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Aims Patients with heart failure with preserved ejection fraction (HFpEF) are characterized by impaired diastolic function. Left 
ventricular (LV) strain–volume loops (SVL) represent the relation between strain and volume during the cardiac cycle 
and provide insight into systolic and diastolic function characteristics. In this study, we examined the association of SVL para-
meters and adverse events in HFpEF.  

Methods 
and results 

In 235 patients diagnosed with HFpEF, LV-SVL were constructed based on echocardiography images. The endpoint was a 
composite of all-cause mortality and Heart Failure (HF)-related hospitalization, which was extracted from electronic medical 
records. Cox-regression analysis was used to assess the association of SVL parameters and the composite endpoint, 
while adjusting for age, sex, and NYHA class. HFpEF patients (72.3% female) were 75.8 ± 6.9 years old, had a BMI of 
29.9 ± 5.4 kg/m2, and a left ventricular ejection fraction of 60.3 ± 7.0%. Across 2.9 years (1.8–4.1) of follow-up, 
73 Patients (31%) experienced an event. Early diastolic slope was significantly associated with adverse events [second 
quartile vs. first quartile: adjusted hazards ratio (HR) 0.42 (95%CI 0.20–0.88)] after adjusting for age, sex, and NYHA class. 
The association between LV peak strain and adverse events disappeared upon correction for potential confounders 
[adjusted HR 1.02 (95% CI 0.96–1.08)].  

Conclusion Early diastolic slope, representing the relationship between changes in LV volume and strain during early diastole, but not 
other SVL-parameters, was associated with adverse events in patients with HFpEF during 2.9 years of follow-up.  
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Graphical Abstract   
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Introduction 
Heart failure (HF) affects over 64 million people worldwide and is asso-
ciated with high morbidity and mortality rates.1,2 Traditionally, HF was 
diagnosed following an impaired ability of the left ventricle (LV) to eject 
blood into the systemic circulation, assessed by the ejection fraction. 
However, HF can also be present with preservation of LV ejection frac-
tion, i.e. HF with preserved ejection fraction (HFpEF).3 It is estimated 
that prevalence of HFpEF equals that of HF with reduced EF (HFrEF), 
with both groups of HF patients demonstrating comparable prognosis.4 

Nonetheless, therapeutic and diagnostic options for HFpEF patients are 
limited.3,5,6 Studies exploring the mechanisms in patients with HFpEF 
have specifically focused on the diastolic phase and left atrial func-
tion.7–10 Additionally, there is evidence that diastolic dysfunction and 
elevated LV filling pressure are a cornerstone in the diagnosis of 
HFpEF.1,11 Moreover, elevated LV filling pressure is independently asso-
ciated with worse clinical outcomes in HFpEF,12 highlighting the central 
role of diastolic (dys)function in HFpEF disease progression and asso-
ciated health outcomes. 

Studies adopting echocardiography have increasingly used measures 
of LV peak global longitudinal strain (GLS) and revealed its potential to 
independently predict outcomes in HFrEF patients.13 Previously, we 
have introduced the strain(ɛ)–volume loop (SVL), which not only ex-
amines peak strain, but allows for evaluation of the dynamic relation be-
tween changes in LV volume and GLS across the cardiac cycle.14–18 SVL 
is sensitive to detect changes in systolic and diastolic function when ma-
nipulating pre- and afterload,19 can detect cardiac abnormalities,14,20 

and, most importantly, has potential to aid risk stratification in patient 
populations.15,21 To expand on these observations, the present study 
investigated whether LV-SVL parameters are associated with adverse 
events (all-cause mortality and HF hospitalization) in HFpEF patients 
during follow-up. Based on our earlier work,15,21 we hypothesized 
that, independent of existing and established cardiovascular risk factors 
(e.g. age, New York Heart Association (NYHA)-class), left ventricular 
SVL parameters are associated with clinically relevant outcomes in 
HFpEF. 

