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Abstract 

Electric vehicles have revolutionized automotive manufacturing in recent years. However, they 

are faced with some challenges that are essential to overcome to have an acceptable performance. 

Therefore, these kinds of vehicles need a safe, fast charging, and extended life cycle battery. 

Lithium-ion batteries have these characteristics and are used in different state-of-the-art industries. 

Having reliable data for the Lithium-ion batteries Battery Management System (BMS) is critical. 

They are required to monitor and control all parameters such as State of Charge and State of Health. 

These parameters cannot be measured directly, and the system should estimate them accurately 

and reliably. This study consists of 5 main parts: literature review, modelling, research 

methodology, data collection, and data analysis and interpretation. Firstly, the recent papers related 

to methods of SOC (State of Charge) estimation were reviewed to find out the existing algorithms’ 

productivity and deeply realized in literature reviewing step.  

Because of their inherent safety, fast charging capacity, and extended cycle life, lithium-ion 

batteries are preferred over other types of batteries in electric vehicle applications. It's critical to 

be able to determine state factors like state of charge and state of health to generate an accurate 

battery model. The state of charge estimation algorithms for generic Lithium-ion batteries were 

enhanced using LA92 drive cycle experiment data. To begin, a mathematical model for an 

analogous circuit battery was created with the goal of accurately imitating the behaviour of a 

lithium-ion battery. The Thevenin model is created by 2 RC branches and identifies the model 

parameters with the Coulomb Counting, Extended Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF). The Hybrid Pulse Power Characterization (HPPC) test data obtained at 40°C, 25°C, 

10°C, 0°C, and -10°C are used to calculate the OCV 3-dimensional curve as a function of SOC 

and T (Temperature). A comparison of the three methods is shown, indicating that the UKF method 

of battery SOC evaluation is more accurate than the Coulomb Counting method and EKF.  
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1. Introduction    

Nowadays, electric vehicles are the focus of attention because of the imperative to reduce emissions. Using 

electric vehicles will lead to less air pollution, less noise pollution, low costs, and using renewable energy 

tariffs.  However, their performance is directly dependent on the battery’s performance. 

Perhaps the only weakness of the electric car is its batteries, resulting from the low energy density stored 

in the battery, many batteries must be used, which increases vehicle weight, additional energy is used to 

carry this weight, and the mileage is lower compared to combustion cars. Also, the charging of these 

batteries will take time and a high cost will be spent on buying batteries. If suitable batteries are made that 

do not have the current problems, of course, cars with internal combustion engines will be abandoned. 

Currently, Lithium-ion is so permanent and suitable. In the rest of this chapter the differences, pros and 

cons of several types of batteries will be thoroughly explained. 

 The electric vehicle industry is one of the most promising industries worldwide because of the rapid 

changes in manufacturing technology. It is one of the most important methods of development in the 

electric vehicle industry because of its advantages in low emission, high voltage, energy savings, and long 

service life. Lithium-ion batteries have become a basic source of energy due to their application fields, 

including electric cars, electric buses, underwater weapons, submarines, and space vehicles. Therefore, 

accurate state of charge (SOC) estimation is a crucial portion of electric vehicles. In these batteries, the 

problem is to prolong the lifetime of battery by preventing over charging, over discharging. Therefore, 

accurate estimation of state of charge of battery is essential to have more lifetime of the battery. In this 

study the main aim is proposing the best algorithm to SOC estimation and comparing existing methods 

for SOC estimation. 

 

1.1.  Batteries for electric vehicles 

     These batteries have been made with different technology overing the last 20 years. 

  Lead-acid batteries 

    Until 1997, batteries for electric vehicle were lead-acid. The life of these batteries was three          years, 

and they could withstand 300 to 500 cycles. They were the most common and cheapest   hybrid car 

batteries in the past. 

Two types of these batteries exist: 

Batteries used for starting the motor starter: Car starter batteries should be able to charge quickly. 

Batteries by Deep cycle: They are used for some special vehicles such as golf carts or forklifts.  

Motor starter batteries are designed in a way that they have capability of fast charging. They are used for 

limited types of electric vehicles. 
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It is not appropriate to discharge the Lead-acid batteries at below half of their capacity, as this will shorten 

the battery life. It is common to use lead-acid batteries because of the maturity of the battery technology, 

their high availability and low cost (there are some exceptions: The first electric vehicles, like Detroit 

Electric, have used iron-nickel batteries). 

Deep cycle lead batteries are not low cost, and their lifespan is shorter than the vehicle itself, and 

they need to be replaced every 3 years. 

Nickel–metal hydride batteries 

Lead-acid batteries have been replaced with nickel-metal hybrid ones. Recently their technology 

is going to be approximately mature.  

Although their efficiency is less (60-70%) in discharging and charging than other batteries such as 

lead-acid batteries, their energy is higher approximately 30-80 watt-hours/kg (Wh/kg), more than 

lead-acid batteries. Nickel Metal hydride batteries have an incredibly long life if they are used 

correctly. For example, the TOYOTA RAV4 battery is of the nickel-metal type and has been 

shown to still work after 160,000 km (100,000 miles) and about 10 years. Table 1.1 shows the 

advantages and disadvantages of Nickel-metal hydride batteries. (Iwai, 2019) 

 

Table 1-1  Advantages and disadvantages of Nickel-metal hydride 

Disadvantages 

 

Advantages 

the ability to store up to 40% less energy than 

Li-ion batteries 

High stability and resistance 

larger size and more weight 

 

Better safety due to less toxic substances 

high heating speed Lower recycling cost 

 

Lithium-ion batteries    

Lithium-ion batteries were first produced for use in laptops and electronic devices. These batteries 

have a long cycle life and high density of energy. Therefore, they became good candidates for 

using in electric vehicles. Table 1.2 explains this battery’s advantages and disadvantages. They 

were first used in electric vehicles in 1997. These batteries could withstand 1,000 battery cycles 

and the lifespan of these batteries was between 2 and 4 years. (Morita et al., 2021) 

The technology of making these batteries has been improving all the time, until now these batteries 

can have 4,000 cycles. Also, you can use them for a lifespan of 10 years and 1 million miles. 

(Harlow et al., 2019) New electric cars are using new changes in the chemistry of their lithium-ion 

batteries that have less energy but are fire resistant, environmentally friendly, fast charging (as fast 

as a few minutes), and have a longer life. (Botsford and Szczepanek, 2009) 

 Currently, various automobile companies are testing and improving lithium-ion batteries. New 

data has proved that heating and charging fast causes lithium-ion batteries to deteriorate earlier 
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than their actual life span. For instance, the draining of the battery used in the Nissan LEAF will 

be twice as fast as Tesla’s battery. The battery plays an important role in electric vehicles.   

Table 1-2  Advantage and disadvantage of Lithium-ion batteries 

 

 

 

 

 

characteristics of batteries: 

Capacity is defined as the amount of stored energy in the battery and related to a lot of 

characteristics, the most important of which are: 

- The surface area or physical size of the plates covered by the electrolyte. 

- Weight and amount of material in plates 

- The number of pages and the type of separator between them 

- The amount of electrolyte and its specific mass 

- Battery age 

- Cell conditions - the amount of sediment at the bottom of the cell 

- Temperature 

- Low voltage limit 

- Discharge rate 

The battery capacity of an electric car is expressed in kilowatt-hours or KWh. By choosing a car 

with a higher battery capacity, you will have a greater range. This is like buying a gasoline car 

with a bigger tank. But it should be known that due to the way electric cars work, you will never 

have access to the battery’s full capacity. The reason for this is related to the car's main 

management system, which prevents 100% charging and complete battery discharge to maintain 

efficiency and increase battery life. The capacity of current electric vehicles ranges from 17.6 kWh 

in the Smart EQ Fortwo to 330 kwh in the Tesla Model S. Battery capacity and other electric 

vehicle specifications can be Vc 

Lead acid batteries and lithium-ion - main differences   

disadvantages 

 

Advantages 

high manufacturing cost Better energy-to-weight ratio 

gradual reduction of capacity High charging speed 

high heating speed No memory effect 
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The use of lithium-ion batteries in small devices such as laptops and smartphones has become 

commonplace. On the other hand, today the production of electric cars is very attractive for many 

companies, and as a result, the technology of lithium-ion batteries in large formats is expanding. 

(Horiba, 2014) 

Usually, UPS (uninterruptible power supplies) batteries for emergency power devices are made of 

sealed (dry) lead acid batteries. These types of batteries are still preferred over lithium-ion batteries 

because of features such as final cost, energy storage, security, reliability, and considering the cost 

of these features. This battery is used for a long time in terms of rechargeability of the battery 

system that is. Lead acid is resistant, hard, and economical, but it holds little energy and has fewer 

cycles. Lead acid is used for golf carts, wheelchairs, personnel carriers, emergency power, and 

uninterruptible power supplies (UPS). Being toxic with Lead means they cannot be buried as 

waste. 

Li-ion batteries are used in many tasks that were previously done with the help of nickel and lead 

batteries. Li-ion requires a protection circuit to maintain safety. This battery is more expensive 

than other types, but the low maintenance and high cycle count make it lower expense per cycle 

than other chemistries.   Li-ion has different types that are named by their active ingredient, namely 

cobalt, manganese, phosphate, and titanate. (Mekonnen, Sundararajan and Sarwat, 2016) 

Lead and lithium batteries may look quite similar. It can be an old marketing tactic to convince 

consumers of new technology. However, when you choose them, the difference between lithium 

and lead-acid batteries becomes more apparent. Lead acid batteries are older than lithium batteries 

and have been used for many years. With the passage of time and the advancement of science and 

technology, a new type of battery called lithium-ion emerged. Lead-acid batteries are larger than 

Lithium-ion batteries, have more odour and require more maintenance, are not as safe, and are less 

environmentally friendly. 

The main differences between lithium and lead acid batteries are: 

Chemical compounds: 

In the lead-acid battery, lead oxide is used as the anode and lead as the cathode, and sulfuric acid is also 

used as the electrolyte, but in the lithium-ion battery, graphite is used as the anode, and lithium oxide is 

used as the cathode. And salt is used as graphite. (Collins et al., 2010) 

Environmental effects: 

Lead-acid batteries contain 6% to 18% lead, which is considered a heavy and toxic metal, so they need 

more care in disposing, but because lithium is considered a safe material for nature, Lithium batteries are 

environmentally safe. (Zakiyya, Distya and Ellen, 2018) 

The price difference between Li-ion and Lead Acid batteries: 

Lithium-ion batteries are much more expensive than lead-acid batteries to manufacture due to 

having a protective circuit to monitor voltage and current. 
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The weight difference between lead and lithium 

Lead acid batteries are significantly heavier due to the presence of lead plates inside them. 

The biggest difference is in chemical stability. 

Lead and lithium batteries have different chemical compositions. All types of lead acid batteries have 

stable chemical resistance. However, the dilute sulfuric acid inside the enclosure can cause skin irritation 

if there is a crack or crack in the battery. Some volatile hydrogen gas can escape during the charging of 

the target site. (Mirzaei, Leonardi and Neri, 2016) 

Lithium-cobalt-oxide batteries, on the other hand, may catch fire when overcharged. Battery 

scientists have improved the technology by developing safer models of lithium-ion phosphate. 

However, this amount of development is still low and not always acceptable to inexperienced 

customers. 
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Characteristic Lithium battery 

 

Lead acid batteries 

 

Cycle life 1200 to 2000 500 to 900 times 

tarting specific energy  40W · H / kg 150W · H / kg 

Charging time   

 

2~4h – fast charging 3~6h slow charging in 8h or 

more 

Energy for discharging 

and Charging  

lithium-ion battery’ 

efficiency in charging and 

discharging energy 

conversion efficiency can 

be more than 97% 

discharging and charging 

energy conversion 

efficiency is about 80% in 

lead acid battery 

Price high low  

The volume and occupied 

space 

small  big 

Weight less than 1/3 ~ ¼ kg heavy 

Pollution causing pollution during 

production 

if it is not recycled, the 

presence of lead causes 

environmental pollution 

Complex maintenance cost  high maintenance costs Low maintenance costs 

overcharge tolerance high low  

The level of toxicity very low high 

 

Table 1-3  Comparing Lithium batteries and Lead acid batteries. 

 

Comparison of Lead acid batteries with lithium batteries 

The biggest advantages of lead acid battery over lithium are: 

     • Its technology is known 
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Lead acid batteries have been known and used for about 25 to 30 years, and their production 

technology is very strong and advanced. (Li et al., 2018) 

 

     • No internal electronic components 

Lead-acid batteries, unlike lithium batteries, do not have internal electronic components. 

Therefore, the lead-acid battery can withstand high electric current, temperature, and discharge, 

while the lithium battery cannot. In a lithium battery, these internal electronics shut down the 

battery under extreme conditions, which can cause problems for the user. 

     • Stable and resistant 

The lead acid batteries are very resistant and hard. In difficult situations like high current and 

temperature, this battery maintains its performance. Sealed acid batteries are widely used in 

larger machines such as electric forklifts and electric motors that require high current. (Jang et al., 

2006) 

 

The biggest advantages of lithium batteries 

• Spontaneous discharge is very limited. 

The lithium battery can maintain its charge level for long periods of time. For example, if you stop 

working with an electronic device on Friday evening with a 50% charge, on Monday morning, 

when you start working with the device again, you will see that it has retained almost 50% of the 

charge. This is a big advantage over lead-acid batteries where there is a spontaneous discharge. 

(Kamali-Heidari et al., 2018) 

•  It weighs less. 

This type of battery is lighter and smaller than lead acid. This makes the user comfortable, and it 

can be used in small electronic devices. 

• It can be recharged very often. 

Lithium can be recharged about twice as often as a lead-acid battery.  

Pros of lithium-ion batteries in comparison to lead acid.  

• Longer life of service in lithium-ion batteries and as a result reducing the frequency of 

changing UPS batteries and still more assurance that the batteries will not fail. 

• The lightness of these types of batteries in the scale of a certain amount of stored energy 

• The frequency of charging and discharging is almost 10 times higher. 

• Much longer discharge time when not in use 

• Shorter charging time up to 4 times or more 
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A lithium-ion battery is a nonlinear system that is a complex device. EKF is a nonlinear variant 

of the Kalman filter that linearizes the existing estimates of mean and covariance. It is an 

improvement of the traditional filter algorithm, which is developed by combining the 

conventional Kalman filter and the linearized based on Taylor series expansion and obtains the 

approximate linear space equation by discarding the second order and above-the-terms. This 

project has been done by several steps shown in following diagram. Several working 

conditions have been created for the errorless state of charge (SOC) estimation directive to 

ensure accurate results from the SOC estimate showed in figure 1-1.. 

 

 

 

Figure 1-1    Working conditions created for SOC estimation. 

1.2.   Aims and Objectives 

The main aims of this project are: 

· To develop a method that can update model parameters online based on quantifiable factors under 

complex driven condition 

· To exhibit better performance of SOC estimation in the presence of variable environmental 

temperature by tracking battery dynamics. 

The main objective of this project is: 
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· To investigate the developed methods for SOC estimation of a li-ion battery. 

 

1.3.  Published paperss 

 

This study resulted in two papers. 

1. Published:  A. Lotfivand, D. Yu and B. Gomm, "State of Charge estimation using Extended 

Kalman Filter in Electric Vehicles," 2022 27th International Conference on Automation and 

Computing (ICAC), 2022, pp. 1-5, doi: 10.1109/ICAC55051.2022.9911137. 

2. Accepted: A. Lotfivand, D. Yu and B. Gomm, "State of Charge estimation using Unscented 

Kalman Filter in Electric Vehicles," 2023 28th International Conference on Automation and 

Computing (ICAC), 2023,  
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2. Literature review 
 

2.1  Introduction 

In this chapter, the details of the literature review are explained. By searching the important 

keywords, the related articles were found. These words are battery management system, state of 

charge estimation, lithium-ion batteries, electric vehicle, thermal management, fault diagnosing, 

equalizing the battery. In addition, the literature review helped in finding the gaps between the 

previous studies and the proposed project that can assist to ensure the novelty. Introducing the  

battery management system 

The battery management system includes monitoring the complete state of the software, hardware 

and imaging the battery performance in different working conditions of the vehicle . 

One of the most important factors to show the status of the battery is its charge and discharge 

status. In addition, adjusting the amount of current voltage that is applied to the battery pack in 

different conditions is of vital importance. For these reasons, it is necessary to have a central 

control system to measure and adjust these important parameters on the battery, because according 

to the characteristics of each battery and its characteristic curves, these parameters change in 

different working situations and the absence of this system, or its incorrect operation, causes a 

sharp decrease in the useful life of the battery and sometimes causes unfortunate incidents such as 

battery explosion . 

In general, it refers to a system that continuously monitors the status of the battery and displays it 

to the user, as well as the task of depicting various battery parameters, including the state of charge 

and discharge, the temperature, and environmental conditions of the battery. It is responsible for 

the parameters in different working conditions. In addition, it protects the battery against possible 

over currents and over voltages in the process of battery operation. (Shen and Gao, 2019) 

• Sampling and monitoring system 

• Central control system (calculations) 

• security system 

It is illustrated the main parts of Battery Management System in Figure 2-1 as follows: 
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Figure 2-1: Schematic of Battery Management System 

 Sampling and monitoring system 

 

In this system, the following parameters are usually displayed for the user's information:  

 

• The battery pack voltage and the voltage of each battery separately (in charging and discharging 

conditions) 

• Current drawn (when discharging) or applied current (when charging) by the set of batteries 

• The temperature of each battery permanently and in different working and environmental 

conditions 

• Battery state of charge (SOC)  

• Battery discharge rate (DOD) Depth of discharge 

• Showing the state of health of the battery (SOH) both in terms of physical conditions and 

functional conditions  
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Another capability of BMS systems is to prevent the occurrence of causes and defects that 

endanger the health of the battery. The most important of these protections are: 

• Protection against applying additional currents during charging or discharging by means of 

current limiters: 

▪ during charging - charge current limit (CCL) 

▪ during discharge - discharge current limit (DCL) 

• Protection against overvoltage during charging 

• Protection against voltage reduction over the permissible limit during discharge, especially in the 

case of lead-acid batteries (Acid-lead) and lithium-ion (Li-ion) must be observed. 

• Protection when the temperature increases and decreases beyond the permissible limit of the 

battery 

• Protection against pressure increase, which is mostly applicable to Nickel Metal Hydride (NIMH) 

batteries.   

  Central control system 

This part of BMS is the decision centre of the system, in such a way that the samples of parameters 

received by the sampling unit are transferred to this unit and compared with reference information 

and according to different conditions, the required calculations are done, and finally, control or 

protection commands are sent to different parts of the system. For instance, if the voltage of one 

of the cells is lower than the permissible limit, the central control system, after knowing about this 

and determining the amount of charge required for the battery, sends a command to the system 

balancer, and the balancer also applies voltage; this increases the battery until the charge reaches 

the optimal level. For another example, if the voltage of a battery exceeds the limit, in this case, 

the system adds a resistor (such as an inductor) to that battery and draws current, and the battery 

is brought to the optimal level. (Lelie et al., 2018) 

  Measurement and display systems 

▪ Measurement systems 

In general, the decision of the control centre is based on the information that it receives from 

different parts of the system (specifically, the battery) and through the sampling system, and the 

more accurate the information, the more correct the controller's commands will be. It will increase 

the efficiency of the useful life of the battery and other electrical systems related to it. 

The information on which the controller makes decisions is obtained in two ways: 

• Information obtained through direct measurement of parameters including current, voltage, 

and battery temperature values. 

• Information that is obtained indirectly by using the results of direct measurements and their 

analysis, such as the state of charge and discharge of the battery (SOC & SOD). 
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For parameters that can be measured directly, such as voltage, current, and temperature, the desired 

result can be achieved by using very simple measuring devices, including current, voltage, and 

battery temperature measuring devices. It is indirectly related to the performance accuracy of the 

measurement system. Temperature sensors can also be used to measure temperature. 

But in the case of parameters of the second category, the story is different because the system is 

faced with a set of raw information and must combine the different pieces of information and 

finally, according to the obtained results, obtain detailed information about the battery condition. 

For this reason, it is necessary to have computational algorithms that can have a more detailed 

analysis of how the battery is doing. It is necessary to give a brief explanation of one of the 

important parameters in this section. (Chatzakis et al., 2003) 

  SOC curve 

The SOC curve is considered as an essential factor that shows the condition of the battery. This 

curve shows the amount of battery charge or, more precisely, the amount of energy remaining in 

the battery and is expressed as a percentage from zero to one hundred. (Haq et al., 2014) 

 To make the matter clearer, suppose the car battery is near the end of its life and has been 

discharged by 20%. Now, even if the battery is recharged and reaches 100%, the SOC curve will 

show 80%, which means that according to the useful life of the battery, 100% of its capacity can 

no longer be used, and the BMS system will make the car settings based on this 80% as if a new 

battery with 80% of the capacity of the previous battery is installed in the car. (Pop et al., 2008)Four 

factors are usually used to determine the state of charge curve in the battery, and in this section, 

these four factors are mentioned: 

a) Battery voltage: as the efficiency of the battery decreases for various reasons such as increasing 

the battery life or frequent charging and discharging, the battery voltage also decreases, and even 

after recharging it does not return to its original value (so-called the battery does not charge more 

than this). As a result, the SOC percentage will show a lower value) Battery current: SOC 

percentage reduction shows that it is no longer possible to draw as much current from the battery 

as the nominal current (take a load from the battery). 

c) Chemical compounds of battery electrolyte: Reducing the chemical compounds in the battery 

electrolyte reduces the ability of the battery to transfer electrons between the negative and positive 

poles of the battery and generally reduces the efficiency of the battery. This is shown in the SOC 

curve with a decrease in percentage. 

d) Battery pressure: After a while this item will reduce the SOC.  

