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Abstract: The moorings of the Floating Wind Turbine (FWT) platforms, long term suffering from the coupling loads 7 

of wind, waves and currents, are especially prone to structural fatigue. The purpose of this study is to mine effective 8 

information from the dynamic response of the FWT platform to achieve early damage detection for mooring health 9 

conditions. However, high nonlinearity of the FWT platform dynamic response, that is caused by the complexity of 10 

the working environment, hinders the accuracy of fatigue analysis and damage detection, Therefore, in this study, 11 

motivated by the accuracy of the chaotic features in quantifying nonlinearities and reliability of the convolutional 12 

neural network for feature extraction, an intelligent damage detection model, named Convolutional Neural Network- 13 

t-distribution Stochastic Neighbor Embedding (CNN-t-SNE), is proposed to automatically detect the damage 14 

magnitude of the moorings. Through analyzing the dynamics of FWT platform mooring from structure creep to failure, 15 

it is found that the yaw response is the most sensitive to structural damage. To examine the reliability of the proposed 16 

CNN-t-SNE method, the Lyapunov exponent and chaotic attractor quantify the nonlinearity of the features in the 17 

neural networks to indicate that the nonlinearity of the features decreases as the neural network layer deepens. Weaker 18 

nonlinear features help the damage detection model to locate and quantify the damage magnitude for the moorings 19 

of the FWT platform. 20 

Key words: floating wind turbine; fatigue; convolutional neural network; dynamic response; pattern recognition 21 

Nomenclature 

FWT Floating Wind Turbine 

t-SNE t-distribution Stochastic Neighbor Embedding 

CNN Convolutional Neural Network 

CNN-t-SNE Convolutional Neural Network- t-distribution Stochastic Neighbor Embedding 

 22 

1 Introduction 23 

Energy reserves are plummeting sharply with the rapid development of human industrial civilization. In the 24 

meantime, environmental pollution and other issues are becoming more and more serious, so it is necessary to find 25 

an urgent solution to maintain sustainable development. Therefore, promoting energy transformation and looking for 26 

renewable energy have attracted widespread attention from all over the world [1]. As a renewable energy widely used 27 

by human beings, wind energy is one of the most promising renewable energy sources because of its abundant 28 



 

reserves, wide distribution, green and clean, easy development and utilization, etc [2]. 29 

Wind turbines are the best mechanical equipment for energy transformation. Heretofore, the onshore wind 30 

turbines have developed rapidly, and many scholars have put forward some control strategies to ensure the safety and 31 

stability of the wind turbine operation. In the literature [3], a new pitch controller is proposed by employing partial 32 

offline quasi-min-max fuzzy model-predictive control to investigate the variable-speed wind turbine performance, 33 

which can effectively adjust the generator speed so as to produce the rated power in the high wind speed range. 34 

Regarding the large-scale, geographically dispersed wind farm, literature [4 ] proposes an efficient distributed 35 

economic model predictive control strategy, which integrates the power tracking and economic optimization of the 36 

wind farm into one optimal control framework. It can effectively control the stability and security of renewable power 37 

system of the large-scale wind farm. However, with the deepening of the research on wind energy, onshore wind 38 

turbines will not generate energy all year round, because of poor wind speed and obstruction of some natural obstacles 39 

such as buildings and hills, resulting in countries around the world have begun to work on offshore wind turbines. At 40 

the same time, offshore wind energy also has the advantages of being close to the center of economic development, 41 

low transmission losses, etc, and is developing extremely rapidly. However, with the development of offshore wind 42 

turbines from epeiric sea to abyssal sea, the piled offshore wind turbine has been difficult to apply to the abyssal sea, 43 

so there is an urgent need to develop some more suitable offshore support structures [5]. Among them, floating wind 44 

turbines are gradually accepted by the wind energy field because of their applicability to deep sea areas and flexibility 45 

in construction and installation, and have been applied in a large number of projects, which are the main development 46 

direction at present and in future [6]. 47 

Heretofore, there has been lots of mature research to maintain safety and stability for onshore wind turbines, 48 

including developing condition monitoring systems for bearings, gearboxes, blades, and foundations. Dupuis [7] 49 

based on basic gearbox component geometry to develop an effective data-driven propagation model for health 50 

monitoring of onshore wind turbines. Dybala [8] adopted a diagnosis method based on empirical mode decomposition 51 

to identity bearing early-stage faults. However, for the most promising floating wind turbines, because of their high 52 

center of gravity and no fixed foundation, will be subject to wind, waves, currents, aerodynamic load and wind tilting 53 

moment during the working process, and the coupling effect among the components of the floating wind turbine 54 

system is relatively obvious [9]. In order to ensure that the floating wind turbine will not be displaced and capsized, 55 

it is connected to the anchor point on the sea floor through mooring, which can provide it with positioning and 56 

restoring force. However, because of the floating nature of the platform, the mooring is subjected to large time-57 

varying tension. In addition, there is the long-term corrosion and wear of seawater, it affects the operational safety of 58 

the whole floating wind turbine system and even leads to catastrophic accidents such as platform damage, casualties 59 

and environmental pollution [10]. For example, in 2005, Hurricane Rita caused a tendon failure and eventual capsize 60 

of the tension leg platform Typhoon TLP in the Gulf of Mexico [11]. When the mooring fails, the dynamic response 61 

of a floating wind turbine increases, which can affect its operational safety. The above evidence shows that, especially 62 



 

for the foundation, the working environment between onshore wind turbine and offshore wind turbine leads to 63 

significant differences in the dynamic behaviors of the foundation, which means it is difficult to directly apply 64 

maintenance experience for onshore wind turbines to floating wind turbines. 65 

Considering that the floating wind turbine is in extreme environments for a long time, the moorings are 66 

susceptible to creep due to high load and loading, causing its corrosion resistance and load carrying capacity to be 67 

reduced, and if not repaired in time, the moorings will easily fail and affect the operational safety of the floating wind 68 

turbine. Therefore, it is essential to analyze the dynamic response data of floating wind turbines to detect problems 69 

before mooring failure and to ensure that each mooring is always in a safe condition during the operation of floating 70 

wind turbines. 71 

In recent years, floating wind turbine systems are subject to various failure risks and the research of platform 72 

dynamic response has gradually emerged. Li [12] studied the dynamic response of OC3-HywindSpar type floating 73 

wind turbines after a single anchor chain failure in rated sea state and found that wind turbines with anchor chain 74 

failure increase the risk of collision with neighboring wind turbines. Bae [13] analyzed the dynamic response of OC4-75 

