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Abstract
There is a growing consensus that global patterns of modern human cranial and dental variation are shaped largely by neutral 
evolutionary processes, suggesting that craniodental features can be used as reliable proxies for inferring population structure and 
history in bioarchaeological, forensic, and paleoanthropological contexts. However, there is disagreement on whether certain types of 
data preserve a neutral signature to a greater degree than others. Here, we address this unresolved question and systematically test 
the relative neutrality of four standard metric and nonmetric craniodental data types employing an extensive computational 
genotype–phenotype comparison across modern populations from around the world. Our computation draws on the largest existing 
data sets currently available, while accounting for geographically structured environmental variation, population sampling 
uncertainty, disparate numbers of phenotypic variables, and stochastic variation inherent to a neutral model of evolution. Our results 
reveal that the four data types differentially capture neutral genomic variation, with highest signals preserved in dental nonmetric 
and cranial metric data, followed by cranial nonmetric and dental metric data. Importantly, we demonstrate that combining all four 
data types together maximizes the neutral genetic signal compared with using them separately, even with a limited number of 
phenotypic variables. We hypothesize that this reflects a lower level of genetic integration through pleiotropy between, compared to 
within, the four data types, effectively forming four different modules associated with relatively independent sets of loci. Therefore, 
we recommend that future craniodental investigations adopt holistic combined data approaches, allowing for more robust inferences 
about underlying neutral genetic variation.
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Significance Statement

Craniodental features are routinely used in bioarchaeology, forensics, and paleoanthropology to infer genetic relatedness across hu
man remains. However, it is unclear whether certain data types preserve neutral evolutionary signals to a greater degree than others. 
Here, we test the relative utility of four standard metric and nonmetric data types, employing an extensive computational genotype– 
phenotype comparison across worldwide modern populations. Our results reveal that the four data types capture different amounts 
of neutral genomic variation, with dental nonmetrics and cranial metrics showing the highest signals and dental metrics displaying 
the lowest. Importantly, combining different data types maximizes genotypic coverage over different loci compared with using them 
separately. Therefore, we recommend prioritizing combined data sets for more accurate craniodental inferences in future research.

Introduction
Human skeletal morphology is highly diverse and varies among 
individuals and populations across the globe. This pattern was 

shaped by the complex interplay of neutral evolutionary proc
esses (i.e. selectively neutral mutations, random genetic drift, 
and gene flow) and nonneutral forces related to local adaptation 
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and developmental plasticity in response to environmental and 
cultural stimuli (1–3). Different parts of the skeleton (such as the 
cranium, mandible, teeth, pelvis, long bones, hands, and feet) 
have been shown to preserve neutral and nonneutral signatures 
to different degrees (4–13). Overall, however, there is wide consen
sus that cranial and dental morphology as a whole evolved for a 
large part under neutrality and, thus, can be used as a proxy for 
reconstructing population structure and history (14–20). This is 
relevant for the study of human skeletal remains from archaeo
logical and forensic contexts, where DNA analyses are often con
strained due to poor molecular preservation, particularly in the 
deep fossil record and in warmer climates, or when destructive 
DNA sampling of fragile and rare specimens is not possible.

Morphological investigations based on craniodental features 
typically focus on either quantitative (hereafter, metric) or quali
tative (hereafter, nonmetric) data to characterize the overall 
geometry of study specimens. Cranial metric data collection is 
performed by defining a set of homologous anatomical landmarks 
located on the skull and by measuring either linear dimensions 
between them (21, 22) or the relative position of landmark and 
semilandmark coordinates in two or three dimensions (23–26). 
Dental metric data collection is performed in a similar fashion, 
usually by measuring linear lengths, widths, or diagonal dimen
sions at the tooth crown or at the cement–enamel junction (27, 
28) or semilandmark-based crown outlines (29, 30). Cranial non
metric trait data collection is performed by visually scoring minor 
discontinuous variants, such as extra-sutural ossicles, prolifera
tive ossifications including bridges or spurs, or variation in foram
ina number and location, for example (31–33). Similarly, dental 
nonmetric trait data collection is performed by observing the 
number of cusps and roots, or the pattern of fissures, ridges, and 
grooves on tooth crowns (34–37).

Despite the popularity of all four craniodental data types in 
population structure and history studies, it remains poorly under
stood whether some preserve neutral genomic signatures to a 
greater degree than others. This is problematic because investiga
tions based on different craniodental data types may arrive at 
markedly disparate conclusions. For example, some researchers 
have suggested that teeth are a “safe box” of the genetic code, 
much more than any other skeletal element, because they form 
relatively early during ontogeny and their morphology remains 
unchanged after full formation, making teeth less affected by ex
ternal stimuli (38). Some have also hypothesized that metric data 
are more useful than nonmetric traits, because measurements 
can be collected in a more objective and consistent manner, 
whereas visual scoring of nonmetric traits can be subjective and 
prone to observer error (39, 40). A vast body of literature also sug
gest varying levels of heritability among the different craniodental 
data types, with disparate amounts of genetic integration through 
pleiotropy, indicating that some types of data contain more inde
pendent genomic information than others (41–48). Several studies 
also point out that more holistic approaches combining different 
craniodental data types in a single analysis capture more pheno
typic and thus genomic variation, compared with using them sep
arately (49–51). Lastly, it has been proposed that there are not only 
differences in neutrality between the craniodental data types, but 
also differences within a given data type. That is, some bones, sin
gle trait expressions, or functional and developmental modules 
conserve a stronger evolutionary neutral signal than other, 
more labile, regions (10, 14, 17, 20).