Monitoring system 

As the name of this system suggests, its task is to display the information obtained from the 

measurement systems for the user and to inform them of the general state of the battery system 

and its accessories. Depending on the type of technology used, monitoring may only include the 

numerical values of voltage, current, temperature, pressure, and the state of the chemical 

composition of the battery, or in addition, it may provide the driver with SOC and SOD curves, 
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etc. Also, all the alarms related to BMS system protections such as voltage drops and over currents 

appear on the monitor. 

2.2  First example for battery management system  

 

The details of the operation of each block of BMS (A) are explained in Figure 2.2 as follows: 

 

Figure 2-2: Schematic diagram for first example of Battery Management System 

 

Measuring block  

  This block converts the initial cell voltage, battery temperature, and battery current into digital 

values at various points in the battery pack. All these data are used to estimate the state of charge 

of the battery in the next steps.   

 Battery algorithm blocks 
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The goal we are perusing in this block is to estimate SOH and SOC by measuring battery 

parameters including voltage, current and temperature of battery. SOC is expressed as a percentage 

of a battery's capacity and can also be seen as a fuel gauge in HEVs and EVs. 

 Estimation capability blocks 

After determining the SOH and SOC, the BMS has the top amount of discharge and charge current 

at each moment according to the method. This block’s output is required in the car's ECU and as 

a result charged or discharged, out of range is prevented. 

Cell balancing block 

Because of the limitations of the manufacturing process, we cannot create all equally. Variations 

in cell capacity range from a few percent to 15% in normal circumstances. Differences like 

charging or discharging characteristics and internal resistance are inevitable. Cell balance is critical 

to maximizing battery pack capacity and battery life. 

Ground fault detection block 

If the voltage of the battery pack is above 200-300V in HEV and EV, any leakage from the car 

chassis is very dangerous. Therefore, the effect of the detection system for ground fault is 

necessary to ensure the safety of the electric vehicle. Therefore, this block is essential for safety 

especially for high voltage DC. (Lelie et al., 2018) 

Heat management block 

Temperature management needs to control and monitoring of the battery’s temperature and then 

the battery’s under or over temperature will not damage the battery. The result of this control block 

is the electric heater and fan that try to keep the battery temperature within desired limits. (Zhang 

et al., 2014) 

CAN block 

It is a physical communication module that controls all output and input signals of the BMS. Given 

the amount of data being received and sent, the protocol of CAN which is high-speed should be 

applied because the amount of data allows up to 1 Mbps range.  

2.3  Second example for battery management system 

 

Figure 2.3 shows battery management system b as follows. It is consist of some parts like Battery Pack, 

Measurement, SOC estimation, Capability Estimation, Equalisation, SOH estimation, and signal blocks. 

(Bergveld et al., 2002) 
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Figure 2-3: Second example for Battery Management System  

 

Measuring block 

 Cell voltage, battery current, battery temperature and ambient temperature at different parts of the 

battery pack are individually imaged and converted into digital amounts. The information is used 

to predict the battery’s state in the next steps. Through each sampling step, just one value of the 

voltage of the cell is sent to the A to D converter in the centre of the processing unit. The pros of 

primary cell voltage measurement justify the additional equipment price since it can balance and 

protect the excess charge at the level of the cell. (Chan, 2007) 

Blocks of battery algorithm  

The battery algorithm’s block shows the status of the battery. Its main duty is to predict SOH and 

SOC by measuring battery parameters including battery temperature, current and voltage. 

SOC is considered as a battery capacity or a percentage of the capacity range. This quantity looks 

like a fuel gauge in vehicles, but in a battery, it shows the energy being drained from the battery. 

SOC estimation is very important to understand the remaining usable battery’s capacity while 

using the battery. This information allows estimating the distance travelled by the EV with the 
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available battery capacity. Temperature, duty cycle and range of discharge affect SOC estimation, 

so the BMS must use an appropriate model for the battery to consider these parameters to find an 

accurate SOC. The types of inputs of this method include temperature, current and voltage and 

these values achieved by the corresponding sensors. These kinds of sensors have analogue inputs 

that are digitized using an A/D converter. All the inputs should be continuously controlled by 

microprocessors at a regular peace. 

The SOC indicator not only estimates the useful distance, but also maintains the battery at a certain 

SOC to transfer and accept charge not being over discharged or overcharged. In an EV type, mostly 

the cells undergo charge release related to regenerative braking, which allows excess charge to 

penetrate the cells, especially in the case of high SOC. In these conditions, the Battery Management 

System must monitor the SOC and control the release of charge during re-braking and prevent the 

cells from overcharging. Estimating an accurate SOC is BMS’s most important task. We have 

several methods to obtain SOC using cell voltage, temperature and current. The easiest way is 

measuring directly. For example, measuring the OCV or voltage of the charged cell and then 

deriving the SOC using the discharge parameters. 

This method has some problems with Li-ion batteries since in the Li-ion battery we have a smooth 

curve in the middle part of the discharge curve. So, we may have a large difference in SOC 

resulting from a small error in measurement. In direct measurement, temperature and age impacts 

must be considered. 

 The block for estimation of Capability  

When the SOC and SOH are determined, the BMS receives the limitation for discharge and charge 

current at any moment according to the algorithm. This block’s output is sent to the car's ECU and 

the battery prevented from charging or discharging beyond its specific range. The estimation 

block’s duty is sending information to the ECU that the charge and discharge levels of the battery 

are now safe. This information is critical to the safety of battery operation and accidental failure is 

preventable. (Beckmann et al., 2004) 

The control rules for extracting the maximum charge and discharge current are according to the 

inputs. The maximum charge and discharge current time is expressed for different values of the 

battery parameters. (The maximum charge current percentage is the charge factor) 

The BMS limits the current of charging based on the functions that depend on some parameters 

like SOC cell voltage, and temperature. For instance, the current of charging decreases when the 

temperature is between 30 and 40 degrees Celsius. Moreover, the maximum current that can charge 

the battery is dependent on SOC and cell voltage. It should be considered, based on the 

characteristics of the battery, that it is better to discharge the battery at a certain minimum 

temperature, for example below -20 °C. In practical cases, the C rate is very low. The maximum 

charge and discharge rate is stated in the data sheet of the battery manufacturers. C is the battery’s 

nominal capacity. 
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Cell balancing block 

Because of the manufacturing limitations of the process, we cannot create all cells equally. 

Variations in the range of cell capacity range from a few percent to 15% in normal circumstances. 

Prominent differences like charging or discharging characteristics and internal resistance are 

inevitable. Cell balance is critical to maximizing battery pack capacity and battery life. (Cheng et 

al., 2010) 

The above-mentioned block compares the voltage of the cells to achieve the difference between 

the higher voltage cell and the lower voltage cell. In the case of this amount being greater than a 

predetermined threshold, it stops charging and discharges the cell with a higher voltage through 

an external resistor. The discharge is finished after the difference is reduced. This balancing 

method of the cell is called dissipation. 

The other algorithm for balancing the cell is balancing it actively, that is either through charging 

each cell separately or transferring the charge from a cell with a higher voltage to a cell with a 

lower voltage. This balancing is more efficient and clearly superior in performance; however, it is 

more expensive for the industries that are price sensitive. 

 Temperature management blocks 

The boundary of the temperature management block diagram in the BMS predicts the temperature 

of the battery. Estimating the temperature is done by some simple algorithms. Temperature 

management’s duty is controlling and monitoring the temperature of the battery. Therefore, the 

battery will not be damaged at too low or too high temperatures. The output of this control block 

is the electric fan and heater that keep the temperature of the battery within the desired limits. The 

temperature management block detects the environment and battery temperatures and decides on 

heating or cooling operations and urgently sends a signal to the ECU if the temperature rises 

abnormally. Figure 2.4 shows the third Block Diagram for battery management system C. 

(Scavongelli et al., 2015) 
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Figure 2-4: Block Diagram for the third example of battery management system C   

 

2.4  The third example for battery management system  

BMS consists of a variety of sensors, actuators and controls that have different signal wiring 

systems and methods. There are three important duties for Battery Management Systems in cars, 

which can be described below (Scavongelli et al., 2015) 

• Protecting cells and battery packs from becoming damaged 

• Creating batteries that work at the right voltage and temperature range and guaranteeing 

safety and if possible, service life. 

• To maintain the battery so that it can work in a state to fully satisfy the needs of the drivers. 

• Finally, the power of car batteries must have appropriate characteristics and standards. The 

general block diagram of the BMS hardware in the car was mentioned above. 

The inputs to the BMS include the sensor for current, the sensor for voltage and their task is to 

measure the original voltage and current, sensors for temperature to measure cells’ temperature, 

the ambient temperature and possibly the inside temperature of the battery cooler and the outlet. 

Usually, analogue input like accelerating the pedal sensor and the sensor of the brake and digital 

input like the start key signal (off or on) approves or prohibits the charging switch. 
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BMS outputs include temperature management module such as fan and electric heater that control 

heat and cold., balancing module such as capacitor switch adjustment and resistance loss to battery 

balancing and managing safety of voltage such as main current connector and module connector.  

Usually, digital outputs are like specific charge, error alarm and communication module. 

Moreover, BMS should contain global clock module internally and power storage module and 

possibly have a charging system and a module for interfacing with the machine. We should be 

confident of electromagnetic compatibility. The electric motor’s working environment needs the 

BMS to have acceptable ability to combat anti-electromagnetic interference and transfer the wave 

to low output levels. BMS software covers these functions. 

 Detection of battery variables 

This function consists of systems for overall current, overall voltage, and initial cell detecting 

(preventing overcharge, over discharge, and anti-polarity), temperature detecting, insulation 

detecting, smoke detecting, impedance detecting, damage detecting, etc. 

Estimation of battery condition 

This block consists of the SOC state of charge or the SOD discharge rate or the SOH health rate 

and the SOF performance state. The SOD or SOC of batteries is estimated based on the conditions 

that include voltage, current, and temperature. SOH is estimated based on the amount of improper 

use and reduction of battery performance. SOF is estimated based on SOH and SOC and the 

environments of the battery operating. (Lu et al., 2013) 

 On-board diagnostics (OBD) 

Errors consist of sensor failure, network failure, actuator failure, battery failure, over voltage (over 

charge), under voltage (over discharge), over current, over temperature, connections. It is baseless, 

due to combustible gas concentration, insulation failure, integrity failure, rapid and premature 

increase in temperature. 

Controlling the battery safety and alarms 

Its function consists of controlling the thermal system and safety. When faults are detected, the 

vehicle control unit will either charge or be notified via the network and they will repair the faults 

to avoid damage, resulting from high temperature, overcharge, low temperature, overcurrent, over 

discharge, and electrical leakage etc., to the battery and people. 

Control the charge  

Due to the characteristics of the battery and the level of charging power, the BMS has a duty to 

control the charging until it is completely charged. 

 Battery balance 

Based on the data belonging to every cell, BMS balances cells via balancing algorithms such as 

cell balance, loss balance, non-loss balance to make SOC compatible and possible between cells. 

Temperature managing 
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Based on distributing the temperature in the battery pack and the regulation of charging or 

discharging, the BMS makes the decision to start cooling or heating and has power for heating and 

cooling. 

Networks 

As it is inappropriate to implement a BMS in a car and the car also needs network functionality, it 

is suitable for performing linear calibration and monitoring and automatically generating code and 

downloading the program linearly (updating the program without sample isolation) for BMS 

without disassembly. Usually, the CAN network is adopted. (Controller Area network) 

Information storage 

One of BMS’s duties is to store important information like SOH and SOC and the total number of 

charges and discharges, failure codes, coordination, etc. An actual BMS in a car may just have 

some of the software and hardware listed above. For each cell we need a sensor for voltage and a 

sensor for temperature. For a system of a battery that has a small number of cells, it is possible that 

the BMS control or even the BMS function will be integrated into the vehicle main control, and 

for a battery system that has many cells, there may be a main control and several sub-controls just 

to manage one battery module. Each module of battery with a lot of cells, can have circuits as 

connector module and module for balancing and sub-control. The battery module will manage 

voltage, current and control connector measurements, balanced cells, and communication with the 

main control. According to the data reported by the secondary control, the central control estimates 

the battery condition, diagnoses the failure, manages the temperature, etc. 

Introducing the proposed battery management system 

Ground fault detection block 

Since the battery pack voltage is above 200-300V in HEV and EV, any leakage from the car chassis 

is very dangerous. Therefore, the effect of the system for detecting ground faults is necessary to 

be confident of the safety of the electric vehicle. It is used for safety and is essential for high DC 

voltage. 

Temperature management block 

Temperature management is based on the monitoring and control of the temperature of the battery 

and ensuring the battery is not damaged by high or low temperature. The output of this control 

block is the electric cooling and heating that tries to control the temperature within the desired 

limits. 

Measurement block 

Cell voltage, battery current, battery temperature and ambient temperature at different points of 

the battery pack are individually imaged and converted into digital signals. All this information is 

required to estimate the state of the battery in the next steps. The block that measures cell voltage 

shown in the figure below consists of a relay matrix. Each time, just an analogue-to-digital 

converter of the central processing unit is connected to the cell voltages. The advantage of primary 
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cell voltage measurement justifies the additional hardware price because it can balance and protect 

the excess charge at the cell level. 

 Blocks for algorithm of battery  

This block shows the battery’s status. This block contains SOC state of charge or DOD discharge 

rate or SOH health rate. DOD or SOC of batteries is estimated based on situations that include 

current, voltage and temperature. SOH is predicted based on the amount of improper use and 

reduction of battery performance. 

 SOC is defined as a battery capacity or a percentage of the capacity range. This quantity looks 

like a fuel gauge in vehicles, but in a battery, it shows the energy being drained from the battery. 

SOC estimation is beneficial to understand the amount of battery capacity that remains in the 

situation that the battery is empty. Therefore, using this information, the driver can estimate the 

distance travelled by the EV with the remaining battery capacity. Temperature can affect SOC 

estimation, duty cycle and discharge range, so the BMS must use an appropriate model to affect 

these factors to find SOC. The types of inputs of this method include voltage, current and 

temperature and the values obtained by the corresponding sensors. It is sensors’ duty to obtain 

analogue inputs that are converted to digital with an A-D converter. Inputs are continuously 

monitored by microprocessors regularly. 

More than just the estimation of distance, the SOC indicator maintains the battery at a certain SOC 

to transfer and can be charged without the risk of over discharging or overcharging the cell. 

In an EV type, the cells often undergo charge release due to regenerative braking, which allows 

excess charge to penetrate the cells, especially in the high amount of battery SOC. In such events, 

the BMS must monitor the SOC and control the release of charge during re-braking and prevent 

the cells from overcharging. Therefore, we can assume SOC as an important output of BMS. There 

are several methods to determine SOC based on cell voltage, current and temperature. The simplest 

algorithm is measuring them directly. For example, measuring the OCV or voltage of the charged 

cell and then deriving the SOC from the discharge characteristics. 

This method is inappropriate for Li-ion batteries because the middle part of the Li-ion battery 

discharge curve is completely smooth. A small error in measurement will cause a large change in 

SOC. In directly measuring temperature and age, impacts must be considered. 

 Block for capability estimation  

After determining the SOH and SOC, the BMS receives the discharge current and maximum 

charge at any moment according to the algorithm. This block’s output is provided to the car's ECU 

and the battery cannot be charged or discharged beyond its specific range. The estimation block’s 

duty is to send data to the ECU that the charge and discharge levels of the battery are now safe. 

This information is critical to the safety of battery operation and prevents accidental failure of 

battery specifications. 

The control rules for extracting the maximum charge and discharge current are based on the inputs. 

The maximum discharge and charge current time are expressed for different amounts of the 
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variables of the battery. (The value of the maximum charge current is defined as the charge factor 

in percentage) 

It limits the current of charging based on functions that depend on SOC, temperature, and cell 

voltage. For instance: the charging current decreases if the temperature is in the range of 30 to 40 

degrees Celsius. Moreover, the battery charging maximum current depends on cell voltage and 

SOC. Note that, according to the characteristics of the battery, it is better to discharge the battery 

at a certain minimum temperature, for example below -20 °C. In real cases, we have very low C 

rate. The maximum charge and discharge rate is stated in the data sheet of the battery 

manufacturers. C is the nominal battery capacity. 

Cell balancing blocks 

Because of the limitations of the production process, the cells will not be equal; the capacity of the 

cell will be varied from a few percent to 15% commonly. Other differences such as charging or 

discharging characteristics and internal resistance are inevitable. Cell balance is critical to 

maximizing the battery pack capacity and battery life. 

This module has the duty of comparing the voltage of the cells and finds the difference between 

the cell having higher voltage and the cell having lower voltage. In case of the difference being 

greater than a predetermined threshold, it stops charging and discharges the cell with a higher 

voltage through an external resistor. The discharge is finished after the difference is reduced. This 

balancing method of the cell is called dissipation. 

The other method for balancing the cell is active balancing, that is either through charging each 

cell separately or transferring the charge from a cell with a higher voltage to a cell with a lower 

voltage. This method is obviously superior in performance and energy utilization, but it is 

expensive for the price-sensitive automotive industry. (Manenti et al., 2010) Many hybrids 

balancing circuits use fast capacitors, a dc-dc converter with a single dc converter, and several 

secondary windings that could charge the weakest cell of the battery pack. The method cost is 

related to the balancing time that in turn, is related to the auxiliary power supply’s power. 

Existing battery models for electric vehicles 

 Nowadays, Electric vehicles are the focus of attention because of the imperative to reduce 

emissions, however, their performance is directly dependent on the battery’s performance. 

Currently, Lithium-ion is so permanent and suitable. Nickel-manganese-Cobalt (NMS) and nickel-

cobalt-aluminium (NCA) seem more suitable among them. Therefore, acting as a suitable model 

for simulation of battery behaviour for obtaining SOC (state of charge), the capacity State of 

/health (SOH) is essential. We can use several existing models and the impedance electric 

equivalent model is more appropriate, attractive, and its performance is better in real-time 

simulation. (Kroeze and Krein, 2008) 

Batteries are the most important storage systems. Namely, when hydrogen storage is used, we need 

for a battery for stabilizing DC voltage. There are some drawbacks to EVs such as lifetime, being 

expensive, and limited environmental temperature. So, concentrating on batteries used in EVs 

(electric Vehicles) seems essential. There are some advantages for Li-ion batteries that make them 
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stand out, such as low self-discharge ratio, high energy, and power density. On the other hand, the 

tolerance overcharging is low. Therefore, we need a high-performance charging system for this 

battery. 

Between 8 and 10 years is the average lifetime for EV’s batteries, and it is 20% to 30% degradation 

in comparison to first capacity. (Severson et al., 2019). However, in practical cases, because of 

braking and acceleration that is approximately more than ten times average power, the lifetime 

will be reduced.  To sort this issue, we need a technology to increase the amount of energy and 

control and optimizing the energy is needed. Therefore, a reliable model is essential for technical 

and economic efficiency of the battery. It is notable that BMS (Battery Management System) is 

directly responsible for stored energy in the battery and indirectly responsible for passengers’ 

safety. There are several models that are appropriate for related studies such as State of Charge 

(SOC), State of  Health (SOH), Thermal analysis, and mechanical stress studies. . (Lelie et al., 2018) 

Mostly the models are called electrochemical models and they show their reaction in 

electrochemical terms. These models are detailed and there is a high price for developing them, 

and high-level computing is their characteristic. Electrical models have the circuits that are 

equivalent to the battery to imitate their behaviour under operation. These models neglect some 

details, so they are faster than electrochemical and are more common. There are other models that 

are based on second order or higher mathematical complex equations to predict a batteries 

performance for methods such as artificial intelligence.  The accuracy of these models is closely 

related to the amount of data applied in the training step. (Ren et al., 2020) 

Table 2-1 illustrates several models for electric vehicle batteries and compare them in terms of 

Ability for physical interpreting Data, Being Complex, Accuracy, and suitability for some 

application. 
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Category of 

model 

Model Ability for 

physical 

interpreting 

Data Being 

Complex 

Accuracy  Appropriate 

for 

Analytical 

model 

State-Space 

Sheperd other 

rations 

Rakhmatov and 

Vrudhula 

Peukert’s model 

 

 

Low 

Medium 

Medium 

Low 

E 

SE 

SE 

E 

Medium 

Medium 

Medium 

Medium 

 

Medium 

Medium 

Medium 

Medium 

 

  

 

ESTIMATION 

Electro-

chemical 

ECM/Reduced 

order Electro-

Chemical 

Pure Electro-

Chemical 

 SE 

 

P 

Medium 

 

High 

High 

 

Very 

High 

Designing 

battery 

Impedance Frequency 

domain 

Low-

Medium 

SE Medium 

 

Medium 

 

real time 

operation and 

Characterization 

Fatigue/ 

Mechanical 

Fatigue/ 

Mechanical 

High  High  Designing 

Thermal ECM Thermal 

Analytical 

Thermal 

Medium 

High 

SE 

P-SE 

Medium 

High 

Medium 

High 

Real Time 

Combination 

of models 

Thermo-

Mechanical 

Thermo-

electrochemical 

Electro-Thermal 

High 

High 

 

Medium 

 

SE 

P 

SE 

High 

High 

 

Medium 

 

Low-

High 

Real Time 

Abstract 

model 

Artificial 

Intelligence 

Low E Medium 

 

Medium 

 

Analysing 

Offline 

Electrical 

Noshin 

  SE Medium 

 

Medium 

 

SoC estimation 

Electrical 

Neural nets 

  S High High SoC estimation 

Electrical 

PNGV 

1st, 2nd, nth 

order 

Medium-

Low 

 

SE Low-

High 

Low-

High 

SoC estimation 

Electrical 

ECM 

Thevenin 

1st, 2nd, nth 

order 

Medium 

 

SE Low-

High 

Low-

High 

SoC estimation 

Table 2-1  Classification of models considered for battery. 
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E: Empirical, SE: Semi-Empirical, VH: Very High 

Therefore, in analysing electromobility, combination models or electrical models are usable. 

