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ABSTRACT

Context. Modern astronomical observations give unprecedented access to the physical properties of nearby galaxies, including spa-
tially resolved stellar populations. However, observations can only give a present-day view of the Universe, whereas cosmological
simulations give access to the past record of the processes that galaxies have experienced in their evolution. To connect the events that
happened in the past with galactic properties as seen today, simulations must be taken to a common ground before being compared to
observations. Therefore, a dedicated effort is needed to forward-model simulations into the observational plane.
Aims. We emulate data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which is the largest inte-
gral field spectroscopic galaxy survey to date with its 10 000 nearby galaxies of all types. For this, we use the latest hydro-cosmological
simulations IllustrisTNG to generate MaNGIA (Mapping Nearby Galaxies with IllustrisTNG Astrophysics), a mock MaNGA sample
of similar size that emulates observations of galaxies for stellar population analysis.
Methods. We chose TNG galaxies to match the MaNGA sample selection in terms of mass, size, and redshift in order to limit the
impact of selection effects. We produced MaNGA-like datacubes from all simulated galaxies, and processed them with the stellar
population analysis code pyPipe3D. This allowed us to extract spatially resolved maps of star formation history, age, metallicity,
mass, and kinematics, following the same procedures used as part of the official MaNGA data release.
Results. This first paper presents the approach used to generate the mock sample and provides an initial exploration of its prop-
erties. We show that the stellar populations and kinematics of the simulated MaNGIA galaxies are overall in good agreement with
observations. Specific discrepancies, especially in the age and metallicity gradients in low- to intermediate-mass regimes and in the
kinematics of massive galaxies, require further investigation, but are likely to uncover new physical understanding. We compare our
results to other attempts to mock similar observations, all of smaller datasets.
Conclusions. Our final dataset is released with this publication, consisting of &10 000 post-processed datacubes analysed with pyP-
ipe3D, along with the codes developed to create it. Future work will employ modern machine learning and other analysis techniques
to connect observations of nearby galaxies to their cosmological evolutionary past.

Key words. galaxies: structure – galaxies: evolution

1. Introduction

Over the past years we have witnessed an emergence of mod-
ern hydro-cosmological simulations (e.g. Schaye et al. 2015;
Crain et al. 2015; Springel et al. 2018; Pillepich et al. 2018;
Naiman et al. 2018; Nelson et al. 2018; Marinacci et al. 2018),
which provide galaxies in a cosmological context and with
unprecedented resolution, recovering structures in galaxies, such
as spiral arms and bars (Pillepich et al. 2019). Characterizing
how close the properties of simulated and observed galaxies are
has become crucial to achieving progress in our understanding
of the physics of galaxy formation.

However, observations are affected by a number of instru-
mental and selection effects. A dedicated effort is necessary
to emulate the observational effects in simulation outputs and
produce statistical samples to be compared with observations.
This apple-to-apple comparison is needed to validate whether

the simulations reproduce the observed galaxies and their prop-
erties or not. Mock imaging has been extensively used to statis-
tically compare simulated galaxies with observations delivered
by large surveys, such as the Sloan Digital Sky Survey (SDSS,
York et al. 2000) and Pan-STARRS (Chambers et al. 2016),
identifying compatibilities between simulations and observa-
tions and leading to a new generation of improved simula-
tions. Some examples include studies on galaxy morphology,
colour distribution, or mass-to-light ratios (Torrey et al. 2015;
Bottrell et al. 2017a,b; Schulz et al. 2020; Nelson et al. 2018;
Rodriguez-Gomez et al. 2019). In addition to comparing obser-
vations and simulations, realistic mock observations can also be
used for simulation-based inference of physical processes, which
are accessible in the simulation, but not in observations at fixed
redshift.

In this work, we present MaNGIA (Mapping Nearby Galax-
ies with IllustrisTNG Astrophysics), a new forward-modelled
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sample from the TNG50 (Pillepich et al. 2019, Nelson et al.
2019) simulation to mimic the properties of the MaNGA sur-
vey (Bundy et al. 2015). MaNGA is currently the largest inte-
gral field spectroscopic survey with data for 10 000 galaxies and
enables a statistical analysis of spatially resolved physical prop-
erties of nearby galaxies. The survey’s science goals include the
study of galaxy assembly histories, galaxy quenching and its link
to environment, and how galaxy morphology and components
form (Bundy et al. 2015).

Previous works have addressed mock MaNGA datacubes
for a reduced number of simulated galaxies, following differ-
ent recipes. Bottrell & Hani (2022) emulated the instrumental
effects of the survey with the RealSimIFS code and applied it
to TNG50 simulations (Pillepich et al. 2019; Nelson et al. 2019),
producing mocks for 893 simulated galaxies using input dat-
acubes that comprise the stellar particles’ line-of-sight (LOS)
velocity distributions. Other approaches produced full spectral
datacubes prior to mimicking MaNGA’s instrumental pipeline
(Ibarra-Medel et al. 2019; Nevin et al. 2021; Nanni et al. 2022a).
In these the spectra were generated considering three com-
ponents: stellar continuum, emission lines due to young stars
and/or active galactic nucleus (AGN) feedback, and dust attenua-
tion. Nevin et al. (2021) shows the impact of using the full mock
datacubes to recover the kinematic maps.

We present a set of 10 000 post-processed datacubes that
resemble the MaNGA survey, constituting the first com-
plete sample and the largest one to date. We used TNG50
(Pillepich et al. 2019, Nelson et al. 2019), the highest-resolution
hydro-dynamical simulation of the IllustrisTNG family. This
TNG simulation offers the best compromise to date between res-
olution and number of unique galaxies in a cosmological context.
We mimicked MaNGA’s target selection and followed the proce-
dures of Ibarra-Medel et al. (2019) to generate mock datacubes
from simulated galaxies. These include producing the spectra
associated with the particles in the simulation, recreating the
fibre bundle observing scheme to mimic MaNGA’s spectral and
spatial resolution, and incorporating typical observational effects
as atmospheric seeing and noise. The data products are aimed to
be comparable with the MaNGA MPL-11 release1 analysed with
the pyPipe3D code2 (Lacerda et al. 2022, Sánchez et al. 2022),
which extracts the stellar populations and emission line proper-
ties from the integral field spectroscopy data.

The paper is organized as follows. Section 2 details the
sample selection strategy. The method used to generate mock
MaNGA datacubes is described in Sect. 3. In Sect. 4 we show an
overview of the mock dataset. Data can be accessed by following
the instructions in Sect. 7. The discussion is presented in Sect. 5
and our conclusions in Sect. 6.

2. Sample selection

2.1. MaNGA

MaNGA (Bundy et al. 2015) is the integral field spectroscopic
(IFS) survey of the Sloan Digital Sky Survey IV (SDSS IV;
Blanton et al. 2017). MaNGA targets were observed with the
Sloan 2.5 m aperture telescope at APO (Gunn et al. 2006).
To obtain the spatial-spectral cubes, MaNGA used integral
field units (IFUs) formed by arrays of fibres distributed in
a hexagonal pattern (Drory et al. 2015). The fibres are con-
nected to two twin multi-object fibre spectrographs covering
1 http://ifs.astroscu.unam.mx/MaNGA/Pipe3D_v3_1_1/
index.html
2 http://ifs.astroscu.unam.mx/pyPipe3D/

the 340−1030 nm wavelength range with a spectral resolution
R ∼ 2000 (Smee et al. 2013). MaNGA data was released in ten
public releases, completed in DR17 (Abdurro’uf et al. 2022).

The MaNGA survey consists of over 104 galaxies to have
a statistical sample of galaxies that covers a variety of environ-
ments and star formation activity. To achieve this, the galaxies
were selected to have a flat distribution in mass, as this param-
eter is an important driver of the galaxy population. However,
to avoid uncertainties in the mass calculation, the selection was
based on the i-band magnitude (Mi) instead, commonly used as a
proxy for stellar mass. A uniform distribution in Mi was achieved
by selecting galaxies at different redshifts.

The complete sample is divided into three subsamples: Pri-
mary, Secondary, and Colour-Enhanced. The Primary sample
represents ∼50% of the survey and optimizes a galaxy spatial
coverage out to 1.5 effective radii Re, while the spatial coverage
in the Secondary sample (designed to have half as many targets
as the Primary sample) is out to 2.5 Re. The Colour-Enhanced
sample was defined to balance the NUV-i colour distribution
in the Primary sample by increasing the number of galaxies in
the red–low-mass and in the blue–high-mass regimes and in the
green valley. As the targets should have a similar spatial cover-
age (1.5 or 2.5 Re of the galaxy), five bundle sizes were used
to optimize the coverage. This introduces a constraint on the
redshift and the size of the galaxies such that their apparent
sizes match that of the bundles’ field of view (FOV; Bundy et al.
2015).

To mimic the MaNGA sample we selected simulated galax-
ies with similar redshifts, sizes, and masses (see Sect. 2.3 for
more details). In particular, we used the following parameters
for the observed galaxies. The redshifts assumed are listed in
the NASA-Sloan Atlas (NSA) catalogue. As the MaNGA IFU
allocation is based on the elliptical Petrosian 50% light radius
in the SDSS r-band, we used this parameter as a proxy for
size. Although the original sample selection replaces stellar mass
by the i-band magnitude, deriving magnitudes from simulated
galaxies involves a mocking process itself which is computa-
tionally very expensive and not justified at the target selection
stage of this work. While TNG50 provides stellar magnitudes,
these are based on Bruzual & Charlot (2003) simple stellar pop-
ulations (different to the one used in this work, see Sect. 3.2)
and without accounting for dust effects. Therefore, we relied on
the stellar mass values inferred from observations rather than
forward-modelling all the simulated galaxies into the observer
space for the purposes of deriving stellar masses. Therefore, we
used the stellar mass Mobs within an aperture of two Petrosian
radii. Like the redshifts, the effective radii and stellar masses are
extracted from the NSA catalogue.

2.2. TNG50

TNG50 uses a finite periodic co-moving volume of
50 Mpc3 and assumes a flat ΛCDM cosmology with
H0 = 67.74 km s−1 Mpc−1 (Planck Collaboration XIII 2016),
which is the one used throughout this work. As the cosmological
box evolves through time, 100 snapshots are saved with a
typical separation of ∆z = 0.01 across MaNGA’s redshift range,
which is equivalent to a mean time span of 0.16 Gyr between
snapshots. We consider simulated galaxies from snapshots 87 to
98 (0.012 ≤ z ≤ 0.15).

