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Abstract: The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely
determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA)
in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis
muscle from 24 male participants with distinct fiber type ratios. The miRNA study included sam-
ples from five endurance athletes and five power athletes with the predominance of slow-twitch
(61.6–72.8%) and fast-twitch (69.3–80.7%) fibers, respectively. Total and small RNA were extracted
from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes
between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA
sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of
miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance.
Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with
their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miR-
NAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and
11 miRNA–mRNA interactions with strong negative correlations were identified. Two of them
belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of
CDKN1A and FOXO4, respectively.

Keywords: microRNA; miRNome; transcriptome; muscle fiber type; power athlete; endurance athlete

1. Introduction

Skeletal muscle is a highly plastic tissue composed of fiber types, which differ in
structure, molecular composition and functional properties. Adult skeletal muscle fibers
are broadly classified as slow-twitch (type I) and fast-twitch (types IIa and IIx). Type
I and IIa fibers primarily use oxidative metabolism, while type IIx are more reliant on
glycolytic metabolism [1,2]. The basis of molecular and functional heterogeneity of human
muscle fibers can be identified in the diversity of protein composition and gene expression
patterns [3]. Distinct mechanical and energetic properties of skeletal muscle fibers are
due to differences in the molecular composition of myofibrils, the intracellular structures
containing the molecular motor of muscle contraction. Fast and slow muscle fibers have
differences in the expression of myofibrillar protein isoforms, myosin binding proteins, thin
filament proteins, nebulin and actin-binding proteins [4–8]. Differences are also found in
the expression of proteins associated with excitability and excitation–contraction coupling,
electrical membrane properties and ion channels, calcium release and energy production
systems [7,9]. The main techniques for muscle fiber typing are histochemical staining for
myosin ATPase, myosin heavy chain isoform identification and biochemical identification
of metabolic enzymes [10].
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The heterogeneity of muscle fiber composition is likely to have an impact on indi-
vidual response to exercise training. The ratio of fast- and slow-twitch fibers in human
skeletal muscle tissue is variable and largely determined by genetic factors [11,12]. There
are many inherited myopathies and other acquired muscle-related disorders, which pref-
erentially affect specific skeletal muscle fiber types [13]. At the same time, some studies
indicate that the type of physical activity as well as its reduction can slightly shift the fiber
type composition [13–16]. The predominance of endurance training induces the transition
from fast-twitch to slow-twitch muscle fiber, whereas power training has the opposite ef-
fect [2,14,17]. Various components of calcium-dependent signaling pathways and multiple
transcription factors, coactivators and corepressors have been shown to be involved in
skeletal muscle remodeling [18]. Fiber type shifting is regulated by myogenic regulatory fac-
tors (MYF5, MYOD, myogenin and MRF4), myocyte enhancer factor-2 (MEF2), calcineurin
and nuclear factor of activated T cells (NFAT), peroxisome proliferator-activated recep-
tor (PPAR)-γ coactivator-1α (PGC-1α), Ca2+-dependent transcription factor and transient
receptor potential melastatin (TRPM2)-mediated Ca2+ signaling [2,17,19–23].

Non-coding RNAs are well known to participate in a variety of important regula-
tory processes in myogenesis. One of the tools for regulating gene expression is post-
transcriptional regulation by microRNAs (miRNAs)—a class of highly conserved single-
stranded non-coding RNAs with a length of 21–24 nucleotides. Their function is realized
by directly degrading messenger RNA (mRNA) of target genes or inhibiting target gene
translation. Thus, miRNAs orchestrate the regulation of their targets to control the signaling
pathways and common biological functions. In recent years, a number of studies have
highlighted the importance of miRNAs in the control of skeletal muscle development and
function through their influence on multiple biological signaling pathways, which are
important for skeletal muscle homeostasis [24,25]. Alteration of the expression of many
miRNAs or genetic mutations of miRNA genes are associated with changes in myogenesis
and the progression of several skeletal muscle diseases [26]. A group of miRNAs known
as myomiRs includes muscle-specific or muscle-enriched miRNA species, namely miR-1,
miR-133a/b, miR-206, miR-208a/b, miR-486 and miR-499, which play a crucial role in
myogenesis and muscle function [27–30]. This role is implemented in various forms of
interaction between miRNAs and gene expression. Generally, some miRNAs are seen
as playing key roles during myogenesis, e.g., miR-1/miR-206 or miR-133, while others
likely constitute a kind of muscle property “fine-tuner”, including, e.g., miR-208a/b, which
influences muscle performance by myosin switching [28,31]. The expression of some my-
omiRs is controlled by a set of muscle-specific transcription factors and cofactors, referred
to as myogenic regulatory factors (MRFs) [29,32]. Some myomiRs are intragenic, and
their expression rate primarily depends on that of their host gene. Three myosin genes,
MYH6, MYH7 and MYH7B, encode related miRNAs (miR-208a, miR-208b and miR-499,
respectively) within their introns, which, in turn, control muscle myosin content, myofiber
identity and muscle performance [33]. MyomiRs are expressed in both cardiac and skeletal
muscle, with the exception of miR-206, which is skeletal-muscle-specific, and miR-208a,
which is cardiac-muscle-specific.

Fiber types are a conserved feature of vertebrate muscle, and differential expression
of miRNAs has been previously found between fast and slow fibers in various vertebrate
species. In fish, the expression of miR-499 was increased in slow fibers of pacu (Piaractus
mesopotamicus) [34]. In both fast and slow fibers, the expression of miR-1, miR-133a/b and
miR-206 increased during fish growth. At the same time, the expression of their potential
target genes involved in myogenesis (hdac4, srf and pax7, respectively) decreased with
growth. Analysis of miRNA expression in bovine skeletal muscle by massively parallel
sequencing found increased expression of miR-1, miR-133a/b and miR-206, and decreased
expression of miR-208a in fast-type muscles compared to slow-type ones [35]. In recent
studies, RNA sequencing has been applied to analyze transcriptomic differences and
miRNA–mRNA interactions between muscles with a prevalence of fast and slow fibers
in chickens, horses and donkeys [36–38]. In horses, the expression of miR-499 and miR-



Life 2023, 13, 659 3 of 27

206 was elevated in muscles with a predominance of slow fibers. The authors suggest a
co-regulatory model of regulating the proportion of fast and slow fiber types based on the
interactions of Sox6 with Myh7b and myomiRs [37]. In donkeys, miR-208a and miR-499-3p
were among the upregulated miRNAs in muscles with a predominance of slow fibers [38].
The common factor in all of the above vertebrate skeletal muscle miRNA studies is that
the expression of either miR-499-3p/5p or miR-208a/b was elevated in muscles with a
predominance of slow fibers. This is in agreement with previous research on mice showing
a potential role of these myomiRs in the specification of muscle fiber identity by activating
slow and repressing fast myofiber gene programs [33]. However, there have been no studies
so far on the differences in miRNA profiles in human skeletal muscle with different fiber
type composition.