However, mathematical models are complex and are not appropriate for real-time systems. Since 

they use complex formulas, computing values takes a lot of time and cost.Too simple models may 

not be suitable for steady-state analysis. PNGV (partnership for a new generation of vehicles) and 

Thevenin models are appropriate for simulations in transient state. Models based on Impedance 

show the battery’s AC reaction. On the other hand, runtime models show the battery’s DC reaction. 

Table 2.2 explains the classification of battery electrical models. 

 

 

Ability to predict Models based on 

Runtime-Combined 

Models based on 

Impedance 

PNGV or Thevenin 

models 

Runtime Able Not Able Not Able 

Transient Limiting ability Limiting ability Able 

AC Not Able Able Limiting ability 

DC Able Not Able Not Able 
 

Table 2-2 The classification of battery electrical model 

 

Models based on Equivalent circuits: 

This section explains several ECMs (Equivalent Circuit Models) which are suitable for 

electromobility systems and are arranged from the simplest one to the most complex. 

Less Complex models: 

The model of Ideal Battery 

 The first model proposed by Hageman is used in nickel-cadmium, (Jongerden and Haverkort, 2008) 

Pb-acid, and alkaline batteries. After a while another model was proposed by Gold for the most 

common batteries, Li-Ion, that has errors of up to 12%. 

This model (ideal model) has only voltage source and neglects the other parameters. However, this 

model neglects the load variation, and the changes of other parameters such as SOC. 

The important characteristics of this model are voltage (V) and capacity (Ah). Therefore, the 

amount of energy that is stored in the battery is (WH). In this model it is considered that the battery 

maintains the constant amount of volage that is not dependent on other important factors until the 

battery runs out of charge. Nevertheless, in real situations the open loop voltage directly depends 

on main factors such as SOC and the capacity and load are indirectly dependent. 
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This model is usable for steady-state application and does not consider the behaviour of the battery. 

The updating for this model is done by replacing the voltage source by another voltage source that 

can be controlled by SOC. It is obvious that voltage changes by SOC with a look-up table. This 

will lead to improving the accuracy of the model. 

Linear model of battery 

In this model an internal resistance (𝑅𝑖𝑛𝑡) is added to the model to have IR (Internal Resistant 

model) shown in Figure 2.5. Therefore, in this model we have a voltage source and a resistance. 

 

Figure 2-5: Linear and Simple model for battery 

 

𝑅𝑖𝑛𝑡 is losing energy and causes the battery to heat up and Vt shows the voltage depending on the 

Open Circuit voltage and its equation is as follows:  

 
𝑉𝑇 = 𝑉𝑂𝐶 − 𝐼𝑅𝑖𝑛𝑡                                                                                           2-1) 

 

With this model we can emulate  the instant dropped voltage that is dependent on the circuit current. 

If the resistance increases, the power loss will be increased, and the power availability will 

decrease. The main disadvantage of this method lies in its independence from the SOC, terminal 

voltage, open circuit voltage, and other important parameters of the battery. Internal resistance is 

completely dependent on parameters such as SOH, SOC, and temperature. However, in this model 

it does not depend on the parameters. By decreasing temperature, SOH, and SOC the resistance 

will increase. This is shown in Figure 2.6 and Figure 2.7 as follows. (Chiang, Sean and Ke, 2011) 
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Figure 2-6: Internal resistance varies with SOC.  
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Figure 2-7: Internal resistance varies with temperature. 

 

Figure 2-7 shows the internal resistance for 4 different temperatures. This model is only used in 

cases where the battery operates in the SOC’s middle range. Because just in this part, internal 

resistance is approximately constant. We can use this model in studies related to maintenance and 

the model can be improved by having a voltage source dependent on SOC. (Chiang, Sean and Ke, 

2011) 

Moreover, internal resistance changes through charging and discharging time. So, we can add a 

separate resistance for charging and discharging time in Figure 2.8 as follows. (Dürr et al., 2006) 
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Figure 2-8: Adding charging and discharging resistance to the simplest battery model.  

 

                                      𝑪𝒉𝒂𝒓𝒈𝒊𝒏𝒈: 𝑽𝑻 = 𝑽𝑶𝑪 + 𝑹𝑪. 𝑰                                                                         

                                       𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈: 𝑽𝑻 = 𝑽𝑶𝑪 + 𝑹𝒅. 𝑰                                                         2-2) 

 

In charging time Rc associated diode will polarize directly and will conduct, however the other 

diode will polarize indirectly and will not let the current circulate. In this model accuracy will be 

improved but the drawback of the previous mode exists. This model is shown in Figure 2.9. 
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Figure 2-9: Power Fade (PF) considering in the simplest battery model. 

 

 

                                                                                𝑹𝒊𝒏𝒕(𝑺𝑶𝑪) =
𝑹𝟎

𝑺𝑶𝑪𝑲                                                               (2-3)        

                                                                                  𝑽𝑻 = 𝑽𝑶𝑪 − 𝑹𝒊𝒏𝒕(𝑺𝑶𝑪). 𝑰                                               ( 2-4)   

 

R0 shows the starting resistance, k is the factor of capacity that can be obtained from the curve of 

load that the manufacturer provides, and SOC shows the current SOC. 

So, the recent value of SOC is as follow: 

                                                                                    SOC=1- 
𝑨.𝒉

𝑪𝟏𝟎
                                                                                            (2-5)  

‘A’ shows the current that is demanded, ‘h’ shows the time in Hours, and C10 shows the amount 

of capacity in 10 hours. Nevertheless, in some studies another resistance is added to the internal 

resistance, which is not linear as follows: 
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                                                                       𝑹𝒊𝒏𝒕(𝑺𝑶𝑪) = 𝑹𝒊𝒏𝒕 +
𝒌

𝑺𝑶𝑪
                                                              2-6) 

k shows a constant value for polarization and 𝑹𝒊𝒏𝒕(𝑺𝑶𝑪) is a non-constant resistor. 

So, this model has been widely used in stationary stages by a lot of battery producers. It is suitable 

for Pb-acid batteries. Moreover, in Li-ion batteries it can be used, as well. In the case of increasing 

the load, this model does not reduce the capacity. Therefor this model cannot be used in systems 

working dynamically or transient cases. The other drawback of the model is that the resistance 

does not vary with temperature. We can upgrade this model by adding Voc that is controlled by 

SOC as follows: 

                                                                    𝑽𝑻 = 𝑽𝑶𝑪(𝑺𝑶𝑪) − 𝑹𝒊𝒏𝒕(𝑺𝑶𝑪). 𝑰                           2-7) 

                                                                𝑽𝑶𝑪(𝑺𝑶𝑪) = 𝑽𝑶 − 𝒌. 𝑺𝑶𝑪                                        ( 2-8) 

                                                               𝑹𝒊𝒏𝒕(𝑺𝑶𝑪) = 𝑹𝒊𝒏𝒕 − 𝒌𝑹𝑺𝑶𝑪                                      (2-9) 

 

In the above equations 𝑽𝑶𝑪 is dependent on SOC and the internal resistance  𝑹𝒊𝒏𝒕(𝑺𝑶𝑪) is 

dependent on SOC, as well. Vo is fully charged 𝑽𝑶𝑪. 

However, this mode is not suitable for transient analysis. Its accuracy can be improved by 

considering SOH and temperature.  

Battery model using voltage sources: 

This model is based on connecting several voltage sources that each show several things. It can be 

shown as follows in Figure 2.10: (Nikdel, 2014) 

 

Figure 2-10: Model using voltage sources. 
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Terminal voltage can be written as follows: 

                                                          𝑽𝑻 = 𝑬𝒃𝒂𝒕 + 𝑬𝒑𝒐𝒍 + 𝑬𝑻𝒆𝒎𝒑 − 𝑹𝒊𝒏𝒕. 𝑰                              (2-10) 

𝐸𝑝𝑜𝑙 shows polarizations resulted from active substances, 𝐸𝑏𝑎𝑡 represents the internal battery 

voltage, 𝑬𝑻𝒆𝒎𝒑 shows the effect of temperature, and internal resistance is shown by 𝑅𝑖𝑛𝑡. The 

voltage sources can be obtained using practical measurement of the effect of each phenomenon in 

each SOC value. This is suitable for Li-ion, Pb-acid, and Ni-cd and applied for Hybrid automotive 

and EVs simulations.  

Electrical Dynamic Model RC (Resistor and Capacitor) Model: 

This model was first developed by SAFT battery Company and is shown in Figure 2.11. (Chiang, 

Sean and Ke, 2011) 

 

Figure 2-11: The Dynamic RC models 

Cp and 𝑅𝑝  shows the polarization effects, 𝐶𝑝  shows the capacitor for storage, propagation is 

shown by Rb, 𝑅𝑖𝑛𝑡, shows internal resistor is so small, and 𝐶𝑏  is very large. Moreover, in Li-ion 

batteries the resistance allocated for self-charging is negligible. The variation in voltage through 

the 𝐶𝑏 is SOC. 

This simple model is preferable in SOC estimation because it is accurate enough.  

 
 

                                                         𝑽𝑻 = 𝑽𝑶𝑪 − 𝑹𝒃. 𝑰𝒃 − 𝑹𝒊𝒏𝒕. 𝑰                                              (2-11) 

                                  𝑽𝑻 = 𝑽𝑪𝑷 − 𝑹𝒑. 𝑰𝒑 − 𝑹𝒊𝒏𝒕. 𝑰                                                 (2-12)                   
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Battery Thevenin Models: 

This first model in the Thevenin models was called OTC (One time Constant). This model 

consists of an RC Serie, 𝑉𝑂𝐶 (open-source voltage), and internal resistance (𝑅𝑖𝑛𝑡). Figure 2.12 

shows this model. 

 

Figure 2-12: OTC model 

To have good performance in transient mode we added an RC Serie to the simple model. The 

downside of the model is that it is assumed that all parameters are constant. All parameters in the 

model completely depend on SOH, SOC, temperature, and C rate. Therefore, improving the model 

can be considered as the effect of SOC on Voc. It can improve the transient simulating results. 

Second Order Thevenin Model  

 

In this model, there are two pairs of RCs. Therefore, the second time constants (TTC) are larger in 

comparison to the first order. RC pair (R2 and C2) with a larger time constant (Figure 2.13) to the 

previous model. Thus, it is possible to accurately represent the terminal voltage when the current 

is zero, which was not possible for the OTC. For representing transient conditions in the short-

term the first RC is required, and for representing transient conditions in long-term the second RC 

is required. The main advantage of Li-ion batteries is that the hysteresis effect is low. So, we need 

a model considering temperature, SOC, and hysteresis. On the other hand, the second order 

Thevenin model surpasses these models that have good accuracy concerning hysteresis effect. By 

precisely adjusting the main parameters, we will have a precise model and we can use this model 

in several tests. A group of pulses consisting of charge-discharge are used, and the PEM algorithm 

(prediction error-minimization) was considered. Using the neuro-fuzzy method, SOC is obtainable 

discretely but using this model we have a fast enough algorithm for estimating the SOC in real-

time operations. (Cai, Du and Liu, 2003) 
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In this model, there are two time-constants, and another R and C are added to the first order model. 

This model is shown in Figure 2.13. Via this model, we can terminal voltage in the case of zero 

current. However, in the first order model it is impossible. 

 

Figure 2-13: Thevenin model with 2RC pairs 

So, the first RC pair shows transient effects in the short-term transient condition, and the second 

pair shows the long-term transient characteristic and has a larger time constant and consists of 

concentration polarization and electrochemical effects. These effects consist of diffusion, charge 

transfer effect. We have the following equations: 

 

                                                           𝑉𝑇 =  𝑉𝑂𝐶 − 𝑅𝑖𝑛𝑡. 𝐼 − 𝑉𝐶1 − 𝑉𝐶1                                                               (2-13)    

                                                           𝑉𝐶1
. = −

1

𝑅1.𝐶1
. 𝑉𝐶1 +

1

𝐶1
. 𝐼                                                   2-14)   

                                                          𝑉𝐶2
. = −

1

𝑅2.𝐶2
. 𝑉𝐶2 +

1

𝐶2
. 𝐼                                                   (2-15)    

 

 A more precise model is by adding Rint to the model and this has two parts, R series and R cycling 

showing cycling of the cell. In this model all the parameters are defined considering SOC and 

temperature.  

Noise and its types 
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Everywhere we go there is noise around us. For example, in the street, car, office, etc. Noise exists 

in different forms in our daily life. Noises can be stationary while their statistical characteristics 

do not change over time. Noises can also be non-stationary. Removing noise for non-stationary 

mode is much more difficult than for stationary mode. 

Another characteristic of noise types is their spectrum mode, especially the distribution of noise 

energy in the frequency domain. The following are some of the noise types in their spectrum mode: 

White Noise 

It is a random signal that assigns energy to each frequency band equal to the other bands in the 

frequency spectrum. This feature produces a flat spectrum in the frequency domain. 

Pink noise 

Pink noise has smooth graph when the scale is logarithmic. It means that pink noise in each 

frequency band has the same power as other bands in a logarithmic scale. 

Brown noise 

  If the power density of our noise decreases by 6 decibels per octave in the frequency domain and 

does not include DC frequency, our noise is brown or red. 

Industrial noise 

In this section, we consider the audio sample recorded from the operation of a drill as industrial 

noise. This noise is considered as a non-stationary noise. 

To observe the state variables of a dynamic system from measurements with noise, methods based 

on the Kalman filter can be used, which will be discussed further. 

2.5 Estimation Methods for State of Charge 

Some methods have been proposed to estimate the SOC, such as the ampere-hour (Ah) counting, 

Kalman filter (KF), sliding mode observer (SMO), particle filter (PF), artificial neural network 

(ANN) and fuzzy logic (FL) methods. In this project Kalman Filter family has been applied for 

estimating the SOC. Some other methods are explained as follows: 

 Coulomb Counting Method 

This method is called, amper hour and current integration. This method is the most used method 

for SOC estimation. In this definition, the state of charge at any moment is the result of subtraction 

the initial value and the integral of the battery current (according to the current direction). SOC is 

calculated according to equation. 

SOC=𝑆𝑂𝐶0+
1

𝐶
∫ ɳ𝑖(𝜏). 𝑑𝜏

𝑡

0
                                                                  (2-16) 

 

where C is the battery capacity in Farads, ɳ 𝑖𝑠 the coulombic discharge efficiency. Its value is 

usually taken as 99.0. This method depends on the amount of 𝑆𝑂𝐶0 𝑎𝑛𝑑 𝑖𝑓 its value is assumed to 
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be wrong; the whole estimate will be wrong. The effectiveness of the above system reduces with 

the noise that is also considered as one of the disadvantages of the above method. (Ng et al., 2009). 

In this definition, the state of charge is defined as the open circuit voltage of the battery (OCV). 

They are proportional and they have a linear relationship. There are some problems with this 

method: 

• The initial SOC should be accurate. 

• The current should be accurately measured. 

• The error of current integration  

• The accurate capacity of battery 

• Timing error 

 

Kalman Filter and its family 

Kalman filter is one of the most important types of Wiener filters that can adapt to changing 

conditions with time. It also covers estimation of states belongs to all the time and in the situation 

of an unrecognized model it has acceptable performance. Estimation is done by mathematics that 

in the right way it can reduce the RMSE  (Root Mean Square Error)efficiently. (Shrivastava et al., 

2019) 

Estimation of a situation is done by probability density functions (pdf) and full pdf explanation 

requires a Bayesian optimal solution to solve the problem. This observation only applies to some 

systems because the pdf structure is unbounded and hence cannot be accounted for using a finite 

number of parameters. To solve this problem an optimal state estimator for linear estimation of 

dynamic systems designed using the concept of state space, which is known as the Kalman filter. 

That is very powerful for several reasons: 

The Kalman filter is the best observer in the sense that it produces estimates with minimum 

variance of the system states. For example, the expected value of the error between the estimates 

of the filters and the real state of the system is zero, and the expected value of the squared error 

between the estimated states and the actual is minimum. For a discrete-time dynamic model when 

distributing the state space with the inputs with Gaussian noise, the Kalman filter provides a real-

time recursive algorithm to estimate the state vectors by using only the available noisy data. 

This filter is a productive recursive algorithm that is excellent in estimating noisy systems that are 

not statistic with minimum RMSE. This filter family works like a low pass matched digital filter 

IIR (Infinite Impulse Response) with a cut-off frequency, which relies on the ratio between the 

measured or observed noise as well as the estimated covariance. 

2.6  Kalman Filter family 

This filter was provided in 1960 and afterward many algorithms were introduced. Therefore, this 

fact shows the importance of this family. This Filter estimates using the last state estimation and 

the observation that is done now to obtain the current state estimate. This filter is a very powerful 

in combination of data in uncertainties presence. This filter has been used as the best solution for 

having precise prediction in some cases. 
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Wherever we have uncertain information about a dynamic system, we can use the Kalman filter to 

provide a good estimate of the system's future changes. Kalman filters are ideal for systems that 

are constantly changing. The advantage of Kalman filters is that they require little memory because 

they do not need memory except to store the information of previous states. Also, these filters are 

very fast and therefore suitable for real-time problems and embedded systems. 

At first glance, the mathematics of the Kalman filter seem intimidating and obscure. But it is quite 

the opposite and if we learn it properly, it will be very simple to understand. 

Kalman filter algorithm: 

At the beginning, the system state variables are estimated in some time, subsequently the value of 

noise is achieved as feedback.  We have two types of Equations: 

• Predictive equations (time update) 

By these equations we can produce recent state and estimate error covariance to have prior 

information used for the coming step. 

• Correction equations (measurement update) 

By these equations we can have feedback. For example, to combine a recent value with a previous 

prediction to achieve better final value. Figure 2-14 shows Kalman filter algorithm that V and W 

are applied to the system as process noise and measurement noise. 

 

Figure 2-14 Kalman filter algorithm 

 

Figure 2-15 shows the equation for the estimation of the current state that is completely related to 

predicted value and measurement value and Kalman gain. 
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Figure 2-15 The estimation of the current state 

Limitations of the Kalman filter algorithm: 

Some Kalman filter design methods were reviewed for systems with uncertainty and three 

scenarios were presented in which the Kalman filter is not well used: 

• Poor observation 

If the process is poorly visible, the sensors should be changed, or a new sensor should be 

added. 

• Numerical instability 

The covariance matrices may become asymmetric, which leads to divergence in the 

regression calculation. 

• Blind spot 

The error-covariance estimation situation decreases rapidly when both the measurement noise and 

the process noise covariance matrices are assumed to be very small. 

 Extended Kalman Filter (EKF) 

 

Extended Kalman Filter (EKF) is a nonlinear type in the Kalman filter family, that is 
linearized around a mean and covariance estimate. In the case of well-defined transient models, 

the EKF is proposed. (Huang, Mourikis and Roumeliotis, 2008) 

Process dynamics  

Consider the following nonlinear system, which includes a differential equation and an observer 

model accompanied noise: 

𝑥𝑘 = 𝑤𝑘−1 + 𝑓(𝑥𝑘−1)                                                                        (2-17)                                                                    

         𝑧𝑘 = 𝑣𝑘 + ℎ(𝑥𝑘)22-18 

where x0 is the first coition of a random vector and its mean is μ0 = E[x0] and covariance 

           P0 =E [ (x0 − μ0) (x0 − μ0) T]                                      2-19) 

Below we consider Wk as the random vector that is the model’s unpredictability and Vk  

represents the noise of measurement. They are not related to each other (noise) temporarily and 
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both are temporally, mean free random sequences by certain covariance. None of them is related 

to start state x0. 

