
Tang, SOT and Hanneghan, M

 State-of-the-Art Model Driven Game Development: A Survey of Technological
Solutions for Game-Based Learning

http://researchonline.ljmu.ac.uk/id/eprint/205/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Tang, SOT and Hanneghan, M (2011) State-of-the-Art Model Driven Game
Development: A Survey of Technological Solutions for Game-Based
Learning. Journal of Interactive Learning Research, 22 (4). pp. 551-605.
ISSN 1093-023x

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

1

State of the Art Model Driven Game Development: A Survey of
Technological Solutions for Game-Based Learning

Stephen Tang* and Martin Hanneghan
Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom

* Corresponding author. Tel.: +44 151 231 2279

E-mail address: o.t.tang@ljmu.ac.uk (Stephen Tang).

Keywords
Architectures for educational technology system

Human-computer interface

Simulation

Interactive learning environments

Abstract
Game-based learning harnesses the advantages of computer games technology to create a fun, motivating and interactive virtual learning

environment that promotes problem-based experiential learning. Such an approach is advocated by many commentators to provide an enhanced
learning experience than those based on traditional didactic methods. However, the adoption of such a seductive learning method engenders a range
of technical, educational and pedagogical challenges, including: (i) how to enable domain experts - with little computer games development skills – to
plan, develop and update their teaching material without going through endless and laborious iterative cycles of software and content development
and/or adaptation; (ii) how to choose the right mix of entertainment and game playing to deliver the required educational and pedagogical
lesson/teaching material; and (iii) how to reuse existing games software frameworks and associated editing environments for game-based learning.
Much research is already underway at addressing the stated challenges; however, these approaches do not address the key challenge of facilitating
the planning and development of teaching material with the right mix of pedagogical elements, educational components and fun. Thus, this study aims
to investigate the use of model-driven software engineering approaches to facilitate non-technical domain experts (teachers) to plan, develop and
maintain game-based learning resources regardless of the intricacies of the game engine/environment (platform) used. This article investigates the
state-of-the-art in model-driven game development to provide a summary of developments in game design languages, game software modelling
languages, game models, game software models, model-driven game frameworks, game software frameworks, model-driven engineering tools and
assistive user interfaces. The findings from this survey will prove a useful guide for future development of high-level educational game creation tools for
game-based learning.

1. Introduction
Computer (video) games are interactive software applications created primarily for participatory entertainment purposes (Rollings & Adams, 2003).

Today‟s application of computer games extend beyond entertainment to include health, advertisement, training, education, science, research,
production and work, in which games technologies are used specifically for improving accessibility of simulations, modelling environments,
visualisation, user interfaces, communication, learning and training, and productive activities such as authoring, development or production (Sawyer &
Smith, 2008). In the recent years, studies on incorporating computer games into existing e-learning environments for use in institutions of higher
learning have began to attract researchers around the world. Findings from initial research studies show that computer games can be used to acquire
certain cognitive abilities and improve learners‟ understanding (Aguilera & Mendiz, 2003; BECTa, 2006; Jenkins, Klopfer, Squire, & Tan, 2003). These
preliminary results are convincing and have gained tremendous interest from different sectors including government, academia and industry to further
explore the benefits of this opportunity (BECTa, 2006; FAS, 2006).

Game-based learning refers to the innovative learning approach derived from the use of computer games that possess educational value or other
kinds of software application that use games for learning and education purposes such as learning support, teaching enhancement, assessment and
evaluation of learners (Tang, Hanneghan, & El-Rhalibi, 2009). The intent of game-based learning is to bridge the gap between learning and digital
culture in the 21

st
 century, making learning more relevant and appealing via persuasive technology to motivate learners to acquire knowledge and skills

via a digital medium which is then transferable into reality. Game-based learning does not replace traditional learning, but can be offered as an
alternative medium such as Electronic Learning, Multimedia Learning and Mobile Learning to address the changes in learning patterns among the
„PlayStation‟ generation of learners.

Positive findings from earlier game-based learning projects such as MIT‟s Games-to-Teach Project (Jenkins, et al., 2003) and BECTa‟s Computer
Games in Education Project (BECTa, 2006) are paving the way for more domain experts to adopt this learning approach. However, there are great
challenges ahead that require attention from stakeholders before learners can fully reap the benefits of game-based learning. One of the key
challenges is the source of educational games to be used in a game-based learning setting. Sourcing educational games commercially is an attractive
option but it is rather challenging to get the right content for use in an educational setting. Most commercial-off-the-shelf (COTS) games are designed
specifically to entertain and a large number even elicit violence and sexual content, thus rendering them inappropriate (although this does not imply
useless

1
) for use in an education context (Tang & Hanneghan, 2005). The other alternative then is to spearhead in-house development of game-based

learning content using open source or royalty-free game engines and „modding‟ (modifying) COTS games by utilising a game editor application to
create customised game objects and levels. Almost all other options available require technical knowledge, which precludes most domain experts
whose main aim is to solely impart their knowledge rather than become games programmers. It is evident that there are very few tools available to
support development of game-based learning content for the novice or non-developer user group.

Development of computer games is both artistically and a technically demanding task. Game developers, who are usually creative individuals with
a computing background, are the best candidates for the job. While game developers may appear to be the key to game-based learning they are
available in such small numbers in relation to the vast number of domain experts who wish to produce educational games. In fact, many of the
educational games development projects are collaborative efforts between domain experts and game developers (Jenkins, et al., 2003; H. Kelly, et al.,
2007). However, professional expertise does not come cheap. Game developers typically rely on a game software framework (game engine) and other

1
 Controversial COTS games such as Grand Theft Auto have been used by the police force to educate and deter primary school children in

Merseyside, UK from aggressive behaviour (http://news.bbc.co.uk/1/hi/education/8611536.stm). This demonstrates that COTS games can still be used
for game-based learning. Domain experts will have to be selective in choosing the right COTS games for use in game-based learning to ensure
effective learning take places.

2

custom tools to produce computer games quickly, affordably and reliably. Most of these tools have a very steep learning curve and may require a
substantial amount of technical knowledge about game development. Such requirements are huge challenges to most non-technical domain experts
who have little knowledge about game development. Nevertheless, similar tools can be developed specifically to guide and facilitate a programming-
free game development environment for the non-developer user group.

In terms of engineering educational games, the underlying technology and development methods remain the same as mainstream entertainment
games. The only notable distinctions are in the definitions of rules, play and aesthetic representation (usually defined by game designers but in the
context of educational games this is the role of the domain expert). Such characteristics allow educational games to be represented in a formal design
specification. In a Model-Driven Engineering (MDE) approach, this formal design specification (excluding art and technical aspects) is represented in
the form of models. A domain expert can express educational games through modelling. These models can then be analysed and transformed into
code for a targeted game framework. This novel approach opens up the door for non-developers to create computer games affordably, reliably and
quickly. In an attempt to help realise game-based learning, our research led us to query what the present advancements are in the field of game
design, game engineering and MDE which can direct research on model-driven game development in the future.

In this article, we briefly describe MDE and explain the benefits of this approach in aiding domain experts to create resources suitable for game-
based learning – the source of educational games or serious games. The body of this article presents the existing approaches to represent computer
games ontologically both from game design and game software perspectives. In addition, it studies the characteristics of existing game design
techniques and software modelling techniques for modelling computer games. It also surveys a selection of game software frameworks and model-
driven game frameworks. Finally, it discusses a collection of model-driven engineering tools and assistive user interfaces appropriate for an
educational game modelling environment. These studies provide new answers to how we can capitalise on existing technologies to drive the
development of a model-driven framework for educational games forward and take a leap on the realisation of mass adoption of game-based learning.

2. Model-Driven Engineering (MDE)
MDE refers to a software development approach that relies extensively on the use of models to represent aspects of software and automates the

transformation of models into more refined software artefacts. Models are primary artefacts in the development process expressed using a Domain
Specific Modelling Language (DSML) to formally represent the structure, behaviour and requirements of a particular domain. Aspects of models are
analysed and translated through transformation engines and generators to synthesize software artefacts consistent with the models. This approach can
help in alleviating the platform complexity and expressing domain concepts effectively (Schmidt, 2006). Another term synonymous to MDE is Model
Driven Development (MDD). In this article, MDE and MDD are used interchangeably.

At the core of MDE is the model. A model is defined as “a simplification of a system built with an intended goal in mind” and that the model
“…should be able to answer questions in place of the actual system” (Bézivin & Gerbé, 2001). Technically a model is described as a set of statements
that effectively describes a system-under-study (SUS) (Seidewitz, 2003). Effectively, a model is a representation of a SUS (Favre & Nguyen, 2005). In
a software context, models are used as a form of conceptual representation of a software system to facilitate the production of concrete software
(Bézivin, 2004). Alternatively, it can also be used as a specification for beginners to study a system. In a model-driven approach, the model is used to
assist the system modeller to more accurately describe the SUS. The model is expressed by the system modeller through statements, which are
expressions that hold truths about the SUS. The validity of the model of the SUS is dependent on the correctness and completeness of statements
describing it. Statements can be expressed informally through natural language, but are best constructed using formal notations which adhere to the
grammar of the formal language. Such formal languages are generally termed as modelling languages.

MDE is domain specific, only suitable for developing software specific to a targeted platform with the aim to automate manual coding. Expertise of
programmers is embedded into the underlying framework and code generators allowing domain experts to provide complete specifications of the
problem domain without worrying about the technical aspects of software development (S. Kelly & Tolvanen, 2008). Models are then translated from
source model to target model throughout the pipeline of MDE and finally to a complete implementation of a software system (or documentation of a
complete software system). The relationship between the source model and the target model is termed as model transformation (France & Rumpe,
2007). The transformation process is a unidirectional process (S. Kelly & Tolvanen, 2008) which can be done either manually or automated using MDE
tools.

Source Model

Target Model

(i) Model Refinement

Additional

Information
Transformation

Engine

Source Model

Target Model A

(ii) Model Refactoring

Target Model B

Source Model

Target Model

(iii) Model Abstraction

Source Model A

Target Model

(iv) Model Integration

Transformation

Engine

Source Model B
Source Model

Target Model 1

(v) Model Decomposition

Target Model 2

Source Model

Target Model

(vi) Model Translation

Transformation

Engine

Transformation

Engine

Transformation

Engine

Transformation

Engine

Figure 1: Model-to-Model Transformations

3

Transformation can either be a model-to-model transformation or model-to-artefact transformation. In a model-to-model transformation, the form of
transformation includes: (i) model refinement where a source model is added with additional information to form a target model; (ii) model refactoring
where a source model is producing multiple target models with different viewpoints; (iii) model abstraction where a source model has certain
information discarded to produce a target model with higher abstraction; (iv) model integration where source models with different viewpoints are
integrated to create a target model with combined viewpoint; (v) model decomposition where a single model is decomposed into multiple target models;
and (vi) model translation where the source model is expressed in different languages (France & Rumpe, 2007). Such processes can be automated
using MDE tools generically known as transformation engines. As for the model-to-artefact transformation, transformation can be in form of code

generation where the model is translated directly into a software artefact such as scripts, configurations, codes or middleware languages which is
accepted by the targeted platform, or documentation generation where specifications are represented in the form of textual or graphical output such as
UML diagrams. Generators are MDE tools that are suitable for such transformations.