This study first uses integrated miRNome and transcriptome analysis to compare
human skeletal muscle tissue samples with different ratios of fast- and slow-twitch fibers.
This is a preliminary exploratory study focused on the possible miRNA regulation of muscle
transcriptional activity as part of a global multi-omics research project on the regulation
of gene expression in human skeletal muscle. We investigated human m. vastus lateralis
biopsy samples of athletes with a preference for power or endurance exercise. By obtaining
complete miRNA profiles, we showed miRNA diversity in skeletal muscle and found
differences in miRNA expression between samples with a predominance of fast- and slow-
twitch fibers. We first described the miRNA isoform composition in human skeletal muscle
samples. Connecting transcriptomic data to the analysis, we analyzed the expression of key
genes specific to different fiber types, showed the association between miRNAs and gene
expression in skeletal muscle and suggested the extent to which miRNAs may be involved
in regulating the fiber type composition.

2. Materials and Methods
2.1. Participants and Ethical Approval

For this study, physically active male participants of Russian origin with the predom-
inance of slow-twitch or fast-twitch fibers in the vastus lateralis skeletal muscle of more
than 60% were selected from the previously reported muscle biopsy study (N = 151) [39].
The study was approved by the local ethics committee, and written informed consent was
obtained from each study participant.

2.2. Muscle Biopsy Preparation

Samples of the vastus lateralis muscle were obtained with the Bergström needle biopsy
procedure with aspiration under local anesthesia with 2% lidocaine solution. Biopsy sam-
ples were placed in screw-cap freezing tubes, immediately snap-frozen in liquid nitrogen
and stored at −80 ◦C. The samples were further divided without thawing into two parts
for muscle fiber typing and for RNA isolation.

2.3. Evaluation of Muscle Fiber Composition

Serial cross-sections (7 µm) were obtained from frozen samples using a microtome (Le-
ica Microsystems, Wetzlar, Germany). The sections were thaw-mounted on polylysine glass
slides, and myosin heavy chain (MHC) isoforms were identified by immunohistochemical
analysis, as previously described [40]. Fibers stained in serial sections with antibodies
against slow and fast isoforms were considered as hybrid fibers. The fiber cross-sectional
area was evaluated using ImageJ software (version 1.38, NIH, Bethesda, Montgomery
County, MD, USA). The percentage of fast and slow muscle fibers was calculated as the
ratio of the number of stained fibers to the total fiber number. Examples of images of
muscle sections for samples with a predominance of fast- and slow-twitch fibers are shown
in Figure A1, Appendix A.

RNeasy Mini Fibrous Tissue Kit (Qiagen, Hilden, Germany) was used to isolate RNA
from muscle tissue samples. Frozen tissue samples were placed in a box submerged in
liquid nitrogen. Each sample was transferred without thawing on a sterile Petri dish placed
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on a frozen plastic ice pack. A piece of tissue with a weight of 10 mg was separated with a
sterile scalpel and immediately placed in a 2 mL safe-lock microcentrifuge tube containing
300 µL of lysis buffer and one sterile stainless-steel bead with a diameter of 4 mm. Samples
were homogenized using the TissueLyser II system (Qiagen, Hilden, Germany) by shaking
twice for 2 min at 25 Hz. RNA samples were isolated according to the manufacturer’s
guidelines. RNA concentration was measured using the Qubit spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). RNA quality was assessed using the BioAnalyzer
electrophoresis system and the BioAnalyzer RNA Nano assay (Agilent Technologies, Santa
Clara, CA, USA). RNA integrity number (RIN) was calculated for each RNA sample. Only
RNA samples with RIN > 7 were included in the study. Samples were stored at −80 ◦C
until sequencing libraries were prepared.

2.4. Small RNA Isolation

MiRNeasy Mini Kit (Qiagen, Hilden, Germany) was used to isolate small RNA from
muscle tissue samples. Tissue samples were prepared in the same way as for total RNA
isolation. Each sample was immediately placed in a 2 mL safe-lock microcentrifuge tube
containing 700 µL of QIAzol buffer and one sterile stainless-steel bead with a diameter
of 4 mm. Samples were homogenized using the TissueLyser II system (Qiagen, Hilden,
Germany) by shaking twice for 2 min at 25 Hz. RNA samples were isolated according to
the miRNeasy Mini Kit guidelines. RNA concentration was measured using the Qubit spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The presence of small RNA
fraction was assessed using the BioAnalyzer electrophoresis system and the BioAnalyzer
Small RNA assay (Agilent Technologies, Santa Clara, CA, USA). Samples were stored at
−80 ◦C until sequencing libraries were prepared.

2.5. Total RNA Sequencing

Total RNA samples were treated with the DNAse I using Turbo DNA-free Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to the kit guidelines. Libraries for RNA
sequencing (RNA-seq) were prepared using the NEBNext Ultra II Directional RNA Library
Prep Kit for Illumina with the NEBNext rRNA Depletion Module (New England Biolabs,
Ipswich, MA, USA). RNA libraries were sequenced on the HiSeq system (Illumina, San
Diego, CA, USA) in a paired-end mode with the read length of 125.

2.6. Small RNA Sequencing

Libraries for small RNA sequencing were prepared using the NEBNext Small RNA
Library Prep Set for Illumina (New England Biolabs, Ipswich, MA, USA). The amount
of RNA for library preparation varied from ~300 to ~450 ng. Size selection of libraries
was performed using the AMPure XP magnetic beads (Beckman Coulter Life Sciences,
Brea, CA, USA). The libraries’ size and quantity were assessed using the BioAnalyzer
electrophoresis system and the BioAnalyzer DNA HS assay (Agilent Technologies, Santa
Clara, CA, USA). Libraries were pooled in an equimolar ratio and sequenced using the
MiSeq system (Illumina, San Diego, CA, USA) in a single-end mode with the read length
of 50.

2.7. Data Analysis

For the whole transcriptome analysis, quality control by FastQC [41] and MultiQC [42]
was performed before and after adapter trimming by Cutadapt (version 3.3) [43] and
quality filtering by trimmomatic (version 0.39) [44] for the whole dataset. Pseudoalignment
was performed by salmon [45] for GRCh38 reference and Gencode.v37 transcriptome
without alt haplotypes. Summarizing of the gene was performed by tximport [46] ignoring
the transcripts’ version. The expression and dispersion of genes and transcripts were
estimated by edgeR (version 3.28.1) [47] with offset scaling following the tximport approach.
Differential expression for the whole transcriptome was realized by the quasi-likelihood
F-test with FDR-adjusted p-values < 0.05 and |FC| > 1.5. For further analysis, CPM data
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from edgeR were used through filtering by maximal mean in any group > 4 CPM. Principal
component analysis (PCA) was realized by PCAtools (version 2.6.0) on log2 transformed
CPM by removing genes with the lowest 10% variance [48]. Volcano plots were plotted
with ggplot2 (version 3.3.3) [49].