E[wk] = 0    E[wkwK
T] = Qk         E[wkx0

T] = 0 for all k     E[wkwj
T] =  0 for k ≠ j    2-20) 

    𝐸[𝑣𝑘] = 0      𝐸[𝑣𝑘𝑣𝑘
𝑇] = 𝑅𝑘      𝐸[𝑣𝑘𝑥0

𝑇] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝐸[𝑣𝑘𝑣𝑗
𝑇] = 0 𝑓𝑜𝑟 𝑘 ≠

𝑗                                                                                                                                                             2-21)    

 

Also, these two vectors Wk and Vk are random, and they are not related to each other: 

E[wkvj
T] = 0  for all j and k     

Numbers of columns, rows and distribution of parameters are as follows:  

 xk   is      n × 1         − State vector 

wk  is     n × 1         − Process noise vector 

zk   is      m × 1        − Observation vector 

vk   is     m × 1        − Measurment noise vector 

f(∙)  is     n × 1        − P rocess nonlinear vector function  
h(∙)   is  m × 1        − Observation  nonlinear vector function  
Qk      is  n × n        − Process noise covarianse matrix 

Rk      is  m × m      − Measurment noise covarianse matrix  
 

Assuming nonlinear system dynamics and observing the simplified model, h(xk) and f(xk) can be 

expanded in the Taylor series, and this is an uncertain method of predicting and estimating the next 

xk. 

In the initial stage of model prediction, since the data we have is the mean, μ0  and covariance, p0, 

from the initial conditions of the states, and therefore the first and best estimate Xa
0  and the error 

covariance are calculated as follows: 

 

              𝑥0
𝑎 = 𝜇0 = 𝐸[𝑥0]                                                                              2-22)                                                  

                   𝑃0 = 𝐸[(𝑥0 − 𝑥0
𝑎)𝑇(𝑥0 − 𝑥0

𝑎)]                                              2-23) 

 

Suppose that the estimate of xa
k−1 ≡ E[xk−1|Zk−1] is the best with covariance Pk−1 at time k−1. xk has 

a part that we can predict as follows: 

                               𝑥𝑘
𝑓
 ≡   𝐸[𝑥𝑘|𝑍𝑘−1]  = 𝐸[𝑓(𝑥𝑘−1 )|𝑍𝑘−1] = 𝐸[𝑓(𝑥𝑘−1 ) + 𝑤𝑘−1|𝑍𝑘−1]       (2-24)    

f (0) is expanded in the Taylor series around  xk−1 
a , the following expression is obtained: 
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       𝑓(𝑥𝑘−1)    ≡     𝑓(𝑥𝑘−1 
𝑎 ) + 𝐽𝑓(𝑥𝑘−1

𝑎 )(𝑥𝑘−1 −𝑥𝑘−1
𝑎 ) +𝐻.𝑂.𝑇                              2-25)      

Jf represents f (0)’ Jacobian and higher order terms (H.O.T) are very small. Hence, we can 

assume EKF first order filter. Definition of Jacobian is as follows: 

                                     𝐽𝑓 ≡

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

                                                             (2-26)                  

 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥))
𝑇

 𝑎𝑛𝑑  𝑥

= ( 𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 . 𝑇ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 ∶ 
 

                                                                   𝑓(𝑥𝑘−1) ≈ 𝑓(𝑥𝑘−1
𝑎 ) + 𝐽𝑓(𝑥𝑘−1

𝑎 )𝑒𝑘−1                                    (2-27)  

 

𝑤ℎ𝑒𝑟𝑒 𝑒𝑘−1  ≡ 𝑥𝑘−1 − 𝑥𝑘−1
𝑎 . 𝑇ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓(𝑥𝑘−1) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑏𝑦 𝑍𝑘−1  

 

                              𝐸[𝑓(𝑥𝑘−1 )|𝑍𝑘−1 ] ≈ 𝑓(𝑥𝑘−1 
𝑎 ) + 𝐽𝑓(𝑥𝑘−1 

𝑎 )𝐸[𝑒𝑘−1|𝑍𝑘−1]                            2-28) 

 

𝑤ℎ𝑒𝑟𝑒 𝐸[𝑒𝑘−1|𝑍𝑘−1] = 0. 𝑇ℎ𝑢𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥𝑘 𝑖𝑠 

 

                                              𝑥𝑘
𝑓
 ≈ 𝑓(𝑥𝑘−1

𝑎 )                                                                                                      2-29) 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 (2 − 28) 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ∶ 
 

                                 𝑒𝑘
𝑓

≡ 𝑥𝑘 − 𝑥𝑘
𝑓
                                                                   (2-30)   

                               =  f(xk−1) + wk−1 − 𝑓(𝑥𝑘−1
𝑎 ) 

                               ≈ 𝐽𝑓(𝑥𝑘−1
𝑎 )𝑒𝑘−1 + 𝑤𝑘−1  

The covariance of the prediction error is given by: 

                                              𝑃𝑘
𝑓

≡ 𝐸 [𝑒𝑘
𝑓
(𝑒𝑘

𝑓
)
𝑇
] = 𝐽𝑓(𝑥𝑘−1

𝑎 )𝐸[𝑒𝑘−1𝑒𝑘−1
𝑇 ]𝐽𝑓(𝑥𝑘−1

𝑎 ) + 𝐸[𝑤𝑘−1𝑤𝑘−1
𝑇 ] 

      =  𝐽𝑓(𝑥𝑘−1
𝑎 )𝑃𝑘−1𝐽𝑓

𝑇(𝑥𝑘−1
𝑎 ) + 𝑄𝑘−1                                       (2-31) 

Data integration stage: 

At every time for example k, there are two main knowledge: the predicted xf
k value accompanied 

with covariance pf
k and the zk value accompanied with covariance Rk. The main purpose is to 

approximate the optimum least-squares predict of xa
k from xk. The proposed way is to believe that 

the estimate is a linear mixture of zk and xf
k.. 
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                                                   𝑥𝑘
𝑎 =  𝑎 + 𝐾𝑘𝑧𝑘2                                                                                       2-32) 

In Unbiasedness conditions: 

0 =  𝐸[𝑥𝑘 − 𝑥𝐾
𝑎|𝑍𝑘]                                                          (2-33)                            

                             = 𝐸[(𝑥𝑘
𝑓

+ 𝑒𝑘
𝑓
) − (𝑎 + 𝐾𝑘ℎ(𝑥𝑘) + 𝐾𝑘𝑣𝑘)|𝑍𝑘] 

                             = 𝑥𝑘
𝑓

− 𝑎 − 𝑘𝑘𝐸[ℎ(𝑥𝑘)|𝑍𝑘] 

                               𝑎 =  𝑥𝑘
𝑓

− 𝐾𝑘𝐸2-34 

 

By placing 2-34 in 2-33, we have: 

                                         𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐾𝑘(𝑧𝑘 − 𝐸[ℎ(𝑥𝑘)|𝑍𝑘]                                                   2-35) 

Following the same steps as the step of predicting the model and expanding h (0) in the Taylor 

series around xf
k we have: 

                                      ℎ(𝑥𝑘) ≡ ℎ(𝑥𝐾
𝑓
) + 𝐽(𝑥𝑘

𝑓
)(𝑥𝑘 − 𝑥𝑘

𝑓
) + 𝐻. 𝑂. 𝑇                        (2-36) 

where Jh is the Jacobian h (0) and (H.O.T) terms of higher order are considered negligible. 

Jacobian h (0) is defined as follows: 

                                       𝐽ℎ ≡

[
 
 
 

𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2
⋯

𝜕ℎ1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕ℎ𝑚

𝜕𝑥1

𝜕ℎ𝑚

𝜕𝑥2
⋯

𝜕ℎ𝑚

𝜕𝑥𝑛 ]
 
 
 

                                                                                                         (2-37) 

where h(x) = (h1(x), h2(x), . . ., hm(x))T and x = (x1, x2, . . . , xn)
T  2-40   

are obtained from expanding both sides of 2-36 by subjecting to zk: 

                                     𝐸[(𝑥𝑘)|𝑍𝑘] ≡ ℎ(𝑥𝑘
𝑓
) + 𝐽ℎ(𝑥𝑘

𝑓
)𝐸[𝑒𝐾

𝑓
|𝑍𝑘]                                                            2-38) 

Since we have 𝐸[ℎ(𝑥𝑘)𝑍𝑘] = 0 by placing in 2-39, the estimation of the state is: 

                                                         𝑥𝑘
𝑎 ≈  𝑥𝑘

𝑓
+ 𝐾𝑘 (𝑧𝑘 − ℎ(𝑥𝑘

𝑓
))                                                                                   2-40) 

The error in xa
k estimation is as follows 

         𝑒𝑘 ≈  𝑥𝑘
𝑓

− 𝑥𝑘
𝑎 = 𝑓(𝑥𝑘−1 ) + 𝑤𝑘−1 − 𝑥𝑘

𝑓
− 𝐾𝑘 (ℎ(𝑥𝑘) −

ℎ(𝑥𝑘
𝑓
))                                                                                                                                                                    2-41)  

                                            ≈ 𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−1
𝑎 ) + 𝑤𝑘−1 − 𝐾𝑘(ℎ(𝑥𝑘) − ℎ(𝑥𝑘

𝑓
) + vk) 

                                           ≈ 𝐽𝑓(𝑥𝑘−1
𝑎 )𝑒𝑘−1 + 𝑤𝑘−1 − 𝐾𝑘(𝐽ℎ(𝑥𝑘

𝑓
)𝑒𝑘

𝑓
+ 𝑣𝑘) 

                                           ≈ 𝐽𝑓(𝑥𝑘−1
𝑎 )𝑒𝑘−1 + 𝑤𝑘−1 − 𝐾𝑘𝐽ℎ(𝑥𝑘

𝑓
)(𝐽𝑓(𝑥𝑘−1

𝑎 )𝑒𝑘−1 + 𝑤𝑘−1) − 𝐾𝑘𝑣𝑘 
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                        ≈ (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝐽𝑓(𝑥𝑘−1

𝑎 )𝑒𝑘−1 + (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))𝑤𝑘−1 − 𝐾𝑘𝑣𝑘 

So, the covariance after the new estimate is as follows: 

                                                  𝑃𝑘 ≡  𝐸[𝑒𝑘𝑒𝑘
𝑇]                                                                  (2-42)  

                                           = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝐽𝑓(𝑥𝑘−1

𝑎 )𝑃𝑘−1𝐽𝑓
𝑇(𝑥𝑘−1

𝑎 ) (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))

𝑇

 

                                           + (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))𝑄𝑘−1 (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘

𝑓
))

𝑇

+ 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

                                           = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))𝑃𝑘

𝑓
(𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘

𝑓
))

𝑇

+ 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

                                            

= 𝑃𝑘
𝑓

− 𝑘𝑘𝐽ℎ(𝑥𝑘
𝑓
)𝑃𝑘

𝑓
− 𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
)𝑘𝑘

𝑇 + 𝑘𝑘𝐽ℎ(𝑥𝑘
𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
)𝑘𝑘

𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

The next covariance formula is preserved for each kk. As with the standard Kalman filter, we 

obtain kk by minimizing the (Pk)  

                                                      0 =  
𝜕𝑡𝑟(𝑃𝑘)

𝜕𝐾𝑘
    =  −(𝐽ℎ(𝑥𝑘

𝑓
)𝑃𝑘

𝑓
)
𝑇

− 𝑃𝑘
𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) +

2𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) +

                                       2𝐾𝑘𝑅𝑘                                                                                             (2-43) 

As Kalman gain is as following: 

                                          𝐾𝑘 = 𝑃𝑘
𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
)(𝐽ℎ

𝑇(𝑥𝑘
𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) + 𝑅𝑘)

−1
                                                       (2-44) 

By substituting in 25 will have: 

                                          𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝑃𝑘

𝑓
− (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘

𝑓
)) 𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
)𝐾𝑘

𝑇 +

𝐾𝑘𝑅𝑘𝐾𝑘
𝑇
                                                                                                                                                                                      ( 2-45)  

                                    =  (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))𝑃𝑘

𝑓
− (𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) − 𝐾𝑘𝐽ℎ(𝑥𝑘

𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) − 𝐾𝑘𝑅𝑘)𝐾𝑘

𝑇 

                                     =  (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝑃𝑘

𝑓
− [𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) − 𝐾𝑘(𝐽ℎ(𝑥𝑘

𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) + 𝑅𝑘]𝐾𝑘

𝑇 

                                   = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝑃𝑘

𝑓
− [𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) − 𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
)]𝐾𝑘

𝑇   = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
)) 𝑃𝑘

𝑓
 

  EKF in a glance: 

 

 Model and Observations: 
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                                   𝑥𝑘 = 𝑓(𝑥𝑘−1) +
𝑤𝑘−1                               ( 2-46)                                                   

                                     𝑧𝑘

= ℎ(𝑥𝑘) + 𝑣𝑘                                                               (2-47)                                                  

 

Initialization: 

 

𝑥0
𝑎 = 𝜇0 𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑃0                                                      (2-48) 

  

Model Forecast step/Predictor: 

 

                                                           𝑥𝑘
𝑓
 ≈ 𝑓(𝑥𝑘−1

𝑎 )                                                         2-49) 

                                                      𝑃𝑘
𝑓

= 𝐽𝑓(𝑥𝑘−1
𝑎 )𝑃𝑘−1𝐽𝑓

𝑇(𝑥𝑘−1
𝑎 ) + 𝑄𝑘−1                      2-50)    

 

Data assimilation step/Corrector: 

 

                                                     𝑥𝑘
𝑎 ≈ 𝑥𝑘

𝑓
+ 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘

𝑓
)                                                         (2-51)   

                                                     𝐾𝑘 = 𝑃𝑘
𝑓
(𝑥𝑘

𝑓
)(𝐽ℎ(𝑥𝑘

𝑓
)𝑃𝑘

𝑓
𝐽ℎ
𝑇(𝑥𝑘

𝑓
) + 𝑅𝑘)

−1
                 (2-52)  

                                                  𝑃𝑘 = (𝐼 − 𝐾𝑘𝐽ℎ(𝑥𝑘
𝑓
))𝑃𝑘

𝑓
2-53    

Limitations of the EKF algorithm: 

EKF block diagram is shown in Figure 2.14 as follows.  (Lin, 1996). Although EKF is a 

computationally efficient recursive form of the Kalman filter, it has some serious limitations:  

• EKF does not guarantee that the estimates it makes are unbiased. Moreover, there is the 

possibility that the obtained error covariance is not correct.  

• Linearization can only be used if there is a Jacobian matrix. In some cases, obtaining the 

analytical Jacobian matrix is so hard. For these applications, it is required to obtain the 

numerical approximation of the Jacobian matrix. 

• In standard EKF divergency of the system heavily depends on the estimation of the first 

conditions of the system states, and therefore the scaling of the filter parameters is a critical 

step for estimation. 
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Figure 2-16: EKF block diagram 

 

Figure 2-16 shows the main steps and equations for Extended Kalman Filter. This block diagram 

contains all steps for linearization of EKF. 

Iterative Extended Kalman Filter (IEKF) 

In the EKF, h(0), is linearized around the predicted state estimate xf
k. IEFK tries to linearize it 

around the last estimate made.  

  This is obtained by calculating Xa
k,0, kk, pk in each iteration. The meaning of Xa

k,i is the estimate 

at time k and the i-th iteration. The iteration process starts with Xa
k,0 = Xf

k, then the step of updating 

the measurement for each i is as follows: 
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                                                         𝑥𝑘,𝑖
𝑎  ≈ 𝑥𝑘

𝑓
+ 𝐾𝑘 (𝑍𝑘 − ℎ(𝑥𝑘,𝑖

𝑎 ))                                   (2-54)   

                                                        𝐾𝑘,𝑖 = 𝑃𝑘
𝑓
𝐽ℎ
𝑇
(�̂�𝑘,𝑖) (𝐽ℎ (𝑥𝑘,𝑖

𝑎 )𝑃𝑘
𝑓
𝐽ℎ
𝑇

(𝑥𝑘,𝑖
𝑎 ) +𝑅𝑘)

−1
             (2-55) 

                                                      𝑃𝑘,𝑖 = (𝐼 − 𝐾𝑘,𝑖𝐽ℎ(𝑥𝑘,𝑖
𝑎 )) 𝑃𝑘

𝑓
2-56 

 

If this is a small improvement between two consecutive iterations, then the iteration process stops. 

The accuracy obtained by this method increases with the increase in the calculation time. 

Particle Filter: 

The algorithm of the particle filter method is based on the following Monte Carlo method, for 

example, a sampling method to approximate a spreading that causes it to be used in a temporal 

structure. In the spread of P(xt|z0:t), xt presents the state that is not observed at time t and z0:t shows 

the series of observations starting at time zero and ending at time t. If linear Gaussian guess about 

the transmitters and sensor modellings, P(xt+1|xt) will be in complicated form, on the other hand it 

will be shown with N samples with weights or N elements. {𝑥𝑡
(𝑖), П𝑡

(𝑖)}
𝑖=1

𝑁 

  where  П𝑡
(𝑖)

is the weight 

of the element 𝑥𝑡
(𝑖), 𝑎  .  

                                                   𝑃(𝑥𝑡|𝑧0:𝑡) ≈ ∑ л𝑡−1
(𝑖)

𝑖 𝛿(𝑥𝑡 − 𝑥𝑡−1
(𝑖)

)                                                   2-57)    

To perform each filtering step, it is necessary to take the integral: 

                                                    (𝑥𝑡|𝑧0:𝑡) =  𝛼 𝑃(𝑧𝑡|𝑥𝑡)                                                                             2-58) 

We obtain filter spread P(xt|z0:t) by using the recursive definition obtained by the spread of 

P(xt−1|z0:t−1). By using the elements determined for P (xt−1|z0:t−1, prevous formula will be 

approximately as follows: 

                                             𝑃(𝑥𝑡|𝑧0:𝑡) ≈ 𝛼𝑃(𝑧𝑡|𝑥𝑡)∑ л𝑡−1
(𝑖)

𝑖 𝛿(𝑥𝑡 − 𝑥𝑡−1
(𝑖) )                                                      2-59)        

How can the set of elements representing the distribution of P(xt|z0:t) be achieved? One answer is 

to use purposive sampling. The particle filter method can perform the observation operation as a 

special sampling vector on this distribution. Sampling technique is a method to generate relatively 

good samples of a p(x) distribution. Assume p(x) shows a concentration that is difficult to graph, 

but checking p(xi) for some specific xi is straightforward. So an estimation for p(x) is determined 

as follows: 
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                                    P  (𝑥) ≈ ∑ л(𝑖)𝑁
𝑖=1 𝛿(𝑥 − 𝑥(𝑖))                                                                              2-60)      

                                          л(𝑖) =  
𝑃(𝑥)

𝑞(𝑥(𝑖))
                                                                                                               (2-61)  

The point is that each q(0) shows a propositional spread and is applied in this equation, in specific 

a single sampling of the x as state space. Nevertheless, when we are sampling uniquely, lots of 

samples with small values of πi  will be wasted. However, we use a lot of proposed spread, the 

estimation for P(xt|z0:t−1) (in whole Eq. 2). Due to proposed spread, the weight matrices πi 

eventually become approximately simple resulting in cancellation. Specifically, the particle filter 

method includes 3 main steps: 

1. 𝐷𝑟𝑎𝑤 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑥𝑡
(𝑗)

 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑞(𝑥𝑡): 

 

                                                          𝑥𝑡
(𝑗)

~ 𝑞(𝑥𝑡) =  ∑ л𝑡−1
(𝑖)

𝑃(𝑥𝑡|𝑥𝑡−1
(𝑖)

)                                    𝑖 (2-62)  

By randomly choosing a number r between 0 and 1 selecting the related element i and by sampling 

P(xt|x
(i)

t−1), this transient model is considered as a linear Gaussian model, but every model that 

can be drawn from those samples will be sufficient. 

2.  𝑠𝑒𝑡  𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 л𝑡
(𝑗)

 𝑎𝑠 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑: 

 

                                                             л𝑡
(𝑗)

=  𝑃(𝑦𝑡|𝑥𝑡
(𝑗)

)                                                                                    (2-63) 

The examples of {x(j)
t} above are relatively good examples of P(xt|z0:t−1). 

3.   𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠  {л𝑡
(𝑗)

} ∶ 

 

                                                         л𝑡
(𝑗)

= 
л𝑡
(𝑗)

∑ л𝑡
(𝑘)

𝑘

                                                                                                   (2-64) 

The other important thing is that there is a better suggested distribution that is unused here. The 

optimal proposed distribution of variance minimization is found in the weights πi  in p(xt|xt−1, zt) 

We can consider particle filter’s capability to cope with the non-simple multi-model non-Gaussian 

feature as its most prominent feature. Nevertheless, in some cases where xt is large it will be 

difficult. Basically, the number of N elements requires a distribution approximation that increases 

exponentially with the dimensions of the state space. This may cause difficulties for some cases 

like human body limb tracking or SLAM. 

 Unscented Kalman Filter (UKF) Method 

The UKF method is one of the larger filters’ family named sigma-point Kalman filters or inverse 

linear Kalman filters.  
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We can utilize this algorithm for linearizing a non-linear system consisting of a random variable 

through a linear regression between n points drawn from the first distribution of the random 

variable. Dealing with the extended random variable, this method is more reliable and accurate 

than Taylor series linearizing methods (Sun et al., 2011).  

First order linearization is applied in the EKF method and states of non-linear systems since there 

is the possibility the next mean and covariance are not correct. In the UKF method we do not use 

derivation such as EKF, so it is the method, which is a free derivative alternative to EKF, and 

overcomes this problem by using a certain sampling approach. 

The mode distribution is represented using a minimum set of carefully selected points called sigma 

points. Like EKF, UKF consists of the same two steps: model prediction and data assimilation. It 

is expected that there will now be another step for selecting sigma points. 