Model

Software Code

Generator

Code Generation

Model

Diagrams/Text

Generator

Document Generation

Figure 2: Model-to-Artefact Transformations

The number of model-to-model transformations required for an end-to-end transformation depends on the level of abstraction in the model driven
framework. One-tier architectures can directly transform a model into code, but multiple-tier architecture such as the Object Management Group‟s
(OMG) Model Driven Architecture (MDA) would have to undergo two cycles of model-to-model transformations before it can perform model-to-artefact
transformation.

The MDE process can be represented with two distinct approaches; top-down and bottom-up. Both approaches are driven by different motivations.
Justified by the need of generating a variation of software code, the top-down approach examines variations from the conceptual level. This approach
can result in the creation of better designed, robust and consistent models. Defining a complex model may seem straightforward and easy but
implementing such a model can be daunting (Cook, Jones, Kent, & Wills, 2007). The top-down approach is defined as following a succession of
activities (Fondement & Silaghi, 2004):

i. Identifying the level of abstraction and platforms to be integrated;
ii. Specifying modelling notation and abstract syntax to be used at each level of abstraction;
iii. Specifying refinement processes, platform and related information to be integrated in lower level of abstraction;
iv. Defining generators for a modelling language used at the lowest level of abstractions (and even deployment of such code);
v. Specifying a verifier and validator to check against the upper level model, and generation of test cases for the system under

development.

Contrary, the bottom-up approach addresses software variability through observing variation in existing codes. It is a client-oriented approach that

requires more effort, consumes time, and may limit the extension of models in the future, however it is simpler to implement. The bottom-up MDE
process is defined by Cook, Jones, Kent, & Wills (2007) as follows;

i. Identifying variability from business concepts;
ii. Conducting variability analysis on the existing codes;
iii. Defining a domain model from analysis and business concepts;
iv. Specifying modelling notation for the DSML;
v. Refining the DSML;
vi. Defining a generator based on existing code;

Cook, Jones, Kent, & Wills (2007) advise that it is best to alternate between the two approaches and work incrementally to ensure models and

transformations are consistent.
Over recent years researchers have strived to improve MDE technologies applying lessons learnt from earlier efforts in developing platforms and

languages with high-levels of abstraction. Lately researchers have opted to adapt the MDE approach deviating away from traditional software
development approaches with the intention to separate the model from a platform dependent implementation. MDE approaches have been applied in
areas such as web application modelling (Schauerhuber, Wimmer, & Kapsammer, 2006), web services modelling (Grønmo, Skogan, Solheim, &
Oldevik, 2004), security modelling for distributed systems (Lodderstedt, Basin, & Doser, 2002), QoS validation of component-based software systems
(Hill, Tambe, & Gokhale, 2007), control and automation systems modelling (Thramboulidis, 2004), user interface modelling (Sottet, et al., 2006),
business software modelling (Hildenbrand & Korthaus, 2004), content repurposing (Obrenovic, Starcevic, & Selic, 2004) and context-awareness web
application modelling (Ceri, Daniel, Facca, & Matera, 2007). Current research in MDE focuses mostly on systematic reuse of development experience
through the concept of a software factory, systematic software testing and compilation technologies (France & Rumpe, 2007). There is now an
abundance of knowledge and experience about MDE in the scientific community to push for industrialisation of educational games to accelerate the
wide adoption of game-based learning.

2.2. Advantages and Disadvantages of MDE

Some of the notable benefits of MDE from a software development context include an increase in productivity, promotion of interoperability and
portability among different technology platforms and support for generation of documents to support software maintenance (Kleppe, Warmer, & Bast,
2003). In addition, MDE can also lead to better quality applications due to the integration of domain rules into the modelling language which minimises
modelling error and promotes reliable mapping from model to code (S. Kelly & Tolvanen, 2008). For an obvious advantage, MDE encapsulates the
technical aspects of development and therefore provides the necessary aid to domain users to develop applications with minimal low-level technical

4

knowledge. In addition, process, best practices and pedagogic guidelines for designing educational games described in our earlier work (see (Tang &
Hanneghan, 2010)) can be embedded within the MDE environment to guide domain experts to produce educational games whilst assuring the quality
of educational games design.

One major downside to MDE is the high cost of development which may or may not be justifiable with the amount of turnover a project can
generate. Overall, MDE can offer great benefits for businesses and for non-technical domain users as it opens the door to create quality, reliable
applications easily and affordably.

2.3. Challenges

The benefits of MDE are certainly attractive to many, but realisation of an MDE solution is still challenging for developers. France & Rumpe (2007)
classified the challenges of MDE into three categories as follows:

 Modelling Language Challenges: When defining a modelling language, language developers are challenged to create the problem-level
abstractions and formalise the semantics of the language. Creating the problem-level abstractions requires the language developer to fully
understand the concepts, terminologies and relationships that represent the problem domain. This task can be made easier with the help of
domain experts. While creating a notation for the language, iteration of user testing will help to ensure the notation is acceptable and usable.

 Separation of Concerns Challenges: In complex software, problems may arise when modelling involves multiple and overlapping views using
heterogeneous language. Some features of the system may have conflicts due to the design and it is a real challenge for developers to
make sure that features modelled can interact with each other. Separation of these design concerns is necessary to avoid costly system
failure and can be achieved through a well-defined viewpoint.

 Model Manipulation and Management Concerns: More challenges await developers in matters pertaining to transformation of models. These
include maintaining the consistency of models transformed, testing of transformation and integration of generated code with foreign code.
The transformation process also adds complexity to management of models when revisions are made to models in terms of versioning,
repository storage of previous models and maintaining integrity of relationships of models.

These challenges are greater for complex software such as educational games. In addition to functional aspects of educational games, the MDE

developers will have to address the incorporation of media such as 2D graphics, 3D models, sounds and animation data, and the extensibility of game
functionalities such as game physics and game artificial intelligence (AI) while assuring educational games produced are of acceptable quality. The
MDE approach may also limit innovation of educational games due to the constraints of customisation. Although this is a trade-off for the MDE
approach, it is of less concern for domain experts as the benefits listed in Section 2.2 far outweigh it.

3. State-of-the-Art Model Driven Game Development
Game-based learning has some of the most desirable learning approaches embedded such as active learning, experiential learning, situated

learning and problem-based learning (Tang, et al., 2009). There are a growing number of domain experts keen in adopting this learning approach and
the numbers will continue to grow with more realising the potential that computer games hold (Futurelab, 2006). Learners themselves are ready for
such approaches as they are increasingly familiar with gaming culture (Pearce, 2006) and the technology to support game-based learning is more
affordable and widely available. The only puzzle to realise the vision of game-based learning is the availability of high-level tools made specifically for
non-technical domain experts to assist them in creating educational games in an affordable and timely manner. As highlighted earlier in this paper,
MDE offers the basis for development of high-level tools. Architecting a model-driven educational games development environment will require an
educational game modelling language, a framework that can integrate media and game functionalities, transformation engines and code generators. In
this section, we survey the literature in the domain of game design, game software engineering and MDE, and summarise the key developments that
are propelling games development towards the model driven approach.

3.1. Game Design Languages

Design is generally defined as “the human capacity to shape and make our environment in ways without precedent in nature, to serve our needs
and give meaning to our lives” (Heskett, 2005). From a game design perspective, it is regarded as the creative expression of a game designer‟s vision
of some virtual goal-directed play where the game designer engages him or herself in an activity to innovate and create a concept of play within a set
of business, psychological, sociological and technological constraints. This activity demands documentation to record the decisions on choices which
serve as a blueprint to communicate the underlying vision to the development team.

Conventionally, game design is documented as a collection of game design documents in the form of high-concept document, treatment document
and detailed design document. This approach is still taught through texts (see for example Rouse (2001), Rollings and Adams (2006; 2003), Bates
(2004) and Fullerton (2008)). Documenting the aspects of game design is a somewhat informal process driven by creativity (Crawford, 1982; Fullerton,
2008). Design within a specific game genre is also bound by rules and certain expectations. For example, when designing a role-playing game (RPG)
such as the Final Fantasy

2
 series, emphasis should be given on design of a customisable player-character that can be improved throughout game-

play, a story built around a quest that can engage game players in an explorative world to satisfy the appetite for adventure. In contrast to this,
construction and management games such as the SimCity

3
 series have their design focused on the economy system and the construction process. At

present, samples of game design documents and templates for game design from game design references (Fullerton, 2008; Rollings & Adams, 2003;
Rouse, 2001) are the only available guide for documenting game design.

In recent years, various studies (Adams, 2004; El-Rhalibi, Hanneghan, Tang, & England, 2005; Onder, 2002; Tang, Hanneghan, & El-Rhalibi,
2004; Taylor, Baskett, Hughes, & Wade, 2007; Taylor, Gresty, & Baskett, 2006) have proposed the use of modelling languages to help game designers
systemically and systematically design computer games. Our definition of an ideal game design language would consist of game-related vocabularies
and game-concept related grammars that allow game designers to formally express their game idea. The Soft Systems Methodology (SSM)
(Checkland & Scholes, 1990), an approach based on the theory of systemic thinking to study the components of a system and their relationships with
one another in order to develop an understanding about that system. This could be used as a formal method for designing games. In the context of
games design, SSM can assist game designers in designing game flow and identifying appropriate challenges and conflicts (El-Rhalibi, et al., 2005;
Tang, et al., 2004; Taylor, et al., 2007). A game idea is elaborated in the form of a Rich Picture™ where purposeful activity systems are identified and a
relevant Root Definition (RD) is defined based on Customers, Actors, Transformation process, Weltanschauung (or world view), Owners and

Environmental constraint (CATWOE) analysis. An example of this is illustrated in Figure 3. SSM offers a methodological and systemic approach to
game design through an iterative process of logical reasoning, but it lacks aspects that describe the story, user interfaces, input control, objectives and
game-play which are essential for creating compelling educational games.

2
 Read more about Final Fantasy from http://www.playonline.com/ff11us/index.shtml.

3
 More details about SimCity can be found at http://simcitysocieties.ea.com/index.php.

http://www.playonline.com/ff11us/index.shtml
http://simcitysocieties.ea.com/index.php

5

or

pacman ghost

pellet

fruit

ghost

hunt

to

collect

pacman

hunt/eat

Ghost

dead

eaten

by

pacman

home

return
Ghost

spawn
Navigate

through

maze

Figure 3: Pacman Game represented in Rich Pictures (Tang, et al., 2004)

The story beat diagram proposed by Onder (2002) is composed of ovals and arrows that represents progression of a story (see Figure 4). It
illustrates the possible routes for the game player to explore within the defined interactive story. In addition to the story beat diagram, further additional
details on objects and casts members, locations of scenes, setup of scenes, player interactions and associated responses, and distribution of game-
play within the storyline are required in writing to complete the specification of a game design. Essentially, the story beat diagram can only capture the
flow of game-play ordered within a story while the rest of the requirements are recorded separately.

1

Learn about

treasure map

3

Find map

4

Find Treasure

2a

Search Old

House

2b

Search Museum

2c
Discover

aggregate clue

2d

Search

Graveyard

2e

Find Crypt

2f

Search Crypt

2g

Defeat Ghoul
2i

Find map

2h

Lose to Ghoul

2

Locate map

Detailed View

Figure 4: Example of Story Beat Diagram (Onder, 2002)

The flowboard is an adaptation of the storyboard and flowchart to document game structure (Adams, 2004). It uses rectangles to denote segments
of a game such as splash screen, menu screen, result screen, game screen, high-score tables and other, while arrows with conditions denote the
constraints or condition that allow progression from one segment to another (see example in Figure 5). The flowboard is a simple and useful tool to
model the various modes offered in a game, but it lacks the ability to record essential game design details required to complete the design of a game
such as objects and character‟s behaviour, challenges, conflicts, objectives, environment, user interfaces, storytelling and narrative.