Methods 
Study design and population 
In this prospective cohort study, patients who were referred to the out-
patient HFpEF clinic at the Maastricht University Medical Centre between 
January 2015 and July 2019 were included.22 Patients underwent a diagnos-
tic work-up at baseline, and HFpEF was diagnosed based on the European 
Society of Cardiology HF guidelines (2016) by consensus of a panel of ex-
perienced HF cardiologists, as described earlier.22,23 We excluded patients 
with insufficient echocardiography image quality according to a standar-
dized procedure including poor myocardial wall visibility or traceability dur-
ing the cardiac cycle in more than two segments in a single view, or a too 
low frame rate (<50 frames per second). Additionally, individual SVL plots 
were manually assessed, blinded from other results, to detect non- 
physiological errors in temporal volume tracking, which were excluded 
from analysis. Patients provided written informed consent, and the cohort 
complies with the Declaration of Helsinki. The Medical Ethics Review 
Committee of the Maastricht University Medical Center approved the initial 
cohort study (NL69779.068.18). 

Transthoracic echocardiography and strain 
analyses 
Echocardiography was performed as part of clinical routine according to 
guideline recommendations24 and was analysed with speckle-tracking echo-
cardiography, as described in detail earlier.8 Briefly, temporal LV GLS on 2D 
echocardiographic cine-loops was obtained by manual endocardial and 
myocardial tracing of the apical two-, three-, and four-chamber views ac-
cording to current consensus recommendations using dedicated speckle- 
tracking method (TomTec, 2D Cardiac Performance Analysis v1.4, 
ImageArena v4.6).25 All investigators were blinded to all other clinical data. 

Strain(ɛ)–volume loop analysis 
Temporal myocardial GLS values and temporal LV volume values were ex-
ported from the dedicated software (2D Cardiac Performance Analysis  
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v1.4, Image Arena v4.6). LV Volume and GLS have been shown to be repro-
ducible measurements.24,26,27 Moreover, when combining both measures 
into the SVL, previous work showed good reproducibility for the SVL char-
acteristics.14,21 Using an in-house-developed MATLAB script (The 
MathWorks Inc, version 2019a, Massachusetts, USA), we imported the 
temporal volume and GLS values to construct the SVL adapted from earlier 
work by our lab.14,28 Firstly, markers for end diastole and end systole were 
adjusted based on the maximum and minimum of the LV volume curve, re-
spectively.25 Secondly, 300-point cubic spline interpolations were applied to 
both the systolic and diastolic parts of the curves to obtain equidistant sam-
pling for subsequent analysis. The longitudinal strain–volume relationship 
was assessed using the following parameters (Figure 1): (a) early systolic 
slope during the first 5% of volume ejection (ES slope), (b) strain(ɛ)–volume 
slope during systole (S slope), (c) end-systolic GLS (peak strain), (d) 
strain(ɛ)–volume slope during the first 5% of volume increase (ED slope) 
and (e) last 5% of volume increase (LD slope) during diastole. Slopes 
were calculated using a least-squares fit method for the entirety of the de-
fined segments. Furthermore, (f) uncoupling (UNCOUP) is defined as the 
average difference in strain between systole and diastole (systolic strain– 
diastolic strain) for any given volume within the stroke volume. 
Uncoupling was divided in uncoupling during the lower two-thirds of the 
stroke volume and the final third of stroke volume, i.e. (g) early 
(UNCOUP ED) and (h) late (UNCOUP LD) uncoupling.14,29 In line with 
recommendations, all references to strain increase or decrease apply to 
the absolute value of strain.25 

Clinical outcome 
The composite endpoint was defined as all-cause mortality or HF hospital-
ization. Events during follow-up were assessed using electronic medical re-
cords and municipality records, which were reviewed through September 
2021. Patients were censored on the last day of follow-up if 
lost-to-follow-up occurred before the event of interest. 

Statistical analysis 
Statistical analysis was performed using R version 4.0.4.30 All parameters 
were visually inspected for normality using histograms, Q–Q plots, and 
the Shapiro–Wilk test and compared between the groups with and without 
events to identify possible confounders. Continuous variables were re-
ported as mean ± standard deviation (SD) or median (interquartile range) 
and categorical variables as numbers (percentages). Student’s t-test or non- 
parametric equivalent was used to test continuous variables; categorical 
variables were tested with chi-squared test or fisher’s exact test. 