UKF algorithm 

In the UKF method it is important to understand that approximating is simpler than a probability 

spread and is close to a linear transformation or system. 

We select Sigma points until their covariance and mean are the same as xa
k−1  and Pk−1. Therefore, 

every sigma point is then propagated via non-linear submitting after the transformed point stack. 

The last estimate of mean and covariance are calculated using their statistical index. It is named as 

unscented conversion. By the unscented transformation we can obtain the statistical indices of a 

random variable that is propagated through nonlinear transformation and change. We can explain 

a nonlinear function by two differential equation and the observation plus noise equations: 

                                               𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1                                                           (2-65) 

                                               𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘2-66 

x0 represents a first state and is a random vector with unknown mean μ0 = E[x0]  and covariance 

P0 = E[(x0 − μ0)(x0 − μ0)]
T. for the noiseless system and the measurement noise, the unscented 

transformation method is used for the enhanced mode. 

                                                        𝑥𝑘
𝑎𝑢𝑔

= [ 𝑥𝑘
𝑇   𝑤𝑘−1

𝑇   𝑣𝑘
𝑇]𝑇                                 (2-67) 

Choosing sigma points: 

Xk−1 exists in a group consists of 2n + 1  sigma points (n shows the state space dimension) and its 

relation to the weights: 

                                                         𝑋𝑘−1 = { (𝑥𝑘−1
𝑗

 ,𝑊𝑗)| 𝑗 = 0…2𝑛 }            (2-68)   

The following sigma point selection introduces higher order information into the chosen points. 
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                                            𝑋𝑘−1
0 = 𝑥𝑘−1                                                                                

𝑎                                          2-69) 

                                           −1 < 𝑤0 < 1                                                                                               ( 2-70) 

                                            𝑥𝑘−1
𝑖 = 𝑥𝑘−1

𝑎 + (√
𝑛

1−𝑤0
𝑃𝐾−1 )

𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1…𝑛                              (2-71) 

                                          𝑥𝑘−1
𝑖+𝑛 = 𝑥𝑘−1

𝑎 − (√
𝑛

1−𝑤0 𝑃𝐾−1 )
𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =

1…𝑛                                (2-72)  

                                       𝑊𝑗 = 
1−𝑤0

2𝑛 
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1…2𝑛                                                                  ( 2-73 )    

∑𝑊𝑗  

2𝑛

𝑗=0

= 1                                                                      (2-74)                                           

And √
𝑛

1−𝑤0 𝑃𝐾−1    represents the column or row belonging to the square matrix of squares 

𝑛

1−𝑤0 𝑃𝐾−1  . W
0  adjusts sigma points’ location: 

Points   𝑤0 > 0    want to be further from the main, points 𝑤0 ≤ 0 want to be closer to the main. 

The algorithm for choosing sigma points called scaled unscented transformation is explained in 

detail in (Dunik, Simandl and Straka, 2012). 

Model prediction stage 

All sigma points are expanded via the non-linear trend function: 

                                                                 𝑥𝑘
𝑓,𝑗

= 𝑓(𝑥𝑘−1
𝑗

)                                                                                   2-75) 

The transformed points are utilized to calculate the predicted value covariance and mean. The new 

sigma points are required to calculate the predicted value xk’s covariance and mean of: 

                                               𝑥𝑘
𝑓

= ∑ 𝑊𝑗2𝑛
𝑗=0 𝑥𝑘

𝑓,𝑗
                                                                                           2-76)  

                                               𝑃𝑘
𝑓

=  ∑ 𝑊𝑗2𝑛
𝑗=0 (𝑥𝑘

𝑓,𝑗
− 𝑥𝑘

𝑓
)(𝑥𝑘

𝑓,𝑗
− 𝑥𝑘

𝑓
)𝑇 + 𝑄𝑘−1                       (2-77)  

 

In the next step the sigma points are obtained via the non-linear observation model: 

                                                              𝑧𝑘−1
𝑓,𝑗

= ℎ(𝑥𝑘−1
𝑗

)                                                                                      (2-78) 

By observing the transformations, their mean and covariance (creative covariance) are calculated: 
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𝑧𝑘−1
𝑓

= ∑𝑊𝑗

2𝑛

𝑗=0

𝑧𝑘
𝑓,𝑗

                                                                ( 2-79)                                                   

 

                                               𝑐𝑜𝑣(�̃�𝑘−1
𝑓

) = ∑ 𝑊𝑗2𝑛
𝑗=0 (𝑧𝑘

𝑓,𝑗
− 𝑧𝑘−1

𝑓
)(𝑧𝑘

𝑓,𝑗
− 𝑧𝑘−1

𝑓
)𝑇 + 𝑅𝑘                  2-80)  

                                                𝑐𝑜𝑣(�̃�𝑘
𝑓
 , �̃�𝑘−1

𝑓
) = ∑ 𝑊𝑗2𝑛

𝑗=0 (𝑥𝑘
𝑓,𝑗

− 𝑥𝑘−1
𝑓

)(𝑧𝑘
𝑓,𝑗

− 𝑧𝑘−1
𝑓

)𝑇                       ( 2-81) 

Data integration stage 

It is desirable to mix the information achieved in the prediction stage with the recently observed 

zk value, such as KF, it is assumed that the estimate has the following forms: 

                                               𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐾𝑘(𝑧𝑘 − 𝑧𝑘−1

𝑓
)2-82  

                                             𝐾𝑘 = 𝑐𝑜𝑣(�̃�𝑘
𝑓
, �̃�𝑘−1

𝑓
)𝑐𝑜𝑣−1(�̃�𝑘−1

𝑓
)                       ( 2-83)   

                                              𝑃𝑘 = 𝑃𝑘
𝑓

− 𝐾𝑘𝑐𝑜𝑣(�̃�𝑘−1
𝑓

)𝐾𝑘
𝑇
                                    (2-84)  

UKF square method 

The point in computing another group of sigma points is that the squared matrix of the prior 

covariance is required at each time (Pk = SkS
T

k) and new information is used to achieve new 

covariance. We can use the method change to the direct expansion of the squared matrix, sk. The 

sigma points scheme is selected as follows: 

𝑥𝑘−1
0 = 𝑥𝑘−1

𝑎
                                           2-85)                          

                                                           −1 < 𝑤0 < 1                           2-86) 

                                                               𝑥𝑘−1
𝑖 = 𝑥𝑘−1

𝑎 + (√
𝑛

1−𝑤0 𝑆𝐾−1 )
𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1…𝑛      (2-87) 

                                                            𝑥𝑘−1
𝑖+𝑛 = 𝑥𝑘−1

𝑎 − (√
𝑛

1−𝑤0 𝑆𝐾−1 )
𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =

1…𝑛                    (2-88) 

                                                          𝑊𝑗 = 
1−𝑤0

2𝑛 
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1…2𝑛                                                2-89)   

The filter starts by calculating the initial squared matrix by Cholesky factorization of the 

covariance matrix with the highest error value: 

                                                                      𝑆0 = 𝑐ℎ𝑜𝑙 (𝐸[(𝑥0 − 𝜇0)(𝑥0 − 𝜇0)
𝑇])                                               ( 2-90)  

𝑤𝑗 > 0  for all i≥0 in the next time, the covariance prediction matrix will be as follows: 
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                                                                     𝑃𝑘
𝑓

= ∑ 𝑊𝑗2𝑛
𝑗=0 (𝑥𝑘

𝑓,𝑗
− 𝑥𝑘

𝑓
)(𝑥𝑘

𝑓,𝑗
− 𝑥𝑘

𝑓
)𝑇 + 𝑄𝑘−1                      (2-91) 

                                                              = ∑√𝑊𝑗

2𝑛

𝑗=0

(𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)√𝑊𝑗(𝑥𝑘

𝑓,𝑗
− 𝑥𝑘

𝑓
)𝑇 + √𝑄𝑘−1√𝑄𝑘−1

𝑇
 

                                                             +𝑊0 (𝑥𝑘
𝑓,0

− 𝑥𝑘
𝑓
)(𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
)𝑇 

      = [√𝑊𝑗(𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)√𝑄𝑘−1 [

√𝑊𝑗 (𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)𝑇

0 √𝑄𝑘−1

𝑇 ] 

     +[𝑊0 (𝑥𝑘
𝑓,0

− 𝑥𝑘
𝑓
)(𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
)𝑇]    𝑓𝑜𝑟 𝑗 = 1…2𝑛 

 

which √𝑄𝑘−1 square matrix is the noise processing of the covariance matrix. This form is 

computationally unfavourable. Since the number of columns is three. 

                                          [√𝑊𝑗(𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)      √𝑄𝑘−1 ]  𝜖 𝑅

𝑛×3𝑛       𝑓𝑜𝑟 𝑗 = 1…2𝑛                   (2-92) 

 

                                          [√𝑊𝑗(𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)      √𝑄𝑘−1 ] 

𝑇 𝜖 𝑄𝑘(𝑠𝐾
𝑓
)
𝑇
       𝑓𝑜𝑟 𝑗 = 1…2𝑛             2-93) 

 

                                          𝑃𝐾
𝑓

= 𝑆𝐾
𝑓
𝑂𝑘

𝑇𝑂𝑘(𝑠𝐾
𝑓
)
𝑇

+ 𝑊0 (𝑥𝑘
𝑓,0

− 𝑥𝑘
𝑓
)(𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
)𝑇                             (2-94) 

 

= 𝑆𝑘
𝑓
(𝑠𝑘

𝑓
)
𝑇

+ 𝑊0 (𝑥𝑘
𝑓,0

− 𝑥𝑘
𝑓
)(𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
)𝑇 

 

To have the final term effect in the square matrix, it is required to apply a rank 1 update for the 

Cholesky factorization: 

                                              𝑆𝑘
𝑓

= 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆𝑘
𝑓
, (𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
), 𝑠𝑔𝑛{𝑊0}√𝑊0)                     ( 2-95)  

 

𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑡ℎ𝑒 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 

 

                                              𝑆𝑘
𝑓
(𝑠𝑘

𝑓
)
𝑇

+ 𝑊0 (𝑥𝑘
𝑓,0

− 𝑥𝑘
𝑓
)(𝑥𝑘

𝑓,0
− 𝑥𝑘

𝑓
)𝑇                                                         2-96) 

Therefore, the prediction of the covariance matrix can be written 𝑃𝑘
𝑓

= 𝑆𝑘
𝑓
(𝑠𝑘

𝑓
)
𝑇
 The same method, 

the next covariance could be written as Pk = Sk(Sk)
T  and the original covariance can be expressed 

as:  
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                                          𝐶𝑜𝑣(𝑧𝑘−1
−𝑓

) = 𝑆𝑘−1
−𝑓

𝑆𝑘−1
𝑇

                                                                                                      ( 2-97)  

Time update summary: 

                                                                           𝑥𝑘
𝑓,𝑗

= 𝑓(𝑥𝑘−1
𝑗

)2-98   

                                                                            𝑥𝑘
𝑓

= ∑ 𝑊𝑗2𝑛
𝑗=0 𝑥𝑘

𝑓,𝑗
                                                                               (2-99) 

                                       𝑆𝑘
𝑓

= 𝑞𝑟[√𝑊𝑗(𝑥𝑘
𝑓,𝑗

− 𝑥𝑘
𝑓
)      √𝑄𝑘−1 ]  𝜖 𝑅

𝑛×3𝑛       𝑓𝑜𝑟 𝑗 =

1…2𝑛      2-100   

                                                    𝑆𝑘
𝑓

= 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆𝑘
𝑓
, (𝑥𝑘

𝑓,0
−

𝑥𝑘
𝑓
), 𝑠𝑔𝑛{𝑊0}√𝑊0)                  ( 2-101) 

The sigma points are redrawn under the influence of unifying the noise process: 

 

                                                   𝑥𝑘
𝑓,0

=

𝑥𝑘
𝑓
                                                                                                                                 ( 2-102) 

                                                 𝑥𝑘
𝑓,𝑖

= 𝑥𝑘
𝑓

+ (√
𝑛

1−𝑤0 𝑆𝑘
𝑓
 )

𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑖 =

1…𝑛                                  2-103 ) 

                      𝑥𝑘
𝑓,𝑖+𝑛

= 𝑥𝑘
𝑓

+ (√
𝑛

1−𝑤0 𝑆𝑘
𝑓
 )

𝑖

 𝑓𝑜𝑟 𝑎𝑙𝑙   𝑖 =

1…𝑛                                                  ( 2-104) 

Expansion of new sigma points through measurement model: 
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                                              𝑧𝑘−1
𝑓,𝑗

=

ℎ(𝑥𝑘−1
𝑗

)                                                                                                                       ( 2-105) 

                                             𝑧𝑘−1
𝑓

= ∑ 𝑊𝑗2𝑛
𝑗=0 𝑧𝑘

𝑓,𝑗
2-106 

                                             𝑆
𝑧𝑘−1

𝑓 = 𝑞𝑟[√𝑊𝑗(𝑧𝑘−1
𝑓,𝑗

− 𝑧𝑘−1
𝑓

)      √𝑅𝑘 ]   𝑓𝑜𝑟 𝑗 =

1…2𝑛                  2. 2-107 

𝑆
𝑧𝑘−1

𝑓 = 𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆
𝑧𝑘−1

𝑓 , (𝑧𝑘−1
𝑓,0

− 𝑧𝑘−1
𝑓

) , 𝑠𝑔𝑛{𝑊0}√𝑊0)                   2-108 )                                            

                                          c𝑜𝑣(�̃�𝑘
𝑓
 , �̃�𝑘−1

𝑓
) = ∑ 𝑊𝑗2𝑛

𝑗=0 (𝑥𝑘
𝑓,𝑗

− 𝑥𝑘−1
𝑓

)(𝑧𝑘
𝑓,𝑗

−

𝑧𝑘−1
𝑓

)𝑇
                                  2-109 

 

The function returns only the lower order triangular matrix. 

Measurement update summary: 

𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐾𝑘(𝑧𝑘 − 𝑧𝑘−1

𝑓
)                                           2-110)                                          

                                𝐾𝑘 = 𝑐𝑜𝑣(�̃�𝑘
𝑓
, �̃�𝑘−1

𝑓
)𝑐𝑜𝑣−1(�̃�𝑘−1

𝑓
)                    (2-111) 

                                𝑆𝑘 =  𝑐ℎ𝑜𝑙𝑢𝑝𝑑𝑎𝑡𝑒 𝐾𝑘𝑐𝑜𝑣(�̃�𝑘
𝑓
, �̃�𝑘−1

𝑓
), −1)     2-112) 

which is defined as reverse placement function. This is a better replacement to matrix inversion. 

Since the Cholesky factor is a lower-order triangular matrix, Kk can be achieved by substituting 

in the following equation. 

                                      𝐾𝑘 (𝑆
𝑧𝑘−1

𝑓 𝑆
𝑧𝑘−1

𝑓
𝑇 ) =  𝑐𝑜𝑣(�̃�𝑘

𝑓
, �̃�𝑘−1

𝑓
)                                   (2-113) 

In equation (114), since the argument of the mean is the Cholesky update function 𝜖𝑅𝑛∗𝑛of the 

matrix, the result is n successive updates of the Cholesky factor with n columns in the matrix. 

 

Since Cholesky factorization and QR decomposition want to better control round-off errors and 

the inverse term of the matrix does not exist, SR-UKF has better numerical properties and 

guarantees the fundamental state of the covariance as positive semi-definite. 

 

Repeated Unscented Kalman filter method (IUKF) 
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Figure 2-17 Unscented Kalman Filter flowchart 

Figure 2-17 shows the main steps of estimation by Unscented Kalman Filter (UKF). It is consist of 

initializing, selecting sigma points, nonlinear transformation, calculating variance and Kalman gain, and 

repeating the steps. 
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𝑋0(𝐾|𝐾) = �̂�(𝐾|𝐾)                                                                                                                                              2-114) 

 

𝑊0 =
𝐾

(𝑛 + 𝑘)
                                                                                                                 (2-115)   

                                                            𝑥𝑖(𝑘|𝑘) = (√(𝑛 + 𝑘)𝑝(𝑘|𝑘) )
𝑖
+ �̂�(𝑘|𝑘)          𝑖 = 1, . . , 𝑛      2-116)           

                                                              𝑊𝑖 =
1

2(𝑛+𝑘)
                                   2-117      

                              𝑥𝑖(𝑘|𝑘) = �̂�(𝑘|𝑘) + (√(𝑛 + 𝑘)𝑝(𝑘|𝑘) )
𝑖
                 𝑖 = 𝑛 +

1, … . ,2𝑛                  2-118    

                                                                  𝑊𝑖 =
1

2(𝑛+𝑘)
                                       2-119) 

The group of samples selected by (1) have the same sample covariance, mean, and all odd ranks 

of the central moment as x(k) spread. K and the square matrix are affected by the sampled moments 

of the fourth order and higher orders of the sigma point.  The following nonlinear filtering problem 

is defined as : 

                                                               𝑋(𝐾 + 1) = 𝐹𝐾(𝑋(𝐾),𝑊(𝐾))            (2-120) 

                                                             𝑍(𝐾) = ℎ𝑘+1 (𝑥(𝑘)) + 𝑣(𝑘)               (2-121)      

So, x(k) shows the state vector of the function at time step k, w(k) is the process noise vector, 

created by modelled troubles and errors, z(k) shows the observation vector and v(k) is the added 

measurement noise. The noise vector V(K) and W(K) have zero mean. 

                                                               [𝑊(𝑖)𝑤𝑇 (𝑗)] = 𝛿𝑖𝑗𝑐𝑤(𝑖)                               ( 2-122) 

                                                              𝐸[𝑉(𝑖)𝑉𝑇 (𝑗)] = 𝛿𝑖𝑗𝑐𝑉(𝑖)                    ∀𝑖, 𝑗   2-123)  

                                                               𝐸[𝑉(𝑖)𝑤𝑇 (𝑗)] = 0                                          2-124) 

 

 

It is assumed that the probability density of the next moment in time K is Gaussian, for 

example.𝑝(𝑥𝑘|𝑧𝑘) = 𝑁(𝑥𝑘; 𝑥𝑘
^ , 𝑃(𝑘|𝑘). The first step is to present this density function with a set 

of 𝑥𝑖

(𝑘|𝑘)
2n sample points and their weights 𝑊𝑘

𝑖  , 𝑖 = 0,… ,2𝑛. Each sigma point of a sample in the 

middle of the model process is the product of a set of transformed samples : 
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𝑋𝑘+1|𝑘
𝑖 = 𝑓𝑘(𝑥𝑖(𝑘|𝑘))                                             (2-125)                                           

The prediction stage is then performed as follows: 

                              �̂�(𝐾 + 1|𝐾) = ∑ 𝑊𝐾
𝑖𝑋𝐾+1|𝑘

𝑖                               (
2𝑛

𝑖=0
2-126) 

And the predicted covariance matrix is calculated as follows: 

                                    𝑃(𝐾 + 1|𝐾) = ∑ 𝑊𝐾
𝑖 [𝑋𝐾+1|𝑘

𝑖 − �̂�(𝐾 + 1|𝐾)][𝑋𝑘+1|𝑘
𝑖 −

2𝑛

𝑖=0

�̂�(𝐾 + 1|𝐾)𝑇                                             2-127) 

The covariance matrix and mean vector are obtained with matrix and standard vector functions, 

the mean algorithm is suitable for each step of choosing to advance the model process. This 

implementation is simply because it does not require the Jacobian analysis required in EKF. This 

method is more advantageous when its product has a more accurate prediction than the analytical 

linearization method. The next step is the updating. The information comes from observation of 

z(k) measurement and is applied to correct the probability density system. The use of Bayes 

theorem on the conditional probability density for memory sensor systems is as follows: 

                                                𝑃(𝑋(𝐾)|𝑍(𝐾) = 𝑃(𝑋(𝐾)|𝑍(𝐾 − 1), 𝑍(𝐾)                                                   (2-128) 

                                          =
1

𝐶
𝑃(𝑍(𝐾)|𝑋(𝐾), 𝑍(𝐾 − 1)𝑃(𝑋(𝐾)|𝑍(𝐾 − 1) 

=
1

𝐶
𝑃(𝑍(𝐾)|𝑋(𝐾))𝑃(𝑋(𝐾)|𝑍(𝐾 − 1) 

where z(k) is the set of observations achieved from z(1) to z(k) and c is the nonlinearization factor: 

                                              𝐶 = ∮𝑋 (𝐾) ∈ 𝑋𝑃(𝑍(𝐾)|𝑋(𝐾))𝑃(𝑋(𝐾)|𝑍(𝐾 − 1)𝑑𝑋(𝐾)            (2-129)   

The approximation produces both the measurement noise and the predicted state that are relevant 

to the normal distribution. Therefore, 𝑃(𝑍(𝐾)|𝑋(𝐾)) the probability function of the next moment 

is that the result includes two and one Gaussian result. So, the MMSE estimate coincides with the 

MAP estimate, and so the task now is to obtain the maximum of 𝑃(𝑍(𝐾)|𝑋(𝐾)). Equivalently and 

simultaneously, we can maximize its logarithm. After removing inappropriate constants and 

relevant items, it all resulted in minimizing the following equation: 

                           𝑓(𝑋) =
1

2
(𝑋 − �̅�𝑃)𝑇𝐶𝑃

−1(𝑋 −

�̅�𝑃)                                                                                                                                                                                               2-130) 

 

             𝑑𝑢𝑒 𝑡𝑜 𝑝(𝑥(𝑘)|𝑧(𝑘 − 1)) 
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+
1

2
 (𝑍 − ℎ(𝑥))𝑇𝐶𝑣

−1  (𝑧 − ℎ(𝑥))    

 

             𝑑𝑢𝑒 𝑡𝑜 𝑝(𝑧(𝑘)|𝑥(𝑘)) 

 

 

In short, the following points are used : 

                                           �̅�𝑃 = �̂�(𝐾 + 1|𝐾)                                        (2-131) 

                                          𝐶𝑃 = 𝑃(𝐾 + 1|𝐾)                                                      2-132) 

                                         𝑍 = 𝑍(𝐾)                                                                          2-133)   

                                          𝐶𝑉 = 𝐶𝑉(𝐾)                                                   2-134)  

The way of finding the minimum is to use the Newton-Raphson iteration, which uses  

�̅�0 = �̂�(𝐾 + 1|𝐾) in the L iteration step, we already have an estimate �̅�𝑙−1 obtained from the 

previous step. For approximation, we use the second order Taylor series for expanding f(x): 

                                                     𝑓(𝑋) = (𝑋 − �̅�𝑙−1)𝑇 𝜕𝑓(�̅�𝑙−1)

𝜕𝑋

̃
+ 𝑓(𝑋𝑙−1)                                       ( 2-135)     

+
1

2
 (𝑋 − �̅�𝑙−1)

𝑇
𝜕2𝑓(�̅�𝑙−1)

𝜕𝑋2
  (𝑋 − �̅�𝑙−1)  

which 
𝜕𝑓

𝜕𝑋 
 shows the gradient (slope) and f(x) 

𝜕2𝑓

𝜕𝑋2is Hessian. The estimate �̅� 𝑙 is the minimum 

approximation that is obtained by equating the slope of the approximation to zero. 