While MaNGA targets were selected based on proper-
ties derived from the SDSS survey, photometric measurements
are not directly derivable from the simulations. Therefore, the
challenge of matching observed galaxies with simulated ones
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relies on their properties being comparable. While redshifts
are defined by the TNG snapshots, radius and mass require
a more detailed estimation. We use the preexisting catalogues
from Rodriguez-Gomez et al. (2019) which collect photometric
parameters of TNG50 galaxy mocks produced using the Skirt
radiative transfer code (Baes et al. 2011, Baes & Camps 2015).
As these catalogues are only available for a limited number of
TNG snapshots, we aim to relate the radii directly calculated
from the simulations (i.e. the stellar half-mass radii) with the
photometric radii derived from the mocks to later extend this
relation to all the snapshots with z ≤ 0.15. In particular, we used
the catalogue corresponding to snapshot 95 (z = 0.048) as it is
the one with the available redshift that is nearest to MaNGA’s
average redshift. Galaxies in this snapshot are divided in five
stellar mass bins to later perform a linear fit per bin between the
simulation and observation-like sizes. An analogous procedure
is followed to estimate the circularized Petrosian radius, which
is then used to calculate the stellar mass of the galaxy enclosed
within two Petrosian radii. In Appendix A we describe in detail
the fit performed to estimate the elliptical Petrosian half-radii
and the stellar masses for the simulated galaxies.

As other parameters such as colour, star formation rate
(SFR), and environment are not matched, the TNG-MaNGA
counterparts will not necessarily share the same properties.
However, the MaNGA sample and our TNG sample should both
have a similar variety of these properties, as the target selection is
essentially the same. We avoid matching the samples by colour
as the magnitudes derived from the simulation are not neces-
sarily comparable to the observed ones. Although the Colour-
Enhanced sample is colour-defined, this sample represents only
.15% of the total. Nevertheless, we identify TNG50 analogues
for these galaxies, but only considering the parameters described
above. This means that this subsample of MaNGA may not be
represented as well as the others in our sample. However, the
simulated galaxies are observed with the largest bundle size to
enable a posterior rearrangement of the samples.

2.3. Matching algorithm

Our simulated sample was built by finding a TNG50 analogue
to every MaNGA galaxy, matching redshift, stellar mass, and Re
with a similar approach to Duckworth et al. (2020). We used the
DRPall catalogue v3.1.1 corresponding to SDSS Data Release
17. In this catalogue 10 233 observed galaxies have a well-
defined mass, Re, and redshift, of which 10 094 are unique. We
considered all the galaxies with M∗ > 108.5M� in this subsample
for the matching of the sample (10 070 in total).

As the number of simulated galaxies is limited, we made
two assumptions that allowed us to complete the sample. First,
galaxies have modified their properties enough across redshift
such that they can be considered as different galaxies if they are
in different snapshots. In the local Universe, merger and accre-
tion events, bursts of stellar feedback, or SMBH feedback due
to gas infall or gas brought in by merging galaxies can induce
changes on timescales of 150−200 Myr (Sotillo-Ramos et al.
2022). Additionally, at fixed projection, a given galaxy rotates
and can change its orientation between snapshots, indeed appear-
ing as a different galaxy. Second, mocks produced by observing
a simulated galaxy from different angles are sufficiently differ-
ent to be considered independent galaxies. However, the latter
assumption fails for galaxies with a near to spherical symme-
try or a large number of viewing angles. To reduce the impact
of this assumption, the selection strategy should not only seek
to minimize the difference in mass, size, and redshift between

Table 1. Simulated galaxies repeated in MaNGIA.

N repetitions N galaxies Spheroids (% over total)

Unique 5452 5.31%
2 repetitions 1664 1.63%
3 repetitions 361 0.44%
4 repetitions 39 0.04%
5 repetitions 4 0
6 repetitions 2 0

the observed and simulated counterparts, but it should also max-
imize the assignment of different TNG50 galaxies. Therefore,
we first performed a match considering only unique galaxies
and later allowed repetition until the sample was complete. The
repeated galaxies were then observed from different angles.

For the match, each MaNGA galaxy is assigned to the
TNG50 snapshot that has the redshift nearest to that of
the observed galaxy. The TNG50 galaxy counterpart for the
observed one must be in this snapshot. This limits the TNG50
snapshots used to 87−98, with redshifts from 0.012 to 0.15. We
then define a distance d in the mass-Re space as

d2 =
[
log(Mobs[M�]) − log(MTNG[M�])

]2
+[

log(Re, obs[′′]) − log(Re, TNG[′′])
]2, (1)

where masses and radii from observed and simulated galaxies
are defined as in Sects. 2.1, 2.2, and Appendix A. Masses M
and radii Re are in log-scale, such that the difference between
observed and simulated parameters is relative (i.e. setting an
upper limit to d < 0.1 implies that mass and radius are con-
strained to have relative differences smaller than 25%).

Each MaNGA galaxy gets paired with the nearest TNG50
galaxy in the M − Re plane. As one TNG50 galaxy might be
the nearest neighbour of multiple MaNGA galaxies in the mass-
size plane, we defined the following iterative algorithm to choose
priority pairs. If a TNG50 galaxy gets selected more than once
(e.g. n times), then the nearest MaNGA galaxy is assigned to
this TNG50 galaxy, which will no longer be available to be
selected in later iterations. The n − 1 remaining galaxies are
sent back to the pool of unassigned MaNGA galaxies. This step
is repeated until there are no more TNG50 galaxies available
within the imposed range. We found that 7522 MaNGA galax-
ies were assigned a unique TNG50 match if d was limited to
d < 0.25, which is of the order of the expected errors in the mass
and radius estimations from observations.

After this step a significant fraction of the MaNGA sam-
ple remained unassigned, and so we allowed TNG50 galaxies
to be repeated. This was done by repeating the previous step
until all MaNGA galaxies were allocated, with the consideration
that the simulated galaxies selected in each new iteration of this
step are repetitions of previously selected galaxies. This resulted
in 99.2% of MaNGA galaxies assigned with up to three repeti-
tions per TNG50 galaxy, where 5452 were unique galaxies, 1664
were repeated twice, and 361 required a third repetition. Only 45
TNG50 galaxies needed to be repeated more than three times. Of
these, 39 were repeated exactly three times, four appeared five
times, and two required six repetitions (Table 1). After allowing
six repetitions, only ten MaNGA galaxies remained unassigned
and four were assigned to TNG50 galaxies that had already been
chosen six times. These 14 galaxies are outliers in the M∗ − Re
plane, and therefore were left unassigned in our sample.
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Fig. 1. Distances in the mass-radius plane between MaNGA galaxies and their assigned TNG galaxy pair. From left to right: cumulative percentage
of galaxies at a distance given by Eq. (1). Histogram of distances with galaxies paired with three repetitions. Histograms of the differences in the
mass and radius components in d. The majority of MaNGA galaxies are allocated a TNG pair that is within a relative difference of 25% in the
mass-radius plane.

The repeated TNG50 galaxies are observed from different
angles. The galaxies that appear in the sample less than four
times are observed in the direction of the x, y, and z positive axes,
while those that appear four to six times are observed from up to
six isotropically distributed directions. Table 1 lists the number
of galaxies that were observed in each direction.

Because spheroid galaxies are similar when observed from
different angles, we analysed how frequent they are in our sam-
ple using the Zana et al. (2022) morpho-kinematic catalogue. We
considered a galaxy to be spheroidal if its bulge and halo com-
ponents combined represent over 70% of their mass. With this
classification, 534 spheroid galaxies are unique in our sample,
164 were observed twice, 44 were observed from three angles
(x, y, and z), and only four needed to be observed four times (see
last column in Table 1). Therefore, over 70% of the spheroidal
galaxies in our sample are unique.

The resulting distribution of distances d in the M − Re plane
is shown in the first and second panels of Fig. 1. We note that
the mass and radius terms have similar distributions, indicating
that neither term systematically dominates the final value of d
(Fig. 1, right). Furthermore, both distributions are roughly sym-
metric and centred around zero, suggesting that the simulated
and observed parameters populate the same regions of the M–R
plane and do not introduce a further bias (which could have hap-
pened since one sample is mass-limited, while the others are a
series of volume-limited samples, one per snapshot).

In addition to analysing the distance distribution of the pairs,
we compared the distribution in mass, size, and redshift of
MaNGA galaxies to that of the matched sample. Because every
TNG50 snapshot is associated with a redshift, the TNG50 galax-
ies in our sample have a discrete distribution of redshifts that
reflects the 12 snapshots used for the match (see Fig. 2, right).
Although the densest regions in the M − Re plane are compara-
ble, some outliers cannot be matched in the TNG50 sample, for
instance the large galaxies in the massive end, as seen in Fig. 2,
left panel. In these regions of the plane repetitions are more fre-
quent because TNG50 is a volume-limited sample. As the num-
ber of galaxies per mass decreases towards high masses, fewer
massive galaxies are available. Another region where our sam-
ple appears to be less dense is at small Re; however, all MaNGA
galaxies in this region are paired. The effect can then either be
due to repetitions or to galaxies that are selected in multiple

snapshots, but do not vary their properties across time. The mass
distribution is properly reproduced.

3. Construction of a mock dataset

Once the subset of TNG50 galaxies is selected (Sect. 2), a mock
MaNGA-like datacube is constructed for each of the simulated
galaxies in this sample. We describe the steps for generating
mock datacubes below. We first define the FOV of the observa-
tions. This limits the particles and cells from the simulation that
will contribute to form the spectra in the final datacube. Later,
instrumental effects are included to emulate MaNGA observa-
tions. The procedure is based on Ibarra-Medel et al. (2019) and
further details can be found there. A scheme of the steps fol-
lowed is shown in Fig. 3.

3.1. Field of view definition

The MaNGA survey uses IFUs formed by arrays of fibres dis-
tributed in a hexagonal pattern (Fig. 4). The bundles have five
different sizes with diameters 12.5′′, 17.5′′, 22.5′′, 27.5′′, and
32.5′′. These correspond to IFUs of 19, 37, 61, 91, and 127
fibres, respectively. To form a MaNGA datacube, the target is
observed with one of these IFUs in three dithering positions
resulting in a series of spectra associated with the fibre posi-
tion in the FOV (Drory et al. 2015). Later, the fibre spectra are
recombined and sampled onto a grid of 0.5 × 0.5 arcsec2.

The survey is designed such that every galaxy has a sim-
ilar spatial coverage. Each galaxy is allocated to the bundle
size that optimizes either 1.5 or 2.5 Re coverage if they have
been chosen for the Primary or the Secondary sample, respec-
tively (Wake et al. 2017). Because the galaxies in our sample are
matched in size and redshift, the proportion of galaxies assigned
to each bundle is kept. However, to enable different sample selec-
tions, all mocks are produced with the largest bundle as smaller
bundles can be obtained by removing the outer fibres.