DEMO

HIGH

SCORE

TABLE

START

NEXT

LEVEL

SCREEN

PRIMARY

GAME-

PLAY

MODE

ENTER

INITIALS

SCREEN

15 seconds loop

player completes level

3 seconds

delay

player loses,

high score

player loses, no high score

player

inserts

coins

Figure 5:Example of Flowboard (Adams, 2004)

There have also been efforts to use software modelling languages such as the Unified Modelling Language (UML) for game design. The Computer
Game Flow Design Diagram proposed by Taylor, Gresty, & Baskett (2006) adapts the language from the UML use-case diagram to form a new
diagramming language to document game flow. The computer game flow diagram uses arrows to denote the direction of game-flow, rectangles for
fixed game objects, ovals for mobile game objects (game objects that move around) and pseudo code to describe interactions and responses (see
example in Figure 6). In addition to modelling linear game flow, it can also be used to model non-linear flow where games can be designed to provide
game players greater freedom to navigate within the game world achieving game objectives in a non-ordered fashion. The use of symbols and labelling
of objects, characters and environments are clear, but the method is insufficient for describing details of objects, characters, objectives, environments,

6

narrative and storyline. Although the use of pseudo code can help to describe many more details programmatically, this approach is too technically
demanding for non-technical domain experts to document design details adequately.

Silenced

pistol &

bullets

Bedroom

door

Uniform &

ID card

Hall door
Wehrmacht

Officer 1

Entrance

doorHotel

room

Hotel

room

Guest

bedroom

Guest

bedroom

Landing Bathing

Soundtrack

Stairs Dining

room

Dining

room

Key: = direction of game flow

= fixed game object

= mobile game object

SCENE 1

Figure 6: “On track” level of „Medal of Honour: Frontline‟ represented with UML Use-case Diagram (Taylor, et al., 2006)

Natkin, Vega, & Grünvogel‟s (2004) approach to modelling game design addresses the need to model spatial-temporal relationships through the
adaptation of Petri-nets and the use of generalised graphs called hypergraphs. They use special Petri-nets composed of three relations (transaction a
and transaction b is not related, transaction a is before transaction b, and if transaction a is executed then transaction b cannot be executed) between
two different transactions (actions of the player) to represent the temporal relationships (order of game sequence) in a game and game levels. Sets of
transactions are then translated into a hypergraph to define the spatial relationship (events in relation to the map in the game world). In this approach,
a circle is used to denote a place, a square or rectangle for transactions and arrows denote an input arc (which connects a place with a transaction)
and output arc (connect transaction with place) (see Figure 7). Using this approach, game designers can model flow and events for game and game
level. However, it cannot be use to document details on objects, characters and their behaviour, environment, narrative or storytelling.

C‟

C

B‟

B

A‟

A
D

Apartment

Apartment

Gate Key
Swamp

Monument

Backyard

Neely‟s Bar Church Fountain
Parking

Space

Tunnel

Trailer
Street

Partial Map of Silent Hill 2

Roadblock

Building/Area in white

Figure 7: Partial Map of Silent Hill 2 represented in Hypergraph (Natkin, et al., 2004)

The formal approaches of documenting game design reviewed only focus on documenting game flow formally using various graphical modelling
languages, while other aspects of the game design remain informal and subjective for others to interpret using text description. Although these
approaches help games designers in one or more ways, there are still many aspects of game design which can be documented formally which have
yet to be studied while others such as visual, audio, storytelling cannot be easily formalised and will continue to be documented using current
approaches i.e. textual descriptions or sketches. It is highly desirable to formalise documentation of game design as it can enhance the effectiveness of
translation of the design to software code.

3.2. Game Software Modelling Languages

Modelling is a formal process of documenting a design using syntactically composed reserved words or graphical notations. Similarly, the term
modelling can be used for the approaches described in Section 3.1, but it refers to documenting aspects of game design. Through modelling, a
conventional software engineer captures the necessary requirements to produce a concrete model that best represents the software specifications of

7

the game software. In addition, modelling allows the engineer to study problems and look for flaws in the design prior to development of the software
system. Flowcharts, Data Flow Diagrams (DFD), Statecharts, Z-Notation, Petri-nets, Business Process Modelling Notation (BPMN), Integrated
Computer-Aided Manufacturing Definition Language (IDEF) and UML are some examples of software modelling languages that engineers can use to
express the design of the game software.

Modelling was historically mathematically demanding and modelling languages were developed to suit programming languages during the era
such as FORTRAN, ALGOL, LISP and COBOL. As later generation programming languages such as C, Pascal and Ada which were designed to
structure programs logically began to surface, software modelling took on a function-oriented paradigm. At present, Object-Oriented (OO) modelling is
a de facto approach in the software industry as it promotes abstraction, encapsulation and reusability of software code.

Although most software modelling languages mentioned can be used to model aspects of game software, only a few are actually used in practice.
Tokenization (Rollings & Morris, 2004) represents each game object (both interactable and non-interactable) as tokens. Interactions between tokens
are represented in a triangular matrix as shown in Figure 7. Tokenization invites game developers to think in tokens and the associated interaction, but
lacks many aspects necessary to represent the game software in its entirety. Simple casual games can be modelled using this approach without much
complication. However, for modern computer games that offer more elaborate interactions and a greater number of tokens, this approach is not
suitable as complexity of modelling increases exponentially. Another major setback for tokenization is evident during translation of model to software
code. Although examples are available, it is not a straight forward process as there is much information such as the game object‟s behaviour, setup of
scenarios, flow of events and progressions still missing in the software model.

COLLISION

EVENT

(Detection)

COLLISION

EVENT

(Stop)

COLLISION

EVENT

(Detection)

COLLISION

EVENT

(Triggers

goal event)

BAT

BALL

WALL

GOAL

SCORE

BAT

BALL

WALL

GOAL

SCORE

GOAL EVENT

G
O
A
L

S
C
O
R
E

S
C
O
R
E
 G

O
A
L

Figure 8: Tokenization Interaction Diagram of Pac Man Game (Rollings & Morris, 2004)

As many aspects of games deal with a collection of states that change based on interaction and rules, Statecharts or Finite State Machine (FSM)
diagrams are ideal candidates for modelling games. The FSM has been mostly used in modelling game AI (Kienzle, Denault, & Vangheluwe, 2007),
although other game aspects such as character behaviour, game flow and game scenario can also be modelled with this approach. Rollings & Morris‟s
(2004) approach is a pictorial version of FSM with slight modifications in notation for modelling a game object‟s behaviour (see Figure 8). A square is
used to represent an individual state of a game object, while a circle denotes an event. Lines with a coloured dot at the end show the transition
between states and the incoming event that triggers a transition. Coloured dots are used to pair the event to the transition between states in cases
where there are more than one event referring to the same state. A circular arrow is introduced in the FSM diagram to include events that can cause
entry to a state. Kienzle, Denault & Vangheluwe‟s (2007) approach uses a variant of Rhapsody Statecharts (Harel & Kugler, 2001) which combines
statecharts and class diagrams to represent properties and behaviour of game objects (see Figure 9). In addition to class diagrams, statecharts are
accompanied to switch or alter the state of a game object when certain conditions are met. Rounded rectangles represent the state while transition of
state is shown using an arrow with conditions. Statecharts can be nested to create a multi-level statechart, but every statechart can only have a single
begin state which is denoted by a filled black circle. Rhapsody Statecharts are a better approach than the pictorial FSM or classical statecharts as they
represent both properties and methods of a software component and can easily used for representing other aspects of game software.

Hunted

Reset

level

Dying

Hunter

Power

Pill

Power

Pill

Timer

If lives

> 0

Collision

Figure 9: Statechart Diagram for Pacman game (Rollings & Morris, 2004)

8

EnemyTracker

enemyPosition

boolean enemyMoved()

Radar

...

position getEnemyPos()

TrackEnemy

NoEnemy

Tracked

By1Radar

Tracked

By2Radars

EnemyPos

Unsure

HenemyLost

enemySighted

[enemyMoved] /

enemyPosChanged

enemySighted
enemySighted

EnemyPosKnown

2

<<behaviour>>

Figure 10: Rhapsody Statecharts of EnemyTracker AI component (Kienzle, et al., 2007)

As highlighted earlier, OO is the preferred approach and most computer games software is modelled using OO with the industry standard software
diagramming language UML (Gal, Prado, Natkin, & Vega., 2002). This approach makes it simple for game developers to translate game software
requirements to OO programming languages. UML consists of thirteen types of diagram to document three aspects of software systems: functional,
structural and behavioural. There have been several proposals for modelling games software using UML. Ang & Rao (2004) represent player
interaction with tokens using UML use case diagrams (see Figure 10) in an attempt to identify all possible interactions in the game before representing
it in a class diagram. The identified interactions are behaviours of relevant classes in the game and it helps to discover other necessary classes to
complete the software representation of the game. Bethke (2003) illustrates how a range of UML diagrams can effectively document design of a game
software. For example, the UML use case diagram in Figure 11 is used to represent a player‟s interaction, while the UML class diagram featured in
Figure 12 is used to represent game objects and static structure. Reyno & Cubel (2008) use UML class diagrams and state transition diagrams to
represent structure and behaviour of game (see Figure 13). UML class diagrams can be used to represent the association between game objects
represented as classes which can also be represented using object diagrams to examine the run-time static relationship behaviour. A collection of
classes can be ordered into a high-level view using a component diagram, while a deployment diagram can be used for representing the physical
arrangement of the game possibly utilising an external game engine. Activity diagrams can be an alternative to statecharts for modelling behaviour of
game objects. In addition, sequence diagrams can be used to extend modelling of behaviour between game objects. UML certainly offers a range of
useful diagramming approaches to document games software. The choice of UML diagram to use depends on how such diagramming tools help game
developers to visualise the game software under construction and translate the specification to software code.

Eat Power Pellet Eat Hunted Ghost
Eaten by Hunter

Ghost
Eat Pellet Collide with wall Eat Fruit

Move Pacman

Player
Player input

Token interactions

Figure 11: Use Case Diagram of Pacman Game (Ang & Rao, 2004)

Diablo Player

View Character

Stats

Name Character
Allocate Experience

Points

Display Inventory
Move and Drop

Inventory Item

Figure 12: The character transaction use cases of Diablo (Bethke,

2003)

Base Character Class

:Bob

Ogre

Sword

Base Weapon Class

<< is a >>

<< is a >> << is a >>

<< has a >>

Figure 13: Example of Class Diagram (Bethke, 2003)

9

<<Entity>> Platform<<Enemy>> Benzo

- points

<<PlayerCharacter>> Bub

- lives

- score

<<Entity>> Bubble <<Entity>> Reward

- points

<<Enemy>> Benzo

- name

- gravity

- friction
players

bubbles

1..*

0..*

0..* 0..*

0..*

0..1

traps

enemies rewards

platforms

Figure 14: Structure Diagram of Bubble Bobble (Reyno & Cubel, 2008)

The reviewed game software modelling languages do not represent the entire collection of techniques for modelling game software. Many other
techniques exist to model games software such as Flowcharts, BPMN, DFD and IDEF. In practice, a combination of software modelling techniques can
be used to model the different aspects of game software as it is not always possible to represent all aspects of games software to be modelled using a
single modelling language or notation.