For the small RNA sequencing data, quality control by FastQC [41] and MultiQC [42]
was performed before and after adapter and quality trimming by Cutadapt (version 1.18) [43].
QuickMIRSeq pipeline was used for miRNA sequencing analysis [50]. Reads with lengths
of less than 16 and more than 28 were removed. Reads were mapped to the miRBase version
21 to obtain the read counts and RPM values for each miRNA. An optional “Remapping”
step was used to map miRNA sequences with mismatches to the reference human genome
to reduce the number of likely false positives. Potentially noisy reads were filtered out by
removing reads with an average number per sample of 2 or less and missing in at least 90%
of samples. IsomiR analysis was performed based on the QuickMIRSeq data. Differential
expression analysis of miRNAs was conducted using EdgeR (version 3.36.0) [51]. The
method of the trimmed mean of M-values (TMM) was applied for the normalization
of the library sizes. TMM-normalized counts per million (CPM) data from edgeR were
used through filtering by maximal mean in any group > 10 CPM. Differentially expressed
miRNAs among the study groups were identified using the quasi-likelihood F-test with
FDR-adjusted p-values < 0.05 and absolute log2FC values > 1. In all comparisons, the
fold change (FC) refers to the ratio of expression in fast fibers relative to slow fibers
(type2/type1). PCA was performed by the PCAtools R package (version 2.6.0) [48] using
non-scaled TMM-normalized log2CPM values.

Transcription factor analysis was performed with the ChIP-X Enrichment Analysis 3
(ChEA3) online tool [52].

To find correlations between the expression of miRNAs and their host or target genes,
Spearman correlations and corresponding two-sided p-values were calculated using mat-
Corr and matCorSig functions of the DGCA R package (version 1.0.2) [53]. The targets for
miRNAs were found according to the miRTarBase [54], considering only interactions that
were experimentally validated by at least three different methods: reporter assay, Western
blot and qPCR. The permutation p-values for the correlations were obtained by means of
1000 permutations between samples and calculating the fraction of the absolute values of
correlations, which were at least as extreme as those obtained from the original data.

3. Results
3.1. Muscle Fiber Composition in the Study Groups

The gene expression study cohort collected for the whole transcriptome analysis
(N = 24, mean age ± SD: 32.7 ± 8.9 years) included two groups of equal size with a
predominance of slow-twitch or fast-twitch fibers in the vastus lateralis skeletal muscle
samples. The first group (type1, n = 12; mean age ± SD: 35.0 ± 10.1 years) included
physically active individuals or endurance athletes with a predominance of slow-twitch
muscle fibers (60.8–94.1%, mean± SD: 72.5± 9.5%). The second group (type2, n = 12; mean
age ± SD: 30.9 ± 7.4 years) included physically active individuals or power athletes with
a predominance of fast-twitch muscle fibers (64.5–80.7%, mean ± SD: 69.8 ± 4.5%). The
metadata for these groups are provided in Table A1, Appendix A.

For the miRNA study, ten male athletes under the age of 40 years were selected from the
gene expression study cohort. Five endurance athletes with a predominance of slow-twitch
muscle fibers of more than 60% (61.6–72.8%) were selected from the type1 group. Five power
athletes with a predominance of fast-twitch muscle fibers of more than 69% (69.3–80.7%)
were selected from the type2 group. The age, height, weight and training background of the
participants are presented in Table 1. As expected, the proportion of slow-twitch muscle fibers
was significantly (p < 0.0001) higher in endurance athletes (68.4 ± 5.0%, range 61.6–72.8%)
compared to power athletes (30.3 ± 5.3%, range 22.1–35.4%). On the other hand, power
athletes (72.3 ± 4.9%, range 69.3–80.7%) had significantly (p < 0.0001) more fast-twitch muscle
fibers than endurance athletes (34.9 ± 4.4%, range 30.0–39.6%).
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Table 1. Characteristics of the participants included in the miRNA study.

ID Age BMI Sports Category Sports Type Sports Experience,
Years

Percentage of Muscle Fibers, %
Group

Slow Fast

s059 24 19.3 endurance Mountain running 12 72.8 30.8 type1
s072 26 22.3 endurance Marathon running 20 61.6 39.6 type1
s090 24 19.7 endurance Long-distance running 10 70.9 35.4 type1
s093 25 22.1 endurance Long-distance running 8 64.4 38.9 type1
s110 29 23.2 endurance Triathlon 12 72.1 30.0 type1
s036 29 26.3 power Weightlifting 5 27.9 72.4 type2
s042 27 29.9 power Powerlifting 10 33.1 69.6 type2
s079 39 34 power Powerlifting 4 22.1 80.7 type2
s088 27 22.2 power Decathlon 16 32.9 69.3 type2
s103 25 30.1 power Bodybuilding 8 35.4 69.6 type2

3.2. Transcriptomic Differences between Groups with a Predominance of Fast- and Slow-Twitch
Muscle Fibers

The whole transcriptome analysis was performed for 24 samples of the gene expression
study cohort (GEO accession number GSE200398). Our sample prefixes “s” correspond to
prefixes “VL017_” in the GEO dataset version.

One sample (s024) was excluded from the analysis due to a low number of reads
compared to the other samples. The number of reads per sample in the transcriptome
analysis ranged from 40.8 M to 59.3M (mean 48.4 M, SD 4.8 M, N = 23).

After filtering and quality control (see the Materials and Methods section for de-
tails), the total number of protein-coding genes expressed was 9086. PCA based on the
expression of protein-coding genes from the RNA-seq data showed clear separation of
clusters including samples with a predominance of type I and type II fibers on the PC1-PC2
plot (Figure 1). With the criteria of |log2FC| > 0.585 (changes more than 1.5-fold) and
FDR < 0.05, we identified 352 differentially expressed genes, among which 180 were upreg-
ulated and 172 were downregulated in the predominance of fast muscle fibers (all genes
with FDR < 0.05 are listed in Table S1). Based on studies of transcriptomic and proteomic
differences between type I and type II muscle fibers [7,9], we selected 35 protein-coding
genes belonging to three groups based on their expression being (1) specific to a particu-
lar fiber type, (2) having differences between slow and fast fibers, and being (3) specific
for skeletal muscles but without the expected differences between fiber types (Table A2,
Appendix A). Genes were classified into three main groups according to their biological
origin and role: (1) myofibrillar structural proteins, (2) proteins related to excitability and
excitation–contraction (E–C) coupling and (3) proteins related to general enzymatic activ-
ity. Mitochondrial protein genes were not included in this list; however, their expression
was expectedly elevated (from 1.4- to 1.8-fold, with average 1.6-fold for 12 genes with
FDR < 0.05) in slow fibers because of the higher number of mitochondria and increased
oxidative activity. Based on this gene list, we built a heatmap of their expression in the
study groups (Figure 2). Based on the expression of these 35 genes, the samples were
grouped according to the predominance of a particular fiber type, except for a few individ-
ual samples. Almost all genes from groups specific to a particular fiber type or prevalent in
slow or fast fibers were differentially expressed among the study groups (Figure 3). Genes
characteristically expressed in the slow fibers (MYH7, MYH7B, MYL2, MYL3, TNNC1,
TNNI1, TNNT1, TPM3, ATP2A2, CASQ2 and LDHB) were upregulated in the slow-fiber-
dominated group. Genes characteristically expressed in the fast fibers (MYH1, MYH2,
MYLPF, MYBPC2, TNNC2, TNNI2, TNNT3, TPM1, ATP2A1 and LDHA) were upregulated
in the fast-fiber-dominated group. Interestingly, two genes for which no differences in
expression between muscle fiber types were expected (ACTC1 and MYBPH) were strongly
upregulated in the group with a predominance of fast fibers. However, the expression
of these genes was very low, and the differences between the groups could be a result of
random fluctuations among the samples. Overall, the expression of characteristic proteins
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associated with muscle fiber type allowed us to clearly separate the two groups with fast
and slow fiber predominance based on the transcriptomic data.
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Figure 2. The heatmap of the expression of 35 protein-coding genes belonging to three groups:
(1) those specific to a particular fiber type, (2) those with differences between slow and fast fibers,
and (3) those specific or characteristic for skeletal muscles but without the expected differences
between fiber types. Specificity or prevalence of the gene expression is marked as “type1” for genes
expressed in slow-twitch (type I) fibers, “type2” for genes expressed in fast-twitch (type II) fibers
and “non-specific” for genes specific or characteristic for skeletal muscles but without the expected
differences between fiber types. The heatmap was built using the log2CPM values. CPM, counts
per million; E-C, excitation–contraction.
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Figure 3. Volcano plot based on statistical comparison of the gene expression (quasi-likelihood
F-test and 5% FDR correction using EdgeR) between the study groups (N = 23). Each dot represents
one protein-coding gene. Up- and down-regulated genes are genes with increased and decreased
expression in the group with a predominance of fast-twitch fibers (type2) compared to the group
with a predominance of slow-twitch fibers (type1). Log2FC value represents type2/type1 CPM
ratio. Differentially expressed genes with both FDR < 0.05 and |log2FC| > 0.585 are marked in blue
(downregulated genes) or red (upregulated genes). For the genes of interest (Table A2, Appendix A),
dots are highlighted, and gene names are provided. Red lines indicate FDR and log2FC thresholds.
FDR, false discovery rate; FC, fold change.