DeepCwind semi-submersible floating wind turbine after a single anchor chain failure, and the study showed that 76 

anchor chain failure causes long-distance drifting motion of the platform and has an effect on the anchor chain tension 77 

and nacelle yaw error. Yang [14] used the slender rod theory to simplify the riser and mooring cable, and established 78 

a coupling analysis method for deep-water floating structure-mooring system to study the coupling effect between 79 

the components. However, these studies only analyzed the dynamic behavior of floating wind turbines and did not 80 

contribute to the fatigue mechanism of mooring or how to diagnose fatigue damage. 81 

Up to now, deep learning has been widely used in wind turbine blade fault diagnosis. Thereinto, Convolutional 82 

Neural Network has gradually received the attention of most scholars because of its powerful feature extraction ability 83 

and reliable and efficient classification ability. Kreutz [15] achieved accurate identification of blade icing conditions 84 

by CNN recognition of images on wind turbine blades; Cao [16] used CNN to learn and extract blade fault features, 85 

which can accurately detect problems such as blade aerodynamic and mass imbalance. Guo [17] fuses CNN and 3D 86 

vibration signals for blade crack diagnosis, and achieves high accuracy identification effect by establishing a crack 87 

sample database. There has been more research on the application of convolutional neural network in wind turbine 88 

operation diagnosis, but most of them focus on wind turbine blade and bearing gearbox, but few studies on floating 89 

wind turbine at sea, and the studies involving floating wind turbine mooring are especially rare. At present, wind 90 

power development "from land to sea, shallow sea to abysmal sea " has become a consensus for the academic and 91 

business community, the study of the stability and safety of floating wind turbines applicable to a broader sea is 92 

essential [18]. 93 

However, for floating wind turbines, the structural damage of blades or gearboxes can be migrated by referring 94 

to the prior maintenance knowledge and methods of land wind turbines, but due to the floating nature, the dynamic 95 

response changes caused by mooring creep lead to existing prior knowledge that cannot be used for data analysis and 96 



 

modeling of this unknown distribution. 97 

Therefore, in order to solve the issues of the above study, the mooring system of ITI Energy Barge platform 98 

equipped with NREL 5 MW wind turbine is used as the research object in this paper.  99 

In order to solve the issues in the current study, to develop a dynamic model for the ITI Energy Barge platform 100 

NREL 5 MW wind turbine model to study the dynamic behavior during the fatigue state of mooring system. 101 

Considering the nonlinear characteristics of FWT platforms dynamic responses, a new (CNN-t-SNE) damage 102 

identification model is established to detect mooring structure damage. The main contributions of the paper are as 103 

follows: 104 

1. Analyze the potential relationship between the dynamic response of the floating wind turbine with different 105 

degrees of freedom and the damage of the mooring structure. 106 

2. Development of an intelligent damage detection model, using CNN to mine potential information from chaotic 107 

attractor trajectories and quantify the relationship between structural damage and nonlinear strength by means of 108 

Lyapunov index. 109 

3. The effect of the optimization function on the model convergence is investigated and the robustness of the 110 

proposed model in noisy environments is checked. 111 

The remaining parts of this paper are organized as follows. A brief description of the floating dynamic model is 112 

given in Section 2. The intelligent damage detection method based on CNN-t-SNE is introduced in Section 3. In 113 

addition, Section 4 analyzes the superiority and generalization ability of the proposed model based on experimental 114 

data. The visualizations of the model are presented to show the features that have been learned by the developed 115 

model are also presented in this section. Finally, the conclusions are presented in Section 5, and in section 6, future 116 

work is introduced 117 

Considering that the floating wind turbine platforms yawing response is more sensitive than other degrees of 118 

freedom when the mooring state changes, the platform yawing response data under each mooring damage is analyzed 119 

as diagnostic data. CNN is used to analyze the dynamic response data under different mooring creeps to determine 120 

whether creep occurs in the mooring and the location of the creeping mooring. The calculation results show that the 121 

response of each degree of freedom of the platform increases sharply from creep to failure, and the roll response, yaw 122 

response, surge response and sway response are most affected, the dynamic response of heave and pitch changes little. 123 

In addition, the mooring failure on the windward side has a greater impact on platform stability, while the leeward 124 

side has a smaller impact. Meanwhile, the deep learning model can deeply mine the information of creeping mooring 125 

and extract the pure signal. Based on chaos theory, by analyzing the attractor trajectories of the signals extracted by 126 

convolutional neural networks, we can find the real laws behind random phenomena, that is, we can quantitatively 127 

judge the nonlinear strength of dynamic signals. It is found that CNN diagnostic model can effectively extract creep 128 

information and realize intelligent diagnosis of whether the mooring is creeping and the position of creeping mooring, 129 

which provides technical support and realization way for floating wind turbine mooring health diagnosis. Meanwhile, 130 



 

considering the influence of environmental noise during the actual operation of floating wind turbines, the accuracy 131 

of fault identification is analyzed under different signal-to-noise ratios, and the computational results show that all 132 

maintain a high identification accuracy of more than 85%, and the iterative convergence is rapid. 133 

2 Research Subjects 134 

2.1 Model of floating wind turbine 135 

Based on a 5 MW floating wind turbine developed by the National Renewable Energy Laboratory, the ITI Energy 136 

Barge platform was used as a research target. The complete system is shown in Figure 1 [19]. 137 

 

Figure.1 Floating wind turbine of Barge platform 

The main parameters of the floating wind turbine and the ITI Energy Barge platform are shown in Table 1 and 138 

Table 2. 139 

Table 1 140 

Parameters of wind turbine 141 

Parameters/Units Value Parameters/Units Value 

Power/MW 5 Cut-out wind speed/m·s-1 25 

Number of blades/n 3 Hub diameter/m 3 

Wind turbine diameter/m 126 Tower height/m 90 

Rated speed/rpm 12.1 Wind wheel mass/kg 1.1×105 

Cut-in wind speed/m·s-1 3 Tower mass/kg 3.5×105 

Rated wind speed/ m·s-1 11.4 Nacelle mass/kg 2.4×105 

 142 

Table 2 143 

Parameters of ITI Energy Barge 144 



 

Parameters/Units Value Parameters/Units Value 

Length × width/m 40×40 
Number of cable guide 

holes/n 
4 

Draught depth/m 4 Number of moorings/n 8 

Barycenter/m -0.282 Transverse inertia/kg·m2 7.269×108 

Displacement/m3 6×103 
Longitudinal rocking 

inertia/kg·m2 
7.269×108 

Mass/kg 5.452×106 Bow rocking inertia/kg·m2 1.454×109 

2.2 Mooring systems 145 

The ITI Energy Barge platform is connected to the seabed anchor point through eight moorings in the guide 146 

holes on the four corners, and the top view of the platform is shown in Figure 2. 147 