A standard approach for quantifying the utility of a given cra
niodental data type in capturing a neutral genomic signature is 
to estimate phenotypic distances among worldwide modern 

human populations, on the one hand, and to compare them to 
neutral genomic distances estimated among the same or closely 
matched set of populations on the other (1, 2, 52). These analyses, 
hereafter termed DP–DG comparisons, have been extensively per
formed for cranial metric data (14, 16, 17, 19, 20, 51, 53, 54), dental 
metric data (18, 55), cranial nonmetric trait data (51, 56, 57), and 
dental nonmetric trait data (10, 15, 18, 58). However, the esti
mated levels of neutrality of the different craniodental data types 
reported in previous DP–DG studies are not directly comparable, 
since different populations have been sampled and diverse meth
odological approaches for calculating between-population distan
ces have been employed at different geospatial scales (54).

To date, only few DP–DG studies have attempted to systematic
ally co-analyze the relative neutrality of different craniodental 
data types in a single analytical framework, thus, allowing for 
comparability (18, 51, 56). Those investigations found contradict
ing results, reporting either similar degrees of neutrality for differ
ent data types (18) or that they were differentially associated with 
genomic markers (51, 56). However, those previous studies were 
constrained by several factors. First, they were limited to either 
cranial (51, 56) or dental (18) data and none compared all four cra
niodental data types together. Second, none of the previous stud
ies assessed the utility of a mixed-type data set combining metric 
and nonmetric traits in a single analysis. Third, none of these 
studies accounted for geographically structured environmental 
variation that can affect phenotypic and genomic variation (12). 
Fourth, all used rather limited sets of matched populations with 
varying and sometimes small sample sizes without accounting 
for variation introduced by sampling uncertainty. Fifth, all studies 
compared craniodental data types with unequal numbers of var
iables, which leads to biased results since phenotypic distances 
based on many variables are more robust than those based on 
only a few (10, 59). Sixth and finally, all previous studies compared 
phenotypic distances to a single point estimate of genetic dis
tance, which takes all sampled genomic loci into consideration; 
instead, phenotypic distances should be compared with multiple 
equally plausible neutral genetic distances by randomly sampling 
genomic loci in order to account for stochastic variation inherent 
to a neutral model of evolution (10, 52, 60).

In this study, we address these research gaps by using a global 
DP–DG framework in which we jointly investigate the relative 
neutrality of the four different craniodental data types, plus a 
mixed-type data set combining all four types of data together. 
Our extensive computations draw on the largest existing genomic 
and phenotypic databases currently available, while accounting 
for geographically structured environmental variation, popula
tion sampling uncertainty, disparate numbers of phenotypic var
iables, and stochastic variation inherent to a neutral model of 
evolution.

Results
Mining large existing databases, we matched five different gen
omic and phenotypic data types for 26 modern human population 
samples from around the world, namely: (i) 8,821 single nucleo
tide polymorphisms (SNPs), (ii) 37 cranial metrics (in the form of 
linear dimensions, arcs, chords, and subtenses), (iii) 28 dental 
metrics (in the form of mesiodistal and buccolingual crown diam
eters), (iv) 24 cranial nonmetric traits, and (v) 25 dental nonmetric 
traits (Fig. 1A and SI Appendix, Table S1). We then estimated pair
wise between-population genetic distances using Weir– 
Cockerham’s FST derived from the SNP data, which served as a 
benchmark to evaluate neutral expectations (Data Set S1). Next, 
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we estimated pairwise between-population phenotypic distances 
using Mahalanobis’ D2, generated separately from the cranial 
metrics, dental metrics, cranial nonmetric traits, dental nonmet
ric traits, and the combined craniodental data (Data Sets S2–S6). 
We then subjected the FST and D2 distances to Kruskal’s nonmetric 
multidimensional scaling (NMDS) to visualize the matrices in a 
decomposed three-dimensional (3D) coordinate space, where a 