3.3. Game Meta-Models

Game meta-models are templates which game designers can use to complete the design of a game by providing the missing details required. It
encases game technologies with purpose, rules, play and aesthetic representations (and pedagogy as well in the context of educational games) as
creative and instructional expression of a knowledge domain. Game meta-models can be used with the aforementioned game design languages in
Section 3.1 to guide amateurs and novices in producing game models that conform to the game meta-model. However, the completeness of a design
specification is still very dependent on the attention to detail of the individual game designer. A game model provides the platform for game designers
to complete the design of a game by simply providing the necessary details required by the game model.

In recent years, there are a growing number of formal approaches developed to aid game designers to analyse, describe and study computer
games. Hunicke, LeBlanc, & Zubek‟s (2004) Mechanics, Dynamics and Aesthetics (MDA) framework provides a guide for game designers to specify a
game design systematically by focusing on a definition of aesthetic using a taxonomy for fun, the underlying system which supports the aesthetic
requirements and finally the actions, behaviour and control mechanisms made available to game players. The taxonomy of fun consist of vocabularies
such as sensation, fantasy, narrative, challenge, fellowship, discovery, expression and submission which, when used to describe play experiences, can
help game designers think about the underlying dynamics and mechanics of a game. It is an interesting approach to design games in a structured
manner while still fostering creativity. However, it only focuses on the aspects relating to game-play and has no solid structure to formally represent the
components that make up a game such as game objects, characters, environment, user interfaces, storytelling, narrative and game progression.

 Björk, Lundgren & Holopainen (2003) approach game design from a research-driven perspective by cataloguing descriptions of recurring
interactions that relate to game-play which they term as game design patterns for analysing and studying games. Each game design pattern has a
name, core definition of the pattern, a general description, usage description of the pattern, a description on the consequences of this game design
pattern, a description of the relationships between other game design patterns and references that describe the origin of the pattern. To date there are
more than 200 patterns identified and these are organised into collections of game elements; resource and resource management; information,
management and presentation; action and events; narrative structures, predictability and immersion; social interaction; goals; goal structure; game
session; game mastery and balancing; and meta game, replayability and learning curves (Björk & Holopainen, 2004). The use of patterns and
templates to document aspects of game design is a formal attempt and it promotes better organisation and structure in terms of documenting details on
game play compared to MDA for example. Although the original intention of this approach is for analysing and studying existing games, the collection
of game design patterns can now be used as a reference and model for defining components of future games.

The Game Ontology Project (GOP) (Zagal, Mateas, Fernández-Vara, Hochhalter, & Lichti, 2005) addresses the need of formal game design
through the identification of both common and distinct elements of game design abstractly, and orders these hierarchically to form a game ontology.
The game ontology is regarded as a language for game design and also a framework for game designers to improve their understanding on what to
design in computer games. At the highest-level, the ontology focuses on the definition of interfaces that map user inputs to a set of allowable actions of
an avatar; rules that govern the interactions and economies in the game world; goals that determine a player‟s success or failure in the game; entities
that populate the game world; and entity manipulations which define how entities behave physically in the game world. Each ontology entry is labelled
with a name, listed with relationships with other elements in the hierarchy and given a description about the element as well as examples of both
concrete and partial reification of the elements. Game designers can make references to the ontology and design games by filling the descriptions of
the game design. Formalising the descriptions of the ontology entries are still necessary to ensure such a game model can be translated to software
code.

Rapid Analysis Method (RAM) (Järvinen, 2007) is a set of methods for analysis and design of computer games from a system viewpoint and
players‟ viewpoint focusing on the emotional and the socio-physiological aspects of game-play. It consists of seven tools to aid amateur game
designers to systematically identify and analyse game elements, game mechanics and the goal they are related to, permissible interactions, eliciting
conditions for emotions during game-play, game rhetoric and to study the anatomy of a game. RAM is a comprehensive approach for studying games
and is suitable for use as a game meta-model. Nevertheless, there are still missing details required for describing computer games in terms of
attributes of game elements instead of building a taxonomy for cataloguing common game elements.

Fullerton‟s (2008) model represents a computer game from a closed-formal system context by studying the formal elements and dramatic
elements that compose a game. Objectives, procedures, rules, resources, conflict, boundary and outcome are the formal elements that define the
structure of a game, whereas play, challenge, premise, character and story are the dramatic elements used to encase the formal elements in order to
engage the game players. This is a rather comprehensive representation of computer games that encompasses both technical and artistic aspects of
game design, but yet still incomplete. There is one dramatic element missing: game objects that fill the game world. It may have most of the elements
to represent a game but it lacks the formalised language necessary to describe these elements accurately.

Nelson & Mateas‟ (2007) model focuses on four domains; abstract game mechanics which regulate the operational aspects of a computer game,
concrete game representation which presents the abstract game mechanics through audio-visual means, thematic content which are graphics and
sounds created to represent the game world, and control mapping which relates the player‟s input to methods that modify abstract game state. The

10

simplicity of the model helps one to understand the computer game as a system easily, but it is a rather brief model to represent complete games as
many aspects of game design remain widely undefined making it a less favourable candidate for a game meta-model.

The Narrative, Entertainment, Simulation and Interaction (NESI) model proposed by Sarinho & Apolinário (2008) is a game feature model. It
organises four main features of game design into a hierarchical order: narrative which consists of flow that progresses the game with different goals
governed by rules that determines the success or failure of player; entertainment which is made up of a theme for the game and the player‟s immersive
experience during the game play; simulation which is composed of game elements such as characters, items and buildings that populate the game
world and the relationships among them; and finally, interaction that maps the game player‟s control to the game-play features and the presentation of
the game through audio, visual or haptic devices. The NESI model is another possible candidate for a game meta-model.

The game meta-models reviewed provide interesting ways to document and analyse game design. Each of these has a different focus on aspects
of game design and approach to documenting the details of game design. Among all the approaches reviewed, the MDA is probably the least qualified
candidate as a game meta-model due to the lack of structure and identification of elements that represent games in their entirety. Nevertheless, it is a
great tool that can aid the game designer to think creatively when designing fun and engaging game-play. Contrary to that, the game design patterns
approach is a good candidate for a game meta-model. Game design patterns provide a template for documenting the multiple aspects of game design
and organises these into collections which can be used as references for novices and amateur game designers to create their own games. It, however,
lacks formalised descriptions of game design patterns required in MDE. The GOP has a more logical organisation of the elements of games compared
to game design patterns and demands relational information which is crucial for writing software code. Similarly, it lacks formalisation in describing
each ontology entry. The RAM has a good method to identify, analyse and study about game elements, but it also lacks a method to formally describe
these elements. Nelson & Mateas‟ model promotes simplicity in describing a game but lacks refined structure, categories in design details and a
formalised method of describing the game which also demotes itself as a candidate for game meta-model. The NESI model is a useful approach to
describe games through description of features, but it fall short on how one can formally describe these features. By „formal‟ we mean the use of a
single unified language that may be human or machine-readable. Fullerton‟s model is by far the most comprehensive model reviewed, but it still lacks
one element (i.e. game objects) and has no clear methods to document these elements except from traditional form of creative writing. It is clear that
the one common shortcoming these approaches share is the lack of formality and details to accurately represent a computer game. Such an issue
must be addressed to ensure a game model produced using a game meta-model can be mapped to a game software model during the process of
model transformation in a model driven game development framework.

3.4. Game Software Models

A game software model, as opposed to a game meta-model, represents computer games from a computational perspective independent of any
technology platform. From an MDE perspective, it is translated from the game model to specify the data, methods, processes and technologies that
comprises the game software. Depending on the game genre, a computer game may require different types of visual renderer, AI, game physics and
other software components to realise the game design. These technologies are usually packaged into a game software framework which is used to
produce a variety of different computer games. It is rather challenging to have one game software framework to represent all computer games across
different genres due to technical constraints that game software frameworks inherit. Although there are differences in technologies used, the basic
structure of computer games software remains similar across different genres. It is therefore crucial that a game software model has a high degree of
abstraction to allow it to cater for a range of game genres.

A game software model is dependent on the choice of programming paradigm. Early computer games were programmed with languages such as
BASIC and C which supports both unstructured and later structured programming paradigms. Today most game developers would opt to engineer
games software using an OO model as it offers versatility and reusability of code which can increase productivity and ease maintenance of code. Most
OO-influenced models represent game software based on its processes or game components. The SharpLudus Ontology (Furtado & Santos, 2006a) is
a game software model built onto six key concepts that represent computer games, namely configuration, graphics, entities, event, flow and audio.
Each of these concepts is elaborated in detail to represent the properties and methods that construct a 2D adventure game. Although SharpLudus
Ontology is designed specifically for the 2D adventure game genre, the software model can also be used for other 2D games that are built using tile-
based worlds.

The GameSystem, DecisionSupport and SceneView (GDS) model (Sarinho & Apolinário, 2009) represents game software with a combination of
features organised collectively. Each feature describes generic configurations and behavioural aspects for a specific part of the game software.
Features in GameSystem monitor both game events and inputs from the game-player, and trigger the associated actions that can affect all defined
data including those defined in DecisionSupport and SceneView. DecisionSupport groups a selection of game AI features that provides the intelligence
for Non-Player Characters (NPC), while SceneView describes the features that observe events within a defined spatial environment and those affecting
the presentation of the game such as audio, graphics and physics. This shares many characteristics of the MVC (Model-View-Controller) design
pattern.

Altunbay, Cetinkaya, & Metin‟s (2009) board game model is a representation of game software specific to board games. The board game model is
based on the concepts of: Game Engine, Game Element, Player, Event, Action, Game State, Goal, Sub-Goal, Non-Movable Element, Movable
Element and Rules. Most of these concepts are very specific towards the board game genre except for Player, Goal and Rules which are generic for all
games genres.

The SharpLudus Ontology, board game model and GDS each have their own merits and focus in representing games software. The key concepts
introduced in SharpLudus Ontology are a useful guide for representing other forms of game software. It represents the essential components in game
software but it will require further specific and detail elaboration that reflects the requirements for other game software before it is deemed useful. The
board game model is comprehensive but rather specific to a single game genre thereby limiting its usefulness. The GDS model is a credible candidate
as it generically and comprehensively represents game software based on features which can be mapped across to a game software framework and
therefore can represent a broader range of computer games software. Moreover, it clearly separates games software into MVC components
(GameSystem as the model, SceneView as the view and DecisionSupport as the controller) model permitting independent development, testing and
maintenance of each component. It is apparent that architecting a game software model requires good understanding of game processes and the
game software framework. As current game development trends sets such a high-dependency on game software frameworks to increase productivity,
it is important that a game software model structures game design requirements logically and maps to common functionalities of a game software
framework.