 

Figure.2 Schematic diagram of mooring 

The mooring parameters are shown in Table 3 [20]. 148 

Table 3 

Parameters of mooring 

Fixed chain suspension line parameters/units Value 

Mass/kg·m-1 129.5 

Equivalent cross-sectional area/m2 0.00636 

Maximum tension/N 7.5×106 

Axial stiffness/N·m-1 7.5×108 

Mooring length/m 473.3 

2.3 Load and environmental parameters 149 

In-service floating wind turbines in the extreme marine environment will be subject to wind, waves and currents 150 

and other loads, its blade by the wind load and floating platform by the waves and currents load is the most prominent 151 

[21]. 152 

2.3.1 Wind loading 153 

The upper blade of the floating wind turbine is mainly subjected to wind load. In this paper, based on the blade 154 



 

element momentum theory, the induced velocity of the blade plane is solved using the dynamic inflow theory, and 155 

the magnitude of the angle of attack at each position along the blade expansion is calculated [22 ]. The induced 156 

velocity is: 157 

0 s csin cosv r, v v u v u  = + +（ ）  (1) 

Where v  represents the induced velocity; r  represents the radial radius of the blade; 0v , sv  and cv  are, respectively, 158 

the average, horizontal and vertical components of the induced velocity; u   represents the ratio of radius;   159 

represents the yaw angle. 160 

The thrust and torque on the blades are shown below: 161 
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Where Q  represents the torque acting on the wind wheel; N  represents the axial thrust force on the wind wheel;   162 

represents the air density;   represents the blade speed; b  represents the tangential induction factor; c  represents 163 

the chord length of the wind turbine blade at the center of the hub; r  represents the radial radius of the blade;   164 

represents the incoming angle of attack; lC  and dC  are, respectively, the lift coefficient and coefficient of resistance; 165 

a  represents the axial induction factor; U  represents the incoming flow rate; 
xC  represents the axial aerodynamic 166 

coefficient; 
LF  and 

DF  are, respectively, the forces perpendicular and parallel to the direction of the airfoil chord ; 167 

  represents the velocity potential function; V  represents the infinite distant velocity of wind flow;   represents 168 

the infinite distant air density; yC  represents the tangential aerodynamic coefficient; r  represents the leaf chord 169 

length solidity. 170 

From equation (2), the lift coefficient and coefficient of resistance can be taken out from equations (2c) and (2d), 171 

axial induction factor and tangential induction factor can be taken out from equations (2e-2h). 172 

2.3.2 Wave loading 173 

There are three methods of wave load calculation, including strip theory, Morison equation and 174 

radiation/diffraction theory. The strip theory is suitable for solving the wave load of the ship, and the Morison equation 175 

are mostly used when the floating body has no obvious influence on the incident wave field. Because the Barge 176 

platform is a large scale structure, its effect on the cannot be ignored, and the needs to be considered, so this paper 177 



 

solves the wave load of the platform in the water based on the radiation theory and the diffraction theory to assume 178 

the fluid is incompressible, inviscid and spinless, as shown in Figure 3. SB is wet surface, SF is wave free surface, the 179 

seafloor SD and the liquid surface SC at infinity form a semi-infinite space. 180 

 

Figure.3 Action of waves on the floating objects 

The velocity potential function is shown as follows [23]: 181 
6
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Where 
i , 

d  and 
r  are, respectively, the incident potential, diffraction potential and radiation potential. 182 

The above functions need to satisfy the Laplace equation and the boundary condition: 183 
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where g  is the acceleration of gravity;   is the incident wave surface function; d  represents the sea depth; n  is 184 

the external normal vector of wet surface of floating body. 185 

Therefore, the wave force and wave moment of the Barge platform can be recorded as: 186 

B
W d

S
F p s= − n  (5) 

B
W d

S
M p( ) s= −  r n  (6) 

where WF  represents the wave force; WM  represents the sea waves moment; s  represents the platform wetted 187 

surface equation; p  represents the water pressure on wetted surface, water /p t = −    ; water  represents the sea 188 

water density; r  represents the structure surface to base point vector. 189 

2.3.3 Current loading 190 

Because of the slow speed of the current, its force on the offshore structure is mainly reflected as drag force, 191 



 

which can be written as [24]: 192 

21

2
c s D oF C AU=  (7) 

where s  is the sea water density; CD is the drag coefficient; A is the equivalent area of platform along the direction 193 

of coastal flow; oU  is the flow velocity. 194 

2.3.4 Environmental parameters 195 

According to the design requirements of IEC 61400-3 offshore wind turbine, this paper adopts the method 196 

proposed by Jonkman [25]. Considering that the wind and waves are incident in the same direction at the same time, 197 

the angle of incidence is -180°, assume that the ocean current is uniform, with a velocity of 0.8 m/s., the wind speed 198 

is 11.4 m/s, and the wind spectrum is Kaimal wind spectrum. The results are shown in figure 4. 199 

 

Figure.4 Turbulent wind spectrum 

The waves are irregular waves generated based on the P-M spectrum. The spectral peak period is 10.1 s, the 200 

significant wave height is 6 m, and the time travel curve of the irregular wave is shown in Figure 5 201 

 

Figure.5 Time series of wave height 

3 Theoretical Basis 202 
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3.1 Convolutional Neural Networks 203 

Convolutional neural network, as a typical feed-forward neural network, is an end-to-end data processing 204 

method. With powerful feature extraction capability, its essence is to construct multiple filters to extract feature 205 

information hidden in the original data layer by layer, with local acceptance domain, shared parameter weights and 206 

sparse connections, which can effectively avoid data redundancy and overfitting problems. The traditional CNN 207 

model mainly includes convolutional layer, activation function, pooling layer and fully connected layer [26]. 208 

3.1.1 Convolutional layer 209 

Convolution, as the core of CNN, extracts the original data through the rectangular convolution kernel, combines 210 

the parameter sharing mechanism, performs convolution operation on the original data with the convolution kernel, 211 

and calculates and outputs the characteristic data [22]. The expression is: 212 

1i i ix x+ = +W b  (8) 

where 1ix +  and ix  are, respectively, the data after the convolution layer and data before the convolution layer;  213 

represents the convolution Operators; W  represents the weight matrix; ib  represents the offset. 214 

3.1.2 Activation functions 215 

In order to make a nonlinear transformation of the convolved data, activation functions are used for processing. 216 

The commonly used ones are Tanh, Sigmoid and Relu activation functions, and in this paper, the Relu function is 217 

chosen, which can avoid the gradient disappearance problem of Sigmoid function and improve the computational 218 

efficiency [22]. Equation (8) is transformed as: 219 

1( ) ( )i i i i iy f x f x+= =  +W b  (9) 

where iy  represents the data after transformation; ( )f  represents the Relu activation function. 220 