spatial grouping of populations indicates close affinity, and vice 
versa (Fig. 1B–G). The MDS stress level for the FST matrix was 
0.0407, and the stress levels for the cranial metric, dental metric, 
cranial nonmetric traits, dental nonmetric traits, and combined 
craniodental data D2 matrices were 0.0539, 0.1185, 0.1392, 
0.0683, and 0.0615, respectively. All stress levels are below the ac
ceptable threshold of 0.15, indicating that 3D captures the overall 
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Fig. 1. Geographic location and genomic and phenotypic relationships of worldwide modern human populations. (A) World map showing the locations of 
26 populations sampled for matched genomic data (SNPs) and phenotypic data (cranial and dental metrics and nonmetric traits). Points are approximate 
geographic coordinates of the genomic samples. 3D NMDS plots of between-population distances, calculated separately from six different data types: (B) 
SNPs; (C) cranial metrics; (D) dental metrics; (E) cranial nonmetric traits; (F) dental nonmetric traits; and (G) combined craniodental data.
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among-population variation well. To spatially orient the D2 dis
tance configurations similar to the FST distance configuration, 
we subjected the decomposed D2 coordinates to Procrustes super
imposition to scale and rotate them to maximum similarity with 
the decomposed FST coordinates by minimizing the overall sum 
of squared differences among populations. All 3D NMDS plots 
show major continental clusters of populations. The clusters ap
pear most markedly geographically structured in the SNP data 
(Fig. 1B) and to a similar degree in the combined craniodental 
data (Fig. 1G), whereas clusters in the dental metric data appear 
least structured geographically (Fig. 1D).

To formally quantify the neutral signals preserved in a given 
phenotypic data type, we conducted partial correlation tests to 
measure the degree of congruence between D2 and FST, while con
trolling for the effects of geographically structured environmental 
variation on phenotypic and genomic variation (12). 
Computationally, the partial correlation test design calculates 
the correlation of the residuals from the independent regressions 
D2 ∼ C and FST ∼ C, whereby C describes climatic differences 
among sampled population environments (Data Set S7). The re
sulting partial correlation value r was treated as a neutrality esti
mate, with an r value close to 1 indicating a higher degree of 
neutrality, whereas an r value near to 0 indicates a lower degree. 
We obtained the highest r value for the combined craniodental 
data (r = 0.684), followed by cranial metrics (r = 0.618), dental non
metric traits (r = 0.592), cranial nonmetric traits (r = 0.390), and 
dental metrics (r = 0.223). Similar patterns were observed when 
comparing D2 to FST, while controlling for geographic distances 
(G) (Data set S8), albeit with slightly lower overall r values (SI 
Appendix, Table S2). However, due to variations in sample sizes 
between the matched phenotypic and genomic data sets (SI 
Appendix, Table S1), the D2 and FST distances are statistically 
biased, and in consequence, the neutrality estimate r. Therefore, 
to explore the effect of population sampling uncertainty, we em
ployed a resampling procedure whereby we calculated the neu
trality estimator 1,000 times, each time leaving out a randomly 
selected population in the phenotypic and genomic data sets 
and a randomly selected individual in each remaining population. 
We then reported the median of the resulting distribution of r val
ues and constructed an interpercentile range accounting for 95% 
of the spread. The results are summarized in Table 1 and visual
ized in Fig. 2A using violin plots. Overall, the highest distribution 
of r values was again attained for the combined craniodental 
data, followed by cranial metrics, dental nonmetric traits, cranial 
nonmetric traits, and dental metrics. To statistically corroborate 
this finding, we conducted repeated-measures t-tests among pairs 
of distributions (SI Appendix, Table S3) and found significant dif
ferences in the levels of neutral signals preserved in each cranio
dental data type (P < 0.001).

The five phenotypic data sets in our analysis comprise unequal 
numbers of variables (SI Appendix, Table S1), namely: 37 cranial 
metric variables; 24 cranial nonmetric trait variables; 28 dental 
metric variables; 25 dental nonmetric trait variables; and the com
bined craniodental data set comprises a summed up total of 114 
variables. This imbalance hampers a direct comparison across 
data types, given that phenotypic analyses based on many varia
bles are more robust than those based on only a few (10, 59). 
Therefore, to create equally sized numbers of variables across 
all five phenotypic data sets, we calculated the neutrality estima
tor r for a given phenotypic data type 1,000 times, each time ran
domly undersampling the number of variables down to 24. This 
corresponds to the number of variables in the cranial nonmetric 
trait data set, comprising the fewest variables among all data 

sets compared. Phenotypic variable sampling bias correction 
was performed together with population sampling bias correc
tion, to explore the combined effect of these two analytical refine
ments. On average, the resulting distributions of r values for the 
five phenotypic data types exhibit a similar relative ordering to 
the population sampling bias corrected r values alone, with the 
only difference that dental nonmetric traits show a higher preser
vation of neutral genomic signatures compared with cranial met
rics (Table 1, Fig. 2B). Pairwise repeated-measures t-tests (SI 
Appendix, Table S4) confirmed that the neutral signals preserved 
in each craniodental data type significantly differ from one an
other (P < 0.001).

Under a neutral model of evolution, the FST distance matrix, 
used as a benchmark for our comparisons, is just one of multiple 
equally plausible neutral genetic outcomes produced by stochas
tic variation (10, 52, 60). To account for this stochasticity, we cal
culated FST and thus the neutrality estimator r for a given 
phenotypic data type 1,000 times, each time randomly undersam
pling the number of SNP loci down to the same number of pheno
typic variables, namely 24. This sampling strategy is consistent 
with population and quantitative genetics theory, where a herit
able, additive, and selectively neutral phenotype is approximately 
as informative about population differentiation as a single neutral 
genomic locus, regardless of how many loci influence the pheno
type (61, 62). Loci undersampling was performed in conjunction 
with population sampling bias correction and phenotypic variable 
sampling bias correction, to investigate the combined effect of 
these three analytical refinements. On average, the resulting dis
tributions of r values exhibit a similar relative ordering to those 
correcting for population and phenotypic variable sampling bias 
combined (Table 1, Fig. 2C). Pairwise repeated-measures t-tests 
(SI Appendix, Table S5) showed that all neutral signals differ sig
nificantly (P < 0.001).