The line of sight to the galaxy is defined by an unitary vec-
tor and the centre of the galaxy as listed in the TNG catalogue
(SubhaloPos). For the galaxies that require up to three repeti-
tions, we use the unitary vectors parallel to x, y, and z axes: ı̂, ̂,
and k̂ for views 1, 2, and 3, respectively. When the TNG galaxy
requires more than three repetitions, we define six isotropically
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Fig. 2. Matched properties of the MaNGIA sample. Left panel: Distribution of mass and effective radius (M∗ − Re plane) of the TNG galaxies in
the matched sample, colour-coded by redshift. The black contours indicate the density of galaxies in the MaNGA M∗−Re plane. Right panel: Mass
vs. redshift of the TNG galaxies in the matched sample. The colour-coding indicates the MaNGA subsamples: galaxies in the Primary sample in
red, Secondary sample in blue, and Color-Enhanced sample in yellow. The contours show the distribution of the MaNGA galaxies in the plane.

distributed views. The orientation of the galaxy with respect to
the observer is random as it is given by the position of the par-
ticles in the simulation cube (for more details, see Appendix B).
The galaxy is observed from the distance defined by the redshift
of the snapshot the galaxy was taken from.

We consider all the stellar particles and gas cells from
the simulation collected by the Friends-Of-Friends (FOF,
Turner & Gott 1976, Zeldovich et al. 1982, Huchra & Geller
1982) algorithm. The FOF algorithm groups particles together if
they are within a given linking length of each other, or of another
particle already linked to the group. In the TNG simulation, these
groups trace the dark matter haloes. They may include more than
one galaxy and, in this case, they are understood as a central
galaxy and its satellites (Bose et al. 2019). This means that not
only are the particles and cells to the target galaxy considered,
but also those of the neighbouring galaxies, which reproduces a
more realistic environment.

As the spatial axes of the cube are formed by the combination
of multiple fibre observations, each fibre will have its own FOV.
Atmospheric seeing is emulated by applying a random shift to
the simulation’s particle positions. The shift follows a multivari-
ate Gaussian distribution with FWHM = 1.43′′. This shift is
updated for each fibre and determines which particles fall in the
FOV of the fibre.

3.2. From particles to light

The mock spectra are generated by including the stellar emission
associated with the simulated stellar particles and the absorption
produced by the presence of dust in the line of sight. Gas emis-
sion lines produced in Hii regions are simulated by associating

star-forming gas cells to Cloudy templates (Ferland et al. 1998,
2017; see Appendix A3 in Ibarra-Medel et al. 2019 for imple-
mentation details3). However, because the interstellar medium
model behind IllustrisTNG (Springel & Hernquist 2003) does
not allow us to rely on the temperature and other thermo-
dynamical properties of the star-forming gas, we remove the
emission line contribution from the spectra for our analysis. As
pyPipe3D performs two spectral fits to extract emission lines
before fitting the simple stellar population (SSP) template, the
analysis of our spectra should be comparable to that performed
on observations. Nonetheless, a non-perfect subtraction of the
emission lines or the superposition of emission with absorption
lines introduces an additional source of noise to the spectrum
that could affect the template fitting. We evaluate this effect in
Appendix C.

The SSP template was chosen with the following considera-
tions. On the one hand, the SSP template used to create the mock
cubes should be the same as the one used in the stellar population
analysis (see Sect. 3.4) to avoid introducing uncertainties due to
the assumptions behind the stellar populations template. On the
other hand, to be consistent with the observations the stellar pop-
ulation analysis should be carried out with the same template
used to process MaNGA observations. Therefore we adopt the
SSP template used in Sánchez et al. (2022), MaStar_sLOG.

The MaStar_sLOG template consists of a set of synthetic
spectra generated with the Galaxev code (Bruzual & Charlot
2003, Yan & Wang 2010) based on MaNGA’s stellar library,
MaStar (Yan et al. 2019). This library has spectra of a variety

3 The full text and appendices are available at the arXiV version online
https://arxiv.org/pdf/1811.04856.pdf
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x 10,000 simulated galaxies

From particles to light (Sect. 3.2)

TNG50 volume

Field of view definition (Sect. 3.1)

Building MaNGA-like datacubes (Sect. 3.3)

From spectra to stellar population maps (Sect. 3.4)

The cubes are analyzed with the pyPIPE3D (Sánchez+ 
2016 a, Sánchez+ 2016 b, Lacerda+ 2022), using the 
MaStar_sLOG template.
Output: maps of age, metallicity and kinematics 
comparable to those derived from the MaNGA observed 
galaxies (Sánchez+ 2022).

Each stellar particle is associated to a synthetic spectrum 
from the MaStar_sLOG template (see Sánchez+ 2022) 
and linearly combined to form the fiber spectrum. A simple 
screen model accounts for dust attenuation (Ibarra-Medel+ 
2019).  
Output: RSS file.

The stellar particles and gas cells are 
projected on the sky and randomly shifted to 
mimic the atmospheric seeing 
(FWHM=1.43"). The stellar particles' and gas cells' 

information is saved for a given galaxy.
Output: particle file.

The values per fiber are recombined to 
form the maps with the intrinsic stellar 
particles' information. 
Output: intrinsic and assigned 2D maps.

For control, the intrinsic values of the 
stellar particles in the FOV of the fibers are 
saved as an extension of the RSS file. 

Gaussian noise is added per fiber spectrum. The 
fiber spectra are recombined to form MaNGA's 
spatial grid. 
Output: 3D datacube.

Control

Fig. 3. Scheme followed to build a MaNGA-like datacube from a TNG50 simulated galaxy. Each step is described in Sect. 3

of single stars, in order to cover a wide range of effective tem-
perature, surface gravity, metallicity and alpha-elements-to-iron
ratio. Galaxev combines these spectra assuming a Salpeter
(1955) initial mass function (IMF) and Parsec isochrones
(Bressan et al. 2012) to produce synthetic stellar populations
spectra. In particular, we use a subset of 273 synthetic spectra
LSSP(λ,Z, t) comprising 39 ages between 0.0023 ≤ t ≤ 13.5 Gyr
with the sLOG sampling, seven metallicities 0.0001 ≤ Z ≤ 0.4 4

(see Camps-Fariña et al. 2022 for more details of the template
age-metallicity sampling), and a linearly sampled wavelength
range of 2000−10 000 Å at rest. Because the MaStar library was
obtained using the same instrument as used for the MaNGA sur-
vey, the spectra have the same spectral resolution.

Because the datacubes are obtained imitating the IFU bun-
dles, the spectra are constructed per fibre with the information of
all the particles within the FOV of the fibre. Hereafter, we refer
to these spectra as fibre spectra or Fi(λ), the i-th fibre spectrum
in a bundle.

The ns stellar particles in the field of view of each fibre in
the bundle contribute to form the spectrum. The j-th stellar par-
ticle is assigned the SSP with the nearest age and metallicity of

4 A solar metallicity of Z� = 0.01698 was adopted throughout the
paper to covert Z to Z/Z� units, and square brackets are used to indi-
cate log-scale, log(Z/Z�) = [Z/Z�].

the template. The spectrum is then mass-weighted and normal-
ized by the mass-luminosity factor MLSSP associated with the
corresponding SSP to obtain the flux. Next, the spectrum corre-
sponding to the j-th stellar particle as a function of wavelength
is given by

Fstellar
j (λ,Z j, t j,m j, r j) =

LSSP (λ, Z j, t j) ×
m j

MLSSP(Z j, t j)
×

L�
4πr2

j

,
(2)

where r j, Z j, t j, and m j are the distance, metallicity, age, and
mass of the j-th stellar particle.

The presence of dust between the emitting source and the
observer produces absorption in the optical range. As the sim-
ulation does not include dust particles, the dust content of the
galaxies is estimated as a gas fraction following the recipe of
Rémy-Ruyer et al. (2014), which is metallicity-dependent. The
effect of dust is introduced in the mocks considering a sim-
ple screen model that attenuates the spectrum associated with
every single stellar particle using the relation Aλ/AV from the
Cardelli et al. (1989) extinction law with an extinction factor
RV = 3.1. For this purpose, the extinction at Johnson’s V pho-
tometric band AV, j is calculated for the j-th stellar particle as
the contribution of all the gas cells that are within the fibre’s
FOV and placed between the observer and the stellar particle
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Fig. 4. Fiber arrays used by MaNGA. Outer fibres of each MaNGA IFU
bundle are shown in a different colour and a thick line, while circles with
a thinner line width show the other two dithers for the same IFU. Large
bundles have the same fibre array than smaller bundles, with additional
rings of fibres in the outer parts. The inner-most fibres (IFU-19, light
green) are shared by all the bundle sizes.

(see Ibarra-Medel et al. 2019). Specifically, the code considers
the gas cells whose position (x,y,z) are in the FOV of the fibre.
In the case that a section of a Voronoi gas cell is in the fibre FOV
but its centre is not, the cell does not contribute to the extinc-
tion of the fibre spectrum. While this approximation may not be
perfect, its impact is minimized by the fact that the large gas
cells also imply low gas (dust) density; therefore, the underes-
timation of dust extinction due to these cells should be negli-
gible. Then, the attenuated spectrum of the j-th stellar particle
is

F stellar obs
j (λ) = F stellar

j × 10−0.4 Aλ
AV

AV, j . (3)

The spectrum is then Doppler-shifted in wavelength accord-
ing to the particle’s velocity in the line of sight v j and the
redshift z at which the galaxy is placed. The spectrum of the
i-th fibre is calculated as the sum of all the stellar contributions
as

Fi(λ) =

ns∑
j

F stellar obs
j

(
λ + λ ×

[ v j

c
+ z

])
, (4)

where c is the speed of light. Because the emission associated
with each stellar particle is individually attenuated, we note
that the dust extinction in different regions of a galaxy can be
different.

To retrieve a rough value of the line of sight velocity, it is
only necessary to have at least four particles in the FOV of the
fibre to ensure a mean error of 50% (1/

√
N, Wall & Jenkins

2012). However, more particles are needed to properly estimate
the velocity dispersion. To study the kinematics of simulated
galaxies, Walo-Martín et al. (2020) set a minimum number of
nine particles per pixel to obtain a S/N=3, assuming a Poisson
distribution of the particles in the 2D projection of the galaxy.
We calculate the percentage of fibres per galaxy that are under
this value and find that only 30 galaxies in our sample have over

50% of their fibres under this threshold, indicating that this is
not a dominant feature in our sample. Therefore, for the intrinsic
maps we can ensure that almost all the galaxies have the mini-
mum number of particles per fibre to recover the kinematics of
the simulated galaxies. The fibres with fewer than nine particles
in their FOV are mostly located at the outskirts of the galaxies,
while all the fibres that cover the central regions of the galaxies
have a good representation of the velocity dispersion. Addition-
ally, the outskirt effects are minimized in the recovered maps due
to the segmentation scheme of pyPipe3D as the spectral fitting
code recombines the spaxels to achieve a target S/N. Therefore,
the kinematics at the galaxies’ outskirts are calculated from a
combination of spaxels (which are also a combination of indi-
vidual fibre spectra), providing a better statistic for the kinematic
extraction.