The association between SVL parameters and outcome was assessed 
using Cox regression analysis resulting in hazards ratios (HR) and their 
95% confidence intervals (CI). Firstly, univariable analysis of the separate 
SVL parameters was performed, and covariates with P < 0.1 were included 
for multivariable analysis. Secondly, we corrected for age, sex, and NYHA 
class >II in a multivariable model. For both univariable and multivariable 
models, the proportional hazards assumption was tested; moreover, non- 
linearity was assessed using Martingale residuals and restricted cubic spline 

Figure 1 A schematic overview of the strain–volume loop and the derived characteristics. Solid line: systolic strain–volume relation; dashed line: 
diastolic strain–volume relation. (a) end diastolic volume; (b) after ejecting 5% of stroke volume; (c) end systolic volume; (d) filling at 5% of stroke vol-
ume; (e) filling at two thirds of stroke volume; (f) filling at 95% of stroke volume. ES: early systolic; S: systolic; ED: early diastolic; LD: late diastolic; 
Uncoup: uncoupling.   
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interpolation. If non-linearity was confirmed after restricted cubic spline in-
terpolation, covariates were categorized in quartiles with the first quartile 
being the reference quartile for Cox regression analysis. All other continu-
ous variables were added to the model as is, resulting in a HR per unit in-
crease of the continuous variable. Unadjusted Kaplan–Meier curves were 
constructed for significant categorical variables after multivariable analysis, 
mainly for visualization purposes. In a sensitivity analysis, only patients 
with sinus rhythm during echocardiography were included since we hy-
pothesized that presence of arrhythmia or pacing may affect the quality 
or validity of the SVL. Significance levels were set at P < 0.05. 

Results 
Patient characteristics 
A total of 383 patients were enrolled in the initial cohort, followed by 
exclusion of 4% (n = 17) due to image quality and 15% (n = 59) due to 
temporal strain or volume tracking issues. Of the remaining 307 pa-
tients, diagnosis of HFpEF was confirmed in n = 235. Clinical 

characteristics of the cohort are summarized in Table 1. A total of 73 
events, i.e. 39 HF hospitalizations (53%) and 34 deaths (47%), were re-
corded across 2.9 (1.75–4.11) years of follow-up. HFpEF patients with 
an event were older (77.1 ± 6.7 vs. 75.2 ± 6.9, P = 0.048), more fre-
quently male (39.7% vs. 22.2%, P = 0.009), and had more often co-
morbidities such as a history of coronary artery disease (30.1% vs. 
12.3%, P = 0.002) and chronic kidney disease (38.4% vs. 24.7%, P =  
0.047) compared with patients without events (Table 1). Left ventricu-
lar ejection fraction did not significantly differ in patients with event vs. 
without event (59.2%±7.2% vs. 60.3%±7.0, P = 0.306). However, 
amongst others, LV mass index (85.2 g/m2 ± 22.8 vs. 78.1 g/m2 ±  
17.3, P = 0.019), E-wave peak velocity [97.0 cm/s (73.0–119.0) vs. 
82.0 cm/s (64.0–102.0), P = 0.004], and estimated right ventricular sys-
tolic pressure [40.0 mmHg (30.0–50.0) vs. 33.0 mmHg (25.0–40.0), P =  
0.001] were higher in patients with events (Table 2). SVL parameters 
are summarized in Table 3, where only peak strain was significantly dif-
ferent in patients with vs. without events (−16.2 ± 4.1 vs. −17.4 ± 3.6, 
P = 0.040). Sex-stratified cohort characteristics are summarized in  
Supplementary data online, Tables S1–S3. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Clinical characteristics of HFpEF cohort stratified by observed composite endpoint  

Event free Event Overall P-value 
(n = 162) (n = 73) (n = 235)    

Age (years) 75.2 ± 6.91 77.1 ± 6.86 75.8 ± 6.94  0.048 

Female sex, n (%) 126 (77.8%) 44 (60.3%) 170 (72.3%)  0.009 

Medical History, n (%)         