3.5. Game Software Frameworks

A game software framework (also known in the game industry as a game engine) is a set of Application Programming Interfaces (APIs). It consists
of software components that perform graphic rendering (2D or 3D), game physics computation such as collision detection, collision reaction and
locomotion, programmed intelligence, user input, game data management and other supporting technologies to operate the game software. These
software components are built to manage, accept, compute and communicate data with other software components without fail. An appropriate API
can increase the productivity of game developers allowing them to reuse proven and tested software code to produce a variety of computer games
within the scope of the software framework. Game software frameworks vary depending on technology features that are often constrained by particular
game genres, technology platforms (hardware) and visual dimension of the game world (2D or 3D), but technology components such as graphics,
sound, user input, basic game physics and user interfaces remain essential across all game software frameworks. For instance, the Unreal engine

4
 is

suitable for development of action or adventure games in first or 3
rd

 person view but it will require modification to include necessary physics code if it to
be used to support sports game genres. Not all game software frameworks support all features since integrating these technological components under

4
 Read more about Unreal Engine from http://www.unrealtechnology.com/.

http://www.unrealtechnology.com/

11

a single framework is a highly complex and expensive task. Furthermore, not all computer games software will require the entire collection of software
components to operate. Budget, support, features offered, ease of use, suitability, royalties and targeted hardware platform are some examples of key
criteria which can help to decide the most suitable game software framework for a project. Identifying features supported and techniques used in game
software frameworks can help to provide valuable information for MDE developers to architect a framework that is robust and interoperable.

There are many game software frameworks developed to date (at the time of writing, there are 297 3D game engines registered at the
DevMaster.net

5
 website). In general, these game software frameworks can be categorised from a purely financial point of view as being one of

commercial, open source and proprietary, or using the visual dimension they can cater for i.e. 2D or 3D (see Figure 14).

Proprietary

2D

3D

Commercial

Game Software Framework

Royalty Free Open Source

Figure 15: Categories of Game Software Framework

Commercial game software frameworks are much more stable and offer a reliable (supported) option over open source game software

frameworks. The Torque Game Engine (TGE) is an example of royalty-free game engine which is offered to developers at a very affordable price
compared to other commercial game software frameworks, in which TGE developers only pay for the technology once and are allowed to develop as
many games software applications as they wish. Unreal engine, Source engine, CryEngine and Id Tech (formerly known as Quake Engine) are some
notable examples of highly sophisticated game technologies that can help developers to produce high-quality games. These premium game
technologies are available for licensing and require a one-off royalty payment (per-title fee) or royalty for every copy of game sold, or both. However,
some of these are made available for free for educational purposes such as the 3DSTATE 3D Engine, XNA, CryEngine 3, Unreal Development Kit
(UDK) and Unity 3D.

Open source game software frameworks are developed for very specific purposes and often made available to the public when they reach the end
of their useful lifecycle. Examples of well known open source game software frameworks include Apocalyx Engine, Baja Engine, Blender Game
Engine, Irrlicht Engine, jME, jPCT, Lilith3D, Object Oriented Graphic Rendering Engine (ORGE), OpenSceneGraph, Panda3D and The Nebula Device
3. Most of these game software frameworks are distributed under an open source license which allows game developers to produce games software
for both commercial and non-commercial purposes at no cost. Some open source game software frameworks only implement a limited range of
techniques and some fail to address certain features, for example Panda 3D does not provide solution shadows, scene management and curves.
Game developers can still achieve the shadows effect using Panda 3D either by adding this feature to the framework themselves (this however
requires a specialist skill) or by creatively using textures and shaders to achieve the desired shadow effects. However, there is little or sometimes no
support at all for customising some technologies to fit the use of a project with a different specification. For more details of these game software
frameworks mentioned refer to Table 1.

Table 1: Details on Commercial and Open source Game Software Framework

Game Engine License URL

3DSTATE 3D Open source http://www.3dstate.com/
Unreal Engine Commercial & the Unreal Development Kits

(UDK) available free for educational purpose
http://www.unrealtechnology.com/
http://www.udk.com/

Source Engine Commercial http://source.valvesoftware.com/index.php.
CryEngine Commercial & available free for educational

purpose.
http://www.crytek.com/

Id Tech (formally known as Quake
Engine)

Commercial http://www.idsoftware.com/business/idtech3/

XNA Commercial & available free for educational
purpose

http://www.xna.com/

Unity 3D Commercial & available free for educational
purpose

http://unity3d.com/unity

Apocalyx Engine Open source http://apocalyx.sourceforge.net/
Baja Engine Open source http://www.bajaengine.com/
Irrlicht Engine Open source http://irrlicht.sourceforge.net/
Java Monkey Engine (jME) Open source http://www.jmonkeyengine.com/
jPCT Open source http://www.jpct.net/
Lilith3D Open source http://www.grinninglizard.com/lilith/
Oriented Graphic Rendering Engine
(ORGE),

Open source http://www.ogre3d.org/

OpenSceneGraph Open source http://www.openscenegraph.org/projects/osg
Panda3D Open source http://www.panda3d.org/
The Nebula Device 3 Open source http://nebuladevice.cubik.org/

Proprietary game software frameworks are created in-house (by game development companies) solely for internal usage. These are usually on

par with commercial game software frameworks and often of more superior quality. RenderWare, technology produced by Criterion Games and
acquired by Electronic Arts (EA) is used in many games published by EA such as the Need For Speed and Burnout series; EGO developed in-house at
Codemasters in the UK is used in production of a range of game titles including Colin McRae: Dirt, Race Driver: Grid and Operation Flashpoint: Dragon
Rising; Jade Engine Ubisoft‟s in-house game technology is used in games such as Rayman Raving Rabbids I and II, and Teenage Mutant Ninja
Turtles. These technologies are mainly used for in-house game titles and are therefore not easily applicable to development of educational or serious
games. Based on the ratings gathered from the devmaster.net forum and our analysis on features offered by each game software framework, we rank

5
 See known 3D game engine listing at http://www.devmaster.net/engines/list.php.

http://www.3dstate.com/
http://www.unrealtechnology.com/
http://www.udk.com/
http://source.valvesoftware.com/index.php
http://www.crytek.com/
http://www.idsoftware.com/business/idtech3/
http://www.xna.com/
http://unity3d.com/unity
http://apocalyx.sourceforge.net/
http://www.bajaengine.com/
http://irrlicht.sourceforge.net/
http://www.jmonkeyengine.com/
http://www.jpct.net/
http://www.grinninglizard.com/lilith/
http://www.ogre3d.org/
http://www.openscenegraph.org/projects/osg
http://www.panda3d.org/
http://nebuladevice.cubik.org/
http://www.devmaster.net/engines/list.php

12

these game software frameworks based on popularity and sophistication of features as shown in Figure 15 to give a general idea of the current
technology landscape. It is apparent that popular game software frameworks such as Panda3D, XNA, Unity 3D, CryEngine 3 do not necessarily offer
more features compared to the less popular game software frameworks like the 3DSTATE 3D Engine and the Nebula Device 3. Some of the reasons
these less-sophisticated game software frameworks gain popularity amongst the developers includes the range of technical support, availability of
high-level toolsets, large community base for exchange of knowledge and stability of the game software framework.

SOPHISTICATION OF FEATURES

P
O

P
U

L
A

R
IT

Y

+ jPCT

+ Unreal

 Development

 Kit

+ Java Monkey Engine

+ 3DSTATE

 3D Engine

+ Apocalyx

Engine

+ Blender Game

 Engine

+ Crystal Space

+ CryEngine 3

+ Cube 2:

 Sauerbraten

+ Delta3D

+ G3D

+ Irrlicht

 Engine

+ Lilith3D

+ OGRE

+ OpenSceneGraph

+ Panda3D

+ The Nebula

 Device 3

+ Torque

Game Engine
+ Unity 3D

+ XNA
+ RenderWare

+ EGO

+ Jade Engine

+ Source

 Engine

+ Id Tech

 Engine

LOW HIGH

L
O

W
H

IG
H

Figure 16: Game Software Frameworks ranked according to Popularity and Sophistication of Features

One of the most crucial components for game software is the graphics which provide the visualisation of the game world to game players. Clever
usage of graphic technologies can captivate a game player‟s interest and provide an immersive game play experience. In general, aspects related to
graphic technologies can be categorised into lighting, shadows, texturing, shaders, scene management, meshes, terrain, special effects (particle
systems) and rendering. Each of these aforementioned categories has its own collection of specialised techniques to achieve the desired visual results
without compromising the frame rate (see Table 2). In fact most of the game software frameworks are essentially real-time 3D graphics engines that
have been extended to form a game software framework. For example, game physics engines such as the Newton Game Dynamics

6
, Open Dynamic

Engine
7
 or Havok Physics

8
, game AI engines such as Havok AI

9
 and network components for games such as Game Networking Engine

10
 (GNE) or

RakNet
11

 can be added complimentarily to any 3D graphics engine. The remaining features which are not available can be developed in-house by
specialist game software engineers to complete the game software framework. Physics, AI, animation, networking and sound have a variety of
techniques available to support game development (see Table 3). In addition, some game software frameworks provide a collection of tools such as a
level-editor, visual sound tools and animation tools to allow non-technical members of the team to fine-tune games visually instead of directly editing
the source code. This review of game software framework features and their associated techniques provides an overview of the level of support a
game software model should offer to support a range of game platforms. Therefore it is crucial that any game software model can be extended easily
over time to remain heterogeneous among the game software frameworks. To achieve this design requirement, it is necessary that the game software
model be highly abstracted else it can only support a limited number of game software frameworks thereby constraining the variety of educational or
serious games which can be built with future game software frameworks.

Table 2: List of Techniques for Graphic Features.

Graphic Features Techniques
Lighting Light mapping, gloss mapping, per-pixel lighting, per-vertex lighting, anisotropic filtering and radiosity.
Shadows Shadowmap, projected planar and shadow volume.
Texturing Basic, multi-texturing, bump mapping, mip mapping, volumetric texturing, projective texture mapping and procedural

texturing.
Shaders Vertex shader, pixel shader and high-level shader.
Scene Management General, Binary Space Partition (BSP), Potentially Visible Set (PVS), portals, occlusion culling, octrees and Level of

Details (LOD).
Meshes Mesh loading, mesh skinning, progressive mesh, tessellation, deformation
Terrain Rendering, Continuous Level of Details (CLOD) and splatting.
Special Effects Environment mapping, billboard, sky, water, fog, mirror, lens flares, particle systems, fire, explosion, decals, weather,

motion blur and depth of field.
Surfaces & Curves Spline and Patches.
Rendering Fixed-function, stereo rendering, render-to-texture, fonts and Graphical User Interface (GUI).

6
 Read more about Newton Game Dynamics from http://newtondynamics.com/forum/newton.php.

7
 Read more about Open Dynamic Engine from http://www.ode.org/.

8
 Read more about Havok Physics from http://www.havok.com/index.php?page=havok-physics.

9
 Read more about Havok AI from http://www.havok.com/index.php?page=havok-ai.

10
 Read more about GNE from http://www.gillius.org/gne/.

11
 Read more about RakNet from http://www.jenkinssoftware.com/raknet/index.html.

http://newtondynamics.com/forum/newton.php
http://www.ode.org/
http://www.havok.com/index.php?page=havok-physics
http://www.havok.com/index.php?page=havok-ai
http://www.gillius.org/gne/
http://www.jenkinssoftware.com/raknet/index.html

13

Table 3: List of Techniques for Other Game Feature.

Other Features Techniques
Physics Basic physics, collision detection, rigid body and vehicle physics.
AI Scripted, path-finding, finite state machines, decision making, neural network, fuzzy logic and etc.
Animation Keyframe Animation, inverse kinematics, forward kinematics, skeletal animation, facial animation, animation blending and

morphing.
Network Peer-to-peer, master-server, client-server, communication (text, voice and video)
Sound 2D sound, 3D sound, streaming sound, mixing, digital signal processing effects and filtering.