3.1.3 Pooling layer 221 

In order to solve the dimension disaster caused by the increase of data volume and dimension after the data is 222 

extracted by convolution layer. On the basis of ensuring that the original feature information is not lost, the pool 223 

function is used to process the data extracted from the convolution layer, which can not only avoid the overfitting 224 

problem, but also choose the main representative features. In this paper, the maximum value pooling is used to select 225 

the maximum value from the region corresponding to the pooling kernel as the representative value, which can reflect 226 

the most significant features of the original data. The expression is shown as follows: 227 

     ( )      ( )max - pooling 1 , , 1 1 , , 1f i f i f i max f i f i f i− + = − +  (10) 

where max - pooling  is the maximum pooling;  f i  is the i-th pixel value; max( )  is the maximum value. 228 

3.1.4 Fully connected layer 229 

The fully connected layer is the connecting transition part between the convolutional pooling layer and the sorter, 230 

and integrates distinguishing feature information by connecting with all neurons in the convolutional pooling layer. 231 

The feature information input to the fully connected layer after the convolutional pooling layer process can be 232 

transformed into a one-dimensional feature vector, and finally a Softmax classifier is used for classification. The 233 



 

expression is shown below [23]: 234 

( ) ( )o x f x= +W b  (11) 

Where ( )o x  represents the full connection layer output; x  represents the full connection layer input; W  represents 235 

weight matrix of fully connected layer; ( )f  represents the Softmax activation function.; b  represents the tangential 236 

induction factor. 237 

3.1.5 Learning Tips 238 

In order to prevent the overfitting problem of CNN networks and improve the diagnostic classification accuracy, 239 

some learning techniques are usually used to improve CNN performance. After long-term practice, it is concluded 240 

that Batch Normalization(BN) , data augmentation and Dropout techniques are widely used to process the network 241 

structure. In this paper, BN and Dropout techniques are used to process the original data. Among them, BN technique 242 

is to process the original data into normative data of the same order of magnitude to prevent gradient disappearance 243 

and gradient explosion problems. Dropout technique is to randomly discard a certain percentage of neurons in the 244 

network model to let a very small portion of abnormal data into the model learning and reduce its impact on the 245 

model [27]. 246 

The hyperparameters of the CNN model have significant effects on the fault diagnosis accuracy, among which 247 

the activation function, learning rate, optimizer, the number of convolutional layers and pooling layers are the most 248 

significant. To investigate the effects of different parameters on the model performance, a 3-layer CNN model with 249 

relatively high classification accuracy was preestablished as the base model after several debuggings. The model 250 

hyperparameters were modified to determine the optimal CNN model. The initial model uses the Rmsprop optimizer 251 

with a learning rate of 0.1 and 50 of iterations. 252 

3.1.6 Activation function 253 

The fault classification accuracy and training time vary greatly when different activation functions are used for 254 

each convolutional layer. Traditional methods are often set according to human experience, which is more random. 255 

In order to select the best combination of functions, the effects of three commonly used activation functions (Tanh, 256 

Elu, and Relu) are compared according to the initial model, and the results are shown in Table 4. 257 

Table 4  

Comparison of activation function 

Experiment C1 C2 C3 Accuracy rate /% Time/s 

1 Elu Elu Elu 94.25 109 

2 Relu Elu Elu 78.25 101 

3 Tanh Elu Elu 96.75 102 

4 Relu Relu Relu 98.91 96 

5 Relu Tanh Relu 96.75 103 

6 Relu Elu Relu 98.25 104 



 

7 Tanh Tanh Tanh 96.50 118 

8 Tanh Tanh Elu 97.00 121 

9 Tanh Tanh Relu 98.52 90 

As can be seen from Table 4, in terms of accuracy, Experiment 3 is the highest, reaching 98.91%, indicating that 258 

the best results are obtained when the Relu function is used for all the convolutional layers; in terms of efficiency, it 259 

can be seen from Experiments 1, 2, 3, Experiments 4, 5, 6 and Experiments 7, 8, 9 that the Relu function is the least 260 

time consuming for all the convolutional layers. Therefore, it can be seen that the CNN network has the best efficiency 261 

when the Relu function is used as the activation function. 262 

3.1.7 Learning rate 263 

The learning rate is another important factor that affects the performance of CNN models. If its value is too 264 

small, the model convergence speed decreases; if it is too large, the training model oscillates and the optimal solution 265 

of parameters oscillates back and forth, and if it is too large, the CNN network cannot be trained properly. The Relu 266 

function is used for the activation function, and the learning rates of 0.0001, 0.001, 0.01 and 0.1 are selected in order 267 

by exponential scale for the test, and the number of iteration are 50, 70 and 100 respectively. The results are shown 268 

in Figure 6. 269 

 

Figure.6 The effect of learning rate on accuracy 

From Figure 6, it can be seen that the fault classification accuracy is proportional to the number of iterations, 270 

and when the learning rate is 0.001, the fault classification accuracy is the highest in all, close to 100%, so 0.001 is 271 

used as the CNN model learning rate with the highest efficiency. 272 

3.1.8 Optimizer 273 

The choice of optimizer plays an extremely important role in CNN training, which is related to the ability to 274 

converge quickly and achieve high recall ratio and precision degree. The most commonly used Adam, RMSprop and 275 

SGDM optimizers for current CNN models were compared and calculated, and the average value of ten experiments 276 

was taken, and the results are shown in Figure 7. 277 
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Figure.7 The comparison diagram of optimizer performance 

As can be seen above, in terms of training time and accuracy rate, when SGDM optimizer is used, the fault 278 

classification accuracy and loss rate have been stabilized at the number of iterations of 70, and the accuracy reaches 279 

99% and the loss rate is close to 0. The performance is significantly better than other optimizers. 280 