Even though the dust model used in this work is rather
simple, it is not less complex than the reverse analysis that
pyPipe3D performs. While the dust modelling in the two cases
is similar, recovering the extinction during the spectral analysis
is not as trivial a task as simply inverting the problem. This is
because the attenuation effect is implemented per stellar particle
spectrum before shifting and integrating the contribution of all
the stellar particles in the fibre during the mocking process, while
pyPipe3D recovers one extinction value per observed spectrum.
Another layer of complexity in the inversion problem is that
the spectral fitting code is limited to derive properties from the
observable light, and therefore cannot retrieve the information of
the obscured light beyond the optical depth (see Sect. 4.2). Other
more complex approaches to model dust extinction include
radiative transfer (Skirt, Baes et al. 2011, Baes & Camps 2015,
or Sunrise, Jonsson 2006, Jonsson et al. 2010), where the gas
cells are treated as a Voronoi grid, which is compatible with how
the simulation is computed. These approaches are considerably
more expensive computationally than ours.

At this point the fibre spectra are saved in the row-stacked
spectra (RSS) format. For control, the intrinsic properties of the
stellar particles in the FOV of the fibres are saved as an extension
of the RSS file. The luminosity-weighted (LW) values of age and
metallicity, are computed using the MaStar_sLOG and weighting
by the flux at 5000 Å. To be consistent with the stellar analysis
applied to the datacubes, these are added in log-scale for the i-th
fibre as

log (Age)i =

∑ns
j w j log (tj)∑ns

j w j
,

log (Z)i =

∑ns
j w j log (Zj)∑ns

j w j
, and

w j =
m j

MLSSP(Z j, t j)
.

(5)

While the age t, the metallicity Z, and the mass m of the particles
cover continuous ranges, the luminosity weights w depend on
the template’s MLSSP which has a discrete sampling in age and
metallicity.

Because the particles get assigned a spectrum from the tem-
plate, the fibre spectrum is formed by a combination of dis-
crete ages and metallicities. To analyse how the intrisic ages and
metallicities are affected by this discretizing step, an additional
set of control properties is generated. These are calculated as in
Eq. (5), but replacing the ages and metallicities by the assigned
values of the SSP template.
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3.3. Building MaNGA-like datacubes

To realistically emulate MaNGA observations, we include a
series of instrumental effects that are detailed in this section. We
first reproduce the fibre bundle dithering scheme (Sect. 3.1) to
obtain the spatial sampling and resolution of MaNGA. The spec-
trum corresponding to each fibre is constructed as in the previ-
ous section (Sect. 3.2). Noise is added to the spectra. Finally, the
fibre spectra are re-sampled to MaNGA’s spatial grid format.

The spectra observed in MaNGA are affected by noise intro-
duced by the detector, of a Poisson distribution nature. Because
the spectra are sky-subtracted to the Poisson-limit level, the
noise is ideally distributed following a Gaussian distribution
(Law et al. 2016). We follow the recipe of Ibarra-Medel et al.
(2019) to emulate BOSS spectrograph noise which mimics the
detector’s behaviour by increasing the noise towards the edges
of the wavelength range, with a plateau value F0. As MaNGA
observations target a signal-to-noise ratio (S/N) of 5–10 at the
outskirts of the galaxies (at 1 − 2Re; Bundy et al. 2015), we fix
F0 to obtain a S/N ∼ 5 in the r-band at 2 Re. Because the noise
is added to the fibre spectra before computing the spatial grid,
the value of F0 is estimated from the hexagonal ring of fibres
with radius closest to 2 Re (see Fig. 4). This produces a wider
variety of S/N values in the mocks, which is more similar to
observations.

The stacked spectra corresponding to each galaxy are then
used to reconstruct the spectral cube. MaNGA’s spatial grid is
formed by 0.5 × 0.5 arcsec2 pixels. The contribution of a fibre to
the pixels in the grid is weighted by the distance rp,i of the pixel
p to the centre of the fibre i. If rp,i > 1.6′′ the contribution of the
fibre to the pixel is zero. Otherwise, the weights are defined as

ωp,i = exp
(
−

rp,i
2

2σ2
rec

)
/ωT , (6)

where σrec = 0.7′′ (Law et al. 2016) and ωT is a normalizing
factor to keep the total flux constant.

The mock datacubes have the format detailed in
Sánchez et al. (2022) to be analysed by pyPipe3D
(Lacerda et al. 2022), namely a FITS file comprising three
extensions: the flux datacube in units of 10−16 erg s−1 Å cm−2

per spaxel, a second datacube with the flux error, and a final
extension comprising a datacube with a mask for bad pixels, all
with a linear fixed step in wavelength.

The intrinsic and assigned values of the galaxies that were
saved per fibre for control (Sect. 3.2) are now spatially recom-
bined in the same way as the mock datacubes. This results in a
set of 2D maps with the instrinsic and assigned stellar proper-
ties of the simulated galaxies with the same spatial resolution as
the datacubes. We refer to the maps generated from the continu-
ous properties of the galaxies as the intrinsic maps, while those
formed with the discrete ages and metallicities from the template
are the assigned maps.

3.4. From spectra to stellar population maps

The post-processing of the mock datacubes is performed with
pyPipe3D (Lacerda et al. 2022), the Python implementation of
the Pipe3D code (Sánchez et al. 2016a,b). The goal of this pro-
gramme is to disentangle the contributions to the emission pro-
duced by the different stellar populations and extract the emis-
sion line information from galaxy spectra.

For this purpose, it is necessary to separate the kinematic
and dust extinction effects in the observed spectra and remove
emission lines before finding the best-fitting SSPs. Therefore,

the first step this software performs on given galaxy spectra is
a non-linear fit to determine the extinction (A∗V ) and the stellar
kinematic (σ∗ and z) parameters. A parametric fit is then used to
approximate strong emission lines. Once the emission line con-
tribution is calculated, it is subtracted from the original spectra
to perform the stellar population linear fit.

The SSP fit consists in finding the best-fitting linear com-
bination of SSP spectra (positive contributions only). As the
spectra generally have lower S/N towards the edges, a binning
scheme is necessary to extract the SSP information from these
regions. In particular, Pipe3D uses a Continuous plus S/N bin-
ning algorithm to define how adjacent bins are going to be co-
added. As this scheme sets a goal S/N at the same time as it
requires continuity in the surface brightness, the shape of the
resulting spatial bins follows the isophotes, which typically have
an arc shape rather than the square or round bins formed with the
Voronoi binning scheme. The S/N is set to 50, although the final
S/N value per bin is generally lower because of the brightness
restriction of the algorithm (see Sánchez et al. 2016b).

Once the stellar spectra have been decomposed into a set of
SSPs, the code saves the spatially resolved star formation his-
tories of the galaxy, as well as its maps of stellar age, metallic-
ities, and kinematics (see Fig. 5, recovered maps on the right-
hand side). Other outputs of the pyPipe3D analysis include the
emission line properties and stellar absorption indices.

4. Results

We evaluate the performance of the complete pipeline by com-
paring the stellar population and kinematic maps produced dur-
ing the mocking process (TNG50 intrinsic, assigned, and recov-
ered maps; see Table 2), and then compare the simulated sam-
ple with the observed one (TNG50-recovered and MaNGA-
recovered, see Table 2). While the maps of the simulated galax-
ies were obtained as described in Sect. 3, those of the observed
galaxies correspond to the latest pyPipe3D analysis release for
10 000 MaNGA galaxies5 (Sánchez et al. 2022). In both cases
the fitting code and the SSP template used for the analysis are
the same. The maps considered in this work are the V-band
reconstructed image, the luminosity-weighted age and metallic-
ity, LOS velocity, and dispersion. First, we study the effect of
discretizing in age and metallicity when associating stellar par-
ticles to a spectrum in the MaStar_sLOG template. Second, we
analyse how well the parameters of the simulated galaxies are
recovered from the spectral fitting by comparing them with a set
of analogous stellar population maps calculated directly from the
particle information of each simulated galaxy (assigned maps).
Third, we compare the SSP maps derived from our mock dat-
acubes with those derived from MaNGA observations.

For this section, all the stellar population maps have been
masked when the median intensity had S/N < 3. Because the
mock datacubes were produced with the largest IFU bundle of
127 fibres, an additional mask was applied when their corre-
sponding IFU bundle size is smaller (see Sect. 3.1). In this case,
the allocated IFU size was the same as its observed counterpart.

4.1. Discretization effect in age and metallicity

The simulations produce stellar particles with ages and metallic-
ities that span continuous ranges (constrained only by numerical
limits). When the mock datacubes are produced, the particles are

5 http://ifs.astroscu.unam.mx/MaNGA/Pipe3D_v3_1_1/
index.html
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Fig. 5. Three simulated galaxies with stellar masses 109 M�, 1010 M�, and 1011 M� show the mocking process. Panels on the left-hand side show
the stellar mass density of the galaxies, while the central panels show their spectra at different radii (centre in blue, 0.5Re in red, and 1Re in yellow).
Squared panels on the right-hand side show the stellar properties derived directly from the particles (top row for each galaxy) and recovered from
the spectral cubes with pyPipe3D (bottom row for each galaxy). From left to right, these panels show the V-band reconstructed image (mass
density for the particle maps), luminosity-weighted age, luminosity-weighted metallicity, LsOS velocity, and velocity dispersion. As galaxy mass
increases, the spectra are redder. Stellar maps are, in general, properly recovered.

Table 2. Simulated and observed datasets used for comparison.

Origin Name Description

TNG50 Intrinsic 2D intrinsic property maps of the simulated galaxies, as extracted from the particle informa-
tion. Same spatial resolution as MaNGA.

TNG50 Assigned Age and metallicity stellar maps of the simulated galaxies, after the stellar particles are
assigned a spectrum from the SSP template. Same spatial resolution as MaNGA.

TNG50 Recovered Stellar and kinematic maps of simulated galaxies recovered with the pyPipe3D spectral fit.
MaNGA Recovered Stellar and kinematic maps of observed galaxies recovered with the pyPipe3D spectral fit.

Notes. See Sect. 3 for more details.

assigned to a limited number of SSPs (273) with discrete distri-
butions in age and metallicity. The way the SSP grid is defined
will determine how well the continuous values are represented
by the template.