3.6. Model-Driven Game Development Frameworks

Supporting any MDE practice is a framework that unifies models and manages the transformation between these models using appropriate MDE
tools to produce the desired software artefact. The OMG‟s Model Driven Architecture (MDA)(OMG, 2001), the Domain-Driven Software Development
Framework (Agrawal, Karsai, & Ledeczi, 2003) and Modelling Turnpike (mTurnpike) (Wada & Suzuki, 2006) are examples of model-driven frameworks
that aid software architects to develop their own MDE solution to suit a particular domain. These model-driven frameworks have been adapted to suit
domains such as security (Basin, Doser, & Lodderstedt, 2006), content repurposing (Obrenovic, et al., 2004), software testing (Javed, Strooper, &
Watson, 2007) and pervasive computing (Hemme-Unger, Flor, & Vogler, 2003).

In the game development domain, the use of software frameworks and tools are usual practice amongst commercial game developers. Although
current practice does improve productivity of the development team while providing maximum control and flexibility to artistically craft the game
software, the production pipeline is still very reliant on specialist artists and programmers. This is rarely an issue in the commercial sector where
budgets are supported by a business case. However in the case of game-based learning, the initial cost may be an issue but nonetheless MDE can
help to minimise the reliance on professional game developers and assist non-technical domain experts to produce customised educational games
through the use of high-level tools.

At present, research in this area is still in its infancy. The SharpLudus Game Software Factory (Furtado & Santos, 2006b) is an early attempt of a
model-driven approach to increase productivity of game development teams in developing 2D adventure games. The framework consists of (Furtado,
2006);

 A domain-specific modelling language - SharpLudus Game Modelling Language (SLGML) that allows the game designer to model the
flow of the game using a room designer and info display designer;

 A semantic validator that checks the model to ensure the design conforms to the semantics of SLGML, and finally;

 A code generator built on top of Microsoft‟s Visual Studio Integrated Development Environment (IDE) targeted towards generation of
C# code for the XNA game engine.

Reyno & Cubel‟s (2008) Model-Driven Game Development (MDGD) approach introduces the use of a selection of UML diagrams to gather

required information to automate generation of code for 2D platform games. The framework comprises:

 Two Platform Independent Models (PIM); A UML Class Diagram extended with stereotypes is used to model the relationship between
different game entities

12
 within the game world while a UML State Transition Diagram is use to model behaviour of the game entity;

 A Platform Specific Model (PSM) to map game actions to hardware controls, and;

 A transformation tool to translate the models into C++ source code compliant to the Haaf Game Engine
13

.

Altunbay, Cetinkaya, & Metin‟s (2009) model-driven approach for developing board games shares some similarity with the MDGD approach. It

uses the UML class diagram as the modelling language to represent the game model. The framework is comprised of:

 A Board Game Meta-model represented using a UML Class Diagram;

 A Game Domain Specific Language
14

 (GameDSL) - a meta-model developed specifically to aid the definition of game logic;

 A model-to-model transformation tool to transform the Board Game Model onto GameDSL and model-to-text transformation tool
which subsequently transforms the Board Game Model in GameDSL format to Java source code.

The SharpLudus Game Software Factory, MDGD and Board Game Framework are research-driven attempts to adopt a model-driven approach

towards developing 2D games. These frameworks may seem to share similar architectures but they differ in terms of models, tools and targeted
platform. These frameworks are also developed for a specific game genre and therefore adapting these frameworks to suit other genres would require
redefinition of models and new generators to facilitate transformation of model to code. It is apparent that a model-driven educational game framework
that can support multiple game software frameworks and is easily extensible is highly desirable to drive the production of a range of educational games
on different media. Architecting such a framework to bind both the game model and game software model is a challenge and will require extensive
research on game design, game development and a strong understanding of game software frameworks.

3.7. Model-Driven Game Development Environments

Model-driven game development environments are a realisation of model-driven game development frameworks and associated toolset that allow
game developers to take advantage of these technologies to accelerate game development. These tools may resemble some of the tools used by the
industry (for example, a game editor or level editor) both in functionality and interface but are presented as simplified interfaces for the game designer
to describe the game models in a structured and orderly manner.

As described in Section 3.6, the SharpLudus Game Software Factory offers a range of tools to assist game designers in modelling different
aspects of 2D adventure games. The development environment is a customised version of the Microsoft Visual Studio IDE that allows game designers
to systematically define the game through a collection of wizard-based user interfaces. The SLMGL Visual Editor provides a visual drag-and-drop
environment for modelling game flow and a range of form-based user interfaces to create the representation of game entities, design the screen,
design the layout of the room (a game level), group collections of images as sprites, link audio files, and define conditions for game states, events and
event feedback in the game. These interfaces are viewports into the game model which allows game designers to effectively concentrate on a specific
aspect of the game to avoid information overload. To ensure game models conform to the semantics of SLGML, a semantic validator is incorporated
into the development environment to alert designers about errors in modelling before code is generated. The SharpLudus Game Software Factory uses
the Microsoft Domain Specific Language (DSL) Tools

15
 to implement its code generator by scripting the transformation rules to map the model to

generate the code compliant to the game software framework used in the project (Furtado, 2006).

12

 Game entity refers to objects within the game world. This term is synonymous with game object in this paper.
13

 Read more about Haaf Game Engine from http://hge.relishgames.com/.
14

 Read more about GameDSL from http://gamedsl.tuxfamily.org/.
15

 Microsoft DSL Tools is a visualisation and modelling software development kit made available only for the Microsoft Visual Studio IDE to enable
software engineers to build custom visual modelling environment to be hosted within the Microsoft Visual Studio IDE. Read more about Microsoft DSL
Tools from http://code.msdn.microsoft.com/DSLToolsLab.

http://hge.relishgames.com/
http://gamedsl.tuxfamily.org/
http://code.msdn.microsoft.com/DSLToolsLab

14

The game development environment used by Reyno & Cubel (2008) is implemented using the Eclipse Modelling Framework
16

 (EMF) which allows
the user to model 2D platform games using UML diagrams. The modelling tool provides the standard UML notations to model structure in the form of a
class diagram, behaviour of a game entity using a state diagram and control mapping using an activity-like diagram. Transformation from these
diagrams to code is implemented using MOFScript

17
 to generate C++ code compatible with the Haaf Game Engine. MOFScript is a tool for text

transformation that generates text or code from any MOF-based model such as UML.
Altunbay, Cetinkaya, & Metin (2009) use a similar approach as Reyno & Cubel in using a modelling environment built on EMF. A board game

model is then translated to GameDSL using the Atlas Transformation Language
18

 (ATL) model transformation tool and finally transformed into Java
source code using MOFScript.

Amongst the reviewed model-driven game development environments, the SLGML modelling environment is a promising example of a game
modelling environment. This is mainly due to the choice of DSML and interfaces used. The use of domain specific notations instead of the industry
standard UML notations is a better choice as it makes games modelling more relevant to the users. Although UML provides more flexibility in modelling
games software, it is rather technical and unguided. Only experienced users who have a good understanding of game software would be able to model
a game correctly. It is also important to balance the use of visual notations and other forms of user interface for users to model a game. An appropriate
interface can increase productivity and reduce the learning curve of using the development environment. Therefore it is crucial that model-driven
educational games development environments use DSML notations suited for the domain and a collection of interfaces that encapsulate the technical
aspects of game development from domain experts.

3.8. Model-Driven Engineering Technologies

Integrated environments can provide a complete solution where the practitioner can define a DSL and its transformation rules to generate the
desired software artefacts and host the modelling component within the same environment, while a code framework provides the basis for
development of MDE tools to support the MDD.

3.8.1. Integrated Environments

MetaCase MetaEdit+
19

 is a commercial integrated environment for MDE. It provides a collection of tools to design a DSML by defining the
concepts, constraints associated to the concepts, symbols representing the concepts and a generator to produce the desired software artefacts with
MetaEdit+ Workbench. Modelling using the defined DSML is hosted within the MetaEdit+ environment. The MetaEdit+ Model extends the generic
modelling environment to provide a range of different views allowing the development team to view and edit or manipulate the model as a diagram,
matrix or table. In addition, it provides the necessary tools for management of the model and its contents and provides support for a multi-user
environment.

Microsoft DSL Tools is another integrated environment for MDE made available as an extension to the Microsoft Visual Studio IDE (Cook, et al.,
2007). It provides the necessary tools for defining a DSML, modeller and generator to generate textual artefacts from the model within the Visual
Studio environment. In DSL Tools, a domain model is created using a UML-like modelling language and a DSML is then represented with graphical
notations consisting of shapes and connectors. Relevant generators can be defined in Extensible StyleSheet Language Transformation (XSLT) and
text artefacts are generated through the Microsoft XSLT engine or by through a parameterised text template generation approach.

Visual Paradigm’s Smart Development Environment
20

 (SDE) is another commercially developed plug-in to support MDE practices which offers
capabilities to model in UML, entity relationship diagram, data flow diagram and others, generate code for 15 different programming languages, team
collaboration capabilities, round-trip engineering and can be integrated with well-known IDEs such as Visual Studio, NetBeans, Eclispe and intelliJ
IDEA. The modelling environment is hosted within the supported IDE and code is instantly generated in the code editor view allowing both forward and
reverse engineering.

Apart from commercially driven integrated environments for MDE, there are also non-commercial products available. GME, developed at the
Institute for Software Integrated Systems (ISIS) at Vanderbilt University, provides a similar facility for defining a DSML and hosting modelling within the
same environment (Ledeczi, et al., 2001). In GME, a domain model is modelled in UML and assigned with graphical representation while modelling
rules are defined using Object Constraint Language (OCL). Models are then saved directly in XML format or translated using an external interpreter
(generator) into other textual artefacts using Microsoft Common Object Model (COM) technology through extensions to the GME.

GEMS
21

 is a meta-modelling tool developed by ISIS at Vanderbilt University that provides GME-like meta-modelling to create modelling tools that
can be hosted within the Eclipse environment. It uses Eclipse modelling technologies such as EMF and Graphical Modelling Framework (GMF). Like
GME, a DSML is created in GEMS using UML-like notations and later ported automatically to Eclipse as plug-in. Generators and transformation
engines can be created for the modelling environment created using Open Architecture Ware

22
 (OAW), Java Emitter Templates

23
 (JET), and Atlas

Transformation Language
24

 (ATL) to transform the model into desired textual artefacts.
The NetBeans IDE

25
 also provides similar facilities for modelling using a UML plug-in

26
 and code generation using a template engine such as

FreeMarker
27

. The UML plug-in enables the modelling environment to model the SUS using a range of supported UML diagrams such as activity
diagram, class diagram, sequence diagram, state diagram, and use case diagram as a Java platform model or PIM. The FreeMarker code templates
associated with the diagrams can then be customised to generate the desired Java source code.

Among the reviewed integrated environments for MDE, MetaCase MetaEdit+ offers comprehensive and customisable modelling features, which
can be integrated into many IDEs, and it offers a facility to create generators for any text artefacts. GME is also a standalone tool with a similar aim, but
suffers from the lack of a built in generator. For Visual Studio users, Microsoft DSL Tools is an alternative to MetaEdit+ where a DSML can be created,
hosted and generate code entirely within the Visual Studio environment. Similarly, GEMS provides a facility to create the modelling environment as an
add-on to the Eclipse IDE with support to create generators for any text artefacts. Each of the reviewed integrated environments provides the facility to
support the MDE process in one way or the other. The SDE allows users to model using UML diagrams, entity relationships diagram, BPMN, process
map and others. It also provides great support for code generation and integration with well known IDEs. The NetBeans IDE with the UML plug-in is an
open source alternative to SDE. Selection of the integrated environment will ultimately depend on the available budget to invest and choice of
development tools. These MDE integrated environments can be used for development of a model-driven educational game development environment
similar to those proposed in Section 3.7 and realisation of such a model-driven educational game development environment will require a model-driven
framework that supports development of educational games similar to those described in Section 3.6.