To identify the transcription factors (TFs) responsible for the observed changes in gene
expression, we submitted the sets of DE up- and down-regulated genes (180 and 172 genes
for type2/type1 ratio, respectively) to the online ChEA3 tool and obtained top 10 TFs based
on their mean rank (average integrated rank across all TF-target gene set libraries) for each
group of genes (Table 2). The lists of TFs for up- and down-regulated genes did not overlap.
We observed a high similarity in TF expression levels in skeletal muscle between our data
and those from the Genotype-Tissue Expression project (GTEx) (Table 2). Some of the top
10 TFs were not expressed in skeletal muscle either according to our data or according to
the GTEx.
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Table 2. Transcriptional factor (TF) analysis for the up- and down-regulated genes: results from ChIP-
X Enrichment Analysis 3 (ChEA3). Top 10 TFs by their mean rank are shown for the sets of up- and
down-regulated genes. Mean log2CPM is given for the study cohort used for the whole transcriptome
analysis (n = 23). N/A indicates that gene expression did not pass the initial filter for low-expressed
genes. Median TPM is given for the GTEx data for skeletal muscle tissue (N = 803). CPM, counts
per million; TPM, transcripts per million; GTEx, the Genotype-Tissue Expression project.

Rank

Upregulated Genes (N = 180) Downregulated Genes (N = 172)

TF Score by
Mean Rank

Number of
Overlapping

Genes

Mean
log2CPM

Median
TPM in
GTEx

TF Score by
Mean Rank

Number of
Overlapping

Genes

Mean
log2CPM

Median
TPM in
GTEx

1 MYOG 2.25 69 4.87 58.0 NKX25 1.5 32 N/A <0.1
2 MYOD1 5.2 77 4.29 21.7 NKX26 18 26 N/A <0.1
3 MYF5 10.33 43 N/A 2.1 CHCHD3 29.5 18 7.10 89.8
4 MYF6 10.33 35 6.32 255.0 GATA4 40.8 64 N/A <0.1
5 YBX3 25.5 22 10.68 2214.0 RORC 41.33 23 5.62 47.7
6 FOSL1 26.6 40 N/A 1.4 IRX6 43.67 21 N/A 1.5
7 MEF2C 38.8 49 9.17 34.6 DMRT2 49 21 1.92 0.9
8 PITX2 43.67 37 4.49 16.0 RXRG 54.33 23 4.13 15.5
9 PRRX2 50 23 N/A 0.8 DPF3 54.33 27 4.56 9.2
10 TEAD4 56 73 5.20 59.4 CEBPA 57.2 56 N/A 6.2

TF analysis showed that the expression of DE genes characteristic of fast fibers is
regulated primarily by MRFs: MYOG, MYF6, MYF5 and MYOD1. Of these, MYF5 was
not expressed in skeletal muscle, and MYF6 expression was upregulated 1.5-fold in fast
fibers. MRFs govern the key processes during myogenesis and are fundamental for skeletal
muscle development [55,56]. Additionally, a number of genes characteristic of fast fibers are
possibly regulated by YBX3, the only Y-box (YBX) protein detected in human skeletal muscle.
Like other members of the YBX family, YBX3 plays diverse roles in biology, including during
development, in spermatogenesis and cellular differentiation and proliferation [57–61].
YBX3 emerges as a regulator of large neutral amino acid homeostasis by stabilizing mRNAs
of the solute carrier (SLC) amino acid transporters SLC7A5 and SLC3A2 [62]. TF analysis
of the list of genes upregulated in fast fibers revealed a relationship with some other TFs,
which play an important role in skeletal muscle differentiation, regeneration and growth:
MEF2C, PITX2 and TEAD4 [63–66]. Recently, it has been discovered that myocyte enhancer
factor 2C (MEF2C) alters the expression of muscle-specific miRNAs during skeletal muscle
differentiation [67].

Among the TFs linked with the list of DE genes characteristic of slow fibers, CHCHD3
had the highest expression level in skeletal muscle tissue. This inner mitochondrial mem-
brane protein is essential for maintaining crista integrity and mitochondrial function [68,69].
The presence of CHCHD3 among the TF enrichment results is probably due to increased
expression of mitochondrial proteins–-not only those encoded by mitochondrial DNA
but also those that play a key role in mitochondrial function, namely NDUFA9, PPTC7,
ATP5PB, HADHB, CKMT2, MLYCD, SDHB, LDHB, COX7B and COX7A2–-in the slow
fiber type. Among the other top 10 TFs with non-zero expression, RORC is induced during
skeletal muscle cell differentiation, while DMRT2 and DPF3 are involved in early muscle
development and somite patterning [70–72].

3.3. Presence and Diversity of miRNAs in Small RNA Sequencing Data

Raw small RNA sequencing data for ten samples were deposited to NCBI’s Sequencing
Read Archive (SRA) with BioProject accession number PRJNA887354. The general data
of miRNA sequencing analysis are presented in Figure 4 and are additionally provided in
Table A3, Appendix A. The average number of reads per sample considering the settings
and filters in QuickMIRSeq tool was 1.09 M (0.91 to 1.53 M), with the mean ratio of miRNA
reads being 95% (92.8 to 96.4%). The total number of miRNAs detected within the sample
varied from 345 to 395.
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The most abundant miRNA was muscle-specific miR-1-3p, which accounted for an
average of 79% of all miRNA reads (77 to 81%, Figure 5A). Figure 5B shows the top 15
expressed miRNAs excluding miR-1-3p across all samples based on CPM values.
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used for the miRNA analysis (n = 10). (B) Top 15 miRNAs with the highest expression excluding
miR-1-3p and their distribution by the CPM values.