We note that overall our phenotypic data sets exhibit imbal
anced distributions of sexes, with more males represented than 
females. This bias can be problematic as sexual dimorphism in 
shape, size, and trait expression may introduce variation unre
lated to neutral genomic variation. Although we implemented 
data preprocessing steps to correct for sexual dimorphism (see 
Materials and Methods), we conducted two additional analyses fo
cusing on males only. One analysis utilized size-corrected metric 
data (SI Appendix, Table S6), while the other did not apply size cor
rection to the metric data (SI Appendix, Table S7). The results 
from the male subsets generally follow the same pattern as those 
of the complete data set, albeit with slightly wider r value intervals 
when controlling for population sampling uncertainty, which is 
expected given the overall smaller sample size.

Lastly, we acknowledge that our results may be affected by 
small sample sizes for certain data types, particularly dental met
rics and SNPs, which were represented by only a few individuals in 
some populations (SI Appendix, Table S1). Although our analysis 
accounts for sampling bias (as described above), we conducted a 
more cautious analysis focusing on a subset of 16 out of the 26 
populations with phenotypic and genomic sample sizes of n ≥ 10 
(SI Appendix, Table S8). The obtained results show patterns that 
generally align with those observed in the full data set, although 
with slightly higher overall r values. The only distinction lies in 
higher r values observed for cranial metrics compared with dental 
nonmetric traits. Therefore, in order to reconcile the findings of 
the full 26-population data set and the 16-population subset, we 
consider dental nonmetric traits and cranial metrics equally suit
able for tracking neutral signatures until further samples become 
available for study.
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Discussion
To our knowledge, this study is the first to systematically 
co-analyze the relative utility of four widely used standard cranio
dental phenotypic data types in capturing neutral genomic vari
ation, namely (i) cranial metrics, (ii) dental metrics, (iii) cranial 
nonmetric traits, and (iv) dental nonmetric traits, plus (v) a mixed- 
type data set combining all four data types together. We per
formed a comprehensive DP–DG comparison across 26 worldwide 
populations, drawing on the largest existing phenotypic and gen
omic data sets currently available, and incorporating a range of 
analytical refinements commonly neglected in previous DP–DG 

studies. In doing so, we demonstrated the importance of account
ing for sampling uncertainty and showed that r neutrality esti
mates can vary substantially based on the composition of 
population samples and numbers of specimens included, even 
with large data sets as employed here. This is, for example, mark
edly expressed by the dental metric data in the full 26-population 
data set, with a point estimate of r = 0.223, which widens to a 95% 
range of r = 0.118–0.281 when accounting for sampling bias. We 
further demonstrated the importance of accounting for unevenly 
sized numbers of phenotypic variables when comparing relative 
levels of neutrality across phenotypic data sets. Specifically, in 
the full 26-population data set, cranial metrics exhibited higher 
levels of neutrality compared with dental nonmetric traits when 
no correction was applied, but this pattern reversed when the 
number of phenotypic variables was equalized across data sets 
through random undersampling. This result is in agreement 
with previous research finding that the validity of cranial metric 
and dental nonmetric trait distances in reflecting neutral expect
ations is contingent upon the number of variables employed (10, 
59). On a related note, our undersampling procedure also takes 
into account the practical limitations of working with skeletal re
mains, particularly in bioarchaeological or fossil contexts, where 
craniodental data are often highly fragmented, and where re
searchers must work with random subsets of variables. Lastly, 
we demonstrated the importance of accounting for stochastic 
variation inherent to a neutral model of evolution by randomly 
undersampling the SNP loci to match the number of phenotypic 
variables. This resulted in r neutrality estimate distributions 
with much wider ranges, and for the dental metric data, the 95% 
range was found to be r = −0.043–0.338 (in the full 26-population 
data set) and r = 0.067–0.612 (in the 16-population subset), with 
the lower bounds near zero implying nonneutral evolutionary 
forces. This finding therefore calls into question the validity of 
dental metrics as a proxy for neutral genomic markers.