16

 Read more about EMF from http://www.eclipse.org/modeling/emf/.
17

 Read more about MOFScript from http://www.eclipse.org/gmt/mofscript/.
18

 Read more about ATL from http://www.eclipse.org/atl/.
19

 Read more about MetaEdit+ from http://www.metacase.com/.
20

 Read more about SBE from http://www.visual-paradigm.com/product/sde/.
21

 Read more about GEMS from http://www.eclipse.org/gmt/gems/.
22

 Read more about OAW from http://www.eclipse.org/workinggroups/oaw/.
23

 Read more about JET from http://www.eclipse.org/modeling/m2t/?project=jet.
24

 Read more about ATL from http://www.eclipse.org/m2m/atl/.
25

 Read more about NetBeans IDE from http://netbeans.org/.
26

 Read more about UML Plugin for NetBeans IDE from http://netbeans.org/features/uml/.
27

 Read more about FreeMarker from http://freemarker.sourceforge.net/.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmt/mofscript/
http://www.eclipse.org/atl/
http://www.metacase.com/
http://www.visual-paradigm.com/product/sde/
http://www.eclipse.org/gmt/gems/
http://www.eclipse.org/workinggroups/oaw/
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/m2m/atl/
http://netbeans.org/
http://netbeans.org/features/uml/
http://freemarker.sourceforge.net/

15

3.8.2. Code Frameworks

Code frameworks for MDE can generally be divided into two categories; diagramming and transformation. IBM‟s ILOG Visualisation
28

 and the
Eclipse Graph Editing Framework

29
 (GEF) are examples of diagramming code frameworks that provide the software components such as 2D graphics,

notation palette, environment layout support, viewer, connection anchoring, connection routing, connection decoration and cursor support which are
necessary for creation of a diagramming environment. ILOG Visualisation is licensable as GUI components for the .NET, Java, C++ and Adobe Flex
platforms, whereas GEF is only available as a plug-in on the Java platform specifically for the Eclipse IDE.

The Eclipse Modelling Framework (EMF), CodeWorker
30

 and ATL are examples of transformation code frameworks. The EMF provides the facility
to build a code generator in the Eclipse IDE. It accepts a model expressed in annotated Java, XML or XML Metadata Interchange (XMI) and transforms
it into Java implementation classes or a formatted XML document. An alternative to EMF is CodeWorker which is freely available as a Java interface,
.NET assembly and an Eclipse plug-in. For model-to-model transformation, the ATL can be used to transform a set of source models to a set of target
models. The ATL is offered as plug-in to the Eclipse IDE.

The Eclipse Graphical Modelling Framework
31

 (GMF) provides a full-featured modelling environment by integrating the diagramming features from
GEF and the transformation features from EMF. This reduces the complication for developers who want to create a full-featured modelling environment
in the Eclipse IDE. For non-Eclipse users, modelling environments can be built on the integration of ILOG Visualisation and CodeWorker. Building MDE
tools based on these code frameworks described can be time consuming compared to the use of an integrated environment described in Section 3.8.1.
However, it provides great flexibility for developers to create custom interfaces and target code generation to required platforms more accurately.

3.9. Assistive User Interfaces

The game modelling environments reviewed in Section 3.6 use a range of user interfaces to capture game requirements from users. Diagramming
interfaces that use shapes (or images) and connectors, wizards, visual editors and text editors are standard approaches found in game modelling
environments. Each of these approaches provides a different form of support to users in defining the game world as some require a visualisation
environment and some do not. Selection of the right interface is crucial especially in the view of this research study as the primary users are domain
experts who may not have much technical knowledge in games development.

Assistive user interfaces provide guidance to users in preparing a model. Software based „wizard‟ interfaces are a simple way to guide users
through systematic information entry. However, they require a number of custom „wizard‟ interfaces to enable users to enter details of a model during
modelling and do not provide a high-level view of the model. Diagramming interfaces and visual editors provide some form of guidance through visual
cues and feedback from interactions. They do, however, require users to undergo some form of training or tutorial before they become proficient in
using the tool. Among all user interfaces, the text editor provides the least guidance in entering formal information as it requires statements to be
entered that conform to the syntax of some formal language. Although modern text editors include syntax colouring, code tooltips, error highlighting
and many other advanced facilities built-in, users are still prone to committing errors syntactically.

Alice (Kelleher, et al., 2002) and Scratch (Maloney, et al., 2004) are examples of applications that use assistive user interfaces developed to
address the needs of non-technical users. Alice is an educational software development tool that motivates and aids students in learning computer
programming within a 3D environment. Understanding the frustration of students learning programming, Alice 2.2 and Alice Storytelling are based on a
drag and drop interface that addresses the major problem of many learners i.e. syntax errors (Kelleher, et al., 2002). Commands, programming
constructs, 3D objects, object properties, and behaviour are represented as tiles with different colours which users can drag into the animation and
behaviour areas with a menu that displays the available options for selection of parameters to complete a statement that represents the animation or
behaviour of an object in a 3D world (see Figure 16).

Figure 17: Screenshot of Alice 2.2 User Interface

28

 Read more about IBM ILOG Visualisation from http://www-01.ibm.com/software/websphere/products/visualization/.
29

 Read more about GEF from http://www.eclipse.org/gef/.
30

 Read more about CodeWorker from http://codeworker.free.fr/.
31

 Read more about GMF from http://www.eclipse.org/modeling/gmf/.

http://www-01.ibm.com/software/websphere/products/visualization/
http://www.eclipse.org/gef/
http://codeworker.free.fr/
http://www.eclipse.org/modeling/gmf/

16

Scratch is another initiative similar to Alice developed by the MIT Media Lab to assist children learning programming concepts (Maloney, et al.,
2004). It provides a rich media authoring environment with much simpler interfaces and uses a graphical programming language to enable learners to
script multimedia objects and interactivity. Programming constructs are grouped into motions, controls, looks, sensing, sound, operators, pen and
variables using puzzle-style coloured block as notations. Within each construct, values can be inserted via the textboxes or list boxes available as
shown in Figure 17. Blocks are fitted together based on the compatibility of the command and data shapes to eliminate syntax error, thus lowering the
barrier of learning programming for beginners.

Figure 18: Screenshot of Scratch User Interface

Both the reviewed user interfaces are examples of block-styled drag-and-drop interfaces with clever use of input type to simplify interactions. The
constraints introduced in these user interfaces eliminate unnecessary errors and also guide users in completing formal text-entry. In general, such user
interfaces can lower the learning curve when using technical tools and should be adapted into model-driven educational game development
environments to aid non-technical domain experts in production of educational games.

4. Conclusions
Changes in learner‟s behaviour are inevitable and many believe that game-based learning is one of the solutions to encourage learners to engage

more in the learning process. In addition to the motivating factor of reintroducing play into learning, game-based learning offers an opportunity to
embed a wide range of learning approaches. With the current generation of „digital natives‟ being exposed to interactive entertainment during childhood
years and being brought up in the digital era, we believe that game-based learning will become a preferred method of learning for many of this
generation in the future (Tang & Hanneghan, 2010). These beliefs are supported by JISC‟s “Guide to effective learning design” which states that
learning should be congruent to lifestyle for effective learning to take place (JISC, 2004). Indeed there are a growing number of domain experts
intending to take advantage of game-based learning and a growing demand for high-level tools which can help them create their own educational
games. In this article, we have described how MDE can be used a platform for one such technological solution to the dilemma and outlined the benefits
and challenges associated in creating a model-driven educational development environment. Our survey provides insights on developments in this field
which plays an important role collectively on the creation of a model driven game development environment. We identified these approaches and
solutions, and reviewed them from MDE perspectives. Although most of the current approaches and solutions are related to model driven game
development, using these approaches and solutions will require clever modification before they can be deemed suitable to be integrated in a model
driven game development framework. Nevertheless, it provides a reference for framework developers to begin with, extend or adapt. Although current
efforts in model-driven game development mainly focus on mainstream audiences (i.e. industry and hobbyist), there is a growing awareness of the
adoption of MDE specifically for production of educational games and serious games. Developing a model-driven educational games development
environment for use by domain experts requires a different treatment compared to present approaches. Pedagogic practices for educational games
design (as previously suggested in our earlier work (Tang & Hanneghan, 2010)) should be embedded within the modelling environment to ensure any
computer games produced are pedagogically sound. We are currently developing our own game definition model as well as a game software model for
use in our own model-driven educational games development framework. Furthering our research efforts we intend to prototype a model-driven
educational game development environment using our framework as a proof of concept. At a later stage of the research we aim to provide case studies
on the use of the new tool and findings from the evaluation will be used to further improve this tool.

References
Adams, E. (2004). Designer's Notebook: Designing with Gameplay Modes and Flowboards Retrieved 31 October, 2009, from

http://www.gamasutra.com/view/feature/2101/designers_notebook_designing_.php
Adams, E., & Rollings, A. (2006). Fundamental of Game Design. US: Prentice Hall.
Agrawal, A., Karsai, G., & Ledeczi, A. (2003). An end-to-end domain-driven software development framework. Paper presented at the Companion of

the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications.
Aguilera, M. d., & Mendiz, A. (2003). Video games and education: (education in the face of a "parallel school"). Computers in Entertainment (CIE), 1,

10-10.

http://www.gamasutra.com/view/feature/2101/designers_notebook_designing_.php

17

Altunbay, D., Cetinkaya, E., & Metin, M. G. (2009, 20th May). Model Driven Development of Board Games Paper presented at the First Turkish
Symposium on Model-Driven Software Development (TMODELS), Bilkent University, Ankara Turkey.

Ang, C. S., & Rao, G. S. V. R. K. (2004). Designing Interactivity in Computer Games a UML Approach. International Journal of Intelligent Games and
Simulation, 3(2), 62-69.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model driven security: From UML models to access control infrastructures. ACM Trans. Softw. Eng.
Methodol., 15(1), 39-91.