Further analysis included 181 miRNAs with a mean TMM-normalized CPM value
≥10 in at least one of the study groups.

Since mature miRNAs are usually presented in various isoforms (isomiRs) resulting
from their preprocessing, we analyzed the sequences of miRNA reads to identify the di-
versity of isoforms in the skeletal muscle tissue samples according to the recent isomiR
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classification [73]. Isoforms with very low prevalence (mean read count of isoform < 10)
were filtered out. After filtering, 1761 isoforms remained for 124 miRNA species. The per-
centage of reads that matched exactly the canonical mature miRNA sequences was similar
to the percentage of isoforms that had modifications on the 3′-end (43 and 45%, respec-
tively, Figure 6A). Among 3′-modifications, the proportion of 3′-trimming and 3′-extension
was similar. 5′-end modifications were present in ~5% of the sequences. Polymorphic
modifications (i.e., those with single-nucleotide polymorphisms compared to the canonical
miRNA sequence) were present in ~15% of the sequences. The percentage distribution
of isomiRs was highly similar in the study samples (Figure 6B) and did not differ be-
tween the study groups. The sequences and counts of the most commonly represented
isoforms accounting for more than 10% of the expression of the corresponding miRNA
are listed in Supplementary Materials, Table S2 (207 isoforms for 124 miRNAs, including
canonical sequences).
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study sample.

3.4. Differential Expression of miRNAs between Groups with Predominance of Fast- and
Slow-Twitch Muscle Fibers

PCA showed that the groups with a predominance of fast- and slow-twitch muscle
fibers were separated by miRNA profiles in the PC1-PC2 plot (Figure 7A). The main
contributors to both PC1 and PC2 were miR-499a-5p, miR-208b-5p, miR-206 and miR-183-
5p (Figure 7B).

We found five differentially expressed (DE) miRNAs (Table 3 and Figure 8). Upregu-
lation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and
miR-208-5p was found in the group with fast-twitch fiber prevalence compared to the
group with slow-twitch fiber prevalence (Figures 9 and 10).

Table 3. Differentially expressed miRNAs (both FDR < 0.05 and |log2FC| > 1 in the group comparison
using quasi-likelihood F-test with 5% FDR correction performed in EdgeR). Log2FC value represents
type2/type1 CPM ratio. FC, fold change; CPM, counts per million; FDR, false discovery rate.

miRNA log2FC log2CPM p-Value FDR-Adjusted p-Value

miR-499a-5p −1.72 11.03 0.000004 0.000634
miR-206 1.63 12.86 0.000091 0.008210

miR-208b-3p −1.67 4.94 0.000281 0.011725
miR-501-3p 1.08 5.02 0.000334 0.011725
miR-185-5p 1.17 6.77 0.002992 0.035545
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Figure 8. Volcano plot based on statistical comparison of the miRNA expression (quasi-likelihood
F-test and 5% FDR correction using EdgeR) among the study groups (n = 10). Each dot represents
one miRNA. Up- and down-regulated genes are genes with increased and decreased expression in
the group with a predominance of fast-twitch fibers (type2) compared to the group with a predomi-
nance of slow-twitch fibers (type1). Log2FC value represents type2/type1 CPM ratio. Differentially
expressed miRNAs with both FDR < 0.05 and |log2FC| > 1 are marked in blue (downregulated
miRNAs) or red (upregulated miRNAs). Red lines indicate FDR and log2FC thresholds. FDR, false
discovery rate; FC, fold change.
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Figure 9. Boxplots of distribution of TMM-normalized log2CPM values for differentially expressed
miRNAs in the study groups. The boxplots represent median and interquartile ranges (IQRs) in the
box and values for individual samples in the dots. Adjusted p-values of statistical significance are
provided for the pairwise quasi-likelihood F-test comparisons performed in EdgeR.
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Figure 10. The heatmap of miRNA expression based on the log2CPM values of differentially ex-
pressed miRNAs in the study samples. The left bar chart indicates the study groups. CPM, counts
per million.
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The first three miRNAs in Table 3 belong to the group of muscle-specific miRNAs
known as myomiRs. Among the detected DE miRNAs, only miR-206 belonged to the group
with canonical biogenesis. Another four of the DE miRNAs originated from miRtrons, i.e.,
their expression is linked with the expression of their host genes in the genome (see Table 4).
The precursors of these miRNAs originate from the introns of these genes, representing the
non-canonical pathway of miRNA biogenesis [74].

Table 4. Correlations in expression between differentially expressed miRtronic miRNAs and their
host genes. For the host gene expression, log2FC values represent type2/type1 CPM ratio, and
p-values are provided for differential expression analysis. CPM, counts per million; FC, fold change;
FDR, false discovery rate.

miRNA Host Gene Spearman’s
Correlation
Coefficient

Two-
Sided

p-ValueName Gene Chromosome GRCh38.p13
Coordinates Name log2CPM log2FC p-Value FDR-Adjusted

p-Value

miR-208b-3p MIR208B 14 23,417,987–23,418,063 MYH7 14.63 −0.98 <0.001 <0.001 0.903 <0.001
miR-499a-5p MIR499A 20 34,990,376–34,990,497 MYH7B 6.10 −1.04 <0.001 <0.001 0.855 0.002
miR-501-3p MIR501 X 50,009,722–50,009,805 CLCN5 2.87 0.54 0.017 0.117 0.564 0.090
miR-185-5p MIR185 22 20,033,139–20,033,220 TANGO2 3.21 −0.25 0.336 0.598 0.442 0.200

3.5. Interactions between MiRNome and Transcriptome

We performed Spearman’s correlation analysis to find the interactions between the
transcriptomic and miRNomic data and to link the gene expression patterns for slow-twitch
and fast-twitch muscle fibers with the miRNA expression. Since most of the differentially
expressed miRNAs originated from miRtrons, we calculated the correlation between the
expression of these miRNAs and their host genes based on the total RNA-seq data (Table 4).
Two miRNAs (miR-208b-3p and miR-499a-5p) had strong positive correlations with the
expression of their host genes (MYH7 and MYH7B, respectively). The expression of both
of these genes is characteristic for slow-twitch muscle fibers and was elevated two-fold in
samples with a predominance of slow fibers.

We also calculated the correlation between the expression of miRNAs and their po-
tential target genes. Strong positive and negative correlations with the absolute value of
correlation coefficient > 0.8 are shown in Table 5. We found 11 strong negative correlations,
2 of which belonged to differentially expressed miRNAs, miR-208b-3p and miR-499a-5p,
and indicated their possible regulation of the expression of genes CDKN1A and FOXO4,
respectively. Using the MIENTURNET web tool [75], we built the interaction network
between miRNAs and their experimentally validated mRNA targets with at least two
shared miRNA–target interactions and the adjusted p-value (FDR) ≤ 0.1 (Figure 11). The
network shows that the two miRtronic miRNAs specific to slow fibers, miR-208b-3p and
miR-499a-5p, share the highest number of common targets and probably have similar
regulatory functions, as their seed region sequences are identical in the first six nucleotides.