Differentiating from (8) gives us the following expression: 

                                                           
𝜕𝑓(�̅�𝑙−1)

𝜕𝑋
+

𝜕2𝑓(�̅�𝑙−1)

𝜕𝑋2
(𝑋 − �̅�𝑙−1) = 0                                              2-136) 

                                                         �̅�𝑙 = �̅�𝑙−1 − [
𝜕2𝑓(�̅�𝑙−1)

𝜕𝑋2 ]
−1

𝜕𝑓(�̅�𝑙−1)

𝜕𝑋
                                                                 2-137) 

Hessian and Jacobian f(x) in simple and obvious form is obtained from 2-139 as follows: 

                                                      
𝜕𝑓(�̅�𝑙−1)

𝜕𝑋
= 𝐶𝑝

−1(�̅�𝑙−1 − 𝑋𝑝) − 𝐻𝑙
𝑇𝐶𝑉

−1(𝑍 − ℎ(�̅�𝑙−1))                           2-138 )  

                                                      
𝜕2𝑓(�̅�𝑙−1)

𝜕𝑋2 = 𝐶𝑝
−1 + 𝐻𝑙

𝑇𝐶𝑉
−1𝐻𝑙                                                                 (2-139) 

which 𝐻𝑙 = 𝐻(�̅�𝑙−1) is the Jacobian matrix h(x) obtained in �̅�𝑙−1 

Substituting (10) into (9) is seen in the following iteration: 
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         �̅�𝑙 = �̅�𝑙−1 − (𝐶𝑃
−1 + 𝐻𝑙

𝑇𝐶𝑉
−1𝐻𝑙)

−1[𝐶𝑃
−1(�̅�𝑙−1 − 𝑋𝑝) − 𝐻𝑙

𝑇𝐶𝑉
−1(𝑧 − ℎ (�̅�𝑙−1 ))         2-140) 

The number needed for more iterations is related to converges speed. This is a general element to 

fix the number of iterations in the L number in a practical and practical way. The result is the last 

iteration set, for example �̂�(𝐾|𝐾) = �̅�𝐿                                                                            (2-141) 

The factor  (𝐶𝑃
−1 + 𝐻𝑙

𝑇𝑐𝑣
−1𝐻𝑙)

−1 in (2-141) can be considered as the error covariance matrix related 

to   𝑋 ̅(𝐾|𝐾): 

                                                   𝑝(𝑘|𝑘) = (𝑐𝑝
−1 + 𝐻𝑙

𝑇𝐶𝑉
−1𝐻𝑙)

−1
                                                             2-142)  

It makes another connection and continuity in the last part in 2-143 and in fact the part of 

𝑝(𝑘|𝑘)𝐻𝑙
𝑇𝐶𝑉

−1 could be the Kalman obtained in the matrix k1 in iteration.  

 

Figure 2-18 shows the difference between EKF and UKF in a simple way. The EKF uses 

linearization and UKF as mentioned before uses some points (Sigma points) to obtain real mean 

and covariance. 

 

 

Figure 2-18 The difference between actual sampling, Extended Kalman Filter and Unscented 
transformation 
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3. SOC Estimation Based on Kalman Filter  

3.1  Introduction 

The statistical characteristics of measurement noise were corrected. Moreover, adaptively the 

matrix of error covariance was corrected and updating of model parameters online consequently 

was done using the measurable parameters, in the presence of uncertainty in model variables and 

matrix of noise covariance initial value. The battery's internal chemical chemistry is quite complex. 

The performance of various types of batteries varies. Even identical lithium-ion batteries from the 

same brands have a wide range of performance (Seaman, Dao and McPhee, 2014). Due to the 

nonlinear properties, performance can be strongly influenced by environmental factors and load 

conditions. The electrochemical model and the equivalent circuit model are the two types of battery 

models now in use. To describe the electrochemical model, an electrochemical approach is used 

(He, Xiong and Fan, 2011). 

 This method requires a lot of computing power and is better suited to research in electrolyte and 

electrode fields. The equivalent circuit model simulates the battery’s dynamic voltage 

characteristics by using circuit elements like capacitors and resistors to construct a model 

consisting of resistors and capacitors. This method is easier to use than the electrochemical model, 

and it accurately captures the battery's dynamic reaction. Because the comparable circuit model is 

better suited for simulating purposes, it is used for battery status updating. In this study the lithium-

ion battery’s equivalent circuit model consists of a second-order RC network topology, which was 

used for simulating the polarisation effect during the charging stage and discharging.  

A first-order functional state space equation was employed as an analogous circuit model for the 

second-order RC network topology since it is balanced in terms of processing complexity and 

accuracy. The root means square error (RMSE) was utilised as the assessment index to quantify 

the estimation error of techniques. Model-based approaches consisting of the Standard Kalman 

Filter, Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF) for battery state 

estimation were thoroughly investigated. The fundamental constraints and challenges of various 

types of Kalman filter families were discussed, as well as the advantages and disadvantages of 

existing SOC estimate approaches. In the presence of uncertainty in model parameters, the precise 

initial value of the noise covariance matrix is unknown, for example, EKF cannot produce reliable 

estimation results. To address these flaws, a unique approach for improving the accuracy and 

resilience of the EKF was proposed. In the meantime, the EKF was adaptively corrected using a 

unique technique that can update model parameters online based on the measurable variables and 

error covariance matrix. 

3.2    Battery modelling 

Battery modelling is an essential and tricky issue in the Battery management system. So far, there 

are several models for batteries. It has been reported that they are generally divided into four 

categories consisting of ideal model, behavioural model, electrochemical model, and electrical 
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equivalent model. Equivalent circuit models include ordered RC networks is used to recommend 

the dynamic characteristics of the battery(Gu and Wang, 2000). In this study, it is required to be 

more accurate and precise, low calculation, so the second order RC model is used, which is shown 

in Figure 3.1. (Lotfivand, Yu and Gomm, 2022) 

 

C1

R1

C2

R2

VOC

-

+
Vt

++ --
V1V2

R2

I

 

Figure 3-1 Battery Thevenin Model 

The following equations are derived from the figure using KVL:  
 

    V1
. (t)=

-V1(t)

R1C1
+

I(t)

C1
                                            ( 3-1) 

 

 
 

           V2
. (t)=

-V2(t)

R2C2
+

I(t)

C2
                                         3-2)                                              

            SoC
.
=

ɳI(t)

Q
                                                        (3-3)                                                                 

 

            𝑉𝑡(𝑡) = 𝑉𝑂𝐶(𝑆𝑜𝐶(𝑡)) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼(𝑡)𝑅0                            3-4)     

 

The state and measurement equations are as follows: 
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              𝑥 .(t) =
𝑑𝑥

𝑑𝑡
=Bu(t)+ Ax(t)                             (3-5)                                                  

             Y.(t)=Du(t)+ Cx(t)                                   ( 3-6)                                             

             A=

[
 
 
 

-1

R1C1
0 0

0
-1

R2C2
0

0 0 0]
 
 
 
                                     ( 3-7)                                            

                 B =

[
 
 
 
 

1

𝐶1

1

𝐶2
ɳ

𝑄 ]
 
 
 
 

                𝐶 = [1 1
dVOC

dSOC
]      D= [R0] 

                                             State Vector=x(t)= [

V1(t)
V2(t)

SoC(t)
]              (3-8)                   

3.3   Applying Extended Kalman Filter for the battery model 

The state matrix is A, the input matrix is B, the output matrix is C, and the feedthrough matrix 

is D.EKF approach uses a discrete state space model. This is because data will be updated after 

each time step. The following is the discrete state space model: 

 

                                                                 V1(k+1)= e
-∆T

R1C1V1(k)+R1(1-e
-∆T

R1C1)                               3-9)        

                                                               V2(k+1)= e
-∆T

R2C2V2(k)+R2(1-e
-∆T

R2C2)                                  (3-10)            

 

                                                  A=[
e

-∆T

R1C1 0 0

0 e
-∆T

R2C2 0

0 0 0

]      𝐵 =

[
 
 
 
 R1(1-e

-∆T

R1C1)

R2(1-e
−∆𝑇

𝑅2𝐶2

ɳ∆T

Q

)

]
 
 
 
 

                        ( 3-11)   

 

                                     C = [1 1
dVOC

dSOC
]             D= [R0]                              

The prominent and forthright method for estimating SOC is the Coulomb counting method. 

However, there are two problems using these algorithms: the first is the amount of SoC and 

sensor noise. SoC estimation will be erroneous if the starting SoC is incorrect because the CC 

method is not a closed loop control method, so sensor noise will be added at each time step. 
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Closed loop approaches such as EKF are employed to solve these shortcomings. The suggested 

methodology employs the EKF method to estimate SOC and Terminal voltage. 

The Hybrid Pulse Power Characterization (HPPC) test data achieved in 4 temperatures from 40°C 

to -10°C are used to calculate the SOC 3-dimensional curve as a function of SOC and T. In the 

proposed methodology, a four-order polynomial to the entirety of the SOC-OCV data fitted with 

thermal effects on Open Circuit Voltage (OCV). 

 

                                                                 OCV=f (SOC, Temperature)                                            3-12)                                   

                                          

It can be written as a function of SOC and temperature as follows: 

                                                

OCVfit=p00+p10*SOC+p11*SOC*T+p20*SOC
2
+p11*SOC*T+p02*T23-13  

+P30*SOC
3
+p21*SOC

2
*T +p12*SOC*T2+p03*T3+p40*SOC

4
+P31*SOC

3
*T+p22*SOC

2
*T2 

+P13*SOC*T3+p04*T4 

Derivative of OCV with respect to SOC is:                                                                        (3-14) 

                                
dOCV

dSOC
 =4*p40*SOC

3
+3*p31*SOC

2
*T+3*p30*SOC

2
+2*p22*SOC*        

                              T2+2*p21*SOC*T+2*p20*SOC+p13*𝑇3 + 𝑝12 ∗ 𝑇2 + 𝑝11 ∗ 𝑇 + 𝑝10                                                             

Derivative of OCV with respect to SOC is: 

 

                              df_OCV_T=p31*SOC
3
+2*p22*SOC

2
*T+p21*SOC

2
+                                      (3-15) 

                         3*p13*SOC*T2+2*p12*SOC*T+p11*SOC+4*p04*T3+ 

                              

3*p03*T2+2*p02*T+p01                                         

 

 

3.4  Applying Unscented Kalman Filter for the battery model 

     

                            SoC
.
=

ɳI(t)

Q
                                                                                                                       (3-16)                                          
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                      𝑉𝑡(𝑡) = 𝑉𝑂𝐶(𝑆𝑜𝐶(𝑡)) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼(𝑡)𝑅0                                                3-17)    

 

The state and measurement equations are as follows: 

 

                            x.(t)=Bu(t)+Ax(t)                    (3-18)                                              

 

                          Y.(t)=Du(t)+Cx(t)                    (3-19)                                   

                     A=

[
 
 
 

-1

R1C1
0 0

0
-1

R2C2
0

0 0 0]
 
 
 
                        (3-20) 

    B =

[
 
 
 
 

1

𝐶1

1

𝐶2
ɳ

𝑄 ]
 
 
 
 

                          

  𝐶 = [1 1
dVOC

dSOC
]      D= [R0] 

            State Vector=x(t)=[V1(t) V2(t) SoC(t)]         (3-21)                       

 

The state matrix is A, the input matrix is B, the output matrix is C, and the feedthrough matrix is 

D. (He, Xiong and Guo, 2012) 

 

EKF approach uses a discrete state space model. This is because data will be updated after each 

time step. The following is the discrete state space model: 

 

                                             𝑉1(𝑘 + 1) =  𝑒
−∆𝑇

𝑅1𝐶1𝑉1(𝑘) + 𝑅1 (1 − 𝑒
−∆𝑇

𝑅1𝐶1)                (3-22)       

 

                                            𝑉2(𝑘 + 1) =  𝑒
−∆𝑇

𝑅2𝐶2𝑉2(𝑘) + 𝑅2(1 − 𝑒
−∆𝑇

𝑅2𝐶2)                (3-23) 
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                                      A=[
𝑒

−∆𝑇

𝑅1𝐶1 0 0

0 𝑒
−∆𝑇

𝑅2𝐶2 0
0 0 0

]                                        3-24) 

                       𝐵 =

[
 
 
 
 𝑅1(1 − 𝑒

−∆𝑇

𝑅1𝐶1)

𝑅2(1 − 𝑒
−∆𝑇

𝑅2𝐶2

ɳ∆𝑇

𝑄

)

]
 
 
 
 

    

 

                       𝐶 = [1 1
𝑑𝑉OC

𝑑𝑆𝑂𝐶
]             D= [𝑅0]      

 

 

The most popular and straightforward method for estimating SOC is the Coulomb Counting 

method. Nevertheless, this algorithm has two main drawbacks: the first value of SoC and sensor 

noise. SoC estimation will be erroneous if the starting SoC is incorrect. Because the CC method 

is not a closed loop algorithm, sensor uncertainty accumulates at each time step. Closed loop 

approaches such as EKF are employed to solve these shortcomings. The second issue with 

Coulomb Counting method is that in Li-ion batteries middle part of Open Circuit Voltage graph 

is flat and small measurement error will lead to a big error in estimation.  

The EKF needs to linearize both equations consisting of state and measurement equations. It 

leads to have lower order nonlinear systems and less precise at the same time. It assumes this is 

a drawback for the EKF method and so the UKF method is preferable. Using UKF Jacobians 

and Hessians is not required, and this method is ‘derivative-free’ among the Kalman filter 

family. The EKF algorithm uses one spot that is called mean, however in UKF we have several 

points known as sigma points consisting of mean. As in UKF we need few sigma points, it needs 

moderate computation (Sun et al., 2011) . We use sigma points to find two main parameters 

consisting of mean and covariance of main data. There will be 2n+1 sigma points. Choosing 

sigma points is described as follows:  

                                                 𝑋𝑘−1
[0]

= 𝑋𝑘−1
+                                                                                                 (3-25)                                                

                                                𝑋𝑘−1
[𝑖]

= (√(𝑛 + 𝜆)𝑃𝑘−1) +𝑋𝑘−1
+ for i=1,2,...,n                                 (3-26) 

                                                𝑋𝑘−1
[𝑖]

= −(√(𝑛 + 𝜆)𝑃𝑘−1)+ 𝑋𝑘−1
+  for i=n+1,..,2n  (14)                   ( 3-27) 

 

 

Then these points go through equations (3-28) to (3-30) and their weights are as follows: 
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                             𝑤𝑚
[0]

     =

 
𝜆

𝑛+𝜆
                                                                                                          (3-28)                                                             

                                                 𝑤𝑐
[0]

= (1 − 𝛼2 + 𝛽) + 𝑤𝑚
[0]

                      3-29)                        

                                                𝑤𝑚
[𝑖]

= 𝑤𝑐
[𝑖]

=
1

2(𝑛+𝜆)
 𝑓𝑜𝑟 𝑖 = 1,2, . . ,2𝑛     (3-30)        

                                               𝜆 = 𝛼2(𝑛 + 𝑘) − 𝑛                                             (3-31)                         

 

Since weights are normalized, the sum of them is one. 

𝑋𝑘−1
+  is supposed as the mean of the selected points, 𝑃𝑘−1 is the covariance matrix of state 

variables, n is the number of state variables, k is another scaling factor and normally it is 3-n, α 

shows the stretch of sigma points, β shows prior knowledge of x distribution [9] and it is 2 for 

gaussian noises.  

The number of columns is i, computing mean weight is 𝑤𝑚
[𝑖]

 ,computing covariance weight is 

𝑤𝑚
[𝑖]. 

 So, the Unscented Kalman Filter algorithm is as follows:  

We can assume the nonlinear system as: 

                                               x(n+1)=f w(n) (,u(n), x(n))               (3-32)                                  

                                             Y(n)=h(v(n) ,x(n))                              (3-33)                        

prediction: 

• By propagating sigma points via transition equation, we have:  

 

                                         𝑥𝑘
𝑖 = 𝑓 (𝑋𝑘−1

[𝑖] , 𝑢𝑘)   𝑓𝑜𝑟 𝑖 = 0,1, . . ,2𝑛                 3-34)          

 

• Getting priori covariance matrix: 

                                        𝑥𝑘
− = ∑ 𝑤𝑚

[𝑖]2𝑛
𝑖=0 𝑥𝑘

𝑖                                                    (3-35)               

 

                                    𝑃𝑘
− = ∑ 𝑤𝑐

[𝑖]2𝑛
𝑖=0 (𝑥𝑘

𝑖 − 𝑥𝑘
−)(𝑥𝑘

𝑖 − 𝑥𝑘
−)

𝑇
+ 𝑄               (3-36) 

 

Updating:  
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• Computing propagated sigma point measurements through measurement equation: 

 

                                     𝑦𝑘
𝑖 = ℎ(𝑥𝑘

𝑖 , 𝑢𝑘)  𝑓𝑜𝑟 𝑖 = 0,1, . . ,2𝑛                                   (3-37) 

 

• Computing measurement mean: 

 

                              𝑦𝑘 = ∑ 𝑤𝑚
[𝑖]2𝑛

𝑖=0 𝑦𝑘
𝑖                                                                            (3-38)                      

 

• Computing measurement covariance matrix: 

 

                               𝑃𝑘
𝑦

= ∑ 𝑤𝑐
[𝑖]2𝑛

𝑖=0 (𝑦𝑘
𝑖 − 𝑦𝑘)(𝑦𝑘

𝑖 − 𝑦𝑘)
𝑇

+ 𝑅                            (3-39) 

 

• Computing cross covariance matrix: 

 

 

                            𝑃𝑘
𝑥𝑦

= ∑ 𝑤𝑐
[𝑖]2𝑛

𝑖=0 (𝑥𝑘
𝑖 − 𝑥𝑘

−)(𝑦𝑘
𝑖 − 𝑦𝑘)

𝑇
                                        (3-40)    

 

• UKF Gain: 

 

  

                            𝐾𝑘 = 𝑃𝑘
𝑥𝑦

(𝑃𝑘
𝑦
)
−1

                                                                               (3-41)   

 

• Updating the state variables: 
 

                                                 𝑥𝑘
+ = 𝑥𝑘

− + 𝐾𝑘(𝑌𝑘 − 𝑦𝑘)                                           (3-42)      

 

• Updating the state covariance: 

 

                                                   𝑃𝑘
+ = 𝑃𝑘

− + 𝐾𝑘𝑃𝑘
𝑦
𝐾𝑘

𝑇                                              3-43) 
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3.5       Conclusion 

To estimating output, sigma points should be handed over measurement function. The results 

are used for obtaining cross covariance 𝑃𝑘
𝑥𝑦

 between measurement and state estimation. 

Estimate d measurement at 𝑘𝑡ℎ iteration is 𝑦𝑘
𝑖  and 𝑦𝑘 and 𝑃𝑘

𝑦
 are its mean and covariance 

respectively. 𝑌𝑘 is the measurement signal from the sensor.    