Hypertension 140 (86.4%) 55 (75.3%) 195 (83.0%)  0.059  

Coronary artery disease 20 (12.3%) 22 (30.1%) 42 (17.9%)  0.002   

Missing 3 (1.9%) 1 (1.4%) 4 (1.7%)     

Acute coronary syndrome 7 (4.3%) 11 (15.1%) 18 (7.7%)  0.009  

Atrial fibrillation 89 (54.9%) 50 (68.5%) 139 (59.1%)  0.070  

Valvular disease repair 6 (3.7%) 6 (8.2%) 12 (5.1%)  0.198  

Hypercholesterolemia 70 (43.2%) 27 (37.0%) 97 (41.3%)  0.451  

Chronic kidney disease 40 (24.7%) 28 (38.4%) 68 (28.9%)  0.047  

Sleep apnoea 30 (18.5%) 14 (19.2%) 44 (18.7%)  1.000   

Missing 1 (0.6%) 0 (0%) 1 (0.4%)     

Pulmonary embolism 9 (5.6%) 3 (4.1%) 12 (5.1%)  0.759  

COPD 17 (10.5%) 20 (27.4%) 37 (15.7%)  0.002  

Anaemia 21 (13.0%) 19 (26.0%) 40 (17.0%)  0.023  

Transient ischaemic attack 14 (8.6%) 8 (11.0%) 22 (9.4%)  0.747  

Stroke 14 (8.6%) 10 (13.7%) 24 (10.2%)  0.341  

Peripheral artery disease 10 (6.2%) 9 (12.3%) 19 (8.1%)  0.179  

Diabetes mellitus 34 (21.0%) 31 (42.5%) 65 (27.7%)  0.001 

NYHA classification      0.009  

I–II 87 (53.7%) 24 (32.9%) 111 (47.2%)     

III–IV 75 (46.3%) 49 (67.1%) 124 (52.8%)    

Body mass index (kg/m2) 29.7 ± 5.39 30.5 ± 5.47 29.9 ± 5.42  0.272 

Systolic blood pressure (mmHg) 155 ± 23.3 145 ± 23.4 152 ± 23.8  0.002   

Missing 0 (0%) 1 (1.4%) 1 (0.4%)    

Diastolic blood pressure (mmHg) 78.8 ± 13.1 75.7 ± 12.6 77.8 ± 13.0  0.084   

Missing 0 (0%) 1 (1.4%) 1 (0.4%)    

NT-proBNP (pg/mL) 504 (238–1330) 1250 (566–1970) 677 (279–1590)  <0.001   

Missing 2 (1.2%) 2 (2.7%) 4 (1.7%)    

COPD, chronic obstructive pulmonary disease; NYHA, New York Heart Association; NT-proBNP, N-terminal prohormone of brain natriuretic peptide.   
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Strain–volume loop and adverse events 
Non-linearity was detected for S slope and ED slope in Cox regression 
analysis; therefore, these variables were categorized based on quartiles. 
Univariable analysis showed that a lower peak strain (i.e. less negative) 
was associated with adverse events during follow-up (HR 1.07, 95% CI 
1.00–1.13) per unit increase in strain. Moreover, the second and third 
ED slope quartiles were associated with lower risk for adverse events 
[HR 0.34 (95% CI 0.17–0.71) and HR 0.54 (95% CI 0.30–0.99), respect-
ively] compared with the first quartile. Whereas the fourth quartile was 
not significantly associated compared with the first quartile [HR 0.66 
(95% CI 0.36–1.19), Figure 2]. ED slope values ranged from −0.88 to 
4.39 with a median of 0.60. The 25th and 75th percentiles were at 

0.38 and 1.03, respectively. Unadjusted Kaplan–Meier curves for the 
quartiles of ED slope are shown in Figure 3. 