We compare the intrinsic LW age and metallicity of the sim-
ulated galaxies before and after being assigned an SSP from the
template. For this we calculate the mean LW age and metal-
licity within 1Re from the intrinsic and the assigned LW age–
metallicity maps per simulated galaxy. The difference between
these values is shown in Fig. 6 (assigned minus intrinsic in log-
scale). The age differences spread around zero, with a larger
scatter towards young ages (ages< 5 Gyr). The mean of all dif-
ferences is ∆log(AgeRe) < 0.003 dex, which is smaller than the
standard deviation of 0.004 dex.

After assignation, the LW metallicity is systematically lower
than the intrinsic value. Furthermore, the assigned values tend to
deviate more from the intrinsic values at low ([Z/Z�] < −0.3)
and high ([Z/Z�] > 0) metallicities, reaching maximimum dif-
ferences of ∼0.1 dex. The greater deviation towards high metal-
licities could be related to TNG50 galaxies generally having
particles with metallicities greater than the template’s highest

value ([Z/Z�] > 0.372), being more frequent at higher masses
(see Appendix D). These particles’ metallicities are underesti-
mated when discretized, resulting on an average lower metallic-
ity of the galaxy. Within the range where the particles’ metal-
licity overlaps with the template’s range of metallicity, the dis-
cretization could still produce, on average, differences with the
intrinsic values. This could occur because the intrinsic value dis-
tributions of the simulated galaxies may not be well represented
by the sampling of the template or because the interpolation
method should be revised.

4.2. Recovering physical properties with PYPIPE3D

Determining age, metallicity, and extinction from a spectrum is
a highly degenerate problem. Even in the most favourable case
where the input spectrum is a linear combination of spectra from
the SSP template, recovering ages and metallicities through tem-
plate fitting is a challenging task. Therefore, to see how well
these properties are disentangled by pyPipe3D, we compare the
stellar population maps recovered with pyPipe3D (recovered)
with a set of maps that were produced directly from the stellar
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Fig. 6. Difference between the intrinsic and assigned mean LW-age and
metallicity (top and bottom, respectively, both in log-scale) within 1Re
per galaxy (dots), calculated from the respective 2D maps. The yellow
solid and dashed lines indicate mean and standard deviation of the dif-
ferences of the complete set of galaxies. While ages are slightly younger
after being assigned, metallicities show a greater negative deviation
from the intrinsic values.

particle properties after being assigned the nearest ages and metal-
licities from the template’s discrete grid (assigned maps, see
Sect. 3.2). The latter maps are produced with the same spatial
properties as the mock datacubes so that the resolution is compa-
rable. Additionally, the age and metallicity maps are luminosity-
weighted and averaged in log-scale, like those recovered by
pyPipe3D.

Qualitatively, except for differences due to the binning in the
recovered maps, we find that the spatially resolved properties are
properly recovered, as seen in the examples in Fig. 5 (right pan-
els). As the degeneracy in the determination of ages and metal-
licities is case-sensitive, it is worth analysing how the age and
metallicity estimations depend on the galaxy properties. We cal-
culate the difference between the average values within 1 Re of
the recovered and assigned maps for each galaxy (age and metal-
licity in log-scale). In Fig. 7 we see that the estimated values of
extinction tend to be lower than the real ones as their values grow
(bottom right panel). This is a well-known problem of any inver-
sion fitting code: the code can only measure the stellar properties
of the observed light within the optical depth, and cannot recover
the information of the obscured light beyond it. Therefore, the
derivation of the recovered extinction is limited to the observ-
able light, while the intrinsic extinction is estimated from all the
particles along the line of sight assuming an ideal and completely
transparent galaxy. This produces a systematic underestimation
of the recovered extinction as the intrinsic extinction grows (see
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Fig. 7. Differences in age, metallicity, and extinction recovered by
pyPipe3D. The difference ∆ is calculated as recovered-assigned for age
and metallicity [dex] and as recovered-intrinsic for Av. The panels show
the number density of galaxies of the differences across each parameter.
The solid and dashed cyan lines show the mean and standard deviation
of the differences, respectively, while the dashed magenta lines show
2σ deviations from the mean. An age-metallicity degeneracy is seen
as pyPipe3D tends to recover systematically younger ages and higher
metallicities than expected. However, the recovered values are within
the expected errors of 0.1 dex. As expected, extinction is increasingly
underestimated as its value grows.
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Fig. 8. Left panel: differences between intrinsic and recovered velocity
dispersions as Fig. 7. Right hand-side panel: differences in extinction as
a function of redshift.

Fig. 12 in Ibarra-Medel et al. 2019, and Fig. 7 bottom right panel
in this work). Although this means that the recovered spectra are
redder than the original ones, this is not evidently compensated
by an older or metal-rich estimation. There is, however, a degen-
eracy between age and metallicity. The ages estimated from the
recovered data tend to be systematically lower than those of the
assigned maps (−0.05 dex on average) and the metallicities tend
to be estimated with higher values (+0.05 dex on average). This
effect is more notorious towards low metallicities, where the dif-
ferences in ages and metallicity are around 0.1 dex. Although we
find systematics in the recovered ages and metallicities, we note
that the deviation from the assigned values is within the expected
range of 0.1 dex (Cid Fernandes et al. 2013, 2014, Sánchez et al.
2016b, Lacerda et al. 2022) and within 2σ on average (within
1σ for extinction).

After the full mocking process, the velocity dispersion of the
galaxies is, on average, lower compared to the intrinsic values
(Fig. 8, left panel). However, this effect is small given that the
mean decrease is .0.1 dex, which is still within 1σ. To analyse
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if the reddening effects of redshift and extinction are properly
disentangled, the right-hand side of Fig. 8 shows the difference
between the intrinsic and recovered extinction as a function
of redshift. The recovered extinction values are lower than the
intrinsic values mostly at the lower redshifts (z < 0.06). This is
likely related to the sample of galaxies considered, as it has a
greater proportion of massive galaxies at higher redshift, which
are likely to have a low gas mass fraction, and therefore less
dust than those selected at low redshifts. Furthermore, a degen-
eracy between redshift and extinction should produce the inverse
effect.

4.3. Comparing simulations to observations

We now compare the recovered SSP maps of simulated galaxies
with their observed counterparts. Given the size of the sample, a
detailed analysis cannot be done for all the galaxies. Therefore,
we compare the integrated properties of the whole sample in the
following subsections.

4.3.1. Individual stellar maps

To assess how well the mocks reproduce the observational fea-
tures in the data, we show the stellar population and kinematic
maps obtained for ten example galaxies compared with their
MaNGA-observed counterparts (Fig. 9). These galaxies were
chosen to represent ten regions of the M∗ − Re plane. For this
purpose, we defined five mass bins (separated by the follow-
ing mass limits:109.5, 1010, 1010.5, and 1011 M�) and subdivided
each bin into two sizes (first and last 50th percentile in Re [kpc]
within the bin). We then choose the galaxies with the most sim-
ilar mass and size to the median values in each of the ten bins.
Because there are two galaxy sizes for the same mass, we refer
to the galaxies with larger Re as extended and the smaller Re as
compact.

Mocks realistically reproduce the observational and pipeline
effects seen in the observations including spatial resolution and
binning. The noise level is adequate to recover a segmentation
that is comparable to observations, as determined by the S/N < 3
clipping in both cases (Fig. 9).

While only ten example galaxies per mock–observed sam-
ple are shown in Fig. 9, these were chosen to have represen-
tative masses and sizes of different regions of the M∗ − Re
plane. We see that the galaxies are older, more metal-rich, and
exhibit less rotation as they are more compact and massive.
The extended simulated low- and intermediate-mass examples
have a distinctive central component and show negative gra-
dients in age and metallicity, while the observed counterparts
show flatter distributions and a more prominent disc component.
At high mass, the compact simulated examples are fast-rotating,
while the observed galaxies have higher velocity dispersion and
disrupted LOS-velocity maps, corresponding to a typical slow-
rotating galaxy (bottom) and an interaction with a nearby galaxy
(top).

4.3.2. Integrated properties

To compare the global properties of the observed sample with
those of the mocked sample, we analyse how the mean values
of age, metallicity, LOS maximum velocity, projected V/σ, and
dispersion distribute across the M∗−Re plane. All values are cal-
culated within 1 Re. While the projected V/σ is calculated as in
Cappellari et al. (2007), the values obtained can differ from other
works since this parameter is sensitive to the definition of the ref-

erence systemic velocity of the galaxy and the spaxel binning,
which in our case is CS-binning instead of Voronoi. However,
the values shown in Fig. 10 are directly comparable as they were
calculated in a consistent manner for the observed and simulated
galaxies.

For the observed sample, older and more metal-rich galax-
ies lie on the lower and more massive side of the plane, as
seen in Fig. 10 (top panels). These main trends are replicated
in the matched TNG50 sample (bottom panels). However, the
age, metallicity, and V/σ of the simulated sample have a stronger
dependency on the size of the galaxy than those of the observed
sample, which show a clearer correlation with stellar mass. In
contrast, the LOS maximum velocity is strongly correlated with
stellar mass in the simulations, with the highest values at the
most massive end. This is consistent with the lack of simulated
galaxies with low V/σ in this region, while the lack of galax-
ies with high V/σ at low masses could be due to slightly higher
values of dispersion than in observations.

As expected, higher velocity dispersion values are found at
the most massive end. However, the highest velocity disper-
sion of the simulated galaxies is limited to .150 km s−1, while
observed galaxies reach values of 250 km s−1. Similarly, the
youngest galaxies of both samples lie in the low- to intermediate-
mass and most extended regions of the M∗ − Re plane, but
here the most frequent age for the simulated galaxies is around
2 Gyr, while for the MaNGA galaxies this value is 1 Gyr
younger.

4.3.3. Gradients

To analyse how the age and metallicity of the observed sample
and the mock counterpart vary across the galaxies, we consider
the mean values of the LW-maps in three annuli: within 0.5 Re,
between 0.5 Re and 1 Re, and from 1Re to 1.5 Re. Then we calcu-
late the median values per mass bin for both samples.

The best match in age between observations and mocks is
found within 0.5 Re for high-mass galaxies (1010.5M� <), even
though for lower-mass galaxies the discrepancy is 1 Gyr (top row
in Fig. 11). Towards the outer regions of the galaxies, the dis-
crepancy between observed and mocked increases. The mocks
have a flatter distribution of ages across mass outside 0.5 Re,
while the observed galaxies have a steep increase in ages with
mass.

The best match in metallicity between mocks and observa-
tions is found in the outer regions, in contrast to what is seen for
age. Compared to the observations, the simulations form more
metal-rich bulges in low- to intermediate-mass galaxies.