Table 5. Correlations between the expression of miRNAs and their potential target genes. CPM,
counts per million; FC, fold change; FDR, false discovery rate.

miRNA Target Gene Spearman’s Correlation Coefficient Two-Sided p-Value Permutation Test p-Value

miR-20a-5p FBXO31 −0.879 0.00081 0.005
miR-152-3p MAFB −0.867 0.00117 0.005
miR-143-3p DNMT3A −0.842 0.00222 0.004
miR-17-5p FBXO31 −0.842 0.00222 0.004

miR-208b-3p CDKN1A −0.842 0.00222 0.005
miR-25-3p MTF1 −0.830 0.00294 0.005

miR-340-5p DNMT3A −0.830 0.00294 0.005
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Table 5. Cont.

miRNA Target Gene Spearman’s Correlation Coefficient Two-Sided p-Value Permutation Test p-Value

miR-148a-3p RPS6KA5 −0.818 0.00381 0.001
miR-1-3p TAGLN2 −0.806 0.00486 0.005

miR-186-5p HOXA9 −0.806 0.00486 0.006
miR-499a-5p FOXO4 −0.806 0.00486 0.006
miR-126-3p BCL2 0.806 0.00486 0.010
miR-126-3p CRK 0.806 0.00486 0.009
miR-126-3p FOXO3 0.806 0.00486 0.011
miR-185-5p HMGA1 0.806 0.00486 0.008
miR-21-5p TP63 0.806 0.00486 0.006
miR-22-3p ZFP91 0.806 0.00486 0.006
miR-143-3p ITM2B 0.818 0.00381 0.011
miR-195-5p CCND1 0.818 0.00381 0.009
miR-98-5p CASP3 0.830 0.00294 0.004
miR-126-3p KLF10 0.842 0.00222 0.003
miR-210-3p ALDH5A1 0.842 0.00222 0.004
miR-126-3p RHOU 0.855 0.00164 0.003

miR-199a-5p CAV1 0.867 0.00117 0.005
miR-27a-3p ZBTB10 0.867 0.00117 0.001
miR-210-3p HIF3A 0.879 0.00081 0.002
miR-30b-5p CAT 0.879 0.00081 0.004
miR-499a-5p PDCD4 0.891 0.00054 0.002
miR-30b-5p PDGFRB 0.903 0.00034 0.001
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4. Discussion

This study was the first to describe the differences in miRNA profiles in human skeletal
muscle with distinct fiber type composition using high-throughput small RNA sequencing.
For this study, a unique set of athlete m. vastus lateralis tissue biopsy samples were collected
in which the proportion of fast- and slow-twitch fibers had marginal values, which deviated
from the average expected ratio for that muscle type [76,77].

The number and quality of small RNA reads in the sequencing were sufficient to
confidently analyze the expression of 181 miRNAs after the low-expression species cutoff.
In all samples, miRNAs represented the major fraction of small RNAs. The representation
of miRNA isoforms corresponded to the biologically expected distribution [73] and did not
differ among the study groups.

To assess the relevance of our results on miRNA composition in human skeletal
muscle, we compared our data with previously obtained miRNA sequencing datasets,
which included samples from male vastus lateralis muscle. We found four datasets with the
ability to download raw sequencing data from the Sequencing Read Archive (SRA) (Table 6).
In all datasets, sequencing was performed in a single-end mode using the Illumina platform.
Comparison sample sets included only samples from men under 50 years collected before
any exercise training. The data were analyzed in the same way as for this study. Each
miRNA was ranked according to its representation in muscle tissue based on the mean
CPM value in each of the datasets examined. A heatmap visualization of this comparison
is presented in Figure 12 for the miRNAs representing the top 25 in this study. In three
of the five datasets analyzed, including our study, miR-1-3p and miR-133a-3p were the
first and second most represented, with miR-133a-3p being in the top three in all datasets
analyzed. The comparison shows that one of the studies (dataset 1) had a similar miRNA
profile to our study. Both of these studies used the same protocol to prepare small RNA
libraries for sequencing (Table 6). Skeletal muscle miRNA profiles in two other studies
(datasets 2 and 3, which used another protocol for small RNA library preparation) were
similar but differed from our study. The fourth study (dataset 4) used a custom protocol to
prepare miRNA libraries and had a different miRNA profile from all other studies. It can be
assumed that the choice of library preparation technique for sequencing influenced the final
miRNA ratio. Small RNA library preparation methods may introduce serious bias, mainly
during adapter ligation steps followed by reverse transcription and PCR amplification.
Read numbers may not reflect actual miRNA expression levels, and different miRNAs may
be either over- or under-represented in the library [78]. In addition, miRNA profiles may
differ from study to study due to a combination of pre-analytical and biological reasons,
such as the methodology of small RNA isolation, the ratio of different cell populations and
muscle fibers, as well as the amount of adipose tissue and blood in the biopsy samples.
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Table 6. Datasets used for miRNA sequencing data comparison. In all datasets, single-end Illumina small RNA sequencing was performed, and small RNA was
extracted from vastus lateralis muscle biopsy samples from healthy adult participants. Comparison sample sets included samples from male participants under 50
years collected before any exercise training. Manufacturers mentioned: Qiagen, Hilden, Germany; NEB, New England Biolabs, Ipswich, MA, USA; Illumina, San
Diego, CA, USA; Thermo Fisher Scientific, Waltham, MA, USA.

Dataset Authors NCBI
BioProject ID

Small RNA
Isolation

Small RNA Library
Prep

Illumina
Sequencing

Platform

Read
Length

Muscle Biopsy
Samples:

Comparison
Set/Total Set

Sample
Characteristics for

the Comparison Set
Reference

1 McLean C.S.
et al., 2015 PRJNA276561 miRNeasy kit,

Qiagen

NEBNext Small
RNA Library Prep

Set for Illumina,
NEB

HiSeq 2000 50 5/12
Men, biopsies taken

before exercise
training

[79]

2 Mitchell C.J.
et al., 2018 PRJNA403822

AllPrep
DNA/RNA/miRNA

Universal Kit,
Qiagen

TruSeq Small RNA
Kit, Illumina Hiseq 2500 50 10/73

Men, age 40–48,
biopsies taken before

strength testing
[80]

3 Taylor, D.L.
et al., 2019 PRJNA306562 Trizol extraction

TruSeq Small RNA
Library Prep Kit

v1.5, Illumina
HiSeq 2500 50 10/296 Men, age 25–47 [81]

4 Massart J. et al.,
2021 PRJNA524317

mirVana miRNA
Isolation Kit,

Thermo Fisher
Scientific

Custom protocol Genome
Analyzer 36 3/6

Men, biopsies
collected before

endurance exercise
training

[82]

5 Our study PRJNA887354 miRNeasy kit,
Qiagen

NEBNext Small
RNA Library Prep

Set for Illumina,
NEB

MiSeq 50 10/10 Men, age 24–39 -
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Figure 12. Comparison of miRNA composition in human vastus lateralis skeletal muscle in our
study and five different studies based on miRNA sequencing. The relative abundance of miRNAs is
represented as ranks assigned on the basis of counts per million (CPM) values. The characteristics
of the datasets and number of samples taken for the comparison are provided in Table 6. Dataset 1:
PRJNA276561 [79], n = 5; dataset 2: PRJNA403822 [80], n = 10; dataset 3: PRJNA306562 (FUSION
Tissue Biopsy Study dataset) [81], n = 10; dataset 4 [82]: PRJNA524317, n = 3.