Inspecting the four craniodental data types separately, our re
sults clearly show that they are differentially associated with 

neutral genomic variation after accounting for population sam
pling uncertainty, disparate numbers of phenotypic variables, 
and stochastic variation inherent to a neutral model of evolution. 
In testing for neutrality, our estimates reveal that, overall, dental 
nonmetric traits and cranial metrics performed best, followed at 
some distance by cranial nonmetric traits, whereas dental metrics 
performed relatively poorly. Interestingly, these estimates do not 
relate to the suggested general divide in utility between cranial 
versus dental features, with the latter proposed to be less affected 
by external environmental stimuli (38), and nonmetric versus 
metric data, with the latter suggested to be less prone to observer 
error (39). Instead, our estimates are in agreement with previous 
quantitative genetic studies of pleiotropy in humans (or in non
human primates when studies on humans are not yet available), 
finding that the amount of independent genetic information in 
dental metrics (41) and cranial nonmetric traits (45) is low, com
pared with the amount of independent genetic information in cra
nial metrics (44) and dental nonmetric traits (42, 43). The 
relatively poor performance of dental metrics contrasts with 
what was proposed in a previous study using a methodological 
DP–DG framework similar to ours (18), which found that dental 
metrics and nonmetric traits are both comparably well-suited in 
tracking neutral genomic variation. The present study expands 
and improves upon the DP–DG investigation by Rathmann et al. 
(18) in several respects. Among the most important are a more 
comprehensive dental nonmetric trait data set for comparison 
(25 versus 15 traits) and a larger set of globally distributed 
matched population samples (26 versus 19 populations).

Perhaps one of the most interesting findings of our study is that 
phenotypic inferences of neutral genomic variation are most ac
curate when based on a combined mixed-type data set, compared 
with using the four different data types separately. This result is in 
agreement with previous studies reporting that phenotypic infer
ences about genomic affinities are best served when multiple lines 
of evidence are jointly investigated (49–51). This is also expected, 
given that the number of variables in the mixed-type data set is 
many times higher than in the four different data sets separately, 
leading to a richer knowledge of phenotypic and thus genomic 
variation (10, 59). Interestingly though, when equalizing the num
bers of phenotypic variables across all data sets via undersam
pling, the mixed-type data still performed best. One possible 
explanation for this result could be that genetic integration 
through pleiotropy between the four data types is lower than gen
etic integration within the four data types, effectively forming 
four different modules regulated by different sets of loci that are 
relatively independent from each other (63–65). In this situation, 
even when just a few phenotypic variables per data type would 

Table 1. Neutrality estimates for five craniodental data types, calculated as partial Pearson correlation (r) between phenotypic (D2) and 
neutral genetic (FST) distances across 26 modern human population samples, controlling for climate distances.

Craniodental data type Population sampling  
bias correctiona

Population and phenotype  
sampling bias correctionb

Population, phenotype, and loci  
sampling bias correctionc

Cranial metrics 0.610 (0.553–0.682) 0.573 (0.498–0.640) 0.455 (0.276–0.610)
Cranial nonmetric traits 0.380 (0.346–0.430) 0.380 (0.346–0.430) 0.309 (0.138–0.464)
Dental metrics 0.194 (0.118–0.281) 0.190 (0.085–0.301) 0.150 (−0.043–0.338)
Dental nonmetric traits 0.591 (0.534–0.633) 0.586 (0.528–0.642) 0.476 (0.261–0.652)
Craniodental combined 0.672 (0.627–0.743) 0.644 (0.568–0.716) 0.522 (0.349–0.668)

aMedian (and 95% range) of 1,000 iteratively generated r values, each iteration leaving out a randomly selected population in the phenotypic and genomic data sets 
and a randomly selected individual in each remaining population. 
bMedian (and 95% range) of 1,000 iteratively generated r values, each iteration randomly undersampling the number of phenotypic variables, combined with 
population sampling bias correction. 
cMedian (and 95% range) of 1,000 iteratively generated r values, each iteration randomly undersampling the number of loci, combined with population and 
phenotype sampling bias correction.
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contribute to the mixed-type data, more underlying genomic vari
ation from different loci would still be captured than using the full 
phenotypic variable battery of one of the four data types individu
ally. This hypothesis could be tested with a quantitative genetic 
analysis of pleiotropy in a modern human population with known 
pedigree structure sampled for all four cranial and dental metric 
and nonmetric trait data types, which to our knowledge has not 
been performed so far and could thus lead to exciting new re
search directions.

We note that the reported r neutrality estimates for the different 
craniodental data types must be considered minimum values as 
they are biased toward zero. This is because we compared matched 
but unpaired population samples, with phenotypic and genomic 
data coming from different individuals; however, phenotypic and 
genomic distances among unpaired samples have a reduced 
degree of congruence, given that within-population variation 
is high compared with between-population variation (66). 
Nevertheless, comparing unpaired samples is a standard proced
ure in global scale DP–DG analyses (7, 10, 14–20, 51, 55), and our ap
plied analytical correction for sampling bias (i.e. both population 
and specimen resampling of the phenotypic and genomic data) 
may account for at least some of this uncertainty. Moreover, al
though our large craniodental data sets comprise the most widely 
used metric and nonmetric trait variables in bioanthropological 
research, they could be complemented with additional standard 
and nonstandard variables proposed to be informative (67–70). 
Similarly, the metric portion of our data sets, consisting of linear 
dimensions, arcs, cords, and subtenses, could be replaced with 
3D coordinate data that better retain the geometry of the studied 
specimens than caliper-based measurements. Interestingly, 

though not fully comparable, previous DP–DG analyses based on 
craniodental 3D data reported neutrality levels similar to those re
ported here (14, 17, 19, 20, 55), suggesting that caliper-based meas
urements and 3D coordinates are equally well-suited for 
reconstructing genetic relationships, though our caliper-based 
data sets have the advantage to be many times larger.