3.1.9 Topological structure 281 

To investigate the effects of the number of convolutional layers, pooling layers and pooling type on the accuracy, 282 

three CNN topologies were designed using average pooling and max pooling, respectively, and the comparison 283 

experiments were conducted with and without Data Augmentation (DA), Batch Normalization (BN), and Dropout 284 

technology, and the results are shown in Table 5. 285 

Table 5  

Topological structure of CNN 

Type Groups Pool type 
Number of convolution 

layers and pooling layers 

Accuracy rate /% 

Training set testing set 

Common 

strength 

A1 
average 

pooling 

3 73.35 74.75 

A2 4 92.00 94.5 

A3 5 72.89 75 

A4 

max pooling 

3 82.75 83.25 

A5 4 98.23 96.12 

A6 5 79.50 76.5 

DA､BN､

Dropout 

B1 
average 

pooling 

3 73.25 74 

B2 4 91.23 92.79 

B3 5 73.75 75 

B4 

max pooling 

3 67.75 70 

B5 4 98.69 99.87 

B6 5 83.25 77.75 
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From Table 5, we can see that the classification accuracy of the 3-layer CNN network does not exceed 85% in 286 

both the training and testing sets because of the simple structure and the difficulty in extracting enough feature data; 287 

comparing A5 with B5, we can see that although the accuracy of the 4-layer CNN network with common strength 288 

reaches 98.23% in the training set, it is only 96.12% in the test set, which is an overfitting phenomenon. When the 289 

convolutional pooling reaches five layers, the accuracy of the training and testing sets is lower than that of the four-290 

layer network, because the sample size is smaller and the network structure is prone to overfitting and gradient 291 

disappearance. 292 

The training results are shown in Figure 8. 293 

 

(a) Common strength /Average pooling 

 
(b) Common strength /Max pooling 

 

(c) DA､BN､Dropout/Average pooling 

 

(d) DA､BN､Dropout/Max pooling 

Figure.8 Comparison of accuracy of different CNN structures 

From A5 in Fig. 8(b) and B5 in (d), it can be seen that using DA, BN, and Dropout techniques can improve the 294 

classification accuracy in a small range and effectively improve the overfitting problem. 295 

3.1.10 CNN model architecture 296 

For the mooring creep dynamic response data analyzed in this paper, the CNN model framework is designed as 297 

shown in Figure 9. The model parameters are shown in Table 6.298 
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Figure.9 The model of CNN 

 

Table 6 

Parameters of model 

Network Layer 
Number and size of 

convolution kernels 
Pooling area Step length Network layer output 

Input Layer - - - 1@2048×1 

Convolutional layer C1 16@11×1 - [4 1] 16@510×1 

Pooling layer S1  [2 1] [2 1] 16@255×1 

Convolutional layer C2 32@5×1 - [2 1] 32@126×1 

Pooling layer S2 - [2 1] [2 1] 32@63×1 

Convolutional layer C3 32@3×1 - [1 1] 32@61×1 

Pooling layer S3 - [2 1] [2 1] 32@30×1 

Convolutional Layer C4 64@2×1 - [1 1] 64@29×1 

Pooling layer S4 - [2 1] 64@14×1 

Convolutional Layer C5 128@2×1 - [1 1] 128@13×1 

Pooling Layer S5 - [2 1] [2 1] 128@6×1 

Dropout layer - - - 128@6×1 

Fully connected layer - - - 9@1×1 

3.2 Chaos theory 299 

As an important branch of modern nonlinear scientific research, fractals can reflect the self-similarity between 300 

the parts of a system and the whole, and can quantitatively describe the fractal characteristics of nonlinear systems. 301 

Chaos, as a fractal on the time scale, has the characteristics of sensitivity, dimensionality, randomness and universality, 302 

and can analyze the unstable discrete processes of nonlinear dynamical systems [26]. 303 

3.2.1 Phase space reconstruction 304 

Phase space reconstruction is a method proposed by Packard to restore the nonlinear characteristics of a system 305 

by reconstructing attractor trajectories [28].To analyze the  dynamics characteristics of dynamic response signal, a 306 



 

one-dimensional time series { 1,2, }iy i N=     is embedded in a d-dimensional space to obtain the phase point X : 307 
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where N  represents the maximum number of one-dimensional time series; t  represents the delay time; d  308 

represents the embedding dimension, 2 1d r + ; r  represents the number of system independent variables. 309 

Delay time and embedding dimension have significant effects on the results. If d  is too small, the attractor cannot 310 

be fully expanded and the phenomenon of mixing occurs; if it is too large, the computational efficiency decreases and 311 

noise is introduced, which makes it difficult to reflect the dynamics. If t   is too small, each coordinate lacks 312 

independence; if it is too large, the complexity of each coordinate at different times increases. 313 

Considering that the Cao method [29] is applicable to signals with small sample size and the mutual information 314 

function method [30] can reflect the correlation of data, the Cao method and the mutual information function method 315 

are used to calculate the embedding dimension and delay time, and they are used as a combination of parameters to 316 

construct the chaotic phase diagram. 317 

3.2.2 Lyapunov Exponent 318 

Chaos theory can reflect the nonlinear interactions among the components in a dynamic system to discover the 319 

real laws in the stochastic phenomena. Lyapunov exponent is used to describe the separation speed of two adjacent 320 

points of a chaotic system [24]. Liouville theorem states that for a conservative system the volume of the phase space 321 

does not change with time [31]. However, for a dissipative system, the volume of the phase space generally shrinks 322 

gradually with time due to the presence of dissipation items in the equations. The contraction of the volume of the 323 

phase space can be in all directions; or it can be an elongation in one direction and a contraction in the remaining 324 

directions, but the final volume is smaller than the initial volume. During the whole process, phase trajectories 325 

contract due to dissipative effects, but repel each other when they are close to each other, so that they eventually fold 326 

back and forth countless times within a finite range, forming a complex state of motion - chaos. Then the Lyapunov 327 

exponent is introduced to quantitatively characterize the speed of separation of two infinitely close points with time. 328 

Assuming that the Jacobi matrix of the system exists everywhere, if the system is given a small disturbance 329 

0( )Z a  at moment 0a , and the disturbance of the system becomes ( )Z a  at moment a , the Lyapunov exponent is 330 

defined as:   331 

( )0 0

1 ( )
lim ln

( )a

Z a

a a Z a


→


=

− 
 (13) 

The Lyapunov exponent represents the tendency to separate or approach at an exponential rate between adjacent 332 

discrete points caused by each iteration on average over the course of many iterations, that is, the emissivity of 333 

average index number between adjacent trajectories. In a n-dimensional phase space, since the disturbance varies in 334 



 

all n directions, the system has n Lyapunov exponent. 335 

The Lyapunov exponent can be used to determine whether the motion of the system is deterministic or chaotic. 336 

If the Lyapunov exponent of the system is positive, the motion of the system is chaotic; while the Lyapunov exponent 337 

is negative, the motion is periodic; and if the Lyapunov exponent is zero, the motion of the system is periodic motion 338 

or quasi-periodic motion. 339 

The floating wind turbine has many parts, such as mechanical moving parts and electrical working parts. During 340 

the working process, there are very complex coupling relationships between the vibrations of different parts and 341 

components as the working state changes. In these relationships, there are also some changes with uncertainty, which 342 

will lead to the vibration signal of the floating wind turbine platform showing non-linear and non-smooth 343 

characteristics, in a chaotic state. However, although the structure of floating wind turbine is complex, the form of 344 

equipment failure is limited, so the motion trajectory of the system can only be contracted in a certain area, which is 345 

the boundedness of chaotic motion. 346 

From the above analysis, we can see that the working system of a floating wind turbine is a nonlinear system, 347 

which may generate chaotic motion under certain conditions. Therefore, we can use the Lyapunov exponent, which 348 

reflects the characteristics of chaotic motion, to study the dynamic response signal of the floating wind turbine 349 

mooring when creep occurs, so that we can discriminate the mode and degree of its failure. 350 