As seen before, there is some degeneracy when recover-
ing age and metallicity with pyPipe3D; however, the discrep-
ancy between observations and simulations is still evident when
we compare these values with those obtained from the particle
maps (dashed lines in Fig. 11). As pointed out in the previous
section, pyPipe3D tends to predict lower ages than the real ones.
This effect is greater in the outer regions of the galaxies, sug-
gesting that the code’s performance might be affected by low
S/N.

5. Reliability of the sample and caveats

The trends of the observed physical properties are recovered in
our sample, although there is still a mismatch between the sam-
ples. We discuss here how the assumptions made when creating
the mock datacubes could be the source of this discrepancy.
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TNG50
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Fig. 9. Simulated and observed recovered maps. The left panels show ten TNG50 recovered stellar population and kinematic maps. From top to
bottom in each subpanel: the V-band reconstructed image, LW-age, LW-metallicity, LOS velocity, and velocity dispersion maps. The right panels
show the MaNGA counterparts of each of the galaxies in the left panels. These examples were chosen to represent ten regions of the M∗ − Re: five
mass bins (delimited by 109.25, 109.75, 1010.25, and 1010.75 M�), which correspond to the columns, with increasing mass from left to right, and two
Re[kpc] regions per mass bin (rows, increasing size from bottom to top).

5.1. Simulations

The mock galaxies are older than those observed for MaNGA
in the low- to intermediate-mass regime. This behaviour has
been observed by Nelson et al. (2018) for TNG100 galaxies. The
results between that work and ours might originate in the differ-
ent samples of galaxies used in each case and/or a resolution
difference since the cosmological volumes of the TNG50 and
TNG100 simulations differ.

In the simulated sample the compact galaxies have old ages
(>5 Gyr) and high metallicities ([Z/Z�] > 0) at low masses,
which is not seen in the MaNGA sample. In contrast to more
extended galaxies in the same mass regime, the simulated com-
pact galaxies are old, and therefore their age estimates should
not be affected by strong emission lines. The difference between
observed and simulated galaxies in this particular region of the
M∗ − Re plane could be related to the larger fraction of satellite
galaxies in MaNGIA (55%) compared to MaNGA (25%, based
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Fig. 10. TNG50 galaxies in the M∗ − Re plane (top) and their MaNGA counterparts (bottom). The galaxies are colour-coded from left to right by
their mean LW-age, LW-metallicity, LOS maximum velocity, dispersion, and projected V/σ calculated within 1 Re from the recovered maps. The
trends seen in the observed sample are replicated in the simulated sample with a greater dependence with galaxy size rather than mass. Although
there is a discrepancy between the maximum values in dispersion and minimum values in age, the galaxies with these values lie in analogous
regions of the plane.
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Fig. 11. Median luminosity-weighted age (top panels) and metallicity (bottom panels) per mass bin at increasing radii for MaNGA galaxies (green)
and TNG50 fully mocked with pyPipe3D (solid magenta line). The median values for the TNG50 intrinsic and assigned maps are shown with
dashed and dot-dashed lines to compare the median shift produced by the mocking process. The shaded areas span from the 20th to the 80th
percentile.
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Fig. 12. As in Fig. 11, but taking the mean age and metallicity per galaxy
up to 1Re. The solid and dashed lines represent the median age (top
panel) and metallicity (bottom panel) per stellar mass bin of the cen-
tral and satellite galaxies, respectively. TNG50 galaxies are plotted in
magenta, while MaNGA galaxies are plotted in green.

on the Yang et al. 2007 group catalogue). To analyse the effect
in satellite and central galaxies of the observed and simulated
samples, we compute the median LW-ages and metallicities per
mass bin as in Sect. 4.3.3 (age and metallicity per galaxy is cal-
culated as the mean value within 1Re from the recovered maps),
now separating satellites from centrals. We consider a galaxy
as ‘central’ if it is not a satellite. The satellite galaxies are, on
average, older and more metal-rich than central galaxies (see
Fig. 12), both in the observed and simulated sample. Older ages
seen for satellite galaxies are consistent with a gas stripping sce-
nario (Gunn et al. 1972, Quilis et al. 2000), where a more mas-
sive nearby galaxy removes gas from the less massive satellite
limiting its ability to form new stars. While central galaxies may
accrete stars and gas with low metallicities resulting in an effec-
tive lower metallicity, the enhanced metallicity observed in satel-
lite galaxies might be connected to ‘strangulation’ processes,
which operate more effectively in the low- to intermediate-mass
regimes (M∗ < 1010 M�; Peng et al. 2015).

While the central and satellite galaxies have consistent
behaviours in both observed and simulated sample when con-
sidered separately, there is still a discrepancy between the satel-
lite and central simulated and observed galaxies. The simulated
galaxies with stellar masses lower than 1010.5 M� are older and
more metal-rich than those observed, while at higher masses we
find the inverse behaviour. The age discrepancy at low and inter-
mediate masses can also be related to a selection bias in the
observations. While MaNGA targets are selected based on their
Mi, brighter galaxies are more likely to be observed. Therefore,
at a fix mass, MaNGA may have a larger fraction of younger
galaxies than the simulated sample simply because the larger
proportion of recently formed hot stars makes these galaxies eas-
ier to detect.

In the high-mass regime the simulated galaxies show con-
siderable rotation (V/σ > 1, right top panel in Fig. 10), which
contrasts with the typically slow rotation in the observed galax-
ies. The behaviour of the massive simulated galaxies is compat-
ible with the overpopulation of red spirals and late-type galaxies
at high masses reported in Rodriguez-Gomez et al. (2019) and
Huertas-Company et al. (2019), respectively. As these results
were found for the TNG100 simulation, a different behaviour
could be expected for TNG50. However, Donnari et al. (2021)
show that TNG50 has a lower quenched fraction of galaxies at
high masses than other TNG simulations (TNG100, TNG300),
suggesting that the behaviour is still present in the highest reso-
lution volume.

5.2. Stellar population templates

The determination of ages and metallicities from spectra relies
heavily on the SSP template, which depends on the IMF,
isochrones, and stellar library assumed to build the template,
and on the sampling in age and metallicity of the template. The
impact of the template choice in this work can be separated
into two aspects. On the one hand, the generated spectra and
the recovered maps of the mocks depend on these choices. On
the other hand, observed galaxies do not necessarily behave as
the models do.

By selecting the same template to produce the mocks as to
analyse the observed datacubes, the uncertainty introduced by
the assumptions is minimized when recovering the stellar popu-
lation properties of the simulated galaxies. In terms of age and
metallicity estimations from the mock data, the most relevant
effect of the template choice is in the luminosity-weighted maps
as age and metallicity, since the M/L ratio is given by the tem-
plate. It is worth noting that the IMF assumed in the template
used in our mocks is different to that used in the TNG simula-
tion. However, as in Nanni et al. (2022a), this should not intro-
duce large inconsistencies as a universal IMF is assumed in the
simulations and in the templates.

For comparison, we produce a reduced sample of 100 mock
assigned LW-maps using the Maraston et al. (2020) template
(MaStar_MA19 from now on) and compare these maps with the
assigned maps produced with the MaStar_sLOG template, for
the same 100 galaxies. The MaStar_MA19 template is based on
MaStar, the same stellar library as used in this work. It com-
bines Cassisi et al. (1997) and Schaller et al. (1992) isochrones,
and it assumes a Kroupa (2002) IMF. This IMF’s positive slope
for low masses (<M�) and higher fraction of massive stars than
the Salpeter IMF is more similar to the Chabrier (2003) IMF, the
one used in the TNG50 simulations. The difference between the
two templates in LW-metallicity is negligible (∆[Z/Z�] < 0.03),
and the difference in LW-age is only evident for young galaxies.
These differences are smaller than the uncertainties of the param-
eter estimation during the post-processing of the datacubes, as
shown in Fig. 13. Although the MaStar_MA19 template is based
in the same stellar library as used in our work (Sect. 3.2), the dif-
ferences observed can also be affected by the different sampling
in age and metallicity in each template. Although this highlights
the complexity in the age determination through SSP template
fit, it also shows that the assumptions behind the different tem-
plates have a limited impact in the LW-ages and metallicities
when generating the mocks.

The age and metallicity sampling of the SSP template plays
a role both when producing the mocks and in the retrieval of the
stellar parameters with the spectral fit. Here we focus on the first
effect. As seen in Sect. 4.1, the sampling of the SSP produces
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Fig. 13. Difference in the LW-age (top) and metallicity (bottom)
obtained with MaStar_MA19 and MaStar_sLOG templates. The prop-
erties were calculated as the mean values within 1 Re from the assigned
maps. While the metallicities are comparable, the assigned ages tend to
be older when using the MaStar_MA19 template.

a systematic shift in the average metallicity of galaxies, where
intrinsic values are more metal-rich than those assigned (Fig. 11,
bottom row). On the one hand, this behaviour could be related to
the metallicity range covered by the SSP template, as some stel-
lar particles in TNG have metallicities that exceed the highest
value in the template (Z = 0.4, see Appendix D). On the other
hand, the spacing of the metallicity template and/or the interpo-
lation method used to assign an SSP spectrum to a stellar particle
(nearest interpolation) may not properly represent the intrinsic
properties of the particles, resulting in lower metallicities than
expected.

Finally, the stellar population maps retrieved from the mock
spectra are also affected by the internal degeneracy of the SSP
template since different combinations of spectra from the tem-
plate could result in a similar added spectrum. This leads to age
and metallicity estimates that deviate from the real ones. While
age and metallicity estimates from real spectra are also affected
by this, the effect can be quantified with the mocks because they
were built as a linear combination of the spectra in the template.
If there is no degeneracy, the combination of spectra should be
perfectly retrieved.

Recovering ages and metallicities from mocks produced with
the same SSP template as used in post-processing is an idealized
scenario where the nature of the galaxies is fully known. While
the uncertainty is minimized by choosing the same SSP to gen-
erate the mocks, the assumptions may not be identically valid
for real galaxies. As the degeneracy when recovering ages and
metallicities through template fitting is non-negligible, this can
lead to discrepancies between the samples. This could occur in

particular for young stellar populations where the variations in
the spectra are more significant.

We note that these properties in the mock sample recover
the overall trends seen in the observed sample. This is in
spite of the complexity of age and metallicity determination
with SSP fits for real spectra, and the fact that the simulated
sample was not built to match MaNGA’s age and metallicity
distribution.

5.3. Emission lines

While interesting information is contained in emission lines,
they are difficult to simulate reliably. Because studying galaxy
line emission is not the final scope of this work, we produce
spectra without it. Nonetheless, this choice motivates a further
study of the effect of emission lines on the stellar population
analysis. In Appendix C we show that strong emission lines
can lead to lower estimates of metallicity and age. Although a
detailed quantification of this effect is beyond the scope of this
work, we find that it can be more important than the uncertainty
in the retrieval of ages and metallicities when only considering
the stellar component.