Bates, B. (2004). Game Design (2 ed.). Boston, MA: Thomson Course Technology PTR.
BECTa (2006). Computer Games in Education: Findings Report Retrieved 19 February, 2008, from

http://partners.becta.org.uk/index.php?section=rh&rid=13595
Bethke, E. (2003). Game Development and Production. Plano, Texas: Wordware Publishing.
Bézivin, J. (2004). In Search of a Basic Principle for Model Driven Engineering. UPGRADE, V(2), 21-24.
Bézivin, J., & Gerbé, O. (2001). Towards a Precise Definition of the OMG/MDA Framework. Paper presented at the 16th IEEE international conference

on Automated software engineering.
Björk, S., & Holopainen, J. (2004). Patterns in Game Design: Charles River Media.
Björk, S., Lundgren, S., & Holopainen, J. (2003, 4 - 6 November). Game Design Patterns. Paper presented at the Level Up, University of Utrecht, The

Nethelands.
Ceri, S., Daniel, F., Facca, F. M., & Matera, M. (2007). Model-driven Engineering of Active Context-awareness. World Wide Web, 10(4), 387-413.
Checkland, P., & Scholes, J. (1990). Soft Systems Methodology in Action. West Sussex, England: John Wiley & Son.
Cook, S., Jones, G., Kent, S., & Wills, A. C. (2007). Domain-Specific Development with Visual Studio DSL Tools. Crawfordsville, Indiana: Addison

Wesley.
Crawford, C. (1982). The Art of Computer Game Game Design.
El-Rhalibi, A., Hanneghan, M., Tang, S., & England, D. (2005). Extending Soft Models to Game Design: Flow, Challenges and Conflicts. Paper

presented at the DiGRA 2005 - the Digital Games Research Association‟s 2nd International Conference.
FAS (2006). Harnessing the power of video games for learning, Summit on Educational Games 2006, from

http://fas.org/gamesummit/Resources/Summit%20on%20Educational%20Games.pdf
Favre, J.-M., & Nguyen, T. (2005). Towards a Megamodel to Model Software Evolution Through Transformations. Electronic Notes in Theoretical

Computer Science, 127(3), 59-74.
Fondement, F., & Silaghi, R. (2004). Defining Model Driven Engineering Processes. Paper presented at the 3rd Workshop in Software Model

Engineering (WiSME2004).
France, R., & Rumpe, B. (2007). Model-driven Development of Complex Software: A Research Roadmap. Paper presented at the 29th International

Conference of Software Engineering: Future of Software Engineering.
Fullerton, T. (2008). Game Design Workshop, Second Edition: A Playcentric Approach to Creating Innovative Games (2 ed.). Burlington, MA: Morgan

Kaufmann.
Furtado, A. W. B. (2006). SharpLudus: Improving Game Development Experience Through Software Factories And Domain-Specific Languages.

Federal University of Pernambuco, Pernambuco, Brazil.
Furtado, A. W. B., & Santos, A. L. M. (2006a). Defining and Using Ontologies as Input for Game Software Factories. Paper presented at the 5th

Brazilian Symposium on Computer Games and Digital Entertainment.
Furtado, A. W. B., & Santos, A. L. M. (2006b). Using Domain-Specific Modeling towards Computer Games Development Industrialization. Paper

presented at the 6th OOPSLA Workshop on Domain-Specific Modeling (DSM‟06).
Futurelab, N. (2006). Close to 60% of UK Teachers Want Computer Games in the Classroom Retrieved 30 June, 2008, from

http://www.futurelab.org.uk/about_us/Press_Release184
Gal, V., Prado, C. L., Natkin, S., & Vega., L. (2002). Writing for video games. Paper presented at the VRIC 2002.
Grønmo, R., Skogan, D., Solheim, I., & Oldevik, J. (2004). Model-driven Web Services Development. Paper presented at the 2004 IEEE International

Conference on e-Technology, e-Commerce and e-Service (EEE'04).
Harel, D., & Kugler, H. (2001). The Rhapsody Semantics of Statecharts (or, On the Executable Core of the UML). Lecture Notes in Computer Science,

Integration of Software Specification Techniques for Application in Engineering(3147), 325 - 354.
Hemme-Unger, K., Flor, T., & Vogler, G. (2003). Model driven architecture development approach for pervasive computing. Paper presented at the

Companion of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications.
Heskett, J. (2005). Design: A Very Short Introduction. New York: Oxford University Press.
Hildenbrand, T., & Korthaus, A. (2004). A Model-Driven Approach to Business Software Engineering. Paper presented at the 8th World Multi-

Conference on Systemics, Cybernetics and Informatics (SCI 2004).
Hill, J. H., Tambe, S., & Gokhale, A. (2007). Model-driven Engineering for Development-time QoS Validation of Component-based Software Systems.

Paper presented at the 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS'07).

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A Formal Approach to Game Design and Game Research. Paper presented at the Challenges in
Game AI Workshop, AAAI04.

Järvinen, A. (2007, 24 - 28 September). Introducing Applied Ludology: Hands-on Methods for Game Studies. Paper presented at the Digra 2007
Situated Play: International Conference of the Digital Games Research Association, Tokyo, Japan.

Javed, A. Z., Strooper, P. A., & Watson, G. N. (2007). Automated Generation of Test Cases Using Model-Driven Architecture. Paper presented at the
Proceedings of the Second International Workshop on Automation of Software Test.

Jenkins, H., Klopfer, E., Squire, K., & Tan, P. (2003, October 2003). Entering The Education Arcade. Computers in Entertainment (CIE), 1, 17-17.
JISC (2004). Effective Practice with e-Learning - A good practice guide in designing for learning.
Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C., Pratt, J., & Pausch, R. (2002). Alice2: Programming without Syntax Errors Paper presented at the

User Interface Software and Technology.
Kelly, H., Howell, K., Glinert, E., Holding, L., Swain, C., Burrowbridge, A., et al. (2007). How to build serious games. Communications of the ACM,

50(7), 44-49.
Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code Generation. Hoboken, New Jersey: Wiley-IEEE Computer Society

Press.
Kienzle, J., Denault, A., & Vangheluwe, H. (2007). Model-Based Design of Computer-Controlled Game Character Behavior In G. Engels, B. Opdyke, D.

C. Schmidt & F. Weil (Eds.), Lecture Notes in Computer Science (Vol. 4735/2007, pp. 650-665): Springer Berlin / Heidelberg.
Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA Explained: The Model Driven Architecture : Practice and Promise: Addison-Wesley.
Ledeczi, A., Maroti, M., Bakay, A., Karsa, G., Garrett, J., Thomason, C., et al. (2001). The Generic Modeling Environment. Paper presented at the

Workshop on Intelligent Signal Processing, Budapest, Hungary.
Lodderstedt, T., Basin, D., & Doser, J. (2002). SecureUML: A UML-Based Modeling Language for Model-Driven Security. Paper presented at the

Model Engineering, Concepts, and Tools 5th International Conference.
Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A Sneak Preview. Paper presented at the Proceedings of the

Second International Conference on Creating, Connecting and Collaborating through Computing.
Natkin, S., Vega, L., & Grünvogel, S. M. (2004). A New Methodology for Spatiotemporal Game Design. Paper presented at the International

Conference on Computer Games: Artificial Intelligence, Design and Education (CGAIDE 2004).

http://partners.becta.org.uk/index.php?section=rh&rid=13595
http://fas.org/gamesummit/Resources/Summit%20on%20Educational%20Games.pdf
http://www.futurelab.org.uk/about_us/Press_Release184

18

Nelson, M. J., & Mateas, M. (2007). Towards Automated Game Design. Paper presented at the 10th Congress of the Italian Association for Artificial
Intelligence on AI*IA: Artificial Intelligence and Human-Oriented Computing, Rome, Italy.

Obrenovic, Z., Starcevic, D., & Selic, B. (2004). A Model-Driven Approach to Content Repurposing. IEEE Multimedia, 11(1), 62-71.
OMG (2001, 21 December 2008). Model Driven Architecture (MDA), from http://www.omg.org/docs/ormsc/01-07-01.pdf
Onder, B. (2002). Writing Adventure Game. In F. o. D. Laramée (Ed.), Game Design Perspectives (pp. 28-43). Hingham, Massachusetts: Charles River

Media.
Pearce, C. (2006). Productive Play: Game Culture From the Bottom Up. Games and Culture, 1(1), 17-24.
Reyno, E. M., & Cubel, J. Á. C. (2008). Model-Driven Game Development: 2D Platform Game Prototyping. Paper presented at the GAMEON' 2008.
Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest Adams on Game Design: New Riders Publishing.
Rollings, A., & Morris, D. (2004). Game Architecture and Design: A New Edition. Indianapolis, Indiana: New Riders.
Rouse, R. (2001). Game Design: Theory & Practice (2 ed.). Plano, Texas: Wordware Publishing.
Sarinho, V., & Apolinário, A. (2008). A Feature Model Proposal for Computer Games Design. Paper presented at the VII Brazilian Symposium on

COmputer Games and Digital Entertainment, Belo Horizonte.
Sarinho, V., & Apolinário, A. (2009). A Generative Programming Approach for Game Development. Paper presented at the VII Brazilian Symposium on

COmputer Games and Digital Entertainment, Rio de Janeiro, Brazil.
Sawyer, B., & Smith, P. (2008). Serious Games Taxonomy Retrieved 26 March, 2008, from http://www.dmill.com/presentations/serious-games-

taxonomy-2008.pdf
Schauerhuber, A., Wimmer, M., & Kapsammer, E. (2006). Bridging existing Web modeling languages to model-driven engineering: a metamodel for

WebML. Paper presented at the Second international workshop on model driven web engineering (MDWE'06).
Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering. Computer, 39(2), 25-21.
Seidewitz, E. (2003). What models mean? Software IEEE, 20(5), 26-32.
Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., Demeure, A., & Balme, L. (2006). Towards Model Driven Engineering of Plastic User Interfaces

Paper presented at the MoDELS 2005 International Workshops OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI, NfC, MDD,
WUsCAM.

Tang, S., & Hanneghan, M. (2005). Educational Games Design: Model and Guidelines. Paper presented at the 3rd International Game Design and
Technology Workshop (GDTW'05).

Tang, S., & Hanneghan, M. (2010). Designing Educational Games: A Pedagogical Approach. In P. Zemliansky & D. Wilcox (Eds.), Design and
Implementation of Educational Games: Theoretical and Practical Perspectives (pp. 108-125). Hershey, PA: IGI Global.

Tang, S., Hanneghan, M., & El-Rhalibi, A. (2004, November 25-27). Designing Challenges and Conflicts: A Tool for Structured Idea Formulation in
Computer Games. Paper presented at the 5th International Conference on Intelligent Games and Simulation (GAME-ON 2004), Het Pand,
Ghent, Belgium.

Tang, S., Hanneghan, M., & El-Rhalibi, A. (2009). Introduction to Games-Based Learning. In T. M. Connolly, M. H. Stansfield & L. Boyle (Eds.),
Games-Based Learning Advancements for Multi-Sensory Human Computer Interfaces: Techniques and Effective Practices (pp. 1-17).
Hershey: Idea-Group Publishing.

Taylor, M. J., Baskett, M., Hughes, G. D., & Wade, S. J. (2007). Using Soft Systems Methodology for Computer Game Design. Systems Research and
Behavioral Science, 24, 359-368.

Taylor, M. J., Gresty, D., & Baskett, M. (2006). Computer game-flow design. Computers in Entertainment (CIE), 4(1), Article No. 5.
Thramboulidis, K. C. (2004). Paper presented at the 2nd IEEE International Conference on Industrial Informatics INDIN‟04.
Wada, H., & Suzuki, J. (2006). Modeling Turnpike: A Model-Driven Framework for Domain-Specific Software Development Satellite Events at the

MoDELS 2005 Conference (pp. 357-358).
Zagal, J. P., Mateas, M., Fernández-Vara, C., Hochhalter, B., & Lichti, N. (2005). Towards an Ontological Language for Game Analysis. Paper

presented at the DiGRA 2005 - the Digital Games Research Association‟s 2nd International Conference, Simon Fraser University, Burnaby,
BC, Canada.

http://www.omg.org/docs/ormsc/01-07-01.pdf
http://www.dmill.com/presentations/serious-games-taxonomy-2008.pdf
http://www.dmill.com/presentations/serious-games-taxonomy-2008.pdf