Previous studies proposed that there are not only differences in 
neutrality between the four craniodental data types, but also dif
ferences among the variables within a given data type (10, 14, 17, 
20). Our phenotypic variable undersampling procedure takes at 
least some of these considerations into account and we show 
that neutrality estimates for a given data type differ substantially 
when different subsets of variables are employed, further reinfor
cing previous claims. Future investigations should therefore ex
plore additional arrangements of variables beyond the five 
tested here. For instance, considering only cranial data, combin
ing all nonmetric variables, utilizing variables with the highest 
discriminatory power, or focusing on variables associated with 
previously identified functional and developmental modules (9, 
17, 48). We propose that testing for neutrality in all possible com
binations of cranial and dental metric and nonmetric variables, as 
recently employed for dental nonmetric trait data (10), is the most 
promising approach, rather than restricting analysis to predefined 
or hypothesized arrangements only.

In conclusion, our results serve as a reference for future cranio
dental research, confirming that most of the traditionally used 
data types can be used as proxies for neutral genomic data, al
though some are more useful than others. We do advise, however, 
to carefully review the use of dental metrics in the form of stand
ard mesiodistal and buccolingual crown dimensions only, as they 
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Fig. 2. Violin plots showing neutrality estimates for five craniodental data types, calculated as partial Pearson correlation (r) between phenotypic (D2) and 
neutral genetic (FST) distances across 26 modern human population samples, controlling for climate distances. Box plots are superimposed to show 
median values (black solid line) and interquartile ranges (boxes). (A) Distribution of 1,000 iteratively generated r values, each iteration leaving out a 
randomly selected population in the phenotypic and genomic data sets and a randomly selected individual in each remaining population. (B) Distribution 
of 1,000 iteratively generated r values, each iteration randomly undersampling the number of phenotypic variables, combined with population sampling 
bias correction. (C) Distribution of 1,000 iteratively generated r values, each iteration randomly undersampling the number of loci, combined with 
population and phenotype sampling bias correction.
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may not cover sufficient independent genomic variation, at least 
in comparison with other craniodental data types. Importantly, 
instead of using the different data types separately, we advise 
relying on a more holistic approach by combining them together, 
as this maximizes genotypic coverage over different loci resulting 
from primarily neutral evolution. Future work in combinatorics 
should focus on identifying specific subsets of mixed cranial and 
dental metric and nonmetric traits that are the most useful for 
tracking human neutral genetic variation.

Materials and methods
Matching population samples
Materials for this study comprise five different types of data: (i) 
SNPs, (ii) cranial metrics, (iii) dental metrics, (iv) cranial nonmetric 
traits, and (v) dental nonmetric traits. All data were taken from ex
isting databases. We matched the different data types for 26 glo
bally distributed modern human populations for which all five 
types of data were available (Fig. 1 and SI Appendix, Table S1). 
Populations were chosen for inclusion in this study based on three 
criteria: (i) availability of n ≥ 3 unrelated individuals per genetic 
sample; (ii) availability of n ≥ 4 individuals per phenotypic sample; 
and (iii) sample antiquity <2,000 years, to control for temporal 
bias. In instances where exact population matches between geno
typic and phenotypic populations could not be achieved, a geo
graphically proximate population with ethno-linguistic affinities 
was selected. In a few cases, closely related populations were 
pooled to maximize sample size. We note that the matched popu
lation samples in this study are unpaired; that is, all five types of 
data derive from different individuals. When possible, approxi
mately equal numbers of adult males and females (determined 
osteologically) were sampled for the phenotypic data sets, to con
trol for sexual dimorphism; however, we note that overall the 
phenotypic data sets are biased toward representing more males.

SNP data
SNP data were obtained from published databases, genotyped 
with the Affymetrix Human Origins Array (71–80). To correctly 
merge genotypes coming from different data sets, we ensured 
they were all related to the same Reference Sequence, the 
Genome Reference Consortium Human Build 37 (81) using, 
when needed, the LiftOver tool (82). To merge data from selected 
data sets, we used the plink-1.90 software (83). We filtered the 
data removing all transversions to avoid ambiguity in strand 
alignment (C/G or A/T), principal component analysis outliers, 
and first- and second-degree relative pairs. We selected only those 
SNPs that map to nonfunctional genomic regions and are there
fore unlikely to be affected by natural selection. We applied two 
different filter levels for the amount of allowed missing data: first, 
to populations collected by Lazaridis et al. (74), Mallick et al. (76), 
Pickrell and Pritchard (78), and Skoglund et al. (80), we retained 
only individuals with 0% missing data; second, from the other pub
lished resources, we removed individuals with >10% of missing 
data. All filtering was performed using the plink-1.90 software 
(83). Finally, we converted the data set from PLINK file format into 
a genepop file using PGDSpider (84). The final preprocessed SNP 
data set comprised 857 individuals sharing 8,821 markers, with 
population sample representation varying from 3 to 176 individuals.