In our sample this means that the match with observations in
metallicity and age could be slightly improved by adding emis-
sion lines as the discrepancy is stronger where the youngest
galaxies lie (extended low- to intermediate-mass region in the
M∗ − Re). These galaxies tend to be star forming as they exhibit
such young ages. Therefore, they should still have massive stars
capable of ionizing the surrounding gas and producing emission
lines.

5.4. Comparison with other works

Our work is the first to construct MaNGA-like mock datacubes
of simulated galaxies from TNG50 that match the number and
mass-size-redshift distribution of the observed MaNGA galaxy
sample. This allows us to make extensive comparisons between
simulated and observed galaxies connecting the observed prop-
erties of current-epoch galaxies to their formation and evo-
lutionary history. Previous studies have only matched smaller
subsamples of simulated galaxies to MaNGA observations. We
discuss here the similarities and differences between the various
approaches. We consider the works by Ibarra-Medel et al. (2019,
hereafter I–M), Nevin et al. (2021, N21), Bottrell & Hani (2022,
B&H), and the series Nanni et al. (2022a, N22a) and Nanni et al.
(2022b, N22b). For a fast comparison, the characteristics of each
of these works are condensed in Table 3.

The N21 and I–M approaches are based on numerical hydro-
dynamical simulations of single galaxies or pairs of merging
galaxies. Because our goal is to generate a sample of galaxies
that is statistically comparable to the MaNGA survey, a large
enough sample is needed to cover a variety of galaxy types.
In this sense, hydro-cosmological simulations are ideal as they
produce a range of different galaxies in a realistic environment.
Additionally, high resolution is required to capture the structures
that can be resolved by MaNGA. We therefore use TNG50 sim-
ulations. The common choice with other works (B&H, N22a,
and N22b) stems from TNG50’s good compromise between res-
olution, number of available galaxies and the fact that they are
immersed in a cosmological context.

To construct the spectra, we employ a simpler approach
than N21 and N22a, who run the radiative transfer (RT)
codes Sunrise (Jonsson 2006, Jonsson et al. 2010) and Skirt
(Baes et al. 2011, Baes & Camps 2015), respectively. Our
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Table 3. Comparison with similar works.

Ibarra-Medel et al. (2019) Nevin et al. (2021) Nanni et al. (2022a) Bottrell & Hani (2022) Sarmiento+ (2023)
Nanni et al. (2022b) (This work)

Simulation ART Gadget-3 TNG50 TNG50 TNG50
Kravtsov et al. (1997) Springel (2005) Pillepich et al. (2019) Pillepich et al. (2019) Pillepich et al. (2019)
Kravtsov et al. (2005) Springel & Hernquist (2003) Nelson et al. (2019) Nelson et al. (2019) Nelson et al. (2019)

Number of mocks 8 1500 1000 893x4 10 000
SSP template GSD156 Starburst99 MaStar (Mar) – MaStar-sLog

Cid Fernandes et al. (2013) Leitherer et al. (1999) Maraston et al. (2020) – Sánchez et al. (2022)
Emission lines Cloudy MappingsIII MappingsIII – –*

Ferland et al. (1998) Groves (2004) Groves (2004)
Groves et al. (2008)

AGN emission – luminosity-dependent SED – – –
Hopkins et al. (2007)

Radiative transfer No Sunrise Skirt – No
Jonsson (2006) Baes et al. (2011)

Jonsson et al. (2010) Baes & Camps (2015)
IFU fibre Yes No No Yes Yes
Data analysis Pipe3D ppxf ppxf & Firefly – pyPipe3D

Sánchez et al. (2016a) Cappellari & Emsellem (2004) Cappellari & Emsellem (2004) Lacerda et al. (2022)
Sánchez et al. (2016b) Cappellari (2016) Cappellari (2016)

Goddard et al. (2017)
Neumann et al. (2022)

spectra are the result of linearly combining the individual mass-
weighted and doppler-shifted SSP spectra associated with each
stellar particle, considering a simple dust screen model. RT
codes use Monte Carlo methods to emulate the physical pro-
cesses associated with dust (scattering, absorption, and emis-
sion) in the LOS of light-emitting sources. These codes perform
a more complex treatment of dust as they consider a localized
dust contribution and have been used to produce mock galaxy
imaging (Rodriguez-Gomez et al. 2019, Torrey et al. 2015).
However, as computation time scales with wavelength sampling,
they are computationally very expensive when the aim is to pro-
duce high-resolution spectra (Rλ > 2000). To speed up this pro-
cess, N22a compute the dust extinction at low spectral resolu-
tion. Furthermore, Zanisi et al. (2021) argue that dust modelled
by Skirt does not necessarily produce more realistic mocks as
extinction modelling is not a trivial task that depends on several
choices that could modify the outcome (i.e. estimation of dust
from gas in the simulations, geometry assumed). They use a con-
volutional neural network framework to compare how TNG sim-
ulated galaxies reproduce observed morphologies using mock
images produced with Skirt (as Rodriguez-Gomez et al. 2019).
Their framework recovers a higher agreement between the mock
photometric images and the observed ones when the dust effect is
removed from the synthetic images than when it is included (see
Sect. 8.3 in Zanisi et al. 2021). For these reasons, we stick to a
simpler approach to dust emission that is less computationally
demanding. However, because the modelling of the dust in our
mocks is similar to the inverse analysis carried out by pyPipe3D,
the performance of the code might be biased to more accurate
results than in real observations where the nature of the extinc-
tion is not fully known.

To build IFU datacubes, a complex pipeline is needed. While
this work, B&H, and I–M reproduce MaNGA fibre observa-
tions to form the spatial grid of the datacubes, N21 and N22a
mimic this effect by convolving a high-resolution datacube with
a comparable PSF in the spatial axes. By generating the fibre
spectra, the spatially correlated noise of the datacubes is repro-
duced, as the noise is introduced by the spectrograph’s detec-
tor and propagated to the datacubes during the recombination
of the fibres. While it is possible to combine the output of an

RT code with the RealSim code used by B&H to fully imi-
tate MaNGA’s pipeline, our approach (and I–M’s) is consider-
ably less time-consuming because the spectra are built per fibre,
which translates to building up to 381 spectra per datacube (the
largest IFU has 127 and three dithering positions) instead of pro-
ducing a factor of ten more spectra to form the spatial grid that
covers the IFU’s FOV with MaNGA’s spatial sampling (70 × 70
pixels of 0.5 × 0.5 arcsec2).

The stellar population templates used in each case are differ-
ent as they either use different stellar libraries or assume different
stellar formation models (e.g. IMF, isochrones; see references in
Table 3). As in our work, the approaches of I–M and N22a are
intended to perform a stellar population analysis on the mock
datacubes. Therefore, the SSP templates of choice are the same
as those used to process the MaNGA observations with the dif-
ferent stellar population analysis pipelines. This work and N22a,
N22b use SSPs based on the MaStar library.

The spectral fitting code used in N21, N22a, and N22b is ppxf
(Cappellari & Emsellem 2004, Cappellari 2016), which groups
the spaxels in Voronoi bins (Voronoi 1908a,b) to achieve a min-
imal S/N per bin defined by the user. In contrast, the binning
scheme used in the fitting codes Pipe3D and PyPipe3D (used in
I–M and this work, respectively) is CS-binning, which produces
bins that not only target a minimal S/N, but also minimize the
flux variation within the bin (Sánchez et al. 2016b). Therefore, the
shapes of the CS-bins align with the galaxy’s isophotes.

In N22a and I–M only emission lines due to star-burst
regions are simulated. While N22a associate stellar particles
younger than 4 Myr with the MappingsIII template (Groves
2004), I–M model emission lines assume that the star-forming
gas forms young stars with ages 2.6 Myr. Their emission spec-
tral template was produced with the Cloudy code (Ferland et al.
1998). Although we do not include emission lines for the spec-
tral fitting step, the emission lines are calculated as in I–M and
are saved in an extension of the datacube file. In addition to the
uncertainties of the modelling of these features, the emission
lines have not been flux-calibrated. While other approaches use
Mappings III, a specific young stellar populations template that
includes emission lines associated with young stars, we adopt
the same stellar template used for the SSP post-processing for
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the complete age range to avoid introducing further uncertain-
ties in the SSP fit.

N21 includes emission not only from starburst regions and
stars, but also from AGN activity. To do this, AGN spectral
energy distributions (SEDs) are included by associating the
black hole accretion rates derived from the simulations to the
SED template from Hopkins et al. (2006).

N21 find that kinematic maps can change significantly after
emulating the whole mocking procedure by increasing the veloc-
ity dispersion measurement. This effect is boosted when includ-
ing dust scattering and absorption in the Sunrise prescription.
They find that the presence and treatment of AGN could also
have an effect on the kinematic estimates. We do not report an
increase in velocity dispersion after mocking.

6. Conclusions

We present a catalogue of 104 TNG50 galaxies, called MaNGIA,
that matches MaNGA’s target selection, while maximizing the
selection of unique simulated galaxies. MaNGA-like datacubes
were generated for each of the galaxies in the catalogue and
these were post-processed to obtain stellar population and kine-
matic maps that are comparable to those in Sánchez et al. (2022).
MaNGIA is the first sample of 10 000 fully mocked and post-
processed datacubes that mimic MaNGA’s target selection. This
sample not only reproduces the global physical properties of the
observed galaxies, but it also emulates observational effects to
produce realistic stellar population and kinematic maps. Because
these maps were generated with the same pipeline, they are
directly comparable with observations.

This sample is ideal to connect the galaxies’ observable
properties with the physical processes occurring within them,
as many of the latter cannot be directly observed (i.e. accre-
tion history, black hole growth), but can be easily extracted from
the simulations. Therefore, this dataset can be used to constrain
the cause of observables and infer the history of the observed
galaxies.

The sample is also well suited for machine learning applica-
tions given its large volume and realistic observational features.
The sample, mock datacubes, and derived maps are made pub-
licly available with the publication of this paper.

While only stellar mass, size, and redshift were matched,
the overall trends in age, metallicity, and velocity dispersion are
in good agreement with observations. The sample was obtained
with a one-to-one match to MaNGA galaxies, but the dataset pre-
sented in this work is intended to be used in a statistical manner
as other key parameters have not been matched (e.g. star forma-
tion, morphology, colour).