There are many methods for calculating the Lyapunov exponent, which are broadly grouped into two categories: 351 

the analytical method and the trajectory tracking method. Among them, the basic principle of the analytical method 352 

is a function is used to model the system and estimate the Jacobi matrix, which leads to the Lyapunov exponent.The 353 

trajectory tracking method follows the two orbits of the system directly from the definition of the Lyapunov exponent 354 

to obtain the Lyapunov exponent. The trajectory tracking method is valued because it is not as susceptible to the 355 

topological structure of the system as the analytical method. With the aid of the present advanced computer 356 

technology, solving the Lyapunov exponent by both types of methods is relatively straightforward. 357 

In order to quantitatively represent the chaotic characteristics of the system, this paper reflects the characteristic 358 

information of the nonlinear response signal based on the Lyapunov exponent  . In the actual calculation of the 359 

Lyapunov exponent, the most widely used is the famous Wolf algorithm, whose basic idea is to first reconstruct the 360 

univariate time series in phase space, and then estimate the Lyapunov exponent by evolution based on phase trajectory, 361 

phase area, phase volume, etc [32]. The main steps are as follows: 362 

(1) Based on the delay time and embedding dimension determined in Section 3.2.1, the phase space 363 

reconstruction is performed to obtain the N*d dimensional phase space. 364 

(2) In the reconstructed N*d dimensional phase space, a point 0X  is arbitrarily selected, and then the nearest 365 

point 0

'
X  is found in this phase space, and the distance between the two points is recorded as 0D . As time evolves, 366 

the distance between the two tracks starting from 0X  and 0

'
X  will change, and the distance between the two points 367 

after one calculation cycle is '

0D ; and the angle between these two distance vectors is guaranteed to be as small as 368 



 

possible. After that, the above process is repeated M  times until the end of the time series. The Lyapunov exponent 369 

of the system is calculated as follows: 370 

( ) '

0
0

1/ ln( / )
M

M i i
i

T T D D
=

= −   (14) 

where 0T  represents the start time of iteration; MT  represents the total iteration time; iD  represents the distance 371 

between the origin and the reconfiguration point; '

iD  represents the distance between the origin and the reconstructed 372 

point at the next moment; M  represents the total number of iterations. 373 

3.2.3 Diagnostic Process 374 

In this paper, deep learning and chaos theory are used to analyze the platform bow-rocking response data of each 375 

mooring creep phase, focusing on whether creep occurs in the mooring and the location of the creeping mooring. The 376 

specific diagnosis process is shown in Figure 10. 377 



 

 

Figure.10 Diagnosis flowchart of mooring 

4 Results and Analysis 378 

4.1 Dynamic response of FWT 379 



 

In order to ensure the safe and stable operation of the floating wind turbine, mooring is needed to provide the 380 

restoring force for it. When the mooring fails by creep, its length and stiffness change slightly, and the restoring force 381 

provided by the mooring for the platform changes, which in turn affects the dynamic response of the platform. 382 

Considering that the dynamic response of the wind turbine platform is the strongest when the sea wind, waves and 383 

currents impact in the same direction, the mooring is subjected to the greatest load and the most violent tensile force 384 

fluctuations, and the possibility of failure is greater [33 ], so the sea wind, waves and currents are set to impact 385 

perpendicular to the wind turbine plane. 386 

Due to the symmetrical distribution of eight moorings on the Barge platform, the dynamic response of the 387 

platform when creep and failure occurred in four of the moorings was investigated. The dynamic response of each 388 

mooring was analyzed in six degrees of freedom in normal, creep and failure conditions under wind and wave action, 389 

and the maximum response amplitude of the four moorings in three stages was studied. The results are shown in 390 

Figure 11. 391 

  

(a) Surge (b) Sway 

  

(c) Heave (d) Rolling 



 

  

(e) Pitch (f) Yawing 

Figure.11 Floating wind turbine platform six degrees of freedom response 

As can be seen from Figure 11, 0~3000s is the dynamic response of the floating wind turbine platform when the 392 

mooring is normal, 3000~6000s is the dynamic response of the platform after mooring creep, and 6000~9000s is the 393 

dynamic response of the platform after mooring failure. The bar graphs below the curves indicate the maximum 394 

response amplitude of the four moorings in the above three stages in corresponding colors, respectively. 395 

The dynamic response of the platform in the three stages of normal, creep and failure is analyzed in Fig. 11a~Fig. 396 

11e, and the dynamic response curves and maximum response amplitudes of the platform in the six degrees of 397 

freedom of surge, sway, heave, roll, pitch and yaw are compared. 398 

It can be found that the dynamic response of the platform in all six degrees of freedom increases to different 399 

degrees after the creep and failure of the mooring. The results are as follows: ① For each degree of freedom, the roll, 400 

yaw, surge and sway are most affected by the change of mooring state, while the heave and pitch are less affected. 401 

The increase of surge and sway response is due to the uneven force on the platform laterally and longitudinally after 402 

the change of mooring state, while the increase of  roll and yaw response is due to the uneven force on the platform 403 

after the change of mooring state, which causes the change of torque on the platform. ② The dynamic response of 404 

the platform increased slightly after mooring creep, but the increase was small; after mooring failure, the response of 405 

the platform increased sharply, most obviously in surge, sway, roll and yaw. ③ Comparing the dynamic response of 406 

the platform after the change of mooring state in different positions, it can be seen that the change of mooring state 407 

in different positions has different effects on the stability of the platform, among which the moorings closer to the 408 

windward side (moorings 1 and 2) have greater effects, and the moorings far from the windward side (moorings 3 409 

and 4) have relatively smaller effects. 410 

From the above analysis, it can be seen that during the mooring creep phase, the response of the platform in each 411 

degree of freedom changes very little, while the response in each degree of freedom increases sharply after mooring 412 

failure, when the upper part of the wind turbine operation will be greatly affected. The study in the literature [34] 413 

showed that the instantaneous thrust and power of wind turbines in the case of surge and pitch produce drastic changes, 414 

and the magnitude of such changes increases with the increase of the amplitude of surge and pitch. Among them, the 415 

surge motion with an angular displacement amplitude of 1° has a thrust variation of 12.65%, while the power variation 416 