After adjustment for age, sex, and NYHA class, the association be-
tween peak strain and adverse outcomes was attenuated [adjusted 
HR 1.02 (95% CI 0.96–1.08)]. In contrast, the second quartile of 
ED slope remained significantly associated with adverse events [ad-
justed HR 0.42 (95% CI 0.20–0.88)]. However, the association be-
tween the third quartile and adverse outcomes was also 
attenuated [adjusted HR 0.55 (95 CI% 0.30–1.00)]. Sensitivity ana-
lyses among patients with sinus rhythm during echocardiography 
(n = 151) largely confirmed these outcomes (see Supplementary 
data online, Table S4). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Echocardiographic parameters of HFpEF cohort, stratified by observed composite endpoint  

Event free Event Overall P-value 
(n = 162) (n = 73) (n = 235)    

LVEF (%) 60.3 ± 7.01 59.2 ± 7.16 60.0 ± 7.06  0.306 

LVMI (g/m2) 78.1 ± 17.3 85.2 ± 22.8 80.3 ± 19.4  0.019  

Missing 1 (0.6%) 0 (0%) 1 (0.4%)    

LV end-systolic diameter (mm) 31.7 ± 3.91 32.3 ± 5.09 31.9 ± 4.31  0.376  

Missing 1 (0.6%) 0 (0%) 1 (0.4%)    

LV end-diastolic diameter (mm) 47.2 ± 4.84 47.3 ± 6.37 47.2 ± 5.35  0.875  

Missing 1 (0.6%) 0 (0%) 1 (0.4%)    

LA volume index (mL/m2) 46.8 (37.3–58.8) 48.8 (41.4–58.5) 47.3 (37.8–58.8)  0.415  

Missing 1 (0.6%) 1 (1.4%) 2 (0.9%)    

E-wave peak velocity (cm/s) 82.0 (64.0–102) 97.0 (73.0–119) 85.0 (67.8–108)  0.004  

Missing 3 (1.9%) 4 (5.5%) 7 (3.0%)    

A-wave peak velocity (cm/s) 78.2 ± 24.1 88.1 ± 23.4 80.7 ± 24.2  0.339  

Missing 53 (32.7%) 37 (50.7%) 90 (38.3%)    

Lateral e′ (cm/s) 8.90 (7.00–10.6) 9.20 (6.85–10.6) 8.90 (7.00–10.6)  0.927  

Missing 10 (6.2%) 18 (24.7%) 28 (11.9%)    

Septal e′ (cm/s) 6.40 (5.20–7.83) 6.40 (5.45–7.65) 6.40 (5.30–7.85)  0.928  

Missing 10 (6.2%) 18 (24.7%) 28 (11.9%)    

E/A ratio 0.900 (0.700–1.30) 0.800 (0.700–1.30) 0.900 (0.700–1.30)  0.562  

Missing 53 (32.7%) 37 (50.7%) 90 (38.3%)    

E/e′ average 10.8 (8.40–13.5) 12.6 (10.5–16.4) 11.2 (8.53–14.1)  0.004  

Missing 15 (9.3%) 19 (26.0%) 34 (14.5%)    

Tricuspid insufficiency (m/s) 2.60 (2.30–2.90) 2.70 (2.50–3.30) 2.65 (2.30–3.00)  0.005  

Missing 9 (5.6%) 2 (2.7%) 11 (4.7%)    

Estimated RV systolic pressure (mmHg) 33.0 (25.0–40.0) 40.0 (30.0–50.0) 35.0 (26.8–43.1)  0.001  

Missing 9 (5.6%) 2 (2.7%) 11 (4.7%)    

Good RV function, n (%) 136 (84.0%) 53 (72.6%) 189 (80.4%)  0.062  

Missing 20 (12.3%) 13 (17.8%) 33 (14.0%)    

Rhythm during echocardiography        0.016*  

Sinus rhythm 114 (70.4%) 37 (50.7%) 151 (64.3%)     

Atrial fibrillation 43 (26.5%) 32 (43.8%) 75 (31.9%)     

Atrial flutter 0 (%) 1 (1.4%) 1 (0.4%)     

Ventricular pacing 5 (3.1%) 2 (2.7%) 7 (3.0%)     

Biventricular pacing 0 (0%) 1 (1.4%) 1 (0.4%)    