Cranial metric data
The cranial metric data were selected from a larger database 
collected by one of us (T.H.) (85). The data set consists of 37 

measurements of the cranium recorded for each individual, in 
the form of linear dimensions, arcs, cords, and subtenses. All 
measurements were recorded following the procedures in 
Bräuer (70) using sliding and spreading calipers. Raw measure
ments were converted into scale-free shape variables by dividing 
each measurement by the geometric mean for all the measure
ments in each individual (86). This procedure removes gross size 
from the data in order to assess differences in the proportionate 
contribution of single variables to overall cranial size and adjusts 
for size differences between individuals that may result from sex
ual dimorphism. Because size-correction requires complete cases, 
missing values were imputed with the k-nearest neighbor (kNN) 
method (87). kNN searches the entire data set for k = 5 individuals 
most similar to the one with missing data and generates a mean to 
replace the missing value(s). Prior to imputation, individuals with 
more than half of the measurements missing were removed from 
the analysis. In this way, we ensured that <2.5% of the final data 
set requires imputation (down from 3.1%). Summary statistics of 
the kNN-imputed and size-corrected cranial metric data set are 
provided in Data Set S9. The final preprocessed cranial metric 
data set comprised 2,994 individuals, with population sample re
presentation varying from 24 to 366 individuals.

Dental metric data
The dental metric data were selected from a larger database col
lected by one of us (T.H.) (88). The data set consists of mesiodistal 
and buccolingual crown diameters of all teeth recorded for each 
individual (up to a total of 28 metric variables, excluding third mo
lars). Only right teeth were measured, but when a right tooth was 
missing, damaged, or affected by wear or pathology, the corre
sponding left antimere was measured. All measurements were re
corded according to the procedures in Moorrees (89) and Hillson 
(90) using a digital sliding caliper accurate to 0.01 mm. We applied 
the same data preprocessing steps as for the cranial metric data. 
First, individuals missing more than half of the measurements 
were removed to ensure that <24.3% of the data set requires im
putation (down from 57.7%). Second, missing values were im
puted using the kNN algorithm (87). Third, raw measurements 
were converted into scale-free shape variables (86) to assess dif
ferences in the proportionate contribution of individual variables 
to overall tooth size and to adjust for size differences that may re
sult from sexual dimorphism (40). Summary statistics of the 
kNN-imputed and size-corrected dental metric data set are re
ported in Data Set S10. The final preprocessed dental metric 
data set comprised 909 individuals, with population sample re
presentation varying from 4 to 185 individuals.

Cranial nonmetric trait data
The cranial nonmetric trait data were selected from a larger data
base collected for the most part by one of us (T.H.) (91). The data 
set consists of 24 discrete observations of the cranium recorded 
for each individual and comprises data on sutural variation, 
supernumerary ossicles, hypostotic and hyperostotic traits, and 
vessel/nerve-related traits. The scoring procedures for each trait 
are described elsewhere [Hanihara et al. (91) and references there
in]. Scoring followed the individual count method (92), where bi
lateral traits were counted only once per cranium, regardless of 
whether or not the trait appeared bilaterally. In cases where a trait 
was expressed asymmetrically, the side with the highest expres
sion level was scored. Graded trait expression scores were col
lapsed into simplified binary dichotomies of absence or presence 
based on established breakpoints [Hanihara et al. (91) and 
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references therein]. Sex differences were found in a few traits but 
none of the traits differed consistently between males and fe
males in all sampled populations and we thus analyzed both sexes 
together, as it has been done in previous analyses of the same data 
set (91). Summary statistics of the cranial nonmetric trait data set 
are provided in Data Set S11. The final preprocessed cranial non
metric trait data set comprised 4,623 individuals, with population 
sample representation varying from 26 to 533 individuals.

Dental nonmetric trait data
The dental nonmetric trait data were obtained from published re
sources (15, 68), whereby the majority of the samples were col
lected by C. G. Turner II, later augmented with samples 
collected by two of us (G.R.S. and J.D.I.; SI Appendix, 
supplementary text 1). The data set consists of 25 discrete obser
vations of the dentition, including data on the number of cusps 
and roots, and the pattern of fissures, ridges, and grooves on tooth 
crowns. All data collectors used the Arizona State University 
Dental Anthropology System (ASUDAS) to record trait observa
tions (68, 93). The ASUDAS comprises a reference set of dental 
casts illustrating expression levels for various traits alongside spe
cific instructions that ensure a standardized scoring procedure, 
which minimizes observer error. ASUDAS traits are routinely col
lected on key teeth (usually the most mesial member of a tooth 
district) because these are considered the most stable members 
in terms of development and evolution (94). As in the cranial non
metric trait data set, scoring followed the individual count meth
od (92). Dental trait expression scores were collapsed into 
simplified binary dichotomies of absence or presence based on es
tablished breakpoints (15, 68). Dental traits of the ASUDAS have 
little or no sexual dimorphism, thus, it is a standard procedure 
to pool sexes (42, 46, 68, 94). Summary statistics of the dental non
metric trait data set are provided in Data Set S12. The dental non
metric trait data set comprised 2,986 individuals, with population 
sample representation varying from 28 to 450 individuals.