A discrepancy between the observed and simulated samples
found in age and metallicity for the low- to intermediate-mass
galaxies is likely related to a combination of sample selection
biases and pipeline effects. We report a greater proportion
of satellite galaxies in MaNGIA than in the obsertvations,
which leads to an average increase in ages and metallicities in
the lower-mass regime. However, the differences seen for the
younger galaxies are more probably related to uncertainties in
the SSP template dependence and the spectral analysis. On the
one hand, the determination of ages in the young regime through
template fitting has high uncertainties. On the other hand, the
presence of emission lines in galaxy spectra can lead to under-
estimated ages and metallicities. Because we do not include
emission lines in our mocks, it is reasonable to find a stronger
discrepancy in galaxies with young stellar populations as these

galaxies have young stars and the gas to form them, and there-
fore produce emission lines.

At the high-mass end, the discrepancy in kinematics is prob-
ably caused by a greater proportion of massive discs in the simu-
lations than in observations. This is compatible with previous
works (Rodriguez-Gomez et al. 2019, Huertas-Company et al.
2019, Donnari et al. 2021), although it requires further study.

Future work should include analysing how the structures in
the resolved stellar population and kinematic maps of the sim-
ulated galaxies reproduce the observed galaxies. Additionally, a
more realistic emulation of emission lines is planned. This will
be done by constraining the physical properties and geometries
of the star-forming gas cells.

7. Data access and additional products

The data products are available with the publication of this work6

This includes the catalogue of TNG50 simulated galaxies; the
RSS files from which the MaNGA-like datacubes are easily
derivable; and the intrinsic, assigned, and recovered stellar maps.

The code is made available here7 and designed in a block
chain style, as described in Sect. 3 and shown in Fig. 3. The inter-
mediate files and final data products are as follows:

– Particle file: Files with particle information from the simula-
tion: position, velocity, mass, age, and metallicity of stellar
particles and gas cells in the FOV.

– RSS: FITS file comprising the stacked fibre spectra and their
corresponding coordinates in the FOV. The running time for
producing a RSS file scales with the number of fibres and
IFU used, the number of stellar particles and gas cells, SSP
age, and metallicity sampling. This can take from a few min-
utes (<10 min) up to 12 hours for massive galaxies. This pro-
cess can be distributed over several CPUs to reduce comput-
ing times.

– MaNGA-like datacube: FITS file with the spectral datacube.
It takes less than 15 min on one CPU to produce the datacube
from the RSS file.

– pyPipe3D SSP output: FITS file comprising the 2D maps
with recovered stellar properties.

– Control maps: 2D maps with the intrinsic and assigned stellar
properties of the simulated galaxies.

Together with the data, we release a set of masks to obtain the
different bundles. Alternatively, the row-stacked spectra data is
also available and it is possible to recombine the fibres for the
different bundles with the code available.
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Appendix A: Mass and radius estimations

For every TNG50 galaxy we can obtain the radius of a sphere
containing half of its stellar mass R3D

∗ . This is a good estimate for
the galaxy size; however, it may not be directly comparable with
the half-light radius used in MaNGA. We therefore perform a fit
that allows us to obtain a better approximation to the observed
radius. We use the Rodriguez-Gomez et al. (2019) catalogue,
which lists photometric measurements of TNG50 and TNG100
galaxies with stellar masses greater than 109.5M� calculated with
the Statmorph code on mock images of such galaxies. We use
the catalogue corresponding to snapshot 95 since it has the red-
shift that is nearest to MaNGA’s mean z = 0.03. As MaNGA
galaxies span a small redshift range (0.01 < z < 0.15), the
approximation holds for the whole range. From this catalogue
we extract the semi-major axis of the ellipse containing half of
the stellar light RPetro

0.5 and the circularized Petrosian radius Rp in
the r-band. As these values are given in units of co-moving kilo-
parsec per pixel, we convert them to physical units, for SDSS
resolution.

We seek to find a relation between R3D
∗ and RPetro

0.5 . For this
purpose, we define five mass bins in which we perform a lin-
ear fit between the previously defined radii in log-scale physi-
cal units. We find that values for RPetro

0.5 are generally larger than
those for R3D

∗ . The scatter of these fits are within 0.1 − 0.17 dex.
As the galaxies considered in this work extend to a lower mass
boundary than 109.5M�, the fit found for the lowest-mass bin is
used for all galaxies with M∗ < 1010M�. To obtain a mass esti-
mate similar to that used in MaNGA, we first find an estimation
for Rp following the previous procedure and later calculate the
stellar mass within 2Rp.

Appendix B: Isotropic views for repeated galaxies

The high resolution of TNG50 comes at the cost of reducing the
size of the cosmological box, resulting in a reduced number of

eligible galaxies. Additionally, each snapshot is volume-limited.
Therefore, to match MaNGA’s mass distribution and to repro-
duce the MaNGA survey properties, galaxy repetition is needed
(especially for the high-mass end).

To define the number of repetitions needed we consider the
following. While defining fewer repetitions leads to a larger vari-
ety of galaxies, more repetitions lead to a better match in terms
of mass and size. An additional constraint comes into play when
we consider how the views are defined. In general, we aim to
sample galaxies with random orientations, and, if repeated, they
should be observed from as many different angles as possible.
As the simulated galaxies are randomly oriented in the cosmo-
logical box, we only need to define the orientation of the n-
viewers to achieve this. Since galaxies generally have axial sym-
metries, we avoid selecting views placed in opposite directions
as they would show the galaxy with the same inclination. Fur-
thermore, we can measure how different views are by taking the
absolute value of the cosine distance between the unit vectors
that define the views, which is maximized if observers are ori-
ented at 90◦ to each other and minimized if they are parallel.
To maximize the distance, the observers must be isotropically
distributed.

To obtain a set of six isotropic views (the maximum used
in this work), we use the directions defined by the vertices of a
regular polyhedron. In particular, we consider an icosahedron,
a 3D shape with 20 faces and 12 vertices. We choose an icosa-
hedron centred in the origin, oriented such that one of its ver-
tices is in (1, 0, 0) and another in (a, b, 0), where a > 0, b > 0.
These vertices define the first and second views, respectively.
The other four views are defined by the remaining vertices that
have a positive first component. The minimum angular sepa-
ration between two observers is α = 63.4◦. An example of
how a galaxy would look with these six views is shown in
Fig. B.1, while the three standard views (x, y, z) for the same
galaxy are shown in Fig. B.2
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Fig. B.1. Six views of galaxy 377018 in snapshot 87 (from left to right). The top row shows the stellar mass per 0.25′′ × 0.25′′ in the field of view.
The bottom row shows the mean line-of-sight velocity of the stellar particles.

A23, page 19 of 22



Sarmiento, R., et al.: A&A 673, A23 (2023)

-9.5

0.0

9.5

y 
[a

rc
se

c]

-9.5 0.0 9.5
x [arcsec]

-9.5

0.0

9.5
y 

[a
rc

se
c]

-9.5 0.0 9.5
x [arcsec]

-9.5 0.0 9.5
x [arcsec]

6

8

lo
g(

M
/M

)

100

0

100

ve
l[k

m
/s

])

Fig. B.2. Same as Fig. B.1, three views of galaxy 377018 snapshot 87. The first three views in Fig. B.1 are chosen to be the most similar to the
views in the x, y, z directions.
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Appendix C: SSP analysis with emission lines

We study the impact of excluding emission lines (ELs) when
retrieving stellar population contributions in the spectra. In this
test we run pyPipe3D on a subsample of 100 simulated galaxies
twice, first adding the EL spectra and then without them. The
subsample is selected to have a representative distribution in the
M∗ − Re plane of the MaNGA sample. The difference between
the recovered ages and metallicities in each case is then used as
an indicator of the bias introduced in SSP fits by the ELs. We
calculate the EL contribution as in Ibarra-Medel et al. (2019)
and downgrade its spectral resolution to MaNGA’s typical val-
ues before adding it to the stellar continuum spectra. While the
resulting spectra look realistic, the EL spectra may not be reli-
ably modelled, and therefore we do not pursue a further analysis
of the ELs. An example of the spectra with the added contribu-
tion of the ELs is shown in Fig. C.1.

Similar to the analysis in Sect. 4.2, we plot the difference
between the mean ages and metallicities derived from the spec-

tra within 1Re including ELs and those that do not include ELs
for the same galaxies. As we are interested in the effect of ELs
in the spectra and some of our 100 galaxies may have only
weak ELs or no ELs, we identify the peak flux ratio between
the spectra with and without the ELs within Re for each galaxy.
While galaxies with weak ELs seem unaffected (scatter limited
to ±0.5 dex), galaxies with strong ELs tend to lead to younger
and more metal-poor estimations than when ELs are not included
(Fig. C.2). While this effect is systematic in metallicity, the age
estimations are more robust but with a larger scatter. The most
extreme cases have a deviation of |∆ log(Age)| ∼ 0.4. At 2 Gyr;
where the deviations are greater and more frequent, the ages can
be estimated to be ∼ 1.2 Gyr younger. The correlation of this
effect with age is evident since galaxies with young stellar pop-
ulations will have young massive stars capable of ionizing the
surrounding gas, thus producing emission lines. While this test
shows how emission lines can impact in the SSP fitting, a more
detailed study on the performance of pyPipe3D is beyond the
scope of this work.
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Fig. C.1. As in Fig. 5, but for the mock spectra with emission lines of a simulated galaxy at its centre, 0.5 Re, and 1 Re.
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Fig. C.2. Difference retrieving ages and metallicities (left and right panels, respectively) with pyPipe3D introduced by including emission lines
in the spectra. The colour-coding is determined by the peak flux ratio between the spectra with and without the emission lines. The median of the
differences is shown with a solid blue line, while the 20th and 80th percentiles are shown with dashed blue lines.
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Appendix D: Metallicity excess in stellar particles

The metallicities of the TNG50 stellar particles may have val-
ues above the upper limit of the MaStar_sLOG template. These
values are not properly represented by the template, resulting
in a underestimation of the average metallicity of the galaxy.
We analyse how frequently the simulated galaxies have parti-
cles with metallicities above the threshold given by Zthres =
max(ZSSP) + ∆Z, where max(ZSSP) = 0.4 is the maximum metal-
licity (Z) in the template and ∆Z = 0.05 is half the differ-
ence between the highest metallicity in the template and the one
immediately before it. We consider that particles with metallici-
ties above Zthres are underestimated when constructing the mock
datacube.

Figure D.1 shows the fraction of stellar particles per galaxy
in the MaNGIA sample where the metallicity exceeds Zthres and
its dependence with stellar mass. For each galaxy, we considered
all the particles identified with the subfind algorithm, which
may not coincide with those in the field of view of the mock
datacube. There is a clear dependence between stellar mass and
high metallicity.
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Fig. D.1. Fraction of stellar particles per galaxy in the MaNGIA sample
where the metallicity exceeds Zthres (see text) and its dependence on
stellar mass. N is the number density of galaxies per bin.
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