4. Analysis and interpretation of data 
 

 4.1   Data Analysis for Extended Kalman Filter 

 

 The Hybrid Pulse Power Characterization (HPPC) test data achieved at 5 degrees from 40°C to -

10°C are used to calculate the SOC 3-dimensional curve as a function of SOC and T. There are 59 

samples to be fitted. In the proposed methodology, a four-order polynomial to the entirety of the 

SOC-OCV data with thermal effects on Open Circuit Voltage is fitted as shown in figure 4.1. This 

system consists of a temperature test chamber, a Lithium-ion battery, and a PC. (Lotfivand, Yu and 

Gomm, 2022) 

                                                  OCV=f (SOC, Temperature)                                                      (4-1) 

 

        

In the previous studies the effect of temperature was neglected and OCV was assumed as a function 

of SOC. Therefore, the accuracy will be improved by adding the temperature term in OCV equation. 

It can be written as follows: 

OCVfit=p00+p10*SOC+p11*SOC*T+ p20*SOC
2
+p11*SOC*T+p02*T2                              (4-2) 

                              

                                         +P30*SOC
3
+p21*SOC

2
*T +p12*SOC*T2+p03*T3+p40*SOC

4 

                                          +P31*SOC
3
*T+p22*SOC

2
*T2+P13*SOC*T3+p04*T4 

 

Figure 4.1 illustrates dimensional open circuit voltage that is related to State of Charge and 

temperature, the curve fitted and real points, and error between them. It is shown that fitting four-
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order polynominal equatin is a good compromise of complxity and accuracy of approximation. It 

is shown in 4-1 figure, the error of fitting is less than %0.04 and cosidered as a good approximation.  

 

 

 

Figure 4-1 Battery testing system 
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Figure 4-2 Dimensional OCV curve in line with State of Charge and temperature b. real points 

and fitted curve c. Error between real points and fitted curve. 
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The most popular and straightforward method for estimating SOC is the Coulomb Counting method. 

Nevertheless, this algorithm has two main drawbacks: the first value of SoC and sensor noise. SoC estimation 

will be erroneous if the starting SoC is incorrect. Because the CC method is not a closed loop algorithm, 

sensor uncertainty accumulates at each time step. Closed loop approaches such as EKF is employed to solve 

these shortcomings. The EKF needs to linearize both equations consist of state and measurement equations. 

It leads to have lower order nonlinear systems and less precise at the same time.  

The nonlinear system’s equations are as follow: 

 

x(n+1)=f(w(n), u(n),x(n) )                                            (4-3)    

 

y(n)=h(v(n),x(n) )                                                         (4-4)   

 

(a) Prediction stage: 

 

xa(n+1)=f(u(n),x
e
(n) )                                                    (4-5) 

 

M(n+1)=W(n) ∑ W(n)T + F(n) P(n)F(n)T       (4-6
w

) 

 

(b) Correction stage: 

 

K(n+1)=V(n) ∑ V(n)T

v

] −1+M(n+1)H(n)T.[H(n)M(n+1)H(n)T

        (4 − 7) 

 

P(n+1)=-H (n)K(n+1)M(n+1) +M(n+1)                         (4-8) 

 

xe(n+1)= xa(n+1)+ K(n+1)[-h(xa(n+1,0)+y(n+1)]           (4-9) 

  

For predicting the next state, the transition equation is required. The related covariance matrix M is constructed by 

Jacobians with 𝑥𝑒(n), w(n) assessment: 

 

H(n)=
dh(v,x)

dx
       𝐹(𝑛) =

𝑑𝑓(𝑤, 𝑥)

𝑑𝑥
                                  (4 − 10) 

 

Covariance matrix P is updating by the following Jacobians that is evaluated at xa (n + 1), v(n): 

 

𝑉(𝑛)=
𝑑ℎ(𝑥,𝑣)

𝑑𝑣
      𝑊(𝑛) =

𝑑𝑓(𝑥,𝑤)

𝑑𝑤
                                    (4-11) 

 

Comparing the prediction and update step equations in Standard Kalman Filter with these steps in EKF, we can say 

that the Jacobian F(n) is said to serve the role of the A matrix, while the C matrix is the Jacobian H(n). P is the state 

covariance, W is the process noise covariance matrix, and V is assumed as the measurement noise covariance matrix. 

Using data taken from sensor (y) and Kalman gain, the Kalman filter will decide to rely on estimation or measurement. 

As a result, Kalman filter will update the estimation While, y is the measurement taken from the sensor. (Lotfivand 

Yu and Gomm, 2022) 
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Figure 4.3 shows estimated SoC by Coulomb Counting and Extended Kalman filter (as we do not 

have the real SOC, the SOC achieved by Coulomb Counting considered as real SOC) , estimated 

V1 and V2 by Extended Kalman filter. There are 14951 experimental data for voltage, current, 

temperature, and time of driving cycle. Since it is impossible to directly measure the SOC, 

Coulombe counting SOC assumed as real SOC. Then it compared to EKF estimated SOC. Figure 

4.3.a shows the SOC estimated by EKF compared to Coulomb Counting (assumed as a real SOC). 

4.3.b and 4.3.c show the voltage of two network illustrating dynamic characteristics of the battery.   

 

 

Figure 4-3 SOC, V1, and V2 estimation curves a) SOC estimation by EKF and Coulomb 

Counting method b) V1 estimation by EKF c) V2 estimation by EKF. 

 

Figure 4. 4 illustrates measured terminal voltage and estimated terminal voltage has calculated by 

the Extended Kalman filter. Due to the large amount of data, resampling will be done from 1 Hz 

t0 10 Hz. The nominal capacity provided by battery manufacturer can be used or the 25C C/20 

calculated capacity. The capacity used in this study as nominal here is 4.8 Ah from data. 
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Figure 4-4 Measured and estimated battery terminal voltage 

The Kalman Filter has 2 main parameters Sv and Sw defined as Observation noise and process noise 

and directly affect errors and RMSE. The best ways for tuning them are manually or by using 

optimization algorithm. Sv is defined as error square of the battery test equipment. So, after setting 

the Sv value, we cannot change the Sw anymore. In this study the LA92 drive cycle used and S and 

Sw is set for it as follows. If US06, HWFET, or UDDS cycles were utilized, those parameters should 

be changed. Therefore, by tuning the values  the best amount for them is set as follows: 

 

                                         Sw=[
1.0e-6 0 0

0 1.0e-5 0
0 0 1.0e-5

]       Sv=10-5         (4-31) 

             

Figure 4.5 shows the error of terminal voltage that is defined as the estimated terminal voltage 

take away measured terminal voltage. (Lotfivand, Yu and Gomm, 2022) 
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Figure 4-5 Estimation error of terminal voltage 

 

As shown in figure 4-5, the EKF is an acceptable method for estimating terminal voltage of Li-

ion batteries and the highest error of this estimation error is less than 0.07 volt. It is more rliable 

than Coulomb Counting method. Figure 4.6 illustrates 3 resistances included in battery second 

order Thevenin model obtained from HPPC and consists of the SOC, , , , , , and T 

samples. In the data set there are more than 14951 samples taken every second. 
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Figure 4-6 Battery internal Resistances 

Figure 4.7 illustrates 2 capacities included in battery second order Thevenin model obtained from 

HPPC cycle. In the data set there are more than 15000 samples taken every second. 
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Figure 4-7 Battery internal Capacities 

 

 4.2   RMSE values for Terminal Voltage and SOC in EKF     

                                                        

In this study,   SOC and terminal voltage estimation is carried out with the EKF algorithm Li-ion 

batteries. The state space analysis is done by applying related equations on the 2 RC branch battery 

model. The Hybrid Pulse Power Characterization (HPPC) test data obtained at several temperatures 

from 40°C to -10°C are used to calculate the SOC 3-dimensional curve as a function of SOC and 

T. The simulation results show that the EKF is more productive and precise than C_C (Coulomb 

Counting). As a result, this method is more reliable. The inaccuracy in the EKF results is less than 

1%, indicating that EKF is a trustworthy method for estimating battery states. Moreover, RMSE 

is utilized for the assessment index to quantify the estimation error of techniques. RMSE values 

for Terminal Voltage and SOC are 5% and 1.7% respectively. (Lotfivand, Yu and Gomm, 2022) 

 

 4.3    Data analysis for Unscented Kalman Filter 

 

The Li-ion battery has highly nonlinear and time varying properties. The battery's OCV-SoC 

characteristic curve, for example, is not linear. Furthermore, due to changing operating conditions, 

some essential EECM (Equivalent electrical circuit model) metrics, such as resistance and 

capacitance vary with time and are not linear. Therefore, the Linear Kalman Filter is not able to 

estimate the SOC of a Li-ion battery. OCV-SoC curve and other characteristics must be linearized 
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in every point they are applied. Nevertheless, because the OCV of most Li-ion batteries does not 

settle to its ultimate value immediately, long time it needs to obtain correct value for having correct 

OCV-SOC relationship, which is not possible in many applications. 

Figure 4.7 illustrates dimensional open circuit voltage that is related to State of Charge and 

temperature, the curve fitted and real points, and the error between them. 

 The Hybrid Pulse Power Characterization (HPPC) test data achieved at 5 degrees from 40°C to -

10°C are used to calculate the SOC 3-dimensional curve as a function of SOC and T. There are 59 

samples to be fitted. In the proposed methodology, figure 2 is resulted by fitting a four-order 

polynomial to the entirety of the SOC-OCV data with thermal effects on Open Circuit Voltage. 

(Lotfivand, Yu and Gomm, 2022) 

 

                                                  OCV=f (SOC, Temperature)                                         (4-32)                                                         

In the previous studies the effect of temperature was neglected and OCV was assumed as a function 

of only SOC. Therefore, the accuracy will be improved by adding the temperature term in OCV 

equation. 

It can be written as follows: 

                                                 

OCVfit=p00+p10*SOC+p11*SOC*T+ p20*SOC
2
+p11*SOC*T+p02*T2                    (4 − 33) 

                                         +P30*SOC
3
+p21*SOC

2
*T +p12*SOC*T2+p03*T3+p40*SOC

4 

                                          +P31*SOC
3
*T+p22*SOC

2
*T2+P13*SOC*T3+p04*T4 

 

Figure 4.8 illustrates dimensional open circuit voltage that is related to State of Charge and 

temperature, the curve fitted and real points, and error between them. It is shown that fitting four-

order polynominal equatin is a good compromise of complxity and accuracy of approximation. It 

is shown in 4-8 figure, the error of fitting is less than %0.04 and cosidered as a good approximation.  
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Figure 4-8 dimensional open circuit voltage a) dimensional VOC curve related to 

SOC and temperature b) real points and fitted curve c) Error between real points 

and fitted curve 
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It assumes as a drawback for the EKF method and so the UKF method is preferable. Using UKF Jacobians 

and Hessians are not required, and this method is ‘derivative-free’ among Kalman filter family. EKF 

algorithm uses one spot that is called mean, however in UKF we have several points known as sigma points 

consist of mean (Sun et al., 2011). As in UKF we need few sigma points, it needs moderate computation. 

We use sigma points to find two main parameters consist of mean and covariance of main data. There will 

be 2n+1 sigma points. Choosing sigma points is described as follows: 

 

𝑋𝑘−1
[0]

= 𝑋𝑘−1
+                                                                                       (4-12) 

 

𝑋𝑘−1
[𝑖]

= (√(𝑛 + 𝜆)𝑃𝑘−1) +𝑋𝑘−1
+ for i=1,2,...,n                         (4-13) 

 

 

𝑋𝑘−1
[𝑖]

= −(√(𝑛 + 𝜆)𝑃𝑘−1)+ 𝑋𝑘−1
+  for i=n+1,..,2n                           ( 4-14) 

 

 

 

Then these points go through equations 4-6 to 4-9 and their weights are as follows: 

 

𝑤𝑚
[0]

=
𝜆

𝑛+𝜆
                                                                                         (4-15) 

𝑤𝑐
[0]

= (1 − 𝛼2 + 𝛽) + 𝑤𝑚
[0]

                                                        (4-16) 

𝑤𝑚
[𝑖]

= 𝑤𝑐
[𝑖]

=
1

2(𝑛+𝜆)
 𝑓𝑜𝑟 𝑖 = 1,2, . . ,2𝑛                                     4-17) 

𝜆 = 𝛼2(𝑛 + 𝑘) − 𝑛                                                                         (4-18) 

                      

Since weights are normalized, the sum of them is one. 

𝑋𝑘−1
+  is supposed as mean of the selected points, 𝑃𝑘−1 is covariance matrix of state variables, n is number 

of state variables, k is another scaling factor and normally it is 3-n, α shows the stretch of sigma points, 

β shows prior knowledge of x distribution and it is 2 for gaussian noises.  

The number of columns is i, computing mean weight is 𝑤𝑚
[𝑖]

 ,computing covariance weight is 𝑤𝑚
[𝑖]. 
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 So, the Unscented Kalman Filter algorithm is as follows:  

We can assume the nonlinear system as: 

x(n+1)=f w(n) (,u(n), x(n))                                            (4-19) 

                                    

Y(n)=h(v(n) ,x(n))                                                                              (4-20) 

                  

 
prediction: 

 

• By propagating sigma points via transition equation, we have:  

 

𝑥𝑘
𝑖 = 𝑓 (𝑋𝑘−1

[𝑖] , 𝑢𝑘)   𝑓𝑜𝑟 𝑖 = 0,1, . . ,2𝑛                   (4-21) 

 

• Getting priori covariance matrix: 

 

𝑥𝑘
− = ∑ 𝑤𝑚

[𝑖]2𝑛
𝑖=0 𝑥𝑘

𝑖                                                                                          (4-22) 

                                

 

𝑃𝑘
− = ∑ 𝑤𝑐

[𝑖]2𝑛
𝑖=0 (𝑥𝑘

𝑖 − 𝑥𝑘
−)(𝑥𝑘

𝑖 − 𝑥𝑘
−)

𝑇
+ 𝑄                       (4-23) 

 

 

Updating:  
 

• Computing propagated sigma point measurements through measurement equation: 

 

𝑦𝑘
𝑖 = ℎ(𝑥𝑘

𝑖 , 𝑢𝑘)  𝑓𝑜𝑟 𝑖 = 0,1, . . ,2𝑛                                    (4-24) 

   

 

• Computing measurement mean: 

 

𝑦𝑘 = ∑ 𝑤𝑚
[𝑖]2𝑛

𝑖=0 𝑦𝑘
𝑖                                                                    (4-25) 

• Computing measurement covariance matrix: 
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𝑃𝑘
𝑦

= ∑ 𝑤𝑐
[𝑖]2𝑛

𝑖=0 (𝑦𝑘
𝑖 − 𝑦𝑘)(𝑦𝑘

𝑖 − 𝑦𝑘)
𝑇

+ 𝑅                        (4-26) 

 

• Computing cross covariance matrix: 
 

𝑃𝑘
𝑥𝑦

= ∑ 𝑤𝑐
[𝑖]2𝑛

𝑖=0 (𝑥𝑘
𝑖 − 𝑥𝑘

−)(𝑦𝑘
𝑖 − 𝑦𝑘)

𝑇
                                        (4-27) 

 

 

• UKF Gain: 
 

  

𝐾𝑘 = 𝑃𝑘
𝑥𝑦

(𝑃𝑘
𝑦
)
−1

                                               (4-28) 

 

• Updating the state variables: 
 

𝑥𝑘
+ = 𝑥𝑘

− + 𝐾𝑘(𝑌𝑘 − 𝑦𝑘)                                        (4-29) 

      

• Updating the state covariance: 
 

𝑃𝑘
+ = 𝑃𝑘

− + 𝐾𝑘𝑃𝑘
𝑦
𝐾𝑘

𝑇                                               (4-30) 

      

 

To estimating output, sigma pointes should be handed over measurement function. The results are 

used for obtaining cross covariance 𝑃𝑘
𝑥𝑦

 between measurement and state estimation. Estimated 

measurement at 𝑘𝑡ℎ iteration is 𝑦𝑘
𝑖  and 𝑦𝑘 and 𝑃𝑘

𝑦
 are it’s mean and covariance respectively. 𝑌𝑘 is 

measurement signal from sensor. Figure 4.9 shows estimated SoC by formal coulomb Counting 

and Unscented Kalman filter, estimated V1 and V2 by Unscented Kalman filter. 
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Figure 4-9 SOC, V1, and V2 estimation curves a) SOC estimation by UKF and formal Coulomb 

Counting method b) V1 estimation by EKF c) V2 estimation by EKF 

Figure 4.10 illustrates measured terminal voltage and estimated terminal voltage as done by 

Unscented Kalman filter. Figure 4.11 illustrates the eroor values for estimation. It can be seen that 

the amount of error for UKF is cosiderably lower than EKF. So in coclusion UKF is better method 

for deeply nonlinar system of Li -ion batteries. 

 

Figure 4-10 Measured and estimated battery terminal voltage 
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Figure 4-11 Error of terminal voltage 

 

Observation noise and process noise directly affect errors and RMSE. Therefore, by tuning the 

values  the best amount for them is set as follows: 

 

Q=[
1.0e

-4
0 0

0 1.0e
-5

0

0 0 1.0e
-5

]       R=10
-5

                               (  4-31)      

                                              

Figure 4.11 shows the error of terminal voltage that is defined as estimated terminal voltage take 

away measured terminal voltage. 

 

The first RC pair shows transient effects in the short-term transient condition, and the second pair 

shows the long-term transient characteristic and has a larger time constant and consists of 

concentration polarization and electrochemical effects. These effects consist of diffusion, charge 

transfer effect. Figure 4.11shows the real time data for Internal Resistance, polarization resistance 

and electrochemical resistance. 
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Figure 4-12 Battery internal Resistances (Ω) 

Figure 4.13 illustrates 2 capacities included in battery second order Tevenin model cosists of 

electrochemical capacitor and diffusion capacitor. 

 

 

Figure 4-13 Battery internal Capacities 
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4.4  RMSE values for Terminal Voltage and SOC in UKF 

 

In this study, the UKF method is used to estimate the SOC and terminal voltage of a Lithium ion 

battery. The state space analysis is calculated using the 2 RC Lithium ion electrical equivalent 

model. The Open Circuit Voltage (OCV) 3-dimensional curve as a function of SOC and T is 

calculated using the Hybrid Pulse Power Characterization (HPPC) test data acquired at 40°C, 

25°C, 10°C, 0°C, and -10°C. It can be seen that the UKF method of battery SOC estimation is 

more accurate than the coulomb counting approach, according to a comparison of the two methods. 

The inaccuracy in the UKF results is less than 1%, indicating that UKF is a trustworthy method 

for estimating battery states. Moreover, The Root Mean Square Error (RMSE) is utilized as the 

assessment index to quantify the estimation error of techniques. RMSE values for Terminal 

Voltage and SOC are 4% and 1.6% respectively. 
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5.   Conclusion 

 

 Lithium-ion batteries are preferred more than other types of batteries in electric vehicle 

applications due to their inherent safety, fast charge capacity, and long life (Martins et al., 2021). 

To create an accurate battery model, it is important to be able to identify health factors such as 

charge and health. Using LA92 drive cycle experimental data, the typical lithium-ion battery 

charge state estimation algorithm has been improved. First, we created a mathematical model of 

an analogue circuit battery to accurately mimic the behavior of a lithium-ion battery (Khalfi, 

Boumaaz and Soulmani, 2021) . The Thevenin model consists of two RC branches developed to 

identify model parameters and by an extended Kalman filter and Unscented Kalman filter were 

applied to the battery model. The three-dimensional curve of SOC as a function of SOC and T 

using hybrid pulsed power characteristic (HPPC) test data achieved at 5 degrees from 40°C to -

10°(Dees et al., 2008).  A comparison of the three methods ( Coulomb Counting, UKF, and EKF) 

is showing that the UKF method for battery SOC assessment is more reliable than the traditional 

method CC (Coulomb counting). 

The inaccuracy in the EKF results is less than 1%, indicating that EKF is a trustworthy method for 

estimating battery states. Moreover, RMSE is utilized for the assessment index to quantify the 

estimation error of techniques. RMSE values for Terminal Voltage and SOC are 5% and 1.7% 

respectively. UKF is a reliable approach for determining battery states because the error in the 

results is less than 1%. Additionally, The Root Mean Square Error (RMSE) is used as an evaluation 

metric to express the estimation error of methodologies. Terminal Voltage and SOC have RMSE 

values of 4% and 1.6%, respectively. The error observed in the UKF results is less than 1%, 

indicating that the UKF can reliably estimate battery condition. So, in Li-ion batteries as being 

deeply nonlinear the UKF is more accurate and reliable among other methods. 

5.1   Further Work 

 Although the Kaman Filter family is an acceptable method for estimating the state of charge of 

the battery, it has some week points such as numerically instability. In further works it can be 

improved by adding an algorithm. On the other hand, it is important to predefine the Sv and Sw 

(process noise and measurement noise) correctly. In case of inaccurate values, we will have high 

errors and high RMSE value. Definition of an algorithm for optimizing those matrixes would be 

helpful. 