LVEF, left ventricular ejection fraction; LVMI, left ventricular mass index; LV, left ventricular; LA, left atrial; RV, right ventricular. 
*P-value for trend.   
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Discussion 
The aim of this study was to explore the association between LV-SVL 
characteristics and adverse events in HFpEF patients, using a composite 
endpoint of all-cause mortality and HF hospitalization. Across a 2.9-year 

follow-up, univariable analysis revealed that both peak strain and early 
diastolic slope, but none of the other SVL parameters, were significantly 
related to adverse events. After adjustment for age, sex, and NYHA 
class, only early diastolic slope was significantly associated with adverse 
events in HFpEF patients. These findings were confirmed in a sensitivity 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Strain–volume loop characteristics stratified by observed composite endpoint   

Event free 
(n = 162) 

Event 
(n = 73) 

Overall 
(n = 235) 

P-value  

S slope (%/mL) 0.431 (0.356–0.531) 0.411 (0.323–0.509) 0.425 (0.345–0.523)  0.140 

ES slope (%/mL) 0.367 (0.215–0.604) 0.373 (0.218–0.597) 0.371 (0.215–0.602)  0.884 

ED slope (%/mL) 0.757 ± 0.538 0.734 ± 0.739 0.749 ± 0.606  0.812 

LD slope (%/mL) 0.333 ± 0.258 0.292 ± 0.320 0.320 ± 0.279  0.333 

UNCOUP (%) −0.0898 ± 1.28 −0.250 ± 1.15 −0.139 ± 1.24  0.343 

UNCOUP ED (%) −0.179 ± 1.42 −0.304 ± 1.36 −0.218 ± 1.40  0.522 

UNCOUP LD (%) 0.0889 ± 1.13 −0.141 ± 1.01 0.0174 ± 1.10  0.122 

Peak strain (%) −17.4 ± 3.60 −16.2 ± 4.07 −17.0 ± 3.79  0.040 

S, systolic; ES, early systolic; ED, early diastolic; LD, late diastolic; UNCOUP, uncoupling.  

Figure 2 Forest plot and hazard ratios for univariable (red) and multivariable (blue) Cox regression analysis. Hazard ratios are plotted on a logarith-
mic scale. LVEF, left ventricular ejection fraction; ES, early systolic; S, systolic; ED, early diastolic; LD, late diastolic; UNCOUP, uncoupling; ref, reference; 
Q1, first quartile; CI, confidence interval.   
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analysis including only patients with sinus rhythm during echocardiog-
raphy. Taken together, this study suggests that measures reflecting dia-
stolic (dynamic) function, rather than parameters during the systolic 
phase only, are associated with survival in patients with HFpEF. This 
supports future studies to explore the impact and role of measures 
of diastolic (dynamic) function in predicting future clinical events and/ 
or personalizing or evaluating treatment. 

Previous research in healthy controls revealed a steep ED slope, sug-
gesting pronounced longitudinal deformation in early diastole in a 
healthy heart may facilitate efficient LV filling.14,31 Our finding that 
ED slope, a parameter assessed during early diastole, is associated 
with adverse events is in line with other studies. Specifically, previous 
work also observed early diastolic parameters, such as E/e′, to be asso-
ciated with adverse events in HFpEF.32–34 From a mechanistical point of 
view, studies evaluating diastolic function typically assessed myocardial 
relaxation [e.g. LV systolic pressure decay or mitral annulus early dia-
stolic velocity (e′)] and LV stiffness (e.g. LV late diastolic pressures or 
deceleration time).35 LV stiffness, often measured late in diastole, is 
known to be affected in HFpEF.1,36,37 To underline the importance of 
early diastole and LV relaxation, previous studies showed a prolonged 
LV pressure decay in HFpEF.36,38,39 Moreover, echocardiographic mar-
kers of early diastole were shown to be significant predictors for diag-
nosis of HFpEF.40 Additionally, our data suggest that abnormalities in 
cardiac dynamics during early diastole, which may be related to LV re-
laxation and consequently LV filling, are relevant for clinical progression 

in patients with HFpEF. Possible mechanisms underlying these altered 
cardiac dynamics could be related to inflammation and mitochondrial 
function,41 structural changes (e.g. myocardial fibrosis and stea-
tosis),42,43 altered titin phosphorylation,44 and/or altered calcium 
hemostasis.45 Although the (combination of) mechanisms underlying 
the observed changes in early diastole remain to be elucidated in future 
research, our data suggest that the SVL, especially during early diastole, 
might be of added prognostic value in HFpEF. 