By studying the transcriptomic data on an extended set of muscle tissue samples,
which included groups with a predominance of fast and slow fibers, we found that most
genes characteristic of a particular fiber type have statistically significant differences in
expression by more than 1.5-fold. The expression of these genes accounts for the differences
in both mechanical and energetic properties of different muscle fiber types. The study
groups were clearly distinguishable by the transcriptomic data, even though the samples
were not pure type I and type II fibers but always a mixture of these types in different
ratios. The results of gene expression analysis are in high concordance with previous
transcriptomic and proteomic studies, which revealed gene and protein expression patterns
characteristic for each fiber type [7–9]. TF analysis showed that the gene expression patterns
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characteristic of fast and slow fibers are mainly regulated by the distinct non-overlapping
sets of TFs associated with skeletal muscle development and differentiation, with MRFs
being primarily regulators for genes overexpressed in fast fibers. TF analysis supports
the assumption that during muscle development, the primary myoblasts have a slow
phenotype, and a fast phenotype is developed in secondary myoblasts under the influence
of MRFs [83]. However, this is only a simplification and does not reflect the whole picture of
muscle fiber type formation and maintenance, which involves different metabolic pathways
and is orchestrated by various regulatory factors, including miRNAs [3,36,83–87].

The main finding of this study is the difference in the miRNA expression between
muscle tissue samples with different fiber type composition. We found that the expression
of miR-208b-3p and miR-499a-5p was upregulated in samples with a predominance of
slow-twitch fibers. This is consistent with some previous studies performed on vertebrate
species [33–38]. The upregulation of these muscle-specific miRNAs in slow-twitch fibers is
most likely due to the increased expression of their host genes MYH7 and MYH7B, which
was described earlier [33] and was confirmed by the correlation analysis in this study.
MiR-208b and miR-499 belong to the miR-208 family, have similar seed-region sequences,
are functionally redundant and play a dominant role in the specification of muscle fiber
identity [33,88]. Their actions are mediated by a collection of transcriptional repressors
of slow myofiber genes, such as Sox6 [33]. It has been demonstrated that type I muscle
fiber proportion is increased via the stimulatory actions of estrogen-related receptor γ

(ERRγ) on the expression of miR-499 and miR-208b [89]. These miRNAs share 36 common
experimentally validated target genes according to miRTarBase (network in Figure 11).
We found that the expression of miR-208b-5p and miR-499-5p was negatively correlated
with the expression of their target genes CDKN1A and FOXO4, respectively. It has been
shown that miR-208b could regulate cell cycle and promote cattle primary myoblast cell
proliferation by targeting CDKN1A [90]. Previously, we found that the CDKN1A gene
expression was positively correlated with the percentage of fast-twitch muscle fibers in the
human vastus lateralis muscle [39]. In our study, CDKN1A expression was upregulated in
samples with a predominance of fast-twitch fibers (log2FC = 2.0, FDR < 0.05). CDKN1A
encodes a cyclin-dependent kinase inhibitor 1A (also known as p21), which is involved
in cell cycle regulation (including stem cell proliferation), transcription, apoptosis, DNA
repair and cell motility [91]. Notably, CDKN1A locus is associated with muscle fiber com-
position according to a recent genome-wide association study [39]. Moreover, subsequent
studies confirmed that miR-208b could mediate skeletal muscle development and energy
homoeostasis through specific targeting of TCF12 and FNIP1 [92] and could regulate the
conversion of skeletal muscle fiber types by inhibiting METTL8 expression [93]. All these
observations indicate that increased expression of miRNAs from the miR-208 family is
expected in the predominance of slow fibers. Although the presence of these miRNAs
depends on the expression of their host genes, their regulatory functions include activation
of slow and repression of fast myofiber gene programs.

We found that the expression of miR-206, miR-501-3p and miR-185-5p was upregulated
in samples with a predominance of fast-twitch fibers. MiR-206 is the skeletal muscle-specific
myomiR, which had the highest expression level among the DE miRNAs in this study. It
performs a variety of regulatory functions in the myoblast proliferation and differentiation
by participating in different regulation pathways, in particular by repressing PAX7 or by
targeting the Notch3 gene [28,94,95]. Although miR-206 shares close sequence similarity to
miR-1, it has been experimentally proven that miR-206 alone is important for differentiation
of myoblasts to myotubes [96]. A recent study on mice with triple knockout of miR-206,
miR-1a-1 and miR-1a-2 showed that the miR-206 family is not absolutely essential for
myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts [97].
Studies using small RNA sequencing to assess miRNA expression in muscle fibers of
different vertebrate species have shown upregulation of miR-206 in both fast and slow
fibers [35,37]. The most recent study in mice showed that miR-206 enforces a slow muscle
phenotype [98]. In our study, the expression of miR-206 was upregulated about three-fold in
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samples with a predominance of fast fibers and had negative correlation with the NOTCH3
expression (Spearman’s correlation coefficient −0.782). Thus, there may be differences in
miR-206 expression patterns in muscle fibers between humans and other vertebrate species,
which could be the subject of further investigation.

MiR-501-3p and miR-185-5p have not been previously mentioned in relation to mus-
cle fiber type composition. MiR-501 is located in an intron of isoform-2 of the CLCN5
gene and is expressed specifically in activated myogenic progenitors and newly formed
myofibers [99]. MiR-501-3p has been discovered as a novel muscle-specific miRNA reg-
ulating myosin heavy chain during muscle regeneration, and it forms a feedback loop
with FOS, MDFI and MYOD to regulate C2C12 myogenesis [99,100]. MiR-185-5p is also
an intronic miRNA located within the TANGO2 gene. We found no differential expression
of this gene among the study groups, nor did we find a correlation of its expression with
miR-185-5p. Recent data have shown that miR-185-5p targets the apelin receptor, induces
collagen production and promotes myocardial fibrosis [101]. Therefore, our new data on
the relationship between these two miRNAs and the muscle fiber composition have some
experimental evidence supporting their potential role in the regulation of muscle function.

The main limitation of the study is the small sample size for miRNA analysis. This is
due to the restrictive criteria we used to form a set of samples from the gene expression
cohort; only samples from power and endurance athletes up to age 40 with marginal
muscle fiber ratios were included. The transcriptome–miRNome pair database from this
study will be the second obtained for human muscle biopsy samples along with the
FUSION Tissue Biopsy Study (BioProject PRJNA306562) where the percentage of muscle
fibers is characterized. However, despite the small sample size, we showed statistically
significant differences in miRNA expression between the study groups and substantiated
their biological relevance.

Another limitation of the study is that the biological samples obtained are not pure
muscle fibers of types I and II; instead, they are always a mixture of them in a certain ratio.
In addition, some deviations in the miRNA profiles may be due to contamination of other
cell types, adipose tissue or blood. The methodology of this study did not involve additional
analysis of the influence of these factors. However, the results of the transcriptome analysis
allowed us to clearly separate the groups by gene expression characteristic of each of the
two fiber types.