 

is 30.98% higher. With the increase in the angular displacement amplitude of the surge motion, power shows a more 417 

sensitive change, which will lead to a significant increase in the blade shimmy and blade bending moment of floating 418 

wind turbines. In addition, due to the increased force on the wind turbine, the tower and the remaining mooring safety 419 

will be directly affected. Therefore, by diagnosing the dynamic response data of the floating wind turbine platform 420 

and discovering the mooring problems at the stage of mooring creep, it is crucial to prevent mooring failure in advance 421 

and ensure the structural safety and normal operation of the floating wind turbine. 422 

When the mooring state is changed, the platform yaw response is more sensitive than the dynamic response of 423 

other degrees of freedom, so the platform yaw response data of each mooring creep phase are analyzed. The time 424 

domain and frequency domain plots of the platform yaw response under different mooring creep are shown in Figure 425 

12. 426 

 

(a) The time domain 

 



 

(b) The frequency domain 

Figure.12 Platform yaw response under different mooring condition 

As shown in Figure 12, during each mooring creep period, there is no significant difference between the time-427 

domain and frequency-domain curves of the platform's dynamic response, so it is impossible to determine whether 428 

or not the creep occurs during mooring, and it is impossible to accurately determine the position of the creep moorings. 429 

In order to extract the effective fault characteristics, the three-dimensional attractor trajectories of the mooring creep 430 

data were plotted based on the phase space reconstruction method, and the chaotic characteristics of each mooring 431 

dynamic system were analyzed, and the optimal delay time and embedding dimension were calculated by using the 432 

Cao method [26] and the mutual information function method [27], and the results are shown in Table 7. 433 

Table 7 

The optimal parameters including delay time and embedded dimension 

Mooring type Normal 1 2 3 4 5 6 7 8 

Delay time 8 20 2 21 21 21 21 22 20 

Embedding dimension 8 4 4 4 3 3 4 4 4 

The attractor trajectories of each mooring are shown in Figure 13. 434 

 

(a) Normal 
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(f) Mooring 5 

   



 

(g) Mooring 6 (h) Mooring 7 (i) Mooring 8 

Figure.13 Phase diagram of dynamic response signal of each mooring 

Analysis of Figure 13 shows that the phase diagrams of normal moorings and faulty moorings are significantly 435 

different, with different morphologies, but all of them are in the shape of hairy spheres, which show a non completely 436 

random and non completely periodic response, indicating that the dynamic response signals of each mooring have 437 

significant chaotic characteristics. In order to quantify the strength of the chaotic characteristics, the Lyapunov 438 

exponent of each mooring signal was calculated and the results are shown in Table 8. 439 

Table 8 

Lyapunov exponent of mooring signals 

Mooring type Value Mooring type Value 

Normal state 0.00558 Mooring 5 0.01394 

Mooring 1 0.00816 Mooring 6 0.01218 

Mooring 2 0.00919 Mooring 7 0.01154 

Mooring 3 0.01223 Mooring 8 0.00834 

Mooring 4 0.01448 - - 

It can be seen from Table 8 that the Lyapunov exponent of the response signal of the bow of the platform is 440 

greater than 0 when each mooring is in creep, indicating that they have chaotic characteristics in different degrees. 441 

At the same time, it can be seen that because the dynamic response signal of the normal mooring is more stable and 442 

the nonlinearity is weaker, its Lyapunov exponents are all smaller than those of the faulty mooring. 443 

4.2 Model Training 444 

In order to extract the nonlinear feature signals in the chaotic sequences and accurately perform fault 445 

classification, the platform yaw response signals are divided into training set, validation set and test set in the ratio 446 

of 8:1:1, and they are input into the CNN model for training, and the number of iterations is set to 140, with 100 each. 447 

The creep mooring fault classification accuracy and loss curves are shown in Figure 14. 448 

 

(a) Accuracy 

 

(b) Loss rate curve 

Figure.14 Curve of training results 



 

As shown in Figure 14, the state identification can be performed better by using convolutional neural network, 449 

and the classification accuracy and loss rate almost stop changing when the iteration reaches 22, at which time the 450 

accuracy is as high as 98.86% and the loss rate is 0.0517, and the results show that the method can extract a more 451 

pure dynamic response signal. 452 

Meanwhile, in order to more clearly demonstrate the classification effect of the model on creep mooring location, 453 

the confusion matrix was introduced for analysis, and the results are shown in Figure 15. In the figure, the horizontal 454 

axis is the predicted category, the vertical axis is the actual category, and the main diagonal line indicates the number 455 

of correctly classified samples. 456 

 

Figure.15 Multi-class confusion matrix of diagnosis results 

As can be seen from Figure 15, only mooring 4 creep was misclassified as mooring 5 creep, and the rest of the 457 

creep mooring positions were classified without errors, the overall classification accuracy was high. 458 

4.3 Model Visualization 459 

To show the superior feature extraction and classification ability of the proposed method in this paper, t-SNE 460 

[35] was used to reduce the dimensionality and visualize the fault classification results. The results are shown in 461 

Figure 16. 462 

 

(a) Convolutional layer 1 

 

(b) Convolutional layer 2 



 

 

(c) Convolutional layer 3 

 

(d) Convolutional layer 4 

 

(e) Convolutional layer 5 

 

(f) Fully connected layer 

Figure.16 Visualization results of each convolutional layer 

As can be seen from Figure 16, with the increase of convolutional layers, the neural network gradually captures 463 

the data features in depth, and the class spacing of different creep moorings gradually increases, and the phenomenon 464 

of point cluster separation has appeared in convolutional layer 2, in which normal moorings have been clearly 465 

separated; in the fully connected layer, different creep moorings have been able to be clearly distinguished, indicating 466 

that CNN can extract pure nonlinear information from chaotic sequences. 467 

In addition to this, to further understand the properties of the learned features of the convolutional layers, the 468 

feature signals extracted by convolutional layer 1 and convolutional layer 5 are visualized and their chaotic properties 469 

are analyzed, and the attractor trajectories are shown in Figure 17. 470 
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(Ⅱ) Convolutional layer 5 

Figure.17 Phase diagram of different convolution layers 

From Figure 17, it can be seen that the attractor trajectories of different creep moorings have significant chaotic 471 

characteristics, and the attractors develop from chaotic disorder toward orderliness as the number of convolution 472 

layers increases. To quantify the weakening of the chaotic characteristic and the enhancement of the purity of the 473 

dynamic response of the platform, the Lyapunov exponents of the original data of each creep mooring and the 474 

convolution layer 5 are calculated, and the results are shown in Figure 18. 475 

 