Estimating distances among populations
Pairwise neutral genetic distances among populations were com
puted from the SNP data using FST, defined as the fixation (F ) index 
comparing the subset (S) genetic diversity within populations to 
the total (T ) genetic diversity of all sampled populations. We fol
lowed Weir and Cockerham’s method of moments for diploid 
loci and calculated FST for each SNP individually, averaging FST 

over all loci (95). Under this model, populations of the same size 
are considered to have descended from a common ancestral 
population, which is assumed to be in Hardy–Weinberg equilib
rium (Data Set S1).

Pairwise phenotypic distances were calculated from the cranio
dental data using Mahalanobis’ D2 distance, a model-free meas
ure accounting for correlation among variables to avoid 
over-representing variation from variables that co-occur. The D2 

distance between two populations i and j is estimated as the dif
ference between two vectors of variable averages (Xi and Xj), ad
justed by a pooled within-population variance–covariance 
matrix (S) estimated over all populations in the analysis. For the 
cranial and dental metrics, we estimated D2 following 
Mahalanobis (96), where Xi and Xj are calculated as geometric 
means, and S is calculated as a pooled Pearson variance–covari
ance matrix weighted by population sample sizes (Data Sets S2 
and S3). For the cranial and dental nonmetric traits, we estimated 
D2 following Nikita (97), where Xi and Xj are calculated as probit 
threshold values of trait frequencies, and S is calculated as a 

pooled Pearson correlation matrix weighted by the sample sizes 
for each pair of traits (Data Sets S4 and S5). When estimating D2 

for the combined craniodental data, we first computed D2 inde
pendently for each of the four data types, and then combined 
the four D2 matrices as a weighted average based on the numbers 
of variables (Data Set S6). Although this approach is valuable for 
handling unpaired samples and accounts for correlations within 
the four data sets, it does not account for correlations between 
them. However, in our case, it may still be appropriate since pre
vious research demonstrated that the different data types are 
largely independent from each other, at least when comparing 
cranial metrics, dental metrics, and dental nonmetric traits (27), 
or cranial nonmetric and dental nonmetric traits (98). In addition 
to model-free D2 distances, we also calculated model-bound PST 

distances, which incorporate relative estimates of effective popu
lation size (Ne; SI Appendix, Table S9) and average estimates of 
heritability (h2; SI Appendix, supplementary text 2). Results ob
tained with PST show similarities to those using D2 (SI Appendix, 
Table S10). However, due to the challenge of validating the param
eter estimates Ne and h2, we opted to rely on D2 in order to limit 
potential model bias.

Pairwise climatic distances among sampled population envi
ronments (C ) were calculated as Euclidean distances based on 
five temperature-related variables obtained from a global climate 
database published in Hubbe et al. (9), using latitudes and longi
tudes approximated for each population sample (Data Set S7). 
As climate indicators for each population region, we used esti
mates of annual minimum temperature, annual maximum tem
perature, annual average temperature, maximum temperature 
of the warmest month, and minimum temperature of the coldest 
month, all measured in °C. These indicators are listed for each 
population sample in Data Set S13.

Pairwise geographic distances (G) were calculated as geodes
ic distances between population latitudes and longitudes (Data 
Set S8).

Correlation tests
We conducted Pearson correlation tests between the off-diagonal 
values in any two distance matrices to measure the linear associ
ation between phenotypic (D2), genetic (FST), climate (C ), and geo
graphic (G) distances. We used partial Pearson correlation tests 
based on the residuals of a previous correlation and the off- 
diagonal values in a third matrix to evaluate the linear association 
between D2 and FST, while controlling for either C or G. The result
ing r coefficients are reported in SI Appendix, Table S2. To account 
for population sampling uncertainty in our partial correlation 
tests of D2, FST, and C, we calculated the r coefficients 1,000 times, 
each time leaving out a randomly selected population in the 
phenotypic and genomic data sets and a randomly selected indi
vidual in each remaining population. Additionally, to create 
equally sized numbers of variables across all phenotypic data 
sets, in each of the 1,000 iterations we randomly undersampled 
the number of variables down to 24, which corresponds to the 
number of variables in the cranial nonmetric trait data set, com
prising the fewest variables among all phenotypic data sets being 
compared. Further, to account for stochastic variation inherent to 
a neutral model of evolution, in each of the 1,000 iterations we 
randomly undersampled the number of SNP loci down to the 
same number as there are phenotypic variables, namely, 24. To 
gauge the relative neutrality of the different phenotypic data 
types in a visual manner, we plotted the distributions of estimated 
r coefficients using violin plots. Statistical significance between 
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pairs of distributions was evaluated with repeated-measures 
t-tests with the application of a Bonferroni correction for multiple 
testing (SI Appendix, Tables S3–S5).

Unless otherwise noted, all analyses were performed in R, ver
sion 4.2.2 (99). The data and R code are publicly accessible from 
the Zenodo repository at https://doi.org/10.5281/zenodo.8067443 
. World map in Fig. 1 modified from https://commons.wikimedia. 
org/wiki/File:BlankMap-World6.svg (Public Domain).
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Supplementary material is available at PNAS Nexus online.
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