In this study the Hybrid Pulse Power Characterization (HPPC) test data acquired at 40°C, 25°C, 

10°C, 0°C, and -10°C. The next improvement could be done by is to take the temperature effect to 

the account in more degrees. 
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7. Appendix 

 

 

7.1    MATLAB CODES FOR EXTENDED KALMAN FILTER 

 

 

1- Fitting OCV and SOC: 

2- clc 

3- clear 

4- close all 

5-  

6- load 'Z_BatteryModel.mat'; % Load the battery parameters  

7-  

8- T_data   = param.T; 

9- SOC_data = param.SOC; 

10-  
11- R0_data  = param.R0; 

12- R1_data  = param.R1; 

13- R2_data  = param.R2; 

14- C1_data  = param.C1; 

15- C2_data  = param.C2; 

16-  
17- clear param 

18-  
19- % Z_R0_xy = fit([T_data,SOC_data],R0_data,'poly45'); 

20- % R0fit = feval(Z_R0_xy,[T_data,SOC_data]); 

21- %% R0 

22- %% 

23- Fanction_R0 = scatteredInterpolant(T_data,SOC_data,R0_data); 

24- R0_estim    = Fanction_R0(T_data,SOC_data); 

25-  
26- figure 

27- hold on 

28- plot3(T_data,SOC_data,R0_data,'ob'); 

29- plot3(T_data,SOC_data,R0_estim,'*r'); 

30-  
31- stem3(T_data,SOC_data,R0_data,'ob'); 

32- stem3(T_data,SOC_data,R0_estim,'*r'); 

33-  
34- legend('Real','Estimation') 

35- xlabel('T') 

36- ylabel('SOC') 

37- zlabel('R0') 

38- box on 

39- grid on 
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40- view(-45, 45) 

41-  
42- %% R1 

43- %% 

44- Fanction_R1 = scatteredInterpolant(T_data,SOC_data,R1_data); 

45- R1_estim    = Fanction_R1(T_data,SOC_data); 

46-  
47- figure 

48- hold on 

49- plot3(T_data,SOC_data,R1_data,'ob'); 

50- plot3(T_data,SOC_data,R1_estim,'*r'); 

51-  
52- stem3(T_data,SOC_data,R1_data,'ob'); 

53- stem3(T_data,SOC_data,R1_estim,'*r'); 

54-  
55- legend('Real','Estimation') 

56- xlabel('T') 

57- ylabel('SOC') 

58- zlabel('R1') 

59- box on 

60- grid on 

61- view(-45, 45) 

62-  
63- %% 

64- %% R2 

65- %% 

66- Fanction_R2 = scatteredInterpolant(T_data,SOC_data,R2_data); 

67- R2_estim    = Fanction_R2(T_data,SOC_data); 

68-  
69- figure 

70- hold on 

71- plot3(T_data,SOC_data,R2_data,'ob'); 

72- plot3(T_data,SOC_data,R2_estim,'*r'); 

73-  
74- stem3(T_data,SOC_data,R2_data,'ob'); 

75- stem3(T_data,SOC_data,R2_estim,'*r'); 

76-  
77- legend('Real','Estimation') 

78- xlabel('T') 

79- ylabel('SOC') 

80- zlabel('R2') 

81- box on 

82- grid on 

83- view(-45, 45) 

84- %% C1 

85- %% 
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86- Fanction_C1 = scatteredInterpolant(T_data,SOC_data,C1_data); 

87- C1_estim    = Fanction_C1(T_data,SOC_data); 

88-  
89- figure 

90- hold on 

91- plot3(T_data,SOC_data,C1_data,'ob'); 

92- plot3(T_data,SOC_data,C1_estim,'*r'); 

93-  
94- stem3(T_data,SOC_data,C1_data,'ob'); 

95- stem3(T_data,SOC_data,C1_estim,'*r'); 

96-  
97- legend('Real','Estimation') 

98- xlabel('T') 

99- ylabel('SOC') 

100- zlabel('C1') 

101- box on 

102- grid on 

103- view(-45, 45) 

104- %% 

105- %% C2 

106- %% 

107- Fanction_C2 = scatteredInterpolant(T_data,SOC_data,C2_data); 

108- C2_estim    = Fanction_C2(T_data,SOC_data); 

109-  

110- figure 

111- hold on 

112- plot3(T_data,SOC_data,C2_data,'ob'); 

113- plot3(T_data,SOC_data,C2_estim,'*r'); 

114-  

115- stem3(T_data,SOC_data,C2_data,'ob'); 

116- stem3(T_data,SOC_data,C2_estim,'*r'); 

117-  

118- legend('Real','Estimation') 

119- xlabel('T') 

120- ylabel('SOC') 

121- zlabel('C2') 

122- box on 

123- grid on 

124- view(-45, 45) 

125- %% 

126- %% 

127- Name_fun='Z_batrrey_info_lotfi'; 

128- save(Name_fun,'Fanction_R0','Fanction_R1',... 

129-               'Fanction_R2','Fanction_C1','Fanction_C2'); 

130- %% 

131-  
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132-  

133- %% 

 

2-  

 

 

clc 

clear 

close all 

 

load 'Z_BatteryModel.mat'; % Load the battery parameters  

 

T_data   = param.T; 

SOC_data = param.SOC; 

 

R0_data  = param.R0; 

R1_data  = param.R1; 

R2_data  = param.R2; 

C1_data  = param.C1; 

C2_data  = param.C2; 

 

clear param 

 

% Z_R0_xy = fit([T_data,SOC_data],R0_data,'poly45'); 

% R0fit = feval(Z_R0_xy,[T_data,SOC_data]); 

%% R0 

%% 

Fanction_R0 = scatteredInterpolant(T_data,SOC_data,R0_data); 

R0_estim    = Fanction_R0(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R0_data,'ob'); 

plot3(T_data,SOC_data,R0_estim,'*r'); 

 

stem3(T_data,SOC_data,R0_data,'ob'); 

stem3(T_data,SOC_data,R0_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R0') 

box on 

grid on 

view(-45, 45) 
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%% R1 

%% 

Fanction_R1 = scatteredInterpolant(T_data,SOC_data,R1_data); 

R1_estim    = Fanction_R1(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R1_data,'ob'); 

plot3(T_data,SOC_data,R1_estim,'*r'); 

 

stem3(T_data,SOC_data,R1_data,'ob'); 

stem3(T_data,SOC_data,R1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R1') 

box on 

grid on 

view(-45, 45) 

 

%% 

%% R2 

%% 

Fanction_R2 = scatteredInterpolant(T_data,SOC_data,R2_data); 

R2_estim    = Fanction_R2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R2_data,'ob'); 

plot3(T_data,SOC_data,R2_estim,'*r'); 

 

stem3(T_data,SOC_data,R2_data,'ob'); 

stem3(T_data,SOC_data,R2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R2') 

box on 

grid on 

view(-45, 45) 

%% C1 

%% 

Fanction_C1 = scatteredInterpolant(T_data,SOC_data,C1_data); 

C1_estim    = Fanction_C1(T_data,SOC_data); 
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figure 

hold on 

plot3(T_data,SOC_data,C1_data,'ob'); 

plot3(T_data,SOC_data,C1_estim,'*r'); 

 

stem3(T_data,SOC_data,C1_data,'ob'); 

stem3(T_data,SOC_data,C1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C1') 

box on 

grid on 

view(-45, 45) 

%% 

%% C2 

%% 

Fanction_C2 = scatteredInterpolant(T_data,SOC_data,C2_data); 

C2_estim    = Fanction_C2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,C2_data,'ob'); 

plot3(T_data,SOC_data,C2_estim,'*r'); 

 

stem3(T_data,SOC_data,C2_data,'ob'); 

stem3(T_data,SOC_data,C2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C2') 

box on 

grid on 

view(-45, 45) 

%% 

%% 

Name_fun='Z_batrrey_info_lotfi'; 

save(Name_fun,'Fanction_R0','Fanction_R1',... 

              'Fanction_R2','Fanction_C1','Fanction_C2'); 

%% 

 

 

%% 
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3-  EKF: 

clc 

clear 

close all 

%-------------------------------------------------------------------------- 

load('Z_measurment.mat') 

%-------------------------------------------------------------------------- 

sampel_time=10; 

% ------------------------------------------------------------------------- 

  

% Resample input data 

data.RecordingTime            = meas.Time   (1:  sampel_time:  end); 

data.Measured_Voltage         = meas.Voltage(1:  sampel_time:  end); 

data.Measured_Current         = meas.Current(1:  sampel_time:  end); 

data.Measured_Temperature     = meas.Battery_Temp_degC(1: sampel_time: end); 

% ------------------------------------------------------------------------- 

data.Ah                       = meas.Ah(1: sampel_time: end); 

% ------------------------------------------------------------------------- 

Ah=data.Ah ; 

  

% Nominal capacity of the Battery in Ah obtained from database. 

nominalCap = 4.81;  

  

% Obtain the SOC with C-C for comparing with EKF 

data.Measured_SOC             = (nominalCap +Ah).*100./nominalCap;   

  

Qn_rated    = 3600*4.81; % Transforming Ah to Amp-seconds 

% ------------------------------------------------------------------------- 

load('Z_OCV_estim_Lotfi.mat') 

% [VOC_fit,df_VOC_SOC,df_VOC_T]= Estim_Voc(SOC,T); 

% ------------------------------------------------------------------------- 

 load('Z_batrrey_info_lotfi.mat') 

% ------------------------------------------------------------------------- 

% ------------------------------------------------------------------------- 

%process noise 

% Sw=[1.0e-6    0         0 

%     0         1.0e-5    0 

%     0         0        1.0e-5]; %cov 

  

Sw=[1.0e-4    0         0 

    0         1.0e-5    0 

    0         0        1.0e-5]; %cov 

%-------------------------------------------------------------------------- 

%-------------------------------------------------------------------------- 
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%observation noise 

Sv=0.004; %cov. 

% Sv=10^-5; %cov. 

%-------------------------------------------------------------------------- 

%------------------------------------------ 

%Being Prepared for starting filtering 

%creating some space  

Nf=1; 

P=zeros(3,3,Nf); 

M=zeros(3,3,Nf);  

K=zeros(3,Nf);  

%---------------------------------------------------------- 

% creating some space er(n), xe(n) 

rxe=zeros(3,Nf); 

rer=zeros(3,Nf); 

%-------------------------------------------------------------------------- 

%process noise jacobian 

% W=eye(3,3); 

W = [1    0    0 

     0    1    0 

     0    0    1]; 

  

% noise of observation’ Jacobian  

V=1;  

%-------------------------------------------------------------------------- 

%Following system’s Behavior filter after starting state 

%   SOC  V1   V1 

x = [1  

     0 

     0]; % state space x parameter intializations 

  

%------------------------------------------------------------------------ 

 

xe=x; % filter state  

xa=xe; % starting for middle state 

%------------------------------------------------------------------------ 

nn=1; 

DeltaT      = 1; % sample time in seconds 

  

eta=1; 

  

Nf=numel(data.Measured_Current)-10; 

%time 

tim=0:DeltaT:(Nf-1)*DeltaT;  

  

y_estim=zeros(1,1); 
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 RMSE_Vt     = sqrt((sum((data.Measured_Voltage - y_estim).^2)) 

/(length(data.Measured_Voltage))) % mV 

  

while nn<Nf+1 

  

%-----     

% recording the estimation 

rxe(:,nn)=xe; %states 

% rer(:,nn)=x-xe; %calculating errors 

%-------------- 

%system 

% rx(:,nn)=x; %state calculating 

% Calculate RMSE and MAX of Vt and SOC 

  

T     = data.Measured_Temperature(nn); % C 

U     = data.Measured_Current(nn); % A 

  

if U > 0 

    eta = 1; % in the discharging step 

elseif U <= 0  

    eta = 1; % in the discharging step 

end 

     

     

SOC   = xe(1); 

V1    = xe(2); 

V2    = xe(3); 

% 

=====================================================================

==== 

% 

=====================================================================

==== 

%system output 

%measurement 

Voltage_sensor = data.Measured_Voltage(nn); 

ym=Voltage_sensor; 

% 

=====================================================================

==== 

% 

=====================================================================

==== 

%Prediction 

%a priori state 
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R0_estim    = Fanction_R0(T,SOC); 

R1_estim    = Fanction_R1(T,SOC); 

R2_estim    = Fanction_R2(T,SOC); 

  

C1_estim    = Fanction_C1(T,SOC); 

C2_estim    = Fanction_C2(T,SOC); 

  

Tau_1       = C1_estim * R1_estim; 

Tau_2       = C2_estim * R2_estim; 

     

a1 = exp(-DeltaT/Tau_1); 

a2 = exp(-DeltaT/Tau_2); 

  

b1 = R1_estim * (1 - exp(-DeltaT/Tau_1)); 

b2 = R2_estim * (1 - exp(-DeltaT/Tau_2));  

  

B   = [-(eta * DeltaT/Qn_rated) 

        b1 

        b2]; 

     

A = [1    0     0; 

     0   a1     0; 

     0    0    a2];    

  

xa = (A * xe) + (B * U); 

  

% 

=====================================================================

==== 

%a priori cov. 

  

F = [1    0     0; 

     0   a1     0; 

     0    0    a2]; 

               

%-------------------------------------------------------------------------- 

%obtaining Jacobian of states 

M(:,:,nn+1)=(F*P(:,:,nn)*F')+ (W*Sw*W'); 

% -------------------------------------- 

%Updating  

%-------------------------------------------------------------------------- 

[VOC_fit,df_VOC_SOC,df_VOC_T]= Estim_Voc(SOC,T); 

  

ya= VOC_fit - R0_estim * U - V1 - V2; 

  

y_estim(nn)=ya; 
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%measurement jacobian 

H=[df_VOC_SOC   -1 -1];  

% 

=====================================================================

==== 

% 3*1    =   (3*3       3*1 ) * [    1*3   3*3        3*1   + 1*1  1*1 1*1] 

  

% K(:,nn+1)=( M(:,:,nn+1)*H') / 

 (V*  Sv *V') (H *   M(:,:,nn+1) *H')* +); 

              %Replace b*inv(A) with b/A  || Replace inv(A)*b with A\b 

  

K(:,nn+1)=(M(:,:,nn+1)*H')   /  ((H *   M(:,:,nn+1) *H') + (V*  Sv *V')); 

  

P(:,:,nn+1)=M(:,:,nn+1)-(K(:,nn+1)* M(:,:,nn+1) * H); 

  

xe=  ( K(:,nn+1) ) * (ym-ya) +xa  ; %estimating the next state 

% ------------------------------------------- 

  

nn=1+nn; 

end 

% ---------------------------------------- 

  

  

%Gaphs 

figure(1) 

subplot(1,3,1) 

hold on 

  

plot(tim,rxe(1,1:Nf)*100,'r'); 

plot(tim,  data.Measured_SOC(1:Nf),'b'); 

  

title('SOC');  

xlabel('seconds') 

box on 

legend('EKF','CC') 

  

%-------------------------------------------------------------------------- 

subplot(1,3,2) 

hold on 

  

plot(tim,rxe(2,1:Nf),'r'); 

title('V1');  

xlabel('seconds'); 

box on 

legend('EKF') 
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%-------------------------------------------------------------------------- 

subplot(1,3,3) 

hold on 

  

plot(tim,rxe(2,1:Nf),'r'); 

title('V2');  

xlabel('seconds'); 

box on 

legend('EKF') 

% 

=====================================================================

==== 

  

%display 

figure(2) 

hold on 

  

plot(tim,y_estim(1,1:Nf),'r'); 

plot(tim,  data.Measured_Voltage(1:Nf),'b'); 

  

title('V_{t}');  

xlabel('seconds') 

ylabel('Volt') 

box on 

legend('EKF','measured') 

  

% 

=====================================================================

==== 

 

 

 

 

 

7.2       MATLAB CODES FOR UNSCENTED KALMAN FILTER 

 clc 

clear 

close all 

 

load 'Z_BatteryModel.mat'; % Load the battery parameters  

 

T_data   = param.T; 

SOC_data = param.SOC; 
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R0_data  = param.R0; 

R1_data  = param.R1; 

R2_data  = param.R2; 

C1_data  = param.C1; 

C2_data  = param.C2; 

 

clear param 

 

% Z_R0_xy = fit([T_data,SOC_data],R0_data,'poly45'); 

% R0fit = feval(Z_R0_xy,[T_data,SOC_data]); 

%% R0 

%% 

Fanction_R0 = scatteredInterpolant(T_data,SOC_data,R0_data); 

R0_estim    = Fanction_R0(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R0_data,'ob'); 

plot3(T_data,SOC_data,R0_estim,'*r'); 

 

stem3(T_data,SOC_data,R0_data,'ob'); 

stem3(T_data,SOC_data,R0_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R0') 

box on 

grid on 

view(-45, 45) 

 

%% R1 

%% 

Fanction_R1 = scatteredInterpolant(T_data,SOC_data,R1_data); 

R1_estim    = Fanction_R1(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R1_data,'ob'); 

plot3(T_data,SOC_data,R1_estim,'*r'); 

 

stem3(T_data,SOC_data,R1_data,'ob'); 

stem3(T_data,SOC_data,R1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 
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ylabel('SOC') 

zlabel('R1') 

box on 

grid on 

view(-45, 45) 

 

%% 

%% R2 

%% 

Fanction_R2 = scatteredInterpolant(T_data,SOC_data,R2_data); 

R2_estim    = Fanction_R2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R2_data,'ob'); 

plot3(T_data,SOC_data,R2_estim,'*r'); 

 

stem3(T_data,SOC_data,R2_data,'ob'); 

stem3(T_data,SOC_data,R2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R2') 

box on 

grid on 

view(-45, 45) 

%% C1 

%% 

Fanction_C1 = scatteredInterpolant(T_data,SOC_data,C1_data); 

C1_estim    = Fanction_C1(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,C1_data,'ob'); 

plot3(T_data,SOC_data,C1_estim,'*r'); 

 

stem3(T_data,SOC_data,C1_data,'ob'); 

stem3(T_data,SOC_data,C1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C1') 

box on 

grid on 
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view(-45, 45) 

%% 

%% C2 

%% 

Fanction_C2 = scatteredInterpolant(T_data,SOC_data,C2_data); 

C2_estim    = Fanction_C2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,C2_data,'ob'); 

plot3(T_data,SOC_data,C2_estim,'*r'); 

 

stem3(T_data,SOC_data,C2_data,'ob'); 

stem3(T_data,SOC_data,C2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C2') 

box on 

grid on 

view(-45, 45) 

%% 

%% 

Name_fun='Z_batrrey_info_lotfi'; 

save(Name_fun,'Fanction_R0','Fanction_R1',... 

              'Fanction_R2','Fanction_C1','Fanction_C2'); 

%% 

 

 

%% 

 

OC Fit 

clc 

clear 

close all 

 

load 'Z_BatteryModel.mat'; % Load the battery parameters  

 

T_data   = param.T; 

SOC_data = param.SOC; 

 

R0_data  = param.R0; 

R1_data  = param.R1; 

R2_data  = param.R2; 
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C1_data  = param.C1; 

C2_data  = param.C2; 

 

clear param 

 

% Z_R0_xy = fit([T_data,SOC_data],R0_data,'poly45'); 

% R0fit = feval(Z_R0_xy,[T_data,SOC_data]); 

%% R0 

%% 

Fanction_R0 = scatteredInterpolant(T_data,SOC_data,R0_data); 

R0_estim    = Fanction_R0(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R0_data,'ob'); 

plot3(T_data,SOC_data,R0_estim,'*r'); 

 

stem3(T_data,SOC_data,R0_data,'ob'); 

stem3(T_data,SOC_data,R0_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R0') 

box on 

grid on 

view(-45, 45) 

 

%% R1 

%% 

Fanction_R1 = scatteredInterpolant(T_data,SOC_data,R1_data); 

R1_estim    = Fanction_R1(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R1_data,'ob'); 

plot3(T_data,SOC_data,R1_estim,'*r'); 

 

stem3(T_data,SOC_data,R1_data,'ob'); 

stem3(T_data,SOC_data,R1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R1') 

box on 
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grid on 

view(-45, 45) 

 

%% 

%% R2 

%% 

Fanction_R2 = scatteredInterpolant(T_data,SOC_data,R2_data); 

R2_estim    = Fanction_R2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,R2_data,'ob'); 

plot3(T_data,SOC_data,R2_estim,'*r'); 

 

stem3(T_data,SOC_data,R2_data,'ob'); 

stem3(T_data,SOC_data,R2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('R2') 

box on 

grid on 

view(-45, 45) 

%% C1 

%% 

Fanction_C1 = scatteredInterpolant(T_data,SOC_data,C1_data); 

C1_estim    = Fanction_C1(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,C1_data,'ob'); 

plot3(T_data,SOC_data,C1_estim,'*r'); 

 

stem3(T_data,SOC_data,C1_data,'ob'); 

stem3(T_data,SOC_data,C1_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C1') 

box on 

grid on 

view(-45, 45) 

%% 

%% C2 
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%% 

Fanction_C2 = scatteredInterpolant(T_data,SOC_data,C2_data); 

C2_estim    = Fanction_C2(T_data,SOC_data); 

 

figure 

hold on 

plot3(T_data,SOC_data,C2_data,'ob'); 

plot3(T_data,SOC_data,C2_estim,'*r'); 

 

stem3(T_data,SOC_data,C2_data,'ob'); 

stem3(T_data,SOC_data,C2_estim,'*r'); 

 

legend('Real','Estimation') 

xlabel('T') 

ylabel('SOC') 

zlabel('C2') 

box on 

grid on 

view(-45, 45) 

%% 

%% 

Name_fun='Z_batrrey_info_lotfi'; 

save(Name_fun,'Fanction_R0','Fanction_R1',... 

              'Fanction_R2','Fanction_C1','Fanction_C2'); 

%% 

 

 

%% 
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