Figure.18 The original data and the Lyapunov exponent of convolution layer 5 

When 0  , the system has chaotic characteristics and its nonlinearity increases with increasing  [28]. From 476 

Figure 18, it can be seen that the Lyapunov exponent calculated from the original data of the moorings in different 477 

states after phase space reconstruction is larger than the Lyapunov exponent calculated from the data extracted in 478 

convolution layer 5 , and it can be shown that the nonlinearity of the dynamic response of the platform yaw is reduced 479 

after the CNN model convolutional pooling and other operations, indicating that the proposed method in this paper 480 

can extract purer nonlinear information. 481 

4.4 Performance under different noise 482 

In this section, we will examine and discuss the accuracy of the developed diagnostic system. The test data used 483 

above are under noise-free conditions. The awgn function in MATLAB [36] is used to add different sizes of noise to 484 

the original experimental data to test the performance of the neural network model applied in this paper under real 485 



 

conditions. 486 

As shown in Figure 19, there is a significant difference between the original signal (blue line), the signal with 0 487 

dB Gaussian noise (red line), and the signal with -4 dB Gaussian noise (black line). Noise is a common problem 488 

during the actual operation of wind turbines. It is what alters the distribution of the data, thus masking the fault 489 

characteristics of the wind turbine and affecting the diagnostic accuracy of the model. The performance of the 490 

dynamic response signals analyzed using the method proposed in this paper at noise levels of -4 dB to 12 dB is shown 491 

in Figure 19. 492 

 

Figure.19. Time domain diagram of fault signal under different noise 

As can be seen from Figure 19, when the noise gradually increases, the dynamic response signal of the wind 493 

turbine platform is gradually masked by the noise, changing the characteristics of the original data, which can affect 494 

the diagnostic accuracy of the model. 495 

To study the effect of different sizes of noise, the performance of the diagnostic model for fault identification 496 

when the noise level is -4 dB to 12 dB is analyzed using the method proposed in this paper, and the results are shown 497 

in Figure 20. 498 

 

Figure.20 The accuracy of CNN-t-SNE under different noisy environments 

As can be seen from Figure 20, when the noise gradually increases, the dynamic response signal of the floating 499 

wind turbine platform is gradually masked by the noise, changing the characteristics of the original data, which can 500 
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affect the diagnostic accuracy of the model. 501 

To study the effect of different sizes of noise, the performance of the diagnostic model for fault identification when 502 

the noise level is -4 dB to 12 dB is analyzed using the method proposed in this paper, and the results are shown in 503 

Figure 16.  504 

4.5 Performance of different methods 505 

In addition, in highlighting the superiority of the proposed method in this paper, Table 9 compares the fault 506 

diagnosis of BN, SVM, ICA-SVM, PCA-SVM, CNN and CNN-t-SNE [29] for signals with different SNRs. In order 507 

to show the effect of fault diagnosis more clearly, the classification accuracy line graph is shown in Figure 21. 508 

Table 9 

Methods compared results under different noisy environment 

SNR/dB Methods/% 

 BN SVM ICA-SVM PCA-SVM CNN CNN-t-SNE 

-4 47.31 55.79 63.67 59.48 63.98 69.85 

0 70.16 76.89 79.17 82.39 80.21 85.63 

4 90.51 90.23 91.87 91.68 93.14 92.67 

8 92.96 91.85 94.23 94.21 99.23 99.56 

12 90.59 91.75 98.19 98.99 99.99 99.99 

 509 

 

Figure. 21 Methods compared results under different noisy environment of the line chart. 

As shown in Figure 21, the proposed method in this paper has the best performance in a noisy background 510 

compared to the other five methods. The shortcoming of the other methods is that although they perform well at low 511 

noise levels, the accuracy is extremely low in a strong noise environment. Under different noise scenarios, CNN-t-512 

SNE has the highest accuracy (70.25%) for classification in a large noise (-4dB) environment, which is higher than 513 

BN (47.31), SVM (55.79%), ICA-SVM (63.67), PCA-SVM (59.48), and CNN (63.98). It is worth noting that CNN-514 
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based methods have higher accuracy compared with SVM methods because CNNs have stronger generalization 515 

ability than SVMs. SVM methods are shallow learning, and shallow learning methods in general have insufficient 516 

generalization ability and are relatively poor. 517 

5 Conclusion 518 

For extreme environment in which floating wind turbines are being used, the mooring is easy to creep, which 519 

will accelerate corrosion and lead to mooring failure. This paper analyzes the dynamic response of platform bow 520 

rocking based on deep learning and chaos theory, focusing on whether creep occurs in the mooring and identifying 521 

the location where creep occurs in the mooring, which is important to prevent mooring failure in advance and ensure 522 

the safe and stable operation of wind turbine. Based on the Barge platform 5 MW floating wind turbine, the following 523 

conclusions can be drawn. 524 

(1) During the stage of mooring creep, the platform response changes very little, but the response increases 525 

sharply after mooring failure, where the bow rocking response is more sensitive. 526 

(2) The convolution neural network is used to extract the characteristics of the dynamic response signal of the 527 

offshore wind turbine platform, and the Lyapunov exponent of the signals extracted from each convolutional layer is 528 

analyzed, and the results show that the dynamic response signal of the offshore wind turbine platform decays 529 

nonlinearly. 530 

(3) After dimensionality reduction using t-SNE, the creep mooring positions can be clearly distinguished by the 531 

platform yaw response signal. 532 

(4) Combining attractor trajectories with Lyapunov exponents can reflect the chaotic characteristics of dynamic 533 

signals and can quantitatively represent that CNN can extract pure nonlinear information from chaotic sequences. 534 

6 Future work 535 

In this study, the dynamic response of the FWT platform was investigated. The proposed intelligent damage 536 

detection model named CNN-t-SNE automatically extracts the advanced features from the Chaotic Space and 537 

finally locates which mooring has occurred creep, which is important to prevent mooring failure and ensure the 538 

normal operation of the FWT. The following may be undertaken in the future: 539 

(1) Because of the strong nonlinearity of the dynamic response signal of the FWT platform, a multi-scale 540 

convolutional neural network is subsequently considered and a feature attention mechanism is added to analyze 541 

the signal. 542 

(2) This paper is a study of the mooring system of 5MW FWT platform, and the subsequent consideration of 543 

comparing the same and different vibration signals of 10MW and 5MW FWT platforms. 544 

(3) In this paper, we assume that the ocean current is uniform flow, and then we will study how the dynamic 545 

response signal of the FWT platform changes when the ocean current is nonuniform. 546 

(4) This paper is to study the effect of mooring on the FWT platform, and subsequently will also study the 547 

joint effect of tendon and mooring on the FWT platform. 548 
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