In conclusion, in this study, we used small RNA sequencing to identify five miRNAs,
which are associated with the proportion of fast and slow fibers in the human vastus
lateralis skeletal muscle. Using transcriptomic data, we showed that the groups of samples
with a predominance of fast and slow fibers are clearly differentiated by gene expression.
Based on the combined analysis of the miRNome and transcriptome, we can conclude that
the differences in miRNA expression are explained to a greater extent by the expression
of related genes than vice versa. This is primarily due to the non-canonical miRtronic
pathway of miRNA biogenesis and their relationship with the expression of their host genes.
However, these miRNAs affect the expression of several genes involved in myogenesis and
muscle differentiation, which was also confirmed in our study based on miRNA–mRNA
expression correlations. For each of the differentially expressed miRNAs found, a role in
the muscle development and function was confirmed by previous studies, which seems to
allow us to distinguish them as true biomarkers of skeletal muscle fiber composition.
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Appendix A

Table A1. Metadata for the gene expression cohort collected for the whole transcriptome analysis.

ID Study Group Age Percentage of Muscle Fibers, % Sports Category miRNA Sequencing Data
Slow Fast

s029 type1 46 75.2 31.7 physically active no
s038 type1 44 94.1 7.8 endurance no
s045 type1 40 66.2 36.5 endurance no
s056 type1 54 84.4 16.0 endurance no
s059 type1 24 72.8 30.8 endurance yes
s064 type1 31 71.9 28.9 endurance no
s072 type1 26 61.6 39.6 endurance yes
s090 type1 24 70.9 35.4 endurance yes
s093 type1 25 64.4 38.9 endurance yes
s094 type1 34 75.0 32.7 endurance no
s110 type1 29 72.1 30.0 endurance yes
s157 type1 43 60.8 40.7 physically active no
s022 type2 31 36.8 68.6 physically active no
s024 type2 40 25.2 74.9 endurance no
s036 type2 29 27.9 72.4 power yes
s042 type2 27 33.1 69.6 power yes
s079 type2 39 22.1 80.7 power yes
s088 type2 27 32.9 69.3 power yes
s103 type2 25 35.4 69.6 power yes
s119 type2 26 30.9 69.4 physically active no
s130 type2 48 34.4 66.3 power no
s145 type2 28 40.8 65.6 physically active no
s152 type2 24 36.9 64.5 physically active no
s169 type2 27 38.1 66.1 power no
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Table A2. The list of genes based on transcriptomic and proteomic differences between type I and
type II muscle fibers. The specificity or prevalence of the gene expression is marked as “type1” for
genes expressed in slow-twitch (type I) fibers, “type2” for genes expressed in fast-twitch (type II)
fibers and “non-specific” for genes specific or characteristic for skeletal muscles but without the
expected differences between fiber types.

Group Gene Name Protein Name Specificity or Prevalence

Myofibrillar TTN Titin non-specific
Myofibrillar NEB Nebulin non-specific
Myofibrillar ACTA1 Actin alpha 1, skeletal muscle non-specific
Myofibrillar MYBPC1 Myosin binding protein C1 non-specific
Myofibrillar TPM2 Tropomyosin 2 non-specific
Myofibrillar ACTN2 Actinin alpha 2 non-specific
Myofibrillar MYOM1 Myomesin non-specific
Myofibrillar ACTC1 Actin alpha cardiac muscle 1 non-specific
Myofibrillar MYBPH Myosin-binding protein H non-specific
Myofibrillar MYH7 Myosin heavy chain 7 type1
Myofibrillar MYH7B Myosin heavy chain 7B type1

Myofibrillar MYL2 Myosin regulatory light chain 2,
ventricular/cardiac muscle isoform type1

Myofibrillar MYL3 Myosin light chain 3 type1
Myofibrillar MYL5 Myosin light chain 5 type1

Myofibrillar TNNC1 Troponin C, slow skeletal and cardiac
muscles type1

Myofibrillar TNNI1 Troponin I, slow skeletal muscle type1
Myofibrillar TNNT1 Troponin T, slow skeletal muscle type1
Myofibrillar TPM3 Tropomyosin alpha-3 chain type1

Excitability and E-C coupling ATP2A2 Sarcoplasmic/endoplasmic reticulum
calcium ATPase 2 type1

Excitability and E-C coupling CASQ2 Calsequestrin-2 type1
Excitability and E-C coupling PLN Cardiac phospholamban type1

Enzymatic activity SDHB Succinate dehydrogenase iron-sulfur subunit,
mitochondrial type1

Enzymatic activity LDHB L-lactate dehydrogenase B chain type1
Myofibrillar MYH1 Myosin heavy chain 1 type2
Myofibrillar MYH2 Myosin heavy chain 2 type2

Myofibrillar MYL1 Myosin light chain 1/3, skeletal muscle
isoform type2

Myofibrillar MYLPF Myosin regulatory light chain 2, skeletal
muscle isoform type2

Myofibrillar MYBPC2 Myosin-binding protein C, fast-type type2
Myofibrillar TNNC2 Troponin C, skeletal muscle type2
Myofibrillar TNNI2 Troponin I, fast skeletal muscle type2
Myofibrillar TNNT3 Troponin T, fast skeletal muscle type2
Myofibrillar TPM1 Tropomyosin alpha-1 chain type2
Myofibrillar ACTN3 Alpha-actinin-3 type2

Excitability and E-C coupling ATP2A1 Sarcoplasmic/endoplasmic reticulum
calcium ATPase 1 type2

Excitability and E-C coupling CASQ1 Calsequestrin-1 type2
Enzymatic activity LDHA L-lactate dehydrogenase A chain type2
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Table A3. General data of miRNA sequencing analysis using the QuickMIRSeq pipeline. SD, standard
deviation.

Sample ID Total Reads
Mapping of Reads miRNA

Reads with
Mismatches

miRNA
Reads

Percent, %

Number of
Detected
miRNAs

miRNA Hairpin Small RNA mRNA Unaligned

s036 1,165,274 1,117,965 2836 12,043 8761 23,669 344,026 95.9 370
s042 1,100,541 1,030,507 2623 18,603 14,365 34,443 297,986 93.6 392
s079 914,435 872,406 1977 12,413 8763 18,876 238,428 95.4 345
s088 1,102,220 1,042,286 2904 22,261 12,434 22,335 289,753 94.6 375
s103 1,182,208 1,139,684 2431 9289 7835 22,969 326,821 96.4 363
s059 1,532,840 1,466,275 4026 16,727 11,048 34,764 422,644 95.7 395
s072 915,760 865,582 2588 15,594 9119 22,877 244,713 94.5 349
s090 942,666 875,093 2443 28,093 14,777 22,260 239,741 92.8 347
s093 909,835 872,580 2287 10,764 6145 18,059 253,796 95.9 355
s110 1,128,444 1,077,174 2723 11,169 9443 27,935 309,206 95.5 366

Mean 1,089,422 1,035,955 2684 15,696 10,269 24,819 296,711 95.0 366
SD 190,718 186,420 544 5928 2826 5807 58,117 1.1 18
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