et al., 2009), dog food and fresh fruit (Hamilton et al., 2020). Synthetic diets of calcium alginate beads have also been used to rear slugs, but reproductive output was poor (Wright, 1973). As D. invadens, A. hortensis and A. valentianus are all generalist herbivores (South, 1992), we fed them a mixture of lettuce, carrot and calcium tablets. Our results demonstrate that on this diet, the slugs were able to grow and mature quickly with no reduction in reproductive output. We gave the slugs a choice of foods as previous research has shown they choose the food type that contains the nutrients they lack the most (Cook et al., 1999). Carrot is a particularly good choice of food for laboratory-based studies as compared to potato, lettuce, apple and bran, which decay quickly causing microbial contamination that may affect the health of the slugs (Stephenson, 1962).

A continuous culture of slugs could aid in research on slug genomics (Chen *et al.*, 2020), transcriptomics (Ahn *et al.*, 2017), behaviour (Kozlowski *et al.*, 2016), microbiome analysis (Reich *et al.*, 2018), feeding (Barone & Frank, 2008) or novel molluscicide screening (Klein *et al.*, 2020). Also, 'sterile' slugs (i.e. those free of metazoan parasites) could be used in coevolutionary studies with common parasites such as trematodes, parasitic flies or mites (South, 1992). For example, we are particularly interested in using these slugs for infection and coevolutionary studies using the slug parasitic nematode *Phasmarhabditis hermaphrodita* (Cutler & Rae, 2020). In summary, the successful culturing and mating of slugs may allow these animals to be developed as model gastropod study organisms.

ACKNOWLEDGEMENTS

We are grateful to the Royal Horticultural Society for funding.

REFERENCES

- AHN, S.-J., MARTIN, R., RAO, S. & CHOI, M.-Y. 2017. Neuropeptides predicted from the transcriptome analysis of the gray garden slug *Deroceras reticulatum. Peptides*, **93**: 51–65.
- ANDERSON, R. 2008. Annotated list of the non-marine Mollusca of Britain and Ireland. Available at: http://www.conchsoc.org/node/540. Accessed 10 May 2021.
- ARIAS, R.O. & CROWELL, H.L. 1963. A contribution to the biology of the grey garden slug. Bulletin of the Southern California Academy of Sciences, 62: 83–97.
- BARONE, M. & FRANK, T. 2008. Effects of plant extracts on the feeding behaviour of the slug Arion lusitanicus. Annals of Applied Biology, 134: 341– 345.
- BARRATT, J., CHAN, D., SANDARADURA, I., MALIK, R., SPIEL-MAN, D., LEE, R., MARRIOTT, D., HARKNESS, J., ELLIS, J. & STARK, D. 2016. *Angiostrongylus cantonensis*: a review of its distribution, molecular biology and clinical significance as a human pathogen. *Parasitology*, **143**: 1087–1118.
- CAMERON, R. 2016. Slugs and snails. HarperCollins, London.
- CARRICK, R. 1938. The life history and development of Agriolimax agressis L., the grey field slug. Transactions of the Royal Society of Edinburgh, 59: 563– 597.
- CHEN, Z., DOĞAN, Ö., GUIGLIELMONI, N., GUICHARD, A. & SCHRŐDL, M. 2020. The *de novo* genome of the "Spanish" slug *Arion vulgaris* Moquin-Tandon, 1855 (Gastropoda: Panpulmonata): massive expansion of transposable elements in a major pest species. *bioRxiv*. DOI: https://doi.org/10.1101/2020.11.30.403303.
- COOK, A. & RADFORD, D.J. 1988. The comparative ecology of four sympatric limacid slug species in Northern Ireland, UK. *Malacologia*, 28: 131–146.
- COOK, R.T., BAILEY, C.R., NASH, B. & WOODHOUSE, R.M. 1999. The influence of nutritional status on the feeding behaviour of the field slug, *Deroceras reticulatum* (Müller). *Animal Behaviour*, **59**: 167–176.
- CUTLER, J. & RAE, R. 2020. Pathogenicity of wild and commercial *Phasmarhabditis hermaphrodita* exposed to the pestiferous slug *Deroceras reticulatum*. *Journal of Invertebrate Pathology*, **174**: 107435.
- DAVIES, S.M. 1977. The Arion hortensis complex with notes on A. intermedius Normand (Pulmonata: Arionidae). Journal of Conchology, 29: 173–187.
- GRAY, J.B., KRALKA, R.A. & SAMUEL, W.M. 1985. Rearing of eight species of terrestrial gastropods (order Stylommatophora) under laboratory conditions. *Canadian Journal of Zoology*, **63**: 2474–2476.

- HAMILTON, L.J., TAGAMI, Y., KALUNA, L., JACOB, J., JARVI, S.I. & FOLLETT, P. 2020. Demographics of the semi-slug *Parmarion martensi*, an intermediate host for *Angiostrongylus cantonensis* in Hawai'i, during laboratory rearing. *Parasitology*, **148**: 153–158.
- HOWLETT, S.A., BURCH, G., SARATHCHANDRA, U. & BELL, N.L. 2009. A bioassay technique to assess the molluscicidal effects of microbes. *New Zealand Plant Protection*, **62**: 7–11.
- KINGSTON, N. 1966. Observations on the laboratory rearing of terrestrial molluscs. *American Midland Naturalist Journal*, **76**: 528– 532.
- KLEIN, M.L., CHASTAIN, T.G., GARBACIK, C.J., QIAN, Y.P.L. & McDONNELL, R.J. 2020. Acute toxicity of essential oils to the pest slug *Deroceras reticulatum* in laboratory and greenhouse bioassays. *Journal of Pest Science*, 93: 415–425.
- KOZLOWSKI, R.J., KOZLOWSKI, J., PRZYBYL, K., NIEDBALA, G., MUELLER, W., OKOŃ, P., WOJCIESZAK, D., KOSZELA, K. & KUJAWA, S. 2016. Image analysis techniques in the study of slug behaviour. In: *Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016).* Vol. 10033. Chengu, China.

- REICH, I., ZEESHAN LJAZ, U., GORMALLY, M. & SMITH, C.J. 2018. 16S rRNA sequencing reveals likely beneficial core microbes within faecal samples of the EU protected slugs *Geomalacus maculosus*. *Scientific Reports*, 8: 10402.
- ROWSON, B., ANDERSON, R., TURNER, J.A. & SYMONDSON, W.O.C. 2014. The slugs of Britain and Ireland: undetected and undescribed species increase a well-studied, economically important fauna by more than 20%. *PLoS One*, **9**: e91907.
- SIVIK, F.P. 1954. A technique for slug culture. Nautilus, 67: 129-130.
- SOUTH, A. 1992. Terrestrial slugs: biology, ecology and control. Springer Science and Business Media, Dordrecht.
- STEPHENSON, J.W. 1962. A culture method for slugs. Proceedings of the Malacological Society of London, 35: 43–45.
- WILLIS, J.C., BOHAN, D.A., POWERS, S.J., CHOI, Y.H., PARK, J. & GUSSIN, E. 2008. The importance of slug temperature and moisture to the egg-laying behaviour of a pest slug *Deroceras reticulatum*. Annals of Applied Biology, **153**: 105–115.
- WRIGHT, A.A. 1973. Evaluation of a synthetic diet for the rearing of the slug Arion ater L. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 46: 593–603.