An unexpected observation was the non-linear relation between the 
early diastolic slope and HR. Whilst the second quartile showed a re-
duced risk compared with the first quartile, we did not observe this 
for the third and fourth quartile, although a trend could be observed 
for the former, which might suggest the presence for a physiological op-
timal range for the relation between strain change and volume change 
during early diastole. This observation is in line with other parameters, 
such as E/A ratio, for which a reference-range rather than a single cut- 
off is determined.46 An alternative explanation for this observation is 
related to the wide range of the 95% CI of mainly the fourth quartile. 
Altogether, this finding warrants future research with a larger sample 
size to explore this observation in more detail. 

In addition to diastolic markers, previous prognostic research in 
HFpEF also focused on systolic function in relation to adverse 
events.38,47 In our study, peak strain was not significantly associated 
with long-term adverse events after correcting for potential confoun-
ders. Our findings are in line with some,48 but not all, previous 

Figure 3 Kaplan–Meier curve for composite endpoint to ED slope divided in quartiles. Vertical lines represent censored patients. ED, early diastolic.   
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studies.49–51 A potential explanation for these discrepant findings may 
relate to the heterogeneity in study protocols. Firstly, Buggey et al.48 as-
sessed GLS during hospitalization, whereas the studies observing an as-
sociation, assessed strain at the time of admission for acute HF. Strain 
may be more impaired during the acute episode than when HF is stable, 
and patients admitted for HF are at higher risk for future adverse events 
compared with stable ambulant patients. This may contribute to the dif-
ferences between studies. Of these studies, only Shah et al.49 included 
mortality, albeit using a predefined cut-off value for impaired strain, 
whilst other studies focused on readmission or change in EF with strain 
as a continuous variable.50,51 As a result, a definitive conclusion pertain-
ing to the association of peak strain and future outcomes in HFpEF can-
not be drawn. 

Strengths and limitations. Our data underline the importance of the 
assessment of diastolic function analysis in HFpEF and highlight the po-
tential for (combining) measurements across the cardiac cycle that go 
beyond the currently accepted (systolic) parameters, such as peak mea-
surements. Nevertheless, some limitations apply to our study. Firstly, 
although patients were not evaluated with the gold standard for diastol-
ic function, diagnosing HFpEF is done in line with guidelines, not solely 
focusing on invasive measurements.3,52 Secondly, due to the small num-
ber of events during follow-up, we were restricted in the correction for 
potential confounders. Specifically, we were unable to explore the value 
of the SVL in addition to current markers of diastolic function and in-
vestigate possible confounders [e.g. right ventricular (RV) function 
and indices of pulmonary vasculature (e.g. RV systolic pressure)]. 
Similarly, comorbidities are likely to affect adverse events or possibly 
the SVL through altered cardiac dynamics. Consequently, the general-
izability of our results to specific subgroups remains to be elucidated, 
especially since, based on previous studies, different phenotype-groups 
might exist.53 However, we have selected the most important potential 
factors.5 Thirdly, SVL analysis is labour-intensive, potentially hampering 
both future scientific and clinical applications. However, our MATLAB 
tool automated part of the process, making it more widely applicable in 
future research and in large cohorts. Hence, external validation of our 
findings can be applied to routine clinical care data, enhancing possible 
clinical utility of SVL parameters. 

In conclusion, we found an association between the magnitude of the 
early diastolic slope of the LV-SVL and adverse events in HFpEF patients 
visiting a tertiary outpatient clinic. These results provide further sup-
port for the importance of measures reflecting (early) diastolic function 
in HFpEF related to the association with future clinical events. 
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